Science.gov

Sample records for potassium titanate whiskers

  1. Synthesis of potassium hexatitanate whiskers starting from metatitanic acid and potassium carbonate and sulfate by calcination method

    SciTech Connect

    Liu Chunyan; Yin Hengbo Liu Yumin; Ren Min; Wang Aili; Ge Chen; Yao Hengping; Feng Hui; Chen Jun; Jiang Tingshun

    2009-05-06

    Potassium hexatitanate whiskers were synthesized starting from metatitanic acid (H{sub 2}TiO{sub 3}), potassium carbonate and sulfate by calcination method. The effects of mole ratios of K{sub 2}CO{sub 3} to metatitanic acid (H{sub 2}TiO{sub 3}), content of potassium sulfate, and calcination temperature on the crystallinity and morphology of the resultant potassium titanate whiskers were investigated by X-ray diffraction and scanning electron microscopy. Well crystallized potassium hexatitanate whiskers with an average length of 7.3 {mu}m and an average diameter of 0.62 {mu}m were synthesized when the molar ratio of K{sub 2}CO{sub 3} to metatitanic acid was kept at 1:3.5 and the calcination temperature was up to 1150 deg. C. The presence of K{sub 2}SO{sub 4} favored the formation of thin potassium hexatitanate whiskers as compared to the absence of K{sub 2}SO{sub 4}. The whiteness and brightness of the synthesized potassium hexatitanate whiskers were comparable to that of rutile TiO{sub 2} pigment.

  2. Histopathological changes in rat lung following intratracheal instillation of silicon carbide whiskers and potassium octatitanate whiskers.

    PubMed

    Ogami, Akira; Morimoto, Yasuo; Myojo, Toshihiko; Oyabu, Takako; Murakami, Masahiro; Nishi, Kenichiro; Kadoya, Chikara; Tanaka, Isamu

    2007-07-01

    We evaluated the pattern of pulmonary inflammation for the assessment of the biological hazards of two man-made mineral fibers. Rats were exposed by intratracheal instillation to a 2 mg dose of each of two kinds of man-made mineral fibers (PT1, potassium octatitanate whisker; and SiCW, silicon carbide whisker), or three kinds of comparable respirable particles (crystalline silica, crocidolite asbestos, and titanium dioxide, TiO(2)). The lung tissue was evaluated at 3 day, 1 wk, and 1, 3 and 6 mo after exposure. Digital images taken of the lung sections were examined by morphometric point counting method (PCM). PT1 and SiCW showed a similar inflammatory pattern, which contains temporal inflammation such as moderate alveolitis within 1 wk after the exposure, and in later phase aggregation foci of instilled fibers. Differences in repair patterns of these two man-made mineral fibers showed that the toxicity of these two fibers is less toxic than for crocidolite or crystalline silica. Although SiCW showed a higher inflammation score than TiO(2) within 1 mo after instillation, the inflammation scores and fibrotic changes of PT1 and SiCW were not significant as TiO(2) at 3 mo and 6 mo in this study. Careful use should be recommended when these materials are used in the workplace. PMID:17613083

  3. An improved automotive brake lining using fibrous potassium titanate

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Halberstadt, M. L.; Riccitiello, S. R.; Rhee, S. K.

    1976-01-01

    Simultaneous fade reduction and wear improvement of a commercial automotive brake lining were achieved by adding fibrous potassium titanate. The dependence of friction and wear characteristics on quantitative variations in potassium titanate, asbestos, phenolic binder, and organic and inorganic modifiers was evaluated.

  4. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

  5. Polyethylene/Potassium Titanate Separators For Ni/H2 Cells

    NASA Technical Reports Server (NTRS)

    Scott, William E.

    1995-01-01

    Experimental separators fabricated on paper-making machine. Two-layer, paperlike composite of polyethylene fibers and potassium titanate pigment shows promise for replacing asbestos as separator material in nickel/hydrogen electrochemical cells.

  6. Evaluation of potassium titanate as a component of alkaline fuel cell matrices

    NASA Technical Reports Server (NTRS)

    Post, R. E.

    1976-01-01

    Various forms of potassium titanate were found to have almost complete resistance to chemical attack in 45 wt % KOH at 150 C (423 K) for up to 9600 hours. Electron microscopy and X-ray diffraction disclosed important differences with respect to fibricity and stability. The octatitanate appeared to possess the best combination of properties. It was concluded that potassium titanate could be produced in a more asbestos-like form. Fiber dispersion is important in matrix manufacture.

  7. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    SciTech Connect

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-10-15

    In the present work, K{sub 2}Ti{sub 2}O{sub 5}, K{sub 2}Ti{sub 4}O{sub 9} and K{sub 2}Ti{sub 6}O{sub 13} are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO{sub 2}. Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO{sub 3}){sub 2} precursor. It is found that the binding energy of K in K{sub 2}Ti{sub 2}O{sub 5} is much higher than those in K{sub 2}Ti{sub 4}O{sub 9} and K{sub 2}Ti{sub 6}O{sub 13}, and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K{sub 2}Ti{sub 2}O{sub 5} is much easier to be exchanged out.

  8. Effects of potassium titanate fiber on the wear of automotive brake linings

    NASA Technical Reports Server (NTRS)

    Halberstadt, M. L.; Mansfield, J. A.; Rhee, S. K.

    1977-01-01

    Asbestos reinforcing fiber in an automotive friction material was replaced by an experimental ingredient having better thermal stability, and the effects on wear and friction were studied. A friction materials test machine (SAE J661a) was used to determine friction and wear, under constant energy output conditions, as a function of temperature between 121 and 343 C (250 and 650 F). When potassium titanate fiber replaced one half of the asbestos in a standard commercial lining, with a 40 percent upward adjustment of phenolic resin content, wear above 204 C (400 F) was improved by 40% and friction by 30%. Tests on a full-scale inertial dynamometer supported the findings of the sample dynamometer tests. It was demonstrated that the potassium titanate fiber contributes directly to the improvement in wear and friction.

  9. Titan

    NASA Technical Reports Server (NTRS)

    Owen, Tobias; Gautier, Daniel; Raulin, Francois; Scattergood, Thomas

    1992-01-01

    The following topics are discussed with respect to Titan: observations of the atmosphere; laboratory simulations and theoretical models of Titan's atmosphere; endpoints of atmospheric chemistry - aerosols and oceans; exobiology; and the next steps in understanding Titan.

  10. The effect of lung burden on biopersistence and pulmonary effects in rats exposed to potassium octatitanate whiskers by inhalation.

    PubMed

    Oyabu, Takako; Yamato, Hiroshi; Ogami, Akira; Morimoto, Yasuo; Akiyama, Izumi; Ishimatsu, Sumiyo; Hori, Hajime; Tanaka, Isamu

    2004-09-01

    The effect of lung burden on biopersistence and histopathological changes caused by potassium octatitanate whiskers (POW) which is one of the asbestos substitutes were investigated for 1-yr and 4-wk inhalation periods. In the 1-yr inhalation experiment, male Wistar rats were exposed to POW (TW) for 6 h/d, 5 d/wk under the same conditions as a previous study of POW (PT1, JFM fiber) which is made by different manufacturer. The exposure concentration was 1.9 +/- 0.7 mg/m(3) and the mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) in the chamber were 1.6 microm and 2.9. Rats were sacrificed at 3 d and 1 yr after the inhalation experiment and TW deposits in the lungs were determined by ICP-AES. Lung burden at 3 d and 1 yr after the inhalation was 2.39 +/- 0.50 mg and 1.37 +/- 0.96 mg, respectively, the deposition fraction was 8.1% and biological half time (BHT) was 15 months. Aggregated dust cells and mild fibrotic changes around these dust cells were observed in the exposed rat lung. These results were almost the same as those obtained in the previous 1-yr PT1 study. In the 4-wk inhalation experiment, to investigate the effect of lung burden on biopersistence and histopathological change, male Wistar rats were exposed to PT1. The exposure concentration was 102 +/- 21 mg/m(3), MMAD (GSD), the geometiric mean length and diameter (GSD) of the PT1 in the chamber were 1.6 microm (3.0), 2.2 microm (1.8) and 0.33 microm (1.5), respectively. Rats were sacrificed at 3 d, 1 wk, and 1, 3, 6 and 12 months after the inhalation experiment. The lung burden of POW at 3 d after 4 wk inhalation was 1.49 +/- 0.19 mg, which was close to the estimated amount of overload. The BHT of the total mass (4.1 months) was not prolonged, but aggregated dust cells were observed in the subpleural region and around the bronchioles and mild fibrotic changes were observed only around the dust cells at one year after the 4-wk inhalation. It is considered that the excessive

  11. Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    Titan, Saturn's biggest satellite (second in size among the satellites in our solar system), has attracted the eye of astronomers preferentially ever since its discovery by Dutch astronomer Christiaan Huygens on March 25, 1655. Titan orbits around Saturn at a distance of 1,222,000 km (759,478 mi) in a synchronous rotation, taking 15.9 days to complete. As Titan follows Saturn on its trek around the Sun, one Titanian year equals about 30 Earth years. The sunlight that reaches such distances is only 1/100th of that received by the Earth. Titan is therefore a cold and dark place, but a fascinating one.

  12. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  13. Process for making transition metal nitride whiskers

    SciTech Connect

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  14. Titan

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  15. Titan!

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  16. Method for manufacturing whisker preforms and composites

    DOEpatents

    Lessing, P.A.

    1995-11-07

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  17. Method for manufacturing whisker preforms and composites

    DOEpatents

    Lessing, Paul A.

    1995-01-01

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  18. Potassium

    MedlinePlus

    Potassium is a mineral that the body needs to work normally. It helps nerves and muscles communicate. ... products out of cells. A diet rich in potassium helps to offset some of sodium's harmful effects ...

  19. Potassium

    MedlinePlus

    ... Sources of potassium in the diet include Leafy greens, such as spinach and collards Fruit from vines, such as grapes and blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit

  20. Potassium

    MedlinePlus

    Klor-Con® Powder ... Klor-Con®/25 Powder ... Potassium comes in oral liquid, powder, granules, effervescent tablets, regular tablets, extended-release (long-acting) tablets, and extended-release capsules. It usually is taken two to four ...

  1. Mullite Whiskers and Mullite-whisker Felt

    NASA Technical Reports Server (NTRS)

    Talmy, Inna G.; Haught, Deborah A.

    1993-01-01

    The Naval Surface Warfare Center has developed processes for the preparation of mullite (3(Al2O3)(dot)2(SiO2)) whiskers and mullite-whisker felt. Three patents on the technology were issued in 1990. The processes are based on chemical reactions between AlF3, Al2O3, and SiO2. The felt is formed in-situ during the processing of shaped powdered precursors. It consists of randomly oriented whiskers which are mutually intergrown forming a rigid structure. The microstructure and properties of the felt and size of the whiskers can be modified by varying the amount of Al2O3 in the starting mixture. Loose mullite whiskers can be used as a reinforcement for polymer-, metal-, and ceramic-matrix composites. The felt can be used as preforms for fabricating composite materials as well as for thermal insulation and high temperature, chemically stable filters for liquids (melts) and gases.

  2. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-05-21

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  3. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  4. Modeling tin whisker growth.

    SciTech Connect

    Weinberger, Christopher Robert

    2013-08-01

    Tin, lead, and lead-tin solders are the most commonly used solders due to their low melting temperatures. However, due to the toxicity problems, lead must now be removed from solder materials. This has lead to the re-emergence of the issue of tin whisker growth. Tin whiskers are a microelectronic packaging issue because they can lead to shorts if they grow to sufficient length. However, the cause of tin whisker growth is still not well understood and there is lack of robust methods to determine when and if whiskering will be a problem. This report summarizes some of the leading theories on whisker growth and attempts to provide some ideas towards establishing the role microstructure plays in whisker growth.

  5. A novel route for synthesis of UV-resistant hydrophobic titania-containing silica aerogels by using potassium titanate as precursor.

    PubMed

    Wei, Wei; Lü, Xiaomeng; Jiang, Deli; Yan, Zaoxue; Chen, Min; Xie, Jimin

    2014-07-01

    Developing a novel and facile way to synthesize composite aerogels plays an important role in the applications of aerogels. UV-resistant hydrophobic titania-containing silica aerogels are prepared for the first time using potassium titanate as precursor by a modified ambient pressure drying method. The well established silica-titania networks, which can be tuned from 10 to 30 nm by adjusting the precursor content in the preparation process, provide effective confinement of spherical solid clusters. The UV-resistant hydrophobic composite aerogels show excellent photocatalytic dye degradation activity under visible light irradiation. This can be ascribed to the insert of suitable titania into the silica organizational structure. The present work gives a promising method of one pot synthesis and surface modification of aerogel composite structures, which have a broader application as photocatalyst. PMID:24825183

  6. Electronic properties of whiskers

    NASA Astrophysics Data System (ADS)

    Gaidukov, Iu. P.

    1984-04-01

    Size effects on the electronic properties of metals are examined, summarizing the results of recent experiments on metal whiskers of thickness about 1 micron. Whisker-growth techniques, the general properties of whiskers, and the theoretical principles of size effects on metal resistivity in general and on the resistance of whiskers in particular are reviewed. The experiments discussed are performed at low temperatures so that the mean-free path length of the conductance electrons is much greater than the whisker diameter. Findings presented include the temperature dependence of resistance (deviation from Matthiessen's rule and the angular dependence of the specular-reflection probability), magnetoresistance (size and temperature effects and quantum oscillations), and the effect of tensile stress on whisker electrical properties. Special consideration is given to a dc skin effect (in a layer about one Larmor radius thick) and quantum changes (when the Larmor radius is greater than the whisker diameter) observed in a magnetic field. Graphs and diagrams are provided, and the feasibility of experiments on whiskers less than 100 nm thick is considered.

  7. WHISKER LAKE WILDERNESS, WISCONSIN.

    USGS Publications Warehouse

    Schulz, Klaus J.

    1984-01-01

    The mineral-resource potential of the Whisker Lake Wilderness in northeastern Wisconsin was evaluated. Only a strip along the southwest corner of the wilderness is assessed as having probable mineral-resource potential. If mineral deposits exist, they probably are of the massive sulfide type. The geologic terrain precludes the presence of fossil fuel resources. Sand and gravel and peat in swampy lowlands are the only resources of the Whisker lake Wilderness.

  8. Buckling of C60 whiskers

    NASA Astrophysics Data System (ADS)

    Asaka, Koji; Kato, Ryoei; Miyazawa, Kun'ichi; Kizuka, Tokushi

    2006-08-01

    The authors demonstrated the mechanics of materials for crystalline whiskers composed of C60 molecules; compressive deformation of the whiskers was observed by in situ transmission electron microscopy with simultaneous force measurement by means of an optical cantilever method, as used in atomic force microscopy. In response to compression along the long axis, the whiskers bent first elastically, then buckled. A whisker with 160nm diameter fractured brittlely at a strain of 0.08. According to Euler's formula, Young's modulus of the whisker was estimated to be 32-54GPa, which is 160%-650% of that of C60 bulk crystals.

  9. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  10. Box-and-Whisker Plots.

    ERIC Educational Resources Information Center

    Larsen, Russell D.

    1985-01-01

    Box-and-whisker plots (which give rapid visualization of batches of data) can be effectively used to present diverse collections of data used in traditional first-year chemistry courses. Construction of box-and-whisker plots and their use with bond energy data and data on heats of formation and solution are discussed. (JN)

  11. Hollow tin/chromium whiskers

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Vianco, Paul T.; Li, James C. M.

    2010-05-01

    Tin whiskers have been an engineering challenge for over five decades. The mechanism has not been agreed upon thus far. This experiment aimed to identify a mechanism by applying compressive stresses to a tin film evaporated on silicon substrate with an adhesion layer of chromium in between. A phenomenon was observed in which hollow whiskers grew inside depleted areas. Using focused ion beam, the hollow whiskers were found to contain both tin and chromium. At the bottom of the depleted areas, thin tin/tin oxide film remained over the chromium layer. It indicates that tin transport occurred along the interface between tin and chromium layers.

  12. The Advantages of a Tapered Whisker

    PubMed Central

    Williams, Christopher M.; Kramer, Eric M.

    2010-01-01

    The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals. PMID:20098714

  13. The advantages of a tapered whisker.

    PubMed

    Williams, Christopher M; Kramer, Eric M

    2010-01-01

    The role of facial vibrissae (whiskers) in the behavior of terrestrial mammals is principally as a supplement or substitute for short-distance vision. Each whisker in the array functions as a mechanical transducer, conveying forces applied along the shaft to mechanoreceptors in the follicle at the whisker base. Subsequent processing of mechanoreceptor output in the trigeminal nucleus and somatosensory cortex allows high accuracy discriminations of object distance, direction, and surface texture. The whiskers of terrestrial mammals are tapered and approximately circular in cross section. We characterize the taper of whiskers in nine mammal species, measure the mechanical deflection of isolated felid whiskers, and discuss the mechanics of a single whisker under static and oscillatory deflections. We argue that a tapered whisker provides some advantages for tactile perception (as compared to a hypothetical untapered whisker), and that this may explain why the taper has been preserved during the evolution of terrestrial mammals. PMID:20098714

  14. Sensing Device with Whisker Elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2013-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  15. Sensing device with whisker elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2010-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  16. Whisker reinforced glass ceramic

    SciTech Connect

    Hirschfeld, D.A.; Brown, J.J. Jr.

    1996-06-03

    The process for making an in-situ whisker reinforced glass-ceramic that is up to 1.5 times as strong as conventional glass-ceramics was developed at Virginia Tech and patented in 1993. This technology has been identified as having commercial potential for use in high temperature heat exchanger applications for the electric power generation field by the National Center for Appropriate Technology (NCAT). This technology was licensed by MATVA, Inc., a small Virginia business, for further development. In particular, the goal of this project was to develop a property database and conduct initial testing of heat exchanger prototypes to demonstrate its potential application. This final report describes how the glass precursor was formed, physical properties of the glass-ceramic, techniques for making heat exchanger prototypes.

  17. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  18. Electron beam induced growth of tin whiskers

    NASA Astrophysics Data System (ADS)

    Vasko, A. C.; Warrell, G. R.; Parsai, E. I.; Karpov, V. G.; Shvydka, Diana

    2015-09-01

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  19. Flow sensing by pinniped whiskers.

    PubMed

    Miersch, L; Hanke, W; Wieskotten, S; Hanke, F D; Oeffner, J; Leder, A; Brede, M; Witte, M; Dehnhardt, G

    2011-11-12

    Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair. PMID:21969689

  20. Process for making whiskers, fibers and flakes of transition metal compounds

    DOEpatents

    Bamberger, C.E.

    1992-06-02

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH[sub 3]. The products exhibit the same morphology as the starting material.

  1. Process for making whiskers, fibers and flakes of transition metal compounds

    DOEpatents

    Bamberger, Carlos E.

    1992-01-01

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH.sub.3. The products exhibit the same morphology as the starting material.

  2. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  3. Graphene Oxide Modified TiO2 Micro Whiskers and Their Photo Electrochemical Performance.

    PubMed

    Rambabu, Y; Jaiswal, Manu; Roy, Somnath C

    2016-05-01

    Harnessing the solar energy and producing clean fuel hydrogen through efficient photo-electrochemical water splitting has remained one of the most challenging endeavors in materials science. The core problem is to develop a suitable photo-catalyst material that absorbs a significant part of the solar spectrum and produces electron-hole pairs that can be easily separated without recombination. In the recent times, the composite of Titanium dioxide with graphene have been investigated to explore the advantages of both class of materials. Here we report on the photo-electrochemical properties of reduced graphene oxide functionalised TiO2 whiskers. The TiO2 whiskers are obtained from potassium titanium oxide (KTi8O16) synthesized through hydrothermal technique followed by ion exchange method and heat treatment. Graphene oxide was deposited on the as prepared TiO2 whiskers using hydrothermal method. As formed samples were characterized by Raman spectroscopy to confirm the presence of reduced graphene oxide (RGO) attached to TiO2 whiskers. Comparative photo electrochemical studies were carried out for TiO2 and reduced graphene oxide modified TiO2 whiskers. Among these, RGO modified TiO2 whiskers show significantly higher photo current density possibly due to enhancement in charge separation ability and longer electron life times. PMID:27483830

  4. Whisker reinforced structural ceramics: Progress in the VLS growth and use of long silicon carbide whiskers. [Vapor-liquid-solid

    SciTech Connect

    Gac, F.D.; Shalek, P.D.; Parkinson, W.J.; Edwards, C.; Price, J.B.

    1987-01-01

    A VLS (vapor-liquid-solid) whisker growth process, optimized for the production of short (approx.10 mm lengths) SiC whiskers, was modified to produce greater than or equal to 25 mm long whiskers. In conjunction with this modification, a plan was developed for incorporating an artificial-intelligence system to enhance the whisker growth process. An oriented whisker ribbon was produced from the long whiskers, as a step toward the development of a staple whisker yarn.

  5. Ceramic whisker reinforcement of dental resin composites.

    PubMed

    Xu, H H; Martin, T A; Antonucci, J M; Eichmiller, F C

    1999-02-01

    Resin composites currently available are not suitable for use as large stress-bearing posterior restorations involving cusps due to their tendencies toward excessive fracture and wear. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to reinforce dental resins with ceramic single-crystalline whiskers of elongated shapes that possess extremely high strength. A novel method was developed that consisted of fusing silicate glass particles onto the surfaces of individual whiskers for a two-fold benefit: (1) to facilitate silanization regardless of whisker composition; and (2) to enhance whisker retention in the matrix by providing rougher whisker surfaces. Silicon nitride whiskers, with an average diameter of 0.4 microm and length of 5 microm, were coated by the fusion of silica particles 0.04 microm in size to the whisker surface at temperatures ranging from 650 degrees C to 1000 degrees C. The coated whiskers were silanized and manually blended with resins by spatulation. Flexural, fracture toughness, and indentation tests were carried out for evaluation of the properties of the whisker-reinforced composites in comparison with conventional composites. A two-fold increase in strength and toughness was achieved in the whisker-reinforced composite, together with a substantially enhanced resistance to contact damage and microcracking. The highest flexural strength (195+/-8 MPa) and fracture toughness (2.1+/-0.3 MPa x m(1/2)) occurred in a composite reinforced with a whisker-silica mixture at whisker:silica mass ratio of 2:1 fused at 800 degrees C. To conclude, the strength, toughness, and contact damage resistance of dental resin composites can be substantially improved by reinforcement with fillers of ceramic whiskers fused with silica glass particles. PMID:10029470

  6. An Investigation into the Effect of a Post-electroplating Electrochemical Oxidation Treatment on Tin Whisker Formation

    NASA Astrophysics Data System (ADS)

    Ashworth, M. A.; Haspel, D.; Wu, L.; Wilcox, G. D.; Mortimer, R. J.

    2015-01-01

    Since the `cracked oxide theory' was proposed by Tu in 1994,1 there has only been a limited number of studies that have sought to investigate the effect of the Sn oxide on whisker growth. The current study has used electrochemical oxidation to produce oxide films, which has enabled the effect of the surface oxide thickness on whisker growth to be established. The effect of oxide thickness on whisker growth has been investigated for tin electrodeposits on both Cu and brass substrates. The influence of applied oxidation potential on the thickness of the Sn oxide film has been investigated using x-ray photoelectron spectroscopy (XPS) for potassium bicarbonate-carbonate and borate buffer electrolyte solutions. Whisker growth from electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass has been investigated and compared with samples left to develop a native air-formed oxide. XPS studies show that the thickness of the electrochemically formed Sn oxide film is dependent on the applied oxidation potential and the total charge passed. Subsequent whisker growth studies demonstrate that electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass are significantly less susceptible to whisker growth than those having a native oxide film. For Sn deposits on brass, the electrochemically formed Sn oxide greatly reduces Zn oxide formation at the surface of the tin deposit, which results in whisker mitigation. For Sn-Cu deposits on Cu, the reduction in whisker growth must simply derive from the increased thickness of the Sn oxide, i.e. the Sn oxide film has an important role in stemming the development of whiskers.

  7. Growth process of Cu2Al6B4O17 whiskers

    NASA Astrophysics Data System (ADS)

    Zhu, Chengcai; Nai, Xueying; Zhu, Donghai; Guo, Fengqin; Zhang, Yongxing; Li, Wu

    2013-01-01

    The reactions occurred and growth process in the preparation of copper aluminum borate (Cu2Al6B4O17) whiskers based on flux method (Al2(SO4)3/CuSO4/H3BO3 as raw materials, K2SO4 as flux) were investigated. The thermogravimetric and differential scanning calorimetry analysis (TG-DSC), inductively coupled plasma atomic emission spectrum analysis (ICP-AES) and X-ray diffraction analysis (XRD) results of reactants mixture quenched at various temperatures and phase diagrams of K2SO4-Al2(SO4)3 system and B2O3-Al2O3 system showed that the reaction process proceeds through three steps: the formation and decomposition of two different kinds of potassium aluminum sulfate (K3Al(SO4)3 and KAl(SO4)2); the formation of aluminum borate (Al4B2O9) and decomposition of copper sulfate (CuSO4) and boric acid (H3BO3); growth and formation of copper aluminum borate (Cu2Al6B4O17) whiskers. The scanning electron microscopy (SEM) analysis results indicated that morphology in growth of Cu2Al6B4O17 whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers.

  8. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage

    NASA Technical Reports Server (NTRS)

    Brusse, Jay; Sampson, Mike; Leidecker, Henning; Kadesch, Jong

    2004-01-01

    This website provides information about tin whiskers and related research. The independent research performed during the past 50+ years is so vast that it is impractical to cover all aspects of tin whiskers in this one resource. Therefore, the absence of information in this website about a particular aspect of tin whiskers should NOT be construed as evidence of absence.

  9. Sn whiskers removed by energy photo flashing

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-10-01

    Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  10. Metal Whiskers: Failure Modes and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.; Leidecker, Henning

    2007-01-01

    Metal coatings especially tin, zinc and cadmium are unpredictably susceptible to the formation of electrically conductive, crystalline filaments referred to as metal whiskers. The use of such coatings in and around electrical systems presents a risk of electrical shorting. Examples of metal whisker formation are shown with emphasis on optical inspection techniques to improve probability of detection. The failure modes (i.e., electrical shorting behavior) associated with metal whiskers are described. Based on an almost 9- year long study, the benefits of polyurethane conformal coat (namely, Arathane 5750) to protect electrical conductors from whisker-induced short circuit anomalies is discussed.

  11. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  12. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  13. Platelet Composite Coatings for Tin Whisker Mitigation

    NASA Astrophysics Data System (ADS)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-11-01

    Reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  14. Platelet composite coatings for tin whisker mitigation

    DOE PAGESBeta

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  15. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  16. Rapid whisker movements in sleeping newborn rats.

    PubMed

    Tiriac, Alexandre; Uitermarkt, Brandt D; Fanning, Alexander S; Sokoloff, Greta; Blumberg, Mark S

    2012-11-01

    Spontaneous activity in the sensory periphery drives infant brain activity and is thought to contribute to the formation of retinotopic and somatotopic maps. In infant rats during active (or REM) sleep, brainstem-generated spontaneous activity triggers hundreds of thousands of skeletal muscle twitches each day; sensory feedback from the resulting limb movements is a primary activator of forebrain activity. The rodent whisker system, with its precise isomorphic mapping of individual whiskers to discrete brain areas, has been a key contributor to our understanding of somatotopic maps and developmental plasticity. But although whisker movements are controlled by dedicated skeletal muscles, spontaneous whisker activity has not been entertained as a contributing factor to the development of this system. Here we report in 3- to 6-day-old rats that whiskers twitch rapidly and asynchronously during active sleep; furthermore, neurons in whisker thalamus exhibit bursts of activity that are tightly associated with twitches but occur infrequently during waking. Finally, we observed barrel-specific cortical activity during periods of twitching. This is the first report of self-generated, sleep-related twitches in the developing whisker system, a sensorimotor system that is unique for the precision with which it can be experimentally manipulated. The discovery of whisker twitching will allow us to attain a better understanding of the contributions of peripheral sensory activity to somatosensory integration and plasticity in the developing nervous system. PMID:23084988

  17. Boron carbide whiskers produced by vapor deposition

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  18. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  19. Platelet composite coatings for tin whisker mitigation

    SciTech Connect

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  20. Properties of whisker-reinforced ceramics

    SciTech Connect

    Becher, P.F.; Hsueh, C.H.; Lin, H.T.; Alexander, K.B.; Tiegs, T.N.; Warwick, W.H.; Waters, S.B.

    1994-09-01

    The paper summarizes studies of SiC whisker-reinforced alumina composites their properties and the influence of composition and microstructure. Both steady-state toughness and R-curve response increase with whisker content and diameter. Room temperature flexure strength of aluminas with different grain sizes also increases with whisker content. Resistance to slow crack growth under both monotonic and cyclic loading is improved by whisker reinforcement compared to alumina and other ceramics. The thermal conductivity and electrical resistivity exhibit a substantial increase and decrease, respectively, with whisker loadings above 10 vol %. Thermal expansion coefficients decrease in a systematic fashion with increase in whisker content. However, the expansion coefficients are greater parallel to hot pressing axis compared to perpendicular direction owing to internal stresses and preferred orientation of whiskers. The changes in mechanical and thermal properties due to SiC whisker additions result in substantial improvement in thermal shock resistance for samples of various sizes. At elevated temperatures, tests in air show that improvements in strength and resistance to strength degradation are associated with SiC whisker reinforcement. The limiting factors in elevated temperature mechanical response of the composite at 1200C and above are related to surface oxidation-reaction processes and creep. On the other hand, the creep resistance of the composite is far greater than alumina with a similar fine grain size at temperatures {le} 1200C. Furthermore by increasing the grain size of the alumina matrix, creep resistance of the composite can be increased. In essence, SiC whisker reinforced alumina composites provide an example of a system whose properties can be tailored through control of microstructure and composition.

  1. Tin Whiskers: A History of Documented Electrical System Failures

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Brusse, Jay

    2006-01-01

    This viewgraph presentation reviews the history of tin and other metal whiskers, and the damage they have caused equipment. There are pictures of whiskers on various pieces of electronic equipment, and microscopic views of whiskers. There is also a chart with information on the documented failures associated with metal whiskers. There are also examples of on-orbit failures believed to be caused by whiskers.

  2. The probabilistic distribution of metal whisker lengths

    SciTech Connect

    Niraula, D. Karpov, V. G.

    2015-11-28

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  3. The probabilistic distribution of metal whisker lengths

    NASA Astrophysics Data System (ADS)

    Niraula, D.; Karpov, V. G.

    2015-11-01

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local "dead region" of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the "dead regions," which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  4. Whiskers aid anemotaxis in rats.

    PubMed

    Yu, Yan S W; Graff, Matthew M; Bresee, Chris S; Man, Yan B; Hartmann, Mitra J Z

    2016-08-01

    Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents. PMID:27574705

  5. Whiskers aid anemotaxis in rats

    PubMed Central

    Yu, Yan S. W.; Graff, Matthew M.; Bresee, Chris S.; Man, Yan B.; Hartmann, Mitra J. Z.

    2016-01-01

    Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents. PMID:27574705

  6. Improved dispersion of silicon nitride whiskers

    SciTech Connect

    Shih, W.H.; Buchta, M.

    1995-10-01

    To improve the dispersion of silicon nitride whiskers in aqueous suspensions, a standard dispersant used in glass fiber industry, 3-aminopropyltriethoxysilane (APS) is added. It was found that the viscosity of the whisker suspensions is lowered and the centrifuged density of the suspensions is increased with the addition of the APS. The pH values of suspensions before and after the addition of APS indicate that ASP extracts H{sup +} ions from the solutions and the adsorption of APS on silicon nitride is saturated in the experiment. The results indicate a colloidal route to the processing of ceramic composites with silicon nitride whiskers as reinforcements.

  7. Potassium test

    MedlinePlus

    ... activity of nerves and muscles, especially the heart. Low levels of potassium can lead to an irregular heartbeat or other ... cell destruction Too much potassium in your diet Low levels of potassium ( hypokalemia ) may be due to: Chronic diarrhea Cushing ...

  8. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  9. A model for nucleation of tin whisker through dislocation behavior

    NASA Astrophysics Data System (ADS)

    Nakai, K.; Sakamoto, T.; Kobayashi, S.; Takamizawa, M.; Murakami, K.; Hino, M.

    2009-05-01

    A model for the nucleation and growth processes of Sn whisker is offered. High density of localized screw dislocations by deformation form the dense spiral steps of atomic scale on Sn surface. The spiral steps would induce the nucleation of Sn whisker. Edge dislocations localized at the same region where dense screw dislocations exist supply Sn atoms to the Sn whisker through pipe diffusion. Both screw and edge dislocations would bend along almost one direction, namely, to relax the external shear stress. The image force also helps to bend the dislocations perpendicular to the whisker side-surface. The bending of dislocations at root of whisker leads the bend of whisker. The pipe diffusion of Sn atoms through edge dislocations from bulk Sn toward whisker is suppressed at the bent part of edge dislocation, resulting in release of Sn atoms inside whisker and leading to the growth of whisker near its root.

  10. Contact Whiskers for Millimeter Wave Diodes

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  11. Creep and its effect on Sn whisker growth

    NASA Astrophysics Data System (ADS)

    Osenbach, John W.

    2009-11-01

    A comprehensive quantitative whisker growth theory has been developed. In this theory whisker growth is controlled by the ratio of the long range grain boundary diffusion creep relaxation rate to the short range creep relaxation rate. The theory relies solely on solid state diffusion effects and does not require additional constraints or assumptions to explain whisker growth. It explains a number of heretofore relatively poorly explained and puzzling observations reported over the past 6 decades, including: (i) Sn films that are 1-10 μm thick are more susceptible to whisker growth than thinner or thicker films; (ii) Sn film contamination in the form of hydrocarbons, Cu, hydrogen, etc., tend to increase the whisker propensity; (iii) as-deposited Sn films tend to be more susceptible to whisker growth than fused films; (iv) postplate annealing tends to improve the whisker resistance; (v) whisker growth rate tends toward zero as the temperature exceeds 100 °C; (vi) whisker growth propensity depends upon the crystallographic orientation of the Sn film; and (vii) the large statistical variations reported in whisker density and incubation time. The theory predicts: (i) the magnitude of the as deposited film stress state is not fundamental to whisker growth; (ii) at high stresses where power law creep relaxation dominates, whiskers do not form.; (iii) whiskers occur in those regions of the film that are exposed to stresses lower than that required for power law creep; (iv) whiskers form when a quasiequilibrium stress state is achieved as the stress in the film tends toward zero; (v) anything that affects (limits or restrains) power law creep and its associated stress dissipation, such as grain boundary pinning, increases the propensity for whisker growth; (vi) pinning tends to increase the whisker propensity and increase the whisker growth rate; and (vii) films with certain crystallographic orientations and grain sizes are less prone to whisker growth, independent of the

  12. Growth process of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers

    SciTech Connect

    Zhu Chengcai; Nai Xueying; Zhu Donghai; Guo Fengqin; Zhang Yongxing; Li Wu

    2013-01-15

    The reactions occurred and growth process in the preparation of copper aluminum borate (Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17}) whiskers based on flux method (Al{sub 2}(SO{sub 4}){sub 3}/CuSO{sub 4}/H{sub 3}BO{sub 3} as raw materials, K{sub 2}SO{sub 4} as flux) were investigated. The thermogravimetric and differential scanning calorimetry analysis (TG-DSC), inductively coupled plasma atomic emission spectrum analysis (ICP-AES) and X-ray diffraction analysis (XRD) results of reactants mixture quenched at various temperatures and phase diagrams of K{sub 2}SO{sub 4}-Al{sub 2}(SO{sub 4}){sub 3} system and B{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system showed that the reaction process proceeds through three steps: the formation and decomposition of two different kinds of potassium aluminum sulfate (K{sub 3}Al(SO{sub 4}){sub 3} and KAl(SO{sub 4}){sub 2}); the formation of aluminum borate (Al{sub 4}B{sub 2}O{sub 9}) and decomposition of copper sulfate (CuSO{sub 4}) and boric acid (H{sub 3}BO{sub 3}); growth and formation of copper aluminum borate (Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17}) whiskers. The scanning electron microscopy (SEM) analysis results indicated that morphology in growth of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers. - Graphical abstract: The morphology in growth of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers. Highlights: Black-Right-Pointing-Pointer Reaction process in the preparation of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers was researched systematically. Black-Right-Pointing-Pointer Crystal growth mechanism of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} whiskers was proposed by theory and experiments. Black-Right-Pointing-Pointer Properties of Cu{sub 2}Al{sub 6}B{sub 4}O{sub 17} were analyzed by instruments, such as TG-DSC, ICP-AES, XRD and SEM.

  13. Space Shuttle Program Tin Whisker Mitigation

    NASA Technical Reports Server (NTRS)

    Nishimi, Keith

    2007-01-01

    The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.

  14. Tin Whisker Growth on NdSn3 Powder

    NASA Astrophysics Data System (ADS)

    Shi, Hong-Chang; Xian, Ai-Ping

    2011-09-01

    Tin whiskers grew rapidly and spontaneously on NdSn3 powder under atmospheric conditions. By in situ optical microscopy observation, the incubation period of whisker growth was found to be very short, only about 10 min to 30 min, and the whisker growth rate was very high (up to 73 Å/s). It is proposed that the strong tendency for whisker growth on NdSn3 powder indicates that such growth is closely related to decomposition of NdSn3 under atmospheric conditions. An electron beam irradiation effect on whisker growth was also observed, in which the whiskers cease to grow after observation by scanning electron microscopy (SEM).

  15. Methane Clouds on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    Following the Voyager encounter with Titan in 1981 Saturn's largest moon was hypothesized sport a liquid cycle similar that on Earth with clouds rain and seas. On Titan methane is the condensible playing the role that water plays on Earth. Although the presence of seas is difficult to establish from ground methane clouds have been detected on Titan. Ground-based observations reveal that Titan's clouds differ remarkedly from their terrestrial counterparts. Titan's clouds are sparse reside primarily at particular altitude and concentrate presently in the south pole. That Titan's clouds are exotic is not surprising. Titan receives ~100 times less sunlight than Earth to drive weather. In addition Titan's radiative time constant is 180 years large compared to the 3 month terrestrial value. With little power and sluggish conditions it is not clear how clouds form on Titan. This talk will compare Titan to Earth to explore the nature of clouds under Titan's foreign conditions.

  16. Morphology and Growth Kinetics of Straight and Kinked Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Susan, Donald; Michael, Joseph; Grant, Richard P.; McKenzie, Bonnie; Yelton, W. Graham

    2013-03-01

    Time-lapse SEM studies of Sn whiskers were conducted to estimate growth kinetics and document whisker morphologies. For straight whiskers, growth rates of 3 to 4 microns per day were measured at room temperature. Two types of kinked whiskers were observed. For Type A kinks, the original growth segment spatial orientation remains unchanged, there are no other changes in morphology or diameter, and growth continues. For Type B kinks, the spatial orientation of the original segment changes and it appears that the whisker bends over. Whiskers with Type B kinks show changes in morphology and diameter at the base, indicating grain boundary motion in the film, which eliminates the conditions suitable for long-term whisker growth. To estimate the errors in the whisker growth measurements, a technique is presented to correct for SEM projection effects. With this technique, the actual growth angles and lengths of a large number of whiskers were collected. It was found that most whiskers grow at moderate or shallow angles with respect to the surface; few straight whiskers grow nearly normal to the surface. In addition, there is no simple correlation between growth angles and lengths for whiskers observed over an approximate 2-year period.

  17. Tensile Behavior of Single-Crystal Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Singh, S. S.; Sarkar, R.; Xie, H.-X.; Mayer, C.; Rajagopalan, J.; Chawla, N.

    2014-04-01

    The growth of metallic (predominantly Sn) whiskers from pure metallic platings has been studied for over 50 years. While the phenomenon of Sn whiskering has been studied for decades, very little is known about the mechanical properties of these materials. This can be attributed to the difficulty in handling, gripping, and testing such fine-diameter and high-aspect-ratio whiskers. We report on the stress-strain behavior of Sn whiskers inside a dual-beam focused ion beam (FIB) with a scanning electron microscope (SEM). Lift-out of the whiskers was conducted in situ in the FIB, and the whiskers were tested using a microelectromechanical system tensile testing stage. Using this technique, the whiskers had minimum exposure to ambient air and were not handled by hand. SEM images after fracture enabled reliable calculation of the whisker cross-sectional area. Tests on two different whiskers revealed relatively high tensile strengths of 720 MPa and 880 MPa, respectively, and a limited strain to failure of ˜2% to 3%. For both whiskers, the Young's modulus was between 42 GPa and 45 GPa. It is interesting to note that the whiskers were quite strong and had limited ductility. These findings are intriguing and provide a basis for further work to understand the effect of Sn whisker mechanical properties on short circuits in electronics.

  18. Understanding the movements of metal whiskers

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.

    2015-06-01

    Metal whiskers often grow across leads of electric equipment causing short circuits and raising significant reliability issues. Their nature remains a mystery after several decades of research. It was observed that metal whiskers exhibit large amplitude movements under gentle air flow or, according to some testimonies, without obvious stimuli. Understanding the physics behind that movements would give additional insights into the nature of metal whiskers. Here, we quantitatively analyze possible mechanisms of the observed movements: (1) minute air currents; (2) Brownian motion due to random bombardments with the air molecules; (3) mechanically caused movements, such as (a) transmitted external vibrations, and (b) torque exerted due to material propagation along curved whiskers (the garden hose instability); (4) time dependent electric fields due to diffusion of ions; and (5) non-equilibrium electric fields making it possible for some whiskers to move. For all these mechanisms, we provide numerical estimates. Our conclusion is that the observed movements are likely due to the air currents or electric recharging caused by external light or similar factors.

  19. Whisker Formation on SAC305 Soldered Assemblies

    NASA Astrophysics Data System (ADS)

    Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.

    2014-11-01

    This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.

  20. Potassium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Potassium Share this page: Was this page helpful? Also known as: K Formal name: Potassium, blood or urine Related tests: Chloride , Sodium , Bicarbonate , ...

  1. Titan Meteorology

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan

    2012-04-01

    Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern

  2. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  3. NASA GSFC Tin Whisker Homepage http://nepp.nasa.gov/whisker

    NASA Technical Reports Server (NTRS)

    Shaw, Harry

    2000-01-01

    The NASA GSFC Tin Whisker Homepage provides general information and GSFC Code 562 experimentation results regarding the well known phenomenon of tin whisker formation from pure tin plated substrates. The objective of this www site is to provide a central repository for information pertaining to this phenomenon and to provide status of the GSFC experiments to understand the behavior of tin whiskers in space environments. The Tin Whisker www site is produced by Code 562. This www site does not provide information pertaining to patented or proprietary information. All of the information contained in this www site is at the level of that produced by industry and university researchers and is published at international conferences.

  4. Titanic: A Statistical Exploration.

    ERIC Educational Resources Information Center

    Takis, Sandra L.

    1999-01-01

    Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)

  5. Growth of hollow nickel fluoride whiskers

    SciTech Connect

    Petrov, S. V.; Orekhov, Yu. F.; Fedorov, P. P.

    2009-07-15

    Hollow nickel fluoride whiskers have been obtained by condensation from the vapor phase onto a platinum substrate in a flow of hydrogen fluoride. Crystals up to 5 mm in length have a square cross section with a 300 {+-} 30-{mu}m side. The wall thickness is 85 {+-} 20 {mu}m.

  6. Titan Haze

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  7. Tin Whisker Formation - A Stress Relieve Phenomenon

    SciTech Connect

    Dittes, M.; Oberndorff, P.; Crema, P.; Su, P.

    2006-02-07

    With the move towards lead-free electronics also the solderable finish of electronic components' terminations are converted. While the typical finish was containing 5 % to 20 % lead (Pb) and thus was almost whisker free, lead (Pb)-free finishes such as pure tin or high tin alloys are rather prone to grow whisker. These whiskers are spontaneous protrusions that grow to a significant length of up to millimeters with a typical diameter in the range of few microns and are suspect to cause shorts in electronic assemblies. The latest details of the mechanisms are not yet understood. However it appears to be well established that the driving force for tin whisker growth is a compressive stress in the tin layer and that this stress is released by whisker formation. Besides the mechanism for whisker growth therefore the mechanism of the stress induction is of interest. The origin of that stress may have multiple sources. Among others the most important one is the volume increase within the tin layer due the formation of intermetallics at the interface to the base material. This applies to all copper based material. For base materials with a coefficient of thermal expansion (cte) significantly different from the tin finish another mechanism plays the dominant role. This is the induction of stress during thermal cycling due to the different expansion of the materials with every temperature change. Another mechanism for stress induction may be the oxidation of the finish, which also leads to a local volume increase. Based on the knowledge of stress induction various mitigation strategies can be deducted. Most common is the introduction of a diffusion barrier (e.g. Ni) in order to prevent the growth of the Cu-Sn intermetallics, the controlled growth of Cu-Sn intermetallics in order to prevent their irregularity or the introduction of a mechanical buffer material targeting at the minimisation of the cte mismatch between base and finish material. With respect to the stress

  8. The Climate of Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  9. Does Titan have oceans?

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    1994-04-01

    Titan is one of the few worlds in the solar system whose essential nature remains hidden. Satellite data from Voyager are examined. Remote sensing investigations from Earth are explored. Possible models of Titan's surface are reviewed. A closer look at Titan would provide useful information. The data to be gathered by the planetary mission Cassini is discussed.

  10. Tides in Titan

    NASA Technical Reports Server (NTRS)

    Rappaport, Nicole J.

    1997-01-01

    Tides raised in Titan by Saturn give rise to a static and a periodic deformation; both will be measured with Doppler tracking during the CASSINI Tour of the Saturnian System. The latter deformation is due to the significant eccentricity of Titan's orbit and has a frequency equal to the orbital angular velocity of Titan.

  11. Intensive Titan exploration begins

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2005-01-01

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  12. Significance of Nucleation Kinetics in Sn Whisker Formation

    NASA Astrophysics Data System (ADS)

    Chason, E.; Pei, F.; Briant, C. L.; Kesari, H.; Bower, A. F.

    2014-12-01

    Sn whiskers are believed to form in response to stress in layers used as protective coatings. However, what makes them form at specific sites on the surface is not known. We have used thermal expansion mismatch to induce stress and observe the resulting whisker formation. Cross-sectional measurements of the region around whiskers show that there are oblique grain boundaries under the whiskers that are not seen in the as-deposited columnar structure. The kinetics also suggest that the whiskering sites may be formed by a nucleation process. Based on these results, we propose a nucleation mechanism in which the boundaries of the surrounding grains migrate due to strain energy differences and create oblique boundaries at which whiskers can form. A simple model is developed to predict the stress-dependence of the nucleation rate.

  13. Significance of Nucleation Kinetics in Sn Whisker Formation

    NASA Astrophysics Data System (ADS)

    Chason, E.; Pei, F.; Briant, C. L.; Kesari, H.; Bower, A. F.

    2014-09-01

    Sn whiskers are believed to form in response to stress in layers used as protective coatings. However, what makes them form at specific sites on the surface is not known. We have used thermal expansion mismatch to induce stress and observe the resulting whisker formation. Cross-sectional measurements of the region around whiskers show that there are oblique grain boundaries under the whiskers that are not seen in the as-deposited columnar structure. The kinetics also suggest that the whiskering sites may be formed by a nucleation process. Based on these results, we propose a nucleation mechanism in which the boundaries of the surrounding grains migrate due to strain energy differences and create oblique boundaries at which whiskers can form. A simple model is developed to predict the stress-dependence of the nucleation rate.

  14. A MRI-COMPATIBLE SYSTEM FOR WHISKER STIMULATION

    PubMed Central

    Li, Limin; Weiss, Craig; Talk, Andrew C.; Disterhoft, John F.; Wyrwicz, Alice M.

    2013-01-01

    We describe here a system for whisker stimulation designed for functional studies in high-field magnetic resonance imaging (MRI) environments. This system, which incorporates real-time optical monitoring of the vibration stimulus, can generate well-controlled and reproducible whisker deflections with amplitudes up to 2 mm and frequencies up to 75 Hz, suitable for functional magnetic resonance imaging (fMRI) studies of animals. Whiskers on either or both sides of the head can be stimulated selectively during fMRI experiments without removing the subject from the magnet. With a user-friendly graphical interface of a computer, a user can conveniently control both the whisker vibration and gating of the MR imager, and synchronize the stimulation with the fMRI acquisition to ensure precise timing of the stimulus presentation. This whisker stimulation system should facilitate a wide variety of fMRI investigations of the neural systems mediating sensory information from the whiskers. PMID:22322316

  15. Further development and application of polycrystalline metal whiskers

    NASA Technical Reports Server (NTRS)

    Schladitz, H. J.

    1979-01-01

    High strength metal whiskers have a larger versatile field of application than monocrystalline whiskers. Although polycrystalline metal whiskers can be used for composites, preferably by extrusion in thermoplastics or by infiltration of resins or metals into whisker networks, the chief application at present may be the production and various use of whisker networks. Such networks can be produced up to high degrees of porosity and besides high mechanical strength, they have high inside surfaces and high electric conductivity. There are for instance, applications concerning construction of electrodes for batteries and fuel cells, catalysts and also new heat-exchanger material, capable of preparing fuel oil and gasoline in order to assist a high-efficiency combustion. The technical application of polycrystalline metal whiskers require their modification as well as the construction of a pilot production unit.

  16. Preparation of titanate nanosheets and nanoribbons by exfoliation of amine intercalated titanates.

    PubMed

    Jeffery, A Anto; Pradeep, A; Rajamathi, Michael

    2016-05-14

    Amine intercalated titanates were synthesized by direct exchange of potassium ions of K2Ti4O9 by alkyl ammonium ions of various alkyl chain lengths. These intercalated solids exfoliate well in alcohols of different alkyl chain lengths and non-polar solvents such as toluene and hexane to yield colloidal dispersions of titanate nanosheets. The longer the alkyl chain of the intercalated amine the better the exfoliation of the intercalated titanate in long chain alcohols and non-polar solvents. While non-uniform rectangular nanosheets were obtained when aggressive sonication was employed for exfoliating the solids, nanoribbons were obtained when the exfoliation was carried out by gently stirring the solids in the solvent. PMID:27089839

  17. Pressureless sintering of whisker-toughened ceramic composites

    DOEpatents

    Tiegs, T.N.

    1993-05-04

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  18. Pressureless sintering of whisker-toughened ceramic composites

    DOEpatents

    Tiegs, Terry N.

    1993-01-01

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  19. Pressureless sintering of whiskered-toughened ceramic composites

    DOEpatents

    Tiegs, Terry N.

    1994-01-01

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method.

  20. EVALUATION OF LOCAL STRAIN EVOLUTION FROM METALLIC WHISKER FORMATION

    SciTech Connect

    Hoffman, E.; Lam, P.

    2011-05-11

    Evolution of local strain on electrodeposited tin films upon aging has been monitored by digital image correlation (DIC) for the first time. Maps of principal strains adjacent to whisker locations were constructed via comparing pre- and post-growth scanning electron microscopy (SEM) images. Results showed that the magnitude of the strain gradient plays an important role in whisker growth. DIC visualized the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers.

  1. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  2. Controlled positions and kinetic analysis of spontaneous tin whisker growth

    NASA Astrophysics Data System (ADS)

    Su, Chien-Hao; Chen, Hao; Lee, Hsin-Yi; Wu, Albert T.

    2011-09-01

    This study achieved controlling the positions of spontaneous growth of tin whiskers. We surmounted the unpredictable growing nature of such whiskers and performed accurately quantitative analyses of the growth kinetics and yielded precise measurement of the growth rate. Furthermore, using synchrotron radiation x-ray, this study determined the stress variations in conjunction with whisker growth that fitted appropriately to the model. Accordingly, the results could address the debate held for decades and prove that forming a surface oxide layer is one of the required and necessary conditions for controlling the positions of spontaneous growth of tin whiskers.

  3. Effects of cellulose whiskers on properties of soy protein thermoplastics.

    PubMed

    Wang, Yixiang; Cao, Xiaodong; Zhang, Lina

    2006-07-14

    Environmentally-friendly SPI/cellulose whisker composites were successfully prepared using a colloidal suspension of cellulose whiskers, to reinforce soy protein isolate (SPI) plastics. The cellulose whiskers, having an average length of 1.2 microm and diameter of 90 nm, respectively, were prepared from cotton linter pulp by hydrolyzing with sulfuric acid aqueous solution. The effects of the whisker content on the morphology and properties of the glycerol-plasticized SPI composites were investigated by scanning electron microscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, ultraviolet-visible spectroscopy, water-resistivity testing and tensile testing. The results indicated that, with the addition of 0 to 30 wt.-% of cellulose whiskers, strong interactions occurred both between the whiskers and between the filler and the SPI matrix, reinforcing the composites and preserving their biodegradability. Both the tensile strength and Young's modulus of the SPI/cellulose whisker composites increased from 5.8 to 8.1 MPa and from 44.7 to 133.2 MPa, respectively, at a relative humidity of 43%, following an increase of the whisker content from 0 to 30 wt.-%. Furthermore, the incorporation of the cellulose whiskers into the SPI matrix led to an improvement in the water resistance for the SPI-based composites. PMID:16921539

  4. Plastic deformation of alumina reinforced with SiC whiskers

    SciTech Connect

    DeArellano-Lopez, A.R.; Dominguez-Rodriguez, A.; Goretta, K.C.; Routbort, J.L.

    1993-06-01

    Addition of small amounts of stiff reinforcement (SiC whiskers) to a polycrystalline AL{sub 2}O{sub 3} matrix partially inhibits grain boundary sliding because of an increase in threshold stress. When the concentration of whiskers is high enough, a pure diffusional mechanism takes over the control of plastic deformation of the composites. For higher whisker loadings, the materials creep properties depend on a microstructural feature different from the nominal grain size. A tentative correlation of this effective microstructural parameter with the spacing between the whiskers was established through a model.

  5. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    DOEpatents

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  6. Hybrid Effect on Whisker Orientation Dependence of Composite Strength of Aluminum Cast Alloy Reinforced by Al2O3 Whiskers and SiC Particles

    NASA Astrophysics Data System (ADS)

    Md, Rafiquzzaman; Arai, Yoshio

    The hybrid effect on the orientation dependence of the composite strength of an aluminum cast alloy reinforced by Al2O3 whiskers and SiC particles is studied experimentally and numerically. Two types of specimens are prepared for monotonic bending tests. The longitudinal specimen orientation (maximum stress direction) is parallel to or normal to randomly oriented whiskers in plane. The monotonic strength is 18% higher when the hybrid metal matrix composite (MMC) is subjected to an external load parallel to the random whisker orientation in plane than when the load is perpendicular to the whisker orientation. The whisker orientation dependence of composite strength in hybrid composite is weaker than that in whisker-reinforced composite. On the fracture surface of the specimen loaded along the direction parallel to the random whisker orientation in plane, most whiskers are broken while many de-bonded interfaces between the whiskers and matrix are observed on the fracture surface of the specimen loaded along the direction perpendicular to the whisker orientation. To characterize the hybrid effect on the whisker orientation dependence of composite strength, a three-dimensional hybrid composite unit cell model including one whisker and a few particles under a periodic boundary condition is developed using the finite element method. The hybrid composites have higher whisker stress than whisker-reinforced composite when subjected to an external load parallel to the whisker orientation if these composites have the same total volume fraction of reinforcement and the particles are distributed randomly. Under an external load perpendicular to the whisker orientation, the interface stress of hybrid composites is lower than that of whisker-reinforced composite. As a result, the strength difference for parallel and perpendicular loading conditions of the hybrid composites is smaller than that of whisker-reinforced composite. Thus, the weak whisker orientation effect in the

  7. Nucleation and growth of tin whiskers

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Vianco, Paul T.; Zhang, Bei; Li, James C. M.

    2011-06-01

    Pure tin film of one micron thick was evaporated onto a silicon substrate with chromium and nickel underlayers. The tinned silicon disk was bent by applying a dead load at the center and supported below around the edge to apply biaxial compressive stresses to the tin layer. After 180 C vacuum annealing for 1,2,4,6, and 8 weeks, tin whiskers/hillocks grew. A quantitative method revealed that the overall growth rate decreased with time with a tendency for saturation. A review of the literature showed in general, tin whisker growth has a nucleation period, a growth period and a period of saturation, very similar to recrystallization or phase transformation. In fact we found our data fit Avrami equation very well. This equation shows that the nucleation period was the first week.

  8. Algorithms of whisker-mediated touch perception.

    PubMed

    Maravall, Miguel; Diamond, Mathew E

    2014-04-01

    Comparison of the functional organization of sensory modalities can reveal the specialized mechanisms unique to each modality as well as processing algorithms that are common across modalities. Here we examine the rodent whisker system. The whisker's mechanical properties shape the forces transmitted to specialized receptors. The sensory and motor systems are intimately interconnected, giving rise to two forms of sensation: generative and receptive. The sensory pathway is a test bed for fundamental concepts in computation and coding: hierarchical feature detection, sparseness, adaptive representations, and population coding. The central processing of signals can be considered a sequence of filters. At the level of cortex, neurons represent object features by a coordinated population code which encompasses cells with heterogeneous properties. PMID:24549178

  9. Network array of zinc oxide whiskers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Sun, X. W.; Chen, B. J.; Dong, Z. L.; Yu, M. B.; Zhang, X. H.; Chua, S. J.

    2005-01-01

    A zinc oxide (ZnO) whisker network array with sixfold symmetry was fabricated on ZnO-buffered (0001) sapphire substrate by the vapour-phase transport method using a mixture of zinc oxide and graphite powders as source materials and patterned gold as catalyst. From the ZnO buffer layer, hexagonal ZnO nanorods with identical in-plane structure grew epitaxially along the [0001] orientation to form vertical stems. The branches grew horizontally from six side-surfaces of the vertical stem along [01\\bar {1}0] and other equivalent directions. Most whiskers were confined along the six preferential orientations and interconnected with each other to form a regular network structure. The growth mechanism is discussed.

  10. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  11. Whisker-related afferents in superior colliculus.

    PubMed

    Castro-Alamancos, Manuel A; Favero, Morgana

    2016-05-01

    Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus. PMID:26864754

  12. Titan Saturn System Mission

    NASA Technical Reports Server (NTRS)

    Reh, Kim R.

    2009-01-01

    Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap. NASA's 2003 National Research Council (NRC) Decadal Survey and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer solar system. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

  13. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  14. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You ...

  15. Potassium test

    MedlinePlus

    ... also be done if your provider suspects metabolic acidosis (for example, caused by uncontrolled diabetes) or alkalosis ( ... Hypoaldosteronism (very rare) Kidney failure Metabolic or respiratory acidosis Red blood cell destruction Too much potassium in ...

  16. Future Titan Missions

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  17. Optical Microscopy Techniques to Inspect for Metallic Whiskers

    NASA Technical Reports Server (NTRS)

    Brusse, Jay A.

    2006-01-01

    Metal surface finishes of tin, zinc and cadmium are often applied to electronic components, mechanical hardware and other structures. These finishes sometimes unpredictably may form metal whiskers over periods that can take from hours to months or even many years. The metal whiskers are crystalline structures commonly having uniform cross sectional area along their entire length. Typical whisker dimensions are nominally on the order of only a few microns (um) across while their lengths can extend from a few microns to several millimeters. Metal whiskers pose a reliability hazard to electronic systems primarily as an electrical shorting hazard. The extremely narrow dimensions of metal whiskers can make observation with optical techniques very challenging. The videos herein were compiled to demonstrate the complexities associated with optical microscope inspection of electronic and mechanical components and assemblies for the presence or absence of metal whiskers. The importance of magnification, light source and angle of illumination play critical roles in being able to detect metal whiskers when present. Furthermore, it is demonstrated how improper techniques can easily obscure detection. It is hoped that these videos will improve the probability of detecting metal whiskers with optical inspection techniques.

  18. A whisker sensor: role of geometry and boundary conditions

    NASA Astrophysics Data System (ADS)

    Hans, Hendrik; Valdivia Y Alvarado, Pablo; Thekoodan, Dilip; Jianmin, Miao; Triantafyllou, Michael

    2011-11-01

    Harbor seal whiskers are currently being studied for their role in sensing and tracking of the fluid structures left in wakes. Seal whiskers are exposed to incoming flows and are subject to self-induced vibrations. The whisker's unusual geometry is thought to reduce these self-induced disturbances and facilitate a stable reference for wake sensing. An experimental platform was designed to measure flow-induced displacements and vibrations at the base of whisker-like models. Four different whisker-like models (scale: 3x) were towed at different speeds down a towing tank and base displacements in the direction of motion and in the perpendicular axis were measured. Each model incorporated a particular geometrical feature found in harbor seal whiskers. Three different visco-elastic supports were used to mimic various boundary conditions at the base of the whisker models. The effects of geometrical features and boundary conditions on measured base vibrations at three relevant Reynolds numbers are discussed. The material properties of a model's base influence its sensitivity. When compared to a circular cylinder model, whisker models show almost no sign of VIV.

  19. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.

    PubMed

    Converse, Gabriel L; Conrad, Timothy L; Merrill, Christina H; Roeder, Ryan K

    2010-03-01

    Hydroxyapatite (HA) whisker-reinforced polyetherketoneketone (PEKK) bone ingrowth scaffolds were prepared and characterized. High levels of porosity (75-90%) and HA whisker reinforcement (0-40 vol.%) were attained using a powder processing approach to mix the HA whiskers, PEKK powder and a NaCl porogen, followed by compression molding at 350-375 degrees Celsius and particle leaching to remove the porogen. The scaffold architecture and microstructure exhibited characteristics known to be favorable for osteointegration. Scaffold porosity was interconnected with a mean pore size in the range 200-300 microm as measured by micro-computed tomography. HA whiskers were embedded within and exposed on the surface of scaffold struts, producing a microscale surface topography, shown by von Kossa staining and scanning electron microscopy. Therefore, HA whisker-reinforced PEKK bone ingrowth scaffolds may be advantageous for orthopedic implant fixation, including interbody spinal fusion. PMID:19665061

  20. Biological effects of inhaled magnesium sulphate whiskers in rats.

    PubMed Central

    Hori, H; Kasai, T; Haratake, J; Ishimatsu, S; Oyabu, T; Yamato, H; Higashi, T; Tanaka, I

    1994-01-01

    Male Wistar rats were exposed to two types of magnesium sulphate whiskers by inhalation for six hours a day, five days a week, for four weeks (sub-chronic study), or for one year (chronic study) to clarify the biological effects of the whiskers. There were few whiskers detected in the rat lungs even at one day after the exposure, suggesting that they are dissolved and eliminated rapidly from the lungs. To measure the clearance rate of the whiskers from the lungs, an intratracheal instillation was performed in golden hamsters. The half life of the whiskers in the lung was determined as 17.6 minutes by temporally measuring the magnesium concentration up to 80 minutes after the instillation. A histopathological examination indicated a frequent occurrence of adenoma and carcinoma in the year after chronic exposure, but it was not significantly different between exposed and control rats. Images Figure 2 Figure 4 Figure 5 PMID:8044250

  1. Growth of R-123 Phase Single Crystal Whiskers

    NASA Astrophysics Data System (ADS)

    Nagao, Masanori; Sato, Mitsunori; Tachiki, Yukitake; Miyagawa, Kinya; Tanaka, Masaki; Maeda, Hiroshi; Yun, Kyung Sung; Takano, Yoshihiko; Hatano, Takeshi

    2004-03-01

    Single-crystal whiskers of R1Ba2Cu3Ox (R-123, R = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu) phase have been successfully grown by the Te- and Ca-doping method. The whiskers were grown from precursor pellets at just below their partial melting (peritectic) temperatures. The nominal composition of the R-123 whiskers is R1+uBa2+vCawCu3Ox (u+v+w=0, w>0) with R and/or Ba sites being substituted by Ca. However, the amount of Te was less than the analytical limit. The critical temperatures of the R-123 whiskers were around 80 K, and among these whiskers those with larger R ionic radii such as Dy, Gd, Eu and Sm require post-annealing in an oxygen atmosphere.

  2. Strengthening of phosphate ceramic foam by silicon carbide whiskers

    NASA Technical Reports Server (NTRS)

    Schetanov, B. V.; Prilepskiy, V. N.; Lapidovskaya, L. A.; Chernyak, A. I.; Romanovich, I. V.

    1987-01-01

    The influence of additions of SiC whiskers on the elastic modulus and flexural strength of phosphate ceramic foam is assessed. It is shown that the incorporation into the material composition of even small amounts (2.4 vol%) of SiC whiskers enhances the impact toughness and heat resistance of the ceramic foam. A 12.3 vol% of SiC whiskers leads to a more than threefold increase of the flexural strength. Strengthening of the phosphate ceramic foam is due to the fact that the whiskers hinder the propagation of matrix crack by increasing the work of matrix fracture. The whiskers reinforce only that volume of material which is occupied by solid matter, whereas they do not reinforce the pores.

  3. Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation.

    PubMed

    Stüttgen, Maik C; Kullmann, Stephanie; Schwarz, Cornelius

    2008-10-01

    Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. Rats use their mobile set of whiskers to actively explore their environment. Parameters that play a role to generate movement dynamics of the whisker shaft within the follicle, thus activating primary afferents, are manifold: among them are mechanical properties of the whiskers (curvature, elasticity and taper), active movements (head, body, and whiskers), and finally, object characteristics (surface, geometry, position, and orientation). Hence the whisker system is confronted with forces along all three axes in space. Movements along the two latitudinal axes of the whisker (horizontal and vertical) have been well studied. Here we focus on movement along the whisker's longitudinal axis that has been neglected so far. We employed ramp-and-hold movements that pushed the whisker shaft toward the skin and quantified the resulting activity in trigeminal first-order afferents in anesthetized rats. Virtually all recorded neurons were highly sensitive to longitudinal movement. Neurons could be perfectly segregated into two groups according to their modulation by stimulus amplitude and velocity, respectively. This classification regimen correlated perfectly with the presence or absence of slowly adapting responses in longitudinal stimulation but agreed with classification derived from latitudinal stimulation only if the whisker was engaged in its optimal direction and set point. We conclude that longitudinal stimulation is an extremely effective means to activate the tactile pathway and thus is highly likely to play an important role in tactile coding on the ascending somatosensory pathway. In addition, compared with latitudinal stimulation, it provides a reliable and easy to use method to classify trigeminal first-order afferents. PMID:18684907

  4. Morphological instability of whiskers, pores, and tubules

    NASA Astrophysics Data System (ADS)

    Kirill, Dimitri Jay

    1999-11-01

    A thin, stressed solid cylinder, a whisker, is subject to mass transport by curvature and elastic-stress-driven surface diffusion. The stability of the cylindrical surface is examined using linear stability theory. It is found that the applied stress leads to a greater range of unstable wavenumbers, and hence is destabilizing. The presence of elastic strains can excite non-axisymmetric modes, which, under certain conditions, are preferred and can give rise to helical surfaces. In addition, asymptotic formulas for growth rate in the limit of long and short wavelengths are found. A possible experiment is proposed which, if undertaken, should reveal the helical instability. The linear stability analysis is then extended to the case of cylindrical pore channels and hollow cylindrical tubules. In both cases, results similar to the whisker are found---increased applied stress leads to a greater range of unstable wavenumbers. For both the pore and tubule geometries, the dominant modes are axisymmetric for any value of applied stress; this contrasts with the solid whisker results. Since the tubule geometry consists of an inner and outer surface, there is a phase relationship between the two surface perturbations. The most dangerous eigenmode can exhibit either in-phase (sinuous) or 180° out-of-phase (varicose) perturbations, depending on the value of applied stress. Furthermore, there is a critical value of applied stress below which the most dangerous mode is varicose, and above which it is sinuous. Lastly, asymptotic formulas for growth rate are obtained in the limit of a thin-walled tubule. These results compare favorably to work done on stressed lamellar composites.

  5. Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance

    PubMed Central

    Wolfe, Jason; Hill, Dan N; Pahlavan, Sohrab; Drew, Patrick J; Kleinfeld, David; Feldman, Daniel E

    2008-01-01

    Rats discriminate surface textures using their whiskers (vibrissae), but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length. Texture information is therefore encoded by the spatial pattern of activated whiskers. In the competing kinetic signature model, different textures excite resonance equally across whiskers, and instead, texture is encoded by characteristic, nonuniform temporal patterns of whisker motion. We tested these models by measuring whisker motion in awake, behaving rats whisking in air and onto sandpaper surfaces. Resonant motion was prominent during whisking in air, with fundamental frequencies ranging from approximately 35 Hz for the long Delta whisker to approximately 110 Hz for the shorter D3 whisker. Resonant vibrations also occurred while whisking against textures, but the amplitude of resonance within single whiskers was independent of texture, contradicting the resonance model. Rather, whiskers resonated transiently during discrete, high-velocity, and high-acceleration slip-stick events, which occurred prominently during whisking on surfaces. The rate and magnitude of slip-stick events varied systematically with texture. These results suggest that texture is encoded not by differential resonant motion across whiskers, but by the magnitude and temporal pattern of slip-stick motion. These findings predict a temporal code for texture in neural spike trains. PMID:18752354

  6. Internal Microstructure Investigation of Tin Whisker Growth Using FIB Technology

    NASA Astrophysics Data System (ADS)

    Fortier, Aleksandra; Kovacevic, Radovan

    2012-08-01

    The problem of tin (Sn) whiskers has been a significant reliability issue in electronics for the past several decades. Despite the large amount of research conducted on this issue, a solution for mitigating the growth of whiskers remains a challenge for the research community. Whiskers have unpredictable growth and morphology, and a study of a whisker's internal structure may provide further insights into the reason behind their complex growth. This study reports on the internal microstructure and morphology of complex-shaped Sn whiskers grown from an electroplated bright Sn layer on brass substrates exposed to ambient and 95% humid environment. The variables analyzed include surface and microstructure conditions of the film, and morphology and internal microstructure of the Sn whiskers using scanning electron microscopy with focused ion beam technology. Experimental results demonstrated that the whiskers with more complex morphology grow primarily from surfaces exposed to a controlled environment, and some of them have traits of polycrystalline growth rather than only single crystalline, as usually known.

  7. Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements

    PubMed Central

    Bosman, Laurens W. J.; Houweling, Arthur R.; Owens, Cullen B.; Tanke, Nouk; Shevchouk, Olesya T.; Rahmati, Negah; Teunissen, Wouter H. T.; Ju, Chiheng; Gong, Wei; Koekkoek, Sebastiaan K. E.; De Zeeuw, Chris I.

    2011-01-01

    The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception. PMID:22065951

  8. Harbor seal whiskers synchronize with frequency of upstream wake

    NASA Astrophysics Data System (ADS)

    Beem, Heather; Triantafyllou, Michael

    2013-11-01

    Harbor seals are able to use their whiskers to track minute water movements, such as those left in the wake of a fish. The current study is a simple representation of what the whiskers experience as the seal chases a fish. A scaled whisker model (average cross-flow diameter: dw) is first tested in a towing tank by itself and then towed behind a larger cylinder (dc = 2 . 5dw), which serves as a wake generator. A flexing plate attached to the model base allows the whisker to freely vibrate in response to the flow. Measurements from strain gages on the plate are calibrated to tip deflections. While in the cylinder wake, the whisker vibrates with an amplitude up to ten times higher than it does on its own (A /dw = 0 . 15). Also, the whisker synchronizes with the vortex shedding frequency (fs =0/. 2 U dc) of the upstream cylinder over the range of reduced velocities tested, whereas on its own, the whisker oscillates around its own natural frequency in water. Seals may use the difference in vibration amplitude and frequency between these two cases to help detect the presence of a vortex wake.

  9. Graphite whiskers in CV3 meteorites.

    PubMed

    Fries, Marc; Steele, Andrew

    2008-04-01

    Graphite whiskers (GWs), an allotrope of carbon that has been proposed to occur in space, have been discovered in three CV-type carbonaceous chondrites via Raman imaging and electron microscopy. The GWs are associated with high-temperature calcium-aluminum inclusion (CAI) rims and interiors, with the rim of a dark inclusion, and within an inclusion inside an unusual chondrule that bears mineralogy and texture indicative of high-temperature processing. Current understanding of CAI formation places their condensation, and that of associated GWs, relatively close to the Sun and early in the condensation sequence of protoplanetary disk materials. If this is the case, then it is a possibility that GWs are expelled from any young solar system early in its history, thus populating interstellar space with diffuse GWs. Graphite whiskers have been postulated to play a role in the near-infrared (near-IR) dimming of type Ia supernovae, as well as in the thermalization of both the cosmic IR and microwave background and in galactic center dimming between 3 and 9 micrometers. Our observations, along with the further possibility that GWs could be manufactured during supernovae, suggest that GWs may have substantial effects in observational astronomy. PMID:18309047

  10. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  11. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  12. Titan's Variable Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2015-12-01

    Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine the effects of the incident plasma distribution function and the flow velocity. We closely examine the results on Titan's induced magnetosphere and the resulting pickup ion properties.

  13. Pressureless sintering of whiskered-toughened ceramic composites

    DOEpatents

    Tiegs, T.N.

    1994-12-27

    A pressureless sintering method is disclosed for use in the production of whisker-toughened ceramic composites wherein the sintered density of composites containing up to about 20 vol. % SiC whiskers is improved by reducing the average aspect ratio of the whiskers to from about 10 to about 20. Sintering aids further improve the density, permitting the production of composites containing 20 vol. % SiC with sintered densities of 94% or better of theoretical density by a pressureless sintering method. 6 figures.

  14. A Nonlinear Viscous Model for Sn-Whisker Growth

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian

    2016-04-01

    Based on the mechanism of the grain boundary fluid flow, a nonlinear viscous model for the growth of Sn-whiskers is proposed. This model consists of two units, one with a stress exponent of one and one with a stress exponent of n -1. By letting one of the constants be zero in the model, the constitutive relationship reduces to a linear flow relation or a power-law relation, representing the flow behavior of various metals. Closed-form solutions for the growth behavior of a whisker are derived, which can be used to predict the whisker growth and the stress evolution.

  15. Atomizing apparatus for making polymer and metal powders and whiskers

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  16. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  17. Aluminum nitride-silicon carbide whisker composites: Processing, properties, and microstructural stability

    SciTech Connect

    Cross, M.T.

    1990-01-01

    Aluminum nitride -- silicon carbide whisker composites with up to 20 vol % whiskers were fabricated by pressureless sintering (1750{degree}--1800{degree}C) and by hot-pressing (1700{degree}--1800{degree}C). Silicon carbide whiskers were found to degrade depending on the type of protective powder bed used during sintering. Whiskers were found to degraded in high oxygen containing samples by reaction with sintering additives. Whisker degradation was also due to the formation of silicon carbide -- aluminum nitride solid solution. No whisker degradation was observed in hot-pressed samples. For these samples Young's modulus and fracture toughness were measured. A 33% increase in the fracture toughness was measured by the indentation technique for a 20 vol % whisker composite. Operative toughening mechanisms were investigated using scanning electron microscopy. Crack deflection and whisker bridging were the dominant mechanisms. It was also shown that load transfer from matrix to whiskers can be a contributing factor to toughening. 88 refs., 34 figs., 11 tabs.

  18. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  19. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  20. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  1. Whisker Formation Induced by Component and Assembly Ionic Contamination

    NASA Astrophysics Data System (ADS)

    Snugovsky, Polina; Meschter, Stephan; Bagheri, Zohreh; Kosiba, Eva; Romansky, Marianne; Kennedy, Jeffrey

    2012-02-01

    This paper describes the results of an intensive whisker formation study on Pb-free assemblies with different levels of cleanliness. Thirteen types of as-received surface-mount and pin-through-hole components were cleaned and intentionally contaminated with solutions containing chloride, sulfate, bromide, and nitrate. Then the parts were assembled on double-sided boards that were also cleaned or intentionally contaminated with three fluxes having different halide contents. The assemblies were subjected to high-temperature/high-humidity testing (85°C/85% RH). Periodic examination found that contamination triggered whisker formation on both exposed tin and solder fillets. Whisker occurrence and parameters depending on the type and level of contamination are discussed. Cross-sections were used to assess the metallurgical aspects of whisker formation and the microstructural changes occurring during corrosion.

  2. Clash of the Titans

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  3. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  4. Silicate interactions with ammonia-water fluids on early Titan

    NASA Astrophysics Data System (ADS)

    Engel, S.; Lunine, J. I.

    1994-02-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  5. Silicate interactions with ammonia-water fluids on early Titan

    NASA Technical Reports Server (NTRS)

    Engel, Steffi; Lunine, Jonathan I.

    1994-01-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  6. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  7. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  8. Effect of Substrate Composition on Sn Whisker Growth in Pure Sn Films

    NASA Astrophysics Data System (ADS)

    Miller, Sarah M.; Sahaym, Uttara; Norton, M. Grant

    2010-12-01

    Pure Sn films deposited on Cu and Cu alloys are prone to spontaneous whisker formation. One way of preventing whisker formation is to alloy Pb into Sn coatings. However, restriction on the use of Pb demands the development of alternative methods for preventing whisker growth. The present work reports the effect of substrate composition on whisker formation and morphology. Despite employing identical plating conditions, long filament-like whiskers grew only on Sn-plated Cu samples and not on brass. The presence or lack of Sn whiskers has been explained via the thermodynamic stability of various intermetallic compounds at the Sn/substrate interface.

  9. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  10. Tin Whisker Growth and Mitigation with a Nanocrysytalline Nickel Coating

    NASA Astrophysics Data System (ADS)

    Janiuk, Szymon

    Tin whiskers are a problem in the electronics industry since the EU banned the use of lead in Pb-Sn solders as part of the Restriction of Hazardous Substances (RoHS). The biggest concern with Sn whiskers is their ability to short-circuit electronics. High reliability applications such as the aerospace, defense, healthcare, and automotive industries are at most risk. This project explores Sn whisker mitigation and prevention with the use of nanocrystalline nickel coating over Sn surfaces. Sn was plated onto a pure Cu substrate using electroplating. A high temperature and high humidity condition, at 85°C and 85% RH, was effective at growing whiskers. A nNi coating was plated over Sn/Cu coupons. After subjecting the nNi/ Sn/Cu samples through 85°C/85% RH testing conditions, no whiskers were observed penetrating the surface. These results make nNi a viable material to use as a coating to prevent the growth of Sn whiskers in electronic assemblies.

  11. Evaluation of Effectiveness of Conformal Coatings as Tin Whisker Mitigation

    NASA Astrophysics Data System (ADS)

    Han, Sungwon; Osterman, Michael; Meschter, Stephan; Pecht, Michael

    2012-09-01

    The application of a conformal coat has been considered as a mitigation strategy to prevent unintended shorting events induced by tin whisker formation in electronic products. While various conformal coatings have been shown to be effective at containing tin whiskers on treated coupons, the effectiveness of conformal coating on actual assembled hardware has not been adequately examined. In this study, the ability of six types of conformal coatings to contain tin whiskers was examined through their application to assembled gull-wing lead quad flat package test specimens. Nonuniform coverage of conformal coating on the gull-wing leads was found to be a primary concern. Quantitative image analysis using scanning electron microscopy in backscattered electron mode was developed to aid in quantifying coating coverage. The ability of applied coatings to contain tin whiskers was examined after specimens were subjected to sequential temperature cycling and elevated temperature/humidity conditions as well as exposure to corrosive gases. For all but one coating, tin whiskers were observed to escape areas of relatively thin coating. Parylene C coating was found to be the most effective coating in providing uniform coverage and thickness, and containing whiskers.

  12. Witnessing Springtime on Titan

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  13. Facial whisker pattern is not sufficient to instruct a whisker-related topographic map in the mouse somatosensory brainstem.

    PubMed

    Laumonnerie, Christophe; Bechara, Ahmad; Vilain, Nathalie; Kurihara, Yukiko; Kurihara, Hiroki; Rijli, Filippo M

    2015-11-01

    Facial somatosensory input is relayed by trigeminal ganglion (TG) neurons and serially wired to brainstem, thalamus and cortex. Spatially ordered sets of target neurons generate central topographic maps reproducing the spatial arrangement of peripheral facial receptors. Facial pattern provides a necessary template for map formation, but may be insufficient to impose a brain somatotopic pattern. In mice, lower jaw sensory information is relayed by the trigeminal nerve mandibular branch, whose axons target the brainstem dorsal principal sensory trigeminal nucleus (dPrV). Input from mystacial whiskers is relayed by the maxillary branch and forms a topographic representation of rows and whiskers in the ventral PrV (vPrV). To investigate peripheral organisation in imposing a brain topographic pattern, we analysed Edn1(-/-) mice, which present ectopic whisker rows on the lower jaw. We found that these whiskers were innervated by mandibular TG neurons which initially targeted dPrV. Unlike maxillary TG neurons, the ectopic whisker-innervating mandibular neuron cell bodies and pre-target central axons did not segregate into a row-specific pattern nor target the dPrV with a topographic pattern. Following periphery-driven molecular repatterning to a maxillary-like identity, mandibular neurons partially redirected their central projections from dPrV to vPrV. Thus, while able to induce maxillary-like molecular features resulting in vPrV final targeting, a spatially ordered lower jaw ectopic whisker pattern is insufficient to impose row-specific pre-target organisation of the central mandibular tract or a whisker-related matching pattern of afferents in dPrV. These results provide novel insights into periphery-dependent versus periphery-independent mechanisms of trigeminal ganglion and brainstem patterning in matching whisker topography. PMID:26417040

  14. The environment of Titan, 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information regarding the physical characteristics of Titan and atmospheric models necessary to support design and mission planning of spacecraft that are to orbit Titan, enter its atmosphere or land on its surface is given.

  15. Weather on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering <=1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection governs their evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  16. Hypsometry of Titan

    USGS Publications Warehouse

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Stiles, Bryan; Le Gall, Alice; Hayes, Alexander; Aharonson, Oded; Wood, Charles A.; Stofan, Ellen; Kirk, Randy

    2011-01-01

    Cassini RADAR topography data are used to evaluate Titan's hypsometric profile, and to make comparisons with other planetary bodies. Titan's hypsogram is unimodal and strikingly narrow compared with the terrestrial planets. To investigate topographic extremes, a novel variant on the classic hypsogram is introduced, with a logarithmic abscissa to highlight mountainous terrain. In such a plot, the top of the terrestrial hypsogram is quite distinct from those of Mars and Venus due to the 'glacial buzz-saw' that clips terrestrial topography above the snowline. In contrast to the positive skew seen in other hypsograms, with a long tail of positive relief due to mountains, there is an indication (weak, given the limited data for Titan so far) that the Titan hypsogram appears slightly negatively skewed, suggesting a significant population of unfilled depressions. Limited data permit only a simplistic comparison of Titan topography with other icy satellites but we find that the standard deviation of terrain height (albeit at different scales) is similar to those of Ganymede and Europa.

  17. Flight through Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Ádámkovics, Máté; Gibbard, Seran; Roe, Henry G.; Griffith, Caitlin A.

    We assembled spectral image data cubes of Titan in H-band (1.413-1.808 μm), using adaptive optics on the 10-m W.M. Keck telescope, by stepping a spectrometer slit across Titan's disk. We constructed images of Titan at each wavelength by 'glueing' the spectra together, producing 1400 ultra-narrowband (~0.1nm) views of the satellite. With this method one can characterise Titan's atmosphere over the entire disk, in more specific vertical detail than possible with either narrowband imaging or slit spectroscopy at one position. Data were obtained of Titan's leading hemisphere on UT 20 February 2001. At the shorter wavelengths we probe all the way down to the surface, revealing the familiar bright and dark terrain, while at longer wavelengths we probe various altitudes in the atmosphere. The data have been assembled into a movie, showing the surface and different haze layers while stepping up in altitude. The transitions from the surface to the tropospheric haze, and through the tropopause into the upper atmospheric haze, are clearly recognised.

  18. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  19. Strengthening and toughening of poly(L-lactide) composites by surface modified MgO whiskers

    NASA Astrophysics Data System (ADS)

    Wen, Wei; Luo, Binghong; Qin, Xiaopeng; Li, Cairong; Liu, Mingxian; Ding, Shan; Zhou, Changren

    2015-03-01

    To improve both the strength and toughness of poly(L-lactide) (PLLA), fibrous-like MgO whiskers with diameters of 0.15-1 μm and lengths of 15-110 μm were prepared, and subsequently surface modified with L-lactide to obtain grafted MgO whiskers (g-MgO whiskers). The structures and properties of MgO whiskers and g-MgO whiskers were studied. Then, a series of MgO whiskers/PLLA and g-MgO whiskers/PLLA composites were prepared by solution casting method, for comparison, MgO particles/PLLA composite was prepared too. The resulting composites were evaluated in terms of hydrophilicity, crystallinity, dispersion of whiskers, interfacial adhesion and mechanical performance by means of polarized optical microscopy (POM), contact angle measurement, field emission scanning electron microscope (FSEM), transmission electron microscopy (TEM) and tensile testing. The results revealed that the crystallization rate and hydrophilicity of PLLA were improved by the introduction of MgO whiskers and g-MgO whiskers. The g-MgO whiskers can disperse more uniformly in and show stronger interfacial adhesion with the matrix than MgO whiskers as a result of the surface modification. Due to the bridge effect of the whiskers and the excellent interfacial adhesion between g-MgO whiskers and PLLA, g-MgO whiskers/PLLA composites exhibited remarkably higher strength, modulus and toughness compared to the pristine PLLA, MgO particles/PLLA and MgO whiskers/PLLA composites.

  20. Potassium in diet

    MedlinePlus

    ... good sources of potassium. Soy products and veggie burgers are also good sources of potassium. Vegetables including ... these dietary intakes for potassium, based on age: Infants 0 - 6 months: 0.4 grams a day ( ...

  1. High potassium level

    MedlinePlus

    High potassium level is a problem in which the amount of potassium in the blood is higher than normal. The medical ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may ...

  2. Low potassium level

    MedlinePlus

    Low potassium level is a condition in which the amount of potassium in the blood is lower than normal. The medical ... in the body. Common causes of low potassium level include: Antibiotics Diarrhea or vomiting Using too much ...

  3. Effects of Conformal Coat on Tin Whisker Growth

    NASA Technical Reports Server (NTRS)

    Kadesch, Jong S.; Leidecker, Henning; Day, John H. (Technical Monitor)

    2000-01-01

    A whisker from a tin plated part was blamed for the loss of a commercial spacecraft in 1998. Although pure tin finishes are prohibited by NASA, tin plated parts, such as hybrids, relays and commercial off the shelf (COTS) parts, are something discovered to have been installed in NASA spacecraft. Invariably, the assumption is that a conformal coat will prevent the growth of, or short circuits caused by, tin whiskers. This study measures the effect a Uralane coating has on the initiation and growth of tin whiskers, on the ability of this coating to prevent a tin whisker from emerging from the coating, and on the ability to prevent shorting. A sample of fourteen brass substrates (1 inch by 4 inches by 1/16 inch) were plated by two separate processes: half of the specimens were 'bright' tin plated directly over the brass substrate and half received a copper flash over the brass substrate prior to 'bright' tin plating. Each specimen was coated on one half of the substrate with three bi-directional sprays of Uralane 5750 to a nominal thickness of 25 to 75 micrometers (1 to 3 mils). Several specimens of both types, Cu and non-Cu flashed, were placed in an oven maintained at 50 C as others' work suggests that this is the optimal temperature for whisker formation. The remaining specimens were maintained at room ambient conditions. The surfaces of each specimen have been regularly inspected using both optical (15 to 400x power) and Scanning Electronic Microscopy (SEM). Many types of growths, including needle-like whiskers, first appeared approximately three months after plating on the non-conformally coated sides of all specimens. At four months, 4 to 5 times more growth sites were observed on the coated side; however, the density of growth sites on the non-conformally coated side has since increased rapidly, and now, at one year, is about the same for both sides. The density of growth sites is estimated at 90/sq mm with 30 percent of the sites growing whiskers (needle

  4. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO

  5. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; Cassini RADAR Team

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  6. Diurnal variations of Titan

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  7. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  8. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  9. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  10. Interlayer tunneling spectroscopy of mixed-phase BSCCO superconducting whiskers

    NASA Astrophysics Data System (ADS)

    Kizilaslan, O.; Truccato, M.; Simsek, Y.; Aksan, M. A.; Koval, Y.; Müller, P.

    2016-06-01

    In this work, we present a study on the interlayer tunneling spectroscopy (ITS) of mixed-phase BiSrCaCuO (BSCCO) superconducting whiskers. The tunneling experiments were carried out on the artificial cross-whisker (twist angle of 90°) junctions. A multiple superconducting energy gap in the cross-whisker junctions was observed, which is attributed to the presence of different doping levels of two Bi2Sr2CaCu2O8+δ phases (Bi-2212), rather than two different phases, in the BSCCO whiskers, namely Bi2Sr2CaCu2O8+δ and Bi2Sr2Ca2Cu3O8+δ (Bi-2212 and Bi-2223). The temperature dependence of the energy gaps was discussed in the framework of the BCS T-dependence. On the other hand, the carrier concentration of the cross-whisker junction was changed by the carrier injection process. The effects of the carrier injection on the critical current, I c, and the ITS of intrinsic Josephson junctions were investigated in details.

  11. Mitigation of Sn Whisker Growth by Small Bi Additions

    NASA Astrophysics Data System (ADS)

    Jo, Jung-Lae; Nagao, Shijo; Hamasaki, Kyoko; Tsujimoto, Masanobu; Sugahara, Tohru; Suganuma, Katsuaki

    2014-01-01

    In this study, the morphological development of electroplated matte Sn and Sn- xBi ( x = 0.5 wt.%, 1.0 wt.%, 2.0 wt.%) film surfaces was investigated under diverse testing conditions: 1-year room-temperature storage, high temperature and humidity (HTH), mechanical loading by indentation, and thermal cycling. These small Bi additions prevented Sn whisker formation; no whisker growth was observed on any Sn- xBi surface during either the room-temperature storage or HTH testing. In the indentation loading and thermal cycling tests, short (<5 μm) surface extrusions were occasionally observed, but only on x = 0.5 wt.% and 1.0 wt.% plated samples. In all test cases, Sn-2Bi plated samples exhibited excellent whisker mitigation, while pure Sn samples always generated many whiskers on the surface. We confirmed that the addition of Bi into Sn refined the grain size of the as-plated films and altered the columnar structure to form equiaxed grains. The storage conditions allowed the formation of intermetallic compounds between the plated layer and the substrate regardless of the Bi addition. However, the growth patterns became more uniform with increasing amounts of Bi. These microstructural improvements with Bi addition effectively released the internal stress from Sn plating, thus mitigating whisker formation on the surface under various environments.

  12. Topography of whisking II: interaction of whisker and pad.

    PubMed

    Bermejo, R; Friedman, W; Zeigler, H P

    2005-09-01

    The peripheral effector system mediating rodent whisking produces protraction/retraction movements of the whiskers and translation movements of the collagenous mystacial pad. To examine the interaction of these movements during whisking in air we used high-resolution, optoelectronic methods for two-dimensional monitoring of whisker and pad movements in head-fixed rats. Under these testing conditions (1) whisker movements on the same side of the face are synchronous and of similar amplitude; (2) pad movements exhibit the characteristic 'exploratory' rhythm (6-12 Hz) of whisking but their movements often have a low frequency (1-2 Hz) component; (3) Pad movements occur in both antero-posterior and dorso-ventral planes but there are considerable variations in the amplitude and topography of movement parameters in the two planes. We conclude that (a) both whisker and pad receive input from a common central rhythm generator; (b) differences in whisker and pad amplitude and topography probably reflect differences in the biomechanical properties of the structures receiving that input; (c) pad movements make a significant contribution to the kinematics of whisking behavior and (d) the two-dimensional nature of pad translation movements significantly increases the rat's flexible control of its mobile sensor. PMID:16338829

  13. Titan's "Hot Cross Bun": A Titan Laccolith?

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Stofan, E. R.; Wall, S. D.; Wood, C.; Kirk, R. L.; Lucas, A.; Mitchell, K. L.; Lunine, J. I.; Turtle, E. P.; Radebaugh, J.; Malaska, M.; Cassini RADAR Team

    2012-10-01

    Cassini’s RADAR instrument acquired Synthetic Aperture Radar data during the T83 flyby on May 22, 2012. The data showed a feature centered at 38.5N, 203W that resembles a “hot cross bun”. This type of feature has not been seen on Titan before, even though 52% of Titan’s surface has been imaged using SAR. The feature, approximately 100 km across, is mostly radar bright but the cross pattern, interpreted to be extensional fractures, located roughly at the center of the brighter area, appears darker at radar wavelengths (2.3 cm). Radar illumination of the image indicates that the fractures are lower in elevation than the surrounding bright region. The morphology of the region is markedly similar to that of a 30-km dome-shaped feature on Venus that lies at the summit of the Kunapipi volcano. The Venus feature is interpreted to be the result of intrusion of magma at the summit of the volcano [1]. A similar feature, interpreted as a laccolith, is seen on the Moon near the crater Ramsden [2]. The lunar feature, imaged by the Lunar Reconnaissance Orbiter, shows the cross-shaped depression over a 300 m high rise. No topographic data for the feature on Titan are available at this time, but the morphology seen by the SAR data suggests that the feature may have been formed by material pushing up from below. Laccoliths form when an igneous intrusion splits apart two strata, resulting in a domeline structure. This previously unknown type of structure on Titan may be yet another indication of cryovolcanism. [1] Stofan, E.R., et al, Icarus, 152, 75-95, 2001. [2] Wichman, R.W. and Schultz, P. H. (1996). Icarus, 122, Issue 1, July 1996, pages 193-199. doi:10.1006/icar.1996.0118

  14. Biomimetic Active Touch with Fingertips and Whiskers.

    PubMed

    Lepora, Nathan F

    2016-01-01

    This study provides a synthetic viewpoint that compares, contrasts, and draws commonalities for biomimetic perception over a range of tactile sensors and tactile stimuli. Biomimetic active perception is formulated from three principles: (i) evidence accumulation based on leading models of perceptual decision making; (ii) action selection with an evidence-based policy, here based on overt focal attention; and (iii) sensory encoding of evidence based on neural coding. Two experiments with each of three biomimetic tactile sensors are considered: the iCub (capacitive) fingertip, the TacTip (optical) tactile sensor, and BIOTACT whiskers. For each sensor, one experiment considers a similar task (perception of shape and location) and the other a different tactile perception task. In all experiments, active perception with a biomimetic action selection policy based on focal attention outperforms passive perception with static or random action selection. The active perception also consistently reaches superresolved accuracy (hyperacuity) finer than the spacing between tactile elements. Biomimetic active touch thus offers a common approach for biomimetic tactile sensors to accurately and robustly characterize and explore non-trivial, uncertain environments analogous to how animals perceive the natural world. PMID:27168603

  15. Bacteriophage T4 whiskers: a rudimentary environment-sensing device.

    PubMed Central

    Conley, M P; Wood, W B

    1975-01-01

    The 400 A filaments or "whiskers," which extend outward from the collar region of the phage, control retraction and extension of the tail fibers in response to certain environmental conditions. The tail fibers of normal phage retract in the absence of a required adsorption cofactor, at low pH, at low ionic strength, at low temperature, and at high concentrations of polyethylene glycol. The tail fibers of mutant whiskerless (wac) phage still retract under the first two conditions, but not the last three. Antibodies to whiskers neutralize T4, probably by fixing tail fibers in the retracted configuration. Phage with retracted tail fibers adsorb poorly to host bacterial cells, and their adsorption rate increases as the fibers become extended. These results suggest that one function of the whiskers is to retract the tail fibers and thereby prevent adsorption to host cells under certain conditions that might be unfavorable for production of phage progeny following infection. PMID:242007

  16. Optimum Thickness of Sn Film for Whisker Growth

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Yang, Fuqian; Vianco, Paul T.; Zhang, Bei; Li, James C. M.

    2011-10-01

    By depositing different thicknesses of Sn films over a silicon wafer precoated with Cr and Ni adhesion layers and then by bending the tinned wafer using a dead load applied at the center to introduce the same compressive stresses in the Sn films, the growth rate of whiskers appeared to have a maximum for a certain thickness. This is explained by assuming the Sn atoms to flow along the vertical grain boundaries (perpendicular to the interface) into the interface between Sn and Ni and then along the interface to the root of the whisker through some more vertical grain boundaries. The resistance along the vertical grain boundaries appeared to control the rate of whisker growth for thick films.

  17. Neural coding in barrel cortex during whisker-guided locomotion.

    PubMed

    Sofroniew, Nicholas James; Vlasov, Yurii A; Andrew Hires, Samuel; Freeman, Jeremy; Svoboda, Karel

    2015-01-01

    Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits. PMID:26701910

  18. Mechanical characterization of C60 whiskers by MEMS bend testing

    NASA Astrophysics Data System (ADS)

    Larsson, M. P.; Lucyszyn, S.

    2009-04-01

    Little has been published on the mechanical characteristics of C60 whiskers, due to the inherent difficulties in physically mounting such small test samples. Earlier reported results suggested Young's modulus values of 32 and 54 GPa, with 130 and 160 micron diameter C60 nanowhiskers, respectively, using compressive deformation techniques. In our work, an experimental bespoke silicon-based microelectromechanical system has been developed to extract an other value. 1th as been found, through parameter extraction techniques, that a Young's modulus of only ~ 2 GPa is obtained with a C60 whisker having a diameter of 4 microns. By including the previously published data points, there is now strong evidence to suggest an inverse proportionality relationship between the Young's modulus and the diameter of a C60 whisker.

  19. Tin Whisker Electrical Short Circuit Characteristics Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Bayliss, Jon A.; Ludwib, Lawrence L.; Zapata, Maria C.

    2007-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB).

  20. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  1. Titan Nitriles Awaiting Detection

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2003-05-01

    The nitrogen-methane haze of Titan is known to harbor at least four molecules containing a nitrile (-CN) group: H-CN, NC-CN, CH3-CN, and HCC-CN. The low-temperature reaction chemistry of these molecules is of interest as the Cassini orbiter and Huygens probe approach the Saturnian system. As part of our preparation for Cassini-Huygens results we have undertaken an experimental study of the dominant chemical changes of nitrile molecules. Our results point to isomerization products formed by both low-temperature photochemistry and radiation chemistry. Among the new molecules we can predict are isonitriles (e.g. CH3-NC) and enimines (e.g. H2C=C=NH). We also expect, depending on the amount of H2O present, that cyanate ions (OCN-) can form on Titan. This presentation will include our latest results for Titan nitriles, as well a few nitriles not yet detected on Titan but present in either cometary comae or the interstellar medium. Since nitriles can form biological molecules, such as alpha-amino acids, purines, and pyrimidines, our results may also have astrobiological implications. -- The authors acknowledge NASA funding through the SARA and Planetary Atmospheres programs. RLH acknowledges support from NASA grant NAG-5-1843.

  2. Sinking with the Titanic

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-03-01

    In the Titanic movie, when the rear part of the ship is about to sink, Jack Dawson (Leonardo DiCaprio) says to Rose DeWitt Bukater (Kate Winslet) to get ready to swim, because the sinking body will suck them into the abysses. Is this sucking phenomenon really happening? And, if so, why?

  3. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  4. Encoding of whisker input by cerebellar Purkinje cells

    PubMed Central

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Joël; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-01-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells. We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres. PMID:20724365

  5. Coordinated Stem and NanoSIMS Analysis of Enstatite Whiskers in Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott; Keller, L. P.

    2009-01-01

    Enstatite whiskers (less than 10 micrometer length, less than 200 nanometer width) occur in chondritic-porous interplanetary dust particles (CP IDPs), an Antarctic micrometeorite and a comet 81P/Wild-2 sample. The whiskers are typically elongated along the [100] axis and contain axial screw dislocations, while those in terrestrial rocks and meteorites are elongated along [001]. The unique crystal morphologies and microstructures are consistent with the enstatite whiskers condensing above approximately 1300 K in a low-pressure nebular or circumstellar gas. To constrain the site of enstatite whisker formation, we carried out coordinated mineralogical, chemical and oxygen isotope measurements on enstatite whiskers in a CP IDP.

  6. Strengthening composite resin restorations with ceramic whisker reinforcement.

    PubMed

    Xu, H H; Schumacher, G E; Eichmiller, F C; Antonucci, J M

    2000-01-01

    Due to their tendency to fracture, current composite formulations are unsuitable for use in large stress-bearing direct posterior restorations that involve cusps. This study investigated the use of single-crystalline ceramic whiskers for the reinforcement of composite resins. The whisker-reinforced composite materials exhibited physical characteristics (i.e., flexural strength, work-of-fracture, and elastic modulus) that were significantly greater (P < 0.05; Student's t test) than those of traditional composite formulations. The experimental materials also had a surface smoothness that was essentially comparable to hybrid composite control specimens. PMID:11404884

  7. Whisker-reinforced ceramic composites for heat engine components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1988-01-01

    Much work was undertaken to develop techniques of incorporating SiC whiskers into either a Si3N4 or SiC matrix. The result was the fabrication of ceramic composites with ever-increasing fracture toughness and strength. To complement this research effort, the fracture behavior of whisker-reinforced ceramics is studied so as to develop methodologies for the analysis of structural components fabricated from this toughened material. The results, outlined herein, focus on the following areas: the use of micromechanics to predict thermoelastic properties, theoretical aspects of fracture behavior, and reliability analysis.

  8. Whisker Growth Behavior of Sn58Bi Solder Coatings Under Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Ma, Limin; Zuo, Yong; Liu, Sihan; Guo, Fu

    2016-01-01

    Whisker formation is a frequently occurring problem in the electronica industry, causing damage to fine-pitch electrical components. Several theories and models have been developed to describe the whisker growth, and many attempts have been made to find solutions for this issue. Most of the previous literature addressed the formation of Sn whiskers, while some attention was focused on Bi-rich whiskers. Moreover, investigation of different types of whiskers would be beneficial for understanding of the fundamental processes behind of the whisker growth. In our work, we analyze and discuss the growth of Bi-rich whiskers in eutectic Sn58Bi solder coatings under isothermal aging conditions. A possible growth mechanism for Bi-whiskers in the coating is proposed. Two processes contributed to the whisker growth. One process was the chemical reaction between Cu and Sn atoms to form Cu6Sn5. Cu atoms were inexhaustibly introduced into the coating from the substrate and caused the formation of Cu6Sn5. This process provided the driving force and was a sufficient condition for the growth of Bi-rich whiskers. The second process was the segregation of Bi atoms driven by the gradient of the Bi atoms' concentration. This process was the necessary condition for Bi-whiskers growth.

  9. The effect of whisker movement on radial distance estimation: a case study in comparative robotics

    PubMed Central

    Evans, Mathew H.; Fox, Charles W.; Lepora, Nathan F.; Pearson, Martin J.; Sullivan, J. Charles; Prescott, Tony J.

    2013-01-01

    Whisker movement has been shown to be under active control in certain specialist animals such as rats and mice. Though this whisker movement is well characterized, the role and effect of this movement on subsequent sensing is poorly understood. One method for investigating this phenomena is to generate artificial whisker deflections with robotic hardware under different movement conditions. A limitation of this approach is that assumptions must be made in the design of any artificial whisker actuators, which will impose certain restrictions on the whisker-object interaction. In this paper we present three robotic whisker platforms, each with different mechanical whisker properties and actuation mechanisms. A feature-based classifier is used to simultaneously discriminate radial distance to contact and contact speed for the first time. We show that whisker-object contact speed predictably affects deflection magnitudes, invariant of whisker material or whisker movement trajectory. We propose that rodent whisker control allows the animal to improve sensing accuracy by regulating contact speed induced touch-to-touch variability. PMID:23293601

  10. Mouse barrel cortex functionally compensates for deprivation produced by neonatal lesion of whisker follicles.

    PubMed

    Melzer, P; Crane, A M; Smith, C B

    1993-12-01

    In the murine somatosensory pathway, the metabolic whisker map in barrel cortex derived with the autoradiographic deoxyglucose method is spatially in register with the morphological whisker map represented by the barrels. The barrel cortex of adult mice, in which we had removed three whisker follicles from the middle row of whiskers shortly after birth, contained a disorganized zone surrounded by enlarged barrels with partially disrupted borders. With the fully quantitative autoradiographic deoxyglucose method, we investigated in barrel cortex of such mice the magnitude and the pattern of metabolic responses evoked by the deflection of whiskers. Most remarkably, the simultaneous deflection of six whiskers neighbouring the lesion activated not only the territory of the corresponding barrels, but also the unspecifiable area intercalated between the clearly identified barrels. This metabolic whisker map, unpredictable from the morphological 'barrel' map, may reflect a functional compensation for the deficit in input. PMID:8124517

  11. Fundamental studies of tin whiskering in microelectronics finishes

    NASA Astrophysics Data System (ADS)

    Pinol, Lesly Agnes

    Common electronics materials, such as tin, copper, steel, and brass, are ambient reactive under common use conditions, and as such are prone to corrosion. During the early 1940s, reports of failures due to electrical shorting of components caused by 'whisker' (i.e., filamentary surface protrusion) growth on many surface types---including the aforementioned metals---began to emerge. Lead alloying of tin (3--10% by weight, typically in the eutectic proportion) eliminated whiskering risk for decades, until the July 2006 adoption of the Restriction of Hazardous Substances (RoHS) directive was issued by the European Union. This directive, which has since been adopted by California and parts of China, severely restricted the use of lead (<1000 ppm) in all electrical and electronics equipment being placed on the EU market, imposing the need for developing reliable new "lead-free" alternatives to SnPb. In spite of the abundance of modern-day anecdotes chronicling whisker-related failures in satellites, nuclear power stations, missiles, pacemakers, and spacecraft navigation equipment, pure tin finishes are still increasingly being employed today, and the root cause(s) of tin whiskering remains elusive. This work describes a series of structured experiments exploring the fundamental relationships between the incidence of tin whiskering (as dependent variable) and numerous independent variables. These variables included deposition method (electroplating, electroless plating, template-based electrochemical synthesis, and various physical vapor deposition techniques, including resistive evaporation, electron beam evaporation, and sputtering), the inclusion of microparticles and organic contamination, the effects of sample geometry, and nanostructuring. Key findings pertain to correlations between sample geometry and whisker propensity, and also to the stress evolution across a series of 4"-diameter silicon wafers of varying thicknesses with respect to the degree of post

  12. Role of whiskers in sensorimotor development of C57BL/6 mice.

    PubMed

    Arakawa, Hiroyuki; Erzurumlu, Reha S

    2015-01-01

    The mystacial vibrissae (whiskers) of nocturnal rodents play a major role in their sensorimotor behaviors. Relatively little information exists on the role of whiskers during early development. We characterized the contribution of whiskers to sensorimotor development in postnatal C57BL/6 mice. A comparison between intact and whisker-clipped mice in a battery of behavioral tests from postnatal day (P) 4-17 revealed that both male and female pups develop reflexive motor behavior even when the whiskers are clipped. Daily whisker trimming from P3 onwards results in diminished weight gain by P17, and impairment in whisker sensorimotor coordination behaviors, such as cliff avoidance and littermate huddling from P4 to P17, while facilitation of righting reflex at P4 and grasp response at P12. Since active whisker palpation does not start until 2 weeks of age, passive whisker touch during early neonatal stage must play a role in regulating these behaviors. Around the onset of exploratory behaviors (P12) neonatal whisker-clipped pups also display persistent searching movements when they encounter cage walls as a compensatory mechanism of sensorimotor development. Spontaneous whisker motion (whisking) is distinct from respiratory fluttering of whiskers. It is a symmetrical vibration of whiskers at a rate of approximately ∼8 Hz and begins around P10. Oriented, bundled movements of whiskers at higher frequencies of ∼12 Hz during scanning object surfaces, i.e., palpation whisking, emerges at P14. The establishment of locomotive body coordination before eyes open accompanies palpation whisking, indicating an important role in the guidance of exploratory motor behaviors. PMID:25823761

  13. Role of whiskers in sensorimotor development of C57BL/6 mice

    PubMed Central

    Arakawa, Hiroyuki; Erzurumlu, Reha S.

    2015-01-01

    The mystacial vibrissae (whiskers) of nocturnal rodents play a major role in their sensorimotor behaviors. Relatively little information exists on the role of whiskers during early development. We characterized the contribution of whiskers to sensorimotor development in postnatal C57BL/6 mice. A comparison between intact and whisker-clipped mice in a battery of behavioral tests from postnatal day (P) 4 to 17 revealed that both male and female pups develop reflexive motor behavior even when the whiskers are clipped. Daily whisker trimming from P3 onwards results in diminished weight gain by P17, and impairment in whisker sensorimotor coordination behaviors, such as cliff avoidance and littermate huddling from P4 through P17, while facilitation of righting reflex at P4 and grasp response at P12. Since active whisker palpation does not start until 2 weeks of age, passive whisker touch during early neonatal stage must play a role in regulating these behaviors. Around the onset of exploratory behaviors (P12) neonatal whisker-clipped pups also display persistent searching movements when they encounter cage walls as a compensatory mechanism of sensorimotor development. Spontaneous whisker motion (whisking) is distinct from respiratory fluttering of whiskers. It is a symmetrical vibration of whiskers at a rate of approximately ∼8 Hz, and begins around P10. Oriented, bundled movements of whiskers at higher frequencies of ∼12 Hz during scanning object surfaces, i.e., palpation whisking, emerges at P14. The establishment of locomotive body coordination before eyes open accompanies palpation whisking, indicating an important role in the guidance of exploratory motor behaviors. PMID:25823761

  14. Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report.

    SciTech Connect

    Michael, Joseph Richard; Grant, Richard P.; Rodriguez, Mark Andrew; Pillars, Jamin; Susan, Donald Francis; McKenzie, Bonnie Beth; Yelton, William Graham

    2012-01-01

    Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a

  15. Titanates and Titanate-Metal Compounds in Biological Contexts

    PubMed Central

    Chen, Yen-Wei; Drury, Jeanie L.; Chung, Whasun Oh; Hobbs, David T.; Wataha, John C.

    2015-01-01

    Metal ions are notorious environmental contaminants, some causing toxicity at exquisitely low (ppm-level) concentrations. Yet, the redox properties of metal ions make them attractive candidates for bio-therapeutics. Titanates are insoluble particulate compounds of titanium and oxygen with crystalline surfaces that bind metal ions; these compounds offer a means to scavenge metal ions in environmental contexts or deliver them in therapeutic contexts while limiting systemic exposure and toxicity. In either application, the toxicological properties of titanates are crucial. To date, the accurate measurement of the in vitro toxicity of titanates has been complicated by their particulate nature, which interferes with many assays that are optical density (OD)-dependent, and at present, little to no in vivo titanate toxicity data exist. Compatibility data garnered thus far for native titanates in vitro are inconsistent and lacking in mechanistic understanding. These data suggest that native titanates have little toxicity toward several oral and skin bacteria species, but do suppress mammalian cell metabolism in a cells-pecific manner. Titanate compounds bind several types of metal ions, including some common environmental toxins, and enhance delivery to bacteria or cells. Substantial work remains to address the practical applicability of titanates. Nevertheless, titanates have promise to serve as novel vehicles for metal-based therapeutics or as a new class of metal scavengers for environmental applications. PMID:26430701

  16. Method of making in-situ whisker reinforced glass ceramic

    DOEpatents

    Brown, Jesse J.; Hirschfeld, Deidre A.; Lee, K. H.

    1993-02-16

    A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.

  17. Improved whisker pointing technique for micron-size diode contact

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Green, G.

    1982-01-01

    Pointed phosphor-bronze whiskers are commonly used to contact micron-size Schottky barrier diodes. A process is presented which allows pointing such wire and achieving the desired cone angle and tip diameter without the use of highly undesirable chemical reagents.

  18. Titan III-C Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows a Titan III-C launch vehicle. Titan vehicles are designed to carry payloads equal to the size and weight of those on the space shuttle. The Titan IV Centaur can put 10,000 pound payloads into geosynchronous orbit, 22,300 miles above Earth. For more information about Titan and Centaur, please see chapters 4 and 8, respectively, in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  19. Titan's Eccentricity Tides

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  20. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  1. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  2. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  3. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  4. Changes on Titan's surface

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  5. Crystalline titanate catalyst supports

    SciTech Connect

    Anthony, R.G.; Dosch, R.G.

    1991-12-31

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  6. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  7. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  8. Landscape Evolution of Titan

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  9. Evolution of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Povoden, G.; Selsis, F.; Ribas, I.; Tehrany, M. G.; Guinan, E. F.; Hanslmeier, A.; Bauer, S. J.

    2003-04-01

    We show that anomalies of heavy isotopes in Titan's atmosphere can be explained by using observational data of the radiation and particle environment of solar proxies. These observations indicate a larger solar wind flux and high solar EUV radiation of the early Sun during the first billion years are responsible for a fractionated atmospheric loss. For studying the evolution of the thermal escape of Titan's atmosphere we use a scaling law based on an approximate solution of the heat balance equation in the exosphere. Further, isotope fractionation by non-thermal atmospheric escape processes like dissociative recombination, impact dissociation, atmospheric sputtering and ion pick-up processes. We show that Titan lost an atmospheric mass We discuss also possible chemical reactions of methane and other out-gassing substances due to the high solar EUV fluxes powered thermospheric temperature 4 Gyr ago. This could have lead to molecules of higher mass like ethane and other organic compounds. The efficient production of such molecules was reduced by the decrease of the solar activity resulting in a kind of frozen state. At present only high energy processes like lightning discharges may give similar reactions.

  10. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    PubMed

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique. PMID:22282486

  11. Mitigation and Verification Methods for Sn Whisker Growth in Pb-Free Automotive Electronics

    NASA Astrophysics Data System (ADS)

    Hong, Won Sik; Oh, Chul Min; Kim, Do Seop

    2013-02-01

    This work describes mitigation methods against Sn whisker growth in Pb-free automotive electronics using a conformal coating technique, with an additional focus on determining an effective whisker assessment method. We suggest effective whisker growth conditions that involve temperature cycling and two types of storage conditions (high-temperature/humidity storage and ambient storage), and analyze whisker growth mechanisms. In determining an efficient mitigation method against whisker growth, surface finish and conformal coating have been validated as effective means. In our experiments, the surface finish of components comprised Ni/Sn, Ni/SnBi, and Ni/Pd. The effects of acrylic silicone, and rubber coating of components were compared with uncoated performance under high-temperature/humidity storage conditions. An effective whisker assessment method during temperature cycling and under various storage conditions (high temperature/humidity and ambient) is indicated for evaluating whisker growth. Although components were finished with Ni/Pd, we found that whiskers were generated at solder joints and that conformal coating is a useful mitigation method in this regard. Although whiskers penetrated most conformal coating materials (acrylic, silicone, and rubber) after 3500 h of high-temperature/humidity storage, the whisker length was markedly reduced due to the conformal coatings, with silicone providing superior mitigation over acrylic and rubber.

  12. Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Hillman, Dave; Wilcoxon, Ross; Lower, Nate; Grossman, Dan

    2015-12-01

    Alkali silicate glass (ASG) coatings were investigated as a possible method for inhibiting tin whisker initiation and growth. The aqueous-based ASG formulations used in this study were deposited with equipment and conditions that are typical of those used to apply conventional conformal coatings. Processes for controlling ASG coating properties were developed, and a number of ASG-based coating combinations were applied to test components with pure tin surfaces. Coatings were applied both in a laboratory environment at Rockwell Collins and in a manufacturing environment at Plasma Ruggedized Solutions. Testing in elevated humidity/temperature environments and subsequent inspection of the test articles identified coating combinations that inhibited tin whisker growth as well as other material combinations that actually accelerated tin whisker growth. None of the coatings evaluated in this study, including conventional acrylic and Parylene conformal coatings, completely prevented the formation of tin whiskers. Two of the coatings were particularly effective at reducing the risks of whisker growth, albeit through different mechanisms. Parylene conformal coating almost, but not completely, eliminated whisker formation, and only a few tin whiskers were found on these surfaces during the study. A composite of ASG and alumina nanoparticles inhibited whisker formation to a lesser degree than Parylene, but did disrupt whisker growth mechanisms so as to inhibit the formation of long, and more dangerous, tin whiskers. Additional testing also demonstrated that the conformal coatings had relatively little effect on the dielectric loss of a stripline test structure operating at frequencies over 30 GHz.

  13. A mechanistic study on the synthesis of β-Sialon whiskers from coal fly ash

    SciTech Connect

    Zhao, H.; Wang, P.Y.; Yu, J.L.; Zhang, J.

    2015-05-15

    Graphical abstract: The appearance of bead-like whiskers indicated that the growth mechanism of the β-Sialon whiskers was different from the conventional one, in which a chain of droplets were formed and then consumed to participate in the formation of the whiskers. - Highlights: • β-Sialon whiskers were synthesized using waste fly ash by carbothemal reduction reaction under nitrogen atmosphere. • Rod-like β-Sialon whiskers with a diameter of 100–500 nm were formed. • Bead-like whiskers as intermediate morphology of the growing β-Sialon whiskers were found with increasing sintering time. • The growth mechanism of β-Sialon whiskers was different from the conventional VLS mechanism. • A chain of droplets were formed and participated in the formation of the whiskers. - Abstract: β-Sialon whiskers were produced at 1420 °C through carbothemal reduction reaction under nitrogen atmosphere using fly ash from coal-fired power plants. The effects of sintering time on the phase formation and morphology of the products were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) techniques. Rod-like β-Sialon whiskers with the diameter of 100–500 nm were successfully formed. With increasing sintering time, bead-like morphology during the growth process of the whiskers was found, and growth mechanism of β-Sialon whiskers was also discussed in detail. The growth mechanism proposed in this study was different from the conventional vapor–liquid–solid (VLS) mechanism.

  14. Titan ballute aerocapture using the stochastic TitanGRAM model

    NASA Technical Reports Server (NTRS)

    Johnson, Wyatt R.

    2004-01-01

    Aerocapture using a towed, inflatable ballute system has been shown to provide a sifnificatn performance advantages compared to traditional technologies, including lower heating rates and accomodation of larger navigational uncertainties. This paper extends previous results by designing a ballute aerocapture separation algorithm that can operate in a more realistic Titan atmospheric model based on TitanGRAM.

  15. Titan's methane clock

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  16. Titan after Cassini Huygens

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  17. Synthesis of nanosized sodium titanates

    DOEpatents

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  18. Potassium in diet

    MedlinePlus

    ... of electrolyte . Function Potassium is a very important mineral for the human body. Your body needs potassium to: Build proteins Break down and use carbohydrates Build muscle Maintain normal body growth Control ...

  19. Potassium carbonate poisoning

    MedlinePlus

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This article is for information only. Do ...

  20. Penicillin V Potassium Oral

    MedlinePlus

    Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken ...

  1. A Model for Rapid Tin Whisker Growth on the Surface of ErSn3 Phase

    NASA Astrophysics Data System (ADS)

    Hao, Hu; Xu, Guangchen; Song, Yonglun; Shi, Yaowu; Guo, Fu

    2012-02-01

    Spontaneous growth of tin whiskers on the finish of leadframes is an extremely slow process under moderate temperature conditions. It therefore becomes difficult to track the continuous growth of tin whiskers and to vary the experimental conditions to determine their root causes. Accordingly, the fundamental growth behaviors of tin whiskers are still not fully understood. In this study, rapid tin whisker growth was achieved by adding 1 wt.% Er to Sn-3.8Ag-0.7Cu solder alloy. The results showed unique tin whisker morphology with nonconstant cross-section. An explanation is proposed by adding kinetic energy to the conventional energy balance equation. In addition, a double compressive stress zone is proposed to demonstrate the driving force for tin whisker growth in rare-earth-bearing phases.

  2. The mathematical whisker: A review of numerical models of the rat׳s vibrissa biomechanics.

    PubMed

    Lucianna, Facundo Adrián; Albarracín, Ana Lía; Vrech, Sonia Mariel; Farfán, Fernando Daniel; Felice, Carmelo José

    2016-07-01

    The vibrissal system of the rat refers to specialized hairs the animal uses for tactile sensory perception. Rats actively move their whiskers in a characteristic way called "whisking". Interaction with the environment produces elastic deformation of the whiskers, generating mechanical signals in the whisker-follicle complex. Advances in our understanding of the vibrissal complex biomechanics is of interest not only for the biological research field, but also for biomimetic approaches. The recent development of whisker numerical models has contributed to comprehending its sophisticated movements and its interactions with the follicle. The great diversity of behavioral patterns and complexities of the whisker-follicle ensemble encouraged the creation of many different biomechanical models. This review analyzes most of the whisker biomechanical models that have been developed so far. This review was written so as to render it accessible to readers coming from different research areas. PMID:27260019

  3. Growth of Sn whiskers after low temperature implantation of 20 keV He or H

    SciTech Connect

    Poker, D.B.; Schubert, J.; Alexandrou, A.; Froehlingsdorf, J.; Stritzker, B.

    1986-01-01

    Single crystalline whiskers have been observed to form on thin films (approx.100 nm) of Sn following implantation of 20-keV H or He at temperatures below 15/sup 0/K. Rapid warming prevented the formation of whiskers, indicating that the growth occurs predominatly during the warming, and not during implantation. Samples that had been warmed rapidly did show whisker growth only after several days in air at room temperature. The adhesion of the films to the substrate is remarkably enhanced by the irradiation, as measured by scratch tests. Thicker films produced progressively fewer whiskers, and none were observed on implanted foils, or films of In, Bi, Zn, or Pb. Possible origins of the driving force for whisker growth are discussed. Whiskers grew on Sn films on all of the substrates that were tested: quartz, sapphire, glass, Si, Cu, stainless steel, and NaCl.

  4. Processing and properties of hydroxyapaptite whisker reinforced polyaryletherketones for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Converse, Gabriel Leverne

    The overall objective of this study was to produce hydroxyapatite (HA) whisker reinforced polyaryletherketone (PAEK) biocomposites and scaffolds with tailored mechanical properties similar to those of bone tissue. The effects of the reaction temperature and carboxylic acid on the morphology and composition of HA whiskers synthesized by chelate decomposition were first studied using a controlled heating rate under static conditions. Reaction temperature affected both whisker composition and morphology, while the carboxylic acid used as the chelating agent affected whisker morphology. Polyetheretherketone (PEEK) was reinforced with up to 50 vol% HA whisker reinforcement using a novel powder processing and compression molding technique. Composites with 40-50 vol% HA whisker reinforcement exhibited elastic moduli similar to that of human cortical bone in the longitudinal direction. Composites with 10 and 20 vol% HA whisker reinforcement exhibited tensile strengths similar to that of human cortical bone in the longitudinal direction. HA whisker reinforced polyetherketoneketone (PEKK) scaffolds were successfully processed with 75-90% porosity and 20-40 vol% HA whisker reinforcement. The compression molding/particle leaching technique used in this study facilitated the incorporation of high levels of bioactive HA whisker reinforcements into the polymer matrix. Micro-CT indicated interconnected porosity in the size range required for bone ingrowth. The mechanical properties of HA whisker reinforced PEKK scaffolds were investigated in uniaxial compression. Scaffolds processed at 375°C with 75% porosity and 20 vol% HA whisker reinforcement exhibited an apparent modulus of 141 MPa and an apparent yield strength of 2.3 MPa. These values fall within the ranges reported for the modulus and strength of trabecular bone.

  5. Microstructure, strength and toughness of Si3N4-SiC whisker composites

    SciTech Connect

    Champion, E.; Goursat, P.; Besson, J.L.; Madigou, V.; Monthioux, M.; Lespade, P.

    1992-10-01

    Si3N4-SiC whisker composites were fabricated using several routes (i.e., pressure filtration or CIP) followed by HP or HIP. The fracture strength ranges from 650 MPa to 750 MPa on account of the whiskers orientation. Compared to the Si3N4 matrix, the toughness is increased. A strong R-curve effect can be obtained, suggesting that, to be efficient, the whisker diameter must exceed a critical size. 13 refs.

  6. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  7. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.

    2008-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This model can be used to improve existing risk simulation models FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  8. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  9. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  10. Titan Airship Surveyor

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  11. Titan's Carbon Conundrum

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Teanby, N. A.; Vinatier, S.; BÉ Zard, B.; Coustenis, A.; Irwin, P. G.; Flasar, F. M.; Cassini Cirs Team

    2010-12-01

    As recently as a year ago, a consensus was emerging that carbon-13 in Titan's methane was enriched by some ~10% over the terrestrial value (12C/13C = ~77-82 on Titan versus 89 on Earth, Niemann et al 2005, Nixon et al 2008). At the same time, several measurements of 12C/13C in ethane, the main product of methane photolysis, appeared to show no enrichment (Nixon et al 2008, Jennings et al 2009). This led to the suggestion that a steady state equilibrium was being reached, with a Kinetic Isotope Effect (KIE) in a key reaction (C2H + CH4 → C2H2 + CH3) responsible for the slight enrichment in the atmospheric reservoir relative to both the incoming flux of methane and outgoing flux of ethane (Jennings et al 2009). This paradigm was overturned earlier this year when the Huygens GCMS team revised their measurement of 12CH4/13CH4 upwards to agree with the terrestrial value (Niemann et al, in preparation), eliminating any need for the KIE fractionation. However, this presents a new problem in the sense that the KIE effect is probably real - it is confirmed for the CH3D and 12CH4 reactions with ethynyl (Opansky and Leone 1996), so almost certainly for 13CH4-12CH4 pair as well - and so some fractionation of methane should be occurring. This is true regardless as to whether the atmospheric methane is being replenished or not - differing only in degree - provided the ethynyl abstraction reaction is the dominant path for methane loss as predicted by current models (Lavvas et al. 2008). In this forum we will present updated measurements by the CIRS team of the 12CH4/13CH4 derived from recent high signal-to-noise Titan observations, and discuss the degree of agreement with both the earlier published ratios, and the newer revised GCMS results. We will also discuss the implications for Titan's methane evolution over geologic time including clues from the D/H ratio. We conclude by highlighting the currently open questions and avenues for future work. Jennings, D.E. et al., J. Chem

  12. Titan Science Return Quantification

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.; Lincoln, William

    2014-01-01

    Each proposal for a NASA mission concept includes a Science Traceability Matrix (STM), intended to show that what is being proposed would contribute to satisfying one or more of the agency's top-level science goals. But the information traditionally provided cannot be used directly to quantitatively compare anticipated science return. We added numerical elements to NASA's STM and developed a software tool to process the data. We then applied this methodology to evaluate a group of competing concepts for a proposed mission to Saturn's moon, Titan.

  13. Comparing the functional representations of central and border whiskers in rat primary somatosensory cortex.

    PubMed

    Brett-Green, B A; Chen-Bee, C H; Frostig, R D

    2001-12-15

    The anatomical representations of the large facial whiskers, termed barrels, are topographically organized and highly segregated in the posteromedial barrel subfield (PMBSF) of rat layer IV primary somatosensory cortex. Although the functional representations of single whiskers are aligned with their appropriate barrels, their areal extents are rather large, spreading outward from the appropriate barrel along the tangential plane and thereby spanning multiple neighboring and non-neighboring barrels and septal regions. To date, single-whisker functional representations have been characterized primarily for whiskers whose corresponding barrels are located centrally within the PMBSF (central whiskers). Using intrinsic signal imaging verified with post-imaging single-unit recording, we demonstrate that border whiskers, whose barrels are located at the borders of the PMBSF, also evoke large activity areas that are similar in size to those of central whiskers but spread beyond the PMBSF and sometimes beyond primary somatosensory cortex into the neighboring dysgranular zones. This study indicates that the large functional representation of a single whisker is a basic functional feature of the rat whisker-to-barrel system and, combined with results from other studies, suggest that a large functional representation of a small, point-like area on the sensory epithelium may be a functional feature of primary sensory cortex in general. PMID:11739601

  14. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice

    PubMed Central

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-01-01

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input. DOI: http://dx.doi.org/10.7554/eLife.14140.001 PMID:27269285

  15. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice.

    PubMed

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-01-01

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input. PMID:27269285

  16. Hydrothermal synthesis of sodium bismuth titanate and titanate nanofibers

    NASA Astrophysics Data System (ADS)

    Kundu, Animesh

    A hydrothermal processing method was developed for the synthesis of sodium bismuth titanate powders and thin films from suitable precursors at 150°C. Oxide precursors were best suited for preparing pure phase materials. The sodium bismuth titanate powders consisted of cube shaped crystals. A modified solution-reprecitation model involving partial dissolution of the precursors was proposed to explain the growth of these particles. The thin films were prepared on strontium titanate (100) substrate. A sample holder was specially designed and fabricated to secure the substrates in the reaction vessel. The result was a relatively smooth film of thickness ≤550 nm. The films were essentially single crystalline and had strong epitaxial relationship with the substrate. Titanate nanofibers (NaxH yTinO2n+1° zH2O) were known to form under similar hydrothermal conditions as sodium bismuth titanate powders. Detail research revealed that the pure hydroxide and oxide precursors tend to form sodium bismuth titanate powders or thin films. Titanate nanofibers were the predominant product when any other ions or organics were present in the precursor. Much faster reaction kinetics for the formation of nanofibers was observed when certain organic compounds were added deliberately with the precursors. Accordingly, a hydrothermal process was developed for converting the precursors to titanate nanofibers in a significantly shorter time than reported in the literature. A thin film consisting of vertically aligned nanofibers was prepared on titanium substrate at 150°C in as little as 30 minutes. Complete conversion of starting precursors to free standing nanofibers was achieved in ˜8 hours at 150°C. The as-prepared nanofibers were some form of sodium titanate. They were converted to hydrogen titanate by ion exchange. Differential Scanning calorimetric experiments were performed to understand the thermal evolution of the fibers. The hydrogen titanate fibers underwent structural

  17. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  18. 'Where' and 'what' in the whisker sensorimotor system.

    PubMed

    Diamond, Mathew E; von Heimendahl, Moritz; Knutsen, Per Magne; Kleinfeld, David; Ahissar, Ehud

    2008-08-01

    In the visual system of primates, different neuronal pathways are specialized for processing information about the spatial coordinates of objects and their identity - that is, 'where' and 'what'. By contrast, rats and other nocturnal animals build up a neuronal representation of 'where' and 'what' by seeking out and palpating objects with their whiskers. We present recent evidence about how the brain constructs a representation of the surrounding world through whisker-mediated sense of touch. While considerable knowledge exists about the representation of the physical properties of stimuli - like texture, shape and position - we know little about how the brain represents their meaning. Future research may elucidate this and show how the transformation of one representation to another is achieved. PMID:18641667

  19. Silicon carbide whisker reinforced composites and method for making same

    DOEpatents

    Wei, G.C.

    1984-02-09

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties, especially increased fracture toughness. In the formation of these ceramic composites, the single-crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al/sub 2/O/sub 3/, mullite, or B/sub 4/C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600 to 1950/sup 0/C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m/sup 1/2/ which represents as much as a two-fold increase over that of the matrix material.

  20. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    NASA Astrophysics Data System (ADS)

    Cagliero, Stefano; Agostino, Angelo; Khan, Mohammad Mizanur Rahman; Truccato, Marco; Orsini, Francesco; Marinone, Massimo; Poletti, Giulio; Lascialfari, Alessandro

    2009-05-01

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90°C have been performed on two sets of samples, which were monitored by means of X-Rays Diffraction (XRD) and Atomic Force Microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi2Sr2CuCa2O8+ x (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers.

  1. Titan's astrobiology: some new data

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Coll, Patrice; Buch, Arnaud; Cloix, Megane; Guan, Yuan Yong; Jerome, Murielle; Poch, Olivier; Ramirez, Sandra I.; Szopa, Cyril; Cottin, Hervé

    The Cassini-Huygens observations of Titan have strongly strengthened its astrobiological impor-tance, clearly showing that Titan is one of the key planetary bodies for astrobiological studies. Indeed the Cassini-Huygens data show that there are many similarities which can be found when comparing Titan and the early Earth, in spite of much lower temperatures for Titan. One of these similarities is the presence of an active and complex organic chemistry in Titan's environment, which occurs from the high atmosphere to the surface and very likely in the sub-surface. This organic chemistry involves several of the key compounds of terrestrial prebiotic chemistry, and it represents, by itself, a major astrobiological aspect of Titan. Moreover, the potential presence of an internal water-ocean makes Titan a potential habitable environment, of obvious astrobiological importance. In fact, after five years of close observation by remote sensing and in situ instrumentations from the Cassini-Huygens mission, Titan does not look any more like a frozen primitive Earth, but it looks like an evolving planet, geologically active, with cryo-volcanism, eolian erosion, clouds and precipitations, and a methane cycle analogous to the water cycle on Earth. But the new data also show that a complex organic chemistry is taking place in the very high atmospheric layers of the satellite, with the formation in the ionosphere of high molecular weight (up about 10 000 Daltons) ions. Are these ions abundant enough in the lower atmosphere zones to act as organic monomers which then grow by aggregation, sedimentation and condensation down to the surface? This is one of the key questions that chemical models have now to answer. Cassini-Huygens observations have shown that there is no large surface ocean on Titan, but large regional lakes which behave like evolving liquid media. Those lakes are probably accumulating complex organics of astrobiological interest, including organic aerosols, and could

  2. Titan: A Place with Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Titan is the largest moon of the planet Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen and has a pressure one and a half times larger than sea level pressure on Earth. In these respects Titan's atmosphere is the closest twin to Earth's. Methane is found in Titan's atmosphere and results in the formation of a organic smog layer in the atmosphere via chemistry that is similar to the current theories for the origin of life on Earth. Unfortunately, Titan is much too cold for water to be liquid and life is therefore unlikely, earth-like life that is. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's. However the organic smog layer produces an anti-greenhouse effect that cuts the greenhouse warming in half. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane or maybe just lakes. When the NASA/ESA mission to the Saturn System, Cassini/Huygens reaches Saturn in a few years it will launch a probe that to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  3. The Geology of Titan

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  4. Touchdown on Titan

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  5. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  6. Regulation of Potassium Homeostasis

    PubMed Central

    2015-01-01

    Potassium is the most abundant cation in the intracellular fluid, and maintaining the proper distribution of potassium across the cell membrane is critical for normal cell function. Long-term maintenance of potassium homeostasis is achieved by alterations in renal excretion of potassium in response to variations in intake. Understanding the mechanism and regulatory influences governing the internal distribution and renal clearance of potassium under normal circumstances can provide a framework for approaching disorders of potassium commonly encountered in clinical practice. This paper reviews key aspects of the normal regulation of potassium metabolism and is designed to serve as a readily accessible review for the well informed clinician as well as a resource for teaching trainees and medical students. PMID:24721891

  7. The Formation of Graphite Whiskers in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.

    2010-01-01

    It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.

  8. Neural coding in barrel cortex during whisker-guided locomotion

    PubMed Central

    Sofroniew, Nicholas James; Vlasov, Yurii A; Andrew Hires, Samuel; Freeman, Jeremy; Svoboda, Karel

    2015-01-01

    Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.12559.001 PMID:26701910

  9. The Formation of Graphite Whiskers in the Primitive Solar Nebula

    NASA Astrophysics Data System (ADS)

    Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.

    2010-02-01

    It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from protostellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.

  10. THE FORMATION OF GRAPHITE WHISKERS IN THE PRIMITIVE SOLAR NEBULA

    SciTech Connect

    Nuth, Joseph A.; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.

    2010-02-10

    It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from protostellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H{sub 2}, CO, and N{sub 2} reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H{sub 2}, CO, and N{sub 2} at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.

  11. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  12. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  13. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  14. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  15. Planetary science: Huygens rediscovers Titan

    NASA Astrophysics Data System (ADS)

    Owen, Tobias

    2005-12-01

    The first analyses of data sent by the Huygens probe from Saturn's largest moon Titan are flooding in. They paint a picture of a `Peter Pan' world - potentially like Earth, but with its development frozen at an early stage.

  16. Ices in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie

    2010-01-01

    Analyses of Cassini CIRS far-infrared limb spectra of Titan at 15N, 15S, and 58S reveal a broad emission feature between 70 and 270/cm, restricted to altitudes between 60 and 100 km. This emission feature is chemically different from Titan's photochemical aerosol, which has an emission feature peak around 145 cm-1. The shape of the observed broad emission feature resembles a mixture of the solid component of the two most abundant nitrites in Titan's stratosphere, that of HCN and HC3N. Following the saturation vapor pressure vertical profiles of HCN and HC3N, the 60 to 100 km altitude range corresponds closely to the vertical location where these nitriles are expected to condense out and form small, suspended ice particles. This is the first time ices in Titan's stratosphere have been identified at latitudes south of 50N. Results and physical implications will be discussed.

  17. Precision mass measurements at TITAN with radioactive ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Macdonald, T. D.; Andreoiu, C.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mané, E.; Pearson, M. R.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2013-12-01

    Measurements of the atomic mass further our understanding in many disciplines from metrology to physics beyond the standard model. The accuracy and precision of Penning trap mass spectrometry have been well demonstrated at TITAN, including measurements of neutron-rich calcium and potassium isotopes to investigate three-body forces in nuclear structure and within the island of inversion to study the mechanism of shell quenching and deformation. By charge breeding ions, TITAN has enhanced the precision of the measurement technique. The precision achieved in the measurement of the superallowed β-emitter 74Rb in the 8+ charge state rivaled earlier measurements with singly charged ions in a fraction of the time. By breeding 78Rb to the same charge state, the ground state could be easily distinguished from the isomer. Further developments led to threshold charge breeding, which permitted capturing and measuring isobarically and elementally pure ion samples in the Penning trap. This was demonstrated via the Q-value determination of 71Ge. An overview of the TITAN facility and recent results are presented herein.

  18. The thermosphere of Titan

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Yung, Y. L.

    1984-01-01

    The vertical structure of Titan's thermosphere is calculated down to the mesopause as a function of local time based on Voyager 1 occultation data. The thermal time scales that characterize the diurnal behavior of the thermosphere are discussed, the input model atmosphere used to calculate the temperature profile is presented, and the dominant heating and cooling mechanisms in the thermosphere are examined. The temperature profiles obtained by integrating the heat transfer equation with and without electron heating are presented and discussed. The implications that derived exospheric temperatures have for the neutral hydrogen torus are investigated. The diurnal exospheric temperature is unlikely to exceed 225 K, averages between 187 and 197 K, and has a variational amplitude of 28 K or less. The vertical extent of the hydrogen cloud is too large to be explained in terms of simple thermal escape of hydrogen from the exosphere.

  19. Titan atmospheric models intercomparison

    NASA Astrophysics Data System (ADS)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  20. Life on Titan

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or

  1. The TITAN magnet configuration

    SciTech Connect

    Bathke, C.G.

    1987-01-01

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to startup inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given. 18 refs.

  2. The TITAN magnet configuration

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to start up inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given.

  3. Titan's rotation - Surface feature observed

    NASA Astrophysics Data System (ADS)

    Lemmon, M. T.; Karkoschka, E.; Tomasko, M.

    1993-06-01

    A surface feature or a near-surface fracture is suggested to account for the time variations in the 0.94, 1.08, and 1.28 micron atmospheric windows of Titan's geometric albedo, relative to its albedo in adjacent methane bands. These observations are noted to be consistent with synchronous rotation. They can also be explained by a 0.1-higher surface albedo on Titan's leading hemisphere.

  4. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  5. Correlation Between Surface Morphology Evolution and Grain Structure: Whisker/Hillock Formation in Sn-Cu

    NASA Astrophysics Data System (ADS)

    Pei, Fei; Jadhav, Nitin; Chason, Eric

    2012-10-01

    Sn whisker and hillock formation is a reliability risk that has become increasingly important as the electronics industry has moved toward Pb-free manufacturing. To prevent them, we would like to understand what makes specific sites susceptible to deform into whiskers. We have used in situ scanning electron microscopy (SEM)/electron backscattering diffraction (EBSD) to monitor simultaneously the evolution of surface morphology and grain orientation in Sn surfaces in order to correlate whisker/hillock initiation with the underlying microstructure. Because rough films are difficult to measure with EBSD, we developed a unique procedure to make Sn-Cu samples with ultra-flat surfaces so that a large fraction of Sn grains can be indexed over repeated scans. We find that whiskers/hillocks grow from existing grains (not re-nucleated grains) with orientations close to (001). They often rotate from the as-deposited structure so that the orientation after growth does not indicate the orientation from which the whisker initiated. We measured the interface structure after removal of the Sn layer by chemical etching and found that there is no excessive accumulation of intermetallic compound around the whisker/hillock roots. Cross-sectional measurements revealed that a large fraction of the whiskers/hillocks have oblique boundaries underneath the surface, supporting the idea that these allow whiskers/hillocks to grow with lower stress.

  6. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  7. Parallel coding schemes of whisker velocity in the rat's somatosensory system.

    PubMed

    Lottem, Eran; Gugig, Erez; Azouz, Rony

    2015-03-15

    The function of rodents' whisker somatosensory system is to transform tactile cues, in the form of vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through whisker movements to neuronal responses is not well-understood. Here we examine the role of whisker velocity in tactile information transmission and its coding mechanisms. We show that in anaesthetized rats, whisker velocity is related to the radial distance of the object contacted and its own velocity. Whisker velocity is accurately and reliably coded in first-order neurons in parallel, by both the relative time interval between velocity-independent first spike latency of rapidly adapting neurons and velocity-dependent first spike latency of slowly adapting neurons. At the same time, whisker velocity is also coded, although less robustly, by the firing rates of slowly adapting neurons. Comparing first- and second-order neurons, we find similar decoding efficiencies for whisker velocity using either temporal or rate-based methods. Both coding schemes are sufficiently robust and hardly affected by neuronal noise. Our results suggest that whisker kinematic variables are coded by two parallel coding schemes and are disseminated in a similar way through various brain stem nuclei to multiple brain areas. PMID:25552637

  8. Natural whisker-guided behavior by head-fixed mice in tactile virtual reality.

    PubMed

    Sofroniew, Nicholas J; Cohen, Jeremy D; Lee, Albert K; Svoboda, Karel

    2014-07-16

    During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397

  9. Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality

    PubMed Central

    Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.

    2014-01-01

    During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397

  10. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  11. Data on electrical properties of nickel modified potassium polytitanates compacted powders.

    PubMed

    Goffman, V G; Gorokhovsky, A V; Gorshkov, N V; Fedorov, F S; Tretychenko, E V; Sevrugin, A V

    2015-09-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni(2+) ions and/or decorated by nickel oxides NiO x . This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH. PMID:26217788

  12. Data on electrical properties of nickel modified potassium polytitanates compacted powders

    PubMed Central

    Goffman, V.G.; Gorokhovsky, A.V.; Gorshkov, N.V.; Fedorov, F.S.; Tretychenko, E.V.; Sevrugin, A.V.

    2015-01-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni2+ ions and/or decorated by nickel oxides NiOx. This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH. PMID:26217788

  13. Kinetic Analysis of Spontaneous Whisker Growth on Pre-treated Surfaces with Weak Oxide

    NASA Astrophysics Data System (ADS)

    Su, Chien-Hao; Chen, Hao; Lee, Hsin-Yi; Liu, Cheng Yi; Ku, Ching-Shun; Wu, Albert T.

    2014-09-01

    This study sought to clarify the relationship between cracks in surface oxide layers and the growth behavior of tin whiskers. The number, length, and total volume of extrusions were precisely calculated and residual stress was measured using synchrotron radiation x-ray diffractometry. The aim was to elucidate the influence of stress on the driving force and flux involved in atomic diffusion. The distance between weak spots was shown to be the most significant factor involved in the growth of whiskers. The results could explain why increasing the density of the surface weak spots could reduce the number of long whiskers. Measuring the dimensions of whiskers yielded a precise kinetic model capable of describing the migration of atoms to the root of whiskers, resulting in their spontaneous growth.

  14. Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development. Part I: A Model

    NASA Astrophysics Data System (ADS)

    Vianco, P. T.; Rejent, J. A.

    2009-09-01

    A model is proposed that attributes whisker growth in metals and alloys to dynamic recrystallization (DRX) and, in particular, DRX at the material surface. Each step in the DRX process was correlated to the development of whiskers. The DRX model depends upon the details of the deformation process(es) responsible for new grain initiation and growth. The dependencies exhibited by DRX as a function of deformation strain rate, temperature, and microstructure correlate with the behaviors of whisker development. Anomalous or ultrafast diffusion mechanisms, either by themselves or associated with the deformation structures, provide the means of mass transport necessary to grow whiskers. In Part II of this study, the strain and rate kinetics data are determined for Sn. Parts I and II, together, provide a critical step towards developing a capability to predict the conditions that are likely to cause whisker growth in engineering applications.

  15. Stress Relaxation Mechanisms of Sn and SnPb Coatings Electrodeposited on Cu: Avoidance of Whiskering

    NASA Astrophysics Data System (ADS)

    Sobiech, M.; Teufel, J.; Welzel, U.; Mittemeijer, E. J.; Hügel, W.

    2011-11-01

    The interrelations of microstructural evolution, phase formation, residual stress development, and whiskering behavior were investigated for the systems of Sn coating on Cu and SnPb coating on Cu during aging at room temperature. It was shown that the whisker-preventing effect of Pb addition to pure Sn can be attributed to a Pb-induced change of the stress relaxation mechanism in the coating: Pure Sn coatings, with a columnar grain morphology, relax mechanical stress via localized, unidirectional grain growth from the surface of the coating (i.e., whisker formation occurs), whereas SnPb coatings, with an equiaxed grain morphology, relax mechanical stress via uniform grain coarsening without whisker formation. It can thus be suggested that tuning of the Sn grain morphology (i.e., establishing an equiaxed grain morphology) is a straightforward method of microstructural control to suppress whisker formation at room temperature. Experimental results obtained in this project validate this conclusion.

  16. Fabrication of SiC whisker-reinforced SiC ceramics

    SciTech Connect

    Miyahara, Kaoru; Watanabe, Takashi; Koga, Shin; Sasa, Tadashi

    1992-10-01

    A fabrication process of SiC whisker-reinforced SiC ceramics consisting of whisker CVD-coating for the control of interfacial bonding, slurry-pressing and HIP consolidation has been developed. Microstructural observation confirmed the incorporation of the interfacial carbon layer in the composites brought about remarkable whisker bridging/pull-out in the fracture. Whisker-bridging was considered to be a predominant toughening mechanism. To optimize the interfacial properties, the effect of coating conditions, i.e., amount of coating and CVD temperature, on the fracture toughness were studied. The effect of whisker diameter on the fracture toughness and anisotropy in the fracture toughness were also investigated. 12 refs.

  17. Wetting of microstructured alumina fabricated by epitaxial growth of Al4B2O9 whiskers

    NASA Astrophysics Data System (ADS)

    Wang, Yifeng; Feng, Jicai; Chen, Zhe; Song, Xiaoguo; Cao, Jian

    2015-12-01

    Topographical microstructures were fabricated on alumina by epitaxial growth of Al4B2O9 whiskers in air. The products were characterized via scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The whiskers were found to grow along the [0 0 1] crystallographic direction, and the lattice mismatch between Al2O3 and Al4B2O9 was determined to be 0.03%. The wetting of the Al4B2O9-whisker-coated surfaces by Ag-36.7Cu-8.0Ti at.% alloy was studied. The time needed to reach the equilibrium stage reduced as the temperature increased, and the final contact angle for liquid alloy on the rough surface was 27° at 880 °C. The wetting dynamics of the whiskers coated surfaces was investigated. After wetting, a whisker-interconnected region was formed between alumina and the alloy.

  18. Contributions of stress and oxidation on the formation of whiskers in Pb-free solders

    SciTech Connect

    Duncan, A. J.; Hoffman, E. N.

    2016-01-01

    Understanding the environmental factors influencing formation of tin whiskers on electrodeposited lead free, tin coatings over copper (or copper containing) substrates is the topic of this study . An interim report* summarized initial observations as to the role of stress and oxide formation on whisker growth. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen content in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the sample in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen partial pressure.

  19. Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release.

    PubMed

    Xu, H H; Eichmiller, F C; Antonucci, J M; Flaim, G M

    2000-01-01

    Currently available glass-ionomer, resin-modified glass-ionomer, and compomer materials have relatively low strength and toughness and, therefore, are inadequate for use in large stress-bearing posterior restorations. In the present study, ceramic single-crystalline whiskers were mixed with fluorosilicate glass particles and used as fillers to reinforce experimental carboxylic acid-resin composites. The carboxylic acid was a monofunctional methacryloxyethyl phthalate (MEP). Five mass fractions of whisker/(whisker + fluorosilicate glass), and corresponding resin (resin + MEP), were evaluated. Four control materials were also tested for comparison: a glass ionomer, a resin-modified glass ionomer, a compomer, and a hybrid composite resin. Flexural specimens were fabricated to measure the flexural strength, elastic modulus, and work-of-fracture (an indication of toughness). Fluoride release was measured by using a fluoride ion selective electrode. The properties of whisker composites depended on the whisker/(whisker + fluorosilicate glass) mass fraction. At a mass fraction of 0.8, the whisker composite had a flexural strength in MPa (mean +/- sd; n = 6) of 150 +/- 16, significantly higher than that of a glass ionomer (15 +/- 7) or a compomer control (89 +/- 18) (Tukey's multiple comparison test; family confidence coefficient = 0.95). Depending on the ratio of whisker:fluorosilicate glass, the whisker composites had a cumulative fluoride release up to 60% of that of a traditional glass ionomer. To conclude, combining ceramic whiskers and fluorosilicate glass in a carboxylic acid-resin matrix can result in fluoride-releasing composites with significantly improved mechanical properties. PMID:11203805

  20. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    PubMed Central

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper. PMID:23372545

  1. The Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Pearson, N.; Brown, R. H.; Cruikshank, D. P.; Barnes, J. W.; Jaumann, R.; Soderblom, L. A.; Griffith, C. A.; Rodriguez, S.; Le Mouelic, S.; Lunine, J.; Sotin, C.; Baines, K. H.; Buratti, B. J.; Nicholson, P. D.; Nelson, R.; Stephan, K.

    2011-12-01

    Determining the surface composition of Titan has been inhibited by the lack of spectral properties of potential compounds. We have measured the 0.35 to 5-micron spectral reflectance of a wide range of compounds that might be relevant to Titan and trends are now coming to light with possible spectral matches for classes of materials. While some compounds have been identified and mapped on Titan's surface, such as liquid ethane + methane lakes and benzene, the compounds responsible for the main spectral properties have remained elusive (Clark et al, JGR 2010). Titan's surface is seen in the near infrared in only a few spectral windows, near 0.94, 1.1, 1.3, 1.6, 2.0, 2.68-2.78, and 4.9-5.1 microns in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) spectral range. At shorter wavelengths, UV absorption in the spectra of Titan's haze constrains the surface composition because haze particles settle onto Titan's surface. The average apparent reflectance in the IR windows generally decreases with increasing wavelength except for the 2.7 and 5-micron windows which are at similar levels. The decrease has led researchers to infer a number of compounds responsible for the observed decreasing spectral shape; the most common being water ice. But ice is incompatible with the 2.78/2.68 micron I/F ratio. Many organic compounds have absorptions that are not seen in spectra of Titan, eliminating them as possible major components at the surface, including many polycyclic aromatic hydrocarbons (PAH) previously thought to be compatible with parts of Titan's spectrum. We find that ring compounds similar to benzene rings, but with some C-H bonds replaced by NH have a closer match to Titan's overall spectrum and can explain the relative intensities observed in the spectral windows, including the 2.68 and 2.78-micron double window, the low 3-5 micron reflectance, and increased absorption near 2.1-microns. Key among these compounds that show general properties that match Titan are

  2. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  3. Models of a partially hydrated Titan interior with clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J.

    2012-04-01

    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  4. Titan's Oxygen Chemistry: An Update

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.; Klippenstein, S. J.; Lavvas, P.; Vuitton, V.; Yelle, R. V.

    2013-09-01

    Prior to the arrival of Cassini in the Saturn system, photochemical models were unable to simultaneously reproduce the observed abundances of CO, CO2, and H2O. The observations were explained by invoking an internal source of CO in addition to an external source of H2O or by assuming that the observed CO is the remnant of a larger primordial abundance. In 2008, we showed that the flux of O+ detected by the Cassini Plasma Spectrometer (CAPS) coupled with the previously known flux of H2O was sufficient to explain the oxygen bearing species in Titan's atmosphere [1]. This work demonstrated that it is no longer necessary to invoke outgassing from Titan's interior as a source for atmospheric CO or to assume that the observed CO is the remnant of a larger primordial abundance in Titan's atmosphere. Instead, it is most likely that the oxygen bearing species in Titan's atmosphere are the result of external input, most likely Enceladus. At the time, only one measurement of H2O existed, from the Infrared Space Observation (ISO) [2], which was roughly consistent with our model, as shown in Figure 1. Two recent observations, from the Cassini Composite Infrared Spectrometer (CIRS) [3] and Herschel [4], indicate that our 2008 model over predicts the abundance of water in Titan's atmosphere by an order of magnitude and the model of Moreno et al. 2012 was unable to simultaneously reproduce the abundance of all 3 species. The new observations indicate that photochemical models may be missing chemical and/or physical processes. It is therefore time to revisit the photochemical model, now with stronger constraints on the stratospheric H2O abundance, including the behavior as a function of altitude in the stratosphere, to ensure that the new observations do not point to a fundamental flaw in our understanding of Titan's atmosphere. We will present results from our recently updated model of Titan's oxygen chemistry.

  5. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.

    PubMed

    Converse, Gabriel L; Conrad, Timothy L; Roeder, Ryan K

    2009-12-01

    The apparent mechanical properties of hydroxyapatite (HA) whisker reinforced polyetherketoneketone (PEKK) scaffolds were evaluated in unconfined, uniaxial compression to investigate the effects of the porosity (75%, 82.5% and 90%), HA content (0, 20 and 40 vol%) and mold temperature (350, 365 and 375 ( composite function)C). Increased porosity resulted in a non-linear decrease in the elastic modulus and yield strength for both reinforced and unreinforced PEKK scaffolds, as expected. The increase in elastic modulus and yield strength with increased relative density followed a power-law, similar to trabecular bone and other open-cell foams. HA whisker reinforcement generally resulted in an increased elastic modulus from 0 to 20 vol% HA and a subsequent decrease from 20 to 40 vol% HA, while the yield strength and strain were decreased in scaffolds with 40 vol% HA compared to those with 0 or 20 vol% HA. Increased mold temperature resulted in an increased elastic modulus, yield strength and yield strain. These effects enabled the mechanical properties to be tailored to mimic human trabecular bone. The elastic modulus was greater than 50 MPa, and the yield strength was greater than 0.5 MPa, for scaffolds with 75% porosity at all combinations of reinforcement level and mold temperature. Scaffolds with 75% porosity and 20 vol% HA molded at 375 ( composite function)C exhibited a mean elastic modulus and yield strength of 149 MPa and 2.2 MPa, respectively, which was the highest of the conditions investigated in this study and similar to human vertebral trabecular bone. Therefore, HA whisker reinforced PEKK scaffolds may be advantageous for permanent implant fixation, including interbody spinal fusion. PMID:19716108

  6. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  7. Penicillin V Potassium Oral

    MedlinePlus

    V-Cillin K® ... Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 ...

  8. MBE Growth of GaAs Whiskers on Si Nanowires

    SciTech Connect

    Maxwell Andrews, Aaron

    2010-01-04

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {l_brace}112{r_brace} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  9. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  10. An analysis of the wear behavior of SiC whisker reinforced alumina from 25 to 1200 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1991-01-01

    A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.

  11. An analysis of the wear behavior of SiC whisker-reinforced alumina from 25 to 1200 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1993-01-01

    A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.

  12. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  13. Potassium and Health123

    PubMed Central

    Weaver, Connie M.

    2013-01-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  14. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  15. Structure of Titan's evaporites

    NASA Astrophysics Data System (ADS)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  16. Large Particle Titanate Sorbents

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  17. Whisker Growth Behavior of Sn and Sn Alloy Lead-Free Finishes

    NASA Astrophysics Data System (ADS)

    Baated, Alongheng; Hamasaki, Kyoko; Kim, Sun Sik; Kim, Keun-Soo; Suganuma, Katsuaki

    2011-11-01

    Sn whisker growth behavior, over periods of time up to 10,080 h at room temperature, was examined for Sn and Sn-Cu, Sn-Ag, Sn-Bi, and Sn-Pb coatings electroplated on copper in 2 μm and 5 μm thicknesses to understand the effects of the alloying elements on whisker formation. Sn-Ag and Sn-Bi coatings were found to significantly suppress Sn whisker formation compared with the pure Sn coatings, whereas whisker growth was enhanced by Sn-Cu coatings. In addition, annealed Sn and Sn-Pb coatings were found to suppress Sn whisker formation, as is well known. Compared with the 2- μm-thick coatings, the 5- μm-thick coatings had high whisker resistance, except for the Sn-Cu coating. Whisker growth was correlated with coating crystal texture and its stability during storage, crystal grain microstructure, and the formation of intermetallic compounds at Sn grain boundaries and substrate-coating interfaces.

  18. Selection of head and whisker coordination strategies during goal-oriented active touch.

    PubMed

    Schroeder, Joseph B; Ritt, Jason T

    2016-04-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. PMID:26792880

  19. Long-term water-aging of whisker-reinforced polymer-matrix composites.

    PubMed

    Xu, H H K

    2003-01-01

    Long-term water exposure may degrade polymer-matrix composites. This study investigated the water-aging of whisker composites. It was hypothesized that whiskers would provide stable and substantial reinforcement, and that whisker type would affect water-aging resistance. Silica-fused Si(3)N(4) and SiC whiskers were incorporated into a resin. The specimens were tested by three-point flexure and nano-indentation vs. water-aging for 1 to 730 days. After 730 days, SiC composite had a strength (mean +/- SD; n = 6) of 185 +/- 33 MPa, similar to 146 +/- 44 MPa for Si(3)N(4) composite (p = 0.064); both were significantly higher than 67 +/- 23 MPa for an inlay/onlay control (p < 0.001). Compared with 1 day, the strength of the SiC composite showed no decrease, while that of the Si(3)N(4) composite decreased. The decrease was due to whisker weakening rather than to resin degradation or interface breakdown. Whisker composites also had higher moduli than the controls. In conclusion, silica-fused whiskers bonded to polymer matrix and resisted long-term water attack, resulting in much stronger composites than the controls after water-aging. PMID:12508045

  20. Creep behavior in SiC whisker-reinforced alumina composite

    SciTech Connect

    Lin, H.T.; Becher, P.F.

    1994-10-01

    Grain boundary sliding (often accompanied by cavitation) is a major contributor to compressive and tensile creep deformation in fine-grained aluminas, both with and without whisker-reinforcement. Studies indicate that the creep response of alumina composites reinforced with SiC whiskers can be tailored by controlling the composite microstructure and composition. The addition of SiC whiskers (< 30 vol%) significantly increases the creep resistance of fine-grained (1--2 {mu}m) alumina in air at temperatures of 1,200 and 1,300 C. However, at higher whisker contents (30 and 50 vol%), the creep resistance is degraded due to enhanced surface oxidation reactions accompanied by extensive creep cavitation. Densification aids (i.e., Y{sub 2}O{sub 3}), which facilitate silica glass formation and thus liquid phase densification of the composites, can also result in degradation of creep resistance. On the other hand, increasing the matrix grain size or decreasing the whisker aspect ratio (increased whisker number density) results in raising the creep resistance of the composites. These observations not only explain the variability in the creep response of various SiC whisker-reinforced alumina composites but also indicate factors that can be used to enhance the elevated temperature performance.

  1. Structure of a Single Whisker Representation in Layer 2 of Mouse Somatosensory Cortex

    PubMed Central

    Clancy, Kelly B.; Schnepel, Philipp; Rao, Antara T.

    2015-01-01

    Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2. PMID:25740523

  2. The induced magnetosphere of Titan

    NASA Astrophysics Data System (ADS)

    Ness, N. F.; Acuna, M. H.; Behannon, K. W.

    1982-03-01

    No evidence was found for an intrinsic magnetic field, nor for the development of a bow shock wave, as the corotating Saturnian magnetoplasma convected past Titan during the Voyager 1 close encounter of November 12, 1980. The observation of a well-developed, induced bipolar magnetic tail is evidence, however, of a strong electrodynamic interaction. Three thin, current-carrying regions were crossed which correspond to the inbound and outbound tail magnetopause and an imbedded tail neutral sheet. The interaction is unique among those observed to date in the solar system, in that it is intermediate with respect to sonic and Alfvenic Mach numbers by comparison with Titan in the solar wind and Io in the Jovian magnetosphere. The draping of the Saturnian magnetic field around the ionosphere of Titan is suggested by results of the analysis of magnetic field data.

  3. The cerebellum linearly encodes whisker position during voluntary movement

    PubMed Central

    Chen, Susu; Augustine, George J; Chadderton, Paul

    2016-01-01

    Active whisking is an important model sensorimotor behavior, but the function of the cerebellum in the rodent whisker system is unknown. We have made patch clamp recordings from Purkinje cells in vivo to identify whether cerebellar output encodes kinematic features of whisking including the phase and set point. We show that Purkinje cell spiking activity changes strongly during whisking bouts. On average, the changes in simple spike rate coincide with or slightly precede movement, indicating that the synaptic drive responsible for these changes is predominantly of efferent (motor) rather than re-afferent (sensory) origin. Remarkably, on-going changes in simple spike rate provide an accurate linear read-out of whisker set point. Thus, despite receiving several hundred thousand discrete synaptic inputs across a non-linear dendritic tree, Purkinje cells integrate parallel fiber input to generate precise information about whisking kinematics through linear changes in firing rate. DOI: http://dx.doi.org/10.7554/eLife.10509.001 PMID:26780828

  4. Mechanism and Prevention of Spontaneous Tin Whisker Growth

    SciTech Connect

    Tu, King-Ning; Suh, Jong-ook; Wu, Albert Tzu-Chia; Tamura,Nobumichi; Tung, Chih-Hang

    2005-05-05

    Spontaneous Sn whisker growth on Cu leadframe finished withPb-free solder is a serious reliability problem in electrical andelectronic devices. Recently, Fortune magazine had an article to describethe urgency of the problem. The spontaneous growth is an irreversibleprocess, in which there are two atomic fluxes driven by two kinds ofdriving force. There are a flux of Cu atoms and a flux of Sn atoms. TheCu atoms diffuse from the leadframe into the solder finish driven bychemical potential gradient to form intermetallic compound of Cu6Sn5 inthe grain boundaries of the solder, and the growth of the compound atroom temperature generates a compressive stress in the solder. To relievethe stress, a flux of Snatoms driven by the stress gradient diffuses awayto grow a spontaneous Sn whisker which is stress-free. The typicalindustry solution is to inserta diffusion barrier of Ni between the Cuand solder to prevent the diffusion of Cu into the solder. It isinsufficient, because we have to uncouplethe irreversible processes andstop both the fluxes of Cu and Sn. A solution is presentedhere.

  5. Structural ceramics incorporating whiskers, platelets, and particulate phases

    SciTech Connect

    Becher, P.F.; Hsueh, C.H.; Alexander, K.B.; Lin, H.T.; Warwick, W.H.; Westmoreland, C.G.; Waters, S.B.

    1995-02-01

    Advances in the development of ceramics toughened with whiskers, particles or platelets are reviewed with emphasis on the development of both fracture strength and toughness. In the systems described here, the primary focus is on toughening attained by crack bridging processes (e.g., frictional bridging and pullout) in the wake of the crack tip. Examples of the influence of resultant improvements in other mechanical properties (e.g., strength, fatigue, and thermal shock resistance) are also given for whisker-reinforced aluminas. It is shown that similar increases in fracture toughness may also be brought about by the incorporation of platelet phases in ceramics, either by their addition or by their formation during densification. In addition, the development of ceramic matrix composites containing transformable tetragonal zirconia grains is discussed. Here, it is shown that both the zirconia grain size and content, combined with thermal expansion mismatch stresses, influence the transformability of the zirconia and the resultant transformation toughening effects. Examples reveal that by addressing the microstructural characteristics, as well as the reinforcement and matrix properties, high strength toughened ceramics with exceptional damage resistance can be developed.

  6. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  7. Whisker weaving: Invalid connectivity resolution and primal construction algorithm

    SciTech Connect

    Tautgas, T.J.; Mitchell, S.A.

    1995-11-01

    This paper describes the techniques used to resolve invalid connectivity created as a natural part of the whisker weaving algorithm. These techniques rely on the detection of {open_quotes}repeated hexes{close_quotes} in the STC data, which indicate face pairs which share two edges. The {open_quotes}repeated hex{close_quotes} case is described in detail, including the resolution technique by which a self-intersecting whisker sheet with two independent face loops are created. The algorithm used to construct the primal of an all-hexahedral mesh (i.e. the actual nodes and hex elements) from the connectivity data contained in the STC is also described. The primal is constructed using a {open_quotes}gift-wrapping{close_quotes} algorithm, where all the mesh edges and hexes containing a particular node are found by traversing between hexes already known to share the node. This algorithm is implemented inside the CUBIT code and is used to generate meshes for several example problems.

  8. Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    PubMed Central

    Mitchinson, Ben; Prescott, Tony J.

    2013-01-01

    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention. PMID:24086120

  9. Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Jadhav, Nitin; Pei, Fei; Buchovecky, Eric; Bower, Allan

    2013-05-01

    Sn whiskers are thin filaments that grow spontaneously out of the surface of coatings on Cu and have become a critical reliability problem in Pb-free electronics. In this review, we focus on what creates the driving force for whiskers (or more rounded “hillocks”), and what determines where on the surface they will form. Experimental studies are reviewed that quantify the relationship between the Cu-Sn intermetallic (IMC) formation, stress in the layer and whisker/hillock density. Measurements of the mechanical properties show how stress relaxation in the Sn layer is intimately related to how much stress develops due to the IMC formation. Real-time scanning electron microscope (SEM)/focused ion beam (FIB) studies are described that illustrate the whisker/hillock growth process in detail. Whiskers are found to grow out of a single grain on the surface with little lateral growth while hillock growth is accompanied by extensive grain growth and crystallite rotation. Electron-backscattering detection (EBSD) shows the grain structure around where the whiskers/hillocks form, indicating that whiskers can grow out of pre-existing grains and do not require the nucleation of new grains. This has led to a picture in which stress builds up due to IMC growth and causes whiskers/hillocks to form at “weak grains”, i.e., grains that have a stress relaxation mechanism that becomes active at a lower stress than its neighbors. FEA (finite element analysis) calculations are used to simulate the evolving stress and whisker growth for several different mechanisms that may lead to “weak” grains.

  10. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    SciTech Connect

    Feng, Pei; Wei, Pingpin; Li, Pengjian; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-11-15

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  11. Toxicity in vitro of some silicon carbides and silicon nitrides: whiskers and powders.

    PubMed

    Svensson, I; Artursson, E; Leanderson, P; Berglind, R; Lindgren, F

    1997-03-01

    The objectives of this work were to investigate the toxicity of silicon carbide whiskers and powders and silicon nitride whiskers and powders and to compare their toxicity with the toxicity of crocidolite. The effects studied were inhibition of the cloning efficiency of V79 cells, formation of DNA strand breaks by means of a nick translation assay, formation of oxygen radicals in three different assays, and the ability to stimulate neutrophils to produce hydroxyl radicals. All materials showed concentration-dependent inhibition of the cloning efficiency of V79 cells. The inhibition by the most toxic whiskers was in the same order of magnitude as that of crocidolite. Milled whiskers and powders were less toxic than the whiskers. There was a high DNA breaking potential for crocidolite and four of the silicon carbide whiskers and a rather low one for the other materials. Formation of hydroxyl radicals was found for crocidolite and one of the silicon carbide whiskers. In the neutrophil activation test, there was a great variation in the different materials' abilities to activate neutrophils. There was also a good correlation between chemiluminescence and H2O2 formation. The highest activation was found in neutrophils exposed to two of the silicon carbide whiskers and one milled whisker. The conclusion of the investigation is that some of the ceramic materials studied had damaging biological effects comparable to or greater than those of crocidolite. The results from the investigation clearly imply that caution is needed in the introduction of new ceramic fiber materials, so that the correct precautions and protective devices are used in order to avoid harm to the personnel handling the material. PMID:9055957

  12. Recrystallization as a Growth Mechanism for Whiskers on Plastically Deformed Sn Films

    NASA Astrophysics Data System (ADS)

    Chang, Jaewon; Kang, Sung K.; Lee, Jae-Ho; Kim, Keun-Soo; Lee, Hyuck Mo

    2015-10-01

    Sn whiskers are becoming a serious reliability issue in Pb-free electronic packaging applications. Sn whiskers are also observed in connector parts of electronics as well as on electroplated surface finishes. Sn whiskers found in connector parts are known to behave differently from the typical Sn whiskers reported on electroplated Sn surfaces. In this study, Sn whiskers on plastically deformed Sn-rich films were investigated to understand their growth behavior to establish mitigation strategies for Sn-rich films used in connectors. Therefore, a microhardness indentation technique was applied to plastically deform electroplated matte Sn samples, followed by temperature/humidity (T/H) testing (30°C, dry air). Each sample was examined by scanning electron microscopy at regular time intervals up to 4000 h. Various morphologies of Sn whiskers on plastically deformed matte Sn films were observed, and their growth statistics and kinetics are analyzed in terms of the plating conditions and plastic deformation by using transmission electron microscopy, x-ray diffraction, and the focused ion-beam technique. Sn whiskers were observed on plastically deformed regions of thin (2- μm) and thick (10- μm) matte Sn films, regardless of the current density applied. Plastic deformation was found to promote whisker formation on matte Sn films. A high density of dislocations and newly formed fine Sn subgrains were observed in deformed grains. In addition, the recrystallized grains and Cu6Sn5 intermetallic compound grew further with increasing time. Finally, a growth mechanism for deformation-induced Sn whiskers is proposed based on a recrystallization model combined with the formation of Cu6Sn5.

  13. Diurnal variations of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  14. Ion cyclotron waves at Titan

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  15. Elevated temperature mechanical behavior of monolithic and SiC whisker-reinforced silicon nitrides

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Choi, Sung R.; Sanders, William A.; Fox, Dennis S.

    1991-01-01

    The mechanical behavior of a 30 volume percent SiC whisker reinforced silicon nitride and a similar monolithic silicon nitride were measured at several temperatures. Measurements included strength, fracture toughness, crack growth resistance, dynamic fatigue susceptibility, post oxidation strength, and creep rate. Strength controlling defects were determined with fractographic analysis. The addition of SiC whiskers to silicon nitride did not substantially improve the strength, fracture toughness, or crack growth resistance. However, the fatigue resistance, post oxidation strength, and creep resistance were diminished by the whisker addition.

  16. Effect of Crystal Orientation on Mechanically Induced Sn Whiskers on Sn-Cu Plating

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yukiko; Murakami, Yosuke; Tomiya, Shigetaka; Asai, Tadashi; Kiga, Tomoya; Suganuma, Katsuaki

    2012-07-01

    Mechanically induced Sn whiskers formed on Sn-2%Cu plated on Cu with Ni underplating were examined by scanning electron microscopy and electron backscatter diffraction. The results revealed that Sn grains became larger under mechanical stress due to recrystallization and/or grain growth. The notable feature was formation of many twin interfaces. Most twin boundaries were {301}, and there were approximately 20 times more {301} twin boundaries compared with the as-deposited plating. The analysis clearly revealed that many whiskers nucleated from newly formed {301} twinned grains, which formed on columnar grains. Thus, twin formation plays a critical role in mechanically induced formation of whiskers.

  17. Suppressing tin whisker growth in lead-free solders and platings

    DOEpatents

    Hoffman, Elizabeth N; Lam, Poh-Sang

    2014-04-29

    A process of irradiation Sn containing Pb-free solder to mitigate whisker formation and growth thereon is provided. The use of gamma radiation such as cobalt-60 has been applied to a substrate of Sn on copper has been found to change the morphology of the crystalline whisker growth to a more truncated hillock pattern. The change in morphology greatly reduces the tendency of whiskers to contribute to electrical short-circuits being used as a Pb-free solder system on a copper substrate.

  18. Titan and Enceladus mission (TANDEM)

    NASA Astrophysics Data System (ADS)

    Coustenis, A.

    2007-08-01

    Our understanding of Titan's atmosphere and surface has recently been enhanced by the data returned by the Cassini-Huygens mission. The Cassini orbiter will continue to be operational for about 3 more years during its extended mission. After this mission, any unanswered questions will forever remain unknown, unless we go back with an optimized orbital tour and advanced instrumentation. Considering the complementary nature of the geological, chemical and evolutionary history of Titan and Enceladus, we propose to carry out studies for a mission to perform an in situ exploration of these two objects in tandem. In our proposal we determine key science measurements, the types of samples that would be needed and the instrument suites for achieving the science goals. In particular, we develop conceptual designs for delivering the science payload, including orbiters, aerial platforms and probes, and define a launch/delivery/communication management architecture. This mission will require new technologies and capabilities so that the science goals can be achieved within the cost cap and acceptable risks. International participation will play a key role in achieving all the science goals of this mission. We will build this mission concept around a central core of single orbiter, a single Titan aerial probe and a core group of category 1 instruments. Aerobraking with Titan's atmosphere will be given serious consideration to minimize resource requirements and risk. This approach will allow a single orbiter to be used for both Enceladus science and Titan science with final orbit around Titan and later release of aerial probe(s) into Titan's atmosphere. The Titan aerial probe may be a Montgolfière balloon concept that will use the waster heat ~ 1000 watts from a single RTG power system. There will be a release of penetrator(s) on Enceladus also. This proposal addresses directly several of the scientific questions highlighted in the ESA Cosmic Vision 2015-2025 call, particularly

  19. Will Titan lose its veil?

    NASA Astrophysics Data System (ADS)

    Dimitrov, V.

    2007-08-01

    Methane CH4 is the only highly reactive and short-lived background component in Titan's atmosphere, so its overall reserve predetermines both features and duration of atmospheric chemical activity. Titan's global chemical activity is considered in terms of methane cycle. One cycle is defined as a period T0=7.0.1014s of complete photochemical destruction of methane's observable atmospheric content CH04 = 2.33.1017 kg. Cycle duration T0, number of the past NP =200±20, future NF =500±50 and total Nmax=NP+NF =700±70 cycles are the main quantitative indices of the global chemical activity [2]. The fact that the period T0 is much less than Titan's lifetime TT =1.42*1017s implies that the current content CH04 is continuously replenishing by methane global circulation. There are two sources of this replenishment, i.e. the outgassing of primordial methane reserve trapped in Titan's interior as the clathrate, and the (sub)ground liquidphase reduction of non-saturated final products of the atmospheric photochemical process. Internal reserve provides the dominant portion (>95%) of general recycling, while reducing reconversion is the minor constituent of the global balance. Yet, there is the problem of the availability of the off-the-shelf trapped methane. Overall admissible stock of the trapped methane depends on its internal allocation and falls in the range (CH4)max1,2=(15.3÷33.3).1020 kg, while continuous atmospheric activity during the whole Titan's life TSun 5.0.1017s needs only (CH4)crit=(CH04 ).Nmax = .(CH4)max 1.65.1020 kg. In turn, this bulk (CH4)crit depends on the clathrate cage-filling efficiency (molecular packing index) {kg CH4/kg clathrate} and can be provided if equals respectively to [1] crit1= (TSun/T0).[(CH4)0/[(CH4)max1] = 5.45.10-3 crit2= (TSun/T0).[(CH4)0/[(CH4)max2] = 2.51.10-3 Thus, the interrelation of overall trapped stock (CH4)max and crucial -values assigns the critical value (CH4)crit that in turn predetermines the very fate of Titan's veil

  20. The Titan Saturn System Mission

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.

    2008-12-01

    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  1. Effects of local film properties on the nucleation and growth of tin whiskers and hillocks

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin

    Whiskers and hillocks grow spontaneously on Pb-free Sn electrodeposited films as a response to thin film stresses. Stress relaxation occurs by atom deposition to specific grain boundaries in the plane of the film, with hillocks being formed when grain boundary migration accompanies growth out of the plane of the film. The implication for whisker formation in electronics is serious: whiskers can grow to be millimeters long, sometimes causing short circuiting between adjacent components and, thereby, posing serious electrical reliability risks. In order to develop more effective whisker mitigation strategies, a predictive physics-based model has been needed. A growth model is developed, based on grain boundary faceting, localized Coble creep, as well as grain boundary sliding for whiskers, and grain boundary sliding with shear induced grain boundary migration for hillocks. In this model of whisker formation, two mechanisms are important: accretion of atoms by Coble creep on grain boundary planes normal to the growth direction inducing a grain boundary shear and grain boundary sliding in the direction of whisker growth. The model accurately captures the importance of the geometry of "surface grains"---shallow grains on film surfaces whose depths are significantly less than their in-plane grain sizes. A critical factor in the analysis is the ratio of the grain boundary sliding coefficient to the in-plane film compressive stress. If the accretion-induced shear stresses are not coupled to grain boundary motion and sliding occurs, a whisker forms. If the shear stress is coupled to grain boundary migration, a hillock forms. Based on this model, long whiskers grow from shallow surface grains with easy grain boundary sliding in the direction of growth. Other observed growth morphologies will be discussed in light of our model. Additional insights into the preferred sites for whisker and hillock growth were developed based on elastic anisotropy, local film microstructure

  2. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J.; Johnson, Nicholas J.; Towal, R. Blythe; Assad, Christopher

    2003-01-01

    We investigated the natural resonance properties and damping characteristics of rat macrovibrissae (whiskers). Isolated whiskers rigidly fixed at the base showed first-mode resonance peaks between 27 and 260 Hz, principally depending on whisker length. These experimentally measured resonant frequencies were matched using a theoretical model of the whisker as a conical cantilever beam, with Young's modulus as the only free parameter. The best estimate for Young's modulus was approximately 3-4 GPa. Results of both vibration and impulse experiments showed that the whiskers are strongly damped, with damping ratios between 0.11 and 0.17. In the behaving animal, whiskers that deflected past an object were observed to resonate but were damped significantly more than isolated whiskers. The time course of damping varied depending on the individual whisker and the phase of the whisking cycle, which suggests that the rat may modulate biomechanical parameters that affect damping. No resonances were observed for whiskers that did not contact the object or during free whisking in air. Finally, whiskers on the same side of the face were sometimes observed to move in opposite directions over the full duration of a whisk. We discuss the potential roles of resonance during natural exploratory behavior and specifically suggest that resonant oscillations may be important in the rat's tactile detection of object boundaries.

  3. What is Potassium?

    MedlinePlus

    ... carrots and beans. It's also found in dairy foods, meat, poultry, fish and nuts. Reach your recommended daily intake of potassium by frequently adding these foods to your daily menu: 1 cup cooked spinach: ...

  4. Potassium hydroxide poisoning

    MedlinePlus

    Symptoms from swallowing potassium hydroxide include: Abdominal pain - severe Burns in the mouth and throat Chest pain Collapse Diarrhea Drooling Mouth pain - severe Rapid drop in blood pressure (shock) Throat pain - severe Throat ...

  5. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  6. Possible temperate lakes on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Rodriguez, Sébastien; Le Mouélic, Stéphane; Sotin, Christophe; MacKenzie, Shannon; Wilson, Paul

    2015-09-01

    We analyze southern mid-latitude albedo-dark features on Titan observed by Cassini's Visual and Infrared Mapping Spectrometer (VIMS). In exploring the nature of these features we consider their morphology, albedo, and specular reflectivity. We suggest that they represent candidates for potential temperate lakes. The presence of lakes at the mid-latitudes would indicate that surface liquid can accumulate and remain stable away from Titan's poles. Candidate lakes were identified by looking for possible shorelines with lacustrine morphology. Then, we applied an atmospheric correction that empirically solved for their surface albedo. Finally, we looked for a specular reflection of the sky in the identified candidates. Using this prescription, we find two candidates that remain as potential temperature lakes. If candidate features do represent temperate lakes on Titan, they have implications for formation mechanisms such as clouds and rainfall or, in low elevation areas, percolation and subsurface flow. Clouds were observed near candidate lake locations on the T66 flyby and this latitude band showed many clouds during southern summer. Our techniques can be applied to areas of Titan that lack RADAR coverage to search for mid- and low-latitude lakes in the future.

  7. The organic aerosols of Titan

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.; Nagy, B.

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from x-ray to microwave frequencies. Values of n (⋍1.65) and k (⋍0.004 to 0.08) in the visible are consistent with deductions made by ground-based and spaceborne observations of Titan. Many infrared absorption features are present in k(λ), including the 4.6 μm nitrile band. Molecular analysis of the volatile component of this tholin was performed by sequential and non-sequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition, acid hydrolysis produces a racemic mixture of biological and non-biological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  8. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  9. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Calcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1986-01-01

    A dark reddish organic solid, called tholin, is synthesized from simulated Titanian atmospheres by irradiation with high energy electrons in a plasma discharge. The visible reflection spectrum of this tholin is found to be similar to that of high altitude aerosols responsible for the albedo and reddish color of Titan. The real (n) and imaginary (k) parts of the complex refractive index of thin films of Titan prepared by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb is determined from X-ray to microwave frequencies. Values of n (approx. 1.65) and k (approx. 0.004 to 0.08) in the visible are consistent with deductions made by groundbased and spaceborne observations of Titan. Many infrared absorption features are present in k(lambda), including the 4.6 micrometer nitrile band. Molecular analysis of the volatile components of this tholin was performed by sequential and nonsequential pyrolytic gas chromatography/mass spectrometry. More than one hundred organic compounds are released; tentative identifications include saturated and unsaturated aliphatic hydrocarbons, substituted polycylic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. In addition,acid hydrolysis produces a racemic mixture of biological and nonbiological amino acids. Many of these molecules are implicated in the origin of life on Earth, suggesting Titan as a contemporary laboratory environment for prebiological organic chemistry on a planetary scale.

  10. Measuring the Stress Dependence of Nucleation and Growth Processes in Sn Whisker Formation

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Pei, Fei

    2015-08-01

    Sn whiskers/hillocks are believed to form due to stress in the layers, but the dependence on the stress has been difficult to quantify. We therefore used the thermal expansion mismatch between Sn thin films and Si substrates to induce controlled stress by heating. This enables us to measure the average stress in the layer (using wafer curvature) at the same time as we monitor the nucleation rate (using optical microscopy). Scanning electron microscopy of the surface after intervals of heating is also used to quantify the whisker volume as a function of stress and time. The results allow us to determine the dependence of the whisker nucleation rate and the growth rate on the applied stress. They also show that whisker formation is not the dominant mode of plastic strain relaxation in the Sn layer.

  11. Mitigation of Sn Whisker Growth by Composite Ni/Sn Plating

    NASA Astrophysics Data System (ADS)

    Dimitrovska, Aleksandra; Kovacevic, Radovan

    2009-12-01

    This paper considers the influence of composite pulse electroplated nickel/tin (Ni/Sn) layering on the mitigation of Sn whisker growth. The performance of the composite pulsed plating method in the mitigation of Sn whisker growth is also compared with two other plating procedures. The results indicate that, after a period of 6 months, the composite pulsed plating technique demonstrates much better resistance to Sn whisker growth than other plating techniques such as pure Sn plating and Sn plating with a Ni underlayer onto a brass substrate subjected to various environmental conditions. The primary conclusions are based on the analysis of microstructural characteristics, the average residual stress distribution in the film over different time periods computed by x-ray diffraction, the formation of intermetallic compounds, and the amount of Sn whisker growth in each case.

  12. Substrate Shape Effect on the Sn Whisker Growth in the Electroplating Matte Sn System

    NASA Astrophysics Data System (ADS)

    Yen, Yee-Wen; Li, Chao-Kang; Tsou, Meng-Yu; Shao, Pei-Sheng

    2011-01-01

    In this study, the substrate shape effect on the Cu substrates for Sn whisker growth has been investigated. A Cu foil, as a substrate, was bent to 90° by a universal testing machine. The matte Sn layers were electroplated on the Cu substrate under various current densities. Then, the samples were given heat treatment under various temperatures for 250 h. The results indicate that Sn whisker growth was promoted by the compression stress on the concave side and was restrained by the tension stress on the convex side. The increase of plating thickness in electroplating process offered the extensive residual stress to mitigate the Sn whisker growth. Increasing the aging temperatures also enhanced the thickness of the oxide layer. Thick oxide layers can prevent Sn whisker growth.

  13. Quantifying the Rates of Sn Whisker Growth and Plastic Strain Relaxation Using Thermally-Induced Stress

    NASA Astrophysics Data System (ADS)

    Pei, Fei; Bower, Allan F.; Chason, Eric

    2016-01-01

    Whiskers and hillocks that grow out of Sn-based coatings are a critical reliability issue in Pb-free electronics. Although their growth is widely regarded as a stress-relaxation mechanism, quantitative understanding of the relationship between the stress, growth kinetics, and strain relaxation is still lacking. In this work, the well-controlled strain induced by thermal-expansion mismatch was used to study the whiskering behavior of electroplated Sn films. Stress was quantified by monitoring wafer-curvature and the density of whiskers and hillocks was measured simultaneously by use of optical microscopy. Evolution of the volume of individual features was also measured by scanning electron microscopy after different periods of heating. The measurements were used to develop a model for temperature-dependent and stress-dependent growth kinetics of whiskers and hillocks and to determine the amount of strain relaxation which occurs as a result of their formation.

  14. Conditioned lick behavior and evoked responses using whisker twitches in head restrained rats.

    PubMed

    Topchiy, Irina A; Wood, Rachael M; Peterson, Breeanne; Navas, Jinna A; Rojas, Manuel J; Rector, David M

    2009-01-30

    To examine whisker barrel evoked response potentials in chronically implanted rats during behavioral learning with very fast response times, rats must be calm while immobilized with their head restrained. We quantified their behaviors during training with an ethogram and measured each individual animals' progress over the training period. Once calm under restraint, rats were conditioned to differentiate between a reward and control whisker twitch, then provide a lick response when presented with the correct stimulus, rewarded by a drop of water. Rats produced the correct licking response (after reward whisker twitch), and learned not to lick after a control whisker was twitched. By implementing a high-density 64-channel electrocorticogram (ECoG) electrode array, we mapped the barrel field of the somatosensory cortex with high spatial and temporal resolution during conditioned lick behaviors. In agreement with previous reports, we observe a larger evoked response after training, probably related to mechanisms of cortical plasticity. PMID:18718491

  15. Synthesis of Mg2B2O5 whiskers via coprecipitation and sintering process

    NASA Astrophysics Data System (ADS)

    Zhu, Dong-hai; Nai, Xue-ying; Zhu, Cheng-cai; Guo, Feng-qin; Bian, Shao-ju; Li, Wu

    2012-10-01

    Mg2B2O5 whiskers with high aspect ratio were synthesized by coprecipitation and sintering process using MgCl2·6H2O, H3BO3, and NaOH as raw materials and KCl as a flux. Their formation process was investigated by thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microcopy (SEM). It is found that the products synthesized at 832°C are monoclinic Mg2B2O5 whiskers with a diameter of 200-400 nm and a length of 50-80 μm. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analyses show that the whiskers obtained at 832°C are single crystalline and grow along with the [010] direction. The growth mechanism of Mg2B2O5 whiskers was also presented.

  16. Preparation of integrated multifunction Pb3B10O16[OH]4 whisker by solvothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Qing; Zhang, Quan-Ping; Zheng, Jian; Zhou, Dong; Li, Yin-Tao; Zhou, Yuan-Lin

    2016-03-01

    Elaborate design of multifunction materials is of great scientific and technological significance; but it is a great challenge. Here, a lead borate is successfully prepared via a facile solvothermal method. The results of XRD, SEM and TEM show the product is a kind of whiskers with uniform structure and high length-diameter ratio, which is represented as Pb3B10O16[OH]4. The whisker is capable of attenuating both γ-rays and neutrons and shows a little difference with that of the equal molar mass of Pb and B in mixture. In addition, the whisker displays good photoluminescence properties, especially for luminescent intensity. These significant results indicate an integrated multifunction whisker that will stimulate new application research.

  17. Process to produce titanium diboride whiskers as reinforcement for metal and ceramic composites

    SciTech Connect

    Withers, J.C.; Loutfy, R.O.; Lee, C.T.

    1988-10-01

    The objective of the Phase I program was to establish the feasibility of producing TiB2 whiskers. Two approaches were investigated. High temperature carbothermic reduction of titanium and boron compounds produced TiB2 platelets, and using excess B to limit the growth on the basal plane, platelets with thickness of 1.5 microns and 10 microns length and width were produced. The dimensions are ideal for reinforcing metal and intermetallics. Vapor-solid (VS) and Vapor-Liquid-Solid (VLS) TiB2 whiskers were produced via the low temperature hydrogen reduction of TiCl4 and BCl3, using Au and/or Au/Pd catalyst over a wide temperature range. VS whiskers with a diameter of 1.5 - 3.0 microns and aspect ratio of 20-40 were produced at temperatures between 1050 C and 1250 C. The whiskers are ideal for metal and intermetallic reinforcement.

  18. Titan's Polar Atmosphere

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Achterberg, R. K.; Schinder, P. J.

    2015-12-01

    Cassini CIRS and Radio-Occultation measurements obtained in 2004-2015 have tracked the evolution of temperatures and winds in Titan's polar atmosphere, as the winter season shifted from the northern hemisphere to the southern. The dissolution of the strong circumpolar vortex initially seen in the northern hemisphere has been gradual. There is no evidence of the rapid distortion and disruption forced by planetary waves that can occur on Earth. Indeed, neither Cassini experiment has identified any thermal signature attributable to planetary-scale waves. The south-polar region has turned wintry fairly abruptly: temperature and zonal wind maps from CIRS data show that the 1-mbar temperatures at high southern latitudes in late autumn are already much colder than those at the corresponding latitudes in the north in midwinter, when the first extensive polar measurements were obtained. The south-polar region now has a strong circumpolar vortex, with maximum stratospheric winds occurring near 60° S, in contrast to the northern hemisphere in winter, where the polar vortex was much broader, extending to 20°-30° N. Potential vorticity maps now indicate steep meridional gradients at high southern latitudes, implying a barrier to efficient mixing between the polar region and lower latitudes. Radio-occultations have higher vertical resolution than CIRS, and they have recently probed latitudes as high as 65° in both hemispheres (latitudes closer to the pole are precluded because of the geometry of Earth occultations and the season). Above 80 km at these latitudes, where the radiative damping times are small enough that temperatures have large seasonal variations, the stratosphere in the north has warmed, and it has become much colder in the south. The abrupt transition region with negative vertical temperature gradient between 80 and 100 km, which was seen at high northern latitudes in winter, has weakened, but it is still visible. In the south, one can see the early stage of

  19. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  20. Nitrogen compounds in Titan's stratosphere

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Cirs Investigation Team

    Titan's atmosphere is essentially composed of molecular nitrogen (N2). The chemistry between the two mother molecules (N2 and CH4) leads to the formation of a certain number of nitriles observed in Titan's stratosphere as early as at the time of the Voyager 1 encounter in 1980. In the spectra taken by the Infrared Radiometer Interferometer Spectrometer (IRIS) the signatures of HCN, HC3N, C2N2 and C4N2 (in solid form) were found and reported. Subsequent observations from the ground better described the vertical profiles of these constituents and allowed for the detection of CH3CN (acetonitrile) in the mm range [3,4]. Recent data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys (October 2004 - June 2006) give a handle on the temporal and latitudinal variations of these constituents. The nadir spectra characterize various regions on Titan from 85°S to 75°N with a variety of emission angles. We study the emission observed in the mid-infrared CIRS detector arrays (covering roughly the 600-1500 cm-1 spectral range with apodized resolutions of 2.54 or 0.53 cm-1 ). The composite spectrum shows several molecular signatures of nitriles. Information is retrieved on the meridional variations of the trace constituents and tied to predictions by dynamical-photochemical models [1,2,5]. The nitriles show a significant enhancement at high northern latitudes albeit not as marked as at the time of the Voyager encounter. We will give a review of our current understanding of the minor nitrile chemistry on Titan. References : [1] Coustenis et al., 2006. Icarus, in press. [2] Flasar et al., 2005. Science 308, 975. [3] Marten, A., et al., 2002, Icarus, 158, 532-544. [4] Marten, A. & Moreno, R., 2003. 35th Annual DPS Meeting, Monterey, Ca, BAAS, 35, 952. [5] Teanby et al., 2006. Icarus, 181, 243-255.

  1. Dunes reveal Titan's recent history

    NASA Astrophysics Data System (ADS)

    Savage, Christopher J.; Radebaugh, Jani

    2010-04-01

    Large fields of linear dunes are abundant on Titan, covering nearly 20% of the surface. They are among the youngest features and represent interactions between near-surface winds and sediment. This interaction may vary from area to area creating unique populations of eolian features identified by dune field parameters such as crest-to-crest spacing, dune width and orientation. These parameters respond to changes in near-surface conditions over periods of time ranging from minutes to many thousands of years depending on dune size and the duration of the changes. While pattern analysis of dune field parameters on Earth and, in this study, Titan reveals much about current climatic conditions, such as wind regimes and wetter vs. drier areas, many inferences about past conditions can also be made. Initial pattern analysis of linear dunes on Titan reveals a single population of linear dunes representing a large percentage of all observed dunes. This single population is the result of two leading possibilities: Either there has been only one long period of dune building, leading to very old cores that have been built upon over long periods of time, perhaps punctuated with few or many intervals of non-deposition; or the current conditions of dune building have persisted long enough to completely erase any evidence of previous conditions. We have not yet worked through all the input parameters to adjust Earth's time scales to Titan's, and thus it is not yet possible to give a precise age for Titan's dunes. However, if these large linear dunes are similar to Earth's large linear dunes, they may represent at least several thousand years of dune building.

  2. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    PubMed Central

    Ginter, Carly C.; DeWitt, Thomas J.; Fish, Frank E.; Marshall, Christopher D.

    2012-01-01

    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in

  3. An Investigation into Zinc Diffusion and Tin Whisker Growth for Electroplated Tin Deposits on Brass

    NASA Astrophysics Data System (ADS)

    Ashworth, Mark A.; Wilcox, Geoffrey D.; Higginson, Rebecca L.; Heath, Richard J.; Liu, Changqing

    2014-04-01

    It is widely documented that whisker growth is more rapid for tin deposits on brass compared with deposits produced on other substrate materials, such as copper. As a result, studies investigating the effect of process variables on tin whisker formation are often conducted on brass substrates to take advantage of the increased whisker growth rates. Although it has been understood since the 1960s that the increased whisker growth results from zinc diffusion, to date there has not been any detailed analysis of the zinc/zinc oxide distribution at the surface of the tin deposit. Using a commercial bright tin electroplating bath, the formation of zinc oxide at the surface of tin deposits on brass has been investigated. Analyses show that zinc oxide is present on the surface of the deposit within 1 day of electroplating. During storage at room temperature, a network of zinc oxide is formed at the surface grain boundaries, the extent of which increases with time. The critical role that zinc surface diffusion plays in whisker growth for tin deposits on brass has been demonstrated by electrochemical oxidation of the tin shortly after electroplating. This develops a tin oxide film that is thicker than the native air-formed oxide and subsequently serves as a diffusion barrier to zinc surface diffusion, thereby mitigating whisker growth.

  4. Influence of Indium Addition on Whisker Mitigation in Electroplated Tin Coatings on Copper Substrates

    NASA Astrophysics Data System (ADS)

    Meinshausen, L.; Bhassyvasantha, S.; Majumdar, B. S.; Dutta, I.

    2016-01-01

    Among many factors that influence whisker nucleation and growth in electroplated tin, it is now well established that small additions of Pb leads to whisker mitigation. To date, a good non-toxic elemental alternative to Pb that would mitigate whiskers remains elusive. In this work, a 50-100 nm In electroplated layer was incorporated into a 1- μm-thick electroplated Sn on a pure Cu substrate. In order to permit diffusion of In into Sn, heat treatments (HTs) between 125°C and 160°C were performed. The diffusion profile of In was altered by varying the dwell times of the HT and by utilizing two variants of In layer deposition, namely, (1) electroplating In at the top of the Sn plating, and (2) by sandwiching the In plating between two Sn layers, each approximately 500 nm thick. Appropriate control samples of pure Sn were utilized to permit valid data on the influence of In on whisker mitigation. Indium additions reduced whisker growth by at least two orders of magnitude following the 160°C treatment, independent of the location of the In layer. X-ray microanalysis of a focused ion beam cross section of the sandwich plating confirmed that In had indeed diffused into the Sn through the 160°C HT and was a likely reason for the mitigation of Sn whiskers.

  5. Microstructure and growth model for rice-hull-derived SiC whiskers

    NASA Technical Reports Server (NTRS)

    Nutt, Steven R.

    1988-01-01

    The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.

  6. Hydrophobic modification of chitin whisker and its potential application in structuring oil.

    PubMed

    Huang, Yao; He, Meng; Lu, Ang; Zhou, Weizheng; Stoyanov, Simeon D; Pelan, Eddie G; Zhang, Lina

    2015-02-10

    A facile approach was developed to modify chitin whiskers by reacting them with bromohexadecane, and the potential application of modified whiskers in structuring oil was evaluated. The results of Fourier transform infrared spectra (FT-IR), wide-angle X-ray diffraction (XRD), elemental analysis, solid (13)C NMR, and differential scanning calorimeter (DSC) confirmed that the long alkyl chains were successfully introduced to the chitin whiskers and endowed them with improved hydrophobicity and thermal transition. By hot pressing the modified whiskers, the highly hydrophobic whisker sheets were constructed, showing high contact angles close to 150°. The hydrophobic interaction between the long alkyl chains and chitin backbone induced the crystal alignment with micro-nano structure, leading to the surface roughness and high hydrophobicity of the sheets. Furthermore, the modified whiskers could form a stable dispersion in sunflower oil, displaying a remarkable thickening effect. The viscosity of the oily suspension exhibited temperature dependence and shear-thinning behavior, suggesting great potentials to fabricate oleogel without adding any saturated fat. Furthermore, the intrinsic biocompatibility of α-chitin structure benefits its application in foodstuff, cosmetics, and medical fields. PMID:25578624

  7. Alterations in functional thalamocortical connectivity following neonatal whisker trimming with adult regrowth

    PubMed Central

    Carvell, G. E.; Kyriazi, H. T.

    2015-01-01

    Neonatal whisker trimming followed by adult whisker regrowth leads to higher responsiveness and altered receptive field properties of cortical neurons in corresponding layer 4 barrels. Studies of functional thalamocortical (TC) connectivity in normally reared adult rats have provided insights into how experience-dependent TC synaptic plasticity could impact the establishment of feedforward excitatory and inhibitory receptive fields. The present study employed cross-correlation analyses to investigate lasting effects of neonatal whisker trimming on functional connections between simultaneously recorded thalamic neurons and regular-spike (RS), presumed excitatory, and fast-spike (FS), presumed inhibitory, barrel neurons. We find that, as reported previously, RS and FS cells in whisker-trimmed animals fire more during the earliest phase of their whisker-evoked responses, corresponding to the arrival of TC inputs, despite a lack of change or even a slight decrease in the firing of thalamic cells that contact them. Functional connections from thalamus to cortex are stronger. The probability of finding TC-RS connections was twofold greater in trimmed animals and similar to the frequency of TC-FS connections in control and trimmed animals, the latter being unaffected by whisker trimming. Unlike control cases, trimmed RS units are more likely to receive inputs from TC units (TCUs) and have mismatched angular tuning and even weakly responsive TCUs make strong functional connections on them. Results indicate that developmentally appropriate tactile experience early in life promotes the differential thalamic engagement of excitatory and inhibitory cortical neurons that underlies normal barrel function. PMID:26245317

  8. In Situ Measurement of Stress and Whisker/Hillock Density During Thermal Cycling of Sn Layers

    NASA Astrophysics Data System (ADS)

    Pei, Fei; Chason, Eric

    2014-01-01

    Compressive stress is believed to be the primary driving force that makes Sn whiskers/hillocks grow, but the mechanisms that create the stress (e.g., intermetallic compound growth) are difficult to control. As an alternative, the thermal expansion mismatch between the Sn layer and the substrate can be used to induce stress in a controlled way via heating and cooling. In this work, we describe real-time experiments which quantify the whiskering behavior and stress evolution during cyclic heating. The density of whiskers/hillocks is measured with an optical microscope, while the stress is measured simultaneously with a wafer-curvature-based multi-beam optical stress sensor. Results from three thermal cycles are described in which the samples are heated from room temperature to 65 °C at rates of 10, 30, and 240 °C/h. In each case, we find that the whisker/hillock formation is the primary source of stress relaxation. At fast heating rates, the relaxation is proportional to the number of hillocks, indicating that the stress is relaxed by the nucleation of many small surface features. At slower heating rates, the whisker/hillock density is lower, and continual growth of the features is suggested after nucleation. Long whiskers are found to be more likely to form in the slow heating cycle.

  9. Contributions Of Stress And Oxidation On The Formation Of Whiskers In Pb-Free Solders

    SciTech Connect

    Duncan, A. J.; Hoffman, E. N.

    2014-03-25

    This report summarizes the research activities of WP-1754. The study focusses on the environmental factors influencing formation of lead free whiskers on electrodeposited tin coatings over copper (or copper containing) substrates. Much of the initial results are summarized in an interim report. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen/nitrogen ratio in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the substrates in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The results show that induced elastic stress slightly increased the concentration of nucleation sites of whiskers. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen/nitrogen ratios. The concentration of whiskers were measured and appear to be sensitive to absolute pressure but are not sensitive to oxygen content (as previously observed).

  10. Mechanical characterization of SiC whisker-reinforced MoSi/sub 2/

    SciTech Connect

    Carter, D.H.; Gibbs, W.S.; Petrovic, J.J.

    1988-01-01

    The mechanical characteristics of an intermetallic matrix with two different reinforcements were studied. The matrix material was MoSi/sub 2/, with either Los Alamos VLS SiC whiskers or Huber VS SiC whiskers. The purpose of the reinforcement was to provide toughening at ambient temperature and strengthening at elevated temperatures. The VLS whiskers greatly improved the yield strength of the matrix at 1200/degree/C, and also increased the room temperature fracture toughness of the matrix. The VS whiskers were added because they are much smaller in length and diameter, and therefore decreased the mean free path between whiskers, at the same volume fraction. The VS whiskers improved the toughness of the matrix at ambient temperature, and increased the yield strength of MoSi/sub 2/ at 1400/degree/C by 470%. The high strength of this new composite places this material in the realm of attractive engineering materials for high-temperature applications. 11 refs., 6 refs., 1 tab.

  11. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films

    PubMed Central

    Takei, Kuniharu; Yu, Zhibin; Zheng, Maxwell; Ota, Hiroki; Takahashi, Toshitake; Javey, Ali

    2014-01-01

    Mammalian whiskers present an important class of tactile sensors that complement the functionalities of skin for detecting wind with high sensitivity and navigation around local obstacles. Here, we report electronic whiskers based on highly tunable composite films of carbon nanotubes and silver nanoparticles that are patterned on high-aspect-ratio elastic fibers. The nanotubes form a conductive network matrix with excellent bendability, and nanoparticle loading enhances the conductivity and endows the composite with high strain sensitivity. The resistivity of the composites is highly sensitive to strain with a pressure sensitivity of up to ∼8%/Pa for the whiskers, which is >10× higher than all previously reported capacitive or resistive pressure sensors. It is notable that the resistivity and sensitivity of the composite films can be readily modulated by a few orders of magnitude by changing the composition ratio of the components, thereby allowing for exploration of whisker sensors with excellent performance. Systems consisting of whisker arrays are fabricated, and as a proof of concept, real-time two- and three-dimensional gas-flow mapping is demonstrated. The ultrahigh sensitivity and ease of fabrication of the demonstrated whiskers may enable a wide range of applications in advanced robotics and human–machine interfacing. PMID:24449857

  12. Vacuum Measurements of a Novel Micro-resonator Based on Tin Whiskers Performed at mK Temperatures

    NASA Astrophysics Data System (ADS)

    Človečko, M.; Gažo, E.; Longauer, S.; Múdra, E.; Skyba, P.; Vavrek, F.; Vojtko, M.

    2014-04-01

    We present a method of preparation and preliminary vacuum measurements conducted at ˜20 mK of a new type of micro-resonator based on Sn-whiskers. Sn-whiskers have ˜1 μm radius and their length can be ˜1-2 mm. As added benefit, the Sn-whiskers are mono-crystalline metal fibers with relatively smooth surface and being superconducting at low temperatures one may expect their high Q-factors.

  13. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  14. Dissolution on Titan and on Earth: Towards the age of Titan's karstic landscapes

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Cordier, D.; Le Bahers, T.; Bourgeois, O.; Fleurant, C.; Le Mouélic, S.; Altobelli, N.

    2015-10-01

    The morphology of Titan's lacustrine depressions led to comparisons with terrestrial depressions developed by karstic dissolution. We tested this hypothesis by computing dissolution rates of Titan's solids in liquid methane. We inferred from these rates the timescales needed to create dissolution landforms of a given depth. Dissolution would be a very efficient geological process to shape Titan's surface, on timescales generally shorter than 100 Myrs, consistent with the youth of Titan's surface (<1 Gyr).

  15. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  16. In-situ measurement of bending strength of TiC whiskers in the scanning electron microscope

    SciTech Connect

    Seino, Yutaka; Shin, Shoichiro; Nagai, Satoshi

    1995-10-01

    The three-point bending strength of TiC whiskers was measured in a scanning electron microscope. The whisker samples have {approximately} 50 {micro}m length and 2 {approximately} 4 {micro}m diameter and are commercially available as reinforcements. For composite materials. The distribution of the bending strengths of the whiskers showed a double peak around 5.2GPa and 30.4GPa, respectively. The difference in these values is attributed to differences in the cleavage strength of two crystal planes depending on whisker growth direction.

  17. Whisker formation in Sn and Pb-Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation processes

    SciTech Connect

    Chason, E.; Jadhav, N.; Kumar, K. S.; Chan, W. L.; Reinbold, L.

    2008-04-28

    We have simultaneously measured the evolution of intermetallic volume, stress, and whisker density in Sn and Pb-Sn alloy layers on Cu to study the fundamental mechanisms controlling whisker formation. For pure Sn, the stress becomes increasingly compressive and then saturates, corresponding to a plastically deformed region spreading away from the growing intermetallic particles. Whisker nucleation begins after the stress saturates. Pb-Sn layers have similar intermetallic growth kinetics but the resulting stress and whisker density are much less. Measurements after sputtering demonstrate the important role of the surface oxide in inhibiting stress relaxation.

  18. Effect of Cu addition on whisker formation in tin-rich solder alloys under thermal shock stress

    NASA Astrophysics Data System (ADS)

    Skwarek, A.; Ratajczak, J.; Czerwinski, A.; Witek, K.; Kulawik, J.

    2009-05-01

    This article focuses on the influence of thermal shocks and Cu addition on tin whiskers growth on the surface of tin-rich materials and alloys. The tests were carried out on real samples manufactured with classical PCB technology. Four Pb-free materials i.e. pure Sn, Sn99Cu1, Sn98Cu2 and Sn97Cu3 were tested from the point of view of susceptibility to whisker formation after thermal shocks. Results show that all tested materials were prone for whisker formation. Copper addition in coexistence with thermal shocks did not promote the growth of filament-like whiskers.

  19. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  20. TiME - The Titan Mare Explorer

    NASA Astrophysics Data System (ADS)

    Stofan, E.; Lorenz, R.; Lunine, J.; Bierhaus, E. B.; Clark, B.; Mahaffy, P. R.; Ravine, M.

    The Titan Mare Explorer (TiME) is a Discovery-class mission concept that underwent a detailed Phase A study in 2011-2012. The mission would splashdown a capsule on Titan's ethane sea Ligeia Mare as early as the summer of 2023, and would spend multiple Titan days performing science measurements and transmitting data directly back to Earth. This paper reviews briefly the mission concept.

  1. Amino acidis derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  2. Recipe for potassium

    SciTech Connect

    Izutani, Natsuko

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  3. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  4. Can Titan generate tori in Saturn's magnetosphere?

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Johnson, R. E.; Rymer, A. M.; Mitchell, D. G.

    2011-12-01

    Prior to Cassini's arrival at Saturn, nitrogen ions were thought to dominate heavy plasma in Saturn's magnetosphere and that Titan's atmosphere was the source of this nitrogen. Therefore, the presence of a Titan nitrogen torus was anticipated. However, it is now known water-group ions dominate Saturn's heavy ion plasma. While nitrogen ions have been detected beyond the orbit of Rhea, they appear to be originating from the Enceladus plumes with little nitrogen plasma detected in the magnetosphere near Titan's orbit. These results appear inconsistent with the expectation that Titan's dense relatively unprotected atmosphere should provide a significant source of heavy particles to Saturn's magnetosphere. This inconsistency suggests that the plasma environment at Titan's orbit is much more complex than originally anticipated. In this talk, we expand on our previous research that categorizes the plasma environments near Titan to include all locations along Titan's orbit. Using these categories, we develop characteristic plasma spectra of each type of environment and use these results in a 3D Monte Carlo model to more accurately examine fate of nitrogen and methane escaping Titan's atmosphere. These results are compared to Cassini observations to determine if Titan is capable of generating tori.

  5. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  6. The magnetic memory of Titan's ionized atmosphere.

    PubMed

    Bertucci, C; Achilleos, N; Dougherty, M K; Modolo, R; Coates, A J; Szego, K; Masters, A; Ma, Y; Neubauer, F M; Garnier, P; Wahlund, J-E; Young, D T

    2008-09-12

    After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field. PMID:18787164

  7. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  8. The organic aerosols of Titan

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Suits, F.; Callcott, T. A.; Williams, M. W.; Shrader, S.; Ogino, H.; Willingham, T. O.

    1984-01-01

    The optical properties and chemical composition of thiolin, an organic solid synthesized by high-energy-electron irradiation in a plasma discharge (Sagan et al., 1984) to simulate the high-altitude aerosols of Titan, are investigated experimentally using monochromators, ellipsometers, and spectrometers (on thin films deposited by continuous dc discharge) and sequential and nonsequential pyrolytic gas chromatography/mass spectrometry (of the volatile component), respectively. The results are presented in tables and graphs and characterized. The real and imaginary elements of the complex refractive index in the visible are estimated as 1.65 and 0.004-0.08, respectively, in agreement with observations of Titan, and the IR absorption features include the nitrile band at 4.6 microns. The molecules identified in the volatile part of thiolin include complex species considered important in theoretical models of the origin of life on earth.

  9. Titan's geoid and hydrology: implications for Titan's geological evolution

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  10. Cassini Imaging Results at Titan

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Turtle, E.; Perry J.; Fussner, S.; Porco, C.; West, R.; Johnson, T.; Collins, G.; DelGenio, T.; Barbara, J.

    2005-01-01

    The Cassini Imaging Science Subsystem (ISS) images show striking albedo markings on the surface of Titan. In equatorial regions the albedo patterns have high contrast and exhibit prominent lineaments and linear/angular boundaries suggestive of tectonic influences or fracturing of brittle surficial materials. There are intriguing dark curving lines near the south pole. Here we present several working hypotheses to explain these patterns. We also briefly summarize atmospheric science results.

  11. Whisker-reinforced dental core buildup composites: effect of filler level on mechanical properties.

    PubMed

    Xu, H H; Smith, D T; Schumacher, G E; Eichmiller, F C

    2000-12-15

    The strength and toughness of dental core buildup composites in large stress-bearing restorations need to be improved to reduce the incidence of fracture due to stresses from chewing and clenching. The aims of the present study were to develop novel core buildup composites reinforced with ceramic whiskers, to examine the effect of filler level, and to investigate the reinforcement mechanisms. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whisker surface for improved retention in the matrix. Filler level was varied from 0 to 70%. Flexural strength, compressive strength, and fracture toughness of the composites were measured. A nano-indentation system was used to measure elastic modulus and hardness. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of specimens. Whisker filler level had significant effects on composite properties. The flexural strength in MPa (mean +/- SD; n = 6) increased from (95+/-15) for the unfilled resin to (193+/- 8) for the composite with 50% filler level, then slightly decreased to (176+/-12) at 70% filler level. The compressive strength increased from (149+/-33) for the unfilled resin to (282+/-48) at 10% filler level, and remained equivalent from 10 to 70% filler level. Both the modulus and hardness increased monotonically with filler level. In conclusion, silica particle-fused ceramic single-crystalline whiskers significantly reinforced dental core buildup composites. The reinforcement mechanisms appeared to be crack deflection and bridging by the whiskers. Whisker filler level had significant effects on the flexural strength, compressive strength, elastic modulus, and hardness of composites. PMID:11033564

  12. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGESBeta

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  13. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    SciTech Connect

    Bai, Yang; He, Hui-Min; Li, Ying; Zhou, Zhong-Jun; Wang, Jia-Jun; Wu, Di; Chen, Wei; Gu, Feng-Long; Sumpter, Bobby G.; Huang, Jingsong

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field, the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.

  14. Potassium and High Blood Pressure

    MedlinePlus

    ... in blood pressure to certain patterns of food consumption. For example, the D.A.S.H. (Dietary Approaches ... are good natural sources of potassium. Potassium-rich foods include: Sweet ... Levels Mean * ...

  15. Whisker-reinforced heat-cured dental resin composites: effects of filler level and heat-cure temperature and time.

    PubMed

    Xu, H H

    2000-06-01

    Currently available dental resin composites are inadequate for use in large stress-bearing crown and multiple-unit restorations. The aim of this study was to reinforce heat-cured composites with ceramic whiskers. It was hypothesized that whiskers substantially strengthen heat-cured composites. It was further hypothesized that whisker filler level and heat-cure temperature and time significantly influence composite properties. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whiskers for improved retention in the matrix. The whisker filler mass fraction was varied from 0% to 79%, the heat-cure temperature from 80 degrees C to 180 degrees C, and cure time from 10 min to 24 hrs. Flexural strength, work-of-fracture, and fracture toughness of the composites were measured, and specimen fracture surfaces were examined with scanning electron microscopy. Filler level had a significant effect on composite properties. The whisker composite with 70% filler level had a flexural strength in MPa (mean +/- SD; n = 6) of 248 +/- 23, significantly higher than 120 +/- 16 of an inlay/onlay composite control and 123 +/- 21 of a prosthetic composite control (Tukey's multiple comparison test; family confidence coefficient = 0.95). Heat-cure time also played a significant role. At 120 degrees C, the strength of composite cured for 10 min was 178 +/- 17, lower than 236 +/- 14 of composite cured for 3 hrs. The strength of whisker composite did not degrade after water-aging for 100 d. In conclusion, heat-cured composites were substantially reinforced with whiskers. The reinforcement mechanisms appeared to be whiskers bridging and resisting cracks. The strength and fracture toughness of whisker composite were nearly twice those of currently available inlay/onlay and prosthetic composites. PMID:10890718

  16. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  17. High potassium level

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Kidney Diseases Potassium Browse the Encyclopedia A. ...

  18. Nitrile Compounds Observed on Titan

    NASA Astrophysics Data System (ADS)

    Marten, A.; Moreno, R.

    2003-05-01

    Heterodyne millimeter observations were performed on Titan with the IRAM Plateau-de-Bure Interferometer array in February-March 2003 near greatest eastern elongations. The most extended configuration of the array was used. The Titan's angular diameter, corresponding to the solid body value, was 0.8 arc sec. However, a larger diameter of about 1 arc sec needs to be considered in the analysis of emitted flux measurements. Two dual frequency receivers were utilized at 3- and 1.2-mm wavelengths, giving access to the 82-116 and 210-245 GHz spectral ranges. Therefore, to optimize our mapping program, observations were carried out in the HCN(1-0), HC3N(12-11), CH3CN(12-11), HC3N(25-24) and CO(2-1) transitions, near 88.6, 109.2, 220.7, 227.4 and 230.5 GHz, respectively. An angular resolution of 0.6 arc sec was obtained at shorter wavelengths, yielding disk-resolved spectra of Titan. Most of the HCN(1-0) and HC3N(12-11) data correspond to full-disk measurements since the equivalent synthesized beam of the array was larger than 1.3 arc sec at longer wavelengths. Narrow isolated lines of HC3N and CH3CN as well as the three components of HCN(1-0) were analyzed at a very high spectral resolution of 40 kHz. Lower values of 160 kHz and 2.5 MHz were chosen for recording broad-band spectra of HCN, CH3CN and CO. Disk-averaged spectra taken at the same frequencies with the IRAM single-dish 30-m telescope (Marten et al., 2002, Icarus, 158, 532) have been used for comparison. The vertical distributions of nitrile abundances inferred from those data served as a preliminary basis for radiative transfer computations considering a spherical geometry for Titan's atmosphere and an elliptical gaussian synthesized beam. Numerical calculations of HCN and CO spectra are found in remarkable agreement with the interferometric data. Significant differences exist for HC3N in the northern latitudes and CH3CN in midlatitude regions. Measured maps are presented at all observing frequencies along with

  19. The effects of smoking on whisker movements: A quantitative measure of exploratory behaviour in rodents.

    PubMed

    Grant, Robyn A; Cielen, Nele; Maes, Karen; Heulens, Nele; Galli, Gina L J; Janssens, Wim; Gayan-Ramirez, Ghislaine; Degens, Hans

    2016-07-01

    Nicotine, an important component of cigarette smoke, is a neurotransmitter that contributes to stress, depression and anxiety in smokers. In rodents, it increases anxiety and reduces exploratory behaviours. However, so far, the measurements of exploratory behaviour in rodents have only been semi-quantitative and lacking in sufficient detail to characterise the temporal effect of smoking cessation. As rodents, such as mice and rats, primarily use whiskers to explore their environment, we studied the effect of 3 months smoking with 1 and 2 weeks smoking cessation on whisker movements in mice, using high-speed video camera footage and image analysis. Both protraction and retraction whisker velocities were increased in smoking mice (p<0.001) and returned to normal following just one week of smoking cessation. In addition, locomotion speeds were decreased in smoking mice, and returned to normal following smoking cessation. Lung function was also impacted by smoking and remained impaired even following smoking cessation. We suggest that the increased whisker velocities in the smoking mice reflect reduced exploration and impeded tactile performance. The increase in whisker velocity with smoking, and its reduction following smoking cessation, also lends support to acetylcholine being involved in awareness, attention and alertness pathways. It also shows that smoking-induced behavioural changes can be reversed with smoking cessation, which may have implications for human smokers. PMID:27045697

  20. Microstructural Development and Possible Whiskering Behavior of Thin Sn Films Electrodeposited on Cu(Zn) Substrates

    NASA Astrophysics Data System (ADS)

    Stein, J.; Tineo, C. A. Cordova; Welzel, U.; Huegel, W.; Mittemeijer, E. J.

    2015-03-01

    The aging behavior at room temperature of thin Sn films, electrodeposited on top of Cu(Zn) substrates containing 15 wt.% and 36 wt.% Zn, was investigated, using focused ion beam microscopy and x-ray diffraction analysis to evaluate the microstructural and (residual) stress development in the specimens. For comparison, parallel experiments and similar analyses were performed with Sn films electrodeposited on pure Cu substrates. Whereas Sn whiskering was observed for the Sn films deposited on the Cu substrates, such whiskering was not observed for the Sn films deposited on the Cu(Zn) substrates. It was found that alloying the Cu substrates with Zn strongly slows down the formation rate of the intermetallic compound Cu6Sn5 at the Sn/Cu(alloy) interface. The Sn films on the Cu(Zn) substrates remained whisker free for the entire time of investigation even though an overall compressive state of stress has developed after several weeks of aging. It was concluded that a homogeneous, compressive stress in the Sn film does not lead to whisker formation: the presence of negative stress gradients is essential for Sn whisker growth.

  1. The effect of electric current and surface oxidization on the growth of Sn whiskers

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Seob; Yang, Jun-Mo; Ahn, Jae-Pyoung

    2010-09-01

    Electric current was applied on pure Sn-plated leadframes to evaluate the effects of current-induced stress on the growth of Sn whiskers. The samples were stored at room temperate and 55 °C/85% relative humidity (RH) conditions with an induced current range of 0.1 A to 0.5 A. The samples stored at the room temperature did not grow the whiskers at any of the current conditions until 3000 hrs. As the current flow increased, irregular intermetallic compounds (IMCs) grew at the interface between the Sn finish and Cu substrate. However, various lengths of columnar and bent whiskers were observed under all current conditions, after exposure to 55 °C/85% RH conditions for 1000 hours. At the same temperature, the higher current levels showed longer whiskers than lower current levels. The Sn oxide had the α-SnO 2 structure of the rutile phase which was non-uniformly formed on the surface of the Sn finish. The grain size of the SnO 2 was estimated to be several nanometers. The SnO 2 film was up to a thickness of ˜23 nm on the Sn whisker surface stored at 55 °C/85% RH conditions for 3000 hours.

  2. The Effect of Micro-Alloying of Sn Plating on Mitigation of Sn Whisker Growth

    NASA Astrophysics Data System (ADS)

    Dimitrovska, Aleksandra; Kovacevic, Radovan

    2009-12-01

    Tin (Sn) is a key industrial material in coatings on various components in the electronics industry. However, Sn is prone to the development of filament-like whiskers, which is the leading cause of many types of damage to electronics reported in the last several decades. Due to its properties, a tin-lead (Sn-Pb) alloy coating can mitigate Sn whisker growth. However, the demand for Pb-free surface finishes has rekindled interest in the Sn whisker phenomenon. In order to achieve properties similar to those naturally developed in a Sn-Pb alloy coating, we carried out a study on deposited films with other Sn alloys, such as tin-bismuth (Sn-Bi), tin-zinc (Sn-Zn), and tin-copper (Sn-Cu), electrodeposited onto a brass substrate by utilizing a pulse plating technique. The results indicated that the Sn alloy films modified the columnar grain structure of pure Sn into an equiaxed grain structure and increased the incubation period of Sn whisker growth. The primary conclusions were based on analysis of the topography and microstructural characteristics in each case, as well as the stress distribution in the plated films computed by x-ray diffraction, and the␣amount of Sn whisker growth in each case, over 6 months under various environmental influences.

  3. Short Time-Scale Sensory Coding in S1 during Discrimination of Whisker Vibrotactile Sequences.

    PubMed

    McGuire, Leah M; Telian, Gregory; Laboy-Juárez, Keven J; Miyashita, Toshio; Lee, Daniel J; Smith, Katherine A; Feldman, Daniel E

    2016-08-01

    Rodent whisker input consists of dense microvibration sequences that are often temporally integrated for perceptual discrimination. Whether primary somatosensory cortex (S1) participates in temporal integration is unknown. We trained rats to discriminate whisker impulse sequences that varied in single-impulse kinematics (5-20-ms time scale) and mean speed (150-ms time scale). Rats appeared to use the integrated feature, mean speed, to guide discrimination in this task, consistent with similar prior studies. Despite this, 52% of S1 units, including 73% of units in L4 and L2/3, encoded sequences at fast time scales (≤20 ms, mostly 5-10 ms), accurately reflecting single impulse kinematics. 17% of units, mostly in L5, showed weaker impulse responses and a slow firing rate increase during sequences. However, these units did not effectively integrate whisker impulses, but instead combined weak impulse responses with a distinct, slow signal correlated to behavioral choice. A neural decoder could identify sequences from fast unit spike trains and behavioral choice from slow units. Thus, S1 encoded fast time scale whisker input without substantial temporal integration across whisker impulses. PMID:27574970

  4. Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.

    PubMed

    Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad

    2015-08-01

    An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments. PMID:26241787

  5. Terrestrial whisker growth experiments which anticipate some special effects of a space station environment

    NASA Technical Reports Server (NTRS)

    Hobbs, H. H.

    1983-01-01

    The effects of the absence of gravitationally driven thermal convection on the growth of whiskers by chemical reduction of metal salts was studied. It was possible to accomplish nearly complete suppression of such convection. Suppression of the convection does indeed effect the growth but in subtle, not necessarily detrimental ways: none of the changes observed were such as to hamper efforts to produce whiskers in space. Copper whiskers grown from cuprous iodide respond most positively to the suppression of convection; therefore, they are strongly recommended for tests in the space environment. Cobalt whiskers grown from cobaltous bromide show the greatest independence from conditions of convection and applied electric fields of any material studied; therefore, this medium is highly recommended. A strong pulse of electric field forces the whiskers to stick to the growth vessel top plate, this facilitates study or "harvesting'. On the space station it is recommended that the growth vessels be mounted outside the laboratory and joined with the station by means of double vacuum valves and gas service lines.

  6. Structure and kinetics of Sn whisker growth on Pb-free solder finish

    SciTech Connect

    Choi, W.J.; Lee, T.Y.; Tu, K.N.; Tamura, N.; Celestre, R.S.; MacDowell, A.A.; Bong, Y.Y.; Nguyen, L.; Sheng, G.T.T.

    2002-07-11

    Standard Leadframes used in surface mount technology are finished with a layer of eutectic SnPb for passivation and for enhancing solder wetting during reflow. When eutectic SnPb is replaced by Pb-free solder, especially the eutectic SnCu, a large number of Sn whiskers are found on the Pb-free finish. Some of the whiskers are long enough to become shorts between the neighboring legs of the leadframe. How to suppress their growth and how to perform accelerated test of Sn whisker growth are crucial reliability issues in the electronic packaging industry. In this paper, we report the study of spontaneous Sn whisker growth at room temperature on eutectic SnCu and pure Sn finishes. Both compressive stress and surface oxide on Sn are necessary conditions for whisker growth. Structure and stress analyses by using the micro-diffraction in synchrotron radiation are reported. Cross-sectional electron microscopy, with samples prepared by focused ion beam, are included.

  7. Short Time-Scale Sensory Coding in S1 during Discrimination of Whisker Vibrotactile Sequences

    PubMed Central

    Miyashita, Toshio; Lee, Daniel J.; Smith, Katherine A.; Feldman, Daniel E.

    2016-01-01

    Rodent whisker input consists of dense microvibration sequences that are often temporally integrated for perceptual discrimination. Whether primary somatosensory cortex (S1) participates in temporal integration is unknown. We trained rats to discriminate whisker impulse sequences that varied in single-impulse kinematics (5–20-ms time scale) and mean speed (150-ms time scale). Rats appeared to use the integrated feature, mean speed, to guide discrimination in this task, consistent with similar prior studies. Despite this, 52% of S1 units, including 73% of units in L4 and L2/3, encoded sequences at fast time scales (≤20 ms, mostly 5–10 ms), accurately reflecting single impulse kinematics. 17% of units, mostly in L5, showed weaker impulse responses and a slow firing rate increase during sequences. However, these units did not effectively integrate whisker impulses, but instead combined weak impulse responses with a distinct, slow signal correlated to behavioral choice. A neural decoder could identify sequences from fast unit spike trains and behavioral choice from slow units. Thus, S1 encoded fast time scale whisker input without substantial temporal integration across whisker impulses. PMID:27574970

  8. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  9. Interpretation of Titan's atmospheric composition measured by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Gautier, D.; Hersant, F.; Lunine, J. I.

    2008-09-01

    released, but as its primordial abundance is small, it remains below the detection limit of the GCMS. The detection of the 40K decay daughter 40Ar is a strong indicator of past and recent internal activities, thus confirming the scenario proposed here. While most of the detected 40Ar comes from the silicate phase, which contains a significant fraction of potassium, we show that only a small fraction of the detected 36Ar can originate from the silicate phase. This strongly suggests that most of the primordial 36Ar has been brought by the ice phase, and that a fraction of argon, even if it is small, has been incorporated at low temperature in the planetesimals that built Titan in the form of clathrate hydrate. This favors the scenario where today's methane mainly originate from the solar nebula, was stored in the interior and later released; and thus was not chemically produced H2O and CO2 in the satellite interior. In situ measurements to be done by a future mission on Titan [4] will permit to test the different ideas present here. In particular, a precise determination of D/H and O16/O18 ratios in H2O, CO2 and CO will provide pertinent tests on the origin of different volatile species. IR spectroscopy and direct sampling of the surface materials will allow to determine the amount of carbon dioxide present in the crust. Detection of 38Ar, Kr and possibly Xe, and estimation of isotopic ratios will also give key informations on the origin and evolution of Titan's atmosphere and interior, in particular on the trapping mechanismes of volatile in Saturn's environnement and on the differentiation processes of Titan's interior. References [1] Niemann, H. B., and 17 colleagues 2005. Nature 438, 779-784. [2] Hersant, F., Gautier, D., Tobie, G., Lunine, J. I. 2008. Planet Space Sci., in press. [3] Tobie, G., Lunine, J. I., Sotin, C. 2006. Nature, 440, 61-64. [4] Coustenis A. and the TANDEM consortium, 2008. Experimental Astron., in press.

  10. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  11. Large-scale synthesis of TiC whiskers by carbothermal reduction with microcrystalline cellulose as the carbon source

    NASA Astrophysics Data System (ADS)

    Xiong, Huiwen; Guo, Yu; Wen, Yu; Lv, Yaping; Li, Zhiyou; Zhou, Kechao

    2015-12-01

    TiC whiskers were synthesized by a typical chloride-assisted carbothermal reduction method with microcrystalline cellulose as a novel carbon source. When with nickel, the Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms were confirmed to govern the whisker growth with different tip morphologies. Systematic investigation of the sintering schedule revealed that two steps sintering favored the formation of whiskers (over 90 vol% yield) with a low oxygen content (4.322 Å of the lattice parameter). Unlike previous research, faceted TiC whiskers on the titanium oxide particles (Ti3O5) were epitaxially grown via the VS mechanism without catalyst (nickel). An effect of carbon sources (cellulose, chars and pyrolytic carbon black) on the morphology of TiC whiskers has been studied. A two-dimensional (2-D) nucleation on the Ti3O5 substrate and persistent absorption of growth adatoms on the {111} faces (at the tip) was proposed to explain the formation of TiC whisker. This study provided not only a new simple method for synthesizing TiC whiskers but also a new insight into the growth mode for TiC whiskers.

  12. Growth, contacting and ageing of superconducting Bi-2212 whiskers

    NASA Astrophysics Data System (ADS)

    Truccato, M.; Rinaudo, G.; Manfredotti, C.; Agostino, A.; Benzi, P.; Volpe, P.; Paolini, C.; Olivero, P.

    2002-09-01

    We report the growth of highly oriented microscopic whisker-like crystals in the Bi-Sr-Ca-Cu-O system by means of glassy precursors. The dependence of the growth on the stoichiometric composition and on the temperature and duration of the annealing process has been studied. Chemical impurities have been investigated from the point of view of the morphology, the elemental composition and the crystal structure, identifying the presence of CuAl2O4, Sr1.2Bi0.8O3 and Al. Electrical contacts have been fabricated by means of thermal evaporation and diffusion. Their sizes have been carefully measured, achieving contact resistivity in the range of 0.2-3.7 × 10-6 Ω cm2. A very slow degrading of the contacts and the crystals on a time scale of a few years has been detected. This is associated with a decrease in Tc, which is probably due to oxygen release from the material.

  13. Fabrication of whisker-toughened alumina tubes. Final report

    SciTech Connect

    Loutfy, R.O.

    1993-09-01

    A process has been developed to fabricate whisker toughened alumina composites by slip casting dense colloidal suspensions of Al{sub 2}O{sub 3}-15% SiC{sub w}. Optimum processing parameters for slip casting we developed with slip viscosity of 60--70 centipoise and solids content 78--79 wt %. Slip-cast parts with green densities 65 to 68% theoretical were achieved. Composite parts were pressureless sintered to 96--97% theoretical density with <1% open porosity. The composites exhibited strengths of 500 MPa, toughness of 6.5 MPa m{sup 1/2}, and hardness of 17.26 GPa (1765 kg/mm{sup 2}). High temperature strength retention was maintained up to 1200C. Good thermal shock resistance with {Delta}T{sub cr} = 500C was also achieved. The process technology was transferred into pilot scale for producing prototype heat exchanger tubing up to 4 inches in diameter at the facilities of Vesuvius/McDanel.

  14. The Lakes and Seas of Titan

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  15. On the origin of Titan's atmosphere.

    PubMed

    Owen, T C

    2000-01-01

    The present atmosphere of Titan exhibits evidence of extensive evolution, in the form of rapid photochemical destruction of methane and a large fractionation of the nitrogen and oxygen isotopes. Attempts to recover the initial inventory of volatiles lead toward a model in which nitrogen was originally supplied as NH3, essentially unmodified from its relative abundance in the outer solar nebula. Titan's atmospheric methane, in contrast, appears to have been formed from carbon and other carbon compounds, either by gas phase reactions in the subnebula or by accretional heating during the formation of Titan. These conclusions can be tested by further studies of abundances and isotope ratios in Titan's atmosphere, augmented by studies of comets. The possible similarity of carbon and nitrogen inventories on Titan to those on the inner planets makes this investigation particularly intriguing. PMID:11543520

  16. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  17. Size and shape of Saturn's moon Titan

    USGS Publications Warehouse

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  18. Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties.

    PubMed

    Xu, H H; Quinn, J B

    2001-11-01

    Calcium phosphate cement (CPC) sets to form microporous solid hydroxyapatite with excellent osteoconductivity, but its brittleness and low strength prohibit use in stress-bearing locations. The aim of this study was to incorporate prehardened CPC particles and ceramic whiskers in a resin matrix to improve the strength and fracture resistance, and to investigate the effects of key microstructural variables on composite mechanical properties. Two types of whiskers were used: silicon nitride, and silicon carbide. The whiskers were surface-treated by fusing with silica and by silanization. The CPC particle fillers were either silanized or not silanized. Seven mass ratios of whisker-silica/CPC were mixed: 0:1 (no whisker-silica), 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0 (no CPC). Each powder was blended with a bisphenol-a-glycidyl methacrylate-based resin to harden in 2 x 2 x 25 mm molds by two-part chemical curing. The specimens were tested in three-point flexure to measure strength, work-of-fracture (toughness), and elastic modulus. Two-way analysis of variance was used to analyze the data, and scanning electron microscopy was used to examine specimen fracture surfaces. The whisker-silica/CPC ratio had significant effects on composite properties (p < 0.001). When this ratio was increased from 0:1 to 1:0, the strength was increased by about three times, work-of-fracture by five times, and modulus by two times. Whisker surface treatments and CPC filler silanization also had significant effects (p < 0.001) on composite properties. Scanning electron microscopy revealed rough fracture surfaces for the whisker composites with steps and whisker pullout. Resin remnants were observed on the surfaces of the pulled-out whiskers, indicating strong whisker-matrix bonding. In conclusion, incorporating highly osteoconductive CPC fillers and ceramic whiskers yielded composites with substantially improved mechanical properties compared with composites filled with CPC particles without

  19. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  20. Titan as the Abode of Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  1. Titan as the Abode of Life.

    PubMed

    McKay, Christopher P

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H₂O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic-polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  2. Tapered ZnO Whiskers: {hkil}-Specific Mosaic Twinning VLS Growth from a Partially Molten Bottom Source

    PubMed Central

    2009-01-01

    Zn particulates overlaid with wurtzite (W)-type ZnO condensates having nearly orthogonal and facets were found to self-catalyze unusual tapered W-ZnO whiskers upon isothermal atmospheric annealing, i.e., thermal oxidation, at 600 °C. Analytical electron microscopic observations indicated that such whiskers formed tapered slabs having mosaic and twinned domains. The tapered whiskers can be rationalized by an alternative vapor–liquid–solid growth, i.e., {hkil}-specific coalescence twinning growth from the ZnO condensates taking advantage of a partially molten bottom source of Zn and the adsorption of atoms at the whisker tips and ledges under the influence of capillarity effect. The tapered whiskers having strong photoluminescence at 391 nm and with a considerable flexibility could have potential applications. PMID:20596385

  3. A large-scale fabrication of flower-like submicrometer-sized tungsten whiskers via metal catalysis

    NASA Astrophysics Data System (ADS)

    Ma, Yunzhu; Li, Jing; Liu, Wensheng; Shi, Yubin

    2012-06-01

    Tungsten powder mixed with an appropriate amount of nickel and iron powders is used as raw material to fabricate large-scale tungsten whisker-like structure. The morphology, microstructure and composition of the whisker-like tungsten are observed and tested by scanning electron microscope and FESEM, transmission electron microscopy, X-ray spectroscopy, and X-ray diffraction, respectively. The main component of the tungsten whisker-like structure is tungsten, which has the axial growth along the <100 > direction with large aspect ratio and possesses flower-like structure. Large-scale submicrometer-sized whisker-like tungsten was fabricated via vapor phase deposition approach with the aid of metal catalysts at 800°C by holding for 6 h in the appropriate atmosphere. The growth procedure of flower-like tungsten whisker is probably based on the vapor-liquid-solid mechanism at beginning of the formation of tungsten nuclei, then vapor-solid mechanism is dominant.

  4. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  5. Spectral Characteristics of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.

    2014-11-01

    Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of

  6. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  7. Hydrogen diffusion in lead zirconate titanate and barium titanate

    SciTech Connect

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-28

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ~32 MPa. We discuss results in the context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  8. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  9. Condensation in Titan's lower atmosphere

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Griffith, C. A.; Yelle, R. V.

    2011-10-01

    We present a self-consistent description of Titan's aerosols-clouds-gases system and compare our results with the optical properties retrieved from measurements made by the Descent Imager / Spectral Radiometer (DISR) experiment on the Huygens probe [4]. Our calculations include the condensation of methane, ethane and hydrogen cyanide on photochemical aerosols produced in the thermosphere. Our results suggest that the two distinct extinction layers observed by DISR below 80 km are produced by HCN and methane condensation, respectively, while for the Huygens' equatorial conditions simulated here, the contribution of ethane clouds to the total opacity is negligible

  10. Could Zinc Whiskers Be Impacting Your Electronic Systems? Raise Your Awareness. Revision D

    NASA Technical Reports Server (NTRS)

    Sampson, Michael; Brusse, Jay

    2003-01-01

    During the past several decades electrical short circuits induced by "Zinc Whiskers" have been cited as the root cause of failure for various electronic systems (e.g., apnea monitors, telecom switches). These tiny filaments of zinc that may grow from some zinc-coated items (especially those coated by electroplating processes) have the potential to induce electrical shorts in exposed circuitry. Through this article, the authors describe a particular failure scenario attributed to zinc whiskers that has affected many facilities (including some NASA facilities) that utilized zinc-coated raised "access" floor tiles and support structures. Zinc whiskers that may be growing beneath your raised floor have the potential to wreak havoc on electronic systems operating above the floor.

  11. The Role of Silver in Mitigation of Whisker Formation on Thin Tin Films

    NASA Astrophysics Data System (ADS)

    Stein, J.; Rehm, S.; Welzel, U.; Huegel, W.; Mittemeijer, E. J.

    2014-11-01

    The mitigating effect of alloying Sn thin films with Ag on the formation of Sn whiskers was investigated by time-resolved investigations employing x-ray diffraction for phase and stress analyses and focused ion beam microscopy for morphological characterization of the surfaces and cross-sections of the specimens. The investigated Sn-6 wt.%Ag thin films were prepared by galvanic co-deposition. The results are compared with those obtained from investigation of pure Sn films and discussed with regard to current whisker-growth models. The simultaneous deposition of Sn and Ag leads to a fine-grained microstructure consisting of columnar and equiaxed grains, i.e. an imperfect columnar Sn film microstructure. Isolated Ag3Sn grains are present at the Sn grain boundaries in the as-deposited films. Pronounced grain growth was observed during aging at room temperature, which provides a global stress relaxation mechanism that prevents Sn whisker growth.

  12. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  13. Tribological characteristics of silicon carbide whisker-reinforced alumina at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1991-01-01

    The enhanced fracture toughness of whisker reinforced ceramics makes them attractive candidates for sliding components of advanced hear engines. Examples include piston rings and valve stems for Stirling engines and other low heat rejection devices. However, the tribological behavior of whisker reinforced ceramics is largely unknown. This is especially true for the applications described where use temperatures can vary from below ambient to well over 1000 C. An experimental research program to identify the dominant wear mechanism(s) for a silicon carbide whisker reinforced alumina composite, SiCw-Al2O3 is described. In addition, a wear mechanism model is developed to explain and corroborate the experimental results and to provide insight for material improvement.

  14. Harbor seal whiskers synchronize with upstream wake over a range of distances

    NASA Astrophysics Data System (ADS)

    Beem, Heather; Triantafyllou, Michael

    2014-11-01

    Harbor seal whiskers have been shown to exhibit unique vibration properties as they encounter vortex wakes. Seals may use this information to detect hydrodynamic trails left by fish prey. A scaled model, which captures the undulatory morphology of the harbor seal whisker and is designed to freely vibrate, is tested here to explore these properties in more detail. This model is towed downstream of a larger cylinder, which generates a vortex wake. Effects of downstream distance, lateral distance, and diameter ratio between the two objects are explored. Frequency measurements are collected simultaneously through use of a pressure sensor placed in the wake. Cross-correlation of the whisker motion and cylinder wake pressure provides evidence that frequency synchronization holds for a range of separation distances and wake generator sizes.

  15. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  16. Potassium Channels in Epilepsy.

    PubMed

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  17. Modeling the polar motion of Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Van Hoolst, Tim; Baland, Rose-Marie; Tokano, Tetsuya

    2016-02-01

    The angular momentum of the atmosphere and of the hydrocarbon lakes of Titan have a large equatorial component that can excite polar motion, a variable orientation of the rotation axis of Titan with respect to its surface. We here use the angular momentum obtained from a General Circulation Model of the atmosphere of Titan and from an Ocean Circulation Model for Titan's polar lakes to model the polar motion of Titan as a function of the interior structure. Besides the gravitational torque exerted by Saturn on Titan's aspherical mass distribution, the rotational model also includes torques arising due to the presence of an ocean under a thin ice shell as well as the influence of the elasticity of the different layers. The Chandler wobble period of a solid and rigid Titan without its atmosphere is about 279 years. The period of the Chandler wobble is mainly influenced by the atmosphere of Titan (-166 years) and the presence of an internal global ocean (+135 to 295 years depending on the internal model) and to a lesser extent by the elastic deformations (+3.7 years). The forced polar motion of a solid and rigid Titan is elliptical with an amplitude of about 50 m and a main period equal to the orbital period of Saturn. It is mainly forced by the atmosphere of Titan while the lakes of Titan are at the origin of a displacement of the mean polar motion, or polar offset. The subsurface ocean can largely increase the polar motion amplitude due to resonant amplification with a wobble free mode of Titan. The amplitudes as well as the main periods of the polar motion depend on whether and which forcing period is close to the period of a free mode. For a thick ice shell, the polar motion mainly has an annual period and an amplitude of about 1 km. For thinner ice shells, the polar motion amplitude can reach several tens of km and shorter periods become dominant. We demonstrate that for thick ice shells, the ice shell rigidity weakly influences the amplitude of the polar motion

  18. Local, submicron, strain gradients as the cause of Sn whisker growth

    NASA Astrophysics Data System (ADS)

    Sobiech, M.; Wohlschlögel, M.; Welzel, U.; Mittemeijer, E. J.; Hügel, W.; Seekamp, A.; Liu, W.; Ice, G. E.

    2009-06-01

    It has been shown experimentally that local in-plane residual strain gradients occur around the root of spontaneously growing Sn whiskers on the surface of Sn coatings deposited on Cu. The strain distribution has been determined with synchrotron white beam micro Laue diffraction measurements. The observed in-plane residual strain gradients in combination with recently revealed out-of-plane residual strain-depth gradients [M. Sobiech et al., Appl. Phys. Lett. 93, 011906 (2008)] provide the driving forces for whisker growth.

  19. Geologic, aeromagnetic and mineral resource potential maps of the Whisker Lake Wilderness, Florence County, Wisconsin

    USGS Publications Warehouse

    Schulz, Klaus J.

    1983-01-01

    The mineral resource potential of the Whisker Lake Wilderness in the Nicolet National Forest, Florence County, northeastern Wisconsin, was evaluated in 1982. The bedrock consists of recrystallized and deformed volcanic and sedimentary rocks of Early Proterozoic age. Sand and gravel are the only identified resources in the Whisker Lake Wilderness. However, the area is somewhat isolated from current markets and both commodities are abundant regionally. The wilderness also has low potential for peat in swampy lowlands. The southwestern part of the wilderness has a low to moderate mineral resource potential for stratabound massive-sulfide (copper-zinc-lead) deposits.

  20. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice.

    PubMed

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles. PMID:26716690

  1. Chemical investigation of Titan and Triton tholins

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Heinrich, Michael; Khare, Bishun N.; Sagan, Carl

    1994-01-01

    We report chromatographic and spectroscopic analyses of both Titan and Triton tholins, organic solids made from the plasma irradiation of 0.9:0.1 and 0.999:0.001 N2/CH4 gas mixtures, respectively. The lower CH4 mixing ratio leads to a nitrogen-richer tholin (N/C greater than 1), probably including nitrogen heterocyclic compounds. Unlike Titan tholin, bulk Triton tholin is poor in nitriles. From high-pressure liquid chromatography, ultraviolet and infrared spectroscopy, and molecular weight estimation by gel filtration chromatography, we conclude that (1) several H2O-soluble fractions, each with distinct UV and IR spectral signatures, are present, (2) these fractions are not identical in the two tholins, (3) the H2O-soluble fractions of Titan tholins do not contain significant amounts of nitriles, despite the major role of nitriles in bulk Titan tholin, and (4) the H2O-soluble fractions of both tholins are mainly molcules containing about 10 to 50 (C + N) atoms. We report yields of amino acids upon hydrolysis of Titan and Triton tholins. Titan tholin is largely insoluble in the putative hydrocarbon lakes or oceans on Titan, but can yield the H2O-soluble species investigated here upon contact with transient (e.g., impact-generated) liquid water.

  2. Future Missions to Titan and Enceladus.

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; Reh, Kim; Lunine, Jonathan; Coustenis, Athena; John, Elliott; Matson, Dennis L.; Lebreton, Jean-Pierre; Waite, Hunter; Turtle, Elizabeth

    A mission to Titan is a high priority for exploration, as recommended by the 2003 NRC report on New Frontiers in the Solar System (Decadal Survey). As anticipated by the NRC subcommittee, recent Cassini-Huygens discoveries have revolution-ized our understanding of Titan and its potential for harboring "ingredients" necessary for life. These discoveries reveal that Titan has a thick atmosphere that is rich in organics, possibly contains a vast liquid water subsurface ocean and has energy sources to drive chemical evolu-tion. Furthermore, insight into Titan's climate is important in understanding the climates of Earth, Venus and Mars. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life. This presentation will provide an overview of the Titan Saturn System Mission (TSSM) concept, a discussion of other potential concepts, and current plans to advance technical readiness. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  3. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  4. Transient clouds in Titan's lower atmosphere.

    PubMed

    Griffith, C A; Owen, T; Miller, G A; Geballe, T

    1998-10-01

    The 1980 encounter by the Voyager 1 spacecraft with Titan, Saturn's largest moon, revealed the presence of a thick atmosphere containing nitrogen and methane (1.4 and approximately 0.05 bar, respectively). Methane was found to be nearly saturated at Titan's tropopause, which, with other considerations, led to the hypothesis that Titan might experience a methane analogue of Earth's vigorous hydrological cycle, with clouds, rain and seas. Yet recent analyses of Voyager data indicate large areas of super-saturated methane, more indicative of dry and stagnant conditions. A resolution to this apparent contradiction requires observations of Titan's lower atmosphere, which was hidden from the Voyager cameras by the photochemical haze (or smog) in Titan's stratosphere. Here we report near-infrared spectroscopic observations of Titan within four narrow spectral windows where the moon's atmosphere is ostensibly transparent. We detect pronounced flux enhancements that indicate the presence of reflective methane condensation clouds in the troposphere. These clouds occur at a relatively low altitude (15+/-10 km), at low latitudes, and appear to cover approximately 9 per cent of Titan's disk. PMID:9783583

  5. JET: a Journey to Enceladus and Titan

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Altwegg, K.; Brown, R. H.; Hand, K.; Soderblom, J. M.; Tortora, P.

    2010-12-01

    As revealed by the Cassini Huygens mission, Enceladus and Titan represent two critical end-members in our understanding of planet/moon formation. Enceladus is a small icy world with active jets of water erupting from its surface that might be connected to a subsurface water ocean. High-resolution mass spectra of Enceladus’ jets and plume can differentiate between the various elements and molecules suggested by the recent observations. High-resolution thermal mapping of the tiger stripe fractures will constrain models of tidal dissipation. Titan, Saturn's largest moon, is the only satellite with a dense atmosphere and the only object besides Earth with liquid on its surface. A world rich with organics, Titan has a methane cycle thought to be comparable in atmospheric and geologic processes to Earth’s water cycle. High-resolution images of the Titan surface will bare evidence on the processes that are shaping and have shaped Titan at seasonal, Milankovitch, and geologic time scales. Direct sampling of Titan's upper atmosphere will provide clues on the processes involved in the cycling of organic on Titan. JET will be launched to Saturn in 2016 and will observe these two moons close to autumnal equinox, an opportunity not afforded again until 2054.

  6. JET: A Journey To Enceladus And Titan

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Altwegg, K.; Brown, R. H.; Hand, K.; Soderblom, J.; JET Team

    2010-10-01

    As revealed by the Cassini Huygens mission, Enceladus and Titan represent two critical end-members in our understanding of planet/moon formation. Enceladus is a small icy world with active jets of water erupting from its surface that might be connected to a subsurface water ocean. High resolution mass spectra of Enceladus’ jets and plume can differentiate between the various elements and molecules suggested by the recent Cassini observations. High-resolution thermal mapping of the tiger stripe fractures will constrain models of tidal dissipation. Titan, Saturn's largest moon, is the only satellite with a dense atmosphere and the only object besides Earth with liquid on its surface. A world rich with organics, Titan also has a methane cycle thought to be comparable in atmospheric and geological processes to Earth's water cycle. High-resolution images of the Titan surface will bare evidence on the processes that are shaping and have shaped Titan at seasonal, Milankovitch and geological time scales. Direct sampling of Titan's upper atmosphere will provide clues on the processes involved in the cycling of organic material on Titan. JET will be launched to Saturn in 2016 and will observe these two moons close to autumnal equinox, an opportunity not afforded again until 2054

  7. Plausible surface models for Titan

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1992-01-01

    Current understanding of the nature of Titan's surface and some new ideas for explaining the curious radar returns from Saturn's largest satellite are reviewed. Pre-Voyager models of the surface, based largely on cosmochemistry and the discovery of atmospheric methane, allowed for a range of possibilities, including pure methane oceans. The Voyager 1 flyby ruled out this last possibility, replacing it with compelling observational arguments in favor of a mixed light hydrocarbon and nitrogen ocean. Ground based radar observations indicated a surprisingly reflective surface which is inconsistent with a hydrocarbon ocean and more reminiscent of the Galilean Satellites. Nonetheless, passive radiometric measurements of the surface do not support the notion that Titan's surface is like that of the Galilean satellites. One of the arguments against hydrocarbon oceans reflecting radar energy is that most solid, complex hydrocarbon and nitriles will be denser than the liquid and sink. Nonetheless, many of the aerosol species will coagulate in highly nonspherical patterns, and some species probably polymerize in long chains. Such chains will have very low sedimendation velocities in the ocean and may remain near the surface through ocean mixing process. The prospect of an oceanic 'soup' of polar polymers acting as volume reflectors at radio wevelengths suggests that the interpretation of radar observations needs evaluation.

  8. Identification of Acetylene on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Rodriguez, S.; Combe, J. P.; Cornet, T.; Le Mouelic, S.; Maltagliati, L.; Chevrier, V.; Clark, R. N.

    2015-12-01

    Titan's atmosphere is opaque in the near infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows" (e.g., Sotin et al., 2005). Thus, the composition of Titan surface remains difficult to access from space and is still poorly constrained, limited to ethane in the polar lakes (Brown et al., 2008) and a few possible organic molecules on the surface (Clark et al., 2010). Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescale (Cordier et al., 2009, 2011). Acetylene (C2H2) is one of the most abundant organic molecules in the atmosphere and thus thought to present on the surface as well. Here we report direct evidence of solid C2H2 on Titan's surface using Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. By comparing VIMS observations and laboratory measurements of solid and liquid C2H2, we identify a specific absorption at 1.55 µm that is widespread over Titan but is particularly strong in the brightest terrains. This surface variability suggests that C2H2 is mobilized by surface processes, such as surface weathering, topography, and dissolution/evaporation. The detection of C2H2 on the surface of Titan opens new paths to understand and constrain Titan's surface activity. Since C2H2 is highly soluble in Titan liquids (Singh et al. 2015), it can easily dissolve in methane/ethane and may play an important role in carving of fluvial channels and existence of karstic lakes at higher latitudes on Titan. These processes imply the existence of a dynamic surface with a continued history of erosion and deposition of C2H2 on Titan.

  9. Titan as the Abode of Life

    PubMed Central

    McKay, Christopher P.

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan’s atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic—polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  10. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    PubMed

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. PMID:25456880

  11. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  12. Detection of daily clouds on Titan.

    PubMed

    Griffith, C A; Hall, J L; Geballe, T R

    2000-10-20

    We have discovered frequent variations in the near-infrared spectrum of Titan, Saturn's largest moon, which are indicative of the daily presence of sparse clouds covering less than 1% of the area of the satellite. The thermodynamics of Titan's atmosphere and the clouds' altitudes suggest that convection governs their evolutions. Their short lives point to the presence of rain. We propose that Titan's atmosphere resembles Earth's, with clouds, rain, and an active weather cycle, driven by latent heat release from the primary condensible species. PMID:11039930

  13. Planetary science. The weather on Titan.

    PubMed

    Lorenz, R D

    2000-10-20

    When the Voyager 1 spacecraft returned images in 1980, the dense atmosphere of Saturn's moon Titan was assumed to be bland and featureless. As Lorenz discusses in his Perspective, recent ground-based spectroscopy, and images from the Hubble Space Telescope, are changing this perception. Observations such as the short-lived clouds in Titan's atmosphere reported by Griffith et al. suggest that although average precipitation is likely to be low, individual precipitation events may be heavy enough to cause deep valleys on Titan's surface. PMID:11183770

  14. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  15. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  16. Targeting potassium channels in cancer

    PubMed Central

    2014-01-01

    Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics. PMID:25049269

  17. Titan Mare Explorer (TiME) : A Discovery Mission to Titan's Hydrocarbon Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Stofan, Ellen; T. H. E. Time Team

    2010-05-01

    The discovery of lakes in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability of Titan's lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan's methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  18. TSSM: The in situ exploration of Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  19. 77 FR 59690 - Titan Resources International, Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Titan Resources International, Corp.; Order of Suspension of Trading September 26, 2012. It... concerning the securities of Titan Resources International, Corp. (``Titan''). Titan is a Wyoming...

  20. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  1. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  2. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  3. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  4. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  5. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  6. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food... Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS... potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  7. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  8. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  9. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  10. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  11. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  12. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  13. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  14. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  15. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride...

  16. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium...

  17. The vertical profile of winds on Titan.

    PubMed

    Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L

    2005-12-01

    One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent. PMID:16319831

  18. Geomorphologic Map of Titan's Polar Terrains

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Malaska, M. J.; Lopes, R. M. C.; Schoenfeld, A.; Williams, D. A.

    2016-06-01

    Titan's lakes and seas contain vast amounts of information regarding the history and evolution of Saturn's largest moon. To understand this landscape, we created a geomorphologic map, and then used our map to develop an evolutionary model.

  19. Cassini: Mission to Saturn and Titan

    NASA Technical Reports Server (NTRS)

    Kerridge, Stuart J.; Flury, Walter; Horn, Linda J.; Lebreton, Jean-Pierre; Stetson, Douglas S.; Stoller, Richard L.; Tan, Grace H.

    1992-01-01

    The Cassini Mission to Saturn and Titan represents an important step into the exploration of the outerplanets. It will expand on the flyby encounters of Pioneer and Voyager and parallel the detailed exploration of the Jupiter system to be accomplished by the Galileo Mission. By continuing the study of the two giant planets and enabling detailed comparisons of their structure and behavior, Cassini will provide a tremendous insight into the formation and evolution of the solar system. In addition, by virtue of its focus on the Saturnian satellite Titan, Cassini will return detailed data on an environment whose atmospheric chemistry may resemble that of the primitive Earth. The scientific objectives can be divided into five categories: Titan, Saturn, rings, icy satellites, and magnetospheres. The key area of interest to exobiologists is Titan; the other four scientific categories will be discussed briefly to provide a comprehensive overview of the Cassini Mission.

  20. Titan's South Polar Vortex in Motion

    NASA Video Gallery

    This movie captured by NASA'S Cassini spacecraft shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere, at Saturn’s moon Titan. The swirling mass appears to exec...

  1. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  2. High-resolution Visible Spectra of Titan

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, S.

    2006-09-01

    We have obtained high-resolution (R 30,000) spectra of Titan between 4,000 and 10,000 A on Feb. 23, 2005 (UT) using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory, Korea. The raw Titan spectra contain telluric and solar absorption/emission lines. We used Kitt Peak solar atlases to remove the solar lines effectively. We also constructed synthetic spectra for the atmosphere of Titan including haze layers and utilizing laboratory spectra of CH4 available in literature. Preliminary results on the identifications of weak CH4 lines and on the derived opacities of the haze layers will be presented. Since the observations were carried out near the activities of Cassini observations of Titan, these high-resolution visible spectra are complementary to Cassini/VIMS imagery.

  3. Cyanide Soap? Dissolved material in Titan's Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  4. Evolution of an early Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Volkov, A. N.

    2016-06-01

    Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to constrain Titan's accretion temperature. Here we show that for the range of temperatures of interest, heating of the surface is not the primary driver for escape. Atmospheric loss from a thick Titan atmosphere is predominantly driven by heating of the upper atmosphere; therefore, the loss rate cannot be used to easily constrain the accretion temperature. We give an estimate of the solar driven escape rate from an early atmosphere on Titan, and then briefly discuss its relevance to the cooling rate, isotope ratios, and the time period suggested to convert NH3 to the present N2 atmosphere.

  5. Taking on Titan: Meet Carrie Anderson

    NASA Video Gallery

    When she was a little girl, Carrie Anderson dreamed of becoming an astronomer. Now, as a space scientist at NASA Goddard Space Flight Center, Carrie studies the atmosphere on Titan: one of Saturn's...

  6. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGESBeta

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; et al

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  7. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean. PMID:22481630

  8. Hydrothermal Formation Of Hemi-hydrate Calcium Sulfate Whiskers In The Presence Of Additives

    SciTech Connect

    Luo, K. B.; Li, C. M.; Li, H. P.; Ning, P.; Xiang, L.

    2010-11-24

    The influence of addictives on the hydrothermal formation of hemi-hydrate calcium sulfate (CaSO{sub 4{center_dot}}0.5H{sub 2}O) whiskers were discussed in this paper, using CaCl{sub 2} and Na{sub 2}SO{sub 4} as the reactants. The presence of NaCl, CaCl{sub 2} or Na{sub 2}SO{sub 4} increased the concentrations of Ca{sup 2+} and SO{sub 4}{sup 2-}, leading to the formation of CaSO{sub 4{center_dot}}0.5H{sub 2}O whiskers with aspect ratio lower than 50. The one dimensional growth of CaSO{sub 4{center_dot}}0.5H{sub 2}O whiskers was enhanced in water with no additives owing to the low super-saturation, leading to the formation of uniform whiskers with a length of 200-2000 {mu}m and an aspect ratio higher than 100.

  9. The Transformation of Adaptation Specificity to Whisker Identity from Brainstem to Thalamus

    PubMed Central

    Jubran, Muna; Mohar, Boaz; Lampl, Ilan

    2016-01-01

    Stimulus specific adaptation has been studied extensively in different modalities. High specificity implies that deviant stimulus induces a stronger response compared to a common stimulus. The thalamus gates sensory information to the cortex, therefore, the specificity of adaptation in the thalamus must have a great impact on cortical processing of sensory inputs. We studied the specificity of adaptation to whisker identity in the ventral posteromedial nucleus of the thalamus (VPM) in rats using extracellular and intracellular recordings. We found that subsequent to repetitive stimulation that induced strong adaptation, the response to stimulation of the same, or any other responsive whisker was equally adapted, indicating that thalamic adaptation is non-specific. In contrast, adaptation of single units in the upstream brainstem principal trigeminal nucleus (PrV) was significantly more specific. Depolarization of intracellularly recorded VPM cells demonstrated that adaptation is not due to buildup of inhibition. In addition, adaptation increased the probability of observing complete synaptic failures to tactile stimulation. In accordance with short-term synaptic depression models, the evoked synaptic potentials in response to whisker stimulation, subsequent to a response failure, were facilitated. In summary, we show that local short-term synaptic plasticity is involved in the transformation of adaptation in the trigemino-thalamic synapse and that the low specificity of adaptation in the VPM emerges locally rather than cascades from earlier stages. Taken together we suggest that during sustained stimulation, local thalamic mechanisms equally suppress inputs arriving from different whiskers before being gated to the cortex. PMID:27445716

  10. Microwave absorption behavior of ZnO whisker modified by nanosized Fe3O4 particles.

    PubMed

    Hu, Shuchun; Wu, Guofeng; Huang, Zhenhao; Chen, Xiaolang

    2010-11-01

    Tetra-needle-like ZnO whisker was magnetic modified through in situ synthesis of nanosized Fe3O4 particles on the surface of the whisker, and the microwave absorption behavior of the as-prepared product was investigated in detail. The result of the comparative microwave absorbing experiment showed that the magnetic modified ZnO whisker appeared more superior property of microwave absorption than that of the original ZnO whisker in 2-18 GHz. Further investigation indicated that the microwave absorption behavior of the product was influenced by ferrite content and Fe3O4 particles' distribution in the product. When the ferrite content of the product changed from 2 wt% to 9 wt%, the microwave absorbing ability of the product was increased; then, the microwave absorbing ability of the product decreased with the further increasing of ferrite content from 9 wt% to 16 wt%. The product with uniform distribution of Fe3O4 particles showed better microwave absorption property than that with irregular distribution of Fe3O4 particles, and this result inferred that the biphase interface between ZnO and Fe3O4 contributed to microwave absorption through interface polarization. PMID:21137989

  11. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.

    PubMed

    Mohammed, Hisham; Jain, Neeraj

    2014-02-15

    In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. PMID:23853077

  12. Optogenetic Patterning of Whisker-Barrel Cortical System in Transgenic Rat Expressing Channelrhodopsin-2

    PubMed Central

    Yokoyama, Yukinobu; Sumiyoshi, Akira; Shibuya, Yuma; Matsuzaka, Yoshiya; Kawashima, Ryuta; Mushiake, Hajime; Ishizuka, Toru; Yawo, Hiromu

    2014-01-01

    The rodent whisker-barrel system has been an ideal model for studying somatosensory representations in the cortex. However, it remains a challenge to experimentally stimulate whiskers with a given pattern under spatiotemporal precision. Recently the optogenetic manipulation of neuronal activity has made possible the analysis of the neuronal network with precise spatiotemporal resolution. Here we identified the selective expression of channelrhodopsin-2 (ChR2), an algal light-driven cation channel, in the large mechanoreceptive neurons in the trigeminal ganglion (TG) as well as their peripheral nerve endings innervating the whisker follicles of a transgenic rat. The spatiotemporal pattern of whisker irradiation thus produced a barrel-cortical response with a specific spatiotemporal pattern as evidenced by electrophysiological and functional MRI (fMRI) studies. Our methods of generating an optogenetic tactile pattern (OTP) can be expected to facilitate studies on how the spatiotemporal pattern of touch is represented in the somatosensory cortex, as Hubel and Wiesel did in the visual cortex. PMID:24695456

  13. Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sisal whiskers (SW) were prepared by acid hydrolysis for subsequent evaluation as reinforcing material for biodegradable matrices of thermoplastic starch (TPS) and TPS/polycaprolactone (TPS/PCL) blends. The acid hydrolyzed SW had dimensions of 5±2 nm in diameter and 210±60 nm in length and 78% cryst...

  14. Rheological behavior of injection-moldable silicon powder-silicon carbide whisker formulations

    SciTech Connect

    Tsao, I.; Danforth, S.C. . Dept. of Ceramic Engineering)

    1993-12-01

    The rheological behavior of injection-moldable formulations for reaction-bonded Si[sub 3]N[sub 4] toughened with silicon carbide whiskers was studied using capillary rheometry. The effects on rheology of the following parameters were examined: solids loading, powder/whisker volume ratio, particle size and type, and binder composition. Two important aspects of the flow behavior were delineated. First, corrections for end effects and slippage along the wall were made in order to interpret the experimental data properly. At high shearing rates slip may account for more than 50% of the total flow. Such slippage promotes flow into the smallest channels for corners of the mold and may appreciably facilitate molding. Consequently the careful study of slippage is an inherent requirement of the rheological characterization of these concentrated suspensions. Second, the suspension viscosities were delineated. An empirical equation for predicting relative viscosity was developed for formulations containing up to [approximately]30 vol% of silicon carbide whiskers. Suspension viscosities generally increased with decreasing particle size and increasing whisker contents. Particle surface roughness appears to affect the shearing behavior. Binders of low molecular weight resulted in higher relative viscosities than higher molecular weight binders, indicating possibly better dispersion of solids when more viscous binders are employed.

  15. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  16. Whisker-like sensors with tunable follicle sinus complex for underwater applications

    NASA Astrophysics Data System (ADS)

    Valdivia y Alvarado, Pablo; Bhat, Sriharsha

    2014-03-01

    In this study we present the design, analysis, and experimental validation of a tunable follicle-sinus complex (FSC) unit for whisker-like sensors. The tunable FSC unit displays variable viscoelasticity enabled by a dielectric elastomer (DE) mechanism. Our previous studies on whisker-like sensors for underwater applications have shown the dependence between both static and dynamic sensor performance and FSC material properties. Variations in FSC modulus and viscosity affect its effective stiffness and damping and in turn the sensitivity and range of the sensors. A new FSC design is presented that uses a DE mechanism to tune the effective stiffness and damping of the follicle region. A model to better predict the resulting sensitivity and measurement range is described. The model accounts for the viscoelastic of the FSC components, pre-loading of the FSK volume, and stiffness ratios between the sensor whisker-like shaft and the FSC region. The changes in both the stiffness and damping of the whisker-like sensors are characterized experimentally using loading and impulse tests and compared with model estimates.

  17. Seal whisker-inspired circular cylinders reduce vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Beem, Heather; Triantafyllou, Michael

    2012-11-01

    Recent work shows that the undulatory, asymmetric geometry of harbor seal whiskers passively reduces vortex-induced vibration (VIV) amplitudes to less than 0.1 times the whisker diameter. This reduction holds in frontal flows, but due to the elliptical cross-section of the whisker, flows that approach from large angles of attack generate significant vibrational response. The present study investigates the possibility of extending the vibration reduction to unidirectional bodies, such that flows from all angles cause reduced VIV. A method for developing a new geometry that incorporates the ``whisker'' features into bodies with uniform, circular cross-section is presented. This geometry and multiple variations on it are fabricated into rigid models. Forces are measured on the models while they undergo imposed oscillations and are towed down a water tank. Contour plots of CL , v show peak VIV amplitudes to decrease as much as 28% from that of a standard cylinder. This result holds promise for applications where vibration reduction is desired, regardless of the angle of oncoming flow.

  18. Vortex-Induced Vibration (VIV) Reduction Properties of Seal Whisker-Like Geometries

    NASA Astrophysics Data System (ADS)

    Hans, Hendrik; Miao, Jianmin; Triantafyllou, Michael

    2013-11-01

    Biological studies have shown that harbor seal whiskers are capable of reducing Vortex-Induced Vibrations (VIV). As the whiskers have convoluted geometry, it is necessary to evaluate the parameters that define their VIV reduction properties. Whisker-Like Geometries (WLGs) consisting of all but one feature on the true whisker geometry are designed. Comparison of VIV on these WLGs with VIV on circular and elliptical cylinders at Re = 500 is performed. Three-dimensional simulations of flow past these geometries, which are allowed to freely vibrate in crossflow, are performed with the Implicit Large Eddy Simulation as the turbulence model. The results indicate that the existence of axial undulations is the most dominant feature that affects the VIV reduction. The smallest VIV is observed on WLGs with dual-axial undulations and the largest VIV is observed on the circular cylinder. Variations in the features of the WLGs result in noticeable changes in their VIV. The circular cylinder is observed to response as a steady system while the WLGs with dual-axial undulations are observed to respond as a chaotic system. The response of WLGs with single-axial undulations is found to depend on their detailed features. I would like to acknowledge the support and funding from National Research Foundation (NRF) through CENSAM of Singapore-MIT Alliance for Research and Technology and Nanyang Technological University.

  19. Cortical Dependence of Whisker Responses in Posterior Medial Thalamus In Vivo

    PubMed Central

    Mease, Rebecca A.; Sumser, Anton; Sakmann, Bert; Groh, Alexander

    2016-01-01

    Cortical layer 5B (L5B) thick-tufted pyramidal neurons have reliable responses to whisker stimulation in anesthetized rodents. These cells drive a corticothalamic pathway that evokes spikes in thalamic posterior medial nucleus (POm). While a subset of POm has been shown to integrate both cortical L5B and paralemniscal signals, the majority of POm neurons are suggested to receive driving input from L5B only. Here, we test this possibility by investigating the origin of whisker-evoked responses in POm and specifically the contribution of the L5B-POm pathway. We compare L5B spiking with POm spiking and subthreshold responses to whisker deflections in urethane anesthetized mice. We find that a subset of recorded POm neurons shows early (<50 ms) spike responses and early large EPSPs. In these neurons, the early large EPSPs matched L5B input criteria, were blocked by cortical inhibition, and also interacted with spontaneous Up state coupled large EPSPs. This result supports the view of POm subdivisions, one of which receives whisker signals predominantly via L5B neurons. PMID:27230219

  20. Microstructure and properties of alumina-whisker-reinforced tetragonal zirconia polycrystal matrix composites

    SciTech Connect

    Roberts, J.M.; Singh, J.P. ); Scattergood, R.O. . Dept. of Materials Science and Engineering)

    1991-01-01

    With the increasing demand of today's technology, there is a growing need for high temperature materials with improved fracture toughness. Whisker-reinforced ceramic composites are materials with potentially high fracture toughness. Many whisker-matrix systems are possible, but the choices for toughened composites are limited by such considerations as chemical compatibility and thermal expansion mismatch. In view of the high fracture toughness of tetragonal zirconia polycrystals (TZP) matrix, many investigators have successfully attempted to improve the mechanical properties of yttria stabilized tetragonal zirconia polycrystals (Y-TZP) with the addition of strong, single crystal SiC whiskers. The primary objective of this work was to place Al{sub 2}O{sub 3} whiskers into an Y-TZP matrix and study the toughening effects on the new composite. This particular system was chosen because of the high strength and reasonably high toughness inherent within Y-TZP and potentially high strength obtainable within a single crystal alumina. This, combined with an agreeable thermal expansion mismatch, could theoretically produce a composite of exceptionally high toughness. 14 refs., 7 figs.

  1. Cortical Dependence of Whisker Responses in Posterior Medial Thalamus In Vivo.

    PubMed

    Mease, Rebecca A; Sumser, Anton; Sakmann, Bert; Groh, Alexander

    2016-08-01

    Cortical layer 5B (L5B) thick-tufted pyramidal neurons have reliable responses to whisker stimulation in anesthetized rodents. These cells drive a corticothalamic pathway that evokes spikes in thalamic posterior medial nucleus (POm). While a subset of POm has been shown to integrate both cortical L5B and paralemniscal signals, the majority of POm neurons are suggested to receive driving input from L5B only. Here, we test this possibility by investigating the origin of whisker-evoked responses in POm and specifically the contribution of the L5B-POm pathway. We compare L5B spiking with POm spiking and subthreshold responses to whisker deflections in urethane anesthetized mice. We find that a subset of recorded POm neurons shows early (<50 ms) spike responses and early large EPSPs. In these neurons, the early large EPSPs matched L5B input criteria, were blocked by cortical inhibition, and also interacted with spontaneous Up state coupled large EPSPs. This result supports the view of POm subdivisions, one of which receives whisker signals predominantly via L5B neurons. PMID:27230219

  2. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage.

  3. Influence of fabrication on mechanical properties of SiC-whisker-reinforced alumina

    SciTech Connect

    DeArellano-Lopez, A.R.; Dominguez-Rodriguez, A. . Dept. Materia Condensada); Goretta, K.C.; Routbort, J.L. )

    1991-10-01

    Samples of SiC-whisker-reinforced Al{sub 2}O{sub 3} composites obtained from three different sources have been crept in compression at 1400{degrees}C using both constant load (CL) and constant strain rate (CSR). Macroscopic results indicate some difference in behavior due to fabrication. TEM is used to support this hypothesis. 10 refs., 3 figs.

  4. Huygens will soon set off for Titan

    NASA Astrophysics Data System (ADS)

    1997-09-01

    When it parachutes slowly down to the surface of Titan, in November 2004, Huygens will unmask the most enigmatic object in the Solar System. Baffled and tantalized, space scientists don't know how this moon of Saturn acquired a dense atmosphere, which is rich in nitrogen like the Earth's air but also possesses many carbon compounds. The scientists can't say whether the surface of Titan is solid or liquid, or a bit of each. But many are convinced that Titan offers them their best chance of discovering what the Earth and its chemistry were like, before life began. A heat shield will protect Huygens as it slams into Titan's atmosphere at 20,000 kilometres per second. A succession of parachutes will adjust Titan's speed of descent through the atmosphere. Radio signals from the probe will convey the results to the Cassini orbiter, for relaying tothe Earth, and will also reveal how Huygens and its parachute are blown about by the winds of Titan, during the descent. Huygens carries six sets of instruments devised by multinational teams of scientists in Europe and the USA. They will analyse the chemical composition of the haze that hides Titan's surface. They will gauge the weather of Titan during Huygens' descent, and image the clouds and the surface. A surface science package will report the true nature of Titan's surface. A televised launch Cassini-Huygens will be launched by a NASA Titan IVB rocket from the Cape Canaveral Air Station in Florida. The earliest launch date is 6 October, but this is now likely to slip, to allow for the repair of minor damage to insulation within the Huygens probe (see ESA Press Release Nr 27-97). Provided the launch occurs before 4 November, there will be no delay in the arrival at Saturn and Titan. ESA will provide a live TV transmission, free of charge, for European news organizations and other organizations wishing to receive it. Live pictures of the launch will be accompanied by interviews with scientists and engineers of ESA's Huygens

  5. Future Exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Matson, D. L.; Coustenis, A.; Lunine, J.; Lebreton, J.; Reh, K.; Beauchamp, P.

    2009-05-01

    The future exploration of Titan and Enceladus has become very important for the planetary community. The study conducted last year of the Titan Saturn System Mission (TSSM) led to an announcement in which ESA and NASA prioritized future OPF missions, stating that TSSM is planned after EJSM (for details see http://www.lpi.usra.edu/opag/). TSSM consists of a TSSM Orbiter that would carry two in situ elements: the Titan Montgolfiere hot air balloon and the Titan Lake Lander. The mission could launch in the 2023-2025 timeframe on a trajectory to arrive ~9 years later for a 4-year mission in the Saturn system. Soon after arrival at Saturn, the montgolfiere would be delivered to Titan to begin its mission of airborne, scientific observations of Titan from an altitude of about 10 km. The montgolfiere would have a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power system and would be designed to last at least 6-12 months in Titan's atmosphere. With the predicted winds and weather, that would be sufficient to circumnavigate the globe! On a subsequent fly-by, the TSSM orbiter would release the Lake Lander on a trajectory toward Titan for a targeted entry. It would descend through the atmosphere making scientific measurements, much like Huygens did, and then land and float on one of Titan's seas. This would be its oceanographic phase, making a physical and chemical assessment of the sea. The Lake Lander would operate 8-10 hours until its batteries become depleted. Following the delivery of the in situ elements, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes in situ sampling of Enceladus' plumes as well as Titan flybys. After the Saturn system tour, the TSSM orbiter would enter orbit around Titan for a global survey phase. Synergistic and coordinated observations would be carried out between the TSSM orbiter and the in situ elements. The scientific requirements were developed by the international TSSM Joint Science Definition

  6. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  7. Preparation of Lead Titanate Ultrathin Film Using Langmuir-Blodgett Film as Precursor

    NASA Astrophysics Data System (ADS)

    Sugai, Hiroshi; Iijima, Takashi; Masumoto, Hiroshi

    1999-09-01

    The Langmuir-Blodgett (LB) method is investigated as a process for the fabrication of ultrathin films of oxides such as lead titanate. LB film was fabricated by depositing a monolayer prepared from a fatty acid such as stearic acid (C17H35COOH) and a subphase containing lead chloride (PbCl2) and titanium potassium oxalate (K2TiO (C2O4)2). For converting from an LB film containing lead and titanium to an inorganic film, ultraviolet/ozone (UVO) treatment was applied. Subsequent thermal annealing resulted in a dense oxide ultrathin film. The crystallographic orientation of lead titanate thin films was controlled by conditions of precursor preparation such as the molecular ratio of lead and titanium, pH value and/or temperature in the subphase and the surface pressure. An X-ray diffraction pattern of the thin film indicating a well-defined perovskite structure was observed. Moreover, the results demonstrated the potential application of LB deposition for controlling the crystallographic orientation of lead titanate ultrathin films, particularly in the (111) or (101)(110) planes.

  8. Librations of Enceladus and Titan

    NASA Astrophysics Data System (ADS)

    Yseboodt, M.; Van Hoolst, T.; Baland, R. M.

    2015-12-01

    A moon in synchronous rotation has longitudinal librations (small deviations from the average rotation) because of its nonspherical mass distribution and its elliptical orbit around the planet. We study the long-period librations of Enceladus and Titan and include deformation effects and the existence of a subsurface ocean. We take into account the fact that the orbit is not Keplerian and has other periodicities than the main period of orbital motion around Saturn due to perturbations by the Sun, other planets and moons. An orbital theory is used to compute the orbital perturbations due to these other bodies.We numerically evaluate the amplitude of the long-period librations for many interior structure models of the moon constrained by the mass, radius and gravity field. Measurements of the librations may give constraints on the interior structure of the icy satellites.

  9. Parallel contingency statistics with Titan.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre

    2009-09-01

    This report summarizes existing statistical engines in VTK/Titan and presents the recently parallelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the parallel descriptive, correlative, multi-correlative, and principal component analysis engines. The ease of use of this new parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; however, the very nature of contingency tables prevent this new engine from exhibiting optimal parallel speed-up as the aforementioned engines do. This report therefore discusses the design trade-offs we made and study performance with up to 200 processors.

  10. Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2001-01-09

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  11. Saturn's Titan: Evidence for Current Cryovolcanic Activity

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Cassini VIMS Titan Surface Variability Group

    2009-09-01

    We report evidence suggesting current cryovolcanic activity on Titan. This is based on surface changes seen at selected locations by the Cassini Visual and Infrared Mapping Spectrometer (VIMS). Titan's surface is hard to observe because Titan's atmosphere is opaque at visual wavelengths due to methane absorption. However, VIMS is able to image the surface at selected infrared wavelengths where the methane is relatively transparent[1,2]. VIMS reported surface reflectance variability at Hotei Arcus (26S,78W) and that the variability might be due to deposition followed by coverage or dissipation of ammonia frost. Subsequently, Cassini RADAR images found that Hotei Arcus has lobate "flow” forms, consistent with the morphology of volcanic terrain [3]. Here we report the discovery of lobate "flow” patterns at Hotei Arcus in VIMS infrared images taken during Cassini close flybys during 2008-2009. These data further suggest that the brightness variability at Hotei Arcus is associated with ammonia, a compound expected in Titan's interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. It has not escaped our attention that gaseous ammonia, in association with methane and nitrogen in Titan's atmosphere, is similar to the terrestrial environment at the time that life first emerged. If Titan is currently active, then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan's chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. References: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04203, doi:10.1029/2008GL

  12. Atomic hydrogen distribution. [in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  13. Time Variability of Titan's Ionosphere Revisited

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Kai; Ip, Wing-Huen; Perryman, Rebecca; Waite, Hunter

    2015-04-01

    Since the Saturn Orbital Insertion in 2004, the Ion Neutral Mass Spectrometer (INMS) experiment aboard the Cassini-Huygens spacecraft has acquired an extensive data set. The decadal coverage of the measurements during numerous close encounters with Titan allows the study of spatial and temporal variations of Titan's nitrogen-rich atmosphere above 1000-km altitude. Titan's ionosphere is quite different to that of Earth's ionosphere. Due to Titan's thick (hundreds of kilometers) and dense atmosphere, the measurable ion density of Titan's nightside ionosphere extends well beyond the terminator. The diurnal variation of the ion density profiles and compositional changes are the result of photoionization and magnetospheric electron ionization (important at the night side). The different time evolutions of the light and heavy species from day to night could be indicative of the effects of flow dynamics and ion-molecule chemistry. From the observations, we can determine the ion content in Titan's night-side and the asymmetry between the dawn and dusk ion density profiles. We have also found in the long term data base the signature of the equatorial expansion of Titan's atmosphere during solar maximum. In addition the global distributions of the major compound N2 and minor species like CH4 and H2 all exhibit significant changes over a solar cycle as the closest approach points of Cassini moved from the northern hemisphere to the southern hemisphere. In this work, we will first compare the diurnal variations between different ion species and simulate the ion densities to study the possible contributing factors. Then we will compare the results of our analysis to those reported by other groups to construct a comprehensive model of Titan's neutral atmosphere and ionosphere under different solar conditions.

  14. Investigation of modified strontium titanate photoanodes

    SciTech Connect

    Sarkisyan, A.G.; Arutyunyan, V.M.; Melikyan, V.V.; Putnyn', E.V.

    1986-04-01

    This paper studies semiconducting phases on the basis of single-crystal and polycrystalline strontium titanate. An attempt is made to correlate the photoelectrochemical behavior of SrTiO/sub 3/ photoanodes with their electrophysical properties. It is shown that the photoelectrochemical properties of the photoanodes studied largely depend on the electrophysical parameters of the semiconducting strontium titanate. Ceramic electrodes doped with lanthanum display high photosensitivity.

  15. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  16. Evidence for surface heterogeneity on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.

    1993-08-01

    Observational results are presented for two rotational periods of Titan which exhibit the albedo difference noted by Lemmon et al. (1993) between this moon's positions at eastern and western elongation relative to Saturn. The persistence of this difference indicates that this heterogeneity is unlikely to be associated with transient features, and must be intrinsic to the surface. The results presented also indicate that Titan is locked in a synchronous orbit around Saturn.

  17. Titan Explorer: A NASA Flagship Mission Concept

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Leary, James C.; Lockwood, Mary Kae; Waite, J. Hunter

    2008-01-01

    We summarize the scientific potential and mission and system design for a Flagship-class mission to Titan. A broad range of science objectives are addressed by an architecture that is uniquely enabled by the Titan atmosphere which permits aerocapture of an orbiter and delivery of a lander and balloon, with all three elements packaged on a single launch vehicle. This multi-element architecture provides a portfolio of mission options adaptable to budget scope and partnering opportunities.

  18. An investigation of the growth of bismuth whiskers and nanowires during physical vapour deposition

    NASA Astrophysics Data System (ADS)

    Stanley, S. A.; Stuttle, C.; Caruana, A. J.; Cropper, M. D.; Walton, A. S. O.

    2012-10-01

    Bismuth thin films of thickness in the region of 500 nm have been prepared by planar magnetron sputtering onto glass, silicon and GaAs substrates. Electron microscopy of these films reveals that bismuth whiskers grow spontaneously when the substrate is heated to temperatures between 110 and 140 °C during deposition and the optimum temperature for such growth is largely independent of substrate. Depositing films under similar conditions using thermal evaporation does not, however, produce the whisker growth. X-ray diffraction has been employed to investigate film texture with temperature and it has been shown that the film crystallites are predominantly [1 1 0] and [1 1 1] oriented. The [1 1 0] orientation of the crystallites dominates at deposition temperatures above 110 °C for sputter deposition and the [1 1 1] at lower temperatures. The optimum temperature for whisker growth coincides with the temperature for the change between predominant orientations. While sputter deposition appears to favour films with crystallite orientation of [1 1 0], thermal evaporation favours [1 1 1] and has a higher change-over temperature. The whiskers that grow from the film emerge at off-normal angles between 43.3° and 69.2° with a mean of 54 ± 3°. The projected length of whiskers on a 500 nm film on a GaAs substrate shows a wide distribution to a maximum of more than 100 µm. The mean projected length for this sample was 16 ± 1 µm and the diameter is around 0.5 µm. Measurements of the electrical properties of the whiskers at room temperature reveals ohmic behaviour with an estimated resistivity of 2.2 ± 0.2 µΩ m. Detailed examination of scanning electron micrographs, eliminates all growth mechanisms except tip growth by a non-catalysed vapour-solid/vapour-liquid-solid method. By depositing thinner films it is shown that this spontaneous growth of whiskers offers a route to fabricate high quality bismuth nanowires of lengths exceeding 10 µm.

  19. Safe prescribing: a titanic challenge

    PubMed Central

    Routledge, Philip A

    2012-01-01

    The challenge to achieve safe prescribing merits the adjective ‘titanic’. The organisational and human errors leading to poor prescribing (e.g. underprescribing, overprescribing, misprescribing or medication errors) have parallels in the organisational and human errors that led to the loss of the Titanic 100 years ago this year. Prescribing can be adversely affected by communication failures, critical conditions, complacency, corner cutting, callowness and a lack of courage of conviction, all of which were also factors leading to the Titanic tragedy. These issues need to be addressed by a commitment to excellence, the final component of the ‘Seven C's’. Optimal prescribing is dependent upon close communication and collaborative working between highly trained health professionals, whose role is to ensure maximum clinical effectiveness, whilst also protecting their patients from avoidable harm. Since humans are prone to error, and the environments in which they work are imperfect, it is not surprising that medication errors are common, occurring more often during the prescribing stage than during dispensing or administration. A commitment to excellence in prescribing includes a continued focus on lifelong learning (including interprofessional learning) in pharmacology and therapeutics. This should be accompanied by improvements in the clinical working environment of prescribers, and the encouragement of a strong safety culture (including reporting of adverse incidents as well as suspected adverse drug reactions whenever appropriate). Finally, members of the clinical team must be prepared to challenge each other, when necessary, to ensure that prescribing combines the highest likelihood of benefit with the lowest potential for harm. PMID:22738396

  20. Handling Late Changes to Titan Science

    NASA Technical Reports Server (NTRS)

    Pitesky, Jo Eliza; Steadman, Kim; Ray, Trina; Burton, Marcia

    2014-01-01

    The Cassini mission has been in orbit for eight years, returning a wealth of scientific data from Titan and the Saturnian system. The mission, a cooperative undertaking between NASA, ESA and ASI, is currently in its second extension of the prime mission. The Cassini Solstice Mission (CSM) extends the mission's lifetime until Saturn's northern summer solstice in 2017. The Titan Orbital Science Team (TOST) has the task of integrating the science observations for all 56 targeted Titan flybys in the CSM. In order to balance Titan science across the entire set of flybys during the CSM, to optimize and influence the Titan flyby altitudes, and to decrease the future workload, TOST went through a "jumpstart" process before the start of the CSM. The "jumpstart" produced Master Timelines for each flyby, identifying prime science observations and allocating control of the spacecraft attitude to specific instrument teams. Three years after completing this long-range plan, TOST now faces a new challenge: incorporating changes into the Titan Science Plan without undoing the balance achieved during the jumpstart.