Science.gov

Sample records for potent hiv-1 protease

  1. De novo design and discovery of potent, nonpeptidal HIV-1 protease inhibitors

    SciTech Connect

    Lam, P.Y.S.; Eyermann, C.J.; Hodge, C.N.; Jadhav, P.K.; Ru, Yu; Bacheler, L.T.; Meek, J.L.; Otto, M.J.; Rayner, M.M.; Wong, N.Y.; Chang, C.H.; Weber, P.C.; Jackson, D.A.; Sharpe, T.R.; Erickson-Viitanen, S.K.

    1993-12-31

    Intense worldwide research in HIV-1 protease inhibition has resulted in many inhibitors with nanomolar Ki. However, they are mostly pseudopeptides (containing amide bonds) and substrate-like. In this work the authors report that using 3-D database searching, computer modeling and x-ray structures of the HIV-1 protease/inhibitor complex, a completely novel class of potent nonpeptides has been designed and synthesized. The Ki is in the subnanomolar range and the IC90 for the cell assays in the submicromolar range. Confirmation of the mode of binding was achieved by a high resolution x-ray structure of a HIV-1 protease/inhibitor complex. Molecular recognition studies between HIV-1 protease and these inhibitors will also be discussed.

  2. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  3. Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Parham, Garth L.; Martyr, Cuthbert D.; Nyalapatla, Prasanth R.; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2013-10-08

    The design, synthesis, and biological evaluation of a series of HIV-1 protease inhibitors incorporating stereochemically defined fused tricyclic P2 ligands are described. Various substituent effects were investigated to maximize the ligand-binding site interactions in the protease active site. Inhibitors 16a and 16f showed excellent enzyme inhibitory and antiviral activity, although the incorporation of sulfone functionality resulted in a decrease in potency. Both inhibitors 16a and 16f maintained activity against a panel of multidrug resistant HIV-1 variants. A high-resolution X-ray crystal structure of 16a-bound HIV-1 protease revealed important molecular insights into the ligand-binding site interactions, which may account for the inhibitor’s potent antiviral activity and excellent resistance profiles.

  4. Design, Synthesis, and X-ray Structure of Substituted Bis-tetrahydrofuran (Bis-THF)-Derived Potent HIV-1 Protease Inhibitors

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Steffey, Melinda; Wang, Yuan-Fang; Agniswamy, Johnson; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2012-06-18

    We investigated substituted bis-THF-derived HIV-1 protease inhibitors in order to enhance ligand-binding site interactions in the HIV-1 protease active site. In this context, we have carried out convenient syntheses of optically active bis-THF and C4-substituted bis-THF ligands using a [2,3]-sigmatropic rearrangement as the key step. The synthesis provided convenient access to a number of substituted bis-THF derivatives. Incorporation of these ligands led to a series of potent HIV-1 protease inhibitors. Inhibitor 23c turned out to be the most potent (K{sub i} = 2.9 pM; IC{sub 50} = 2.4 nM) among the inhibitors. An X-ray structure of 23c-bound HIV-1 protease showed extensive interactions of the inhibitor with the protease active site, including a unique water-mediated hydrogen bond to the Gly-48 amide NH in the S2 site.

  5. Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor.

    PubMed

    Razzaghi-Asl, Nima; Sepehri, Saghi; Ebadi, Ahmad; Miri, Ramin; Shahabipour, Sara

    2015-01-01

    Human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR inhibitor/drug design. In the present contribution, the effect of HIV-1 PR flexibility (within multiple crystallographic structures of HIV-1 PR) on binding to the Amprenavir was elucidated via an ensemble docking approach. Molecular docking studies were performed via advanced AutoDock4.2 software. Ensemble docking of Amprenavir into the active site of various conformations of HIV-1 PR predicted different interaction modes/energies. Analysis of binding factors in terms of docking false negatives/positives revealed a determinant role of enzyme conformational variation in prediction of optimum induced fit (PDB ID: 1HPV). The outcomes of this study demonstrated that conformation of receptor may significantly affect the accuracy of docking/binding results in structure-based rational design of anti HIV-1 PR agents. Furthermore; some strategies to re-score the docking results in HIV-1 PR targeted docking studies were proposed. PMID:26330867

  6. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir

    PubMed Central

    Aoki, Manabu; Hayashi, Hironori; Yedidi, Ravikiran S.; Martyr, Cuthbert D.; Takamatsu, Yuki; Aoki-Ogata, Hiromi; Nakamura, Teruya; Nakata, Hirotomo; Das, Debananda; Yamagata, Yuriko; Ghosh, Arun K.

    2015-01-01

    ABSTRACT We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1WT), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRVRP51); the three compounds remained active against HIV-1DRVRP51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRVR) has recently been observed in vivo and in

  7. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    SciTech Connect

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang; Bencze, Krisztina Z.; Koupparis, Kyriacos; O’Connor, Carrie E.; Kovari, Iulia A.; Spaller, Mark R.; Kovari, Ladislau C.

    2013-09-06

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

  8. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound, is a potent inhibitor of a multidrug-resistant HIV-1 protease variant

    PubMed Central

    Giffin, Michael J.; Heaslet, Holly; Brik, Ashraf; Lin, Ying-Chuan; Cauvi, Gabrielle; Wong, Chi-Huey; McRee, Duncan E.; Elder, John H.; Stout, C. David; Torbett, Bruce E.

    2009-01-01

    Treatment with protease inhibitors, a component of Highly Active Anti-retroviral Therapy (HAART), often results in viral resistance. Structural and biochemical characterization of a 6X mutant arising from in vitro selection with compound 1, a C2-symmetric diol protease inhibitor, has been previously described. We now show that compound 2, a copper(I)-catalyzed 1,2,3-triazole derived compound previously shown to be potently effective against wild-type protease (IC50 = 6.0 nM), has low nM activity (IC50 = 15.7 nM) against the multidrug-resistant 6X HIV-1 protease mutant. Compound 2 displays similar efficacy against wild-type and 6X HIV-1 in viral replication assays. While structural studies of compound 1 bound to wild type and mutant protease revealed a progressive change in binding mode in the mutants, the 1.3 Å resolution 6X protease–compound 2 crystal structure reveals nearly identical interactions for 2 as in the wild-type protease complex with very little change in compound 2 or protease conformation. PMID:18823110

  9. A symmetric inhibitor binds HIV-1 protease asymmetrically.

    PubMed

    Dreyer, G B; Boehm, J C; Chenera, B; DesJarlais, R L; Hassell, A M; Meek, T D; Tomaszek, T A; Lewis, M

    1993-01-26

    Potential advantages of C2-symmetric inhibitors designed for the symmetric HIV-1 protease include high selectivity, potency, stability, and bioavailability. Pseudo-C2-symmetric monools and C2-symmetric diols, containing central hydroxymethylene and (R,R)-dihydroxyethylene moieties flanked by a variety of hydrophobic P1/P1' side chains, were studied as HIV-1 protease inhibitors. The monools and diols were synthesized in 8-10 steps from D-(+)-arabitol and D-(+)-mannitol, respectively. Monools with ethyl or isobutyl P1/P1' side chains were weak inhibitors of recombinant HIV-1 protease (Ki > 10 microM), while benzyl P1/P1' side chains afforded a moderately potent inhibitor (apparent Ki = 230 nM). Diols were 100-10,000x more potent than analogous monools, and a wider range of P1/P1' side chains led to potent inhibition. Both classes of compounds exhibited lower apparent Ki values under high-salt conditions. Surprisingly, monool and diol HIV-1 protease inhibitors were potent inhibitors of porcine pepsin, a prototypical asymmetric monomeric aspartic protease. These results were evaluated in the context of the pseudosymmetric structure of monomeric aspartic proteases and their evolutionary kinship with the retroviral proteases. The X-ray crystal structure of HIV-1 protease complexed with a symmetric diol was determined at 2.6 A. Contrary to expectations, the diol binds the protease asymmetrically and exhibits 2-fold disorder in the electron density map. Molecular dynamics simulations were conducted beginning with asymmetric and symmetric HIV-1 protease/inhibitor model complexes. A more stable trajectory resulted from the asymmetric complex, in agreement with the observed asymmetric binding mode. A simple four-point model was used to argue more generally that van der Waals and electrostatic force fields can commonly lead to an asymmetric association between symmetric molecules. PMID:8422397

  10. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  11. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  12. A radiometric assay for HIV-1 protease

    SciTech Connect

    Hyland, L.J.; Dayton, B.D.; Moore, M.L.; Shu, A.Y.; Heys, J.R.; Meek, T.D. )

    1990-08-01

    A rapid, high-throughput radiometric assay for HIV-1 protease has been developed using ion-exchange chromatography performed in 96-well filtration plates. The assay monitors the activity of the HIV-1 protease on the radiolabeled form of a heptapeptide substrate, (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, which is based on the p17-p24 cleavage site found in the viral polyprotein substrate Pr55gag. Specific cleavage of this uncharged heptapeptide substrate by HIV-1 protease releases the anionic product (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr, which is retained upon minicolumns of the anion-exchange resin AG1-X8. Protease activity is determined from the recovery of this radiolabeled product following elution with formic acid. This facile and highly sensitive assay may be utilized for steady-state kinetic analysis of the protease, for measurements of enzyme activity during its purification, and as a routine assay for the evaluation of protease inhibitors from natural product or synthetic sources.

  13. Potent HIV-1 protease inhibitors incorporating meso-bicyclic urethanes as P2-ligands: structure-based design, synthesis, biological evaluation and protein-ligand X-ray studies

    SciTech Connect

    Ghosh, Arun; Gemma, Sandra; Takayama, Jun; Baldridge, Abigail; Leshchenko-Yashchuk, Sofiya; Miller, Heather; Wang, Yuan-Fang; Kovalevsky, Andrey; Koh, Yashiro; Weber, Irene; Mitsuya, Hiroaki

    2008-12-05

    Recently, we designed a series of novel HIV-1 protease inhibitors incorporating a stereochemically defined bicyclic fused cyclopentyl (Cp-THF) urethane as the high affinity P2-ligand. Inhibitor 1 with this P2-ligand has shown very impressive potency against multi-drug-resistant clinical isolates. Based upon the 1-bound HIV-1 protease X-ray structure, we have now designed and synthesized a number of meso-bicyclic ligands which can conceivably interact similarly to the Cp-THF ligand. The design of meso-ligands is quite attractive as they do not contain any stereocenters. Inhibitors incorporating urethanes of bicyclic-1,3-dioxolane and bicyclic-1,4-dioxane have shown potent enzyme inhibitory and antiviral activities. Inhibitor 2 (K{sub i} = 0.11 nM; IC{sub 50} = 3.8 nM) displayed very potent antiviral activity in this series. While inhibitor 3 showed comparable enzyme inhibitory activity (K{sub i} = 0.18 nM) its antiviral activity (IC{sub 50} = 170 nM) was significantly weaker than inhibitor 2. Inhibitor 2 maintained an antiviral potency against a series of multi-drug resistant clinical isolates comparable to amprenavir. A protein-ligand X-ray structure of 3-bound HIV-1 protease revealed a number of key hydrogen bonding interactions at the S2-subsite. We have created an active model of inhibitor 2 based upon this X-ray structure.

  14. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  15. Identification of potent maturation inhibitors against HIV-1 clade C.

    PubMed

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  16. Identification of potent maturation inhibitors against HIV-1 clade C

    PubMed Central

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J.; Wild, Carl T.; Freed, Eric O.; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  17. Potent Antiviral HIV-1 Protease Inhibitor GRL-02031 Adapts to the Structures of Drug Resistant Mutants with Its P1;#8242;-Pyrrolidinone Ring

    SciTech Connect

    Chang, Yu-Chung E.; Yu, XiaXia; Zhang, Ying; Tie, Yunfeng; Wang, Yuan-Fang; Yashchuk, Sofiya; Ghosh, Arun K.; Harrison, Robert W.; Weber, Irene T.

    2012-11-14

    GRL-02031 (1) is an HIV-1 protease (PR) inhibitor containing a novel P1' (R)-aminomethyl-2-pyrrolidinone group. Crystal structures at resolutions of 1.25-1.55 {angstrom} were analyzed for complexes of 1 with the PR containing major drug resistant mutations, PR{sub I47V}, PR{sub L76V}, PR{sub V82A}, and PR{sub N88D}. Mutations of I47V and V82A alter residues in the inhibitor-binding site, while L76V and N88D are distal mutations having no direct contact with the inhibitor. Substitution of a smaller amino acid in PR{sub I47V} and PR{sub L76V} and the altered charge of PR{sub N88D} are associated with significant local structural changes compared to the wild-type PR{sub WT}, while substitution of alanine in PR{sub V82A} increases the size of the S1' subsite. The P1' pyrrolidinone group of 1 accommodates to these local changes by assuming two different conformations. Overall, the conformation and interactions of 1 with PR mutants resemble those of PR{sub WT} with similar inhibition constants in good agreement with the antiviral potency on multidrug resistant HIV-1.

  18. The triple threat of HIV-1 protease inhibitors.

    PubMed

    Potempa, Marc; Lee, Sook-Kyung; Wolfenden, Richard; Swanstrom, Ronald

    2015-01-01

    Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy. PMID:25778681

  19. Probing Multidrug-Resistance and Protein-Ligand Interactions with Oxatricyclic Designed Ligands in HIV-1 Protease Inhibitors

    SciTech Connect

    Ghosh, Arun K.; Xu, Chun-Xiao; Rao, Kalapala V.; Baldridge, Abigail; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T.; Aoki, Manabu; Miguel, Salcedo Pedro; Amano, Masayuki; Mitsuya, Hiroaki

    2010-10-29

    We report the design, synthesis, biological evaluation, and X-ray crystallographic analysis of a new class of HIV-1 protease inhibitors. Compound 4 proved to be an extremely potent inhibitor toward various multidrug-resistant HIV-1 variants, representing a near 10-fold improvement over darunavir (DRV). Compound 4 also blocked protease dimerization with at least 10-fold greater potency than DRV.

  20. HIV-1 protease mutations and protease inhibitor cross-resistance.

    PubMed

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W

    2010-10-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  1. The higher barrier of darunavir and tipranavir resistance for HIV-1 protease

    SciTech Connect

    Wang, Yong; Liu, Zhigang; Brunzelle, Joseph S.; Kovari, Iulia A.; Dewdney, Tamaria G.; Reiter, Samuel J.; Kovari, Ladislau C.

    2011-11-17

    Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82 mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.

  2. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  3. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  4. Potent D-Peptide Inhibitors of HIV-1 Entry

    SciTech Connect

    Welch,B.; VanDemark, A.; Heroux, A.; Hill, C.; Kay, M.

    2007-01-01

    During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS.

  5. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Benko, Zsigmond; Elder, Robert T.; Li, Ge; Liang, Dong; Zhao, Richard Y.

    2016-01-01

    Background HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. Results A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. Conclusions This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings. PMID:26982200

  6. Quenched near-infrared fluorescent peptide substrate for HIV-1 protease assay

    NASA Astrophysics Data System (ADS)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.

    2006-02-01

    The HIV-1 protease enzyme is an excellent target for drug therapy of HIV infection/AIDS. To measure the protease activity and screen for potent protease inhibitors, homogeneous protease assays based on quenched fluorescent peptide substrates have been widely used as a high-throughput screening methods. The major problem in these assays is the compound interference or assay artifacts from colored or insoluble materials in the assay, e.g. assay components, screening library compounds, etc. We report in this paper a near-infrared fluorescence resonance energy transfer (NIRFRET) based HIV-1 protease assay that can dramatically reduce or completely eliminate these assay artifacts by using a novel near-IR donor-quencher pair and long wavelength excitation (780 nm) and detection (820+/-10 nm). In this assay, a HIV-1 protease peptide substrate is conjugated with a near-IR fluorescent donor (IRDye TM 800CW), and a novel near-IR non-fluorescent quencher (QC1) on opposite sides of the proteolytic cleavage site. The quencher, QC1, has extremely good spectral overlap of its absorption spectrum with the donor emission spectrum to ensure the efficient quenching of the donor's fluorescence. In the HIV-1 protease assay, this NIR-FRET system shows a large dynamic range, high signal to noise ratio, excellent Z'-factors, a wide range of DMSO tolerance, and no compound interference. This system provides a sensitive, robust assay for high-throughput screening (HTS) and can be readily adapted to other therapeutically significant protease targets.

  7. Comparison of HIV-1 protease expression in different fusion forms.

    PubMed

    Wan, M; Takagi, M; Loh, B N; Imanaka, T

    1995-06-01

    Earlier observations showed that the expression of recombinant protease of human immunodeficiency virus type-1 (HIV-1 PR) was usually in a low level, and its proteolytic activity and hydrophobicity were believed to be toxic for the host cells. Various constructs were investigated that contained an N-terminal extended HIV-1 PR gene (PR107) in order to find a system which can express this protease in high level. The constructs of PR107 gene expressed as fusion proteins either with glutathione S-transferase (GST) by pGEX-PR107 or with maltose-binding protein (MBP) by pMAL-PR107 showed that the full length of fusion protein exhibited self-cleavage in E. coli. The results from expression experiments indicated that the size of the fusion portion does not affect the self-processing of fused HIV-1 PR to release its mature form, despite the attachment of only one subunit of the dimeric protease to GST or MBP. The construct, pET-PR107, under the control of strong bacteriophage T7 promoter system, did not show clear advantages for expression of this HIV-1 PR. Comparing these three constructs, the pGEX-PR107 system showed the highest expression level. Quantitative immuno-blotting indicated that the amount of HIV-1 PR expressed by pGEX-PR107 was twice that expressed by pMAL-PR107, and thrice that expressed by pET-PR107. More than 1 mg of pure HIV-1 PR from per liter culture of E. coli. DH5 alpha containing pGEX-PR107 can be obtained via the purification procedures [Biochem. Mol. Biol. International, (1995) 35:899-912].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663445

  8. Local and spatial factors determining HIV-1 protease substrate recognition.

    PubMed Central

    Hazebrouck, S; Machtelinckx-Delmas, V; Kupiec, J J; Sonigo, P

    2001-01-01

    Insertional mutagenesis of the Escherichia coli thymidylate synthase (TS) was used to address substrate recognition of HIV-1 protease in a well characterized structural context. By modifying the TS conformation while maintaining its enzymic activity, we investigated the influence of protein folding on protease-substrate recognition. A slight destabilization of the TS structure permitted the cleavage of a target site, which was resistant in the native TS. This result supports a dynamic interpretation of HIV-1 protease specificity. Exposure time of the potential cleavage site, which depends on the stability of the global conformation, must be compatible with the cleavage kinetics, which are determined by the local sequence. Cleavage specificity has been described as the consequence of cumulative interactions, globally favourable, between at least six amino acids around the cleavage site. To investigate influence of local sequence, we introduced insertions of variable lengths in two exposed loops of the TS. In both environments, insertion of only two amino acids could determine specific cleavage. We then inserted libraries of dipeptides naturally cleaved by the HIV-1 protease in order to assess the limitations of established classifications of substrates in different conformational contexts. PMID:11513751

  9. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells

    PubMed Central

    2013-01-01

    Background The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes. Results Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4–20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection. Conclusions We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread. PMID:24364896

  10. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  11. Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors

    PubMed Central

    Urano, Emiko; Ablan, Sherimay D.; Mandt, Rebecca; Pauly, Gary T.; Sigano, Dina M.; Schneider, Joel P.; Martin, David E.; Nitz, Theodore J.; Wild, Carl T.

    2015-01-01

    Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1. PMID:26482309

  12. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components.

    PubMed

    Hou, Tingjun; Zhang, Wei; Wang, Jian; Wang, Wei

    2009-03-01

    Drug resistance significantly impairs the efficacy of AIDS therapy. Therefore, precise prediction of resistant viral mutants is particularly useful for developing effective drugs and designing therapeutic regimen. In this study, we applied a structure-based computational approach to predict mutants of the HIV-1 protease resistant to the seven FDA approved drugs. We analyzed the energetic pattern of the protease-drug interaction by calculating the molecular interaction energy components (MIECs) between the drug and the protease residues. Support vector machines (SVMs) were trained on MIECs to classify protease mutants into resistant and nonresistant categories. The high prediction accuracies for the test sets of cross-validations suggested that the MIECs successfully characterized the interaction interface between drugs and the HIV-1 protease. We conducted a proof-of-concept study on a newly approved drug, darunavir (TMC114), on which no drug resistance data were available in the public domain. Compared with amprenavir, our analysis suggested that darunavir might be more potent to combat drug resistance. To quantitatively estimate binding affinities of drugs and study the contributions of protease residues to causing resistance, linear regression models were trained on MIECs using partial least squares (PLS). The MIEC-PLS models also achieved satisfactory prediction accuracy. Analysis of the fitting coefficients of MIECs in the regression model revealed the important resistance mutations and shed light into understanding the mechanisms of these mutations to cause resistance. Our study demonstrated the advantages of characterizing the protease-drug interaction using MIECs. We believe that MIEC-SVM and MIEC-PLS can help design new agents or combination of therapeutic regimens to counter HIV-1 protease resistant strains. PMID:18704937

  13. An allosteric modulator of HIV-1 protease shows equipotent inhibition of wild-type and drug-resistant proteases.

    PubMed

    Ung, Peter M-U; Dunbar, James B; Gestwicki, Jason E; Carlson, Heather A

    2014-08-14

    NMR and MD simulations have demonstrated that the flaps of HIV-1 protease (HIV-1p) adopt a range of conformations that are coupled with its enzymatic activity. Previously, a model was created for an allosteric site located between the flap and the core of HIV-1p, called the Eye site (Biopolymers 2008, 89, 643-652). Here, results from our first study were combined with a ligand-based, lead-hopping method to identify a novel compound (NIT). NIT inhibits HIV-1p, independent of the presence of an active-site inhibitor such as pepstatin A. Assays showed that NIT acts on an allosteric site other than the dimerization interface. MD simulations of the ligand-protein complex show that NIT stably binds in the Eye site and restricts the flaps. That bound state of NIT is consistent with a crystal structure of similar fragments bound in the Eye site (Chem. Biol. Drug Des. 2010, 75, 257-268). Most importantly, NIT is equally potent against wild-type and a multidrug-resistant mutant of HIV-1p, which highlights the promise of allosteric inhibitors circumventing existing clinical resistance. PMID:25062388

  14. Nine Crystal Structures Determine the Substrate Envelope of the MDR HIV-1 Protease

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Brunzelle, Joseph; Kovari, Iulia A.; Kovari, Ladislau C.

    2012-03-27

    Under drug selection pressure, emerging mutations render HIV-1 protease drug resistant, leading to the therapy failure in anti-HIV treatment. It is known that nine substrate cleavage site peptides bind to wild type (WT) HIV-1 protease in a conserved pattern. However, how the multidrug-resistant (MDR) HIV-1 protease binds to the substrate cleavage site peptides is yet to be determined. MDR769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) was selected for present study to understand the binding to its natural substrates. MDR769 HIV-1 protease was co-crystallized with nine substrate cleavage site hepta-peptides. Crystallographic studies show that MDR769 HIV-1 protease has an expanded substrate envelope with wide open flaps. Furthermore, ligand binding energy calculations indicate weaker binding in MDR769 HIV-1 protease-substrate complexes. These results help in designing the next generation of HIV-1 protease inhibitors by targeting the MDR HIV-1 protease.

  15. Flap Conformations in HIV-1 Protease are Altered by Mutations

    NASA Astrophysics Data System (ADS)

    Fanucci, Gail; Blackburn, Mandy; Veloro, Angelo; Galiano, Luis; Fangu, Ding; Simmerling, Carlos

    2009-03-01

    HIV-1 protease (PR) is an enzyme that is a major drug target in the treatment of AIDS. Although the structure and function of HIV-1 PR have been studied for over 20 years, questions remain regarding the conformations and dynamics of the β-hairpin turns (flaps) that cover the active site cavity. Distance measurements with pulsed EPR spectroscopy of spin labeled constructs of HIV-1 PR have been used to characterize the flap conformations in the apo and inhibitor bound states. From the most probably distances and the breadth of the distance distribution profiles from analysis of the EPR data, insights regarding the flap conformations and flexibility are gained. The EPR results clearly show how drug pressure selected mutations alter the average conformation of the flaps and the degree of opening of the flaps. Molecular dynamics simulations successfully regenerate the experimentally determined distance distribution profiles, and more importantly, provide structural models for full interpretation of the EPR results. By combining experiment and theory to understand the role that altered flap flexibility/conformations play in the mechanism of drug resistance, key insights are gained toward the rational development of new inhibitors of this important enzyme.

  16. Synthesis, in vitro evaluation, and docking studies of novel chromone derivatives as HIV-1 protease inhibitor

    NASA Astrophysics Data System (ADS)

    Ungwitayatorn, Jiraporn; Wiwat, Chanpen; Samee, Weerasak; Nunthanavanit, Patcharawee; Phosrithong, Narumol

    2011-08-01

    Novel chromone derivatives with a benzopyran-4-one scaffold have been prepared by the one-pot cyclization reaction. The in vitro inhibitory activity of these new compounds towards HIV-1 protease have been evaluated using stop time HPLC method as the preliminary screening. The most potent compound, 7,8-dihydroxy-2-(3'-trifluoromethyl phenyl)-3-(3″-trifluoromethylbenzoyl)chromone ( 32), showed IC 50 = 0.34 μM. The molecular docking study supported results from experimental activity testing and also provided structure-activity relationship of this series.

  17. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir

    PubMed Central

    Yu, Yuqi; Wang, Jinan; Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2015-01-01

    Molecular dynamics simulations are performed to investigate the dynamic properties of wild-type HIV-1 protease and its two multi-drug-resistant variants (Flap + (L10I/G48V/I54V/V82A) and Act (V82T/I84V)) as well as their binding with APV and DRV inhibitors. The hydrophobic interactions between flap and 80 s (80’s) loop residues (mainly I50-I84’ and I50’-I84) play an important role in maintaining the closed conformation of HIV-1 protease. The double mutation in Act variant weakens the hydrophobic interactions, leading to the transition from closed to semi-open conformation of apo Act. APV or DRV binds with HIV-1 protease via both hydrophobic and hydrogen bonding interactions. The hydrophobic interactions from the inhibitor is aimed to the residues of I50 (I50’), I84 (I84’), and V82 (V82’) which create hydrophobic core clusters to further stabilize the closed conformation of flaps, and the hydrogen bonding interactions are mainly focused with the active site of HIV-1 protease. The combined change in the two kinds of protease-inhibitor interactions is correlated with the observed resistance mutations. The present study sheds light on the microscopic mechanism underlying the mutation effects on the dynamics of HIV-1 protease and the inhibition by APV and DRV, providing useful information to the design of more potent and effective HIV-1 protease inhibitors. PMID:26012849

  18. Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein-Ligand X-ray Crystal Structure

    SciTech Connect

    Ghosh, Arun K; Chapsal, Bruno D; Parham, Garth L; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2011-11-07

    We report the design, synthesis, biological evaluation, and the X-ray crystal structure of a novel inhibitor bound to the HIV-1 protease. Various C3-functionalized cyclopentanyltetrahydrofurans (Cp-THF) were designed to interact with the flap Gly48 carbonyl or amide NH in the S2-subsite of the HIV-1 protease. We investigated the potential of those functionalized ligands in combination with hydroxyethylsulfonamide isosteres. Inhibitor 26 containing a 3-(R)-hydroxyl group on the Cp-THF core displayed the most potent enzyme inhibitory and antiviral activity. Our studies revealed a preference for the 3-(R)-configuration over the corresponding 3-(S)-derivative. Inhibitor 26 exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray structure of 26-bound HIV-1 protease revealed important molecular insight into the ligand-binding site interactions.

  19. Understanding HIV-1 protease autoprocessing for novel therapeutic development

    PubMed Central

    Huang, Liangqun; Chen, Chaoping

    2013-01-01

    In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing. PMID:23859204

  20. Expedient screening for HIV-1 protease inhibitors using a simplified immunochromatographic assay.

    PubMed

    Kitidee, Kuntida; Khamaikawin, Wannisa; Thongkum, Weeraya; Tawon, Yardpiroon; Cressey, Tim R; Jevprasesphant, Rachaneekorn; Kasinrerk, Watchara; Tayapiwatana, Chatchai

    2016-05-15

    A colloidal gold-based immunochromatographic (IC) strip test was developed and validated for the detection of HIV-1 protease (HIV-PR) activity and inhibitory effect of HIV-PR inhibitors (PIs). It is a unique 'two-step' process requiring the combination of proteolysis of HIV-PR and an immunochromatographic reaction. Monoclonal antibodies to the free C-terminus of HIV matrix protein (HIV-MA) conjugated to gold particles and a monoclonal antibody against intact and cleaved forms of the HIV-MA are immobilized on the 'Test'-line of the IC strip. Using lopinavir, a potent HIV protease inhibitor, the IC-strip was optimized to detect inhibitory activity against HIV-protease. At a lopinavir concentration of 1000ng/mL (its suggested minimum effective concentration), a HIV-PRH6 concentration of 6mg/mL and incubation period of 60min were the optimal conditions. A preliminary comparison between a validated high-performance liquid chromatography assay and the IC-strip to semi-quantify HIV protease inhibitor concentrations (lopinavir and atazanavir) demonstrated good agreement. This simplified method is suitable for the rapid screening of novel protease inhibitors for future therapeutic use. Moreover, the IC strip could also be optimized to semi-quantify PIs concentrations in plasma samples. PMID:26490422

  1. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance.

    PubMed

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10(4) known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy. PMID:24910813

  2. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance

    PubMed Central

    Yu, Xiaxia; Weber, Irene T.; Harrison, Robert W.

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×104 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy. PMID:24910813

  3. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation

    PubMed Central

    Sankaran, Kris; Varghese, Vici; Winters, Mark A.; Hurt, Christopher B.; Eron, Joseph J.; Parkin, Neil; Holmes, Susan P.; Holodniy, Mark; Shafer, Robert W.

    2016-01-01

    ABSTRACT HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug

  4. Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance

    SciTech Connect

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N.L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-09-11

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.

  5. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  6. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    SciTech Connect

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  7. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    PubMed

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues. PMID:8894111

  8. Computational Prediction of HIV-1 Resistance to Protease Inhibitors.

    PubMed

    Hosseini, Ali; Alibés, Andreu; Noguera-Julian, Marc; Gil, Victor; Paredes, Roger; Soliva, Robert; Orozco, Modesto; Guallar, Victor

    2016-05-23

    The development of mutations in HIV-1 protease (PR) hinders the activity of antiretroviral drugs, forcing changes in drug prescription. Most resistance assessments used to date rely on expert-based rules on predefined sets of stereotypical mutations; such an information-driven approach cannot capture new polymorphisms or be applied for new drugs. Computational modeling could provide a more general assessment of drug resistance and could be made available to clinicians through the Internet. We have created a protocol involving sequence comparison and all-atom protein-ligand induced fit simulations to predict resistance at the molecular level. We first compared our predictions with the experimentally determined IC50 values of darunavir, amprenavir, ritonavir, and indinavir from reference PR mutants displaying different resistance levels. We then performed analyses on a large set of variants harboring more than 10 mutations. Finally, several sequences from real patients were analyzed for amprenavir and darunavir. Our computational approach detected all of the genotype changes triggering high-level resistance, even those involving a large number of mutations. PMID:27082876

  9. In Silico Prediction of Mutant HIV-1 Proteases Cleaving a Target Sequence

    PubMed Central

    Jensen, Jan H.; Willemoës, Martin; Winther, Jakob R.; De Vico, Luca

    2014-01-01

    HIV-1 protease represents an appealing system for directed enzyme re-design, since it has various different endogenous targets, a relatively simple structure and it is well studied. Recently Chaudhury and Gray (Structure (2009) 17: 1636–1648) published a computational algorithm to discern the specificity determining residues of HIV-1 protease. In this paper we present two computational tools aimed at re-designing HIV-1 protease, derived from the algorithm of Chaudhuri and Gray. First, we present an energy-only based methodology to discriminate cleavable and non cleavable peptides for HIV-1 proteases, both wild type and mutant. Secondly, we show an algorithm we developed to predict mutant HIV-1 proteases capable of cleaving a new target substrate peptide, different from the natural targets of HIV-1 protease. The obtained in silico mutant enzymes were analyzed in terms of cleavability and specificity towards the target peptide using the energy-only methodology. We found two mutant proteases as best candidates for specificity and cleavability towards the target sequence. PMID:24796579

  10. Decomposing the Energetic Impact of Drug-Resistant Mutations: The Example of HIV-1 Protease - DRV Binding

    PubMed Central

    Cai, Yufeng; Schiffer, Celia

    2016-01-01

    Summary HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical. Computational methods can provide more details about inhibitor-protease binding other than crystallography and isothermal titration calorimetry. Darunavir is the latest FDA approved HIV-1 protease inhibitor. In this context, the free energy component analysis is performed on the DRV binding to WT protease and ACT, a drug resistant variant, to evaluate contribution of each atoms of DRV to the binding affinity. This information can contribute to the rationale design of new HIV-1 protease inhibitors. PMID:22183557

  11. Contribution of the 80s loop of HIV-1 protease to the multidrug-resistance mechanism: crystallographic study of MDR769 HIV-1 protease variants

    SciTech Connect

    Yedidi, Ravikiran S.; Proteasa, Georghe; Martinez, Jorge L.; Vickrey, John F.; Martin, Philip D.; Wawrzak, Zdzislaw; Liu, Zhigang; Kovari, Iulia A.; Kovari, Ladislau C.

    2011-09-06

    The flexible flaps and the 80s loops (Pro79-Ile84) of HIV-1 protease are crucial in inhibitor binding. Previously, it was reported that the crystal structure of multidrug-resistant 769 (MDR769) HIV-1 protease shows a wide-open conformation of the flaps owing to conformational rigidity acquired by the accumulation of mutations. In the current study, the effect of mutations on the conformation of the 80s loop of MDR769 HIV-1 protease variants is reported. Alternate conformations of Pro81 (proline switch) with a root-mean-square deviation of 3-4.8 {angstrom} in the C{alpha} atoms of the I10V mutant and a side chain with a 'flipped-out' conformation in the A82F mutant cause distortion in the S1/S1' binding pockets that affects inhibitor binding. The A82S and A82T mutants show local changes in the electrostatics of inhibitor binding owing to the mutation from nonpolar to polar residues. In summary, the crystallographic studies of four variants of MDR769 HIV-1 protease presented in this article provide new insights towards understanding the drug-resistance mechanism as well as a basis for design of future protease inhibitors with enhanced potency.

  12. Enantioselective Synthesis of Dioxatriquinane Structural Motifs for HIV-1 Protease Inhibitors Using a Cascade Radical Cyclization†

    PubMed Central

    Ghosh, Arun K.; Xu, Chun-Xiao; Osswald, Heather L.

    2015-01-01

    Synthesis of novel HIV-1 protease inhibitors incorporating dioxatriquinane-derived P2-ligands is described. The tricyclic ligand alcohol contains five contiguous chiral centers. The ligand alcohols were prepared in optically active form by an enzymatic asymmetrization of mesodiacetate, cascade radical cyclization, and Lewis acid catalyzed reduction as the key steps. Inhibitors with dioxatriquinane-derived P2-ligands exhibited low nanomolar HIV-1 protease activity. PMID:26185337

  13. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.

    PubMed

    Kar, Parimal; Lipowsky, Reinhard; Knecht, Volker

    2013-05-16

    Both KNI-10033 and KNI-10075 are high affinity preclinical HIV-1 protease (PR) inhibitors with affinities in the picomolar range. In this work, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the potency of these two HIV-1 PR inhibitors against the wild-type and mutated proteases assuming that potency correlates with the affinity of the drugs for the target protein. The decomposition of the binding free energy reveals the origin of binding affinities or mutation-induced affinity changes. Our calculations indicate that the mutation I50V causes drug resistance against both inhibitors. On the other hand, we predict that the mutant I84V causes drug resistance against KNI-10075 while KNI-10033 is more potent against the I84V mutant compared to wild-type protease. Drug resistance arises mainly from unfavorable shifts in van der Waals interactions and configurational entropy. The latter indicates that neglecting changes in configurational entropy in the computation of relative binding affinities as often done is not appropriate in general. For the bound complex PR(I50V)-KNI-10075, an increased polar solvation free energy also contributes to the drug resistance. The importance of polar solvation free energies is revealed when interactions governing the binding of KNI-10033 or KNI-10075 to the wild-type protease are compared to the inhibitors darunavir or GRL-06579A. Although the contributions from intermolecular electrostatic and van der Waals interactions as well as the nonpolar component of the solvation free energy are more favorable for PR-KNI-10033 or PR-KNI-10075 compared to PR-DRV or PR-GRL-06579A, both KNI-10033 and KNI-10075 show a similar affinity as darunavir and a lower binding affinity relative to GRL-06579A. This is because of the polar solvation free energy which is less unfavorable for darunavir or GRL-06579A relative to KNI-10033 or KNI-10075. The importance of the polar solvation as revealed here

  14. Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity

    NASA Astrophysics Data System (ADS)

    Windsor, Ian W.; Raines, Ronald T.

    2015-08-01

    A fluorogenic substrate for HIV-1 protease was designed and used as the basis for a hypersensitive assay. The substrate exhibits a kcat of 7.4 s-1, KM of 15 μM, and an increase in fluorescence intensity of 104-fold upon cleavage, thus providing sensitivity that is unmatched in a continuous assay of HIV-1 protease. These properties enabled the enzyme concentration in an activity assay to be reduced to 25 pM, which is close to the Kd value of the protease dimer. By fitting inhibition data to Morrison’s equation, Ki values of amprenavir, darunavir, and tipranavir were determined to be 135, 10, and 82 pM, respectively. This assay, which is capable of measuring Ki values as low as 0.25 pM, is well-suited for characterizing the next generation of HIV-1 protease inhibitors.

  15. Antiviral properties of palinavir, a potent inhibitor of the human immunodeficiency virus type 1 protease.

    PubMed Central

    Lamarre, D; Croteau, G; Wardrop, E; Bourgon, L; Thibeault, D; Clouette, C; Vaillancourt, M; Cohen, E; Pargellis, C; Yoakim, C; Anderson, P C

    1997-01-01

    Palinavir is a potent inhibitor of the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases. Replication of laboratory strains (HIV-1, HIV-2, and simian immunodeficiency virus) and HIV-1 clinical isolates is inhibited by palinavir with 50% effective concentrations ranging from 0.5 to 30 nM. The average cytotoxic concentration of palinavir (35 microM) in the various target cells indicates a favorable therapeutic index. Potent antiviral activity is retained with increased doses of virus and with clinical isolates resistant to zidovudine (AZT), didanosine (ddI), or nevirapine. Combinations of palinavir with either AZT, ddI, or nevirapine demonstrate synergy or additivity in the inhibition of HIV-1 replication. Palinavir retains anti-HIV-1 activity when administered postinfection until times subsequent to the reverse transcription step. In chronically infected CR-10 cells, palinavir blocks Gag precursor polyprotein processing completely, reducing greater than 99% of infectious particle production. The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1. On the basis of the potent in vitro activity, low-level cytotoxicity, and other data, palinavir was selected for in-depth preclinical evaluation. PMID:9145853

  16. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Saleh, Noha A.

    2015-02-01

    The inhibition of HIV-1 protease is considered as one of the most important targets for drug design and the deactivation of HIV-1. In the present work, the fullerene surface (C60) is modified by adding oxygen atoms as well as hydroxymethylcarbonyl (HMC) groups to form 6 investigated fullerene derivative compounds. These compounds have one, two, three, four or five O atoms + HMC groups at different positions on phenyl ring. The effect of the repeating of these groups on the ability of suggested compounds to inhibit the HIV protease is studied by calculating both Quantitative Structure Activity Relationship (QSAR) properties and docking simulation. Based on the QSAR descriptors, the solubility and the hydrophilicity of studied fullerene derivatives increased with increasing the number of oxygen atoms + HMC groups in the compound. While docking calculations indicate that, the compound with two oxygen atoms + HMC groups could interact and binds with HIV-1 protease active site. This is could be attributed to the active site residues of HIV-1 protease are hydrophobic except the two aspartic acids. So that, the increase in the hydrophilicity and polarity of the compound is preventing and/or decreasing the hydrophobic interaction between the compound and HIV-1 protease active site.

  17. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors.

    PubMed

    Saleh, Noha A

    2014-10-30

    The inhibition of HIV-1 protease is considered as one of the most important targets for drug design and the deactivation of HIV-1. In the present work, the fullerene surface (C60) is modified by adding oxygen atoms as well as hydroxymethylcarbonyl (HMC) groups to form 6 investigated fullerene derivative compounds. These compounds have one, two, three, four or five O atoms+HMC groups at different positions on phenyl ring. The effect of the repeating of these groups on the ability of suggested compounds to inhibit the HIV protease is studied by calculating both Quantitative Structure Activity Relationship (QSAR) properties and docking simulation. Based on the QSAR descriptors, the solubility and the hydrophilicity of studied fullerene derivatives increased with increasing the number of oxygen atoms+HMC groups in the compound. While docking calculations indicate that, the compound with two oxygen atoms+HMC groups could interact and binds with HIV-1 protease active site. This is could be attributed to the active site residues of HIV-1 protease are hydrophobic except the two aspartic acids. So that, the increase in the hydrophilicity and polarity of the compound is preventing and/or decreasing the hydrophobic interaction between the compound and HIV-1 protease active site. PMID:25459714

  18. Copper inhibits the HIV-1 protease by both oxygen-dependent and oxygen-independent mechanisms

    SciTech Connect

    Karlstroem, A.R.; Levine, R.L. )

    1991-03-11

    The protease encoded by HIV-1 is essential for the processing of the viral polyproteins encoded by the gag and pol genes into mature viral proteins. Mutation or deletion of the protease gene blocks replication of the virus, making the protease an attractive target for antiviral therapy. The authors found that the HIV-1 protease is inhibited by micromolar concentrations of Cu{sup 2+}. Protease was 50% inhibited by exposure to 5 {mu}M copper for 5 min while exposure to 25 {mu}M caused complete inhibition. This inhibition was not oxygen-dependent and was not reversed by treatment with EDTA, presumably due to the slow off-rate of copper from the protease. Consistent with this interpretation, enzyme activity was recovered after denaturation and refolding of the copper exposed protease. Titration of the inactivated enzyme with Ellman's reagent demonstrated a loss of one of the two sulfhydryl groups present in the molecule, suggesting that copper inhibition was mediated through binding to a cysteine. This was confirmed in studies with a chemically synthesize, mutant protease in which the two cysteine residues were replaced by {alpha}-amino butyrate: The mutant protease was not inhibited by copper. However, both the wild-type and mutant protease were inactivated when exposed to copper, oxygen, and dithiothreitol. This inactivation required oxygen. Thus, the protease can also be inactivated by metal catalyzed oxidation (MCO), a presumably irreversible covalent modification.

  19. HIV-1 Protease Mutations and Protease Inhibitor Cross-Resistance▿ † ‡

    PubMed Central

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W. Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W.

    2010-01-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  20. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization

    PubMed Central

    McCoy, Laura E.; Quigley, Anna Forsman; Strokappe, Nika M.; Bulmer-Thomas, Bianca; Seaman, Michael S.; Mortier, Daniella; Rutten, Lucy; Chander, Nikita; Edwards, Carolyn J.; Ketteler, Robin; Davis, David; Verrips, Theo

    2012-01-01

    Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides. PMID:22641382

  1. Syndecan-Fc Hybrid Molecule as a Potent In Vitro Microbicidal Anti-HIV-1 Agent▿

    PubMed Central

    Bobardt, Michael D.; Chatterji, Udayan; Schaffer, Lana; de Witte, Lot; Gallay, Philippe A.

    2010-01-01

    In the absence of a vaccine, there is an urgent need for the development of safe and effective topical microbicides to prevent the sexual transmission of human immunodeficiency virus type 1 (HIV-1). In this study, we proposed to develop a novel class of microbicides using syndecan as the antiviral agent. Specifically, we generated a soluble syndecan-Fc hybrid molecule by fusing the ectodomain of syndecan-1 to the Fc domain of a human IgG. We then tested the syndecan-Fc hybrid molecule for various in vitro microbicidal anti-HIV-1 properties. Remarkably, the syndecan-Fc hybrid molecule possesses multiple attractive microbicidal properties: (i) it blocks HIV-1 infection of primary targets including T cells, macrophages, and dendritic cells (DC); (ii) it exhibits a broad range of antiviral activity against primary HIV-1 isolates, multidrug resistant HIV-1 isolates, HIV-2, and simian immunodeficiency virus (SIV); (iii) it prevents transmigration of HIV-1 through human primary genital epithelial cells; (iv) it prevents HIV-1 transfer from dendritic cells to CD4+ T cells; (v) it is potent when added 2 h prior to addition of HIV-1 to target cells; (vi) it is potent at a low pH; (vii) it blocks HIV-1 infectivity when diluted in genital fluids; and (viii) it prevents herpes simplex virus infection. The heparan sulfate chains of the syndecan-Fc hybrid molecule are absolutely required for HIV-1 neutralization. Several lines of evidence suggest that the highly conserved Arg298 in the V3 region of gp120 serves as the locus for the syndecan-Fc hybrid molecule neutralization. In conclusion, this study suggests that the syndecan-Fc hybrid molecule represents the prototype of a new generation of microbicidal agents that may have promise for HIV-1 prevention. PMID:20439611

  2. The Genetic Basis of HIV-1 Resistance to Reverse Transcriptase and Protease Inhibitors

    PubMed Central

    Shafer, Robert W.; Kantor, Rami; Gonzales, Matthew J.

    2008-01-01

    HIV-1 drug resistance is caused by mutations in the reverse transcriptase (RT) and protease enzymes, the molecular targets of antiretroviral therapy. At the beginning of the year 2000, two expert panels recommended that HIV-1 RT and protease susceptibility testing be used to help select antiretroviral drugs for HIV-1-infected patients. Genotypic assays have been developed to detect HIV-1 mutations known to confer antiretroviral drug resistance. Genotypic assays using dideoxynucleoside sequencing provide extensive insight into the presence of drug-resistant variants in the population of viruses within an individual. However, the interpretation of these assays in clinical settings is formidable because of the large numbers of drug resistance mutations and because these mutations interact with one another and emerge in complex patterns. In addition, cross-resistance between antiretroviral drugs is greater than that anticipated from initial in vitro studies. This review summarises the published data linking HIV-1 RT and protease mutations to in vitro and clinical resistance to the currently available nucleoside RT inhibitors, non-nucleoside RT inhibitors, and protease inhibitors. PMID:19096725

  3. Impact of protease inhibitors on intracellular concentration of tenofovir-diphosphate among HIV-1 infected patients

    PubMed Central

    Lahiri, Cecile D.; Tao, Sijia; Jiang, Yong; Sheth, Anandi N.; Acosta, Edward P.; Marconi, Vincent C.; Armstrong, Wendy S.; Schinazi, Raymond F.; Vunnava, Aswani; Sanford, Sara; Ofotokun, Ighovwerha

    2015-01-01

    Intracellular nucleoside reverse transcriptase inhibitor (NRTI) concentrations are associated with plasma HIV-1 response. Coadministration of protease inhibitors with NRTIs can affect intra-cellular concentrations due to protease inhibitor inhibition of efflux transporters. Tenofovir-diphosphate (TFV-DP) concentrations within peripheral blood mononuclear cells were compared among individuals receiving either atazanavir or darunavir-based regimens. There was a trend towards higher TFV-DP concentrations among women and among participants receiving atazanavir. TFV-DP intracellular concentrations were positively associated with undetectable plasma HIV-1 RNA. PMID:25870991

  4. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    SciTech Connect

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  5. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism.

    PubMed

    Meher, Biswa Ranjan; Wang, Yixuan

    2012-09-01

    Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50V(PR), V82A(PR) and I84V(PR)) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3-5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors. PMID:23142620

  6. Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor

    PubMed Central

    Yanuar, Arry; Suhartanto, Heru; Mun׳im, Abdul; Anugraha, Bram Hik; Syahdi, Rezi Riadhi

    2014-01-01

    HIV-1 (Human immunodeficiency virus type 1)׳s infection is considered as one of most harmful disease known by human, the survivability rate of the host reduced significantly when it developed into AIDS. HIV drug resistance is one of the main problems of its treatment and several drug designs have been done to find new leads compound as the cure. In this study, in silico virtual screening approach was used to find lead molecules from the library or database of natural compounds as HIV-1 protease inhibitor. Virtual screening against Indonesian Herbal Database with AutoDock was performed on HIV-1 protease. From the virtual screening, top ten compounds obtained were 8-Hydroxyapigenin 8-(2",4"-disulfatoglucuronide), Isoscutellarein 4'-methyl ether, Amaranthin, Torvanol A, Ursonic acid, 5-Carboxypyranocyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), Oleoside, Jacoumaric acid, Platanic acid and 5-Carboxypyranocyanidin 3-O-beta-glucopyranoside. PMID:24616554

  7. Full quantum mechanical study of binding of HIV-1 protease drugs

    NASA Astrophysics Data System (ADS)

    Zhang, Da W.; Zhang, John Z. H.

    Fully quantum mechanical studies of detailed binding interactions between HIV-1 protease and six FDA (Food and Drug Administration)-approved drugs (saquinavir, indinavir, ritonavir, nelfinavir, amprenavir, and lopinavir) are carried out using a recently developed MFCC (molecular fractionation with conjugate caps) method. The MFCC calculation produces a quantum mechanical interaction spectrum for any protease drug binding complex. Detailed quantitative analysis on binding of lopinavir to specific residues of the protease is given from the current study. The present calculation shows that the dominant binding of lopinavir to the protease is through the formation of a strong hydrogen bond between the central hydroxyl group of the drug to the aspartate oxygen of Asp25 in one of the two chains of the protease (A chain). This is closely followed by hydrogen binding of the drug to Asp29 in the B chain and somewhat weak hydrogen bonding to Asp30, Gly27, Gly48, and Ile50 in both chains. By partitioning all six drugs into four building blocks besides the central component containing the hydroxyl group, MFCC calculation finds that block III has essentially no binding interaction with the protease and the major binding interactions of these drugs are from blocks II and IV, in addition to the dominant central hydroxyl group. This detailed quantitative information on drug binding to the protease is very useful in rational design of new and improved inhibitors of HIV-1 protease and its mutants.

  8. Preliminary crystallographic studies of an anti-HIV-1 protease antibody that inhibits enzyme activity.

    PubMed Central

    Lescar, J.; Stouracova, R.; Riottot, M. M.; Chitarra, V.; Brynda, J.; Fabry, M.; Horejsi, M.; Sedlacek, J.; Bentley, G. A.

    1996-01-01

    F11.2.32, a monoclonal antibody directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme. The antibody cross-reacts with peptides 36-46 and 36-57 from the protease. Crystals of the Fab have been obtained both in the free state and as complexes formed with the protease peptide fragments, 36-46 and 36-57. Diffraction data have been collected for the free and complexed forms of Fab F11.2.32 and preliminary models for the crystal structures were obtained by molecular replacement. PMID:8732768

  9. Probing Lipophilic Adamantyl Group as the P1-Ligand for HIV-1 Protease Inhibitors: Design, Synthesis, Protein X-ray Structural Studies, and Biological Evaluation.

    PubMed

    Ghosh, Arun K; Osswald, Heather L; Glauninger, Kristof; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T; Mitsuya, Hiroaki

    2016-07-28

    A series of potent HIV-1 protease inhibitors with a lipophilic adamantyl P1 ligand have been designed, synthesized, and evaluated. We have developed an enantioselective synthesis of adamantane-derived hydroxyethylamine isosteres utilizing Sharpless asymmetric epoxidation as the key step. Various inhibitors incorporating P1-adamantylmethyl in combination with P2 ligands such as 3-(R)-THF, 3-(S)-THF, bis-THF, and THF-THP were examined. The S1' pocket was also probed with phenyl and phenylmethyl ligands. Inhibitor 15d, with an isobutyl P1' ligand and a bis-THF P2 ligand, proved to be the most potent of the series. The cLogP value of inhibitor 15d is improved compared to inhibitor 2 with a phenylmethyl P1-ligand. X-ray structural studies of 15d, 15h, and 15i with HIV-1 protease complexes revealed molecular insight into the inhibitor-protein interaction. PMID:27389367

  10. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    PubMed

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs. PMID:24489923

  11. The Root Extract of the Medicinal Plant Pelargonium sidoides Is a Potent HIV-1 Attachment Inhibitor

    PubMed Central

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs. PMID:24489923

  12. Design of HIV-1 protease inhibitors with pyrrolidinones and oxazolidinones as novel P1'-ligands to enhance backbone-binding interactions with protease: synthesis, biological evaluation, and protein-ligand X-ray studies

    SciTech Connect

    Ghosh, Arun K.; Leshchenko-Yashchuk, Sofiya; Anderson, David D.; Baldridge, Abigail; Noetzel, Marcus; Miller, Heather B.; Tie, Yunfeng; Wang, Yuan-Fang; Koh, Yasuhiro; Weber, Irene T.; Mitsuya, Hiroaki

    2009-09-02

    Structure-based design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors are described. In an effort to enhance interactions with protease backbone atoms, we have incorporated stereochemically defined methyl-2-pyrrolidinone and methyl oxazolidinone as the P1{prime}-ligands. These ligands are designed to interact with Gly-27{prime} carbonyl and Arg-8 side chain in the S1{prime}-subsite of the HIV protease. We have investigated the potential of these ligands in combination with our previously developed bis-tetrahydrofuran (bis-THF) and cyclopentanyltetrahydrofuran (Cp-THF) as the P2-ligands. Inhibitor 19b with a (R)-aminomethyl-2-pyrrolidinone and a Cp-THF was shown to be the most potent compound. This inhibitor maintained near full potency against multi-PI-resistant clinical HIV-1 variants. A high resolution protein-ligand X-ray crystal structure of 19b-bound HIV-1 protease revealed that the P1{prime}-pyrrolidinone heterocycle and the P2-Cp-ligand are involved in several critical interactions with the backbone atoms in the S1{prime} and S2 subsites of HIV-1 protease.

  13. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease

    SciTech Connect

    Alvizo, Oscar; Mittal, Seema; Mayo, Stephen L.; Schiffer, Celia A.

    2012-10-23

    HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.

  14. Inhibition of the HIV-1 and HIV-2 proteases by a monoclonal antibody.

    PubMed Central

    Lescar, J.; Brynda, J.; Rezacova, P.; Stouracova, R.; Riottot, M. M.; Chitarra, V.; Fabry, M.; Horejsi, M.; Sedlacek, J.; Bentley, G. A.

    1999-01-01

    The monoclonal antibody 1696, directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates. This antibody cross-reacts with peptides that include the N-terminus of the enzyme, a region that is well conserved in sequence among different viral strains and which, furthermore, is crucial for homodimerization to the active enzymatic form. This observation, as well as antigen-binding studies in the presence of an active site inhibitor, suggest that 1696 inhibits the HIV protease by destabilizing its active homodimeric form. To characterize further how the antibody 1696 inhibits the HIV-1 and HIV-2 proteases, we have solved the crystal structure of its Fab fragment by molecular replacement and refined it at 3.0 A resolution. The antigen binding site has a deep cavity at its center, which is lined mainly by acidic and hydrophobic residues, and is large enough to accommodate several antigen residues. The structure of the Fab 1696 could form a starting basis for the design of alternative HIV protease-inhibiting molecules of broad specificity. PMID:10631984

  15. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Lee, Won-Gil; Frey, Kathleen M; Gallardo-Macias, Ricardo; Spasov, Krasimir A; Chan, Albert H; Anderson, Karen S; Jorgensen, William L

    2015-11-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data. PMID:26166629

  16. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis

    SciTech Connect

    Torbeev, Vladimir Yu.; Raghuraman, H.; Hamelberg, Donald; Tonelli, Marco; Westler, William M.; Perozo, Eduardo; Kent, Stephen B.H.

    2013-09-17

    We have used chemical protein synthesis and advanced physical methods to probe dynamics-function correlations for the HIV-1 protease, an enzyme that has received considerable attention as a target for the treatment of AIDS. Chemical synthesis was used to prepare a series of unique analogues of the HIV-1 protease in which the flexibility of the 'flap' structures (residues 37-61 in each monomer of the homodimeric protein molecule) was systematically varied. These analogue enzymes were further studied by X-ray crystallography, NMR relaxation, and pulse-EPR methods, in conjunction with molecular dynamics simulations. We show that conformational isomerization in the flaps is correlated with structural reorganization of residues in the active site, and that it is preorganization of the active site that is a rate-limiting factor in catalysis.

  17. Pulsed EPR Characterization of HIV-1 Protease Conformational Sampling and Inhibitor-Induced Population Shifts

    PubMed Central

    Liu, Zhanglong; Casey, Thomas M.; Blackburn, Mandy E.; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S.; Carter, Jeffrey D.; Kear-Scott, Jamie L.; Veloro, Angelo M.; Galiano, Luis; Fanucci, Gail E.

    2015-01-01

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed “curled/tucked”, “closed”, “semi-open” and “wide-open” conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  18. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts.

    PubMed

    Liu, Zhanglong; Casey, Thomas M; Blackburn, Mandy E; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S; Carter, Jeffrey D; Kear-Scott, Jamie L; Veloro, Angelo M; Galiano, Luis; Fanucci, Gail E

    2016-02-17

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  19. Anti-HIV-1 Activity of Elafin Is More Potent than Its Precursor's, Trappin-2, in Genital Epithelial Cells

    PubMed Central

    Drannik, Anna G.; Nag, Kakon; Yao, Xiao-Dan; Henrick, Bethany M.; Jain, Sumiti; Ball, T. Blake; Plummer, Francis A.; Wachihi, Charles; Kimani, Joshua

    2012-01-01

    Cervicovaginal lavage fluid (CVL) is a natural source of anti-HIV-1 factors; however, molecular characterization of the anti-HIV-1 activity of CVL remains elusive. In this study, we confirmed that CVLs from HIV-1-resistant (HIV-R) compared to HIV-1-susceptible (HIV-S) commercial sex workers (CSWs) contain significantly larger amounts of serine antiprotease trappin-2 (Tr) and its processed form, elafin (E). We assessed anti-HIV-1 activity of CVLs of CSWs and recombinant E and Tr on genital epithelial cells (ECs) that possess (TZM-bl) or lack (HEC-1A) canonical HIV-1 receptors. Our results showed that immunodepletion of 30% of Tr/E from CVL accounted for up to 60% of total anti-HIV-1 activity of CVL. Knockdown of endogenous Tr/E in HEC-1A cells resulted in significantly increased shedding of infectious R5 and X4 HIV-1. Pretreatment of R5, but not X4 HIV-1, with either Tr or E led to inhibition of HIV-1 infection of TZM-bl cells. Interestingly, when either HIV-1 or cells lacking canonical HIV-1 receptors were pretreated with Tr or E, HIV-1 attachment and transcytosis were significantly reduced, and decreased attachment was not associated with altered expression of syndecan-1 or CXCR4. Determination of 50% inhibitory concentrations (IC50) of Tr and E anti-HIV-1 activity indicated that E is ∼130 times more potent than its precursor, Tr, despite their equipotent antiprotease activities. This study provides the first experimental evidence that (i) Tr and E are among the principal anti-HIV-1 molecules of CVL; (ii) Tr and E affect cell attachment and transcytosis of HIV-1; (iii) E is more efficient than Tr regarding anti-HIV-1 activity; and (iv) the anti-HIV-1 effect of Tr and E is contextual. PMID:22345469

  20. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. PMID:22112764

  1. Design and implementation of a particle concentration fluorescence method for the detection of HIV-1 protease inhibitors.

    PubMed

    Manetta, J V; Lai, M H; Osborne, H E; Dee, A; Margolin, N; Sportsman, J R; Vlahos, C J; Yan, S B; Heath, W F

    1992-04-01

    A critical step in the replicative cycle of the human immunodeficiency virus HIV-1 involves the proteolytic processing of the polyprotein products Prgag and Prgag-pol that are encoded by the gag and pol genes in the viral genome. Inhibitors of this processing step have the potential to be important therapeutic agents in the management of acquired immunodeficiency syndrome. Current assays for inhibitors of HIV-1 protease are slow, cumbersome, or susceptible to interference by test compounds. An approach to the generation of a rapid, sensitive assay for HIV-1 protease inhibitors that is devoid of interference problems is to use a capture system which allows for isolation of the products from the reaction mixture prior to signal quantitation. In this paper, we describe a novel method for the detection of HIV-1 protease inhibitors utilizing the concept of particle concentration fluorescence. Our approach involves the use of the HIV-1 protease peptide substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val which has been modified to contain a biotin moiety on one side and a fluorescein reporter molecule on the other side of the scissile Tyr-Pro bond. This substrate is efficiently cleaved by the HIV-1 protease and the reaction can be readily quantitated. Known inhibitors of the protease were readily detected using this new assay. In addition, this approach is compatible with existing instrumentation in use for broad screening and is highly sensitive, accurate, and reproducible. PMID:1621970

  2. Protease Cleavage Leads to Formation of Mature Trimer Interface in HIV-1 Capsid

    PubMed Central

    Ke, Danxia; Ning, Jiying; DeLucia, Maria; Ahn, Jinwoo; Gronenborn, Angela M.; Aiken, Christopher; Zhang, Peijun

    2012-01-01

    During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles. PMID:22927821

  3. Unique Flap Conformation in an HIV-1 Protease with High-Level Darunavir Resistance.

    PubMed

    Nakashima, Masaaki; Ode, Hirotaka; Suzuki, Koji; Fujino, Masayuki; Maejima, Masami; Kimura, Yuki; Masaoka, Takashi; Hattori, Junko; Matsuda, Masakazu; Hachiya, Atsuko; Yokomaku, Yoshiyuki; Suzuki, Atsuo; Watanabe, Nobuhisa; Sugiura, Wataru; Iwatani, Yasumasa

    2016-01-01

    Darunavir (DRV) is one of the most powerful protease inhibitors (PIs) for treating human immunodeficiency virus type-1 (HIV-1) infection and presents a high genetic barrier to the generation of resistant viruses. However, DRV-resistant HIV-1 infrequently emerges from viruses exhibiting resistance to other protease inhibitors. To address this resistance, researchers have gathered genetic information on DRV resistance. In contrast, few structural insights into the mechanism underlying DRV resistance are available. To elucidate this mechanism, we determined the crystal structure of the ligand-free state of a protease with high-level DRV resistance and six DRV resistance-associated mutations (including I47V and I50V), which we generated by in vitro selection. This crystal structure showed a unique curling conformation at the flap regions that was not found in the previously reported ligand-free protease structures. Molecular dynamics simulations indicated that the curled flap conformation altered the flap dynamics. These results suggest that the preference for a unique flap conformation influences DRV binding. These results provide new structural insights into elucidating the molecular mechanism of DRV resistance and aid to develop PIs effective against DRV-resistant viruses. PMID:26870021

  4. Unique Flap Conformation in an HIV-1 Protease with High-Level Darunavir Resistance

    PubMed Central

    Nakashima, Masaaki; Ode, Hirotaka; Suzuki, Koji; Fujino, Masayuki; Maejima, Masami; Kimura, Yuki; Masaoka, Takashi; Hattori, Junko; Matsuda, Masakazu; Hachiya, Atsuko; Yokomaku, Yoshiyuki; Suzuki, Atsuo; Watanabe, Nobuhisa; Sugiura, Wataru; Iwatani, Yasumasa

    2016-01-01

    Darunavir (DRV) is one of the most powerful protease inhibitors (PIs) for treating human immunodeficiency virus type-1 (HIV-1) infection and presents a high genetic barrier to the generation of resistant viruses. However, DRV-resistant HIV-1 infrequently emerges from viruses exhibiting resistance to other protease inhibitors. To address this resistance, researchers have gathered genetic information on DRV resistance. In contrast, few structural insights into the mechanism underlying DRV resistance are available. To elucidate this mechanism, we determined the crystal structure of the ligand-free state of a protease with high-level DRV resistance and six DRV resistance-associated mutations (including I47V and I50V), which we generated by in vitro selection. This crystal structure showed a unique curling conformation at the flap regions that was not found in the previously reported ligand-free protease structures. Molecular dynamics simulations indicated that the curled flap conformation altered the flap dynamics. These results suggest that the preference for a unique flap conformation influences DRV binding. These results provide new structural insights into elucidating the molecular mechanism of DRV resistance and aid to develop PIs effective against DRV-resistant viruses. PMID:26870021

  5. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity.

    PubMed Central

    Rosé, J R; Babé, L M; Craik, C S

    1995-01-01

    The human immunodeficiency virus type 1 (HIV-1) protease is the enzyme required for processing of the Gag and Gag-Pol polyproteins to yield mature, infectious virions. Although the complete absence of proteolytic activity prevents maturation, the level of activity sufficient for maturation and subsequent infectivity has not been determined. Amino acid substitutions that reduce catalytic activity without affecting substrate recognition have been engineered into the active site of the HIV-1 protease. The catalytic efficiency (kcat) of the HIV-1 protease is decreased 4-fold when threonine 26 is replaced by serine (T26S) and approximately 50-fold when alanine 28 is replaced by serine (A28S). Genes containing these mutations were cloned into a proviral vector for analysis of their effects on virion maturation and infectivity. The results show that virions containing the T26S protease variant, in which only 25% of the protease is active, are very similar to wild-type virions, although slight reductions in infectivity are observed. Virions containing the A28S protease variant are not infectious, even though a limited amount of polyprotein processing does occur. There appears to be a linear correlation between the level of protease activity and particle infectivity. Our observations suggest that a threshold of protease activity exists between a 4-fold and 50-fold reduction, below which processing is insufficient to yield infectious particles. Our data also suggest that a reduction of protease activity by 50-fold or greater is sufficient to prevent the formation of infectious particles. PMID:7535864

  6. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization

    PubMed Central

    Asokan, M.; Rudicell, R. S.; Louder, M.; McKee, K.; O'Dell, S.; Stewart-Jones, G.; Wang, K.; Xu, L.; Chen, X.; Choe, M.; Chuang, G.; Georgiev, I. S.; Joyce, M. G.; Kirys, T.; Ko, S.; Pegu, A.; Shi, W.; Todd, J. P.; Yang, Z.; Bailer, R. T.; Rao, S.; Kwong, P. D.; Nabel, G. J.

    2015-01-01

    ABSTRACT The potency and breadth of the recently isolated neutralizing human monoclonal antibodies to HIV-1 have stimulated interest in their use to prevent or to treat HIV-1 infection. Due to the antigenically diverse nature of the HIV-1 envelope (Env), no single antibody is highly active against all viral strains. While the physical combination of two broadly neutralizing antibodies (bNAbs) can improve coverage against the majority of viruses, the clinical-grade manufacturing and testing of two independent antibody products are time and resource intensive. In this study, we constructed bispecific immunoglobulins (IgGs) composed of independent antigen-binding fragments with a common Fc region. We developed four different bispecific IgG variants that included antibodies targeting four major sites of HIV-1 neutralization. We show that these bispecific IgGs display features of both antibody specificities and, in some cases, display improved coverage over the individual parental antibodies. All four bispecific IgGs neutralized 94% to 97% of antigenically diverse viruses in a panel of 206 HIV-1 strains. Among the bispecific IgGs tested, VRC07 × PG9-16 displayed the most favorable neutralization profile. It was superior in breadth to either of the individual antibodies, neutralizing 97% of viruses with a median 50% inhibitory concentration (IC50) of 0.055 μg/ml. This bispecific IgG also demonstrated in vivo pharmacokinetic parameters comparable to those of the parental bNAbs when administered to rhesus macaques. These results suggest that IgG-based bispecific antibodies are promising candidates for the prevention and treatment of HIV-1 infection in humans. IMPORTANCE To prevent or treat HIV-1 infection, antibodies must potently neutralize nearly all strains of HIV-1. Thus, the physical combination of two or more antibodies may be needed to broaden neutralization coverage and diminish the possibility of viral resistance. A bispecific antibody that has two different

  7. Potential Elucidation of a Novel CTL Epitope in HIV-1 Protease by the Protease Inhibitor Resistance Mutation L90M

    PubMed Central

    Smidt, Werner

    2013-01-01

    The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89–97 and PR 90–99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease. PMID:24015196

  8. Design and synthesis of HIV-1 protease inhibitors for a long-acting injectable drug application.

    PubMed

    Kesteleyn, Bart; Amssoms, Katie; Schepens, Wim; Hache, Geerwin; Verschueren, Wim; Van De Vreken, Wim; Rombauts, Klara; Meurs, Greet; Sterkens, Patrick; Stoops, Bart; Baert, Lieven; Austin, Nigel; Wegner, Jörg; Masungi, Chantal; Dierynck, Inge; Lundgren, Stina; Jönsson, Daniel; Parkes, Kevin; Kalayanov, Genadiy; Wallberg, Hans; Rosenquist, Asa; Samuelsson, Bertil; Van Emelen, Kristof; Thuring, Jan Willem

    2013-01-01

    The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS. PMID:23177258

  9. Synthesis and Inhibiting Activity of Some 4-Hydroxycoumarin Derivatives on HIV-1 Protease

    PubMed Central

    Stanchev, Stancho; Jensen, Frank; Hinkov, Anton; Atanasov, Vasil; Genova-Kalou, Petia; Argirova, Radka; Manolov, Ilia

    2011-01-01

    Six novel 4-hydroxycoumarin derivatives were rationally synthesized, verified, and characterized by molecular docking using crystal HIV-1 protease. Molecular docking studies predicted antiprotease activity of (7) and (10). The most significant functional groups, responsible for the interaction with HIV-1 protease by hydrogen bonds formation are pyran oxygen, atom, lactone carbonyl oxygen and one of the hydroxyl groups. The newly synthesized compounds were biologically tested in MT-4 cells for inhibiting HIV-1 replication, exploring the protection of cells from the cytopathic effect of HIV measured by cell survival in MTT test. One derivative −7 showed 76–78% inhibition of virus infectivity with IC50 = 0.01 nM, much less than the maximal nontoxic concentration (1 mM). Antiprotease activity of 7 in two different concentrations was detected to be 25%. Nevertheless, the results of study of (7) encourage using it as a pharmacophore for further synthesis and evaluation of anti-HIV activity. PMID:22389842

  10. Prevalence, mutation patterns, and effects on protease inhibitor susceptibility of the L76V mutation in HIV-1 protease.

    PubMed

    Young, Thomas P; Parkin, Neil T; Stawiski, Eric; Pilot-Matias, Tami; Trinh, Roger; Kempf, Dale J; Norton, Michael

    2010-11-01

    Patterns of HIV-1 protease inhibitor (PI) resistance-associated mutations (RAMs) and effects on PI susceptibility associated with the L76V mutation were studied in a large database. Of 20,501 sequences with ≥1 PI RAM, 3.2% contained L76V; L76V was alone in 0.04%. Common partner mutations included M46I, I54V, V82A, I84V, and L90M. L76V was associated with a 2- to 6-fold decrease in susceptibility to lopinavir, darunavir, amprenavir, and indinavir and a 7- to 8-fold increase in susceptibility to atazanavir and saquinavir. PMID:20805393

  11. Prediction of Mutational Tolerance in HIV-1 Protease and Reverse Transcriptase Using Flexible Backbone Protein Design

    PubMed Central

    Varela, Rocco; Ó Conchúir, Shane; Kortemme, Tanja

    2012-01-01

    Predicting which mutations proteins tolerate while maintaining their structure and function has important applications for modeling fundamental properties of proteins and their evolution; it also drives progress in protein design. Here we develop a computational model to predict the tolerated sequence space of HIV-1 protease reachable by single mutations. We assess the model by comparison to the observed variability in more than 50,000 HIV-1 protease sequences, one of the most comprehensive datasets on tolerated sequence space. We then extend the model to a second protein, reverse transcriptase. The model integrates multiple structural and functional constraints acting on a protein and uses ensembles of protein conformations. We find the model correctly captures a considerable fraction of protease and reverse-transcriptase mutational tolerance and shows comparable accuracy using either experimentally determined or computationally generated structural ensembles. Predictions of tolerated sequence space afforded by the model provide insights into stability-function tradeoffs in the emergence of resistance mutations and into strengths and limitations of the computational model. PMID:22927804

  12. Design of novel CXCR4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication.

    PubMed

    Skerlj, Renato; Bridger, Gary; McEachern, Ernest; Harwig, Curtis; Smith, Chris; Kaller, Alan; Veale, Duane; Yee, Helen; Skupinska, Krystyna; Wauthy, Rossana; Wang, Letian; Baird, Ian; Zhu, Yongbao; Burrage, Kate; Yang, Wen; Sartori, Michael; Huskens, Dana; De Clercq, Erik; Schols, Dominique

    2011-03-01

    A novel series of CXCR4 antagonists were identified based on the substantial redesign of AMD070. These compounds possessed potent anti-HIV-1 activity and showed excellent pharmacokinetics in rat and dog. PMID:21295470

  13. Protonation state and free energy calculation of HIV-1 protease-inhibitor complex based on electrostatic polarisation effect

    NASA Astrophysics Data System (ADS)

    Yang, Maoyou; Jiang, Xiaonan; Jiang, Ning

    2014-06-01

    The protonation states of catalytic Asp25/25‧ residues remarkably affect the binding mechanism of the HIV-1 protease-inhibitor complex. Here we report a molecular dynamics simulation study, which includes electrostatic polarisation effect, to investigate the influence of Asp25/25‧ protonation states upon the binding free energy of the HIV-1 protease and a C2-symmetric inhibitor. Good agreements are obtained on inhibitor structure, hydrogen bond network, and binding free energy between our theoretical calculations and the experimental data. The calculations show that the Asp25 residue is deprotonated, and the Asp25‧ residue is protonated. Our results reveal that the Asp25/25‧ residues can have different protonation states when binding to different inhibitors although the protease and the inhibitors have the same symmetry. This study offers some insights into understanding the protonation state of HIV-1 protease-inhibitor complex, which could be helpful in designing new inhibitor molecules.

  14. Potent and selective inhibition of human immunodeficiency virus type 1 (HIV-1) by 5-ethyl-6-phenylthiouracil derivatives through their interaction with the HIV-1 reverse transcriptase.

    PubMed Central

    Baba, M; De Clercq, E; Tanaka, H; Ubasawa, M; Takashima, H; Sekiya, K; Nitta, I; Umezu, K; Nakashima, H; Mori, S

    1991-01-01

    In the search for 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine (HEPT) derivatives, we have found several 5-ethyl-6-(phenylthio)uracil analogues to be highly potent and selective inhibitors of human immunodeficiency virus (HIV) type 1. 1-Benzyloxymethyl-5-ethyl-6-phenylthiouracil, the most potent congener of the series, inhibits HIV-1 replication in a variety of cell systems, including peripheral blood lymphocytes, at a concentration of 1.5-7.0 nM, which is lower by a factor of 10(3) than the 50% antivirally effective concentration of the parent compound HEPT. The 5-ethyl-6-(phenylthio)uracil analogues, like HEPT itself, do not inhibit HIV-2 replication but do inhibit replication of 3'-azido-3'-deoxythymidine-resistant mutants of HIV-1. 1-Benzyloxy-methyl-5-ethyl-6-phenylthiouracil and its congeners are targeted at the HIV-1 reverse transcriptase (RT). They do not inhibit HIV-2 RT. They do not need to be metabolized to exert their inhibitory effect on HIV-1 RT. Yet this inhibitory effect is competitive with the natural substrate dTTP. The HEPT derivatives represent a group of RT inhibitors with a unique mode of interaction with HIV-1 RT. PMID:1706522

  15. Multistage virtual screening and identification of novel HIV-1 protease inhibitors by integrating SVM, shape, pharmacophore and docking methods.

    PubMed

    Wei, Yu; Li, Jinlong; Chen, Zeming; Wang, Fengwei; Huang, Weiqiang; Hong, Zhangyong; Lin, Jianping

    2015-08-28

    The HIV-1 protease has proven to be a crucial component of the HIV replication machinery and a reliable target for anti-HIV drug discovery. In this study, we applied an optimized hierarchical multistage virtual screening method targeting HIV-1 protease. The method sequentially applied SVM (Support Vector Machine), shape similarity, pharmacophore modeling and molecular docking. Using a validation set (270 positives, 155,996 negatives), the multistage virtual screening method showed a high hit rate and high enrichment factor of 80.47% and 465.75, respectively. Furthermore, this approach was applied to screen the National Cancer Institute database (NCI), which contains 260,000 molecules. From the final hit list, 6 molecules were selected for further testing in an in vitro HIV-1 protease inhibitory assay, and 2 molecules (NSC111887 and NSC121217) showed inhibitory potency against HIV-1 protease, with IC50 values of 62 μM and 162 μM, respectively. With further chemical development, these 2 molecules could potentially serve as HIV-1 protease inhibitors. PMID:26185005

  16. Enhancement of Probe Signal for Screening of HIV-1 Protease Inhibitors in Living Cells

    PubMed Central

    Yao, Huantong; Jin, Sha

    2012-01-01

    The global human immunodeficiency virus infection/acquired immuno-deficiency syndrome (HIV/AIDS) epidemic is one of the biggest threats to human life. Mutation of the virus and toxicity of the existing drugs necessitate the development of new drugs for effective AIDS treatment. Previously, we developed a molecular probe that utilizes the Förster resonance energy transfer (FRET) principle to visualize HIV-1 protease inhibition within living cells for drug screening. We explored using AcGFP1 (a fluorescent mutant of the wild-type green fluorescent protein) as a donor and mCherry (a mutant of red fluorescent protein) as an acceptor for FRET microscopy imaging measurement of HIV-1 protease activity within living cells and demonstrated that the molecular probe is suitable for the High-Content Screening (HCS) of anti-HIV drugs through an automated FRET microscopy imaging measurement. In this study, we genetically engineered a probe with a tandem acceptor protein structure to enhance the probe’s signal. Both in vitro and in vivo studies revealed that the novel structure of the molecular probe exhibits a significant enhancement of FRET signals, reaching a probe FRET efficiency of 34%, as measured by fluorescence lifetime imaging microscopy (FLIM) measurement. The probe developed herein would enable high-content screening of new anti-HIV agents. PMID:23223077

  17. Comparative molecular field analysis of a series of inhibitors of HIV-1 protease.

    PubMed

    Ferreira, Leonardo G; Leitão, Andrei; Montanari, Carlos A; Andricopulo, Adriano D

    2011-03-01

    Several protease inhibitors have reached the world market in the last fifteen years, dramatically improving the quality of life and life expectancy of millions of HIV-infected patients. In spite of the tremendous research efforts in this area, resistant HIV-1 variants are constantly decreasing the ability of the drugs to efficiently inhibit the enzyme. As a consequence, inhibitors with novel frameworks are necessary to circumvent resistance to chemotherapy. In the present work, we have created 3D QSAR models for a series of 82 HIV-1 protease inhibitors employing the comparative molecular field analysis (CoMFA) method. Significant correlation coefficients were obtained (q(2) = 0.82 and r(2) = 0.97), indicating the internal consistency of the best model, which was then used to evaluate an external test set containing 17 compounds. The predicted values were in good agreement with the experimental results, showing the robustness of the model and its substantial predictive power for untested compounds. The final QSAR model and the information gathered from the CoMFA contour maps should be useful for the design of novel anti-HIV agents with improved potency. PMID:21222610

  18. Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance

    PubMed Central

    Wang, Wei; Kollman, Peter A.

    2001-01-01

    Drug resistance has sharply limited the effectiveness of HIV-1 protease inhibitors in AIDS therapy. It is critically important to understand the basis of this resistance for designing new drugs. We have evaluated the free energy contribution of each residue in the HIV protease in binding to one of its substrates and to the five FDA-approved protease drugs. Analysis of these free energy profiles and the variability at each sequence position suggests: (i) single drug resistance mutations are likely to occur at not well conserved residues if they interact more favorably with drugs than with the substrate; and (ii) resistance-evading drugs should have a free energy profile similar to the substrate and interact most favorably with well conserved residues. We also propose an empirical parameter, called the free energy/variability value, which combines free energy calculation and sequence analysis to suggest possible drug resistance mutations on the protease. The free energy/variability value is defined as the product of one residue's contribution to the binding free energy and the variability of that residue. This parameter can assist in designing resistance-evading drugs for any target. PMID:11752442

  19. Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of alpha-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase.

    PubMed Central

    Pauwels, R; Andries, K; Debyser, Z; Van Daele, P; Schols, D; Stoffels, P; De Vreese, K; Woestenborghs, R; Vandamme, A M; Janssen, C G

    1993-01-01

    In vitro evaluation of a large chemical library of pharmacologically acceptable prototype compounds in a high-capacity, cellular-based screening system has led to the discovery of another family of human immunodeficiency virus type 1 (HIV-1) inhibitors. Through optimization of a lead compound, several alpha-anilinophenylacetamide (alpha-APA) derivatives have been identified that inhibit the replication of several HIV-1 strains (IIIB/LAI, RF, NDK, MN, HE) in a variety of host cell types at concentrations that are 10,000- to 100,000-fold lower than their cytotoxic concentrations. The IC50 of the alpha-APA derivative R 89439 for HIV-1 cytopathicity in MT-4 cells was 13 nM. The median 90% inhibitory concentration (IC90) in a variety of host cells was 50-100 nM. Although these alpha-APA derivatives are active against a tetrahydroimidazo [4,5,1-jk][1,4]benzodiazepin-2(1H)-thione-(TIBO)-resistant HIV-1 strain, they do not inhibit replication of HIV-2 (strains ROD and EHO) or simian immunodeficiency virus (strains Mac251, mndGB1, and agm3). An HIV-1 strain containing the Tyr181-->Cys mutation in the reverse transcriptase region displayed reduced sensitivity. alpha-APA derivative R 89439 inhibited virion and recombinant reverse transcriptase of HIV-1 but did not inhibit that of HIV-2. Reverse transcriptase inhibition depended upon the template/primer used. The relatively uncomplicated synthesis of R 89439, its potent anti-HIV-1 activity, and its favorable pharmacokinetic profile make R 89439 a good candidate for clinical studies. PMID:7680476

  20. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.; Sheri, Venkat Reddy; Kassekert, Luke A.; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T.; Mitsuya, Hiroaki

    2015-10-30

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.

  1. Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease.

    PubMed

    Kar, Parimal; Knecht, Volker

    2012-03-01

    Acquired immune deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV) type 1 and 2 (HIV-1 and HIV-2). HIV-1 is observed worldwide while HIV-2 though prevalent in West Africa is persistently spreading to other parts of the world. An important target for AIDS treatment is the use of HIV protease (PR) inhibitors preventing the replication of the virus. In this work, the popular molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the effectiveness of the HIV-1 PR inhibitors darunavir, GRL-06579A, and GRL-98065 against HIV-2 and HIV-1 protease. The affinity of the inhibitors for both HIV-1 and HIV-2 PR decreases in the order GRL-06579A > darunavir > GRL-98065, in accordance with experimental data. On the other hand, our results show that all these inhibitors bind less strongly to HIV-2 than to HIV-1 protease, again in agreement with experimental findings. The decrease in binding affinity for HIV-2 relative to HIV-1 PR is found to arise from an increase in the energetic penalty from the desolvation of polar groups (DRV) or a decrease in the size of the electrostatic interactions between the inhibitor and the PR (GRL-06579A and GRL-98065). For GRL-98065, also a decrease in the magnitude of the van der Waals interactions contributes to the reduction in binding affinity. A detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of efficient inhibitors against HIV-2 protease. PMID:22280246

  2. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease.

    PubMed

    Pokorná, Jana; Heyda, Jan; Konvalinka, Jan

    2013-01-01

    Human immunodeficiency virus 1 protease (HIV-1 PR), an important therapeutic target for the treatment of AIDS, is one of the most well-studied enzymes. However, there is still much to learn about the regulation of the activity and inhibition of this key viral enzyme. Specifically, the mechanism of activation of HIV-1 PR from the viral polyprotein upon HIV maturation is still not understood. It has been suggested that external factors like pH or salt concentration might contribute to regulation of this crucial step in the viral life cycle. Recently, we analyzed the activity of HIV-1 PR in aqueous solutions of sodium and potassium chloride by experimental determination of enzyme kinetics and molecular dynamics simulations. We showed that the effect of salt concentration is cation-specific [Heyda et al., Phys. Chem. Chem. Phys., 2009 (11), 7599]. In this study, we extended this analysis for other alkali cations and found that the dependence of the initial velocity of peptide substrate hydrolysis on the nature of the cation follows the Hofmeister series, with the exception of caesium. Significantly higher catalytic efficiencies both in terms of substrate binding (K(M)) and turnover number (kcat) are observed in the presence of K+ compared to Na+ or Li+ at corresponding salt concentrations. Molecular dynamics simulations suggest that both lithium and sodium are attracted more strongly than potassium and caesium to the protein surface, mostly due to stronger interactions with carboxylate side chain groups of aspartates and glutamates. Furthermore, we observed a surprising decrease in the K(M) value for a specific substrate at very low salt concentration. The molecular mechanism of this phenomenon will be further analyzed. PMID:23795510

  3. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface.

    PubMed

    Pietrucci, Fabio; Vargiu, Attilio Vittorio; Kranjc, Agata

    2015-01-01

    The binding mechanism of HIV-1 protease monomers leading to the catalytically competent dimeric enzyme has been investigated by means of state-of-the-art atomistic simulations. The emerging picture allows a deeper understanding of experimental observations and reveals that water molecules trapped at the interface have an important role in slowing down the kinetics of the association process. Unexpectedly, a cryptic binding pocket is identified at the interface of the complex, corresponding to a partially bound dimer that lacks enzymatic function. The pocket has a transient nature with a lifetime longer than 1 μs, and it displays very favorable druggability features. Docking as well as MM-GBSA free-energy calculations further support the possibility to target the new binding site by means of inhibitors able to prevent the complete dimerization by capturing the inactive conformation. This discovery could open the way to the rational design of a new class of anti-HIV drugs. PMID:26692118

  4. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface

    PubMed Central

    Pietrucci, Fabio; Vargiu, Attilio Vittorio; Kranjc, Agata

    2015-01-01

    The binding mechanism of HIV-1 protease monomers leading to the catalytically competent dimeric enzyme has been investigated by means of state-of-the-art atomistic simulations. The emerging picture allows a deeper understanding of experimental observations and reveals that water molecules trapped at the interface have an important role in slowing down the kinetics of the association process. Unexpectedly, a cryptic binding pocket is identified at the interface of the complex, corresponding to a partially bound dimer that lacks enzymatic function. The pocket has a transient nature with a lifetime longer than 1 μs, and it displays very favorable druggability features. Docking as well as MM-GBSA free-energy calculations further support the possibility to target the new binding site by means of inhibitors able to prevent the complete dimerization by capturing the inactive conformation. This discovery could open the way to the rational design of a new class of anti-HIV drugs. PMID:26692118

  5. The importance of physicochemical characteristics and nonlinear classifiers in determining HIV-1 protease specificity.

    PubMed

    Manning, Timmy; Walsh, Paul

    2016-04-01

    This paper reviews recent research relating to the application of bioinformatics approaches to determining HIV-1 protease specificity, outlines outstanding issues, and presents a new approach to addressing these issues. Leading machine learning theory for the problem currently suggests that the direct encoding of the physicochemical properties of the amino acid substrates is not required for optimal performance. A number of amino acid encoding approaches which incorporate potentially relevant physicochemical properties of the substrate are identified, and are evaluated using a nonlinear task decomposition based neuroevolution algorithm. The results are evaluated, and compared against a recent benchmark set on a nonlinear classifier using only amino acid sequence and identity information. Ensembles of these nonlinear classifiers using the physicochemical properties of the substrate are demonstrated to consistently outperform the recently published state-of-the-art linear support vector machine based approach in out-of-sample evaluations. PMID:27212259

  6. Insights into the structural function of the complex of HIV-1 protease with TMC-126: molecular dynamics simulations and free-energy calculations

    SciTech Connect

    Li, Dan; Han, Ju-Guang; Chen, Hang; Li, Liang; Zhao, Run-Ning Zhao; Liu, Guang; Duan, Yuhua

    2012-05-01

    The binding properties of the protein-inhibitor complex of human immunodeficiency virus type 1 (HIV-1) protease with the inhibitor TMC-126 are investigated by combining computational alanine scanning (CAS) mutagenesis with binding free-energy decomposition (BFED). The calculated results demonstrate that the flap region (residues 38-58) and the active site region (residues 23-32) in HIV-1 protease contribute 63.72% of the protease to the binding of the inhibitor. In particular, the mechanisms for the interactions of key residues of these species are fully explored and analyzed. Interestingly, the regression analyses show that both CAS and BFED based on the generalized Born model yield similar results, with a correlation coefficient of 0.94. However, compared to CAS, BFED is faster and can decompose the per-residue binding free-energy contributions into backbone and sidechain contributions. The results obtained in this study are useful for studying the binding mechanism between receptor and ligand and for designing potent inhibitors that can combat diseases.

  7. Flexible Cyclic Ethers/Polyethers as Novel P2-Ligands for HIV-1 Protease Inhibitors: Design, Synthesis, Biological Evaluation, and Protein-Ligand X-Ray Studies

    SciTech Connect

    Ghosh, Arun; Gemma, Sandra; Baldridge, Abigal; Wang, Yuan-Fang; Kovalevsky, Andrey; Koh, Yashiro; Weber, Irene; Mitsuya, Hiroaki

    2008-12-05

    We report the design, synthesis, and biological evaluation of a series of novel HIV-1 protease inhibitors. The inhibitors incorporate stereochemically defined flexible cyclic ethers/polyethers as high affinity P2-ligands. Inhibitors containing small ring 1,3-dioxacycloalkanes have shown potent enzyme inhibitory and antiviral activity. Inhibitors 3d and 3h are the most active inhibitors. Inhibitor 3d maintains excellent potency against a variety of multi-PI-resistant clinical strains. Our structure-activity studies indicate that the ring size, stereochemistry, and position of oxygens are important for the observed activity. Optically active synthesis of 1,3-dioxepan-5-ol along with the syntheses of various cyclic ether and polyether ligands have been described. A protein-ligand X-ray crystal structure of 3d-bound HIV-1 protease was determined. The structure revealed that the P2-ligand makes extensive interactions including hydrogen bonding with the protease backbone in the S2-site. In addition, the P2-ligand in 3d forms a unique water-mediated interaction with the NH of Gly-48.

  8. Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody

    SciTech Connect

    Freeman, M.M.; Hong, X.; Seaman, M.S.; Rits-Vollock, S.p Kao, C.Y.; Ho, D.D.; Chen, B.

    2010-06-18

    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.

  9. Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled DNA in vitro.

    PubMed Central

    Li, M X; Yeung, H W; Pan, L P; Chan, S I

    1991-01-01

    Trichosanthin, an abortifacient, immunosuppressive and anti-tumor protein purified from the traditional Chinese herb medicine Tian Hua Fen, is a potent inhibitor against HIV-1 replication. Under normal enzymatic digestion conditions, trichosanthin cleaves the supercoiled double-stranded DNA to produce nicked circular and linear DNA. Trichosanthin has no effect on linear double-stranded DNA. Neither does it convert relaxed circular duplex DNA into a supercoiled form in the presence of ATP. Thus trichosanthin is not a DNA gyrase. However, trichosanthin can cleave the relaxed circular DNA into a linear form, indicating that both the circular as well as the supercoiled forms are essential for trichosanthin recognition. In addition, trichosanthin contains one calcium metal ion per protein molecule, which presumably is related to its endonucleolytic activity. Images PMID:1659689

  10. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir – insights for drug design

    PubMed Central

    Weber, Irene T.; Waltman, Mary Jo; Mustyakimov, Marat; Blakeley, Matthew P.; Keen, David A.; Ghosh, Arun K.; Langan, Paul; Kovalevsky, Andrey Y.

    2013-01-01

    HIV-1 protease is an important target for the development of antiviral inhibitors to treat AIDS. A room-temperature joint X-ray/neutron structure of the protease in complex with clinical drug amprenavir has been determined at 2.0 Å resolution. The structure provides direct determination of hydrogen atom positions in the enzyme active site. Analysis of the enzyme-drug interactions suggests that some hydrogen bonds may be weaker than deduced from the non-hydrogen interatomic distances. This information may be valuable for the design of improved protease inhibitors. PMID:23772563

  11. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  12. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease.

    PubMed

    Louis, John M; Roche, Julien

    2016-07-01

    Using high-pressure NMR spectroscopy and differential scanning calorimetry, we investigate the folding landscape of the mature HIV-1 protease homodimer. The cooperativity of unfolding was measured in the absence or presence of a symmetric active site inhibitor for the optimized wild type protease (PR), its inactive variant PRD25N, and an extremely multidrug-resistant mutant, PR20. The individual fit of the pressure denaturation profiles gives rise to first order, ∆GNMR, and second order, ∆VNMR (the derivative of ∆GNMR with pressure); apparent thermodynamic parameters for each amide proton considered. Heterogeneity in the apparent ∆VNMR values reflects departure from an ideal cooperative unfolding transition. The narrow to broad distribution of ∆VNMR spanning the extremes from inhibitor-free PR20D25N to PR-DMP323 complex, and distinctively for PRD25N-DMP323 complex, indicated large variations in folding cooperativity. Consistent with this data, the shape of thermal unfolding transitions varies from asymmetric for PR to nearly symmetric for PR20, as dimer-inhibitor ternary complexes. Lack of structural cooperativity was observed between regions located close to the active site, including the hinge and tip of the glycine-rich flaps, and the rest of the protein. These results strongly suggest that inhibitor binding drastically decreases the cooperativity of unfolding by trapping the closed flap conformation in a deep energy minimum. To evade this conformational trap, PR20 evolves exhibiting a smoother folding landscape with nearly an ideal two-state (cooperative) unfolding transition. This study highlights the malleability of retroviral protease folding pathways by illustrating how the selection of mutations under drug pressure remodels the free-energy landscape as a primary mechanism. PMID:27170547

  13. Terminal Interface Conformations Modulate Dimer Stability Prior to Amino Terminal Autoprocessing of HIV-1 Protease

    SciTech Connect

    Agniswamy, Johnson; Sayer, Jane M.; Weber, Irene T.; Louis, John M.

    2012-04-17

    The HIV-1 protease (PR) mediates its own release (autoprocessing) from the polyprotein precursor, Gag-Pol, flanked by the transframe region (TFR) and reverse transcriptase at its N- and C-termini, respectively. Autoprocessing at the N-terminus of PR mediates stable dimer formation essential for catalytic activity, leading to the formation of infectious virus. An antiparallel {beta}-sheet interface formed by the four N- and C-terminal residues of each subunit is important for dimer stability. Here, we present the first high-resolution crystal structures of model protease precursor-clinical inhibitor (PI darunavir or saquinavir) complexes, revealing varying conformations of the N-terminal flanking (S{sup -4}FNF{sup -1}) and interface residues (P{sup 1}QIT{sup 4}). A 180{sup o} rotation of the T{sup 4}-L{sup 5} peptide bond is accompanied by a new Q{sup 2}-L{sup 5} hydrogen bond and complete disengagement of PQIT from the {beta}-sheet dimer interface, which may be a feature for intramolecular autoprocessing. This result is consistent with drastically lower thermal stability by 14-20 C of PI complexes of precursors and the mature PR lacking its PQIT residues (by 18.3 C). Similar to the TFR-PR precursor, this deletion also results in a darunavir dissociation constant (2 x 10{sup 4})-fold higher and a markedly increased dimer dissociation constant relative to the mature PR. The terminal {beta}-sheet perturbations of the dimeric structure likely account for the drastically poorer inhibition of autoprocessing of TFR-PR relative to the mature PR, even though significant differences in active site-PI interactions in these structures were not observed. The novel conformations of the dimer interface may be exploited to target selectively the protease precursor prior to its N-terminal cleavage.

  14. HIV-1 subtype influences susceptibility and response to monotherapy with the protease inhibitor lopinavir/ritonavir

    PubMed Central

    Sutherland, K. A.; Ghosn, J.; Gregson, J.; Mbisa, J. L.; Chaix, M. L.; Cohen Codar, I.; Delfraissy, J. F.; Delaugerre, C.; Gupta, R. K.

    2015-01-01

    Objective PI susceptibility results from a complex interplay between protease and Gag proteins, with Gag showing wide variation across HIV-1 subtypes. We explored the impact of pre-treatment susceptibility on the outcome of lopinavir/ritonavir monotherapy. Methods Treatment-naive individuals who experienced lopinavir/ritonavir monotherapy failure from the MONARK study were matched (by subtype, viral load and baseline CD4 count) with those who achieved virological response (‘successes’). Successes were defined by viral load <400 copies/mL after week 24 and <50 copies/mL from week 48 to week 96. Full-length Gag–protease was amplified from patient samples for in vitro phenotypic susceptibility testing, with susceptibility expressed as fold change (FC) relative to a subtype B reference strain. Results Baseline lopinavir susceptibility was lower in viral failures compared with viral successes, but the differences were not statistically significant (median lopinavir susceptibility: 4.4 versus 8.5, respectively, P = 0.17). Among CRF02_AG/G patients, there was a significant difference in lopinavir susceptibility between the two groups (7.1 versus 10.4, P = 0.047), while in subtype B the difference was not significant (2.7 versus 3.4, P = 0.13). Subtype CRF02_AG/G viruses had a median lopinavir FC of 8.7 compared with 3.1 for subtype B (P = 0.001). Conclusions We report an association between reduced PI susceptibility (using full-length Gag–protease sequences) at baseline and subsequent virological failure on lopinavir/ritonavir monotherapy in antiretroviral-naive patients harbouring subtype CRF02_AG/G viruses. We speculate that this may be important in the context of suboptimal adherence in determining viral failure. PMID:25228587

  15. Extreme multidrug resistant HIV-1 protease with 20 mutations is resistant to novel protease inhibitors with P1′-pyrrolidinone or P2-tris-tetrahydrofuran

    PubMed Central

    Agniswamy, Johnson; Shen, Chen-Hsiang; Wang, Yuan-Fang; Ghosh, Arun K.; Rao, Kalapala Venkateswara; Xu, Chun-Xiao; Sayer, Jane M.; Louis, John M.; Weber, Irene T.

    2013-01-01

    Extreme drug resistant mutant of HIV-1 protease (PR) bearing 20 mutations (PR20) has been studied with the clinical inhibitor amprenavir (1) and two potent antiviral investigational inhibitors GRL-02031 (2) and GRL-0519 (3). Clinical inhibitors are >1000-fold less active on PR20 than on wild type enzyme, which is consistent with dissociation constants (KL) from isothermal titration calorimetry of 40 nM for 3, 178 nM for amprenavir, and 960 nM for 2. High resolution crystal structures of PR20-inhibitor complexes revealed altered interactions compared with the corresponding wild-type PR complexes in agreement with relative inhibition. Amprenavir lacks interactions due to PR20 mutations in the S2/S2′ subsites relative to PR. Inhibitors 2 and 3 lose interactions with Arg8′ in PR20 relative to the wild type enzyme since Arg8′ shifts to interact with mutated L10F side chain. Overall, inhibitor 3 compares favorably with darunavir in affinity for PR20 and shows promise for further development. PMID:23590295

  16. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  17. Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans.

    PubMed

    Zhang, Hong; Fu, Hu; Luallen, Robert J; Liu, Bingfen; Lee, Fang-Hua; Doms, Robert W; Geng, Yu

    2015-09-22

    The glycan shield on the human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein has drawn attention as a target for HIV-1 vaccine design given that an increasing number of potent and broadly neutralizing antibodies (bNAbs) recognize epitopes entirely or partially comprised of high mannose type N-linked glycans. In an attempt to generate immunogens that target the glycan shield of HIV-1, we previously engineered a triple mutant (TM) strain of Saccharomyces cerevisiae that results in exclusive presentation of high mannose type N-glycans, and identified five TM yeast glycoproteins that support strong binding of 2G12, a bNAb that targets a cluster of high mannose glycans on the gp120 subunit of Env. Here, we further analyzed the antigenicity and immunogenicity of these proteins in inducing anti-HIV responses. Our study demonstrated that the 2G12-reactive TM yeast glycoproteins efficiently bound to recently identified bNAbs including PGT125-130 and PGT135 that recognize high mannose glycan-dependent epitopes. Immunization of rabbits with a single TM yeast glycoprotein (Gp38 or Pst1), when conjugated to a promiscuous T-cell epitope peptide and coadministered with a Toll-like receptor 2 agonist, induced glycan-specific HIV-1 Env cross-reactive antibodies. The immune sera bound to both synthetic mannose oligosaccharides and gp120 proteins from a broad range of HIV-1 strains. The purified antibodies recognized and captured virions that contain both complex- and high mannose-type of N-glycans, and potently neutralized virions from different HIV-1 clades but only when the virions were enforced to retain high mannose N-glycans. This study provides insights into the elicitation of anti-carbohydrate, HIV-1 Env-cross reactive antibodies with a heterologous glycoprotein and may have applications in the design and administration of immunogens that target the viral glycan shield for development of an effective HIV-1 vaccine. PMID:26277072

  18. Cellular HIV-1 DNA quantitation in patients during simplification therapy with protease inhibitor-sparing regimens.

    PubMed

    Sarmati, Loredana; Parisi, Saverio Giuseppe; Nicastri, Emanuele; d'Ettorre, Gabriella; Andreoni, Carolina; Dori, Luca; Gatti, Francesca; Montano, Marco; Buonomini, Anna Rita; Boldrin, Caterina; Palù, Giorgio; Vullo, Vincenzo; Andreoni, Massimo

    2007-07-01

    Simplified regimens containing protease-inhibitors (PI)-sparing combinations were used in patients with virological suppression after prolonged highly active antiretroviral therapy. This study evaluated the total HIV-1 DNA quantitation as a predictor of long-term success for PI-sparing simplified therapy. Sixty-two patients were enrolled in a prospective non-randomized cohort. All patients have been receiving a triple-therapy regimen, two nucleoside reverse transcriptase inhibitors (NRTIs) plus one PI, for at least 9 months and were characterized by undetectable plasma HIV-1 RNA levels (<50 cp/ml) for at least 6 months. Patients were changed to a simplified PI-sparing regimen to overcome PI-associated adverse effects. HIV-DNA levels in peripheral blood mononuclear cells (PBMCs) were evaluated at baseline and at the end of follow-up. Patients with proviral DNA levels below the median value (226 copies/10(6) PBMCs) had a significant higher CD4 cell count at nadir (P = 0.003) and at enrolment (P = 0.001) with respect to patients with HIV-DNA levels above the median value. At month 18, 53 out of 62 (85%) patients on simplified regimen showed virological success, 4 (6.4%) patients experienced virological failure and 5 (8%) patients showed viral blip. At logistic regression analysis, HIV-DNA levels below 226 copies/10(6) PBMCs at baseline were associated independently to a reduced risk of virological failure or viral blip during simplified therapy (OR 0.002, 95% CI 0.001-0.46, P = 0.025). The substitution of PI with NRTI or non-NRTIs may represent an effective treatment option. Indeed, treatment failure or viral blip were experienced by 6% and 8% of the patients on simplified therapy, respectively. In addition, sustained suppression of the plasma viral load was significantly correlated with low levels of proviral DNA before treatment simplification. PMID:17516532

  19. The Effect of Clade-Specific Sequence Polymorphisms on HIV-1 Protease Activity and Inhibitor Resistance Pathways

    SciTech Connect

    Bandaranayake, Rajintha M.; Kolli, Madhavi; King, Nancy M.; Nalivaika, Ellen A.; Heroux, Annie; Kakizawa, Junko; Sugiura, Wataru; Schiffer, Celia A.

    2010-09-08

    The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01{_}AE (AE) strain is seen principally in Southeast Asia. AE protease differs by {approx}10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B and AE protease variants. The relationship between clade-specific sequence variations and pathways to inhibitor resistance was also assessed. AE protease has a lower catalytic turnover rate than clade B protease, and it also has weaker affinity for both NFV and darunavir (DRV). This weaker affinity may lead to the nonactive-site N88S variant in AE, which exhibits significantly decreased affinity for both NFV and DRV. The D30N/N88D mutations in clade B resulted in a significant loss of affinity for NFV and, to a lesser extent, for DRV. A comparison of crystal structures of AE protease shows significant structural rearrangement in the flap hinge region compared with those of clade B protease and suggests insights into the alternative pathways to NFV resistance. In combination, our studies show that sequence polymorphisms within clades can alter protease activity and inhibitor binding and are capable of altering the pathway to inhibitor resistance.

  20. Synthesis and SAR of novel CXCR4 antagonists that are potent inhibitors of T tropic (X4) HIV-1 replication.

    PubMed

    Skerlj, Renato; Bridger, Gary; McEachern, Ernie; Harwig, Curtis; Smith, Chris; Wilson, Trevor; Veale, Duane; Yee, Helen; Crawford, Jason; Skupinska, Krystyna; Wauthy, Rossana; Yang, Wen; Zhu, Yongbao; Bogucki, David; Di Fluri, Maria; Langille, Jonathon; Huskens, Dana; De Clercq, Erik; Schols, Dominique

    2011-01-01

    An early lead from the AMD070 program was optimized and a structure-activity relationship was developed for a novel series of heterocyclic containing compounds. Potent CXCR4 antagonists were identified based on anti-HIV-1 activity and Ca(2+) flux inhibition that displayed good pharmacokinetics in rat and dog. PMID:21109432

  1. Crystal structure of chemically synthesized HIV-1 protease and a ketomethylene isostere inhibitor based on the p2/NC cleavage site

    SciTech Connect

    Torbeev, Vladimir Yu.; Mandal, Kalyaneswar; Terechko, Valentina A.; Kent, Stephen B.H.

    2009-09-02

    Here we report the X-ray structures of chemically synthesized HIV-1 protease and the inactive [D25N]HIV-1 protease complexed with the ketomethylene isostere inhibitor Ac-Thr-Ile-Nle{psi}[CO-CH{sub 2}]Nle-Gln-Arg.amide at 1.4 and 1.8 {angstrom} resolution, respectively. In complex with the active enzyme, the keto-group was found to be converted into the hydrated gem-diol, while the structure of the complex with the inactive D25N enzyme revealed an intact keto-group. These data support the general acid-general base mechanism for HIV-1 protease catalysis.

  2. Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Stereopure Lactam-Based HIV-1 Protease Inhibitors

    PubMed Central

    2012-01-01

    In an effort to identify a new class of druglike HIV-1 protease inhibitors, four different stereopure β-hydroxy γ-lactam-containing inhibitors have been synthesized, biologically evaluated, and cocrystallized. The impact of the tether length of the central spacer (two or three carbons) was also investigated. A compound with a shorter tether and (3R,4S) absolute configuration exhibited high activity with a Ki of 2.1 nM and an EC50 of 0.64 μM. Further optimization by decoration of the P1′ side chain furnished an even more potent HIV-1 protease inhibitor (Ki = 0.8 nM, EC50 = 0.04 μM). According to X-ray analysis, the new class of inhibitors did not fully succeed in forming two symmetric hydrogen bonds to the catalytic aspartates. The crystal structures of the complexes further explain the difference in potency between the shorter inhibitors (two-carbon spacer) and the longer inhibitors (three-carbon spacer). PMID:22376008

  3. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-01

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976

  4. HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements

    SciTech Connect

    Agniswamy, Johnson; Shen, Chen-Hsiang; Aniana, Annie; Sayer, Jane M.; Louis, John M.; Weber, Irene T.

    2012-06-28

    The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.

  5. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors

    SciTech Connect

    Tie, Yunfeng; Wang, Yuan-Fang; Boross, Peter I.; Chiu, Ting-Yi; Ghosh, Arun K.; Tozser, Jozsef; Louis, John M.; Harrison, Robert W.; Weber, Irene T.

    2012-03-15

    Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR{sub 2}) than on HIV-1 protease (PR{sub 1}). We solved the crystal structure of PR{sub 2} with APV at 1.5 {angstrom} resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR{sub 1} mutant (PR{sub 1M}) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR{sub 2}. PR{sub 1M} more closely resembled PR{sub 2} than PR{sub 1} in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR{sub 1M} with APV, DRV, and SQV were compared with available PR{sub 1} and PR{sub 2} complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR{sub 1M} and PR{sub 1}, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR{sub 1M}. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR{sub 1M} and PR{sub 2} relative to the strong hydrogen bonds observed in PR{sub 1}, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR{sub 1M} partially replicates the specificity of PR{sub 2} and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2.

  6. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell

    PubMed Central

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N.

    2016-01-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent. PMID:27032748

  7. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell.

    PubMed

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N

    2016-04-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent. PMID:27032748

  8. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis.

    PubMed

    Yang, X W; Zhao, J; Cui, Y X; Liu, X H; Ma, C M; Hattori, M; Zhang, L H

    1999-11-01

    Eight bioactive triterpenoid saponins (1-8) were isolated from the seeds of Aesculus chinensis, four of which are novel compounds. The major saponins were identified as escin Ia (1), Ib (2), isoescin Ia (3) and Ib (4), while the new compounds were identified as 22alpha-tigloyl-28-acetylprotoaescigenin-3beta-O-¿beta -D-glucopyranos yl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVc, 5), 22alpha-angeloyl-28-acetylprotoaescigenin-3beta-O-¿bet a-D-glucopyrano syl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVd, 6), 28-tigloylprotoaescigenin-3beta-O-¿beta-D-glucopyranosyl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVe, 7), and 28-angeloylprotoaescigenin-3beta-O-¿beta-D-glucopyranosyl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVf, 8). The structures were determined by chemical and spectroscopic methods. All the above compounds were evaluated for their inhibitory activity against HIV-1 protease. PMID:10579862

  9. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Ungwitayatorn, Jiraporn; Samee, Weerasak; Pimthon, Jutarat

    2004-02-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 30 chromone derivatives, a new class of HIV-1 protease inhibitors. The best predictive CoMFA model gives cross-validated r2 ( q2)=0.763, non-cross-validated r2=0.967, standard error of estimate ( S)=5.092, F=90.701. The best CoMSIA model has q2=0.707, non-cross-validated r2=0.943, S=7.018, F=51.734, included steric, electrostatic, hydrophobic, and hydrogen bond donor fields. The predictive ability of these models was validated by a set of five compounds that were not included in the training set. The calculated (predicted) and experimental inhibitory activities were well correlated. The contour maps obtained from CoMFA and CoMSIA models were in agreement with the previous docking study for this chromone series.

  10. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies.

    PubMed

    Maseko, Sibusiso B; Natarajan, Satheesh; Sharma, Vikas; Bhattacharyya, Neelakshi; Govender, Thavendran; Sayed, Yasien; Maguire, Glenn E M; Lin, Johnson; Kruger, Hendrik G

    2016-06-01

    Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Many studies have targeted HIV-1 protease for the development of drugs against AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. Along with the wild type (C-SA) we also over-expressed and characterized two mutant forms from patients that had shown resistance to protease inhibitors. Using recombinant DNA technology, we constructed three recombinant plasmids in pGEX-6P-1 and expressed them containing a sequence encoding wild type HIV protease and two mutants (I36T↑T contains 100 amino acids and L38L↑N↑L contains 101 amino acids). These recombinant proteins were isolated from inclusion bodies by using QFF anion exchange and GST trap columns. In SDS-PAGE, we obtained these HIV proteases as single bands of approximately 11.5, 11.6 and 11.7 kDa for the wild type, I36T↑Tand L38L↑N↑L mutants, respectively. The enzyme was recovered efficiently (0.25 mg protein/L of Escherichia coli culture) and had high specific activity of 2.02, 2.20 and 1.33 μmol min(-1) mg(-1) at an optimal pH of 5 and temperature of 37 °C for the wild type, I36T↑T and L38L↑N↑L, respectively. The method employed here provides an easy and rapid purification of the HIV-1(C-SA) protease from the inclusion bodies, with high yield and high specific activities. PMID:26917227

  11. A Novel Bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI), GRL-98065, Is Potent Against Mulutiple-PI-Resistant Human Immunodeficiency Virus in Vitro

    SciTech Connect

    Amano,M.; Koh, Y.; Das, D.; Li, J.; Leschenko, S.; Wang, Y.; Boross, P.; Weber, I.; Ghosh, A.; Mitsuya, H.

    2007-01-01

    We designed, synthesized, and identified GRL-98065, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand, 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF), and a sulfonamide isostere, which is highly potent against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC{sub 50}], 0.0002 to 0.0005 {mu}M) with minimal cytotoxicity (50% cytotoxicity, 35.7 {mu}M in CD4{sup +} MT-2 cells). GRL-98065 blocked the infectivity and replication of each of the HIV-1{sub NL4-3} variants exposed to and selected by up to a 5 {mu}M concentration of saquinavir, indinavir, nelfinavir, or ritonavir and a 1 {mu}M concentration of lopinavir or atazanavir (EC{sub 50}, 0.0015 to 0.0075 {mu}M), although it was less active against HIV-1{sub NLV4-3} selected by amprenavir (EC{sub 50}, 0.032 {mu}M). GRL-98065 was also potent against multiple-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents, HIV-1 isolates of various subtypes, and HIV-2 isolates examined. Structural analyses revealed that the close contact of GRL-98065 with the main chain of the protease active-site amino acids (Asp29 and Asp30) is important for its potency and wide-spectrum activity against multiple-PI-resistant HIV-1 variants. The present data demonstrate that the privileged nonpeptide P2 ligand, bis-THF, is critical for the binding of GRL-98065 to the HIV protease substrate binding site and that this scaffold can confer highly potent antiviral activity against a wide spectrum of HIV isolates.

  12. Structural Basis of Why Nelfinavir-Resistant D30N Mutant of HIV-1 Protease Remains Susceptible to Saquinavir.

    PubMed

    Prashar, Vishal; Bihani, Subhash C; Ferrer, Jean-Luc; Hosur, Madhusoodan V

    2015-09-01

    Although anti-HIV-1 protease drugs nelfinavir (NFV) and saquinavir (SQV) share common functional groups, D30N is a major resistance mutation against NFV but remains susceptible to SQV. We have determined the crystal structure of D30N mutant-tethered HIV-1 protease in complex with SQV to 1.79 Å resolution. Structural analysis showed that SQV forms two direct hydrogen bonds with the main chain atoms of the residues Asp29 and Asp30 that are not observed in the D30N-NFV complex. Apart from maintaining these two main chain hydrogen bonds, the P2-asparagine of SQV forms an additional hydrogen bond to the mutated side chain of the residue 30. These could be the reasons why D30N is not a drug resistance mutation against SQV. This structure supports the previous studies showing that the interactions between a potential inhibitor and backbone atoms of the enzyme are important to maintain potency against drug-resistant HIV-1 protease. PMID:25487655

  13. Antitumor and HIV-1 Reverse Transcriptase Inhibitory Activities of a Hemagglutinin and a Protease Inhibitor from Mini-Black Soybean

    PubMed Central

    Ye, Xiu Juan; Ng, Tzi Bun

    2011-01-01

    Protease inhibitors (PIs) and hemagglutinins are defense proteins produced by many organisms. From Chinese mini-black soybeans, a 17.5-kDa PI was isolated using chromatography on Q-Sepharose, SP-Sepharose, and DEAE-cellulose. A 25-kDa hemagglutinin was purified similarly, but using Superdex 75 instead of DEAE-cellulose in the final step. The PI inhibited trypsin and chymotrypsin (IC50 = 7.2 and 8.8 μM). Its trypsin inhibitory activity was stable from pH 2 to pH 13 and from 0°C to 70°C. The hemagglutinin activity of the hemagglutinin was stable from pH 2 to pH 13 and from 0°C to 75°C. The results indicated that both PI and hemagglutinin were relatively thermostable and pH-stable. The trypsin inhibitory activity was inhibited by dithiothreitol, signifying the importance of the disulfide bond to the activity. The hemagglutinating activity was inhibited most potently by D (+)-raffinose and N-acetyl-D-galactosamine, suggesting that the hemagglutinin was specific for these two sugars. Both PI and hemagglutinin inhibited HIV-1 reverse transcriptase (IC50 = 3.2 and 5.5 μM), proliferation of breast cancer cells (IC50 = 9.7 and 3.5 μM), and hepatoma cells (IC50 = 35 and 6.2 μM), with relatively high potencies. PMID:21527979

  14. Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation.

    PubMed

    Pyeon, Dohun; Timani, Khalid Amine; Gulraiz, Fahad; He, Johnny J; Park, In-Woo

    2016-09-01

    HIV-1 Nef is necessary and may be sufficient for HIV-1-associated AIDS pathogenicity, in that knockout of Nef alone can protect HIV-infected patients from AIDS. We therefore investigated the feasibility of physical knockout of Nef, using the host ubiquitin proteasome system in HIV-1-infected cells. Our co-immunoprecipitation analysis demonstrated that Nef interacted with ubiquitin specific protease 15 (USP15), and that USP15, which is known to stabilize cellular proteins, degraded Nef. Nef could also cause decay of USP15, although Nef-mediated degradation of USP15 was weaker than USP15-mediated Nef degradation. Direct interaction between Nef and USP15 was essential for the observed reciprocal decay of the proteins. Further, USP15 degraded not only Nef but also HIV-1 structural protein, Gag, thereby substantially inhibiting HIV-1 replication. However, Gag did not degrade USP15, indicating that the Nef and USP15 complex, in distinction to other viral proteins, play an integral role in coordinating viral protein degradation and hence HIV-1 replication. Moreover, Nef and USP15 globally suppressed ubiquitylation of cellular proteins, indicating that these proteins are major determinants for the stability of cellular as well as viral proteins. Taken together, these data indicate that Nef and USP15 are vital in regulating degradation of viral and cellular proteins and thus HIV-1 replication, and specific degradation of viral, not cellular proteins, by USP15 points to USP15 as a candidate therapeutic agent to combat AIDS by eliminating viral proteins from the infected cells via USP15-mediated proteosomal degradation. PMID:27460547

  15. Linker-Extended Native Cyanovirin-N Facilitates PEGylation and Potently Inhibits HIV-1 by Targeting the Glycan Ligand

    PubMed Central

    Wei, Bo; Wu, Chongchao; Peng, Zhou; Fan, Jun; Hou, Zhibo; Fang, Yongsheng; Wang, Yifei; Kitazato, Kaio; Yu, Guoying; Zou, Chunbin; Qian, Chuiwen; Xiong, Sheng

    2014-01-01

    Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations. PMID:24475123

  16. Computing Clinically Relevant Binding Free Energies of HIV-1 Protease Inhibitors

    PubMed Central

    2014-01-01

    The use of molecular simulation to estimate the strength of macromolecular binding free energies is becoming increasingly widespread, with goals ranging from lead optimization and enrichment in drug discovery to personalizing or stratifying treatment regimes. In order to realize the potential of such approaches to predict new results, not merely to explain previous experimental findings, it is necessary that the methods used are reliable and accurate, and that their limitations are thoroughly understood. However, the computational cost of atomistic simulation techniques such as molecular dynamics (MD) has meant that until recently little work has focused on validating and verifying the available free energy methodologies, with the consequence that many of the results published in the literature are not reproducible. Here, we present a detailed analysis of two of the most popular approximate methods for calculating binding free energies from molecular simulations, molecular mechanics Poisson–Boltzmann surface area (MMPBSA) and molecular mechanics generalized Born surface area (MMGBSA), applied to the nine FDA-approved HIV-1 protease inhibitors. Our results show that the values obtained from replica simulations of the same protease–drug complex, differing only in initially assigned atom velocities, can vary by as much as 10 kcal mol–1, which is greater than the difference between the best and worst binding inhibitors under investigation. Despite this, analysis of ensembles of simulations producing 50 trajectories of 4 ns duration leads to well converged free energy estimates. For seven inhibitors, we find that with correctly converged normal mode estimates of the configurational entropy, we can correctly distinguish inhibitors in agreement with experimental data for both the MMPBSA and MMGBSA methods and thus have the ability to rank the efficacy of binding of this selection of drugs to the protease (no account is made for free energy penalties associated with

  17. Lead expansion and virtual screening of Indinavir derivate HIV-1 protease inhibitors using pharmacophoric - shape similarity scoring function

    PubMed Central

    Shityakov, Sergey; Dandekar, Thomas

    2010-01-01

    Indinavir (Crivaxan®) is a potent inhibitor of the HIV (human immunodeficiency virus) protease. This enzyme has an important role in viral replication and is considered to be very attractive target for new antiretroviral drugs. However, it becomes less effective due to highly resistant new viral strains of HIV, which have multiple mutations in their proteases. For this reason, we used a lead expansion method to create a new set of compounds with a new mode of action to protease binding site. 1300 compounds chemically diverse from the initial hit were generated and screened to determine their ability to interact with protease and establish their QSAR properties. Further computational analyses revealed one unique compound with different protease binding ability from the initial hit and its role for possible new class of protease inhibitors is discussed in this report. PMID:20978602

  18. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease.

    PubMed Central

    Trylska, J.; Antosiewicz, J.; Geller, M.; Hodge, C. N.; Klabe, R. M.; Head, M. S.; Gilson, M. K.

    1999-01-01

    The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed. PMID:10210196

  19. Effect of Flap Mutations on Structure of HIV-1 Protease and Inhibition by Sanquinavir and Darunavir

    SciTech Connect

    Liu, F.; Kovalevsky, A.; Tie, Y.; Ghosh, A.; Harrison, R.; Weber, I.

    2008-08-25

    HIV-1 (human immunodeficiency virus type 1) protease (PR) and its mutants are important antiviral drug targets. The PR flap region is critical for binding substrates or inhibitors and catalytic activity. Hence, mutations of flap residues frequently contribute to reduced susceptibility to PR inhibitors in drug-resistant HIV. Structural and kinetic analyses were used to investigate the role of flap residues Gly48, Ile50, and Ile54 in the development of drug resistance. The crystal structure of flap mutants PR{sub I50V} (PR with I50V mutation), PR{sub I54V} (PR with I54V mutation), and PR{sub I54M} (PR with I54M mutation) complexed with saquinavir (SQV) as well as PR{sub G48V} (PR with G48V mutation), PR{sub I54V}, and PR{sub I54M} complexed with darunavir (DRV) were determined at resolutions of 1.05--1.40 {angstrom}. The PR mutants showed changes in flap conformation, interactions with adjacent residues, inhibitor binding, and the conformation of the 80s loop relative to the wild-type PR. The PR contacts with DRV were closer in PR{sub G48V}-DRV than in the wild-type PR-DRV, whereas they were longer in PR{sub I54M}-DRV. The relative inhibition of PR{sub I54V} and that of PR{sub I54M} were similar for SQV and DRV. PR{sub G48V} was about twofold less susceptible to SQV than to DRV, wheres the opposite was observed for PR{sub I50V}. The observed inhibition was in agreement with the association of G48V and I50V with clinical resistance to SQV and DRV, respectively. This analysis of structural and kinetic effects of the mutants will assist in the development of more effective inhibitors for drug-resistant HIV.

  20. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01

    SciTech Connect

    Zhou, Tongqing; Georgiev, Ivelin; Wu, Xueling; Yang, Zhi-Yong; Dai, Kaifan; Finzi, Andrés; Kwon, Young Do; Scheid, Johannes F.; Shi, Wei; Xu, Ling; Yang, Yongping; Zhu, Jiang; Nussenzweig, Michel C.; Sodroski, Joseph; Shapiro, Lawrence; Nabel, Gary J.; Mascola, John R.; Kwong, Peter D.

    2010-08-26

    During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.

  1. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.

    PubMed

    Nalam, Madhavi N L; Ali, Akbar; Altman, Michael D; Reddy, G S Kiran Kumar; Chellappan, Sripriya; Kairys, Visvaldas; Ozen, Aysegül; Cao, Hong; Gilson, Michael K; Tidor, Bruce; Rana, Tariq M; Schiffer, Celia A

    2010-05-01

    Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to "lock" into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors. PMID:20237088

  2. Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance ▿

    PubMed Central

    Nalam, Madhavi N. L.; Ali, Akbar; Altman, Michael D.; Reddy, G. S. Kiran Kumar; Chellappan, Sripriya; Kairys, Visvaldas; Özen, Ayşegül; Cao, Hong; Gilson, Michael K.; Tidor, Bruce; Rana, Tariq M.; Schiffer, Celia A.

    2010-01-01

    Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to “lock” into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors. PMID:20237088

  3. A Consistency-Based Feature Selection Method Allied with Linear SVMs for HIV-1 Protease Cleavage Site Prediction

    PubMed Central

    Öztürk, Orkun; Aksaç, Alper; Elsheikh, Abdallah; Özyer, Tansel; Alhajj, Reda

    2013-01-01

    Background Predicting type-1 Human Immunodeficiency Virus (HIV-1) protease cleavage site in protein molecules and determining its specificity is an important task which has attracted considerable attention in the research community. Achievements in this area are expected to result in effective drug design (especially for HIV-1 protease inhibitors) against this life-threatening virus. However, some drawbacks (like the shortage of the available training data and the high dimensionality of the feature space) turn this task into a difficult classification problem. Thus, various machine learning techniques, and specifically several classification methods have been proposed in order to increase the accuracy of the classification model. In addition, for several classification problems, which are characterized by having few samples and many features, selecting the most relevant features is a major factor for increasing classification accuracy. Results We propose for HIV-1 data a consistency-based feature selection approach in conjunction with recursive feature elimination of support vector machines (SVMs). We used various classifiers for evaluating the results obtained from the feature selection process. We further demonstrated the effectiveness of our proposed method by comparing it with a state-of-the-art feature selection method applied on HIV-1 data, and we evaluated the reported results based on attributes which have been selected from different combinations. Conclusion Applying feature selection on training data before realizing the classification task seems to be a reasonable data-mining process when working with types of data similar to HIV-1. On HIV-1 data, some feature selection or extraction operations in conjunction with different classifiers have been tested and noteworthy outcomes have been reported. These facts motivate for the work presented in this paper. Software availability The software is available at http://ozyer.etu.edu.tr/c-fs-svm.rar. The software

  4. Conformation of inhibitor-free HIV-1 protease derived from NMR spectroscopy in a weakly oriented solution

    PubMed Central

    Roche, Julien; Louis, John M.; Bax, Ad

    2014-01-01

    Flexibility of the glycine-rich flaps is known to be essential for catalytic activity of the HIV-1 protease, but their exact conformations at the different stages of the enzymatic pathway remain subject to much debate. While hundreds of crystal structures of protease-inhibitor complexes have been solved, only about a dozen inhibitor-free protease structures have been reported. These apo-structures reveal a large diversity of flap conformations, ranging from closed, to semi-open and wide-open. To evaluate the average structure in solution, we measured residual dipolar couplings (RDCs) and compared these to values calculated for crystal structures representative of the closed, semi-open and wide-open states. The RDC data clearly indicate that the inhibitor-free protease, on average, adopts a closed conformation in solution that is very similar to the inhibitor-bound state. By contrast, a highly drug-resistant protease mutant, PR20, adopts the wide-open flap conformation. PMID:25470009

  5. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers

    PubMed Central

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D.; Lichterfeld, Mathias; Yu, Xu G.

    2015-01-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes. PMID:26067651

  6. In Vitro Characterization of GS-8374, a Novel Phosphonate-Containing Inhibitor of HIV-1 Protease with a Favorable Resistance Profile ▿ †

    PubMed Central

    Callebaut, Christian; Stray, Kirsten; Tsai, Luong; Williams, Matt; Yang, Zheng-Yu; Cannizzaro, Carina; Leavitt, Stephanie A.; Liu, Xiaohong; Wang, Kelly; Murray, Bernard P.; Mulato, Andrew; Hatada, Marcos; Priskich, Tina; Parkin, Neil; Swaminathan, Swami; Lee, William; He, Gong-Xin; Xu, Lianhong; Cihlar, Tomas

    2011-01-01

    GS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to the para position of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (Ki = 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4+ T cells (50% effective concentration [EC50] = 3.4 to 11.5 nM), and macrophages (EC50 = 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC50s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs, in vitro hepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boosting in vivo. In summary, results from this broad in vitro pharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients. PMID:21245449

  7. Engineered Single Human CD4 Domains as Potent HIV-1 Inhibitors and Components of Vaccine Immunogens ▿ †

    PubMed Central

    Chen, Weizao; Feng, Yang; Gong, Rui; Zhu, Zhongyu; Wang, Yanping; Zhao, Qi; Dimitrov, Dimiter S.

    2011-01-01

    Soluble forms of the HIV-1 receptor CD4 (sCD4) have been extensively characterized for more than 2 decades as promising inhibitors and components of vaccine immunogens. However, they were mostly based on the first two CD4 domains (D1D2), and numerous attempts to develop functional, high-affinity, stable soluble one-domain sCD4 (D1) have not been successful because of the strong interactions between the two domains. We have hypothesized that combining the power of structure-based design with sequential panning of large D1 mutant libraries against different HIV-1 envelope glycoproteins (Envs) and screening for soluble mutants could not only help solve the fundamental stability problem of isolated D1, but may also allow improvement of D1 affinity while preserving its cross-reactivity. By using this strategy, we identified two stable monomeric D1 mutants, mD1.1 and mD1.2, which were significantly more soluble and bound Env gp120s more strongly (50-fold) than D1D2, neutralized a panel of HIV-1 primary isolates from different clades more potently than D1D2, induced conformational changes in gp120, and sensitized HIV-1 for neutralization by CD4-induced antibodies. mD1.1 and mD1.2 exhibited much lower binding to human blood cell lines than D1D2; moreover, they preserved a β-strand secondary structure and stability against thermally induced unfolding, trypsin digestion, and degradation by human serum. Because of their superior properties, mD1.1 and mD1.2 could be potentially useful as candidate therapeutics, components of vaccine immunogens, and research reagents for exploration of HIV-1 entry and immune responses. Our approach could be applied to other cases where soluble isolated protein domains are needed. PMID:21715496

  8. Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Liang, Zhiqiang; Wang, Wei; Yi, Changhong; Zhang, Shaolong; Zhang, Qinggang

    2014-11-01

    Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.

  9. Solvent accessibility as a predictive tool for the free energy of inhibitor binding to the HIV-1 protease.

    PubMed Central

    Nauchitel, V.; Villaverde, M. C.; Sussman, F.

    1995-01-01

    We have developed a simple approach for the evaluation of the free energies of inhibitor binding to the protease of the human immunodeficiency virus (HIV-1 PR). Our algorithm is based on the observation that most groups that line the binding pockets of this enzyme are hydrophobic in nature. Based on this fact, we have likened the binding of an inhibitor to this enzyme to its transfer from water to a medium of lower polarity. The resulting expression produced values for the free energy of binding of inhibitors to the HIV-1 PR that are in good agreement with experimental values. The additive nature of this approach has enabled us to partition the free energy of binding into the contributions of single fragments. The resulting analysis clearly indicates the existence of a ranking in the participation of the enzyme's subsites in binding. Although all the enzyme's pockets contribute to binding, the ones that bind the P2-P'2 span of the inhibitor are in general the most critical for high inhibitor potency. Moreover, our method has allowed us to determine the nature of the functional groups that fit into given enzyme binding pockets. Perusal of the energy contributions of single side chains has shown that a large number of hydrophobic and aromatic groups located in the central portion of the HIV-1 PR inhibitors present optimal binding. All of these observations are in agreement with experimental evidence, providing a validation for the physical relevancy of our model. PMID:7670378

  10. Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers

    PubMed Central

    Chen, Weizao; Zhu, Zhongyu; Feng, Yang; Dimitrov, Dimiter S.

    2008-01-01

    The antibody access to some conserved structures on the HIV-1 envelope glycoprotein (Env) is sterically restricted. We have hypothesized that the smallest independently folded antibody fragments (domains) could exhibit exceptionally potent and broadly cross-reactive neutralizing activity by targeting hidden conserved epitopes that are not accessible by larger antibodies. To test this hypothesis, we constructed a large (size 2.5 × 1010), highly diversified library of human antibody variable domains (domain antibodies) and used it for selection of binders to conserved Env structures by panning sequentially against Envs from different isolates. The highest affinity binder, m36, neutralized all tested HIV-1 isolates from clades A– D with an activity on average higher than that of C34, a peptide similar to the fusion inhibitor T20, which is in clinical use, and that of m9, which exhibits a neutralizing activity superior to known potent cross-reactive antibodies. Large-size fusion proteins of m36 exhibited diminished neutralizing activity but preincubation of virions with soluble CD4 restored it, suggesting that m36 epitope is sterically restricted and induced by CD4 (CD4i). M36 bound to gp120-CD4 complexes better than to gp120 alone and competed with CD4i antibodies. M36 is the only reported representative of a promising class of potent, broadly cross-reactive HIV-1 inhibitors based on human domain antibodies. It has potential for prevention and therapy and as an agent for exploration of the closely guarded conserved Env structures with implications for design of small molecule inhibitors and elucidation of mechanisms of virus entry and evasion of immune responses. PMID:18957538

  11. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design.

    PubMed Central

    Wallqvist, A.; Jernigan, R. L.; Covell, D. G.

    1995-01-01

    The interface between protein receptor-ligand complexes has been studied with respect to their binary interatomic interactions. Crystal structure data have been used to catalogue surfaces buried by atoms from each member of a bound complex and determine a statistical preference for pairs of amino-acid atoms. A simple free energy model of the receptor-ligand system is constructed from these atom-atom preferences and used to assess the energetic importance of interfacial interactions. The free energy approximation of binding strength in this model has a reliability of about +/- 1.5 kcal/mol, despite limited knowledge of the unbound states. The main utility of such a scheme lies in the identification of important stabilizing atomic interactions across the receptor-ligand interface. Thus, apart from an overall hydrophobic attraction (Young L, Jernigan RL, Covell DG, 1994, Protein Sci 3:717-729), a rich variety of specific interactions is observed. An analysis of 10 HIV-1 protease inhibitor complexes is presented that reveals a common binding motif comprised of energetically important contacts with a rather limited set of atoms. Design improvements to existing HIV-1 protease inhibitors are explored based on a detailed analysis of this binding motif. PMID:8528086

  12. Docking and 3-D QSAR studies on the binding of tetrahydropyrimid-2-one HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Rao, Shashidhar N.; Balaji, Govardhan A.; Balaji, Vitukudi N.

    2013-06-01

    We present molecular docking and 3-D QSAR studies on a series of tetrahydropyrimid-2-one HIV-1 protease inhibitors whose binding affinities to the enzyme span nearly 6 orders of magnitude. The docking investigations have been carried out with Surflex (GEOM, GEOMX) and Glide (SP and XP) methodologies available through Tripos and Schrodinger suite of tools in the context of Sybyl-X and Maestro interfaces, respectively. The alignments for 3-D QSAR studies were obtained by using the automated Surflex-SIM methodology in Sybyl-X and the analyses were performed using the CoMFA and CoMSIA methods. Additionally, the top-ranked poses obtained from various docking protocols were also employed to generate CoMFA and CoMSIA models to evaluate the qualitative consistency of the docked models with experimental data. Our studies demonstrate that while there are a number of common features in the docked models obtained from Surflex-dock and Glide methodologies, the former sets of models are generally better correlated with deduced experimental binding modes based on the X-ray structures of known HIV-1 protease complexes with cyclic ureas. The urea moiety common to all the ligands are much more tightly aligned in Surflex docked structures than in the models obtained from Glide SP and XP dockings. The 3-D QSAR models are qualitatively and quantitatively similar to those previously reported, suggesting the utility of automatically generated alignments from Surflex-SIM methodology.

  13. Development of a novel anti-HIV-1 agent from within: Effect of chimeric Vpr-containing protease cleavage site residues on virus replication

    PubMed Central

    Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.

    1997-01-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag–Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection. PMID:9096396

  14. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors from arylthioacetanilide structural motif.

    PubMed

    Li, Wenxin; Li, Xiao; De Clercq, Erik; Zhan, Peng; Liu, Xinyong

    2015-09-18

    The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of the clinically used anti-HIV drugs. Therefore, the discovery of novel and effective NNRTIs is still an extremely primary mission. Arylthioacetanilide family is one of the highly active HIV-1 NNRTIs against wide-type (WT) HIV-1 and a wide range of drug-resistant mutant strains. Especially, VRX-480773 and RDEA806 have been chosen as candidates for further clinical studies. In this article, we review the discovery and development of the arylthioacetanilides, and, especially, pay much attention to the structural modifications, SARs conclusions and molecular modeling. Moreover, several medicinal chemistry strategies to overcome drug resistance involved in the optimization process of arylthioacetanilides are highlighted, providing valuable clues for further investigations. PMID:26276432

  15. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants.

    PubMed

    Altman, Michael D; Ali, Akbar; Reddy, G S Kiran Kumar; Nalam, Madhavi N L; Anjum, Saima Ghafoor; Cao, Hong; Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X; Gilson, Michael K; Schiffer, Celia A; Rana, Tariq M; Tidor, Bruce

    2008-05-14

    The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from a Ki of 30-50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6-13-fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors: robust binders (maximum affinity loss of 14-16-fold), moderate binders (35-80-fold), and susceptible binders (greater than 100-fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance. PMID:18412349

  16. HIV-1 Protease Inhibitors from Inverse Design in the Substrate Envelope Exhibit Subnanomolar Binding to Drug-Resistant Variants

    PubMed Central

    Altman, Michael D.; Ali, Akbar; Reddy, G. S. Kiran Kumar; Nalam, Madhavi N. L.; Anjum, Saima Ghafoor; Cao, Hong; Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X.; Gilson, Michael K.; Schiffer, Celia A.; Rana, Tariq M.; Tidor, Bruce

    2010-01-01

    The acquisition of drug-resistance mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from Ki of 30–50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6–13 fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors — robust binders (maximum affinity loss of 14–16 fold), moderate binders (35–80 fold), and susceptible binders (greater than 100 fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance. PMID:18412349

  17. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    SciTech Connect

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark

    2015-10-15

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml-1. The median IC50 of neutralized viruses was 0.033 μg ml-1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.

  18. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-120 interface

    PubMed Central

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark

    2014-01-01

    The isolation of human monoclonal antibodies (mAbs) is providing important insights regarding the specificities that underlie broad neutralization of HIV-1 (reviewed in1). Here we report a broad and extremely potent HIV-specific mAb, termed 35O22, which binds novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with an IC50<50 μg/ml. The median IC50 of neutralized viruses was 0.033 μg/ml, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed it to bind a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current mAb-based approaches to immunotherapies, prophylaxis, and vaccine design. PMID:25186731

  19. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface.

    PubMed

    Huang, Jinghe; Kang, Byong H; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A; Bailer, Robert T; Alam, Munir; Pugach, Pavel; Haynes, Barton F; Wyatt, Richard T; Sanders, Rogier W; Binley, James M; Ward, Andrew B; Mascola, John R; Kwong, Peter D; Connors, Mark

    2014-11-01

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml(-1). The median IC50 of neutralized viruses was 0.033 μg ml(-1), among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design. PMID:25186731

  20. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    PubMed Central

    2012-01-01

    Background Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2431V, HXB2436E+437T, HXB2437T and HXB2437V). Results Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one. The observed decrease in RC for the double NC/p1 mutant (HXB2436E+437T) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during in vitro evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant. Conclusions The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate. PMID:22462820

  1. Development of potent inhibitors of the coxsackievirus 3C protease

    SciTech Connect

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon; Rho, Seong Hwan; Im, Isak; Yang, Sung Tae; Sellamuthu, Saravanan; Lee, Yong Jae; Kwon, Sun Jae; Park, Ohkmae K.; Jeon, Eun-Seok; Park, Woo Jin . E-mail: wjpark@gist.ac.kr; Kim, Yong-Chul . E-mail: yongchul@gist.ac.kr

    2007-06-22

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.

  2. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor

    PubMed Central

    Hu, Guodong; Ma, Aijing; Dou, Xianghua; Zhao, Liling; Wang, Jihua

    2016-01-01

    Drug resistance of mutations in HIV-1 protease (PR) is the most severe challenge to the long-term efficacy of HIV-1 PR inhibitor in highly active antiretroviral therapy. To elucidate the molecular mechanism of drug resistance associated with mutations (D30N, I50V, I54M, and V82A) and inhibitor (GRL-0519) complexes, we have performed five molecular dynamics (MD) simulations and calculated the binding free energies using the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method. The ranking of calculated binding free energies is in accordance with the experimental data. The free energy spectra of each residue and inhibitor interaction for all complexes show a similar binding model. Analysis based on the MD trajectories and contribution of each residues show that groups R2 and R3 mainly contribute van der Waals energies, while groups R1 and R4 contribute electrostatic interaction by hydrogen bonds. The drug resistance of D30N can be attributed to the decline in binding affinity of residues 28 and 29. The size of Val50 is smaller than Ile50 causes the residue to move, especially in chain A. The stable hydrophobic core, including the side chain of Ile54 in the wild type (WT) complex, became unstable in I54M because the side chain of Met54 is flexible with two alternative conformations. The binding affinity of Ala82 in V82A decreases relative to Val82 in WT. The present study could provide important guidance for the design of a potent new drug resisting the mutation inhibitors. PMID:27240358

  3. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor.

    PubMed

    Hu, Guodong; Ma, Aijing; Dou, Xianghua; Zhao, Liling; Wang, Jihua

    2016-01-01

    Drug resistance of mutations in HIV-1 protease (PR) is the most severe challenge to the long-term efficacy of HIV-1 PR inhibitor in highly active antiretroviral therapy. To elucidate the molecular mechanism of drug resistance associated with mutations (D30N, I50V, I54M, and V82A) and inhibitor (GRL-0519) complexes, we have performed five molecular dynamics (MD) simulations and calculated the binding free energies using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The ranking of calculated binding free energies is in accordance with the experimental data. The free energy spectra of each residue and inhibitor interaction for all complexes show a similar binding model. Analysis based on the MD trajectories and contribution of each residues show that groups R2 and R3 mainly contribute van der Waals energies, while groups R1 and R4 contribute electrostatic interaction by hydrogen bonds. The drug resistance of D30N can be attributed to the decline in binding affinity of residues 28 and 29. The size of Val50 is smaller than Ile50 causes the residue to move, especially in chain A. The stable hydrophobic core, including the side chain of Ile54 in the wild type (WT) complex, became unstable in I54M because the side chain of Met54 is flexible with two alternative conformations. The binding affinity of Ala82 in V82A decreases relative to Val82 in WT. The present study could provide important guidance for the design of a potent new drug resisting the mutation inhibitors. PMID:27240358

  4. Collapse of an HIV-1 protease (1DIFA-dimer) in an effective solvent medium by a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Farmer, Barry

    2010-03-01

    HIV-1 protease (1DIFA) consists of two polypeptide chains, each monomer with 99 residues where two aspartic acid residues (Asp^25) form the active catalytic site. The conformation and dynamics of the protein chain (with 198 residues) are investigated on a cubic lattice where empty sites represent effective solvent. Specificities of residues are captured via an interaction matrix (residue-residue, residue-solvent) of the Lennard-Jones potential. We examine global properties such as the variation of the root mean square displacement and radius of gyration with the time steps for a range of solvent interaction strength. Local quantities include energy and mobility profiles of residues to understand the active segments (useful in proteolysis). The hydrophobic residues possess higher energy and lower mobility while the electrostatic and polar residues are more mobile despite their lower interaction energy. We find that the radius of gyration of the protein collapses (globular structure) in a narrow range of solvent interaction strength.

  5. Trp42 rotamers report reduced flexibility when the inhibitor acetyl-pepstatin is bound to HIV-1 protease.

    PubMed Central

    Ullrich, B.; Laberge, M.; Tölgyesi, F.; Szeltner, Z.; Polgár, L.; Fidy, J.

    2000-01-01

    The Q7K/L331/L631 HIV-1 protease mutant was expressed in Escherichia coli and the effect of binding a substrate-analog inhibitor, acetyl-pepstatin, was investigated by fluorescence spectroscopy and molecular dynamics. The dimeric enzyme has four intrinsic tryptophans, located at positions 6 and 42 in each monomer. Fluorescence spectra and acrylamide quenching experiments show two differently accessible Trp populations in the apoenzyme with k(q1) = 6.85 x 10(9) M(-1) s(-1) and k(q2) = 1.88 x 10(9) M(-1) s(-1), that merge into one in the complex with k(q) = 1.78 x 10(9) M(-1) s(-1). 500 ps trajectory analysis of Trp X1/X2 rotameric interconversions suggest a model to account for the observed Trp fluorescence. In the simulations, Trp6/Trp6B rotameric interconversions do not occur on this timescale for both HIV forms. In the apoenzyme simulations, however, both Trp42s and Trp42Bs are flipping between X1/X2 states; in the complexed form, no such interconverions occur. A detailed investigation of the local Trp environments sampled during the molecular dynamics simulation suggests that one of the apoenzyme Trp42B rotameric interconversions would allow indole-quencher contact, such as with nearby Tyr59. This could account for the short lifetime component. The model thus interprets the experimental data on the basis of the conformational fluctuations of Trp42s alone. It suggests that the rotameric interconversions of these Trps, located relatively far from the active site and at the very start of the flap region, becomes restrained when the apoenzyme binds the inhibitor. The model is thus consistent with associating components of the fluorescence decay in HIV-1 protease to ground state conformational heterogeneity. PMID:11152134

  6. Fuzzy ARTMAP prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set.

    PubMed

    Andonie, Răzvan; Fabry-Asztalos, Levente; Abdul-Wahid, Christopher Badi'; Abdul-Wahid, Sarah; Barker, Grant I; Magill, Lukas C

    2011-01-01

    Obtaining satisfactory results with neural networks depends on the availability of large data samples. The use of small training sets generally reduces performance. Most classical Quantitative Structure-Activity Relationship (QSAR) studies for a specific enzyme system have been performed on small data sets. We focus on the neuro-fuzzy prediction of biological activities of HIV-1 protease inhibitory compounds when inferring from small training sets. We propose two computational intelligence prediction techniques which are suitable for small training sets, at the expense of some computational overhead. Both techniques are based on the FAMR model. The FAMR is a Fuzzy ARTMAP (FAM) incremental learning system used for classification and probability estimation. During the learning phase, each sample pair is assigned a relevance factor proportional to the importance of that pair. The two proposed algorithms in this paper are: 1) The GA-FAMR algorithm, which is new, consists of two stages: a) During the first stage, we use a genetic algorithm (GA) to optimize the relevances assigned to the training data. This improves the generalization capability of the FAMR. b) In the second stage, we use the optimized relevances to train the FAMR. 2) The Ordered FAMR is derived from a known algorithm. Instead of optimizing relevances, it optimizes the order of data presentation using the algorithm of Dagher et al. In our experiments, we compare these two algorithms with an algorithm not based on the FAM, the FS-GA-FNN introduced in [4], [5]. We conclude that when inferring from small training sets, both techniques are efficient, in terms of generalization capability and execution time. The computational overhead introduced is compensated by better accuracy. Finally, the proposed techniques are used to predict the biological activities of newly designed potential HIV-1 protease inhibitors. PMID:21071799

  7. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.

    PubMed

    Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X; Schiffer, Celia; Gilson, Michael K

    2007-08-01

    Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The present study describes a quantitative measure of the volume of a bound inhibitor falling outside the substrate envelope, and observes that this quantity correlates with the inhibitor's losses in affinity to clinically relevant mutants. This measure may thus be useful as a penalty function in the design of robust HIV protease inhibitors. PMID:17474129

  8. A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism

    PubMed Central

    Nijhuis, Monique; van Maarseveen, Noortje M; Lastere, Stephane; Schipper, Pauline; Coakley, Eoin; Glass, Bärbel; Rovenska, Mirka; de Jong, Dorien; Chappey, Colombe; Goedegebuure, Irma W; Heilek-Snyder, Gabrielle; Dulude, Dominic; Cammack, Nick; Brakier-Gingras, Lea; Konvalinka, Jan; Parkin, Neil; Kräusslich, Hans-Georg; Brun-Vezinet, Francoise; Boucher, Charles A. B

    2007-01-01

    Background HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants. Both approaches share the requirement for a considerable increase in the number of protease mutations to lead to clinical resistance, thereby increasing the genetic barrier. We investigated whether HIV could yet again find a way to become less susceptible to these novel inhibitors. Methods and Findings We have performed in vitro selection experiments using a novel PI with an increased genetic barrier (RO033-4649) and demonstrated selection of three viruses 4- to 8-fold resistant to all PI compared to wild type. These PI-resistant viruses did not have a single substitution in the viral protease. Full genomic sequencing revealed the presence of NC/p1 cleavage site substitutions in the viral Gag polyprotein (K436E and/or I437T/V) in all three resistant viruses. These changes, when introduced in a reference strain, conferred PI resistance. The mechanism leading to PI resistance is enhancement of the processing efficiency of the altered substrate by wild-type protease. Analysis of genotypic and phenotypic resistance profiles of 28,000 clinical isolates demonstrated the presence of these NC/p1 cleavage site mutations in some clinical samples (codon 431 substitutions in 13%, codon 436 substitutions in 8%, and codon 437 substitutions in 10%). Moreover, these cleavage site substitutions were highly significantly associated with reduced susceptibility to PI in clinical isolates lacking primary protease mutations. Furthermore, we used data from a clinical trial (NARVAL, ANRS 088) to demonstrate that these NC/p1 cleavage site changes are associated with

  9. Design, Synthesis, Evaluation, and Crystallographic-Based Structural Studies of HIV-1 Protease Inhibitors with Reduced Response to the V82A Mutation

    SciTech Connect

    Clemente,J.; Robbins, A.; Grana, P.; Paleo, M.; Correa, J.; Villaverde, M.; Sardina, F.; Govindasamy, L.; Agbandje-McKenna, M.; et al

    2008-01-01

    In our quest for HIV-1 protease inhibitors that are not affected by the V82A resistance mutation, we have synthesized and tested a second generation set of C2-symmetric HIV-1 protease inhibitors that contain a cyclohexane group at P1 and/or P1'. The binding affinity results indicate that these compounds have an improved response to the appearance of the V82A mutation than the parent compound. The X-ray structure of one of these compounds with the V82A HIV-1 PR variant provides the structural rationale for the better resistance profile of these compounds. Moreover, scrutiny of the X-ray structure suggests that the ring of the Cha side chain might be in a boat rather than in the chair conformation, a result supported by molecular dynamics simulations.

  10. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes.

    PubMed Central

    Miranda, L; Wolf, J; Pichuantes, S; Duke, R; Franzusoff, A

    1996-01-01

    Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells. Images Fig. 1 Fig. 3 PMID:8755538

  11. HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease.

    PubMed

    Waheed, Abdul A; Ablan, Sherimay D; Roser, James D; Sowder, Raymond C; Schaffner, Carl P; Chertova, Elena; Freed, Eric O

    2007-05-15

    HIV-1 virions are highly enriched in cholesterol relative to the cellular plasma membrane. We recently reported that a cholesterol-binding compound, amphotericin B methyl ester (AME), blocks HIV-1 entry and that single amino acid substitutions in the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 confer resistance to AME. In this study, we defined the mechanism of resistance to AME. We observed that the gp41 in AME-resistant virions is substantially smaller than wild-type gp41. Remarkably, we found that this shift in gp41 size is due to cleavage of the gp41 cytoplasmic tail by the viral protease. We mapped the protease-mediated cleavage to two sites in the cytoplasmic tail and showed that gp41 truncations in this region also confer AME resistance. Thus, to escape the inhibitory effects of AME, HIV-1 evolved a mechanism of protease-mediated envelope glycoprotein cleavage used by several other retroviruses to activate envelope glycoprotein fusogenicity. In contrast to the mechanism of AME resistance observed for HIV-1, we demonstrate that simian immunodeficiency virus can escape from AME via the introduction of premature termination codons in the gp41 cytoplasmic tail coding region. These findings demonstrate that in human T cell lines, HIV-1 and simian immunodeficiency virus can evolve distinct strategies for evading AME, reflecting their differential requirements for the gp41 cytoplasmic tail in virus replication. These data reveal that HIV-1 can escape from an inhibitor of viral entry by acquiring mutations that cause the cytoplasmic tail of gp41 to be cleaved by the viral protease. PMID:17483482

  12. Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity.

    PubMed

    Schock, H B; Garsky, V M; Kuo, L C

    1996-12-13

    Site-specific substitutions of as few as four amino acids (M46I/L63P/V82T/I84V) of the human immunodeficiency virus type 1 (HIV-1) protease engenders cross-resistance to a panel of protease inhibitors that are either in clinical trials or have recently been approved for HIV therapy (Condra, J. H., Schleif, W. A., Blahy, O. M. , Gadryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A. (1995) Nature 374, 569-571). These four substitutions are among the prominent mutations found in primary HIV isolates obtained from patients undergoing therapy with several protease inhibitors. Two of these mutations (V82T/I84V) are located in, while the other two (M46I/L63P) are away from, the binding cleft of the enzyme. The functional role of these mutations has now been delineated in terms of their influence on the binding affinity and catalytic efficiency of the protease. We have found that the double substitutions of M46I and L63P do not affect binding but instead endow the enzyme with a catalytic efficiency significantly exceeding (110-360%) that of the wild-type enzyme. In contrast, the double substitutions of V82T and I84V are detrimental to the ability of the protease to bind and, thereby, to catalyze. When combined, the four amino acid replacements institute in the protease resistance against inhibitors and a significantly higher catalytic activity than one containing only mutations in its active site. The results suggest that in raising drug resistance, these four site-specific mutations of the protease are compensatory in function; those in the active site diminish equilibrium binding (by increasing Ki), and those away from the active site enhance catalysis (by increasing kcat/KM). This conclusion is further supported by energy estimates in that the Gibbs free energies of binding and catalysis for the quadruple mutant are quantitatively

  13. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  14. Free energy calculation of single molecular interaction using Jarzynski's identity method: the case of HIV-1 protease inhibitor system

    NASA Astrophysics Data System (ADS)

    Li, De-Chang; Ji, Bao-Hua

    2012-06-01

    Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and experiments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molecular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic complexity of the ligand-receptor system, the energy barrier predicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results suggested that the JI method is more appropriate for reconstructing free energy landscape using the data taken from experiments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distribution in SMD simulations.

  15. Exceptionally Potent and Broadly Cross-Reactive, Bispecific Multivalent HIV-1 Inhibitors Based on Single Human CD4 and Antibody Domains

    PubMed Central

    Feng, Yang; Prabakaran, Ponraj; Ying, Tianlei; Wang, Yanping; Sun, Jianping; Macedo, Camila D. S.; Zhu, Zhongyu; He, Yuxian; Polonis, Victoria R.

    2014-01-01

    Soluble forms of the human immunodeficiency virus type 1 (HIV-1) primary receptor CD4 (soluble CD4 [sCD4]) have been extensively characterized for a quarter of a century as promising HIV-1 inhibitors, but they have not been clinically successful. By combining a protein cavity-filling strategy and the power of library technology, we identified an engineered cavity-altered single-domain sCD4 (mD1.22) with a unique combination of excellent properties, including broad and potent neutralizing activity, high specificity, stability, solubility, and affinity for the HIV-1 envelope glycoprotein gp120, and small molecular size. To further improve its neutralizing potency and breadth, we generated bispecific multivalent fusion proteins of mD1.22 with another potent HIV-1 inhibitor, an antibody domain (m36.4) that targets the coreceptor-binding site on gp120. The fusion proteins neutralized all HIV-1 isolates tested, with potencies about 10-, 50-, and 200-fold higher than those of the broadly neutralizing antibody VRC01, the U.S. FDA-approved peptide inhibitor T20, and the clinically tested sCD4-Fc fusion protein CD4-Ig, respectively. In addition, they exhibited higher stability and specificity and a lower aggregation propensity than CD4-Ig. Therefore, mD1.22 and related fusion proteins could be useful for HIV-1 prevention and therapy, including eradication of the virus. PMID:24198429

  16. Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1.

    PubMed

    Lewis, George K; Finzi, Andrés; DeVico, Anthony L; Pazgier, Marzena

    2015-09-01

    The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function. PMID:26393642

  17. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune.

    PubMed

    Zhao, Yong-Chang; Zhang, Guo-Qing; Ng, Tzi-Bun; Wang, He-Xiang

    2011-10-01

    A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed. PMID:22068498

  18. Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors.

    PubMed

    Muraglia, Ester; Kinzel, Olaf; Gardelli, Cristina; Crescenzi, Benedetta; Donghi, Monica; Ferrara, Marco; Nizi, Emanuela; Orvieto, Federica; Pescatore, Giovanna; Laufer, Ralph; Gonzalez-Paz, Odalys; Di Marco, Annalise; Fiore, Fabrizio; Monteagudo, Edith; Fonsi, Massimiliano; Felock, Peter J; Rowley, Michael; Summa, Vincenzo

    2008-02-28

    HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture. An extensive SAR study led to sulfamide (R)- 22b, which inhibited the strand transfer with an IC50 of 7 nM and HIV infection in MT4 cells with a CIC95 of 44 nM, and ketoamide (S)- 28c that inhibited strand transfer with an IC50 of 12 nM and the HIV infection in MT4 cells with a CIC95 of 13 nM and exhibited a good pharmacokinetic profile when dosed orally to preclinical species. PMID:18217703

  19. Structure of the Unbound Form of HIV-1 Subtype A Protease: Comparison with Unbound Forms of Proteases from other HIV Subtypes

    SciTech Connect

    Robbins, Arthur H.; Coman, Roxana M.; Bracho-Sanchez, Edith; Fernandez, Marty A.; Gilliland, C.Taylor; Li, Mi; Agbandje-McKenna, Mavis; Wlodawer, Alexander; Dunn, Ben M.; McKenna, Robert

    2010-03-12

    The crystal structure of the unbound form of HIV-1 subtype A protease (PR) has been determined to 1.7 {angstrom} resolution and refined as a homodimer in the hexagonal space group P6{sub 1} to an R{sub cryst} of 20.5%. The structure is similar in overall shape and fold to the previously determined subtype B, C and F PRs. The major differences lie in the conformation of the flap region. The flaps in the crystal structures of the unbound subtype B and C PRs, which were crystallized in tetragonal space groups, are either semi-open or wide open. In the present structure of subtype A PR the flaps are found in the closed position, a conformation that would be more anticipated in the structure of HIV protease complexed with an inhibitor. The amino-acid differences between the subtypes and their respective crystal space groups are discussed in terms of the differences in the flap conformations.

  20. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.

    PubMed

    Meher, Biswa Ranjan; Wang, Yixuan

    2015-03-01

    Inhibitors of HIV-1 protease (HIV-1-pr) generally only bind to the active site of the protease. However, for some mutants such as V32I and M46L the TMC114 can bind not only to the active cavity but also to the groove of the flexible flaps. Although the second binding site suggests the higher efficiency of the drug against HIV-1-pr, the drug resistance in HIV-1-pr due to mutations cannot be ignored, which prompts us to investigate the molecular mechanisms of drug resistance and behavior of double bound TMC114 (2T) to HIV-1-pr. The conformational dynamics of HIV-1-pr and the binding of TMC114 to the WT, V32I and M46L mutants were investigated with all-atom molecular dynamic (MD) simulation. The 20 ns MD simulation shows many fascinating effects of the inhibitor binding to the WT and mutant proteases. MM-PBSA calculations explain the binding free energies unfavorable for the M46L and V32I mutants as compared to the WT. For the single binding (1T) the less binding affinity can be attributed to the entropic loss for both V32I-1T and M46L-1T. Although the second binding of TMC114 with flap does increase binding energy for the mutants (V32I-2T and M46L-2T), the considerable entropy loss results in the lower binding Gibbs free energies. Thus, binding of TMC114 in the flap region does not help much in the total gain in binding affinity of the system, which was verified from this study and thereby validating experiments. PMID:25562662

  1. Identification of diverse microbial metabolites as potent inhibitors of HIV-1 Tat transactivation.

    PubMed

    Jayasuriya, Hiranthi; Zink, Deborah L; Polishook, Jon D; Bills, Gerald F; Dombrowski, Anne W; Genilloud, Olga; Pelaez, Fernando F; Herranz, Lucia; Quamina, Donette; Lingham, Russell B; Danzeizen, Renee; Graham, Pia L; Tomassini, Joanne E; Singh, Sheo B

    2005-01-01

    HIV-1 Tat is one of six regulatory proteins that are required for viral replication and is an attractive target for the development of new anti-HIV agents. Screening of microbial extracts using a whole cell Tat-dependent transactivation assay, which guided the separation of the active broths, led to the identification of five structurally diverse classes (M(R) range 232-1126) of natural products. These include i) three sesquiterpenoids, namely, sporogen-AO1, petasol, and 6-dehydropetasol, ii) two resorcylic 14-membered lactones, namely monorden and monocillin IV, iii) a ten-membered lactone, iv) a quinoline and quinoxiline bicyclic octadepsipeptides, namely echinomycin and UK-63598, and v) a cyclic heptapeptide, ternatin. These compounds displayed varying degrees of potencies with IC50 values ranging from 0.0002 to 100 microM. The most active compound was the quinoxiline bicyclic octadepsipeptides, UK-63598, which inhibited Tat-dependent transactivation with an IC50 value of 0.2 nM and exhibited a 100-fold therapeutic window with respect to toxicity. In a single-cycle antiviral assay, UK-6358 inhibited viral replication with an IC50 value of 0.5 nM; however, it appeared to be equally toxic at that concentration. Monocillin IV was significantly less active (Tat transactivation inhibitory IC50 of 5 microM) but was not toxic at 100 microM in an equivalent cytotoxicity assay. The compound exhibited antiviral activity with an IC50 value of 6.2 microM in the single-cycle antiviral assay and a sixfold therapeutic window. Details of the isolation, fermentation, and biological activities of these structurally diverse natural products are described. PMID:17191924

  2. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Megariotis, Grigorios; Supuran, Claudiu T; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2012-06-28

    Human immunodeficiency virus type 1 protease (HIV-1 PR) and renin are primary targets toward AIDS and hypertension therapies, respectively. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free-energy calculations and inhibition assays for canagliflozin, an antidiabetic agent verified its effective binding to both proteins (ΔG(pred) = -9.1 kcal mol(-1) for canagliflozin-renin; K(i,exp)= 628 nM for canagliflozin-HIV-1 PR). Moreover, drugs aliskiren (a renin inhibitor) and darunavir (an HIV-1 PR inhibitor) showed high affinity for HIV-1 PR (K(i,exp)= 76.5 nM) and renin (K(i,pred)= 261 nM), respectively. Importantly, a high correlation was observed between experimental and predicted binding energies (r(2) = 0.92). This study suggests that canagliflozin, aliskiren, and darunavir may induce profound effects toward dual HIV-1 PR and renin inhibition. Since patients on highly active antiretroviral therapy (HAART) have a high risk of developing hypertension and diabetes, aliskiren-based or canagliflozin-based drug design against HIV-1 PR may eliminate these side-effects and also facilitate AIDS therapy. PMID:22621689

  3. Design and synthesis of pyridin-2-ylmethylaminopiperidin-1-ylbutyl amide CCR5 antagonists that are potent inhibitors of M-tropic (R5) HIV-1 replication.

    PubMed

    Skerlj, Renato; Bridger, Gary; Zhou, Yuanxi; Bourque, Elyse; McEachern, Ernest; Langille, Jonathan; Harwig, Curtis; Veale, Duane; Yang, Wen; Li, Tongshong; Zhu, Yongbao; Bey, Michael; Baird, Ian; Sartori, Michael; Metz, Markus; Mosi, Renee; Nelson, Kim; Bodart, Veronique; Wong, Rebecca; Fricker, Simon; Mac Farland, Ron; Huskens, Dana; Schols, Dominique

    2011-12-01

    A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics. PMID:22033460

  4. Design and synthesis of pyridin-2-yloxymethylpiperidin-1-ylbutyl amide CCR5 antagonists that are potent inhibitors of M-tropic (R5) HIV-1 replication.

    PubMed

    Skerlj, Renato; Bridger, Gary; Zhou, Yuanxi; Bourque, Elyse; Langille, Jonathan; Di Fluri, Maria; Bogucki, David; Yang, Wen; Li, Tongshuang; Wang, Letian; Nan, Susan; Baird, Ian; Metz, Markus; Darkes, Marilyn; Labrecque, Jean; Lau, Gloria; Fricker, Simon; Huskens, Dana; Schols, Dominique

    2011-04-15

    A novel series of CCR5 antagonists were identified based on the redesign of Schering C. An SAR was established based on inhibition of CCR5 (RANTES) binding and these compounds exhibited potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. PMID:21398122

  5. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    PubMed Central

    Hu, Qing-Xiu; Zhang, Guo-Qing; Zhang, Rui-Ying; Hu, Dan-Dan; Wang, He-Xiang; Ng, Tzi Bun

    2012-01-01

    A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession), and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities. PMID:22675256

  6. Blockade of X4-Tropic HIV-1 Cellular Entry by GSK812397, a Potent Noncompetitive CXCR4 Receptor Antagonist▿

    PubMed Central

    Jenkinson, Stephen; Thomson, Michael; McCoy, David; Edelstein, Mark; Danehower, Susan; Lawrence, Wendell; Wheelan, Pat; Spaltenstein, Andrew; Gudmundsson, Kristjan

    2010-01-01

    GSK812397 is a potent entry inhibitor of X4-tropic strains of HIV-1, as demonstrated in multiple in vitro cellular assays (e.g., in peripheral blood mononuclear cells [PBMCs] and a viral human osteosarcoma [HOS] assay, mean 50% inhibitory concentrations [IC50s] ± standard errors of the means were 4.60 ± 1.23 nM and 1.50 ± 0.21 nM, respectively). The primary in vitro potency of GSK812397 was not significantly altered by the addition of serum proteins (2.55 [±0.12]-fold shift in the presence of human serum albumin and α-acid glycoprotein in the PBMC assay). Pharmacological characterization of GSK812397 in cell-based functional assays revealed it to be a noncompetitive antagonist of the CXCR4 receptor, with GSK812397 producing a concentration-dependent decrease in both an SDF-1-mediated chemotaxis and intracellular calcium release (IC50s were 0.34 ± 0.01 nM and 2.41 ± 0.50 nM, respectively). With respect to the antiviral activity of GSK812397, it was effective against a broad range of X4- and X4R5-utilizing clinical isolates. The potency and efficacy of GSK812397 were dependent on the individual isolate, with complete inhibition of infection observed with 24 of 30 isolates. GSK812397 did not show any detectable in vitro cytotoxicity and was highly selective for CXCR4, as determined using a wide range of receptors, enzymes, and transporters. Moreover, GSK812397 demonstrated acceptable pharmacokinetic properties and bioavailability across species. The data demonstrate that GSK812397 has antiviral activity against a broad range of X4-utilizing strains of HIV-1 via a noncompetitive antagonism of the CXCR4 receptor. PMID:19949058

  7. Effect of the Active Site D25N Mutation on the Structure, Stability and Ligand Binding of the Mature HIV-1 Protease

    SciTech Connect

    Sayer, Jane M.; Liu, Fengling; Ishima, Rieko; Weber, Irene T.; Louis, John M.

    2008-09-03

    All aspartic proteases, including retroviral proteases, share the triplet DTG critical for the active site geometry and catalytic function. These residues interact closely in the active, dimeric structure of HIV-1 protease (PR). We have systematically assessed the effect of the D25N mutation on the structure and stability of the mature PR monomer and dimer. The D25N mutation (PR{sub D25N}) increases the equilibrium dimer dissociation constant by a factor >100-fold (1.3 {+-} 0.09 {mu}m) relative to PR. In the absence of inhibitor, NMR studies reveal clear structural differences between PR and PR{sub D25N} in the relatively mobile P1 loop (residues 79-83) and flap regions, and differential scanning calorimetric analyses show that the mutation lowers the stabilities of both the monomer and dimer folds by 5 and 7.3 C, respectively. Only minimal differences are observed in high resolution crystal structures of PR{sub D25N} complexed to darunavir (DRV), a potent clinical inhibitor, or a non-hydrolyzable substrate analogue, Ac-Thr-Ile-Nle-r-Nle-Gln-Arg-NH{sub 2} (RPB), as compared with PR{center_dot}DRV and PR{center_dot}RPB complexes. Although complexation with RPB stabilizes both dimers, the effect on their T{sub m} is smaller for PR{sub D25N} (6.2 C) than for PR (8.7 C). The T{sub m} of PR{sub D25N}{center_dot}DRV increases by only 3 C relative to free PR{sub D25N}, as compared with a 22 C increase for PR{center_dot}DRV, and the mutation increases the ligand dissociation constant of PR{sub D25N}{center_dot}DRV by a factor of {approx}10{sup 6} relative to PR{center_dot}DRV. These results suggest that interactions mediated by the catalytic Asp residues make a major contribution to the tight binding of DRV to PR.

  8. Mechanism of Drug Resistance Revealed by the Crystal Structure of the Unliganded HIV-1 Protease with F53L Mutation

    SciTech Connect

    Liu, Fengling; Kovalevsky, Andrey Y.; Louis, John M.; Boross, Peter I.; Wang, Yuan-Fang; Harrison, Robert W.; Weber, Irene T.

    2010-12-03

    Mutations in HIV-1 protease (PR) that produce resistance to antiviral PR inhibitors are a major problem in AIDS therapy. The mutation F53L arising from antiretroviral therapy was introduced into the flexible flap region of the wild-type PR to study its effect and potential role in developing drug resistance. Compared to wild-type PR, PR{sub F53L} showed lower (15%) catalytic efficiency, 20-fold weaker inhibition by the clinical drug indinavir, and reduced dimer stability, while the inhibition constants of two peptide analog inhibitors were slightly lower than those for PR. The crystal structure of PR{sub F53L} was determined in the unliganded form at 1.35 {angstrom} resolution in space group P4{sub 1}2{sub 1}2. The tips of the flaps in PR{sub F53L} had a wider separation than in unliganded wild-type PR, probably due to the absence of hydrophobic interactions of the side-chains of Phe53 and Ile50{prime}. The changes in interactions between the flaps agreed with the reduced stability of PR{sub F53L} relative to wild-type PR. The altered flap interactions in the unliganded form of PR{sub F53L} suggest a distinct mechanism for drug resistance, which has not been observed in other common drug-resistant mutants.

  9. On the nature of the reaction intermediate in the HIV-1 protease: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Carnevale, V.; Raugei, S.; Piana, S.; Carloni, P.

    2008-07-01

    Several mechanistic aspects of Aspartic Proteases' enzymatic reaction are currently highly controversial. There is general consensus that the first step of the reaction involves a nucleophilic attack of a water molecule to the substrate carbonyl carbon with subsequent formation of a metastable intermediate (INT). However, the exact nature of this intermediate is subject of debate. While ab initio and QM/MM calculations predict that INT is a neutral gem-diol specie, empirical valence bond calculations suggest that the protein frame can stabilize a charged oxyanion intermediate. Here the relative stability of the gem diol and oxyanion intermediate is calculated by performing density functional and post-Hartree-Fock calculations. The robustness of the results is assessed by increasing the size of the system and of the basis set and by performing QM/MM calculations that explicitly include protein/solvent electrostatic effects. Our results suggest that the neutral gem-diol intermediate is 20-30 kcal/mol more stable than the charged oxyanion. It is therefore concluded that only the neutral specie is populated during the enzymatic reaction.

  10. The effect of desolvation on the binding of inhibitors to HIV-1 protease and cyclin-dependent kinases: Causes of resistance.

    PubMed

    Fong, Clifford W

    2016-08-01

    Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. PMID:27317642

  11. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters

    SciTech Connect

    Shen, Chen-Hsiang; Wang, Yuan-Fang; Kovalevsky, Andrey Y.; Harrison, Robert W.; Weber, Irene T.

    2010-10-22

    The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were analyzed with wild-type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02-1.85 {angstrom} reveal the structural changes due to the mutations. Substitution of the larger side chains in PR{sub V32I}, PR{sub I54M} and PR{sub L90M} resulted in the formation of new hydrophobic contacts with flap residues, residues 79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions in the PR{sub I50V} and PR{sub I54V} structures. The PR{sub I84V}-APV complex had lost hydrophobic contacts with APV, the PR{sub V32I}-APV complex showed increased hydrophobic contacts within the hydrophobic cluster and the PR{sub I50V} complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in PR{sub I84V}-APV, PR{sub V32I}-APV and PR{sub I50V}-APV were related to their reduced inhibition by APV of six-, 10- and 30-fold, respectively, relative to wild-type PR. The APV complexes were compared with the corresponding saquinavir complexes. The PR dimers had distinct rearrangements of the flaps and 80's loops that adapt to the different P1{prime} groups of the inhibitors, while maintaining contacts within the hydrophobic cluster. These small changes in the loops and weak internal interactions produce the different patterns of resistant mutations for the two drugs.

  12. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    PubMed Central

    Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang

    2014-01-01

    A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778

  13. Novel diarylpyrimidines and diaryltriazines as potent HIV-1 NNRTIs with dramatically improved solubility: a patent evaluation of US20140378443A1.

    PubMed

    Huang, Boshi; Kang, Dongwei; Yang, Jiapei; Zhan, Peng; Liu, Xinyong

    2016-02-01

    Diarylpyrimidine and diaryltriazine derivatives, two representative structurally related classes of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with robust potencies against wild-type and several mutant strains of HIV-1, have attracted more and more attention in the last decade. However, they have been suffering from poor aqueous solubility. A series of novel diarylpyrimidines and diaryltriazines with solubilizing substituents attached to the central rings were reported as potent NNRTIs in the patent US20140378443A1. Some compounds exhibited potencies against wild-type HIV-1 which were comparable or even superior to those of dapivirine, etravirine and rilpivirine. In addition, dramatically enhanced solubilities were observed for these new compounds. Moreover, some structure optimization strategies for improving aqueous solubility are detailed in this review, providing new insights into development of next-generation NNRTIs endowed with favorable solubility. We anticipate that application of these strategies will ultimately lead to discovery of new anti-HIV drug candidates. PMID:26559996

  14. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1

    PubMed Central

    Borges, Andrew Rosa; Ptak, Roger G; Wang, Yanping; Dimitrov, Antony S; Alam, S. Munir; Wieczorek, Lindsay; Bouma, Peter; Fouts, Timothy; Jiang, Shibo; Polonis, Victoria R; Haynes, Barton F; Quinnan, Gerald V; Montefiori, David C; Dimitrov, Dimiter S

    2010-01-01

    Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A–G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG1 b12, 2G12, 2F5 and 4e10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (t-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (pS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. these results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development. PMID:20305395

  15. NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines.

    PubMed

    Yang, Y; Ikezoe, T; Nishioka, C; Bandobashi, K; Takeuchi, T; Adachi, Y; Kobayashi, M; Takeuchi, S; Koeffler, H P; Taguchi, H

    2006-12-18

    HIV-1 protease inhibitor (PI), nelfinavir (NFV) induced growth arrest and apoptosis of NCI-H460 and -H520, A549, EBC-1 and ABC-1 non-small-cell lung cancer (NSCLC) cells in association with upregulation of p21waf1, p27kip1 and p53, and downregulation of Bcl-2 and matrix metalloproteinase (MMP)-2 proteins. We found that NFV blocked Akt signalling in these cells as measured by Akt kinase assay with glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) as a substrate. To explore the role of Akt signalling in NFV-mediated growth inhibition of NSCLC cells, we blocked this signal pathway by transfection of Akt small interfering RNA (siRNA) in these cells; transient transfection of Akt siRNA in NCI-H460 cells decreased the level of Bcl-2 protein and slowed their proliferation compared to the nonspecific siRNA-transfected cells. Conversely, forced-expression of Akt partially reversed NFV-mediated growth inhibition of these cells, suggesting that Akt may be a molecular target of NFV in NSCLC cells. Also, we found that inhibition of Akt signalling by NFV enhanced the ability of docetaxel to inhibit the growth of NCI-H460 and -H520 cells, as measured by MTT assay. Importantly, NFV slowed the proliferation and induced apoptosis of NCI-H460 cells present as tumour xenografts in nude mice without adverse systemic effects. Taken together, this family of compounds might be useful for the treatment of individuals with NSCLC. PMID:17133272

  16. A Randomized Trial of Therapeutic Drug Monitoring of Protease Inhibitors in Antiretroviral-Experienced, HIV-1-Infected Patients

    PubMed Central

    Demeter, Lisa M.; Jiang, Hongyu; Mukherjee, A. Lisa; Morse, Gene D.; DiFrancesco, Robin; Dykes, Carrie; Sista, Prakash; Bacheler, Lee; Klingman, Karin; Rinehart, Alex; Albrecht, Mary

    2009-01-01

    Objective Whether therapeutic drug monitoring of protease inhibitors (PIs) improves outcomes in HIV-infected patients is controversial. We evaluated this strategy in a randomized, open-label clinical trial, using a normalized inhibitory quotient (NIQ), which incorporates drug exposure and viral drug resistance. NIQs≤1 may predict poor outcome and identify patients who could benefit from dose escalation. Design/Methods Eligible patients had a viral load ≥1,000 copies/mL on a failing regimen, and began a new PI-containing regimen at entry. All FDA-approved PIs available during study recruitment (June 2002-May 2006) were allowed. One-hundred-eighty-three participants with NIQ≤1, based on their week 2 PI trough concentration and pre-entry drug resistance test, were randomized at week 4 to standard of care (SOC) or PI dose escalation (TDM). The primary endpoint was change in log10 plasma HIV-1 RNA concentration from randomization to 20 weeks later. Results Ninety-one subjects were randomized to SOC, 92 to TDM. NIQs increased more in the TDM arm compared to SOC (+69% versus +25%, p=0.01). Despite this, TDM and SOC arms showed no difference in outcome (+0.09 versus +0.02 log10, p=0.17). In retrospective subgroup analyses, patients with less HIV resistance to their PIs benefited from TDM (p=0.002), as did black and Hispanic patients (p=0.035 and 0.05, respectively). Differences between black and white patients persisted when accounting for PI susceptibility. Conclusions There was no overall benefit of TDM. In post-hoc, subgroup analyses, TDM appeared beneficial in black and Hispanic patients, and in patients whose virus retained some susceptibility to the PIs in their regimen. PMID:19114860

  17. Arylazolyl(azinyl)thioacetanilides. Part 20: Discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach.

    PubMed

    Lu, Xueyi; Li, Xiao; Yang, Jiapei; Huang, Boshi; Kang, Dongwei; Zhao, Fabao; Zhou, Zhongxia; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2016-09-15

    By means of structure-based bioisosterism approach, a series of novel purinylthioacetanilide derivatives were designed, synthesized and evaluated as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the tested compounds were found to be active against wild-type (WT) HIV-1(IIIB) with EC50 in the range of 0.78-4.46μM. Among them, LAD-8 displayed the most potent anti-HIV activity (EC50=0.78μM, SI=24). In addition, LBD-6 showed moderate activity against L100I mutant (EC50=5.64μM) and double mutant strain RES056 (EC50=22.24μM). Preliminary structure-activity relationships (SARs) were discussed in detail. Molecular modeling study was used to predict the optimal conformation in the NNRTI binding site, which may play a guiding role in further rational optimization. PMID:27501911

  18. Low rate of virological failure and maintenance of susceptibility to HIV-1 protease inhibitors with first-line lopinavir/ritonavir-based antiretroviral treatment in clinical practice.

    PubMed

    Prosperi, Mattia C F; Zazzi, Maurizio; Punzi, Grazia; Monno, Laura; Colao, Grazia; Corsi, Paola; Di Giambenedetto, Simona; Meini, Genny; Ghisetti, Valeria; Bonora, Stefano; Pecorari, Monica; Gismondo, Maria Rita; Bagnarelli, Patrizia; Carli, Tiziana; De Luca, Andrea

    2010-12-01

    Protease inhibitor (PI)-resistant HIV-1 has hardly ever been detected at failed boosted PI-based first-line antiretroviral regimens in clinical trials. However, this phenomenon has not been investigated in clinical practice. To address this gap, data from patients starting a first-line lopinavir/ritonavir (LPV/rtv)-based therapy with available baseline HIV-1 RNA load, a viral genotype and follow-up viral load after 3 and 6 months of treatment were extracted from the Italian Antiretroviral Resistance Cohort Analysis (ARCA) observational database. Based on survival analysis, 39 (7.1%) and 43 (7.8%) of the 548 examined patient cases had an HIV-1 RNA >500 and >50 copies/ml, respectively, after 6 months of treatment. Cox proportional hazard models detected baseline HIV-1 RNA (RH 1.79, 95%CI 1.10-2.92 per 1-log(10) increase, P=0.02) and resistance to the nucleoside backbone (RH 1.04, 95%CI 1.02-1.06 per 10-point increase using the Stanford HIVdb algorithm, P<0.001) as independent predictors of HIV-1 RNA at >500 copies/ml, but not at the >50 copies/ml cutoff criteria. Higher baseline viral load, older patient age, heterosexual route of infection and use of tenofovir/emtricitabine were predictors of failure at month 3 using the 50-copy and/or 500-copy threshold. Resistance to LPV/rtv did not occur or increase in any of the available 36 follow-up HIV-1 genotypes. Resistance to the nucleoside backbone (M184V) developed in four cases. Despite the likely differences in patient population and adherence, both the low rate of virological failure and the lack of development of LPV/rtv resistance documented in clinical trials are thus confirmed in clinical practice. PMID:20981785

  19. Potent inhibitors of HCV-NS3 protease derived from boronic acids

    SciTech Connect

    Venkatraman, Srikanth; Wu, Wanli; Prongay, Andrew; Girijavallabhan, Viyyoor; Njoroge, F. George

    2009-07-23

    Chronic hepatitis C infection is the leading causes for cirrhosis of the liver and hepatocellular carcinoma, leading to liver failure and liver transplantation. The etiological agent, HCV virus produces a single positive strand of RNA that is processed with the help of serine protease NS3 to produce mature virus. Inhibition of NS3 protease can be potentially used to develop effective drugs for HCV infections. Numerous efforts are now underway to develop potent inhibitors of HCV protease that contain ketoamides as serine traps. Herein we report the synthesis of a series of potent inhibitors that contain a boronic acid as a serine trap. The activity of these compounds were optimized to 200 pM. X-ray structure of compound 17 bound to NS3 protease is also discussed.

  20. The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer single-molecule experiments and molecular dynamics simulations.

    PubMed

    Caldarini, M; Sonar, P; Valpapuram, I; Tavella, D; Volonté, C; Pandini, V; Vanoni, M A; Aliverti, A; Broglia, R A; Tiana, G; Cecconi, C

    2014-12-01

    We have used optical tweezers and molecular dynamics simulations to investigate the unfolding and refolding process of a stable monomeric form of HIV-1-protease (PR). We have characterized the behavior under tension of the native state (N), and that of the ensemble of partially folded (PF) conformations the protein visits en route to N, which collectively act as a long-lived state controlling the slow kinetic phase of the folding process. Our results reveal a rich network of unfolding events, where the native state unfolds either in a two-state manner or by populating an intermediate state I, while the PF state unravels through a multitude of pathways, underscoring its structural heterogeneity. Refolding of mechanically denatured HIV-1-PR monomers is also a multiple-pathway process. Molecular dynamics simulations allowed us to gain insight into possible conformations the protein adopts along the unfolding pathways, and provide information regarding possible structural features of the PF state. PMID:25194276

  1. Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication.

    PubMed

    Skerlj, Renato T; Bridger, Gary J; Kaller, Al; McEachern, Ernest J; Crawford, Jason B; Zhou, Yuanxi; Atsma, Bem; Langille, Jonathon; Nan, Susan; Veale, Duane; Wilson, Trevor; Harwig, Curtis; Hatse, Sigrid; Princen, Katrien; De Clercq, Erik; Schols, Dominique

    2010-04-22

    The redesign of azamacrocyclic CXCR4 chemokine receptor antagonists resulted in the discovery of novel, small molecule, orally bioavailable compounds that retained T-tropic (CXCR4 using, X4) anti-HIV-1 activity. A structure-activity relationship (SAR) was determined on the basis of the inhibition of replication of X4 HIV-1 NL4.3 in MT-4 cells. As a result of lead optimization, we identified (S)-N'-((1H-benzo[d]imidazol-2-yl)methyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butane-1,4-diamine (AMD070) 2 as a potent and selective antagonist of CXCR4 with an IC(50) value of 13 nM in a CXCR4 125I-SDF inhibition binding assay. Compound 2 inhibited the replication of T-tropic HIV-1 (NL4.3 strain) in MT-4 cells and PBMCs with an IC(50) of 2 and 26 nM, respectively, while remaining noncytotoxic to cells at concentrations exceeding 23 microM. The pharmacokinetics of 2 was evaluated in rat and dog, and good oral bioavailability was observed in both species. This compound represents the first small molecule orally bioavailable CXCR4 antagonist that was developed for the treatment of HIV-1 infection. PMID:20297846

  2. Synthesis and biological properties of novel 2-aminopyrimidin-4(3H)-ones highly potent against HIV-1 mutant strains.

    PubMed

    Mai, Antonello; Artico, Marino; Rotili, Dante; Tarantino, Domenico; Clotet-Codina, Imma; Armand-Ugón, Mercedes; Ragno, Rino; Simeoni, Silvia; Sbardella, Gianluca; Nawrozkij, Maxim B; Samuele, Alberta; Maga, Giovanni; Esté, José A

    2007-11-01

    Following the disclosure of dihydro-alkoxy-, dihydro-alkylthio-, and dihydro-alkylamino-benzyl-oxopyrimidines (DABOs, S-DABOs, and NH-DABOs) as potent and selective anti-HIV-1 agents belonging to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class, we report here the synthesis and biological evaluation of a novel series of DABOs bearing a N,N-disubstituted amino group or a cyclic amine at the pyrimidine-C2 position, a hydrogen atom or a small alkyl group at C5 and/or at the benzylic position, and the favorable 2,6-difluorobenzyl moiety at the C6 position (F2-N,N-DABOs). The new compounds were highly active up to the subnanomolar level against both wt HIV-1 and the Y181C mutant and at the submicromolar to nanomolar range against the K103N and Y188L mutant strains. Such derivatives were more potent than S-DABOs, NH-DABOs, and nevirapine and efavirenz were chosen as reference drugs. The higher inhibitor adaptability to the HIV-1 RT non-nucleoside binding site (NNBS) may account for the higher inhibitory effect exerted by the new molecules against the mutated RTs. PMID:17910429

  3. Hybrid chemistry. Part 4: Discovery of etravirine-VRX-480773 hybrids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Wan, Zheng-Yong; Tao, Yuan; Wang, Ya-Feng; Mao, Tian-Qi; Yin, Hong; Chen, Fen-Er; Piao, Hu-Ri; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe

    2015-08-01

    A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group. PMID:26162497

  4. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event.

    PubMed Central

    De Clercq, E; Yamamoto, N; Pauwels, R; Baba, M; Schols, D; Nakashima, H; Balzarini, J; Debyser, Z; Murrer, B A; Schwartz, D

    1992-01-01

    A series of bicyclams have been shown to be potent and selective inhibitors of human immunodeficiency virus (HIV). The compounds are inhibitory to the replication of various HIV-1 and HIV-2 strains in various human T-cell systems, including peripheral blood lymphocytes, at 0.14-1.4 microM, without being toxic to the host cells at 2.2 mM. The bicyclam JM2763 is active against 3'-azido-3'-deoxythymidine (zidovudine; AZT)-resistant HIV-1 strains and acts additively with AZT. Mechanism of action studies revealed that the bicyclams (i.e., JM2763) interact with an early event of the retrovirus replicative cycle, which could be tentatively identified as a viral uncoating event. Images PMID:1608936

  5. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1

    SciTech Connect

    Pejchal, Robert; Walker, Laura M.; Stanfield, Robyn L.; Phogat, Sanjay K.; Koff, Wayne C.; Poignard, Pascal; Burton, Dennis R.; Wilson, Ian A.

    2010-11-15

    Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize {approx}80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 {angstrom} resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue 'specificity loop' on the 'hammerhead' subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 {angstrom} facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.

  6. Trimeric Glycosylphosphatidylinositol-Anchored HCDR3 of Broadly Neutralizing Antibody PG16 Is a Potent HIV-1 Entry Inhibitor

    PubMed Central

    Liu, Lihong; Wang, Weiming; Yang, Lifei; Ren, Huanhuan; Kimata, Jason T.

    2013-01-01

    PG9 and PG16 are two quaternary-structure-specific broadly neutralizing antibodies with unique HCDR3 subdomains. Previously, we showed that glycosylphosphatidylinositol (GPI)-anchored HCDR3 subdomains (GPI-HCDR3) can be targeted to lipid rafts of the plasma membrane, bind to the epitope recognized by HCDR3 of PG16, and neutralize diverse HIV-1 isolates. In this study, we further developed trimeric GPI-HCDR3s and demonstrated that trimeric GPI-HCDR3 (PG16) dramatically improves anti-HIV-1 neutralization, suggesting that a stoichiometry of recognition of 3 or 2 HCDR3 molecules (PG16) to 1 viral spike is possible. PMID:23152526

  7. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex

    SciTech Connect

    Prashar, Vishal; Bihani, Subhash C.; Das, Amit; Rao, D.R.; Hosur, M.V.

    2010-06-11

    The mutation G48V in HIV-1 protease is a major resistance mutation against the drug saquinavir. Recently, G48V mutation is found to co-exist with the mutation C95F in AIDS patients treated with saquinavir. We report here the three-dimensional crystal structure of G48V/C95F tethered HIV-1 protease/saquinavir complex. The structure indicates following as the possible causes of drug resistance: (1) loss of direct van der Waals interactions between saquinavir and enzyme residues PHE-53 and PRO-1081, (2) loss of water-mediated hydrogen bonds between the carbonyl oxygen atoms in saquinavir and amide nitrogen atoms of flap residues 50 and 1050, (3) changes in inter-monomer interactions, which could affect the energetics of domain movements associated with inhibitor-binding, and (4) significant reduction in the stability of the mutant dimer. The present structure also provides a rationale for the clinical observation that the resistance mutations C95F/G48V/V82A occur as a cluster in AIDS patients.

  8. An oral high dose of cholecalciferol restores vitamin D status in deficient postmenopausal HIV-1-infected women independently of protease inhibitors therapy: a pilot study.

    PubMed

    Pepe, Jessica; Mezzaroma, Ivano; Fantauzzi, Alessandra; Falciano, Mario; Salotti, Alessandra; Di Traglia, Mario; Diacinti, Daniele; Biondi, Piergianni; Cipriani, Cristiana; Cilli, Mirella; Minisola, Salvatore

    2016-07-01

    The best repletion and maintenance dosing regimens with cholecalciferol in vitamin D-deficient HIV-1 patients remain unknown. Protease inhibitors (PIs) have been shown to inhibit vitamin D 1α- and 25α-hydroxylation in hepatocyte and monocyte cultures. We therefore evaluated the effect of a single high dose of cholecalciferol in vitamin D-deficient HIV-1 postmenopausal women undergoing treatment with highly active anti-retroviral therapy (cART), with and without PIs. Forty HIV-1 postmenopausal women treated with cART, with hypovitaminosis D (<20 ng/ml), were enrolled. We measured serum changes of 25-hydroxyvitamin D [25(OH)D]; 1,25-dihydroxyvitamin D [1,25(OH)2D], parathyroid hormone (PTH), serum calcium, and urinary calcium excretion following a loading dose of 600,000 IU of cholecalciferol after 3, 30, 60, 90, and 120 days. Patients were divided into two groups, whether or not they were taking PI. A significant increase in mean 25(OH)D and 1,25(OH)2D levels at day 3 and throughout the entire observation period was found in both groups (p < 0.001). PTH levels concomitantly decreased in both groups (p < 0.001). Mean albumin-adjusted serum calcium increases with respect to baseline were significant only at day 3 and day 30 for both groups (p < 0.01). Considering remaining parameters, there were no significant differences between the groups at any time, by two-way RM ANOVA. An oral dose of 600,000 IU of cholecalciferol in HIV-1 postmenopausal women rapidly increases 25(OH)D and 1,25(OH)2D levels reducing PTH levels, regardless of the presence of PIs in the cART scheme. PMID:26254790

  9. Novel (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl)methanones with restricted conformation as potent non-nucleoside reverse transcriptase inhibitors against HIV-1.

    PubMed

    Šimon, Petr; Baszczyňski, Ondřej; Šaman, David; Stepan, George; Hu, Eric; Lansdon, Eric B; Jansa, Petr; Janeba, Zlatko

    2016-10-21

    To elucidate the structure-geometry-activity relationship in diarylpyrimidine family (DAPYs) containing carbonyl linker between the central pyrimidine core and phenyl type B-arm, a series of (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl)methanones was designed, prepared and tested for their anti-HIV-1 activity. The carbonyl linker bearing B phenyl arm was successfully attached at both C-2 and C-4 positions of the central pyrimidine ring using a new synthetic approach. Further modifications of target compounds are present at C-5 position of the pyrimidine ring. In vitro anti-HIV-1 activity study performed on a series of 22 compounds confirmed the crucial importance of both conformational rigidity between phenyl B arm and the pyrimidine core linked through the carbonyl bridge, as well as presence of fluoro substituents in ortho-positions of phenyl B moiety. The most potent derivative of the series, compound 17, having almost perpendicular angle within the two planes made from the B aromatic arm and the pyrimidine ring, exhibited low nanomolar anti-HIV-1 activity (EC50 = 4 nM) with no significant toxicity (CC50 > 57.1 μM). PMID:27371922

  10. Protein structure-based design of potent orally bioavailable, nonpeptide inhibitors of human immunodeficiency virus protease.

    PubMed Central

    Reich, S H; Melnick, M; Davies, J F; Appelt, K; Lewis, K K; Fuhry, M A; Pino, M; Trippe, A J; Nguyen, D; Dawson, H

    1995-01-01

    A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species. Images Fig. 2 PMID:7724556

  11. Bifunctional fusion proteins of the human engineered antibody domain m36 with human soluble CD4 are potent inhibitors of diverse HIV-1 isolates

    PubMed Central

    Chen, Weizao; Xiao, Xiaodong; Wang, Yanping; Zhu, Zhongyu; Dimitrov, Dimiter S.

    2010-01-01

    Currently used antiretroviral therapy is highly successful but there is still a need for new effective and safe prophylactics and therapeutics. We have previously identified and characterized a human engineered antibody domain (eAd), m36, which exhibits potent broadly neutralizing activity against HIV-1 by targeting a highly conserved CD4 binding-induced (CD4i) structure on the viral envelope glycoprotein (Env) gp120. m36 has very small size (~15 kDa) but is highly specific and is likely to be safe in long-term use thus representing a novel class of potentially promising HIV-1 inhibitors. Major problems with the development of m36 as a candidate therapeutic are possible short serum half life and lack of effector functions that could be important for effective protection in vivo. Fusion of m36 to human IgG1 Fc resulted in dramatically diminished neutralization potency most likely due to the sterically restricted nature of the m36 epitope that limits access of large molecules. To confer effector functions and simultaneously increase the potency, we first matured m36 by panning and screening a mutant library for mutants with increased binding to gp120. We next fused m36 and its mutants with the first two domains (soluble CD4, sCD4) of the human CD4 by using a polypeptide linker. Our results showed that the selected m36 mutants and the sCD4-fusion proteins exhibited more potent antiviral activities than m36. The m36-sCD4 fusion proteins with human IgG1 Fc showed even higher potency likely due to their bivalency and increased avidity although with a greater increase in molecular size. Our data suggest that m36 derivatives are promising HIV-1 candidate therapeutics and tools to study highly conserved gp120 structures with implications for understanding mechanisms of entry and design of vaccine immunogens and small molecule inhibitors. PMID:20709110

  12. (Alkylamino) piperidine bis(heteroaryl)piperizine analogs are potent, broad-spectrum nonnucleoside reverse transcriptase inhibitors of drug-resistant isolates of human immunodeficiency virus type 1 (HIV-1) and select for drug-resistant variants of HIV-1IIIB with reduced replication phenotypes.

    PubMed Central

    Olmsted, R A; Slade, D E; Kopta, L A; Poppe, S M; Poel, T J; Newport, S W; Rank, K B; Biles, C; Morge, R A; Dueweke, T J; Yagi, Y; Romero, D L; Thomas, R C; Sharma, S K; Tarpley, W G

    1996-01-01

    The (alkylamino)piperidine bis(heteroaryl)piperizines (AAP-BHAPs) are a new class of human immunodeficiency virus type 1 (HIV-1)-specific inhibitors which were identified by targeted screening of recombinant reverse transcriptase (RT) enzymes carrying key nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance-conferring mutations and NNRTI-resistant variants of HIV-1. Phenotypic profiling of the two most potent AAP-BHAPs, U-95133 and U-104489, against in vitro-selected drug-resistant HIV-1 variants carrying the NNRTI resistance-conferring mutation (Tyr->Cys) at position 181 of the HIV-1 RT revealed submicromolar 90% inhibitory concentration estimates for these compounds. Moreover, U-104489 demonstrated potent activity against BHA-P-resistant HIV-1MF harboring the Pro-236->Leu RT substitution and significantly suppressed the replication of clinical isolates of HIV-1 resistant to both delavirdine (BHAP U-90152T) and zidovudine. Biochemical and phenotypic characterization of AAP-BHAPresistant HIV-1IIIB variants revealed that high-level resistance to the AAP-BHAPs was mediated by a Gly-190->Glu substitution in RT, which had a deleterious effect on the integrity and enzymatic activity of virion-associated RT heterodimers, as well as the replication capacity of these resistant viruses. PMID:8648704

  13. Pyrrolobenzoxazepinone derivatives as non-nucleoside HIV-1 RT inhibitors: further structure-activity relationship studies and identification of more potent broad-spectrum HIV-1 RT inhibitors with antiviral activity.

    PubMed

    Campiani, G; Morelli, E; Fabbrini, M; Nacci, V; Greco, G; Novellino, E; Ramunno, A; Maga, G; Spadari, S; Caliendo, G; Bergamini, A; Faggioli, E; Uccella, I; Bolacchi, F; Marini, S; Coletta, M; Nacca, A; Caccia, S

    1999-10-21

    Pyrrolobenzoxazepinone (PBO) derivatives represent a new class of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase (RT) inhibitors (NNRTs) whose prototype is (+/-)-6-ethyl-6-phenylpyrrolo[2,1-d][1,5]benzoxazepin-7(6H)- one (6). Docking studies based on the three-dimensional structure of RT prompted the synthesis and biological evaluation of novel derivatives and analogues of 6 featuring a meta-substituted phenyl or a 2-thienyl ring at C-6 and a pyridine system in place of the fused-benzene ring to yield pyrrolopyridooxazepinones (PPOs). Compared with the lead 6 and nevirapine, several of the synthesized compounds (PBOs 13a-d and PPOs 13i-k) displayed higher inhibitory activity against wild-type RT and clinically relevant mutant RTs containing the single amino acid substitutions L100I, K103N, V106A, Y181I, and Y188L. The most potent inhibitors were further evaluated for in vitro antiviral activity on lymphocytes and monocyte-macrophages, for cytotoxicity on a panel of cell lines, and for potential synergistic antiviral activity with AZT. Pharmacokinetic studies performed on 13b, 13c, and 13i showed that these compounds achieve high concentrations in the brain. The results of the biological and pharmacokinetic experiments suggest a potential clinical utility of analogues such as 13b-d, 13i, and 13j, in combination with nucleoside RT inhibitors, against strains of HIV-1 bearing those mutations that confer resistance to known NNRTI. PMID:10543890

  14. Accurate prediction of explicit solvent atom distribution in HIV-1 protease and F-ATP synthase by statistical theory of liquids

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Yoshida, Norio; Hirata, Fumio

    2012-02-01

    We have created a simple algorithm for automatically predicting the explicit solvent atom distribution of biomolecules. The explicit distribution is coerced from the 3D continuous distribution resulting from a 3D-RISM calculation. This procedure predicts optimal location of solvent molecules and ions given a rigid biomolecular structure. We show examples of predicting water molecules near KNI-275 bound form of HIV-1 protease and predicting both sodium ions and water molecules near the rotor ring of F-ATP synthase. Our results give excellent agreement with experimental structure with an average prediction error of 0.45-0.65 angstroms. Further, unlike experimental methods, this method does not suffer from the partial occupancy limit. Our method can be performed directly on 3D-RISM output within minutes. It is useful not only as a location predictor but also as a convenient method for generating initial structures for MD calculations.

  15. Residue energy and mobility in sequence to global structure and dynamics of a HIV-1 protease (1DIFA) by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Farmer, B. L.

    2009-01-01

    Energy, mobility, and structural profiles of residues in a specific sequence of human immunodeficiency virus (HIV)-1 protease chain and its global conformation and dynamics are studied by a coarse-grained computer simulation model on a cubic lattice. HIV-1 protease is described by a chain of 99 residues (nodes) in a specific sequence (1DIFA) with N- and C-terminals on the lattice, where empty lattice sites represent an effective solvent medium. Internal structures of the residues are ignored but their specificities are captured via an interaction (ɛij) matrix (residue-residue, residue-solvent) of the coefficient (fɛij) of the Lennard-Jones potential. Simulations are performed for a range of interaction strength (f ) with the solvent-residue interaction describing the quality of the solvent. Snapshots of the protein show considerable changes in the conformation of the protein on varying the interaction. From the mobility and energy profiles of the residues, it is possible to identify the active (and not so active) segments of the protein and consequently their role in proteolysis. Contrary to interaction thermodynamics, the hydrophobic residues possess higher configurational energy and lower mobility while the electrostatic and polar residues are more mobile despite their lower interaction energy. Segments of hydrophobic core residues, crucial for the structural evolution of the protein are identified—some of which are consistent with recent molecular dynamics simulation in context to possible clinical observations. Global energy and radius of gyration of the protein exhibit nonmonotonic dependence on the interaction strength (f) with opposite trends, e.g., rapid transition into globular structure with higher energy. Variations of the rms displacement of the protein and that of a tracer residue, Gly49, with the time steps show how they slow down on increasing the interaction strength.

  16. Mutations Proximal to Sites of Autoproteolysis and the α-Helix That Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease.

    PubMed

    Louis, John M; Deshmukh, Lalit; Sayer, Jane M; Aniana, Annie; Clore, G Marius

    2015-09-01

    N-Terminal self-cleavage (autoprocessing) of the HIV-1 protease precursor is crucial for liberating the active dimer. Under drug pressure, evolving mutations are predicted to modulate autoprocessing, and the reduced catalytic activity of the mature protease (PR) is likely compensated by enhanced conformational/dimer stability and reduced susceptibility to self-degradation (autoproteolysis). One such highly evolved, multidrug resistant protease, PR20, bears 19 mutations contiguous to sites of autoproteolysis in retroviral proteases, namely clusters 1-3 comprising residues 30-37, 60-67, and 88-95, respectively, accounting for 11 of the 19 mutations. By systematically replacing corresponding clusters in PR with those of PR20, and vice versa, we assess their influence on the properties mentioned above and observe no strict correlation. A 10-35-fold decrease in the cleavage efficiency of peptide substrates by PR20, relative to PR, is reflected by an only ∼4-fold decrease in the rate of Gag processing with no change in cleavage order. Importantly, optimal N-terminal autoprocessing requires all 19 PR20 mutations as evaluated in vitro using the model precursor TFR-PR20 in which PR is flanked by the transframe region. Substituting PR20 cluster 3 into TFR-PR (TFR-PR(PR20-3)) requires the presence of PR20 cluster 1 and/or 2 for autoprocessing. In accordance, substituting PR clusters 1 and 2 into TFR-PR20 affects the rate of autoprocessing more drastically (>300-fold) compared to that of TFR-PR(PR20-3) because of the cumulative effect of eight noncluster mutations present in TFR-PR20(PR-12). Overall, these studies imply that drug resistance involves a complex synchronized selection of mutations modulating all of the properties mentioned above governing PR regulation and function. PMID:26266692

  17. A Randomized, Placebo-Controlled Trial of Abacavir Intensification in HIV-1–Infected Adults With Virologic Suppression on a Protease Inhibitor–Containing Regimen

    PubMed Central

    Hammer, Scott M.; Ribaudo, Heather; Bassett, Roland; Mellors, John W.; Demeter, Lisa M.; Coombs, Robert W.; Currier, Judith; Morse, Gene D.; Gerber, John G.; Martinez, Ana I.; Spreen, William; Fischl, Margaret A.; Squires, Kathleen E.

    2011-01-01

    Background and Objective Maximizing the durability of viral suppression is a key goal of antiretroviral therapy. The objective of AIDS Clinical Trials Group Study 372A was to determine whether the intensification strategy of adding abacavir to an effective indinavir-dual nucleoside regimen would delay the time to virologic failure. Methods Zidovudine-experienced subjects (n=229) on therapy with indinavir + zidovudine + lamivudine with plasma HIV-1 RNA levels <500 copies/mL were randomized to abacavir 300 mg twice daily or placebo. The primary endpoint was the time to treatment failure, defined as a composite of confirmed virologic failure (2 consecutive HIV-1 RNAs >200 copies/mL) and treatment discontinuation. Results At baseline, the study population was 88% male with a median age of 41 years and median CD4 cell count of 250/mm3. Median follow-up was 4.4 years. The primary endpoint was reached in 61/116 of abacavir versus 62/113 of placebo recipients (P = .77); virologic failure occurred in 34/116 and 42/113 patients, respectively (P = .22). There were no differences in the proportions of subjects with plasma HIV-1 RNA levels below 50 copies/mL, in CD4 cell count increases, nor adverse events between the arms. In the study, 17% of subjects developed nephrolithiasis, 2% experienced abacavir hypersensitivity, and 4.8% experienced at least 1 serious cardiovascular event (7 [6%] in the abacavir arm, 4 [3.5%] in the placebo arm). In additional secondary and post hoc analyses, rates of intermittent viremia, suppression below a plasma HIV-1 RNA level of 6 copies/mL, and HIV-1 proviral DNA levels in peripheral blood mononuclear cells were not significantly different in the 2 arms. Conclusions The strategy of intensification with abacavir in patients who are virologically suppressed on a stable antiretroviral regimen does not confer a clinical or virologic benefit. As antiretroviral regimens have become more potent since this trial was completed, it will be even more

  18. Discovery of piperidin-4-yl-aminopyrimidine derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Wan, Zheng-Yong; Yao, Jin; Tao, Yuan; Mao, Tian-Qi; Wang, Xin-Long; Lu, Yi-Pei; Wang, Hai-Feng; Yin, Hong; Wu, Yan; Chen, Fen-Er; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe

    2015-06-01

    A novel series of piperidin-4-yl-aminopyrimidine derivatives were designed fusing the pharmacophore templates of etravirine-VRX-480773 hybrids our group previously described and piperidine-linked aminopyrimidines. Most compounds displayed significantly improved activity against wild-type HIV-1 with EC50 values in single-digit nanomolar concentrations compared to etravirine-VRX-480773 hybrids. Selected compounds were also evaluated for activity against reverse transcriptase, and had lower IC50 values than that of nevirapine. The improved potency observed in this in vitro model of HIV RNA replication partly validates the mechanism by which this class of allosteric pyrimidine derivatives inhibits reverse transcriptase, and represents a remarkable step forward in the development of AIDS therapeutics. PMID:25935383

  19. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus.

    PubMed

    Ranasinghe, Shiwanthi L; Fischer, Katja; Zhang, Wenbao; Gobert, Geoffrey N; McManus, Donald P

    2015-12-01

    The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic. PMID:26645974

  20. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus

    PubMed Central

    Ranasinghe, Shiwanthi L.; Fischer, Katja; Zhang, Wenbao; Gobert, Geoffrey N.; McManus, Donald P.

    2015-01-01

    The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic. PMID:26645974

  1. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex

    PubMed Central

    Saayman, Sheena M; Lazar, Daniel C; Scott, Tristan A; Hart, Jonathan R; Takahashi, Mayumi; Burnett, John C; Planelles, Vicente; Morris, Kevin V; Weinberg, Marc S

    2016-01-01

    HIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The “shock and kill” strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the long terminal repeat promoter of HIV-1 and identified a “hotspot” for activation within the viral enhancer sequence. Activating sgRNAs transcriptionally modulated the latent proviral genome across multiple different in vitro latency cell models including T cells comprising a clonally integrated mCherry-IRES-Tat (LChIT) latency system. We detected consistent and effective activation of latent virus mediated by activator sgRNAs, whereas latency reversal agents produced variable activation responses. Transcriptomic analysis revealed dCas9-VP64/sgRNAs to be highly specific, while the well-characterized chemical activator TNFα induced widespread gene dysregulation. CRISPR-mediated gene activation represents a novel system which provides enhanced efficiency and specificity in a targeted latency reactivation strategy and represents a promising approach to a “functional cure” of HIV/AIDS. PMID:26581162

  2. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.

    PubMed

    Chetty, Sarentha; Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2016-01-01

    The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor-protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by

  3. Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice

    PubMed Central

    Hou, Jue; Liu, Ying; Hsi, Jenny; Wang, Hongzhi; Tao, Ran; Shao, Yiming

    2014-01-01

    Cholera toxin B subunit (CTB) was investigated as a classical mucosal adjuvant that can increase vaccine immunogenicity. In this study, we found out the in vitro efficacy of cholera toxin B subunit (CTB) in activating mice bone marrow-derived dendritic cells (BMDCs) through Toll-like receptor signaling pathways. In vitro RNA and transcriptional level profiling arrays revealed that CTB guides high levels of Th1 and Th2 type cytokines, inflammatory cytokines, and chemokines. Based on the robustness of these profiling results, we examined the induction of HIV Env-specific immunity by CTB co-inoculated with HIV Env DNA vaccine intramuscularly in vivo. CTB enhanced HIV-Env specific cellular immune responses in Env-specific IFN-γ ELISPOT, compared with DNA vaccine alone. Moreover, CTB induced high levels of Env specific humoral response and promoted antibody maturation after the third round of vaccination. This combination immunization strategy induced a Th2-type bias response which is indicative of a high ratio of IgG1/IgG2a. This study reports that CTB as a classical mucosal adjuvant could enhance HIV-1 DNA-based vaccine immunogenicity intramuscularly; therefore, these findings suggest that CTB could serve as an effective candidate adjuvant for DNA vaccination. PMID:24633335

  4. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering

    PubMed Central

    Flynn, Andrea N.; Hoffman, Justin; Tillu, Dipti V.; Sherwood, Cara L.; Zhang, Zhenyu; Patek, Renata; Asiedu, Marina N. K.; Vagner, Josef; Price, Theodore J.; Boitano, Scott

    2013-01-01

    Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca2+ response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2−/− cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.—Flynn, A. N., Hoffman, J., Tillu, D. V., Sherwood, C. L., Zhang, Z., Patek, R., Asiedu, M. N. K., Vagner, J., Price, T. J., Boitano, S. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering. PMID:23292071

  5. Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens

    PubMed Central

    Hessell, Ann J.; Malherbe, Delphine C.; Pissani, Franco; McBurney, Sean; Krebs, Shelly J.; Gomes, Michelle; Pandey, Shilpi; Sutton, William F.; Burwitz, Benjamin J.; Gray, Matthew; Robins, Harlan; Park, Byung S.; Sacha, Jonah B.; LaBranche, Celia C.; Fuller, Deborah H.; Montefiori, David C.; Stamatatos, Leonidas; Sather, D. Noah

    2016-01-01

    Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B–infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements. PMID:26944928

  6. Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens.

    PubMed

    Hessell, Ann J; Malherbe, Delphine C; Pissani, Franco; McBurney, Sean; Krebs, Shelly J; Gomes, Michelle; Pandey, Shilpi; Sutton, William F; Burwitz, Benjamin J; Gray, Matthew; Robins, Harlan; Park, Byung S; Sacha, Jonah B; LaBranche, Celia C; Fuller, Deborah H; Montefiori, David C; Stamatatos, Leonidas; Sather, D Noah; Haigwood, Nancy L

    2016-04-01

    Advancement in immunogen selection and vaccine design that will rapidly elicit a protective Ab response is considered critical for HIV vaccine protective efficacy. Vaccine-elicited Ab responses must therefore have the capacity to prevent infection by neutralization-resistant phenotypes of transmitted/founder (T/F) viruses that establish infection in humans. Most vaccine candidates to date have been ineffective at generating Abs that neutralize T/F or early variants. In this study, we report that coimmunizing rhesus macaques with HIV-1 gp160 DNA and gp140 trimeric protein selected from native envelope gene sequences (envs) induced neutralizing Abs against Tier 2 autologous viruses expressing cognate envelope (Env). The Env immunogens were selected from envs emerging during the earliest stages of neutralization breadth developing within the first 2 years of infection in two clade B-infected human subjects. Moreover, the IgG responses in macaques emulated the targeting to specific regions of Env known to be associated with autologous and heterologous neutralizing Abs developed within the human subjects. Furthermore, we measured increasing affinity of macaque polyclonal IgG responses over the course of the immunization regimen that correlated with Tier 1 neutralization. In addition, we report firm correlations between Tier 2 autologous neutralization and Tier 1 heterologous neutralization, as well as overall TZM-bl breadth scores. Additionally, the activation of Env-specific follicular helper CD4 T cells in lymphocytes isolated from inguinal lymph nodes of vaccinated macaques correlated with Tier 2 autologous neutralization. These results demonstrate the potential for native Env derived from subjects at the time of neutralization broadening as effective HIV vaccine elements. PMID:26944928

  7. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    SciTech Connect

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  8. Env-2dCD4 S60C complexes act as super immunogens and elicit potent, broadly neutralizing antibodies against clinically relevant human immunodeficiency virus type 1 (HIV-1).

    PubMed

    Killick, Mark A; Grant, Michelle L; Cerutti, Nichole M; Capovilla, Alexio; Papathanasopoulos, Maria A

    2015-11-17

    The ability to induce a broadly neutralizing antibody (bNAb) response following vaccination is regarded as a crucial aspect in developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1). The bNAbs target the HIV-1 envelope glycoprotein (Env) which is exposed on the virus surface, thereby preventing cell entry. To date, conventional vaccine approaches such as the use of Env-based immunogens have been unsuccessful. We expressed, purified, characterized and evaluated the immunogenicity of several unique HIV-1 subtype C Env immunogens in small animals. Here we report that vaccine immunogens based on Env liganded to a two domain CD4 variant, 2dCD4(S60C) are capable of consistently eliciting potent, broadly neutralizing antibody responses in New Zealand white rabbits against a panel of clinically relevant HIV-1 pseudoviruses. This was irrespective of the Env protein subtype and context. Importantly, depletion of the anti-CD4 antibodies appeared to abrogate the neutralization activity in the rabbit sera. Taken together, this data suggests that the Env-2dCD4(S60C) complexes described here are "super" immunogens, and potentially immunofocus antibody responses to a unique epitope spanning the 2dCD4(60C). Recent data from the two available anti-CD4 monoclonal antibodies, Ibalizumab and CD4-Ig (and bispecific variants thereof) have highlighted that the use of these broad and potent entry inhibitors could circumvent the need for a conventional vaccine targeting HIV-1. Overall, the ability of the unique Env-2dCD4(S60C) complexes to elicit potent bNAb responses has not been described previously, reinforcing that further investigation for their utility in preventing and controlling HIV-1/SIV infection is warranted. PMID:26432912

  9. Hypofibrinolytic state in HIV-1-infected patients treated with protease inhibitor-containing highly active antiretroviral therapy.

    PubMed

    Koppel, Kristina; Bratt, Göran; Schulman, Sam; Bylund, Håkan; Sandström, Eric

    2002-04-15

    Decreased insulin sensitivity, hyperlipidemia, and body fat changes are considered as risk factors for coronary heart disease (CHD). A clustering of such factors (metabolic syndrome [MSDR]) exponentially increases the risk. Impaired fibrinolysis and increased coagulation are additional independent risk factors for CHD. We studied the effects of protease inhibitor (PI)-containing highly active antiretroviral therapy (HAART) on metabolic and hemostatic parameters in 363 HIV-infected individuals, of whom 266 were receiving PI-containing HAART and 97 were treatment naive. The fasting plasma levels of insulin, glucose, triglycerides, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, plasminogen activator inhibitor type 1 (PAI-1), and fibrinogen were evaluated together with the areas of visceral adipose tissue and the visceral adipose tissue/subcutaneous adipose tissue area ratio. The levels of insulin, triglycerides, cholesterol, and low-density lipoprotein cholesterol; visceral adipose tissue area; low-density lipoprotein/high-density lipoprotein ratio; and visceral adipose tissue/subcutaneous adipose tissue area ratio were significantly increased in patients receiving PI-containing HAART compared with treatment-naive patients. The levels of PAI-1 and fibrinogen were significantly higher in patients receiving PI-containing HAART. PAI-1 levels were higher in individuals with MSDR but also in patients without MSDR who were receiving PI-containing HAART. PAI-1 was independently correlated to use of PI-containing HAART, triglyceride level, insulin level, and body mass index (p <.001). These findings suggest that patients receiving PI-containing HAART have decreased fibrinolysis and increased coagulability, which may thus represent additional risk factors for cardiovascular disease in this patient group. PMID:11981359

  10. A Trimeric, V2-Deleted HIV-1 Envelope Glycoprotein Vaccine Elicits Potent Neutralizing Antibodies but Limited Breadth of Neutralization in Human Volunteers

    PubMed Central

    Lally, Michelle A.; Elizaga, Marnie; Montefiori, David; Tomaras, Georgia D.; McElrath, M. Juliana; Hural, John; De Rosa, Stephen C.; Sato, Alicia; Huang, Yunda; Frey, Sharon E.; Sato, Paul; Donnelly, John; Barnett, Susan; Corey, Lawrence J.

    2011-01-01

    Background. A key missing element in the development of a successful human immunodeficiency virus (HIV) vaccine is an immunogen that can generate broadly cross-neutralizing antibodies against primary isolates of the virus. Methods. This phase 1 clinical trial employed a DNA prime and subunit envelope protein boost in an attempt to generate cellular and humoral immune responses that might be desirable in a protective HIV vaccine. Priming was performed via intramuscular injection with gag and env DNA adsorbed to polylactide coglycolide microspheres, followed by boosting with a recombinant trimeric envelope (Env) glycoprotein delivered in MF59 adjuvant. Results. The DNA prime and protein boost were generally safe and well-tolerated. Env-specific CD4+ cellular responses were generated that were predominantly detected after Env protein boosting. Neutralizing antibody responses against the homologous SF162 viral isolate were remarkably strong and were present in the majority of vaccine recipients, including a strong response against CD4-induced epitopes on gp120. Despite the promising potency of this vaccine approach, neutralization breadth against heterologous tier 2 strains of HIV-1 was minimal. Conclusions. Potent neutralization against neutralization-sensitive strains of HIV is achievable in humans through a DNA prime, recombinant oligomeric Env protein boost regimen. Eliciting substantial breadth of neutralization remains an elusive goal.  Clinical Trials Registration. NCT00073216. PMID:21451004

  11. Novel Potent Hepatitis C Virus NS3 Serine Protease Inhibitors Derived from Proline-Based Macrocycles

    SciTech Connect

    Chen, Kevin X.; Njoroge, F. George; Arasappan, Ashok; Venkatraman, Srikanth; Vibulbhan, Bancha; Yang, Weiying; Parekh, Tejal N.; Pichardo, John; Prongay, Andrew; Cheng, Kuo-Chi; Butkiewicz, Nancy; Yao, Nanhua; Madison, Vincent; Girijavallabhan, Viyyoor

    2008-06-30

    The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic {alpha}-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K*{sub i}). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K*{sub i} = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K*{sub i} = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC{sub 50} of 130 nM in a cellular replicon assay, while IC{sub 50} for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization.

  12. Potent ketoamide inhibitors of HCV NS3 protease derived from quaternized P1 groups.

    PubMed

    Venkatraman, Srikanth; Velazquez, Francisco; Wu, Wanli; Blackman, Melissa; Madison, Vincent; Njoroge, F George

    2010-04-01

    Blood borne hepatitis C infections are the primary cause for liver cirrhosis and hepatocellular carcinoma. HCV NS3 protease, a pivotal enzyme in the replication cycle of HCV virus has been the primary target for development of new drug candidates. Boceprevir and telaprevir are two novel ketoamide derived inhibitors that are currently undergoing phase-III clinical trials. These inhibitors include ketoamide functionality as serine trap and have an acidic alpha-ketoamide center that undergoes epimerization under physiological conditions. Our initial attempts to arrest this epimerization by introducing quaternary amino acids at P(1) had resulted in significantly diminished activity. In this manuscript we describe alpha quaternized P(1) group that result in potent inhibitors in the enzyme assay and demonstrate cellular activity comparable to boceprevir. PMID:20226659

  13. Improving the CH1-CK heterodimerization and pharmacokinetics of 4Dm2m, a novel potent CD4-antibody fusion protein against HIV-1.

    PubMed

    Chen, Weizao; Bardhi, Ariola; Feng, Yang; Wang, Yanping; Qi, Qianqian; Li, Wei; Zhu, Zhongyu; Dyba, Marzena A; Ying, Tianlei; Jiang, Shibo; Goldstein, Harris; Dimitrov, Dimiter S

    2016-01-01

    We previously described 4Dm2m, an exceptionally potent broadly neutralizing CD4-antibody fusion protein against HIV-1. It was generated by fusing the engineered single human CD4 domain mD1.22 to both the N and C termini of the human IgG1 heavy chain constant region and the engineered single human antibody domain m36.4, which targets the CD4-induced coreceptor binding site of the viral envelope glycoprotein, to the N terminus of the human antibody kappa light chain constant region via the (G4S)3 polypeptide linkers. However, therapeutic use of 4Dm2m was limited by its short in vivo half-life. Here, we show that a combination of three approaches have successfully increased the persistence of 4Dm2m in mice. First, to stabilize the scaffold, we enhanced heterodimerization between the heavy chain constant domain 1 (CH1) and kappa light chain constant domain (CK) by using structure-guided design and phage-display library technologies. Second, to address the possibility that long polypeptide linkers might render fusion proteins more susceptible to proteolysis, we shortened the (G4S)3 linkers or replaced them with the human IgG1 hinge sequence, which is naturally designed for both flexibility and stability. Third, we introduced two amino acid mutations into the crystallizable fragment (Fc) of the scaffold previously shown to increase antibody binding to the neonatal Fc receptor (FcRn) and prolong half-lives in vivo. Collectively, these approaches markedly increased the serum concentrations of 4Dm2m in mice while not affecting other properties of the fusion protein. The new 4Dm2m variants are promising candidates for clinical development to prevent or treat HIV-1 infection. To our knowledge, this is the first report on stabilized CH1-CK, which is potentially useful as a new heterodimerization scaffold for generation of bispecific and multispecific antibodies or proteins with a more favorable pharmacokinetic profile. PMID:26963639

  14. Caught in the Act: The 1.5 Å Resolution Crystal Structures of the HIV-1 Protease and the I54V Mutant Reveal a Tetrahedral Reaction Intermediate

    SciTech Connect

    Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Liu, Fengling; Louis, John M.; Weber, Irene T.

    2008-03-21

    HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active site cavity of PR where normally the viral polyprotein substrate is bound and hydrolyzed. We report two high-resolution crystal structures of wild-type PR (PR{sub WT}) and the multi-drug-resistant variant with the I54V mutation (PR{sub I54V}) in complex with a peptide at 1.46 and 1.50 {angstrom} resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PR{sub WT} and PR{sub I54V}. The mutant PR{sub I54V}/TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile50 and Ile50{prime} in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PR{sub WT} complex forms a very short (2.3 {angstrom}) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25{prime}, in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR.

  15. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β.

    PubMed

    Lai, Weihong; Huang, Li; Zhu, Lei; Ferrari, Guido; Chan, Cliburn; Li, Wei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2015-11-12

    HIV-1-latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells. GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication. PMID:26509731

  16. Characterization of HIV-1 Resistance to Tenofovir Alafenamide In Vitro.

    PubMed

    Margot, Nicolas A; Johnson, Audun; Miller, Michael D; Callebaut, Christian

    2015-10-01

    Tenofovir alafenamide (TAF) is an investigational prodrug of the HIV-1 nucleotide reverse transcriptase (RT) inhibitor (NtRTI) tenofovir (TFV), with improved potency and drug delivery properties over the current prodrug, tenofovir disoproxil fumarate (TDF). TAF is currently in phase 3 clinical studies for the treatment of HIV-1 infection, in combination with other antiretroviral agents. Phase 1 and 2 studies have shown that TAF was associated with increased peripheral blood mononuclear cell (PBMC) drug loading and increased suppression of HIV-1 replication compared to treatment with TDF. In this study, selection of in vitro resistance to both TAF and the parent compound, TFV, led to the emergence of HIV-1 with the K65R amino acid substitution in RT with 6.5-fold-reduced susceptibility to TAF. Although TAF is more potent than TFV in vitro, the antiviral susceptibilities to TAF and TFV of a large panel of nucleoside/nucleotide RT inhibitor (NRTI)-resistant mutants were highly correlated (R(2) = 0.97), indicating that the two compounds have virtually the same resistance profile when assessed as fold change from the wild type. TAF showed full antiviral activity in PBMCs against primary HIV-1 isolates with protease inhibitor, nonnucleoside RT inhibitor (NNRTI), or integrase strand transfer inhibitor resistance but reduced activity against isolates with extensive NRTI resistance amino acid substitutions. However, the increased cell loading of TFV with TAF versus TDF observed in vivo suggests that TAF may retain activity against TDF-resistant mutant viruses. PMID:26149983

  17. A Novel, Live-Attenuated Vesicular Stomatitis Virus Vector Displaying Conformationally Intact, Functional HIV-1 Envelope Trimers That Elicits Potent Cellular and Humoral Responses in Mice

    PubMed Central

    Lindsay, Ross W. B.; Yuan, Maoli; Carpov, Alexei; Wilson, Aaron; Lopez, Mary; Coleman, John W.; Wagner, Denise; Sharma, Palka; Kemelman, Marina; Wright, Kevin J.; Seabrook, John P.; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Chiuchiolo, Maria J.; Parks, Christopher L.

    2014-01-01

    Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5′terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 104–105, with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform. PMID:25215861

  18. Pharmacotherapy of HIV-1 Infection: Focus on CCR5 Antagonist Maraviroc

    PubMed Central

    Latinovic, Olga; Kuruppu, Janaki; Davis, Charles; Le, Nhut; Heredia, Alonso

    2009-01-01

    Sustained inhibition of HIV-1, the goal of antiretroviral therapy, is often impeded by the emergence of viral drug resistance. For patients infected with HIV-1 resistant to conventional drugs from the viral reverse transcriptase and protease inhibitor classes, the recently approved entry and integration inhibitors effectively suppress HIV-1 and offer additional therapeutic options. Entry inhibitors are particularly attractive because, unlike conventional antiretrovirals, they target HIV-1 extracellularly, thereby sparing cells from both viral- and drug-induced toxicities. The fusion inhibitor enfuvirtide and the CCR5 antagonist maraviroc are the first entry inhibitors licensed for patients with drug-resistant HIV-1, with maraviroc restricted to those infected with CCR5-tropic HIV-1 (R5 HIV-1) only. Vicriviroc (another CCR5 antagonist) is in Phase III clinical trials, whereas the CCR5 antibodies PRO 140 and HGS 004 are in early stages of clinical development. Potent antiviral synergy between maraviroc and CCR5 antibodies, coupled with distinct patterns of resistance, suggest their combinations might be particularly effective in patients. In addition, given that oral administration of maraviroc achieves high drug levels in cervicovaginal fluid, combinations of maraviroc and other CCR5 inhibitors could be effective in preventing HIV-1 transmission. Moreover, since CCR5 antagonists prevent rejection of transplanted organs, maraviroc could both suppress HIV-1 and prolong organ survival for the growing number of HIV-1 patients with kidney or liver failure necessitating organ transplantation. Thus, maraviroc offers an important treatment option for patients with drug-resistant R5 HIV-1, who presently account for >50% of drug-resistance cases. PMID:19920876

  19. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    PubMed

    Reynolds, Simone L; Pike, Robert N; Mika, Angela; Blom, Anna M; Hofmann, Andreas; Wijeyewickrema, Lakshmi C; Kemp, Dave; Fischer, Katja

    2014-05-01

    Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics. PMID:24854034

  20. The L76V Drug Resistance Mutation Decreases the Dimer Stability and Rate of Autoprocessing of HIV-1 Protease by Reducing Internal Hydrophobic Contacts

    SciTech Connect

    Louis, John M.; Zhang, Ying; Sayer, Jane M.; Wang, Yuan-Fang; Harrison, Robert W.; Weber, Irene T.

    2011-09-06

    The mature HIV-1 protease (PR) bearing the L76V drug resistance mutation (PR{sub L76V}) is significantly less stable, with a >7-fold higher dimer dissociation constant (K{sub d}) of 71 {+-} 24 nM and twice the sensitivity to urea denaturation (UC{sub 50} = 0.85 M) relative to those of PR. Differential scanning calorimetry showed decreases in T{sub m} of 12 C for PR{sub L76V} in the absence of inhibitors and 5-7 C in the presence of inhibitors darunavir (DRV), saquinavir (SQV), and lopinavir (LPV), relative to that of PR. Isothermal titration calorimetry gave a ligand dissociation constant of 0.8 nM for DRV, {approx}160-fold higher than that of PR, consistent with DRV resistance. Crystal structures of PR{sub L76V} in complexes with DRV and SQV were determined at resolutions of 1.45-1.46 {angstrom}. Compared to the corresponding PR complexes, the mutated Val76 lacks hydrophobic interactions with Asp30, Lys45, Ile47, and Thr74 and exhibits closer interactions with Val32 and Val56. The bound DRV lacks one hydrogen bond with the main chain of Asp30 in PR{sub L76V} relative to PR, possibly accounting for the resistance to DRV. SQV shows slightly improved polar interactions with PR{sub L76V} compared to those with PR. Although the L76V mutation significantly slows the N-terminal autoprocessing of the precursor TFR-PR{sub L76V} to give rise to the mature PR{sub L76V}, the coselected M46I mutation counteracts the effect by enhancing this rate but renders the TFR-PRM46I/L76V precursor less responsive to inhibition by 6 {micro}M LPV while preserving inhibition by SQV and DRV. The correlation of lowered stability, higher K{sub d}, and impaired autoprocessing with reduced internal hydrophobic contacts suggests a novel molecular mechanism for drug resistance.

  1. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors.

    PubMed

    Duan, Haichuan; Hu, Tao; Foti, Robert S; Pan, Yongmei; Swaan, Peter W; Wang, Joanne

    2015-11-01

    Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1-3 (OCT1-3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1-3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC₅₀ = 1.4 ± 0.2 µM) over OCT1 (IC₅₀ = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1-3. PMID:26285765

  2. Immunoglobulin A1 Protease, an Exoenzyme of Pathogenic Neisseriae, Is a Potent Inducer of Proinflammatory Cytokines

    PubMed Central

    Lorenzen, Dirk R.; Düx, Frank; Wölk, Uwe; Tsirpouchtsidis, Anastasios; Haas, Gaby; Meyer, Thomas F.

    1999-01-01

    A characteristic of human pathogenic Neisseriae is the production and secretion of an immunoglobulin (Ig)A1-specific serine protease (IgA1 protease) that cleaves preferentially human IgA1 and other target proteins. Here we show a novel function for native IgA1 protease, i.e., the induction of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 from peripheral blood mononuclear cells. The capacity of IgA1 protease to elicit such cytokine responses in monocytes was enhanced in the presence of T lymphocytes. IgA1 protease did not induce the regulatory cytokine IL-10, which was, however, found in response to lipopolysaccharide and phytohemagglutinin. The immunomodulatory effects caused by IgA1 protease require a native form of the enzyme, and denaturation abolished cytokine induction. However, the proteolytic activity is not required for the cytokine induction by IgA1 protease. Our results indicate that IgA1 protease exhibits important immunostimulatory properties and may contribute substantially to the pathogenesis of neisserial infections by inducing large amounts of TNF-α and other proinflammatory cytokines. In particular, IgA1 protease may represent a key virulence determinant of bacterial meningitis. PMID:10523603

  3. Discovery of dual inhibitors targeting both HIV-1 capsid and human cyclophilin A to inhibit the assembly and uncoating of the viral capsid.

    PubMed

    Li, Jiebo; Tan, Zhiwu; Tang, Shixing; Hewlett, Indira; Pang, Ruifang; He, Meizi; He, Shanshan; Tian, Baohe; Chen, Kan; Yang, Ming

    2009-04-15

    HIV-1 assembly and disassembly (uncoating) processes are critical for the HIV-1 replication. HIV-1 capsid (CA) and human cyclophilin A (CypA) play essential roles in these processes. We designed and synthesized a series of thiourea compounds as HIV-1 assembly and disassembly dual inhibitors targeting both HIV-1 CA protein and human CypA. The SIV-induced syncytium antiviral evaluation indicated that all of the inhibitors displayed antiviral activities in SIV-infected CEM cells at the concentration of 0.6-15.8 microM for 50% of maximum effective rate. Their abilities to bind CA and CypA were determined by ultraviolet spectroscopic analysis, fluorescence binding affinity and PPIase inhibition assay. Assembly studies in vitro demonstrated that the compounds could potently disrupt CA assembly with a dose-dependent manner. All of these molecules could bind CypA with binding affinities (Kd values) of 51.0-512.8 microM. Fifteen of the CypA binding compounds showed potent PPIase inhibitory activities (IC(50) values<1 microM) while they could not bind either to HIV-1 Protease or to HIV-1 Integrase in the enzyme assays. These results suggested that 15 compounds could block HIV-1 replication by inhibiting the PPIase activity of CypA to interfere with capsid disassembly and disrupting CA assembly. PMID:19328002

  4. Persistent apoptosis in HIV-1-infected individuals receiving potent antiretroviral therapy is associated with poor recovery of CD4 T lymphocytes.

    PubMed

    Hansjee, Natasha; Kaufmann, Gilbert R; Strub, Christoph; Weber, Rainer; Battegay, Manuel; Erb, Peter

    2004-06-01

    CD4 T-cell depletion in HIV-1 infection is partly the result of T-cell apoptosis. Spontaneous apoptosis (SA) and apoptosis markers Fas-associated death-domain-like IL-1 beta converting enzyme (FLICE)-like inhibitory protein (FLIP), Bcl-2, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), TRAIL receptor 1, and Fas were determined in 55 HIV-1 infected persons treated with highly active antiretroviral therapy (HAART) for 48 months. Despite suppressive HAART, SA remained elevated. Increased SA of peripheral blood mononuclear cells (PBMCs) and CD8 T lymphocytes and increased TRAIL receptor 1 expression strongly predicted a poorer recovery of CD4 T-cell count. HAART did not significantly alter anti-or proapoptotic markers in cultured PBMCs and T lymphocytes. The significant relationship between residual T-lymphocyte apoptosis and CD4 T-cell recovery suggests that persistent apoptosis may impede immune restoration. PMID:15167285

  5. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach.

    PubMed

    Wang, Liu; Tian, Ye; Chen, Wenmin; Liu, Hong; Zhan, Peng; Li, Dongyue; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong

    2014-10-01

    Guided by crystal structures of HIV-1 RT/DAPY complex and molecular modeling studies, a series of novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives were rationally designed via structure-based core refining approach, synthesized through the readily accessible synthetic methods and evaluated for their anti-HIV activities in MT-4 cells. Preliminary biological evaluation indicated that most of the compounds exhibited marked inhibitory activity against the wild-type HIV-1 IIIB. Particularly, compound 7n was the most potent inhibitor against wild-type and K103N/Y181C double resistant mutant strain of HIV-1, possessing EC50 values of 0.02 μM and 7.6 μM, respectively, which were much better than or similar to nevirapine (NVP, EC50 = 0.15 μM, 2.9 μM) and delavirdine (DLV, EC50 = 0.07 μM, >36 μM). Besides, some other compounds, 5b, 7c, 7e, 7f, and 7m, were also endowed with favorable anti-HIV-1 potency (EC50 = 0.07, 0.05, 0.05, 0.07, and 0.05 μM, respectively), which were better than or similar to those of NVP and DLV, suggesting a high potential to further develop this type of bridgehead nitrogen heterocycle as a novel class of NNRTIs with improved antiviral efficacy and resistance profile. The selected compound, 7i, was found moderately inhibitory towards RT (IC50 = 0.39 μM), which was higher than for ETV (IC50 = 0.56 μM). Preliminary structure-activity relationships (SARs) and molecular modeling of these new analogues were detailed in this manuscript. PMID:25089812

  6. Cyanohydrin as an Anchoring Group for Potent and Selective Inhibitors of Enterovirus 71 3C Protease.

    PubMed

    Zhai, Yangyang; Zhao, Xiangshuai; Cui, Zhengjie; Wang, Man; Wang, Yaxin; Li, Linfeng; Sun, Qi; Yang, Xi; Zeng, Debin; Liu, Ying; Sun, Yuna; Lou, Zhiyong; Shang, Luqing; Yin, Zheng

    2015-12-10

    Cyanohydrin derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. Compared with the reported inhibitors, cyanohydrins (1S,2S,2'S,5S)-16 and (1R,2S,2'S,5S)-16 exhibited significantly improved activity and attractive selectivity profiles against other proteases, which were a result of the specific interactions between the cyanohydrin moiety and the catalytic site of 3C(pro). Cyanohydrin as an anchoring group with high selectivity and excellent inhibitory activity represents a useful choice for cysteine protease inhibitors. PMID:26571192

  7. Peptidyl inverse esters of p-methoxybenzoic acid: a novel class of potent inactivator of the serine proteases.

    PubMed Central

    Lynas, J; Walker, B

    1997-01-01

    A series of novel synthetic peptides, containing a C-terminal beta-amino alcohol linked to p-methoxybenzoic acid via an ester linkage, have been prepared and tested as inhibitors against typical members of the serine protease family. For example, the sequences Ac-Val-Pro-NH-CH-(CH2-C6H5)-CH2O-CO-C6H4-OCH3 (I) and Ac-Val-Pro-NH-CH-[CH-(CH3)2]-CH2O-CO-C6H4-OCH3 (II), which fulfil the known primary and secondary specificity requirements of chymotrypsin and elastase respectively, have been found to behave as exceptionally potent irreversible inactivators of their respective target protease. Thus I was found to inactivate chymotrypsin with an overall second-order rate constant (k2/Ki) of approx. 6.6x10(6) M-1. s-1, whereas II is an even more potent inactivator of human neutrophil elastase, exhibiting a second-order rate constant of inactivation of approx. 1.3x10(7) M-1.s-1. These values represent the largest rate constants ever reported for the inactivation of these proteases with synthetic peptide-based inactivators. On prolonged incubation in substrate-containing buffers, samples of the inactivated proteases were found to regain activity slowly. The first-order rate constants for the regeneration of enzymic activity from chymotrypsin and human neutrophil elastase inactivated by I and II respectively were determined to be approx. 5.8x10(-5) s-1 and approx. 4.3x10(-4) s-1. We believe that the most likely mechanism for the inactivation and regeneration of enzymic activity involves the formation and subsequent slow hydrolysis of long-lived acyl enzyme intermediates. PMID:9271079

  8. Exploration of the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease, plasmepsin V.

    PubMed

    Gazdik, Michelle; Jarman, Kate E; O'Neill, Matthew T; Hodder, Anthony N; Lowes, Kym N; Jousset Sabroux, Helene; Cowman, Alan F; Boddey, Justin A; Sleebs, Brad E

    2016-05-01

    The use of arginine isosteres is a known strategy to overcome poor membrane permeability commonly associated with peptides or peptidomimetics that possess this highly polar amino acid. Here, we apply this strategy to peptidomimetics that are potent inhibitors of the malarial protease, plasmepsin V, with the aim of enhancing their activity against Plasmodium parasites, and exploring the structure-activity relationship of the P3 arginine within the S3 pocket of plasmepsin V. Of the arginine isosteres trialled in the P3 position, we discovered that canavanine was the ideal and that this peptidomimetic potently inhibits plasmepsin V, efficiently blocks protein export and inhibits parasite growth. Structure studies of the peptidomimetics bound to plasmepsin V provided insight into the structural basis for the enzyme activity observed in vitro and provides further evidence why plasmepsin V is highly sensitive to substrate modification. PMID:27021426

  9. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication.

    PubMed

    Skerlj, Renato; Bridger, Gary; Zhou, Yuanxi; Bourque, Elyse; McEachern, Ernest; Danthi, Sanjay; Langille, Jonathan; Harwig, Curtis; Veale, Duane; Carpenter, Bryon; Ba, Tuya; Bey, Michael; Baird, Ian; Wilson, Trevor; Metz, Markus; MacFarland, Ron; Mosi, Renee; Bodart, Veronique; Wong, Rebecca; Fricker, Simon; Huskens, Dana; Schols, Dominique

    2012-03-01

    A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels. PMID:24900457

  10. Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes

    PubMed Central

    2015-01-01

    We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent, and some of them displayed clear-cut selectivity toward the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity toward two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity toward the viral G-quadruplexes and display remarkable antiviral activity. PMID:26599611

  11. Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications.

    PubMed

    Das, Biswajit; Dobrowolski, Curtis; Shahir, Abdel-Malek; Feng, Zhimin; Yu, Xiaolan; Sha, Jinfeng; Bissada, Nabil F; Weinberg, Aaron; Karn, Jonathan; Ye, Fengchun

    2015-01-01

    HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3-9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients. PMID:25463605

  12. Short Chain Fatty Acids Potently Induce Latent HIV-1 in T-cells by Activating P-TEFb and Multiple Histone Modifications

    PubMed Central

    Das, Biswajit; Dobrowolski, Curtis; Shahir, Abdel-Malek; Feng, Zhimin; Yu, Xiaolan; Sha, Jinfeng; Bissada, Nabil F.; Weinberg, Aaron; Karn, Jonathan; Ye, Fengchun

    2014-01-01

    HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3–9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients. PMID:25463605

  13. Strategies for Eliciting HIV-1 Inhibitory Antibodies

    PubMed Central

    Tomaras, Georgia D.; Haynes, Barton F.

    2012-01-01

    Purpose of review Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. Recent Findings Heterologous prime-boost strategies can yield anti-HIV immune responses; although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4+ T cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B cell response. Summary In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission. PMID:20978384

  14. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    SciTech Connect

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J.

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  15. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  16. An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response

    PubMed Central

    De Gassart, Aude; Bujisic, Bojan; Zaffalon, Léa; Decosterd, Laurent A.; Di Micco, Antonia; Frera, Gianluca; Tallant, Rémy; Martinon, Fabio

    2016-01-01

    Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses. PMID:26715744

  17. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time

    SciTech Connect

    Perelson, A.S.; Neumann, A.U.; Markowitz, M.; Ho, D.D.; Leonard, J.M.

    1996-03-15

    A new mathematical model was used to analyze a detailed set of human immunodeficiency virus-type 1 (HIV-1) viral load data collected from five infected individuals after the administration of a potent inhibitor of HIV-1 protease. Productively infected cells were estimated to have, on average, a life-span of 2.2 days (half-life t{sub 1/2} = 1.6 days), and plasma virions were estimated to have, on average, a mean life-span of 0.3 days (t{sub 1/2} = 0.24 days). The estimated average total HIV-1 production was 10.3 x 10{sup 9}virions per day, which is substantially greater than previous minimum estimates. The results also suggest that the minimum duration of the HIV-1 life cycle in vivo is 1.2 days on average, and that the average HIV-1 generation time-defined as the time from release of a virion until it infects another cell and causes the release of a new generation of viral particles-is 2.6 days. These findings on viral dynamics provide not only a kinetic picture of HIV-1 pathogenesis, but also theoretical principles to guide the development of treatment strategies. 22 refs., 1 fig., 2 tabs.

  18. Potent inhibitors of HIV-1 integrase display a two-step, slow-binding inhibition mechanism which is absent in a drug-resistant T66I/M154I mutant.

    PubMed

    Garvey, Edward P; Schwartz, Benjamin; Gartland, Margaret J; Lang, Scott; Halsey, Wendy; Sathe, Ganesh; Carter, H Luke; Weaver, Kurt L

    2009-02-24

    Two-metal binding HIV-1 integrase inhibitors (INIs) are potent inhibitors of HIV-1 in vitro and in patients. We report here for the first time the kinetics of inhibition of integrase-catalyzed strand transfer. First, the IC(50) values for each of six structurally distinct INIs decreased when a preincubation was included: S-1360 (1.3 microM vs 0.12 microM), L-731,988 (130 nM vs 9 nM), L-870,810 (130 nM vs 4 nM), raltegravir (300 nM vs 9 nM), elvitegravir (90 nM vs 6 nM), and GSK364735 (90 nM vs 6 nM). When reactions with these INIs were initiated with integrase, progress curve analyses indicated time-dependent inhibition, which could be fitted to a two-step mechanism of binding. Overall fitted K(i) values matched the IC(50) values measured with a preincubation: S-1360 (0.17 microM), L-731,988 (34 nM), L-870,810 (2.4 nM), raltegravir (10 nM), elvitegravir (4.0 nM), and GSK364735 (2.5 nM). To begin to understand the mechanism for this slow onset of inhibition and its possible impact on drug resistance, studies of resistance mutations were initiated. T66I/M154I exhibited little if any time-dependent inhibition by any of the six INIs, as measured by differences in potency upon preincubation or by progress curve analysis. These data demonstrate that slow binding is a signature of two-metal binding INIs, and that the second slow step is required for full potency. We discuss a possible structural explanation of the second slow step of inhibition and also the relationship between loss of time-dependent inhibition and drug resistance of this important new class of HIV-1 antiretroviral drugs. PMID:19178153

  19. Potent cardioprotection from ischemia-reperfusion injury by a 2-domain fusion protein comprising Annexin V and Kunitz protease inhibitor

    PubMed Central

    Yeh, Chi-Hsiao; Chen, Tzu-Ping; Wang, Yao-Chang; Fang, Shu-Wen; Wun, Tze-Chein

    2013-01-01

    Background Considerable evidence suggests that coagulation proteases (TF/FVIIa/FXa/thrombin) and their target protease activated receptors (PAR-1/PAR-2) play important roles in myocardial ischemia-reperfusion (I-R) injury. We hypothesized that localized inhibition of TF/FVIIa on the membrane surfaces of ischemic cells could effectively block coagulation cascade and subsequent PAR-1/PAR-2 cell signaling, thereby protecting the myocardium from I-R injury. Objectives We recently developed an annexin V-Kunitz inhibitor fusion protein (ANV-6L15) that could specifically bind to anionic phospholipids on the membrane surfaces of apoptotic cells and efficiently inhibit the membrane-anchored TF/FVIIa. In this study, we investigated the cardioprotective effect of ANV-6L15 in a rat cardiac I-R model in comparison to that of hirudin. Methods Left coronary artery occlusion was maintained for 45 minutes followed by 4 hours of reperfusion in anesthetized Sprague Dawley rats. One minute before or 2 minutes after coronary ligation, rats received an i.v. bolus injection of ANV-6L15 (2.5 to 250 μg/kg), vehicle, or hirudin by bolus injection and continuous infusion. Results and Conclusions ANV-6L15 dose-dependently reduced infarct size by up to 87 %, and decreased plasma levels of cardiac troponin I, TNF-α, and sICAM-1, by up to 97 %, 96 %, and 66 %, respectively, with little impact on the coagulation parameters. ANV-6L15 also ameliorated hemodynamic derangements, attenuated neutrophil infiltration and reduced TUNEL-(+) apoptotic cardiomyocytes. Hirudin was less efficacious even at supra-clinical dose. ANV-6L15 confers exceptionally potent cardioprotection and is a promising drug candidate for prevention of myocardial I-R injury. PMID:23746209

  20. Structural requirements for potent anti-human immunodeficiency virus (HIV) and sperm-immobilizing activities of cyclohexenyl thiourea and urea non-nucleoside inhibitors of HIV-1 reverse transcriptase.

    PubMed

    D'Cruz, Osmond J; Venkatachalam, Taracad K; Mao, Chen; Qazi, Sanjive; Uckun, Fatih M

    2002-12-01

    The current pandemic of sexually transmitted human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) has created an urgent need for a new type of microbicide, one that is both a spermicide and a virucide. In a systematic effort to identify a non-detergent-type antiviral spermicide, we have rationally designed and synthesized a series of cyclohexenyl thiourea (CHET) nonnucleoside inhibitors (NNIs) of HIV-1 reverse transcriptase (RT) with sperm-immobilizing activity (SIA). To gain further insight into the structural requirements for the optimal activity of these dual-function NNIs, we compared the effects of thiazolyl, benzothiazolyl, and pyridyl ring substitutions and functionalization with electron-donating and electron-withdrawing groups as well as the importance of thiourea and urea moieties of 15 heterocyclic ring-substituted NNIs. RT activity and p24 antigen production in HIV-infected peripheral blood mononuclear cells were used as markers of viral replication. Computer-assisted sperm analysis was used for evaluating SIA of CHET compounds. The rabbit model was used for evaluation of in vivo mucosal toxicity and contraceptive activity of the lead NNIs. Three CHET-NNIs with a bromo, chloro, or methyl substitution at the 5 position of the pyridyl ring exhibited potent anti-HIV activity at nanomolar concentrations (IC(50) = 3-5 nM) and SIA at micromolar concentrations (EC(50) = 45-96 micro M). The dual-function CHET-NNIs were potent inhibitors of drug-resistant HIV-1 strains with genotypic and phenotypic NNI resistance. Upon substitution of the sulfur atom of the thiourea moiety with an oxygen atom, the most striking difference noted was a 38-fold reduction in time required for 50% sperm immobilization (T(1/2)). A quantitative structure-activity relationship (QSAR) analysis was used in deriving regression equations between 20 physicochemical properties and SIA of NNIs. QSAR analysis showed that the T(1/2) values positively correlated with

  1. 2,3,4-Trihydroxybenzyl-hydrazide analogues as novel potent coxsackievirus B3 3C protease inhibitors.

    PubMed

    Kim, Bo-Kyoung; Ko, Hyojin; Jeon, Eun-Seok; Ju, Eun-Seon; Jeong, Lak Shin; Kim, Yong-Chul

    2016-09-14

    Human coxsackievirus B3 (CVB3) 3C protease plays an essential role in the viral replication of CVB3, which is a non-enveloped and positive single-stranded RNA virus belonging to Picornaviridae family, causing acute viral myocarditis mainly in children. During optimization based on SAR studies of benserazide (3), which was reported as a novel anti-CVB3 3C(pro) agent from a screening of compound libraries, the 2,3,4-trihydroxybenzyl moiety of 3 was identified as a key pharmacophore for inhibitory activity against CVB3 3C(pro). Further optimization was performed by the introduction of various aryl-alkyl substituted hydrazide moieties instead of the serine moiety of 3. Among the optimized compounds, 11Q, a 4-hydroxyphenylpentanehydrazide derivative, showed the most potent inhibitory activity (IC50 = 0.07 μM). Enzyme kinetics studies indicated that 11Q exhibited a mixed inhibitory mechanism of action. The antiviral activity against CVB3 was confirmed using the further derived analogue (14b) with more cell permeable valeryl ester group at the 2,3,4-trihydroxy moiety. PMID:27191615

  2. Development of prophylactic vaccines against HIV-1

    PubMed Central

    2013-01-01

    The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions. PMID:23866844

  3. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  4. Preclinical Profile of VX-950, a Potent, Selective, and Orally Bioavailable Inhibitor of Hepatitis C Virus NS3-4A Serine Protease

    PubMed Central

    Perni, Robert B.; Almquist, Susan J.; Byrn, Randal A.; Chandorkar, Gurudatt; Chaturvedi, Pravin R.; Courtney, Lawrence F.; Decker, Caroline J.; Dinehart, Kirk; Gates, Cynthia A.; Harbeson, Scott L.; Heiser, Angela; Kalkeri, Gururaj; Kolaczkowski, Elaine; Lin, Kai; Luong, Yu-Ping; Rao, B. Govinda; Taylor, William P.; Thomson, John A.; Tung, Roger D.; Wei, Yunyi; Kwong, Ann D.; Lin, Chao

    2006-01-01

    VX-950 is a potent, selective, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3-4A serine protease, and it demonstrated excellent antiviral activity both in genotype 1b HCV replicon cells (50% inhibitory concentration [IC50] = 354 nM) and in human fetal hepatocytes infected with genotype 1a HCV-positive patient sera (IC50 = 280 nM). VX-950 forms a covalent but reversible complex with the genotype 1a HCV NS3-4A protease in a slow-on, slow-off process with a steady-state inhibition constant (Ki*) of 7 nM. Dissociation of the covalent enzyme-inhibitor complex of VX-950 and genotype 1a HCV protease has a half-life of almost an hour. A >4-log10 reduction in the HCV RNA levels was observed after a 2-week incubation of replicon cells with VX-950, with no rebound of viral RNA observed after withdrawal of the inhibitor. In several animal species, VX-950 exhibits a favorable pharmacokinetic profile with high exposure in the liver. In a recently developed HCV protease mouse model, VX-950 showed excellent inhibition of HCV NS3-4A protease activity in the liver. Therefore, the overall preclinical profile of VX-950 supports its candidacy as a novel oral therapy against hepatitis C. PMID:16495249

  5. High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses.

    PubMed

    Sato, Yuichiro; Hirayama, Makoto; Morimoto, Kinjiro; Yamamoto, Naoki; Okuyama, Satomi; Hori, Kanji

    2011-06-01

    The complete amino acid sequence of a lectin from the green alga Boodlea coacta (BCA), which was determined by a combination of Edman degradation of its peptide fragments and cDNA cloning, revealed the following: 1) B. coacta used a noncanonical genetic code (where TAA and TAG codons encode glutamine rather than a translation termination), and 2) BCA consisted of three internal tandem-repeated domains, each of which contains the sequence motif similar to the carbohydrate-binding site of Galanthus nivalis agglutinin-related lectins. Carbohydrate binding specificity of BCA was examined by a centrifugal ultrafiltration-HPLC assay using 42 pyridylaminated oligosaccharides. BCA bound to high mannose-type N-glycans but not to the complex-type, hybrid-type core structure of N-glycans or oligosaccharides from glycolipids. This lectin had exclusive specificity for α1-2-linked mannose at the nonreducing terminus. The binding activity was enhanced as the number of terminal α1-2-linked mannose substitutions increased. Mannobiose, mannotriose, and mannopentaose were incapable of binding to BCA. Thus, BCA preferentially recognized the nonreducing terminal α1-2-mannose cluster as a primary target. As predicted from carbohydrate-binding propensity, this lectin inhibited the HIV-1 entry into the host cells at a half-maximal effective concentration of 8.2 nm. A high association constant (3.71 × 10(8) M(-1)) of BCA with the HIV envelope glycoprotein gp120 was demonstrated by surface plasmon resonance analysis. Moreover, BCA showed the potent anti-influenza activity by directly binding to viral envelope hemagglutinin against various strains, including a clinical isolate of pandemic H1N1-2009 virus, revealing its potential as an antiviral reagent. PMID:21460211

  6. High Mannose-binding Lectin with Preference for the Cluster of α1–2-Mannose from the Green Alga Boodlea coacta Is a Potent Entry Inhibitor of HIV-1 and Influenza Viruses*

    PubMed Central

    Sato, Yuichiro; Hirayama, Makoto; Morimoto, Kinjiro; Yamamoto, Naoki; Okuyama, Satomi; Hori, Kanji

    2011-01-01

    The complete amino acid sequence of a lectin from the green alga Boodlea coacta (BCA), which was determined by a combination of Edman degradation of its peptide fragments and cDNA cloning, revealed the following: 1) B. coacta used a noncanonical genetic code (where TAA and TAG codons encode glutamine rather than a translation termination), and 2) BCA consisted of three internal tandem-repeated domains, each of which contains the sequence motif similar to the carbohydrate-binding site of Galanthus nivalis agglutinin-related lectins. Carbohydrate binding specificity of BCA was examined by a centrifugal ultrafiltration-HPLC assay using 42 pyridylaminated oligosaccharides. BCA bound to high mannose-type N-glycans but not to the complex-type, hybrid-type core structure of N-glycans or oligosaccharides from glycolipids. This lectin had exclusive specificity for α1–2-linked mannose at the nonreducing terminus. The binding activity was enhanced as the number of terminal α1–2-linked mannose substitutions increased. Mannobiose, mannotriose, and mannopentaose were incapable of binding to BCA. Thus, BCA preferentially recognized the nonreducing terminal α1–2-mannose cluster as a primary target. As predicted from carbohydrate-binding propensity, this lectin inhibited the HIV-1 entry into the host cells at a half-maximal effective concentration of 8.2 nm. A high association constant (3.71 × 108 m−1) of BCA with the HIV envelope glycoprotein gp120 was demonstrated by surface plasmon resonance analysis. Moreover, BCA showed the potent anti-influenza activity by directly binding to viral envelope hemagglutinin against various strains, including a clinical isolate of pandemic H1N1-2009 virus, revealing its potential as an antiviral reagent. PMID:21460211

  7. In vivo toxicity, pharmacokinetic features and tissue distribution of N-[2-(2,5-dimethoxyphenylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea (HI-236), a potent non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Chen, C L; Venkatachalam, T K; Waurzyniak, B; Chelstrom, L; Uckun, F M

    2001-01-01

    N-[2-(2,5-Dimethoxyphenylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea (HI-236, CAS 233271-65-3) possesses potent anti-viral activity against zidovudine-sensitive as well as multidrug-resistant HIV-1 (human immunodeficiency virus) strains. The purpose of the present study was to examine in vivo toxicity, pharmacokinetic features and tissue distribution of HI-236 in mice. HI-236 had an elimination half-life of 85.8 min after i.v. administration and 86.6 min after i.p. administration. The systemic clearance of HI-236 was 4337 ml/h/kg after i.v. administration and 10,130 ml/h/kg after i.p. administration. Following i.v. injection, HI-236 rapidly distributed to and accumulated in multiple tissues with particularly high accumulation in lung, adipose tissue, skin, urinary bladder, adrenal gland and uterus + ovary. The concentration of HI-236 in brain tissue was comparable to that in the plasma, indicating that HI-236 easily crosses the blood-brain barrier. Following i.p. injection, HI-236 was rapidly absorbed with a tmax values of 5.6 min and showed linear pharmacokinetics within the dose range of 10-80 mg/kg. Following oral administration, HI-236 was absorbed with a tmax of 5.8 min. The intraperitoneal bioavailability was estimated at 42.9%, while the oral bioavailability was only 2.2%. The pharmacokinetic study described herein provides the basis for advanced pharmacodynamic study of HI-236. PMID:11505789

  8. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results. PMID:16839248

  9. Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation.

    PubMed

    Swartz, Talia H; Dubyak, George R; Chen, Benjamin K

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts more than 30 million individuals worldwide. While the infection can be suppressed with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here, we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets. PMID:26635799

  10. Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation

    PubMed Central

    Swartz, Talia H.; Dubyak, George R.; Chen, Benjamin K.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts more than 30 million individuals worldwide. While the infection can be suppressed with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here, we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets. PMID:26635799

  11. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1.

    PubMed

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C C; Parrish, Erica H; Learn, Gerald H; West, Anthony P; Bjorkman, Pamela J; Schlesinger, Sarah J; Seaman, Michael S; Czartoski, Julie; McElrath, M Juliana; Pfeifer, Nico; Hahn, Beatrice H; Caskey, Marina; Nussenzweig, Michel C

    2016-05-20

    3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  12. Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton arboreum

    PubMed Central

    Ellithey, Mona S.; Lall, Namrita; Hussein, Ahmed A.; Meyer, Debra

    2013-01-01

    Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24(28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR). Compound 7 was strongly cytotoxic against HeLa cells (CC50 4.3 ± 0.75 µM), with selectivity index of SI 8.1, which was confirmed by real time cell electronic sensing (RT-CES). Compounds 2, 7, and 8 showed strong inhibitory activity against HIV-1 PR at IC50s of 7.20 ± 0.7, 4.85 ± 0.18, and 4.80 ± 0.92 µM respectively. In silico docking of most compounds presented comparable scores to that of acetyl pepstatin, a known HIV-1 PR inhibitor. Interestingly, compound 8 showed potent HIV-1 PR inhibitory activity in the absence of cytotoxicity against the cell lines used. In addition, compounds 2 and 5 demonstrated cytostatic action in HeLa cells, revealing potential use in virostatic cocktails. Taken together, data presented here suggest Litophyton arboreum to contain promising compounds for further investigation against the diseases mentioned. PMID:24336129

  13. Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies

    PubMed Central

    Klein, Florian; Horwitz, Joshua A.; Halper-Stromberg, Ariel; Sather, D. Noah; Marcovecchio, Paola M.; Lee, Terri; West, Anthony P.; Gao, Han; Seaman, Michael S.; Stamatatos, Leonidas; Nussenzweig, Michel C.; Bjorkman, Pamela J.

    2013-01-01

    Recently identified broadly neutralizing antibodies (bNAbs) that potently neutralize most HIV-1 strains are key to potential antibody-based therapeutic approaches to combat HIV/AIDS in the absence of an effective vaccine. Increasing bNAb potencies and resistance to common routes of HIV-1 escape through mutation would facilitate their use as therapeutics. We previously used structure-based design to create the bNAb NIH45-46G54W, which exhibits superior potency and/or breadth compared with other bNAbs. We report new, more effective NIH45-46G54W variants designed using analyses of the NIH45-46–gp120 complex structure and sequences of NIH45-46G54W–resistant HIV-1 strains. One variant, 45-46m2, neutralizes 96% of HIV-1 strains in a cross-clade panel and viruses isolated from an HIV-infected individual that are resistant to all other known bNAbs, making it the single most broad and potent anti–HIV-1 antibody to date. A description of its mechanism is presented based on a 45-46m2–gp120 crystal structure. A second variant, 45-46m7, designed to thwart HIV-1 resistance to NIH45-46G54W arising from mutations in a gp120 consensus sequence, targets a common route of HIV-1 escape. In combination, 45-46m2 and 45-46m7 reduce the possible routes for the evolution of fit viral escape mutants in HIV-1YU-2–infected humanized mice, with viremic control exhibited when a third antibody, 10–1074, was added to the combination. PMID:23712429

  14. Targeting TNF-Alpha in HIV-1 Infection.

    PubMed

    Kumar, Amit; Coquard, Laurie; Herbein, Georges

    2016-01-01

    Highly active antiretroviral therapy (HAART) has dramatically extended the lifespan and quality of life of individuals infected with human immunodeficiency virus type 1 (HIV-1). HAART comprises of a cocktail of various pharmacological inhibitors which interfere with almost every stages of HIV-1 life cycle. However, constant application of drugs often results in the evolution of hostpathogen relationship resulting in the emergence of drug resistant viral strains. Drug resistant HIV-1 is a potent threat for the humankind. Therefore, there is a constant need to search for novel therapeutic molecules. HIV-1 infection results in the depletion of CD4+/CD8+T cells and alters the cytokine network in the infected individuals. Tumor necrosis factor alpha (TNF-alpha), a proinflammatory cytokine, plays a critical role in HIV-1 pathogenesis. HIV-1 utilizes the TNF-alpha signaling pathway for expanding its reservoir. Several HIV-1 proteins mimic and regulate the TNF-alpha signaling pathway. TNF-alpha inhibitors have been used in several inflammatory pathologies with success to some extent. In the present mini review we will discuss the role of TNF-alpha in HIV-1 pathogenesis. Furthermore we will evaluate the TNF-alpha inhibitors as an additional therapeutic option for HIV-1 infection. PMID:26073859

  15. Potent and Broad Anti-HIV-1 Activity Exhibited by a Glycosyl-Phosphatidylinositol-Anchored Peptide Derived from the CDR H3 of Broadly Neutralizing Antibody PG16▿†‡

    PubMed Central

    Liu, Lihong; Wen, Michael; Wang, Weiming; Wang, Shumei; Yang, Lifei; Liu, Yong; Qian, Mengran; Zhang, Linqi; Shao, Yiming; Kimata, Jason T.; Zhou, Paul

    2011-01-01

    PG9 and PG16 are two recently isolated quaternary-specific human monoclonal antibodies that neutralize 70 to 80% of circulating HIV-1 isolates. The crystal structure of PG16 shows that it contains an exceptionally long CDR H3 that forms a unique stable subdomain that towers above the antibody surface to confer fine specificity. To determine whether this unique architecture of CDR H3 itself is sufficient for epitope recognition and neutralization, we cloned CDR H3 subdomains derived from human monoclonal antibodies PG16, PG9, b12, E51, and AVF and genetically linked them to a glycosyl-phosphatidylinositol (GPI) attachment signal. Each fusion gene construct is expressed and targeted to lipid rafts of plasma membranes through a GPI anchor. Moreover, GPI-CDR H3(PG16, PG9, and E51), but not GPI-CDR H3(b12 and AVF), specifically neutralized multiple clades of HIV-1 isolates with a great degree of potency when expressed on the surface of transduced TZM-bl cells. Furthermore, GPI-anchored CDR H3(PG16), but not GPI-anchored CDR H3(AVF), specifically confers resistance to HIV-1 infection when expressed on the surface of transduced human CD4+ T cells. Finally, the CDR H3 mutations (Y100HF, D100IA, and G7) that were previously shown to compromise the neutralization activity of antibody PG16 also abolished the neutralization activity of GPI-CDR H3(PG16). Thus, we conclude that the CDR H3 subdomain of PG16 neutralizes HIV-1 when targeted to the lipid raft of the plasma membrane of HIV-1-susceptible cells and that GPI-CDR H3 can be an alternative approach for determining whether the CDR H3 of certain antibodies alone can exert epitope recognition and neutralization. PMID:21715497

  16. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny.

    PubMed

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  17. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

    PubMed Central

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B. Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  18. Potency and selectivity of inhibition of human immunodeficiency virus protease by a small nonpeptide cyclic urea, DMP 323.

    PubMed Central

    Erickson-Viitanen, S; Klabe, R M; Cawood, P G; O'Neal, P L; Meek, J L

    1994-01-01

    DMP 323 is a potent inhibitor of the protease of human immunodeficiency virus (HIV), with antiviral activity against both HIV type 1 and HIV type 2. This compound is representative of a class of small, novel, nonpeptide cyclic urea inhibitors of HIV protease that were designed on the basis of three-dimensional structural information and three-dimensional database searching. We report here studies of the kinetics of DMP 323 inhibition of the cleavage of peptide and HIV-1 gag polyprotein substrates. DMP 323 acts as a rapidly binding, competitive inhibitor of HIV protease. DMP 323 is as potent against both peptide and viral polyprotein substrates as A-80987, Q8024, and Ro-31-8959, which are among the most potent inhibitors of HIV protease described in the literature to date. Incubation with human plasma or serum did not decrease the effective potency of DMP 323 for HIV protease, suggesting that plasma protein binding is of a low affinity relative to that of HIV protease. DMP 323 was also assessed for its ability to inhibit the mammalian proteases renin, pepsin, cathepsin D, cathepsin G, and chymotrypsin. No inhibition of greater than 12% was observed for any of these enzymes at concentrations of DMP 323 that were 350 to 40,000 times higher than that required to inhibit the viral protease 50%. Images PMID:7979296

  19. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity.

    PubMed

    Huang, Yaoxing; Yu, Jian; Lanzi, Anastasia; Yao, Xin; Andrews, Chasity D; Tsai, Lily; Gajjar, Mili R; Sun, Ming; Seaman, Michael S; Padte, Neal N; Ho, David D

    2016-06-16

    While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 μg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1. PMID:27315479

  20. HIV-1 Fusion Assay

    PubMed Central

    Cavrois, Marielle; Neidleman, Jason; Greene, Warner C.

    2016-01-01

    The HIV-1 fusion assay measures all steps in the HIV-1 life cycle up to and including viral fusion. It relies on the incorporation of a β-lactamase Vpr (BlaM-Vpr) protein chimera into the virion and the subsequent transfer of this chimera into the target cell by fusion (Figure 1). The transfer is monitored by the enzymatic cleavage of CCF2, a fluorescent dye substrate of β-lactamase, loaded into the target cells. Cleavage of the β-lactam ring in CCF2 by β-lactamase changes the fluorescence emission spectrum of the dye from green (520 nm) to blue (447 nm). This change reflects virion fusion and can be detected by flow cytometry (Figure 2).

  1. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  2. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  3. Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-α production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity.

    PubMed

    Yoshioka, Yasukiyo; Namiki, Daisuke; Makiuchi, Mao; Sugaya, Kouichi; Onose, Jun-Ichi; Ashida, Hitoshi; Abe, Naoki

    2016-09-01

    Several p-terphenyl compounds have been isolated from the edible Chinese mushroom Thelephora vialis. Vialinin A, a p-terphenyl compound, strongly inhibits tumor necrosis factor-α production and release. Vialinin A inhibits the enzymatic activity of ubiquitin-specific peptidase 5, one of the target molecules in RBL-2H3 cells. Here we examined the inhibitory effect of p-terphenyl compounds, including vialinin A, against sentrin/SUMO-specific protease 1 (SENP1) enzymatic activity. The half maximal inhibitory concentration values of vialinin A and thelephantin G against full-length SENP1 were 1.64±0.23μM and 2.48±0.02μM, respectively. These findings suggest that p-terphenyl compounds are potent SENP1 inhibitors. PMID:27491710

  4. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy

    PubMed Central

    West, Anthony P.; Scharf, Louise; Scheid, Johannes F.; Klein, Florian; Bjorkman, Pamela J.; Nussenzweig, Michel C.

    2014-01-01

    Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection. PMID:24529371

  5. A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator

    PubMed Central

    Villas Boas, Isadora Maria; Pidde-Queiroz, Giselle; Magnoli, Fabio Carlos; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2015-01-01

    Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly

  6. Potent radiolabeled human renin inhibitor, (/sup 3/H)SR42128: enzymatic, kinetic, and binding studies to renin and other aspartic proteases

    SciTech Connect

    Cumin, F.; Nisato, D.; Gagnol, J.P.; Corvol, P.

    1987-12-01

    The in vitro binding of (/sup 3/H)SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a K/sub i/ of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of (/sup 3/H)SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the K/sub D/ was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of (/sup 3/H)SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, (/sup 3/H)SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with (/sup 3/H)SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems. The study as a whole indicates that pH plays a major role in the binding of (/sup 3/H)SR42128 to aspartic proteases and that the nature of the inhibitor residue reacting with the renin S/sub 2/ subsites is of critical importance for the specificity of the renin-inhibitor interaction.

  7. Antiviral activity of CYC202 in HIV-1-infected cells.

    PubMed

    Agbottah, Emmanuel; de La Fuente, Cynthia; Nekhai, Sergie; Barnett, Anna; Gianella-Borradori, Athos; Pumfery, Anne; Kashanchi, Fatah

    2005-01-28

    There are currently 40 million individuals in the world infected with human immunodeficiency virus (HIV). The introduction of highly active antiretroviral therapy (HAART) has led to a significant reduction in AIDS-related morbidity and mortality. Unfortunately, up to 25% of patients discontinue their initial HAART regimen. Current HIV-1 inhibitors target the fusion of the virus to the cell and two viral proteins, reverse transcriptase and protease. Here, we examined whether other targets, such as an activated transcription factor, could be targeted to block HIV-1 replication. We specifically asked whether we could target a cellular kinase needed for HIV-1 transcription using CYC202 (R-roscovitine), a pharmacological cyclin-dependent kinase inhibitor. We targeted the cdk2-cyclin E complex in HIV-1-infected cells because both cdk2 and cyclin E are nonessential during mammalian development and are likely replaced by other kinases. We found that CYC202 effectively inhibits wild type and resistant HIV-1 mutants in T-cells, monocytes, and peripheral blood mononuclear cells at a low IC(50) and sensitizes these cells to enhanced apoptosis resulting in a dramatic drop in viral titers. Interestingly, the effect of CYC202 is independent of cell cycle stage and more specific for the cdk2-cyclin E complex. Finally, we show that cdk2-cyclin E is loaded onto the HIV-1 genome in vivo and that CYC202 is able to inhibit the uploading of this cdk-cyclin complex onto HIV-1 DNA. Therefore, targeting cellular enzymes necessary for HIV-1 transcription, which are not needed for cell survival, is a compelling strategy to inhibit wild type and mutant HIV-1 strains. PMID:15531588

  8. RNA interference directed to CDK2 inhibits HIV-1 transcription.

    PubMed

    Ammosova, Tatyana; Berro, Reem; Kashanchi, Fatah; Nekhai, Sergei

    2005-10-25

    We previously reported that cell cycle-dependent kinase 2 (CDK2) is required for human immunodeficiency virus-1 (HIV-1) Tat-dependent transcription in vitro. In the present study, CDK2-specific RNA interference in cultured HEK293T cells inhibited CDK2 expression and Tat-induced HIV-1 transcription from non-integrated HIV-1 promoter but not basal HIV-1 transcription or transcription from CMV or beta-actin promoters. Also, CDK2-specific RNA interference inhibited Tat-induced transcription from the integrated HIV-1 promoter in HeLa-CD4-LTR-beta-gal cells and potently blocked TNFalpha-induced HIV-1 viral replication in OM10.1 cells. CDK2-specific RNA interference did not have an effect on cell cycle progression, but it augmented TNFalpha-induced apoptosis of OM10.1 cells. Our results indicate that CDK2 participates in Tat-mediated HIV-1 transcription and may serve as a potential therapeutic target. PMID:16085226

  9. Chemically Programmed Antibodies As HIV-1 Attachment Inhibitors

    PubMed Central

    2013-01-01

    Herein, we describe the design and application of two small-molecule anti-HIV compounds for the creation of chemically programmed antibodies. N-Acyl-β-lactam derivatives of two previously described molecules BMS-378806 and BMS-488043 that inhibit the interaction between HIV-1 gp120 and T-cells were synthesized and used to program the binding activity of aldolase antibody 38C2. Discovery of a successful linkage site to BMS-488043 allowed for the synthesis of chemically programmed antibodies with affinity for HIV-1 gp120 and potent HIV-1 neutralization activity. Derivation of a successful conjugation strategy for this family of HIV-1 entry inhibitors enables its application in chemically programmed antibodies and vaccines and may facilitate the development of novel bispecific antibodies and topical microbicides. PMID:23750312

  10. The metabolism and disposition of a potent inhibitor of hepatitis C virus NS3/4A protease.

    PubMed

    Monteagudo, E; Fonsi, M; Chu, X; Bleasby, K; Evers, R; Pucci, V; Orsale, M V; Cianetti, S; Ferrara, M; Harper, S; Laufer, R; Rowley, M; Summa, V

    2010-12-01

    Compound A ((1aR,5S,8S,10R,22aR)-5-tert-butyl-N-{(1R,2S)-1-[(cyclopropylsulfonyl)carbamoyl]-2-ethenylcyclopropyl}-14-methoxy-3,6-dioxo-1,1a,3,4,5,6,9,10,18,19,20,21,22,22a-tetradecahydro-8H-7,10-methanocyclopropa[18,19][1,10,3,6]dioxadiazacyclononadecino[12,11-b]quinoline-8-carboxamide) is a prototype of a series of subnanomolar inhibitors of genotypes 1, 2, and 3 hepatitis C virus (HCV) NS3/4A proteases. HCV NS3/4A protease inhibitors have demonstrated high antiviral effects in patients with chronic HCV infection and are likely to form a key component of future HCV therapy. Compound A showed excellent liver exposure in rats, which is essential for compounds intended to treat HCV. The compound was mainly eliminated intact in bile and showed greater than dose proportional systemic exposure in rats. Compound A demonstrated time- and temperature-dependent uptake into rat and human hepatocytes and proved to be a substrate for rat hepatic uptake transporter Oatp1b2 and for human hepatic uptake transporters OATP1B1 and OATP1B3. The liver selectivity observed for this compound is likely to be due to transporter-mediated hepatic uptake together with moderate passive permeability. Metabolism was mainly CYP3A-mediated and generated a reactive epoxide on the vinylcyclopropyl sulfonamide moiety that could be quenched by glutathione. Similar metabolic profiles of Compound A were obtained in liver microsomes of rats and humans. The oral bioavailability at 5 mg/kg was low due to extensive hepatic first-pass effect but clearly the intestinal absorption was enough to deliver a high amount of the compound to the liver. The metabolism and disposition properties of Compound A are particularly attractive to support its evaluation as a drug candidate for the treatment of hepatitis C. PMID:20925584

  11. Phages and HIV-1: From Display to Interplay

    PubMed Central

    Delhalle, Sylvie; Schmit, Jean-Claude; Chevigné, Andy

    2012-01-01

    The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures. PMID:22606007

  12. Revisiting HIV-1 uncoating.

    PubMed

    Arhel, Nathalie

    2010-01-01

    HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered. PMID:21083892

  13. Antiviral properties of aminodiol inhibitors against human immunodeficiency virus and protease.

    PubMed Central

    Bechtold, C M; Patick, A K; Alam, M; Greytok, J; Tino, J A; Chen, P; Gordon, E; Ahmad, S; Barrish, J C; Zahler, R

    1995-01-01

    A series of aminodiol inhibitors of human immunodeficiency virus type 1 (HIV-1) protease were identified by using an in vitro peptide cleavage assay. BMS 182,193, BMS 186,318, and BMS 187,071 protected cells against HIV-1, HIV-2, and simian immunodeficiency virus infections, with 50% effective doses ranging from 0.05 to 0.33 microM, while having no inhibitory effect on cells infected with unrelated viruses. These compounds were also effective in inhibiting p24 production in peripheral blood mononuclear cells infected with HIV-1 IIIB and against the zidovudine-resistant HIV-1 strain A018C. Time-of-addition studies indicated that BMS 182,193 could be added as late as 27 h after infection and still retain its antiviral activity. To directly show that the activity of these compounds in culture was due to inhibition of proteolytic cleavage, the levels of HIV-1 gag processing in chronically infected cells were monitored by Western blot (immunoblot) analysis. All compounds blocked the processing of p55 in a dose-dependent manner, with 50% effective doses of 0.4 to 2.4 microM. To examine the reversibility of BMS 186,318, chronically infected CEM-SS cells were treated with drug and virions purified from the culture medium. Incubation of HIV-1 particles in drug-free medium indicated that inhibition of p55 proteolysis was slowly reversible. The potent inhibition of HIV-1 during both acute and chronic infections indicates that these aminodiol compounds are effective anti-HIV-1 compounds. PMID:7726501

  14. Discovery of 3-{5-[(6-Amino-1H-pyrazolo[3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965): A Potent, Orally Bioavailable HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor with Improved Potency against Key Mutant Viruses

    SciTech Connect

    Tucker, Thomas J.; Sisko, John T.; Tynebor, Robert M.; Williams, Theresa M.; Felock, Peter J.; Flynn, Jessica A.; Lai, Ming-Tain; Liang, Yuexia; McGaughey, Georgia; Liu, Meiquing; Miller, Mike; Moyer, Gregory; Munshi, Vandna; Perlow-Poehnelt, Rebecca; Prasad, Sridhar; Reid, John C.; Sanchez, Rosa; Torrent, Maricel; Vacca, Joseph P.; Wan, Bang-Lin; Yan, Youwei

    2009-07-10

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.

  15. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro. PMID:26714703

  16. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges

    PubMed Central

    Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.

    2015-01-01

    ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332

  17. NMR characterization and conformational analysis of a potent papain-family cathepsin L-like cysteine protease inhibitor with different behaviour in polar and apolar media

    NASA Astrophysics Data System (ADS)

    Rotondo, Archimede; Ettari, Roberta; Zappalà, Maria; De Micheli, Carlo; Rotondo, Enrico

    2014-11-01

    We recently reported the synthesis, of a potent papain-family cathepsin L-like cysteine protease inhibitor, as new lead compound for the development of new drugs that can be used as antiprotozoal agents. The investigation of its conformational profile is crucial for the in-depth understanding of its biological behaviour. Our careful NMR analysis has been based on the complete and total assignment of 1H, 13C, 15N and 19F signals of the molecule in both CDCl3 and CD3OH, which could reproduce in some way a scenario of polar and not polar phases into the biological environment. In this way it has been unveiled a different behaviour of the molecule in polar and apolar media. In CDCl3 it is possible to define stable conformational arrangements on the basis of the detected through space contacts, whereas, in CD3OH a greater conformational freedom is envisaged: (a) by the overlap of any of the CH2 diastereotopic resonances (unable to distinguish asymmetric molecular sides because of the free rotation about the single bonded chains), (b) by the less definite measured vicinities not consistent with just one conformation and (c) by the evident loss or switching of key intramolecular hydrogen interactions.

  18. X-ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-like Proteases

    PubMed Central

    2015-01-01

    Structure-guided design was used to generate a series of noncovalent inhibitors with nanomolar potency against the papain-like protease (PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit antiviral activity against SARS-CoV infected Vero E6 cells and broadened specificity toward the homologous PLP2 enzyme from the human coronavirus NL63. Selectivity and cytotoxicity studies established a more than 100-fold preference for the coronaviral enzyme over homologous human deubiquitinating enzymes (DUBs), and no significant cytotoxicity in Vero E6 and HEK293 cell lines is observed. X-ray structural analyses of inhibitor-bound crystal structures revealed subtle differences between binding modes of the initial benzodioxolane lead (15g) and the most potent analogues 3k and 3j, featuring a monofluoro substitution at para and meta positions of the benzyl ring, respectively. Finally, the less lipophilic bis(amide) 3e and methoxypyridine 5c exhibit significantly improved metabolic stability and are viable candidates for advancing to in vivo studies. PMID:24568342

  19. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage

    PubMed Central

    Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J.; Chen, Jie; Venables, Brian L.; Healy, Matthew; Meanwell, Nicholas A.; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark

    2016-01-01

    BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1

  20. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage.

    PubMed

    Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Healy, Matthew; Meanwell, Nicholas A; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark; Dicker, Ira B

    2016-07-01

    BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1

  1. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  2. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1

    PubMed Central

    Raugi, Dana N.; Wu, Vincent H.; Leong, Sally S.; Parker, Kate M.; Oakes, Mariah K.; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S.

    2015-01-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4′-ethynyl stavudine, or 4′-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  3. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1.

    PubMed

    Smith, Robert A; Raugi, Dana N; Wu, Vincent H; Leong, Sally S; Parker, Kate M; Oakes, Mariah K; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S

    2015-12-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  4. BioAfrica's HIV-1 proteomics resource: combining protein data with bioinformatics tools.

    PubMed

    Doherty, Ryan S; De Oliveira, Tulio; Seebregts, Chris; Danaviah, Sivapragashini; Gordon, Michelle; Cassol, Sharon

    2005-01-01

    Most Internet online resources for investigating HIV biology contain either bioinformatics tools, protein information or sequence data. The objective of this study was to develop a comprehensive online proteomics resource that integrates bioinformatics with the latest information on HIV-1 protein structure, gene expression, post-transcriptional/post-translational modification, functional activity, and protein-macromolecule interactions. The BioAfrica HIV-1 Proteomics Resource http://bioafrica.mrc.ac.za/proteomics/index.html is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites. The HIV-1 Protein Data-mining Tool includes a set of 27 group M (subtypes A through K) reference sequences that can be used to assess the influence of genetic variation on immunological and functional domains of the protein. The BLAST Structure Tool identifies proteins with similar, experimentally determined topologies, and the Tools Directory provides a categorized list of websites and relevant software programs. This combined database and software repository is designed to facilitate the capture, retrieval and analysis of HIV-1 protein data, and to convert it into clinically useful information relating to the pathogenesis, transmission and therapeutic response of different HIV-1 variants. The HIV-1 Proteomics Resource is readily accessible through the BioAfrica website at: http

  5. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms

    PubMed Central

    2014-01-01

    Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red

  6. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  7. Genital HIV-1 RNA Quantity Predicts Risk of Heterosexual HIV-1 Transmission

    PubMed Central

    Baeten, Jared M.; Kahle, Erin; Lingappa, Jairam R.; Coombs, Robert W.; Delany-Moretlwe, Sinead; Nakku-Joloba, Edith; Mugo, Nelly R.; Wald, Anna; Corey, Lawrence; Donnell, Deborah; Campbell, Mary S.; Mullins, James I.; Celum, Connie

    2011-01-01

    High plasma HIV-1 RNA concentrations are associated with an increased risk of HIV-1 transmission. Although plasma and genital HIV-1 RNA concentrations are correlated, no study has evaluated the relationship between genital HIV-1 RNA and the risk of heterosexual HIV-1 transmission. In a prospective study of 2521 African HIV-1 serodiscordant couples, we assessed genital HIV-1 RNA quantity and HIV-1 transmission risk. HIV-1 transmission linkage was established within the partnership by viral sequence analysis. We tested endocervical samples from 1805 women, including 46 who transmitted HIV-1 to their partner, and semen samples from 716 men, including 32 who transmitted HIV-1 to their partner. Genital and plasma HIV-1 concentrations were correlated: For endocervical swabs, Spearman’s rank correlation coefficient rho was 0.56 (p<0.001), and for semen rho was 0.55 (p<0.001). Each 1 log10 increase in genital HIV-1 RNA was associated with a 2.20-fold (for endocervical swabs, 95% confidence interval 1.60–3.04, p<0.001) and a 1.79-fold (for semen, 95% confidence interval 1.30–2.47, p<0.001) increased risk of HIV-1 transmission. Genital HIV-1 RNA independently predicted HIV-1 transmission risk after adjusting for plasma HIV-1 quantity (hazard ratio 1.67 for endocervical swabs and 1.68 for semen). Seven female-to-male and four male-to-female HIV-1 transmissions (incidence <1% per year) occurred from persons with undetectable genital HIV-1 RNA, but in all eleven plasma HIV-1 RNA was detected. Thus, higher genital HIV-1 RNA concentrations are associated with greater risk of heterosexual HIV-1 transmission, and this effect was independent of plasma HIV-1 concentrations. These data suggest that HIV-1 RNA in genital secretions could be used as a marker of HIV-1 sexual transmission risk. PMID:21471433

  8. No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts.

    PubMed

    Van Dis, Erik S; Moore, Tyler C; Lavender, Kerry J; Messer, Ronald J; Keppler, Oliver T; Verheyen, Jens; Dittmer, Ulf; Hasenkrug, Kim J

    2016-01-15

    Amyloid fibrils from semen-derived peptide (SEVI) enhance HIV-1 infectivity in vitro but the ability of SEVI to mediate enhancement of HIV infection in vivo has not been tested. In this study we used immunodeficient mice reconstituted with human immune systems to test for in vivo enhancement of HIV-1 transmission. This mouse model supports mucosal transmission of HIV-1 via the intrarectal route leading to productive infection. In separate experiments with humanized mouse cohorts reconstituted with two different donor immune systems, high dose HIV-1JR-CSF that had been incubated with SEVI amyloid fibrils at physiologically relevant concentrations did not show an increased incidence of infection compared to controls. In addition, SEVI failed to enhance rectal transmission with a reduced concentration of HIV-1. Although we confirmed potent SEVI-mediated enhancement of HIV infectivity in vitro, this model showed no evidence that it plays a role in the much more complex situation of in vivo transmission. PMID:26609939

  9. Preclinical In Vivo Evaluation of the Safety of a Multi-shRNA-based Gene Therapy Against HIV-1

    PubMed Central

    Centlivre, Mireille; Legrand, Nicolas; Klamer, Sofieke; Liu, Ying Poi; Eije, Karin Jasmijn von; Bohne, Martino; Rijnstra, Esther Siteur-van; Weijer, Kees; Blom, Bianca; Voermans, Carlijn; Spits, Hergen; Berkhout, Ben

    2013-01-01

    Highly active antiretroviral therapy (HAART) has significantly improved the quality of life and the life expectancy of HIV-infected individuals. Still, drug-induced side effects and emergence of drug-resistant viral variants remain important issues that justify the exploration of alternative therapeutic options. One strategy consists of a gene therapy based on RNA interference to induce the sequence-specific degradation of the HIV-1 RNA genome. We have selected four potent short hairpin RNA (shRNA) candidates targeting the viral capside, integrase, protease and tat/rev open-reading frames and screened the safety of them during human hematopoietic cell development, both in vitro and in vivo. Although the four shRNA candidates appeared to be safe in vitro, one shRNA candidate impaired the in vivo development of the human immune system in Balb/c Rag2−/−IL-2Rγc−/− (BRG) mice. The three remaining shRNA candidates were combined into one single lentiviral vector (LV), and safety of the shRNA combination during human hematopoietic cell development was confirmed. Overall, we demonstrate here the preclinical in vivo safety of a LV expressing three shRNAs against HIV-1, which is proposed for a future Phase I clinical trial. PMID:24002730

  10. A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4(+) T cells from elite controllers.

    PubMed

    Leng, Jin; Ho, Hsin-Pin; Buzon, Maria J; Pereyra, Florencia; Walker, Bruce D; Yu, Xu G; Chang, Emmanuel J; Lichterfeld, Mathias

    2014-06-11

    HIV-1 reverse transcription represents the predominant target for pharmacological inhibition of viral replication, but cell-intrinsic mechanisms that can block HIV-1 reverse transcription in a clinically significant way are poorly defined. We find that effective HIV-1 reverse transcription depends on the phosphorylation of viral reverse transcriptase by host cyclin-dependent kinase (CDK) 2 at a highly conserved Threonine residue. CDK2-dependent phosphorylation increased the efficacy and stability of viral reverse transcriptase and enhanced viral fitness. Interestingly, p21, a cell-intrinsic CDK inhibitor that is upregulated in CD4(+) T cells from "elite controllers," potently inhibited CDK2-dependent phosphorylation of HIV-1 reverse transcriptase and significantly reduced the efficacy of viral reverse transcription. These data suggest that p21 can indirectly block HIV-1 reverse transcription by inhibiting host cofactors supporting HIV-1 replication and identify sites of viral vulnerability that are effectively targeted in persons with natural control of HIV-1 replication. PMID:24922574

  11. A Case of Seronegative HIV-1 Infection

    PubMed Central

    Spivak, Adam M.; Brennan, Tim; O'Connell, Karen; Sydnor, Emily; Williams, Thomas M.; Siliciano, Robert F.; Gallant, Joel E.; Blankson, Joel N.

    2009-01-01

    Patients infected with HIV-1 typically seroconvert within weeks of primary infection. In rare cases, patients do not develop antibodies against HIV-1 despite demonstrable infection. We describe an HLA-B*5802 positive individual who presented with AIDS despite repeatedly negative HIV-1 antibody screening tests. Phylogenetic analysis of env clones revealed little sequence diversity, and weak HIV-1 specific CD8+ T cell responses were present to Gag epitopes. The patient seroconverted after immune reconstitution on HAART. Lack of an antibody response to HIV-1 is rare and appears to be due to a defect in HIV-1-specific immunity rather than infection with attenuated virus. PMID:20039801

  12. HIV-1 assembly in macrophages

    PubMed Central

    2010-01-01

    The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport) machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective roles in infected cells

  13. The structural biology of HIV-1: mechanistic and therapeutic insights

    PubMed Central

    Engelman, Alan; Cherepanov, Peter

    2013-01-01

    Three-dimensional molecular structures can provide detailed information on biological mechanisms and, in cases where molecular function impacts on human health, significantly aid in the development of therapeutic interventions. Over the past 23 years, key components of the lentivirus HIV-1, including its envelope glycoproteins and capsid, and the replication enzymes reverse transcriptase, integrase and protease, have accordingly been scrutinized to near atomic scale resolution. Structural analyses of the interactions between viral and host cell components have moreover yielded key insights into the mechanisms of virus entry, chromosomal integration, transcription and egress from cells. Here, we review recent advances in HIV-1 structural biology, focusing on the impact these results have had on our understanding of virus replication and the development of new therapeutics. PMID:22421880

  14. Molecular Dynamics Studies on the HIV-1 Integrase Catalytic Domain

    SciTech Connect

    Lins, Roberto D.; Briggs, J. M.; Straatsma, TP; Carlson, Heather A.; Greenwald, Jason; Choe, Senyon; Mccammon, Andy

    1999-06-30

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome, thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. Two 1-ns molecular dynamics simulations have been carried out on completely hydrated models of the HIV-1 integrase catalytic domain, one with no metal ions and another with one magnesium ion in the catalytic site. The simulations predict that the region of the active site that is missing in the published crystal structures has (at the time of this work) more secondary structure than previously thought. The flexibility of this region has been discussed with respect to the mechanistic function of the enzyme. The results of these simulations will be used as part of inhibitor design projects directed against the catalytic domain of the enzyme.

  15. Functional organization of human SAMHD1 and mechanisms of HIV-1 restriction

    PubMed Central

    Ahn, Jinwoo

    2016-01-01

    Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) is a triphosphohydrolase that catalyzes the conversion of deoxyribonucleoside triphosphate to deoxyribonucleoside and triphosphate. SAMHD1 has been a recent focus of study since it was identified as a potent human immunodeficiency virus-1 (HIV-1) restriction factor in the intrinsic antiviral immune system. Recent biochemical and biological studies have suggested that SAMHD1 restricts HIV-1 infection in non-cycling cells by limiting the pool of deoxyribonucleoside triphosphates, thereby interfering with HIV-1 reverse transcription. SAMHD1 also possesses single-stranded DNA and RNA binding activity, with reported nuclease activity, conferring additional HIV-1 restriction function. This review summarizes current knowledge regarding the structure of SAMHD1 and the regulation of its function in HIV-1 restriction. PMID:26733158

  16. Functional organization of human SAMHD1 and mechanisms of HIV-1 restriction.

    PubMed

    Ahn, Jinwoo

    2016-04-01

    Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) is a triphosphohydrolase that catalyzes the conversion of deoxyribonucleoside triphosphate to deoxyribonucleoside and triphosphate. SAMHD1 has been a recent focus of study since it was identified as a potent human immunodeficiency virus-1 (HIV-1) restriction factor in the intrinsic antiviral immune system. Recent biochemical and biological studies have suggested that SAMHD1 restricts HIV-1 infection in non-cycling cells by limiting the pool of deoxyribonucleoside triphosphates, thereby interfering with HIV-1 reverse transcription. SAMHD1 also possesses single-stranded DNA and RNA binding activity, with reported nuclease activity, conferring additional HIV-1 restriction function. This review summarizes current knowledge regarding the structure of SAMHD1 and the regulation of its function in HIV-1 restriction. PMID:26733158

  17. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    experimental strategy that would allow the evaluation of latency-reversing agent (LRA) efficiency in vitro using primary CD4 T cells. In the present study, we demonstrate that HDACis are potent inducers of replication-competent and infectious HIV-1 in resting memory CD4 T cells of long-term ART-treated patients and identify givinostat as the most efficient LRA tested. PMID:26656693

  18. Discovery of pyrazinone based compounds that potently inhibit the drug-resistant enzyme variant R155K of the hepatitis C virus NS3 protease.

    PubMed

    Belfrage, Anna Karin; Abdurakhmanov, Eldar; Kerblom, Eva; Brandt, Peter; Oshalim, Anna; Gising, Johan; Skogh, Anna; Neyts, Johan; Danielson, U Helena; Sandström, Anja

    2016-06-15

    Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wild-type and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance. PMID:27160057

  19. HIV-1 Group O Genotypes and Phenotypes: Relationship to Fitness and Susceptibility to Antiretroviral Drugs.

    PubMed

    Tebit, Denis M; Patel, Hamish; Ratcliff, Annette; Alessandri, Elodie; Liu, Joseph; Carpenter, Crystal; Plantier, Jean-Christophe; Arts, Eric J

    2016-07-01

    Despite only 30,000 group O HIV-1 infections, a similar genetic diversity is observed among the O subgroups H (head) and T (tail) (previously described as subtypes A, B) as in the 9 group M subtypes (A-K). Group O isolates bearing a cysteine at reverse transcriptase (RT) position 181, predominantly the H strains are intrinsically resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, their susceptibility to newer antiretroviral drugs such as etravirine, maraviroc, raltegravir (RAL), and elvitegravir (EVG) remains relatively unknown. We tested a large collection of HIV-1 group O strains for their susceptibility to four classes of antiretroviral drugs namely nucleoside RT, non-nucleoside RT, integrase, and entry inhibitors knowing in advance the intrinsic resistance to NNRTIs. Drug target regions were sequenced to determine various polymorphisms and were phylogenetically analyzed. Replication kinetics and fitness assays were performed in U87-CD4(+)CCR5 and CXCR4 cells and peripheral blood mononuclear cells. With all antiretroviral drugs, group O HIV-1 showed higher variability in IC50 values than group M HIV-1. The mean IC50 values for entry and nucleoside reverse transcriptase inhibitor (NRTI) were similar for group O and M HIV-1 isolates. Despite similar susceptibility to maraviroc, the various phenotypic algorithms failed to predict CXCR4 usage based on the V3 Env sequences of group O HIV-1 isolates. Decreased sensitivity of group O HIV-1 to integrase or NNRTIs had no relation to replicative fitness. Group O HIV-1 isolates were 10-fold less sensitive to EVG inhibition than group M HIV-1. These findings suggest that in regions where HIV-1 group O is endemic, first line treatment regimens combining two NRTIs with RAL may provide more sustained virologic responses than the standard regimens involving an NNRTI or protease inhibitors. PMID:26861573

  20. Curcumin inhibits HIV-1 by promoting Tat protein degradation.

    PubMed

    Ali, Amjad; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  1. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    PubMed Central

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  2. Virtual screening of Indonesian herbal database as HIV-1 reverse transcriptase inhibitor

    PubMed Central

    Syahdi, Rezi Riadhi; Mun'im, Abdul; Suhartanto, Heru; Yanuar, Arry

    2012-01-01

    HIV-1 (Human immunodeficiency virus type 1) is a member of retrovirus family that could infect human and causing AIDS disease. AIDS epidemic is one of most destructive diseases in modern era. There were more than 33 million people infected by HIV until 2010. Various studies have been widely employed to design drugs that target the essential enzymes of HIV-1 that is, reverse transcriptase, protease and integrase. In this study, in silico virtual screening approach is used to find lead molecules from the library or database of natural compounds as HIV-1 reverse transcriptase inhibitor. Virtual screening against Indonesian Herbal Database using AutoDock4 performed on HIV-1 reverse transcriptase. From the virtual screening, top ten compounds were mulberrin, plucheoside A, vitexilactone, brucine N-oxide, cyanidin 3-arabinoside, alpha-mangostin, guaijaverin, erycristagallin, morusin and sanggenol N. PMID:23275721

  3. Potent Inhibitors of the Hepatitis C Virus NS3 Protease: Design and Synthesis of Macrocyclic Substrate-Based [beta]-Strand Mimics

    SciTech Connect

    Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.; Duceppe, Jean-Simon; Faucher, Anne-Marie; Ferland, Jean-Marie; Grand-Maître, Chantal; Poirier, Martin; Simoneau, Bruno; Tsantrizos, Youla S.

    2008-06-30

    The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.

  4. Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry

    PubMed Central

    Francis, J. Nicholas; Redman, Joseph S.; Eckert, Debra M.; Kay, Michael S.

    2012-01-01

    The highly conserved HIV-1 gp41 “pocket” region is a promising target for inhibiting viral entry. PIE12-trimer is a protease-resistant trimeric D-peptide inhibitor that binds to this pocket and potently blocks HIV entry. PIE12-trimer also possesses a reserve of binding energy that provides it with a strong genetic barrier to resistance (“resistance capacitor”). Here we report the design of a modular scaffold employing PEGs of discrete lengths for the efficient optimization and synthesis of PIE12-trimer. This scaffold also allows us to conjugate PIE12-trimer to several membrane-localizing cargoes, resulting in dramatically improved potency and retention of PIE12-trimer’s ability to absorb the impact of resistance mutations. This scaffold design strategy should be of broad utility for the rapid prototyping of multimeric peptide inhibitors attached to potency- or pharmacokinetic-enhancing groups. PMID:22545664

  5. A Novel Histone Deacetylase Inhibitor, AR-42, Reactivates HIV-1 from Chronically and Latently Infected CD4+ T-cells

    PubMed Central

    Mates, Jessica M.; de Silva, Suresh; Lustberg, Mark; Van Deusen, Kelsey; Baiocchi, Robert A.; Wu, Li; Kwiek, Jesse J.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) latency is a major barrier to a cure of AIDS. Latently infected cells harbor an integrated HIV-1 genome but are not actively producing HIV-1. Histone deacetylase (HDAC) inhibitors, such as vorinostat (SAHA), have been shown to reactivate latent HIV-1. AR-42, a modified HDAC inhibitor, has demonstrated efficacy against malignant melanoma, meningioma, and acute myeloid leukemia and is currently used in clinical trials for non-Hodgkin’s lymphoma and multiple myeloma. In this study, we evaluated the ability of AR-42 to reactivate HIV-1 in the two established CD4+ T-cell line models of HIV-1 latency. In HIV-1 chronically infected ACH-2 cells, AR-42-induced histone acetylation was more potent and robust than that of vorinostat. Although AR-42 and vorinostat were equipotent in their ability to reactivate HIV-1, AR-42-induced maximal HIV-1 reactivation was twofold greater than vorinostat in ACH-2 and J-Lat (clone 9.2) cells. These data provide rationale for assessing the efficacy of AR-42-mediated HIV-1 reactivation within primary CD4+ T-cells. PMID:26855567

  6. Persistent HIV-1 replication maintains the tissue reservoir during therapy

    PubMed Central

    Bedford, Trevor; Kim, Eun-Young; Archer, John; Pond, Sergei L. Kosakovsky; Chung, Yoon-Seok; Penugonda, Sudhir; Chipman, Jeffrey; Fletcher, Courtney V.; Schacker, Timothy W.; Malim, Michael H.; Rambaut, Andrew; Haase, Ashley T.; McLean, Angela R.; Wolinsky, Steven M.

    2015-01-01

    Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site of viral production, storage of viral particles in immune complexes, and viral persistence. Whilst combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. A spatial dynamic model of persistent viral replication and spread explains why the development of drug resistance is not a foregone conclusion under conditions where drug concentrations are insufficient to completely block virus replication. These data provide fresh insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and refill the viral reservoir despite potent antiretroviral therapy. PMID:26814962

  7. Persistent HIV-1 replication maintains the tissue reservoir during therapy.

    PubMed

    Lorenzo-Redondo, Ramon; Fryer, Helen R; Bedford, Trevor; Kim, Eun-Young; Archer, John; Kosakovsky Pond, Sergei L; Chung, Yoon-Seok; Penugonda, Sudhir; Chipman, Jeffrey G; Fletcher, Courtney V; Schacker, Timothy W; Malim, Michael H; Rambaut, Andrew; Haase, Ashley T; McLean, Angela R; Wolinsky, Steven M

    2016-02-01

    Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy. PMID:26814962

  8. Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II.

    PubMed

    Gray, K; Elghadban, S; Thongyoo, P; Owen, K A; Szabo, R; Bugge, T H; Tate, E W; Leatherbarrow, R J; Ellis, V

    2014-08-01

    Matriptase is a type-II transmembrane serine protease involved in epithelial homeostasis in both health and disease, and is implicated in the development and progression of a variety of cancers. Matriptase mediates its biological effects both via as yet undefined substrates and pathways, and also by proteolytic cleavage of a variety of well-defined protein substrates, several of which it shares with the closely-related protease hepsin. Development of targeted therapeutic strategies will require discrimination between these proteases. Here we have investigated cyclic microproteins of the squash Momordica cochinchinensis trypsin-inhibitor family (generated by total chemical synthesis) and found MCoTI-II to be a high-affinity (Ki 9 nM) and highly selective (> 1,000-fold) inhibitor of matriptase. MCoTI-II efficiently inhibited the proteolytic activation of pro-hepatocyte growth factor (HGF) by matriptase but not by hepsin, in both purified and cell-based systems, and inhibited HGF-dependent cell scattering. MCoTI-II also selectively inhibited the invasion of matriptase-expressing prostate cancer cells. Using a model of epithelial cell tight junction assembly, we also found that MCoTI-II could effectively inhibit the re-establishment of tight junctions and epithelial barrier function in MDCK-I cells after disruption, consistent with the role of matriptase in regulating epithelial integrity. Surprisingly, MCoTI-II was unable to inhibit matriptase-dependent proteolytic activation of prostasin, a GPI-anchored serine protease also implicated in epithelial homeostasis. These observations suggest that the unusually high selectivity afforded by MCoTI-II and its biological effectiveness might represent a useful starting point for the development of therapeutic inhibitors, and further highlight the role of matriptase in epithelial maintenance. PMID:24696092

  9. Vpu-Mediated Counteraction of Tetherin Is a Major Determinant of HIV-1 Interferon Resistance

    PubMed Central

    Kmiec, Dorota; Iyer, Shilpa S.; Stürzel, Christina M.; Sauter, Daniel; Hahn, Beatrice H.

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) groups M, N, O, and P are the result of independent zoonotic transmissions of simian immunodeficiency viruses (SIVs) infecting great apes in Africa. Among these, only Vpu proteins of pandemic HIV-1 group M strains evolved potent activity against the restriction factor tetherin, which inhibits virus release from infected cells. Thus, effective Vpu-mediated tetherin antagonism may have been a prerequisite for the global spread of HIV-1. To determine whether this particular function enhances primary HIV-1 replication and interferon resistance, we introduced mutations into the vpu genes of HIV-1 group M and N strains to specifically disrupt their ability to antagonize tetherin, but not other Vpu functions, such as degradation of CD4, down-modulation of CD1d and NTB-A, and suppression of NF-κB activity. Lack of particular human-specific adaptations reduced the ability of HIV-1 group M Vpu proteins to enhance virus production and release from primary CD4+ T cells at high levels of type I interferon (IFN) from about 5-fold to 2-fold. Interestingly, transmitted founder HIV-1 strains exhibited higher virion release capacity than chronic control HIV-1 strains irrespective of Vpu function, and group M viruses produced higher levels of cell-free virions than an N group HIV-1 strain. Thus, efficient virus release from infected cells seems to play an important role in the spread of HIV-1 in the human population and requires a fully functional Vpu protein that counteracts human tetherin. PMID:27531907

  10. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    PubMed Central

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8+ T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8+ T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8+ T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8+ T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8+ T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8+ T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. PMID:25998390

  11. The miRNA miR-34a enhances HIV-1 replication by targeting PNUTS/PPP1R10, which negatively regulates HIV-1 transcriptional complex formation.

    PubMed

    Kapoor, Richa; Arora, Sakshi; Ponia, Sanket S; Kumar, Binod; Maddika, Subbareddy; Banerjea, Akhil C

    2015-09-15

    HIV-1 relies heavily on the host cellular machinery for its replication. During infection, HIV-1 is known to modulate the host-cell miRNA profile. One of the miRNAs, miR-34a, is up-regulated by HIV-1 in T-cells as suggested by miRNA microarray studies. However, the functional consequences and the mechanism behind this phenomenon were not explored. The present study shows that HIV-1 enhances miR-34a in a time-dependent manner in T-cells. Our overexpression and knockdown-based experimental results suggest that miR-34a promotes HIV-1 replication in T-cells. Hence, there is a positive feedback loop between miR-34a and HIV-1 replication. We show that the mechanism of action of miR-34a in HIV-1 replication involves a cellular protein, the phosphatase 1 nuclear-targeting subunit (PNUTS). PNUTS expression levels decrease with the progression of HIV-1 infection in T-cells. Also, the overexpression of PNUTS potently inhibits HIV-1 replication in a dose-dependent manner. We report for the first time that PNUTS negatively regulates HIV-1 transcription by inhibiting the assembly of core components of the transcription elongation factor P-TEFb, i.e. cyclin T1 and CDK9. Thus, HIV-1 increases miR-34a expression in cells to overcome the inhibitory effect of PNUTS on HIV-1 transcription. So, the present study provides new mechanistic details with regard to our understanding of a complex interplay between miR-34a and the HIV-1 transcription machinery involving PNUTS. PMID:26188041

  12. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches.

    PubMed

    Chandramohan, Vivek; Kaphle, Anubhav; Chekuri, Mamatha; Gangarudraiah, Sindhu; Bychapur Siddaiah, Gowrishankar

    2015-01-01

    Current combination therapy of PEG-INF and ribavirin against the Hepatitis C Virus (HCV) genotype-1 infections is ineffective in maintaining sustained viral response in 50% of the infection cases. New compounds in the form of protease inhibitors can complement the combination therapy. Asunaprevir is new to the drug regiment as the NS3-4A protease inhibitor, but it is susceptible to two mutations, namely, R155K and D168A in the protein. Thus, in our study, we sought to evaluate Andrographolide, a labdane-diterpenoid from the Andrographis paniculata plant as an effective compound for inhibiting the NS3-4A protease as well as its concomitant drug-resistant mutants by using molecular docking and dynamic simulations. Our study shows that Andrographolide has best docking scores of -15.0862, -15.2322, and -13.9072 compared to those of Asunaprevir -3.7159, -2.6431, and -5.4149 with wild-type R155K and D168A mutants, respectively. Also, as shown in the MD simulations, the compound was good in binding the target proteins and maintains strong bonds causing very less to negligible perturbation in the protein backbone structures. Our results validate the susceptibility of Asunaprevir to protein variants as seen from our docking studies and trajectory period analysis. Therefore, from our study, we hope to add one more option in the drug regiment to tackle drug resistance in HCV infections. PMID:26587022

  13. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches

    PubMed Central

    Chandramohan, Vivek; Kaphle, Anubhav; Chekuri, Mamatha; Gangarudraiah, Sindhu; Bychapur Siddaiah, Gowrishankar

    2015-01-01

    Current combination therapy of PEG-INF and ribavirin against the Hepatitis C Virus (HCV) genotype-1 infections is ineffective in maintaining sustained viral response in 50% of the infection cases. New compounds in the form of protease inhibitors can complement the combination therapy. Asunaprevir is new to the drug regiment as the NS3-4A protease inhibitor, but it is susceptible to two mutations, namely, R155K and D168A in the protein. Thus, in our study, we sought to evaluate Andrographolide, a labdane-diterpenoid from the Andrographis paniculata plant as an effective compound for inhibiting the NS3-4A protease as well as its concomitant drug-resistant mutants by using molecular docking and dynamic simulations. Our study shows that Andrographolide has best docking scores of −15.0862, −15.2322, and −13.9072 compared to those of Asunaprevir −3.7159, −2.6431, and −5.4149 with wild-type R155K and D168A mutants, respectively. Also, as shown in the MD simulations, the compound was good in binding the target proteins and maintains strong bonds causing very less to negligible perturbation in the protein backbone structures. Our results validate the susceptibility of Asunaprevir to protein variants as seen from our docking studies and trajectory period analysis. Therefore, from our study, we hope to add one more option in the drug regiment to tackle drug resistance in HCV infections. PMID:26587022

  14. The Presence and Anti-HIV-1 Function of Tenascin C in Breast Milk and Genital Fluids

    PubMed Central

    Jaeger, Frederick; McGuire, Erin; Fouda, Genevieve; Amos, Joshua; Barbas, Kimberly; Ohashi, Tomoo; Alam, S. Munir; Erickson, Harold; Permar, Sallie R.

    2016-01-01

    Tenascin-C (TNC) is a newly identified innate HIV-1-neutralizing protein present in breast milk, yet its presence and potential HIV-inhibitory function in other mucosal fluids is unknown. In this study, we identified TNC as a component of semen and cervical fluid of HIV-1-infected and uninfected individuals, although it is present at a significantly lower concentration and frequency compared to that of colostrum and mature breast milk, potentially due to genital fluid protease degradation. However, TNC was able to neutralize HIV-1 after exposure to low pH, suggesting that TNC could be active at low pH in the vaginal compartment. As mucosal fluids are complex and contain a number of proteins known to interact with the HIV-1 envelope, we further studied the relationship between the concentration of TNC and neutralizing activity in breast milk. The amount of TNC correlated only weakly with the overall innate HIV-1-neutralizing activity of breast milk of uninfected women and negatively correlated with neutralizing activity in milk of HIV-1 infected women, indicating that the amount of TNC in mucosal fluids is not adequate to impede HIV-1 transmission. Moreover, the presence of polyclonal IgG from milk of HIV-1 infected women, but not other HIV-1 envelope-binding milk proteins or monoclonal antibodies, blocked the neutralizing activity of TNC. Finally, as exogenous administration of TNC would be necessary for it to mediate measurable HIV-1 neutralizing activity in mucosal compartments, we established that recombinantly produced TNC has neutralizing activity against transmitted/founder HIV-1 strains that mimic that of purified TNC. Thus, we conclude that endogenous TNC concentration in mucosal fluids is likely inadequate to block HIV-1 transmission to uninfected individuals. PMID:27182834

  15. 3BNC117 a Broadly Neutralizing Antibody Suppresses Viremia in HIV-1-Infected Humans

    PubMed Central

    Caskey, Marina; Klein, Florian; Lorenzi, Julio C. C.; Seaman, Michael S.; West, Anthony P.; Buckley, Noreen; Kremer, Gisela; Nogueira, Lilian; Braunschweig, Malte; Scheid, Johannes F.; Horwitz, Joshua A.; Shimeliovich, Irina; Ben Avraham-Shulman, Sivan; Witmer-Pack, Maggi; Platten, Martin; Lehmann, Clara; Burke, Leah A.; Hawthorne, Thomas; Gorelick, Robert J.; Walker, Bruce D.; Keler, Tibor; Gulick, Roy M.; Fätkenheuer, Gerd; Schlesinger, Sarah J.; Nussenzweig, Michel C.

    2016-01-01

    HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned1–3. However, recently developed single cell based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies (bNAbs) to HIV-14,5. These antibodies can prevent infection and suppress viremia in humanized mice (hu-mice) and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated6–10. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody11, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favorable pharmacokinetics. A single 30 mg/kg infusion of 3BNC117 reduced the viral load (VL) in HIV-1-infected individuals by 0.8 – 2.5 log10 and viremia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that as a single agent 3BNC117 is safe and effective in reducing HIV-1 viremia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy, and cure. PMID:25855300

  16. Novel Neuroprotective GSK-3β Inhibitor Restricts Tat-Mediated HIV-1 Replication

    PubMed Central

    Guendel, Irene; Iordanskiy, Sergey; Van Duyne, Rachel; Kehn-Hall, Kylene; Saifuddin, Mohammed; Das, Ravi; Jaworski, Elizabeth; Sampey, Gavin C.; Senina, Svetlana; Shultz, Leonard; Narayanan, Aarthi; Chen, Hao; Lepene, Benjamin; Zeng, Chen

    2014-01-01

    The implementation of new antiretroviral therapies targeting transcription of early viral proteins in postintegrated HIV-1 can aid in overcoming current therapy limitations. Using high-throughput screening assays, we have previously described a novel Tat-dependent HIV-1 transcriptional inhibitor named 6-bromoindirubin-3′-oxime (6BIO). The screening of 6BIO derivatives yielded unique compounds that show potent inhibition of HIV-1 transcription. We have identified a second-generation derivative called 18BIOder as an inhibitor of HIV-1 Tat-dependent transcription in TZM-bl cells and a potent inhibitor of GSK-3β kinase in vitro. Structurally, 18BIOder is half the molecular weight and structure of its parental compound, 6BIO. More importantly, we also have found a different GSK-3β complex present only in HIV-1-infected cells. 18BIOder preferentially inhibits this novel kinase complex from infected cells at nanomolar concentrations. Finally, we observed that neuronal cultures treated with Tat protein are protected from Tat-mediated cytotoxicity when treated with 18BIOder. Overall, our data suggest that HIV-1 Tat-dependent transcription is sensitive to small-molecule inhibition of GSK-3β. PMID:24227837

  17. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors

    PubMed Central

    Smith, Robert A.; Gottlieb, Geoffrey S.

    2015-01-01

    ABSTRACT Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2. IMPORTANCE Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine

  18. Safety and immunogenicity of an adjuvanted protein therapeutic HIV-1 vaccine in subjects with HIV-1 infection: a randomised placebo-controlled study.

    PubMed

    Harrer, Thomas; Plettenberg, Andreas; Arastéh, Keikawus; Van Lunzen, Jan; Fätkenheuer, Gerd; Jaeger, Hans; Janssens, Michel; Burny, Wivine; Collard, Alix; Roman, François; Loeliger, Alfred; Koutsoukos, Marguerite; Bourguignon, Patricia; Lavreys, Ludo; Voss, Gerald

    2014-05-01

    The human immunodeficiency virus type-1 (HIV-1) vaccine candidate F4/AS01 has previously been shown to induce potent and persistent polyfunctional CD4(+) T-cell responses in HIV-1-seronegative volunteers. This placebo-controlled study evaluated two doses of F4/AS01 1-month apart in antiretroviral treatment (ART)-experienced and ART-naïve HIV-1-infected subjects (1:1 randomisation in each cohort). Safety, HIV-1-specific CD4(+) and CD8(+) T-cell responses, absolute CD4(+) T-cell counts and HIV-1 viral load were monitored for 12 months post-vaccination. Reactogenicity was clinically acceptable and no vaccine-related serious adverse events were reported. The frequency of HIV-1-specific CD4(+) T-cells 2 weeks post-dose 2 was significantly higher in the vaccine group than in the placebo group in both cohorts (p<0.05). Vaccine-induced HIV-1-specific CD4(+) T-cells exhibited a polyfunctional phenotype, expressing at least CD40L and IL-2. No increase in HIV-1-specific CD8(+) T-cells or change in CD8(+) T-cell activation marker expression profile was detected. Absolute CD4(+) T-cell counts were variable over time in both cohorts. Viral load remained suppressed in ART-experienced subjects. In ART-naïve subjects, a transient reduction in viral load from baseline was observed 2 weeks after the second F4/AS01 dose, which was concurrent with a higher frequency of HIV-1-specific CD4(+) T-cells expressing at least IL-2 in this cohort. In conclusion, F4/AS01 showed a clinically acceptable reactogenicity and safety profile, and induced polyfunctional HIV-1-specific CD4(+) T-cell responses in ART-experienced and ART-naïve subjects. These findings support further clinical investigation of F4/AS01 as a potential HIV-1 vaccine for therapeutic use in individuals with HIV-1 infection. PMID:24144472

  19. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor.

    PubMed Central

    Condra, J H; Holder, D J; Schleif, W A; Blahy, O M; Danovich, R M; Gabryelski, L J; Graham, D J; Laird, D; Quintero, J C; Rhodes, A; Robbins, H L; Roth, E; Shivaprakash, M; Yang, T; Chodakewitz, J A; Deutsch, P J; Leavitt, R Y; Massari, F E; Mellors, J W; Squires, K E; Steigbigel, R T; Teppler, H; Emini, E A

    1996-01-01

    Indinavir (IDV) (also called CRIXIVAN, MK-639, or L-735,524) is a potent and selective inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease. During early clinical trials, in which patients initiated therapy with suboptimal dosages of IDV, we monitored the emergence of viral resistance to the inhibitor by genotypic and phenotypic characterization of primary HIV-1 isolates. Development of resistance coincided with variable patterns of multiple substitutions among at least 11 protease amino acid residues. No single substitution was present in all resistant isolates, indicating that resistance evolves through multiple genetic pathways. Despite this complexity, all of 29 resistant isolates tested exhibited alteration of residues M-46 (to I or L) and/or V-82 (to A, F, or T), suggesting that screening of these residues may be useful in predicting the emergence of resistance. We also extended our previous finding that IDV-resistant viral variants exhibit various patterns of cross-resistance to a diverse panel of HIV-1 protease inhibitors. Finally, we noted an association between the number of protease amino acid substitutions and the observed level of IDV resistance. No single substitution or pair of substitutions tested gave rise to measurable viral resistance to IDV. The evolution of this resistance was found to be cumulative, indicating the need for ongoing viral replication in this process. These observations strongly suggest that therapy should be initiated with the most efficacious regimen available, both to suppress viral spread and to inhibit the replication that is required for the evolution of resistance. PMID:8970946

  20. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb

    PubMed Central

    Lu, Panpan; Qu, Xiying; Shen, Yinzhong; Jiang, Zhengtao; Wang, Pengfei; Zeng, Hanxian; Ji, Haiyan; Deng, Junxiao; Yang, Xinyi; Li, Xian; Lu, Hongzhou; Zhu, Huanzhang

    2016-01-01

    None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95–4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4+ T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies. PMID:27067814

  1. Anti-HIV-1 activity of eight monofloral Iranian honey types.

    PubMed

    Behbahani, Mandana

    2014-01-01

    Monofloral Iranian honeys from eight floral sources were analyzed to determine their anti-HIV-1 activities as well as their effects on lymphocyte proliferation. The Peripheral Blood Mononuclear Cells (PBMCs) used in this study were prepared from five healthy volunteers who were seronegative for HIV, HCV, HBV and TB. The anti-HIV-1 activity of eight different honeys was performed by quantitative polymerase chain reaction (PCR) assay and high pure viral nucleic acid kit. The results demonstrated that monofloral honeys from Petro selinum sativum, Nigella sativa, Citrus sinensis, Zataria multiflora, Citrus aurantium and Zizyphus mauritiana flowers had potent anti-HIV-1 activity with half maximal effective concentration (EC50) values of 37.5, 88, 70, 88, 105 and 5 µg/ml respectively. However, monofloral Iranian honeys from Astragalus gummifer and Chamaemelum nobile flowers had weak anti-HIV-1 activity. The frequency and intensity of CD4 expression on PBMCs increased in the presence of all honey types. CD19 marker were also increased after the treatment with monofloral honeys from Z. multiflora and N. sativa. The anti-HIV-1 agent in monofloral honeys from P. sativum, N. sativa, Z. multiflora and Z. mauritiana flowers was detected by spectroscopic analysis as methylglyoxal. Time of drug addition studies demonstrated that the inhibitory effect of methylglyoxal is higher on the late stage of HIV-1 infection. The result demonstrated that methylglyoxal isolated from monofloral honey types is a good candidate for preclinical evaluation of anti-HIV-1 therapies. PMID:25333699

  2. Caging the beast: TRIM5α binding to the HIV-1 core.

    PubMed

    Diaz-Griffero, Felipe

    2011-05-01

    The potent HIV-1 inhibitor TRIM5α blocks HIV-1 infection by accelerating the uncoating of HIV-1. TRIM5α is known to form higher-order self-association complexes that contribute to the avidity of TRIM5α for the HIV-1 capsid, and are essential to inhibit infection; these higher-order self-association complexes are dependent upon an intact B-box 2 domain. Even though the ability to form higher-order self-association complexes resembles the clathrin triskelion that forms a protein array, or cage, around the endocytic vesicle, evidence for the ability of TRIM5α to assemble a similar type of structure surrounding the HIV-1 core has been lacking. Recent work by Ganser-Pornillos, Chandrasekaran and colleagues has now demonstrated the ability of the restriction factor TRIM5α to "cage" or "net" the HIV-1 core by forming an hexagonal array on the surface of the viral capsid. This hexagonal array is strikingly similar in design to the array formed by the clathrin triskelion on the surface of the clathrin-coated endocytic vesicle. This remarkable finding represents an important advance on our understanding of the restriction factor TRIM5α, and suggests that TRIM5α cages the HIV-1 core in order to terminate infection. The present note discusses the implications of this discovery. PMID:21994740

  3. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation

    PubMed Central

    Li, Jun; Chen, Cancan; Ma, Xiancai; Geng, Guannan; Liu, Bingfeng; Zhang, Yijun; Zhang, Shaoyang; Zhong, Fudi; Liu, Chao; Yin, Yue; Cai, Weiping; Zhang, Hui

    2016-01-01

    Long noncoding RNAs (lncRNAs) play multiple key regulatory roles in various cellular pathways. However, their functions in HIV-1 latent infection remain largely unknown. Here we show that a lncRNA named NRON, which is highly expressed in resting CD4+ T lymphocytes, could be involved in HIV-1 latency by specifically inducing Tat protein degradation. Our results suggest that NRON lncRNA potently suppresses the viral transcription by decreasing the cellular abundance of viral transactivator protein Tat. NRON directly links Tat to the ubiquitin/proteasome components including CUL4B and PSMD11, thus facilitating Tat degradation. Depletion of NRON, especially in combination with a histone deacetylase (HDAC) inhibitor, significantly reactivates the viral production from the HIV-1-latently infected primary CD4+ T lymphocytes. Our data indicate that lncRNAs play a role in HIV-1 latency and their manipulation could be a novel approach for developing latency-reversing agents. PMID:27291871

  4. Roles of HIV-1 capsid in viral replication and immune evasion.

    PubMed

    Le Sage, Valerie; Mouland, Andrew J; Valiente-Echeverría, Fernando

    2014-11-26

    The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents. PMID:25036886

  5. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons.

    PubMed Central

    Schweitz, H; Heurteaux, C; Bois, P; Moinier, D; Romey, G; Lazdunski, M

    1994-01-01

    Calcicludine (CaC) is a 60-amino acid polypeptide from the venom of Dendroaspis angusticeps. It is structurally homologous to the Kunitz-type protease inhibitor, to dendrotoxins, which block K+ channels, and to the protease inhibitor domain of the amyloid beta protein that accumulates in Alzheimer disease. Voltage-clamp experiments on a variety of excitable cells have shown that CaC specifically blocks most of the high-threshold Ca2+ channels (L-, N-, or P-type) in the 10-100 nM range. Particularly high densities of specific 125I-labeled CaC binding sites were found in the olfactory bulb, in the molecular layer of the dentate gyrus and the stratum oriens of CA3 field in the hippocampal formation, and in the granular layer of the cerebellum. 125I-labeled CaC binds with a high affinity (Kd = 15 pM) to a single class of noninteracting sites in rat olfactory bulb microsomes. The distribution of CaC binding sites in cerebella of three mutant mice (Weaver, Reeler, and Purkinje cell degeneration) clearly shows that the specific high-affinity labeling is associated with granule cells. Electrophysiological experiments on rat cerebellar granule neurons in primary culture have shown that CaC potently blocks the L-type component of the Ca2+ current (K0.5 = 0.2 nM). Then CaC, in the nanomolar range, appears to be a highly potent blocker of an L-subtype of neuronal Ca2+ channels. Images PMID:8302860

  6. Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain

    PubMed Central

    Martins, Angelica N.; Waheed, Abdul A.; Ablan, Sherimay D.; Huang, Wei; Newton, Alicia; Petropoulos, Christos J.; Brindeiro, Rodrigo D. M.

    2015-01-01

    ABSTRACT HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6Gag), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6Gag significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6Gag confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of

  7. Nef enhances HIV-1 infectivity via association with the virus assembly complex

    SciTech Connect

    Qi Mingli; Aiken, Christopher

    2008-04-10

    The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle.

  8. Nef Enhances HIV-1 Infectivity via Association with the Virus Assembly Complex

    PubMed Central

    Qi, Mingli; Aiken, Christopher

    2008-01-01

    The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle. PMID:18191978

  9. Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity.

    PubMed

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente; Kutsch, Olaf

    2012-04-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation. PMID:22345467

  10. Kinase Control Prevents HIV-1 Reactivation in Spite of High Levels of Induced NF-κB Activity

    PubMed Central

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente

    2012-01-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation. PMID:22345467

  11. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception

    PubMed Central

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  12. Progress on the induction of neutralizing antibodies against HIV-1

    PubMed Central

    Vaine, Michael; Lu, Shan; Wang, Shixia

    2013-01-01

    The Human Immunodeficiency Virus Type -1 (HIV-1), the causative agent of AIDS in humans, is one of the most catastrophic pandemics to affect human health care in the latter 20th century. The best hope of controlling this pandemic is the development of a successful prophylactic vaccine. However, to date, this goal has proven to be exceptionally elusive. The recent failure of an experimental AIDS vaccine in a phase IIb study named the STEP trial, intended to solely elicit cell mediated immune responses against HIV-1, has highlighted the need for a balanced immune response consisting of not only cellular immunity but also a broad and potent antibody response which can prevent the infection of HIV-1. This article will review the efforts being made up to this point to elicit such antibody responses, especially with regards to the use of a DNA prime-protein boost regimen which has been proven to be a highly effective platform for the induction of neutralizing antibodies in both animal and early phase human studies. PMID:19627166

  13. Drug-eluting fibers for HIV-1 inhibition and contraception.

    PubMed

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  14. TRIM5 and the Regulation of HIV-1 Infectivity.

    PubMed

    Luban, Jeremy

    2012-01-01

    The past ten years have seen an explosion of information concerning host restriction factors that inhibit the replication of HIV-1 and other retroviruses. Among these factors is TRIM5, an innate immune signaling molecule that recognizes the capsid lattice as soon as the retrovirion core is released into the cytoplasm of otherwise susceptible target cells. Recognition of the capsid lattice has several consequences that include multimerization of TRIM5 into a complementary lattice, premature uncoating of the virion core, and activation of TRIM5 E3 ubiquitin ligase activity. Unattached, K63-linked ubiquitin chains are generated that activate the TAK1 kinase complex and downstream inflammatory mediators. Polymorphisms in the capsid recognition domain of TRIM5 explain the observed species-specific differences among orthologues and the relatively weak anti-HIV-1 activity of human TRIM5. Better understanding of the complex interaction between TRIM5 and the retrovirus capsid lattice may someday lead to exploitation of this interaction for the development of potent HIV-1 inhibitors. PMID:22701176

  15. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  16. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    SciTech Connect

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  17. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    PubMed Central

    Xiao, Xiaodong; Chen, Weizao; Feng, Yang; Dimitrov, Dimiter S.

    2009-01-01

    Several human monoclonal antibodies (hmAbs) and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env) to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG) lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM) affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i) antibodies in HIV-1-infected patients (X5 is a CD4i antibody) as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and intermediate antibodies

  18. Discovery and early clinical evaluation of BMS-605339, a potent and orally efficacious tripeptidic acylsulfonamide NS3 protease inhibitor for the treatment of hepatitis C virus infection.

    PubMed

    Scola, Paul M; Wang, Alan Xiangdong; Good, Andrew C; Sun, Li-Qiang; Combrink, Keith D; Campbell, Jeffrey A; Chen, Jie; Tu, Yong; Sin, Ny; Venables, Brian L; Sit, Sing-Yuen; Chen, Yan; Cocuzza, Anthony; Bilder, Donna M; D'Andrea, Stanley; Zheng, Barbara; Hewawasam, Piyasena; Ding, Min; Thuring, Jan; Li, Jianqing; Hernandez, Dennis; Yu, Fei; Falk, Paul; Zhai, Guangzhi; Sheaffer, Amy K; Chen, Chaoqun; Lee, Min S; Barry, Diana; Knipe, Jay O; Li, Wenying; Han, Yong-Hae; Jenkins, Susan; Gesenberg, Christoph; Gao, Qi; Sinz, Michael W; Santone, Kenneth S; Zvyaga, Tatyana; Rajamani, Ramkumar; Klei, Herbert E; Colonno, Richard J; Grasela, Dennis M; Hughes, Eric; Chien, Caly; Adams, Stephen; Levesque, Paul C; Li, Danshi; Zhu, Jialong; Meanwell, Nicholas A; McPhee, Fiona

    2014-03-13

    The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients. PMID:24555570

  19. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency. PMID:26994425

  20. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    PubMed

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1. PMID:27417497

  1. Uneven Genetic Robustness of HIV-1 Integrase

    PubMed Central

    Rihn, Suzannah J.; Hughes, Joseph; Wilson, Sam J.

    2014-01-01

    ABSTRACT Genetic robustness (tolerance of mutation) may be a naturally selected property in some viruses, because it should enhance adaptability. Robustness should be especially beneficial to viruses like HIV-1 that exhibit high mutation rates and exist in immunologically hostile environments. Surprisingly, however, the HIV-1 capsid protein (CA) exhibits extreme fragility. To determine whether fragility is a general property of HIV-1 proteins, we created a large library of random, single-amino-acid mutants in HIV-1 integrase (IN), covering >40% of amino acid positions. Despite similar degrees of sequence variation in naturally occurring IN and CA sequences, we found that HIV-1 IN was significantly more robust than CA, with random nonsilent IN mutations only half as likely to cause lethal defects. Interestingly, IN and CA were similar in that a subset of mutations with high in vitro fitness were rare in natural populations. IN mutations of this type were more likely to occur in the buried interior of the modeled HIV-1 intasome, suggesting that even very subtle fitness effects suppress variation in natural HIV-1 populations. Lethal mutations, in particular those that perturbed particle production, proteolytic processing, and particle-associated IN levels, were strikingly localized at specific IN subunit interfaces. This observation strongly suggests that binding interactions between particular IN subunits regulate proteolysis during HIV-1 virion morphogenesis. Overall, use of the IN mutant library in conjunction with structural models demonstrates the overall robustness of IN and highlights particular regions of vulnerability that may be targeted in therapeutic interventions. IMPORTANCE The HIV-1 integrase (IN) protein is responsible for the integration of the viral genome into the host cell chromosome. To measure the capacity of IN to maintain function in the face of mutation, and to probe structure/function relationships, we created a library of random single

  2. Neutrophils Turn Plasma Proteins into Weapons against HIV-1

    PubMed Central

    Hagleitner, Magdalena; Rambach, Günter; Van Aken, Hugo; Dierich, Manfred; Kehrel, Beate E.

    2013-01-01

    As a consequence of innate immune activation granulocytes and macrophages produce hypochlorite/hypochlorous acid (HOCl) via secretion of myeloperoxidase (MPO) to the outside of the cells, where HOCl immediately reacts with proteins. Most proteins that become altered by this system do not belong to the invading microorganism but to the host. While there is no doubt that the myeloperoxidase system is capable of directly inactivating HIV-1, we hypothesized that it may have an additional indirect mode of action. We show in this article that HOCl is able to chemically alter proteins and thus turn them into Idea-Ps (Idea-P = immune defence-altered protein), potent amyloid-like and SH-groups capturing antiviral weapons against HIV-1. HOCl-altered plasma proteins (Idea-PP) have the capacity to bind efficiently and with high affinity to the HIV-1 envelope protein gp120, and to its receptor CD4 as well as to the protein disulfide isomerase (PDI). Idea-PP was able to inhibit viral infection and replication in a cell culture system as shown by reduced number of infected cells and of syncytia, resulting in reduction of viral capsid protein p24 in the culture supernatant. The unmodified plasma protein fraction had no effect. HOCl-altered isolated proteins antithrombin III and human serum albumin, taken as representative examples of the whole pool of plasma proteins, were both able to exert the same activity of binding to gp120 and inhibition of viral proliferation. These data offer an opportunity to improve the understanding of the intricacies of host-pathogen interactions and allow the generation of the following hypothetical scheme: natural immune defense mechanisms generate by posttranslational modification of plasma proteins a potent virucidal weapon that immobilizes the virus as well as inhibits viral fusion and thus entry into the host cells. Furthermore simulation of this mechanism in vitro might provide an interesting new therapeutic approach against microorganisms

  3. Elimination of HIV-1-infected cells by broadly neutralizing antibodies

    PubMed Central

    Bruel, Timothée; Guivel-Benhassine, Florence; Amraoui, Sonia; Malbec, Marine; Richard, Léa; Bourdic, Katia; Donahue, Daniel Aaron; Lorin, Valérie; Casartelli, Nicoletta; Noël, Nicolas; Lambotte, Olivier; Mouquet, Hugo; Schwartz, Olivier

    2016-01-01

    The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir. PMID:26936020

  4. Elimination of HIV-1-infected cells by broadly neutralizing antibodies.

    PubMed

    Bruel, Timothée; Guivel-Benhassine, Florence; Amraoui, Sonia; Malbec, Marine; Richard, Léa; Bourdic, Katia; Donahue, Daniel Aaron; Lorin, Valérie; Casartelli, Nicoletta; Noël, Nicolas; Lambotte, Olivier; Mouquet, Hugo; Schwartz, Olivier

    2016-01-01

    The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir. PMID:26936020

  5. Cytoplasmic dynein promotes HIV-1 uncoating.

    PubMed

    Pawlica, Paulina; Berthoux, Lionel

    2014-11-01

    Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating. PMID:25375884

  6. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation

    PubMed Central

    Rosa, Annachiara; Chande, Ajit; Ziglio, Serena; Sanctis, Veronica De; Bertorelli, Roberto; Goh, Shih Lin; McCauley, Sean M.; Nowosielska, Anetta; Antonarakis, Stylianos E.; Luban, Jeremy; Santoni, Federico Andrea; Pizzato, Massimo

    2016-01-01

    HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor. PMID:26416734

  7. RNAi-Mediated CCR5 Knockdown Provides HIV-1 Resistance to Memory T Cells in Humanized BLT Mice

    PubMed Central

    Shimizu, Saki; Ringpis, Gene-Errol; Marsden, Matthew D; Cortado, Ruth V; Wilhalme, Holly M; Elashoff, David; Zack, Jerome A; Chen, Irvin S Y; An, Dong Sung

    2015-01-01

    Transplantation of hematopoietic stem/progenitor cells (HSPC) modified with a lentiviral vector bearing a potent nontoxic short hairpin RNA (sh1005) directed to the HIV coreceptor CCR5 is capable of continuously producing CCR5 downregulated CD4+ T lymphocytes. Here, we characterized HIV-1 resistance of the sh1005-modified CD4+ T lymphocytes in vivo in humanized bone marrow/liver/thymus (hu BLT) mice. The sh1005-modified CD4+ T lymphocytes were positively selected in CCR5-tropic HIV-1–challenged mice. The sh1005-modified memory CD4+ T lymphocytes (the primary target of CCR5-tropic HIV-1) expressing sh1005 were maintained in lymphoid tissues in CCR5-tropic HIV-1–challenged mice. Frequencies of HIV-1 p24 expressing cells were significantly reduced in the sh1005-modified splenocytes by ex vivo cell stimulation confirming that CCR5 downregulated sh1005 modified cells are protected from viral infection. These results demonstrate that stable CCR5 downregulation through genetic modification of human HSPC by lentivirally delivered sh1005 is highly effective in providing HIV-1 resistance. Our results provide in vivo evidence in a relevant small animal model that sh1005 is a potent early-step anti-HIV reagent that has potential as a novel anti-HIV-1 HSPC gene therapeutic reagent for human applications. PMID:25689223

  8. In vitro Uncoating of HIV-1 Cores

    PubMed Central

    Shah, Vaibhav B.; Aiken, Christopher

    2011-01-01

    The genome of the retroviruses is encased in a capsid surrounded by a lipid envelope. For lentiviruses, such as HIV-1, the conical capsid shell is composed of CA protein arranged as a lattice of hexagon. The capsid is closed by 7 pentamers at the broad end and 5 at the narrow end of the cone1, 2. Encased in this capsid shell is the viral ribonucleoprotein complex, and together they comprise the core. Following fusion of the viral membrane with the target cell membrane, the HIV-1 is released into the cytoplasm. The capsid then disassembles releasing free CA in the soluble form3 in a process referred to as uncoating. The intracellular location and timing of HIV-1 uncoating are poorly understood. Single amino-acid substitutions in CA that alter the stability of the capsid also impair the ability of HIV-1 to infect cells4. This indicates that the stability of the capsid is critical for HIV-1 infection. HIV-1 uncoating has been difficult to study due to lack of availability of sensitive and reliable assays for this process. Here we describe a quantitative method for studying uncoating in vitro using cores isolated from infectious HIV-1 particles. The approach involves isolation of cores by sedimentation of concentrated virions through a layer of detergent and into a linear sucrose gradient, in the cold. To quantify uncoating, the isolated cores are incubated at 37°C for various timed intervals and subsequently pelleted by ultracentrifugation. The extent of uncoating is analyzed by quantifying the fraction of CA in the supernatant. This approach has been employed to analyze effects of viral mutations on HIV-1 capsid stability4, 5, 6. It should also be useful for studying the role of cellular factors in HIV-1 uncoating. PMID:22105356

  9. In vitro uncoating of HIV-1 cores.

    PubMed

    Shah, Vaibhav B; Aiken, Christopher

    2011-01-01

    The genome of the retroviruses is encased in a capsid surrounded by a lipid envelope. For lentiviruses, such as HIV-1, the conical capsid shell is composed of CA protein arranged as a lattice of hexagon. The capsid is closed by 7 pentamers at the broad end and 5 at the narrow end of the cone(1, 2). Encased in this capsid shell is the viral ribonucleoprotein complex, and together they comprise the core. Following fusion of the viral membrane with the target cell membrane, the HIV-1 is released into the cytoplasm. The capsid then disassembles releasing free CA in the soluble form(3) in a process referred to as uncoating. The intracellular location and timing of HIV-1 uncoating are poorly understood. Single amino-acid substitutions in CA that alter the stability of the capsid also impair the ability of HIV-1 to infect cells(4). This indicates that the stability of the capsid is critical for HIV-1 infection. HIV-1 uncoating has been difficult to study due to lack of availability of sensitive and reliable assays for this process. Here we describe a quantitative method for studying uncoating in vitro using cores isolated from infectious HIV-1 particles. The approach involves isolation of cores by sedimentation of concentrated virions through a layer of detergent and into a linear sucrose gradient, in the cold. To quantify uncoating, the isolated cores are incubated at 37°C for various timed intervals and subsequently pelleted by ultracentrifugation. The extent of uncoating is analyzed by quantifying the fraction of CA in the supernatant. This approach has been employed to analyze effects of viral mutations on HIV-1 capsid stability(4, 5, 6). It should also be useful for studying the role of cellular factors in HIV-1 uncoating. PMID:22105356

  10. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities.

    PubMed

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  11. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle?

    PubMed

    Sehgal, Mohit; Khan, Zafar K; Talal, Andrew H; Jain, Pooja

    2013-01-01

    Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs' potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV. PMID:25512691

  12. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  13. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    PubMed Central

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  14. Macrophages and HIV-1: An Unhealthy Constellation.

    PubMed

    Sattentau, Quentin J; Stevenson, Mario

    2016-03-01

    Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation. PMID:26962941

  15. The Roles of HIV-1 Proteins and Antiretroviral Drug Therapy in HIV-1-Associated Endothelial Dysfunction

    PubMed Central

    Kline, Erik R.; Sutliff, Roy L.

    2008-01-01

    Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recent in vitro and in vivo studies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets. PMID:18525451

  16. Citron kinase enhances ubiquitination of HIV-1 Gag protein and intracellular HIV-1 budding.

    PubMed

    Ding, Jiwei; Zhao, Jianyuan; Sun, Lei; Mi, Zeyun; Cen, Shan

    2016-09-01

    Assembly and budding of human immunodeficiency virus type 1 (HIV-1) particles is a complex process involving a number of host proteins. We have previously reported that the RhoA effector citron kinase enhances HIV-1 production. However, the underlying mechanism is not clear. In this study, we found that citron kinase interacted with HIV-1 Gag protein via its zinc finger and leucine zipper domains. Electron microscopy analysis revealed that citron kinase induced viral particle assembly in multivesicular bodies (MVBs). Citron kinase enhanced ubiquitination of HIV-1 Gag protein. Knockdown of Nedd4L, a member of the HECT ubiquitin E3 ligase family, partly decreased the ability of citron kinase to enhance HIV-1 production and reduced ubiquitination of HIV-1 Gag. Interestingly, the function of citron kinase to promote HIV-1 budding was severely impaired when endogenous ALIX was knocked down. Overexpression of the AAA-type ATPase VPS4 eliminated citron-kinase-mediated enhancement of HIV-1 production. Our results suggest that citron kinase interacts with HIV-1 Gag and enhances HIV-1 production by promoting Gag ubiquitination and inducing viral release via the MVB pathway. PMID:27339686

  17. HIV-1 RNA quantification in CRF02_AG HIV-1 infection: too easy to make mistakes.

    PubMed

    Tatarelli, Paola; Taramasso, Lucia; Di Biagio, Antonio; Sticchi, Laura; Nigro, Nicola; Barresi, Renata; Viscoli, Claudio; Bruzzone, Bianca

    2016-04-01

    The number of patients newly infected by HIV-1 non-B subtypes and circulating recombinant forms (CRFs) is increasing worldwide, including in the western countries. We report on a primary HIV-1 infection in a Caucasian patient. A routine quantitative assay (Nuclisens EasyQ HIV-1 2.0, BioMérieux SA) showed 6,700 HIV-1 RNA copies/ml. A combined antiretroviral therapy (cART) consistent with low baseline HIV-1 RNA was started. Few days later, the analysis performed with REGA HIV-1 Subtyping Tool - Version 3.0 attributed the HIV-1 sequence to the CRF02_AG recombinant form. Therefore, a second real-time PCR assay was performed, using the Versant HIV-1 RNA 1.0 Assay (kPCR) (Siemens HealthCare Diagnostics) which revealed a HIV-1 RNA of 230,000 copies/ml. Consequently, the ongoing cART was potentiated. This case suggests that the wide genetic variability of HIV-1 subtypes may affect the capability of the commonly used assays to detect and accurately quantify HIV-1 RNA in non-B subtypes and CRFs. In presence of CRFs different commercial HIV-1 RNA tests should be performed to find the most reliable for viral load quantification at the diagnosis, because it influences the choice of cART, and during the follow-up. Indeed, international guidelines for HIV-1 infection management suggest to monitor patient' HIV-RNA with the same assay over the course of treatment. As different commercial tests can be performed in the same laboratory with considerable difficulty, the laboratory should select an assay that is suitable not only for the more prevalent strain, but also for less frequent ones that, nevertheless, can occur. Then, knowing and investigating the spread of non-B strains has essential clinical and laboratory implications. PMID:27196556

  18. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication.

    PubMed

    Steinkasserer, A; Harrison, R; Billich, A; Hammerschmid, F; Werner, G; Wolff, B; Peichl, P; Palfi, G; Schnitzel, W; Mlynar, E

    1995-02-01

    SDZ NIM 811 is a cyclosporin A analog that is completely devoid of immunosuppressive capacity but exhibits potent and selective anti-human immunodeficiency virus type 1 (HIV-1) activity. The mechanism of action of SDZ NIM 811 is clearly different from those of all other anti-HIV agents described so far. In cell-free assays, it is not an inhibitor of reverse transcriptase, protease, integrase, and it does not interfere with Rev or Tat function. SDZ NIM 811 does not down-regulate CD4 or inhibit fusion between infected and uninfected, CD4-expressing cells. p24 production from chronically HIV-infected cells is not impaired either. To elucidate the mode of action of SDZ NIM 811, we performed DNA PCR analysis in HIV-1 IIIB-infected MT4 cells in one cycle of virus replication. The effects of SDZ NIM 811 on the kinetics of viral DNA synthesis, appearance of two-long terminal repeat circles (2-LTR circles), and integration of DNA were studied. SDZ NIM 811 inhibited 2-LTR circle formation in a concentration-dependent manner, which is indicative of nuclear localization of preintegration complexes. Half-maximal inhibition was achieved at 0.17 microgram/ml; this concentration is close to the 50% inhibitory concentrations (0.01 to 0.2 microgram/ml) for viral growth inhibition. As expected, integration of proviral DNA into cellular DNA was also inhibited by SDZ NIM 811. Analysis of the viral particles produced by SDZ NIM 811-treated, chronically infected cells revealed amounts of capsid proteins, reverse transcriptase activity, and viral RNA comparable to those of the untreated control. However, these particles showed a dose-dependent reduction in infectivity (50% inhibitory concentration of 0.028 microgram/ml) which indicates that the assembly process is also impaired by SDZ NIM 811. Gag proteins are postulated to play a role not only in assembly but also in early steps of viral replication, e.g., nuclear localization of the preintegration complex. Recently, it was reported that

  19. The phosphorylation of HIV-1 Gag by atypical protein kinase C facilitates viral infectivity by promoting Vpr incorporation into virions

    PubMed Central

    2014-01-01

    Background Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein that mediates the assembly and release of virus-like particles (VLPs) from an infected cell membrane. The Gag C-terminal p6 domain contains short sequence motifs that facilitate virus release from the plasma membrane and mediate incorporation of the viral Vpr protein. Gag p6 has also been found to be phosphorylated during HIV-1 infection and this event may affect virus replication. However, the kinase that directs the phosphorylation of Gag p6 toward virus replication remains to be identified. In our present study, we identified this kinase using a proteomic approach and further delineate its role in HIV-1 replication. Results A proteomic approach was designed to systematically identify human protein kinases that potently interact with HIV-1 Gag and successfully identified 22 candidates. Among this panel, atypical protein kinase C (aPKC) was found to phosphorylate HIV-1 Gag p6. Subsequent LC-MS/MS and immunoblotting analysis with a phospho-specific antibody confirmed both in vitro and in vivo that aPKC phosphorylates HIV-1 Gag at Ser487. Computer-assisted structural modeling and a subsequent cell-based assay revealed that this phosphorylation event is necessary for the interaction between Gag and Vpr and results in the incorporation of Vpr into virions. Moreover, the inhibition of aPKC activity reduced the Vpr levels in virions and impaired HIV-1 infectivity of human primary macrophages. Conclusion Our current results indicate for the first time that HIV-1 Gag phosphorylation on Ser487 is mediated by aPKC and that this kinase may regulate the incorporation of Vpr into HIV-1 virions and thereby supports virus infectivity. Furthermore, aPKC inhibition efficiently suppresses HIV-1 infectivity in macrophages. aPKC may therefore be an intriguing therapeutic target for HIV-1 infection. PMID:24447338

  20. Hit-and-Run Stimulation: a Novel Concept To Reactivate Latent HIV-1 Infection without Cytokine Gene Induction▿

    PubMed Central

    Wolschendorf, Frank; Duverger, Alexandra; Jones, Jennifer; Wagner, Frederic H.; Huff, Jason; Benjamin, William H.; Saag, Michael S.; Niederweis, Michael; Kutsch, Olaf

    2010-01-01

    Current antiretroviral therapy (ART) efficiently controls HIV-1 replication but fails to eradicate the virus. Even after years of successful ART, HIV-1 can conceal itself in a latent state in long-lived CD4+ memory T cells. From this latent reservoir, HIV-1 rebounds during treatment interruptions. Attempts to therapeutically eradicate this viral reservoir have yielded disappointing results. A major problem with previously utilized activating agents is that at the concentrations required for efficient HIV-1 reactivation, these stimuli trigger high-level cytokine gene expression (hypercytokinemia). Therapeutically relevant HIV-1-reactivating agents will have to trigger HIV-1 reactivation without the induction of cytokine expression. We present here a proof-of-principle study showing that this is a possibility. In a high-throughput screening effort, we identified an HIV-1-reactivating protein factor (HRF) secreted by the nonpathogenic bacterium Massilia timonae. In primary T cells and T-cell lines, HRF triggered a high but nonsustained peak of nuclear factor kappa B (NF-κB) activity. While this short NF-κB peak potently reactivated latent HIV-1 infection, it failed to induce gene expression of several proinflammatory NF-κB-dependent cellular genes, such as those for tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8), and gamma interferon (IFN-γ). Dissociation of cellular and viral gene induction was achievable, as minimum amounts of Tat protein, synthesized following application of a short NF-κB pulse, triggered HIV-1 transactivation and subsequent self-perpetuated HIV-1 expression. In the absence of such a positive feedback mechanism, cellular gene expression was not sustained, suggesting that strategies modulating the NF-κB activity profile could be used to selectively trigger HIV-1 reactivation. PMID:20538859

  1. Hit-and-run stimulation: a novel concept to reactivate latent HIV-1 infection without cytokine gene induction.

    PubMed

    Wolschendorf, Frank; Duverger, Alexandra; Jones, Jennifer; Wagner, Frederic H; Huff, Jason; Benjamin, William H; Saag, Michael S; Niederweis, Michael; Kutsch, Olaf

    2010-09-01

    Current antiretroviral therapy (ART) efficiently controls HIV-1 replication but fails to eradicate the virus. Even after years of successful ART, HIV-1 can conceal itself in a latent state in long-lived CD4(+) memory T cells. From this latent reservoir, HIV-1 rebounds during treatment interruptions. Attempts to therapeutically eradicate this viral reservoir have yielded disappointing results. A major problem with previously utilized activating agents is that at the concentrations required for efficient HIV-1 reactivation, these stimuli trigger high-level cytokine gene expression (hypercytokinemia). Therapeutically relevant HIV-1-reactivating agents will have to trigger HIV-1 reactivation without the induction of cytokine expression. We present here a proof-of-principle study showing that this is a possibility. In a high-throughput screening effort, we identified an HIV-1-reactivating protein factor (HRF) secreted by the nonpathogenic bacterium Massilia timonae. In primary T cells and T-cell lines, HRF triggered a high but nonsustained peak of nuclear factor kappa B (NF-kappaB) activity. While this short NF-kappaB peak potently reactivated latent HIV-1 infection, it failed to induce gene expression of several proinflammatory NF-kappaB-dependent cellular genes, such as those for tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and gamma interferon (IFN-gamma). Dissociation of cellular and viral gene induction was achievable, as minimum amounts of Tat protein, synthesized following application of a short NF-kappaB pulse, triggered HIV-1 transactivation and subsequent self-perpetuated HIV-1 expression. In the absence of such a positive feedback mechanism, cellular gene expression was not sustained, suggesting that strategies modulating the NF-kappaB activity profile could be used to selectively trigger HIV-1 reactivation. PMID:20538859

  2. Virus Maturation as a Novel HIV-1 Therapeutic Target

    PubMed Central

    Adamson, Catherine S.; Salzwedel, Karl; Freed, Eric O.

    2009-01-01

    Development of novel therapeutic targets against HIV-1 is a high research priority due to the serious clinical consequences associated with acquisition of resistance to current antiretroviral drugs. The HIV-1 structural protein Gag represents a potential novel therapeutic target as it plays a central role in virus particle production, yet is not targeted by any of the currently approved antiretroviral drugs. The Gag polyprotein precursor multimerizes to form immature particles that bud from the infected cell. Concomitant with virus release, the Gag precursor undergoes proteolytic processing by the viral protease to generate the mature Gag proteins, which include capsid (CA). Once liberated from the Gag polyprotein precursor, CA molecules interact to reassemble into a condensed conical core, which organizes the viral RNA genome and several viral proteins to facilitate virus replication in the next round of infection. Correct Gag proteolytic processing and core assembly are therefore essential for virus infectivity. In this review, we discuss novel strategies to inhibit maturation by targeting proteolytic cleavage sites in Gag or CA-CA interactions required for core formation. The identification and development of lead maturation inhibitors are highlighted. PMID:19534569

  3. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro.

    PubMed

    Jing, N; Marchand, C; Liu, J; Mitra, R; Hogan, M E; Pommier, Y

    2000-07-14

    The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation. PMID:10801812

  4. The choreography of HIV-1 proteolytic processing and virion assembly.

    PubMed

    Lee, Sook-Kyung; Potempa, Marc; Swanstrom, Ronald

    2012-11-30

    HIV-1 has been the target of intensive research at the molecular and biochemical levels for >25 years. Collectively, this work has led to a detailed understanding of viral replication and the development of 24 approved drugs that have five different targets on various viral proteins and one cellular target (CCR5). Although most drugs target viral enzymatic activities, our detailed knowledge of so much of the viral life cycle is leading us into other types of inhibitors that can block or disrupt protein-protein interactions. Viruses have compact genomes and employ a strategy of using a small number of proteins that can form repeating structures to enclose space (i.e. condensing the viral genome inside of a protein shell), thus minimizing the need for a large protein coding capacity. This creates a relatively small number of critical protein-protein interactions that are essential for viral replication. For HIV-1, the Gag protein has the role of a polyprotein precursor that contains all of the structural proteins of the virion: matrix, capsid, spacer peptide 1, nucleocapsid, spacer peptide 2, and p6 (which contains protein-binding domains that interact with host proteins during budding). Similarly, the Gag-Pro-Pol precursor encodes most of the Gag protein but now includes the viral enzymes: protease, reverse transcriptase (with its associated RNase H activity), and integrase. Gag and Gag-Pro-Pol are the substrates of the viral protease, which is responsible for cleaving these precursors into their mature and fully active forms (see Fig. 1A). PMID:23043111

  5. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases

    SciTech Connect

    Devroe, Eric; Silver, Pamela A.; Engelman, Alan . E-mail: alan_engelman@dfci.harvard.edu

    2005-01-05

    Mammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells.

  6. Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs.

    PubMed

    Rawal, R K; Murugesan, V; Katti, S B

    2012-01-01

    In addition to the nucleoside reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs) and integrase inhibitors (INIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs) have contributed significantly in the treatment of HIV-1 infections. More than 60 structurally different classes of compounds have been identified as NNRTIs, which are specifically inhibiting HIV-1 reverse transcriptase (RT). Five NNRTIs (nevirapine, delavirdine, efavirenz, etravirine and rilpivirine) have been approved by US Food and Drug Administration (FDA) for clinical use. The NNRTIs bind with a specific 'pocket' site of HIV-1 RT (allosteric site) that is closely associated with the NRTI binding site. Due to mutations of the amino acid residues surrounding the NNRTI-binding site, NNRTIs are notorious for rapidly eliciting resistance. Though, the emergence of resistant HIV strains can be circumvented if the NNRTIs are used either alone or in combination with NRTIs (AZT, 3TC, ddI, ddC, TVD or d4T) and PIs (Indinavir, nelfinavir, saquinavir, ritonavir and lopinavir etc.) as shown by both a decrease in plasma HIV-1 RNA levels and increased CD4 T-cells. Here we are going to discuss recent advances in structure activity relationship studies on nevirapine, delavirdine, efavirenz, etravirine, rilpivirine and 4-thiazolidinones (privileged scaffold) HIV-1 NNRTIs. PMID:22998569

  7. HIV-1 Eradication: Early Trials (and Tribulations).

    PubMed

    Spivak, Adam M; Planelles, Vicente

    2016-01-01

    Antiretroviral therapy (ART) has rendered HIV-1 infection a manageable illness for those with access to treatment. However, ART does not lead to viral eradication owing to the persistence of replication-competent, unexpressed proviruses in long-lived cellular reservoirs. The potential for long-term drug toxicities and the lack of access to ART for most people living with HIV-1 infection have fueled scientific interest in understanding the nature of this latent reservoir. Exploration of HIV-1 persistence at the cellular and molecular level in resting memory CD4(+) T cells, the predominant viral reservoir in patients on ART, has uncovered potential strategies to reverse latency. We review recent advances in pharmacologically based 'shock and kill' HIV-1 eradication strategies, including comparative analysis of early clinical trials. PMID:26691297

  8. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators

    PubMed Central

    Sleebs, Brad E.; Lackovic, Kurt; Parisot, John P.; Moss, Rebecca M.; Crowe-McAuliffe, Caillan; Mathew, Suneeth F.; Edgar, Christina D.; Kleffmann, Torsten; Tate, Warren P.

    2015-01-01

    Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same

  9. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    SciTech Connect

    Leitner, Thomas; Campbell, Mary S; Mullins, James I; Hughes, James P; Wong, Kim G; Raugi, Dana N; Scrensen, Stefanie

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  10. Exosomes: Implications in HIV-1 Pathogenesis

    PubMed Central

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  11. An international multicenter study on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing.

    PubMed

    Simen, Birgitte B; Braverman, Michael S; Abbate, Isabella; Aerssens, Jeroen; Bidet, Yannick; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Kessler, Harald H; Stelzl, Evelyn; Di Giallonardo, Francesca; Schlapbach, Ralph; Radonic, Aleksander; Paredes, Roger; Recordon-Pinson, Patricia; Sakwa, James; St John, Elizabeth P; Schmitz-Agheguian, Gudrun G; Metzner, Karin J; Däumer, Martin P

    2014-08-01

    The detection of mutant spectra within the viral quasispecies is critical for therapeutic management of HIV-1 infections. Routine clinical application of ultrasensitive genotyping requires reproducibility and concordance within and between laboratories. The goal of the study was to evaluate a new protocol on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing (454-UDS) in an international multicenter study. Sixteen blinded HIV-1 subtype B samples were provided for 454-UDS as both RNA and cDNA with viral titers of 88,600-573,000 HIV-1 RNA copies/ml. Eight overlapping amplicons spanning protease (PR) codons 10-99 and reverse transcriptase (RT) codons 1-251 were generated using molecular barcoded primers. 454-UDS was performed using the 454 Life Sciences/Roche GS FLX platform. PR and RT sequences were analyzed using 454 Life Sciences Amplicon Variant Analyzer (AVA) software. Quantified variation data were analyzed for intra-laboratory reproducibility and inter-laboratory concordance. Routine population sequencing was performed using the ViroSeq HIV-1 genotyping system. Eleven laboratories and the reference laboratory 454 Life Sciences sequenced the HIV-1 sample set. Data presented are derived from seven laboratories and the reference laboratory since severe study protocol execution errors occurred in four laboratories leading to exclusion. The median sequencing depth across all sites was 1364 reads per position (IQR=809-2065). 100% of the ViroSeq-reported mutations were also detected by 454-UDS. Minority HIV-1 drug resistance mutations, defined as HIV-1 drug resistance mutations identified at frequencies of 1-25%, were only detected by 454-UDS. Analysis of 10 preselected majority and minority mutations were consistently found across sites. The analysis of drug-resistance mutations detected between 1 and 10% demonstrated high intra- and inter-laboratory consistency in frequency estimates for both RNA and prepared cDNA samples, indicating robustness of the

  12. Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors

    PubMed Central

    Bedi, Rajiv K.; Patel, Chandan; Mishra, Vandana; Xiao, Huogen; Yada, Rickey Y.; Bhaumik, Prasenjit

    2016-01-01

    Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV. PMID:27531685

  13. Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors.

    PubMed

    Bedi, Rajiv K; Patel, Chandan; Mishra, Vandana; Xiao, Huogen; Yada, Rickey Y; Bhaumik, Prasenjit

    2016-01-01

    Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV. PMID:27531685

  14. Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms

    PubMed Central

    Harper, Michael S.; Guo, Kejun; Gibbert, Kathrin; Lee, Eric J.; Dillon, Stephanie M.; Barrett, Bradley S.; McCarter, Martin D.; Hasenkrug, Kim J.; Dittmer, Ulf; Wilson, Cara C.; Santiago, Mario L.

    2015-01-01

    HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies. PMID:26529416

  15. GP41-specific Antibody Blocks Cell-free HIV-1 Transcytosis through Human Rectal Mucosa and Model Colonic Epithelium#

    PubMed Central

    Shen, Ruizhong; Drelichman, Ernesto R.; Bimczok, Diane; Ochsenbauer, Christina; Kappes, John C.; Tudor, Daniela; Bomsel, Morgane; Smythies, Lesley E.; Smith, Phillip D.

    2013-01-01

    Monostratified epithelial cells translocate HIV-1 from the apical to the basolateral surface via vesicular transcytosis. Since acutely transmitted HIV-1 is almost exclusively CCR5-tropic and human intestinal epithelial cells preferentially transcytose CCR5-tropic virus, we established epithelial monolayers using polarized HT-29 cells transduced to express CCR5, and an explant system using normal human rectal mucosa, to characterize biological parameters of epithelial cell transcytosis of HIV-1 and assess antiviral antibody blockade of transcytosis. The amount of cell-free HIV-1 transcytosed through the epithelial monolayer increased linearly in relation to the amount of virus applied to the apical surface, indicating transcytosis efficiency was constant (r2 = 0.9846, P<0.0001). The efficiency of HIV-1 transcytosis ranged between 0.05% and 1.21%, depending on the virus strain, producer cell type and gp120 V1-V3 loop signature. Inoculation of HIV-1 neutralizing antibodies to the immunodominant region (7B2) or the conserved membrane proximal external region (2F5) of gp41 or to cardiolipin (IS4) onto the apical surface of epithelial monolayers prior to inoculation of virus significantly reduced HIV-1 transcytosis. 2F5 was the most potent of these IgG1 mAbs. Dimeric IgA (dIgA) and monomeric IgA (mIgA), but not polymeric IgM, 2F5 antibodies also blocked HIV-1 transcytosis across the epithelium and, importantly, across explanted normal human rectal mucosa, with mIgA substantially more potent than dIgA in effecting transcytosis blockade. These findings underscore the potential role of transcytosis blockade in the prevention of HIV-1 transmission across columnar epithelium such as that of the rectum. PMID:20208001

  16. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  17. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges.

    PubMed

    Gautam, Rajeev; Nishimura, Yoshiaki; Pegu, Amarendra; Nason, Martha C; Klein, Florian; Gazumyan, Anna; Golijanin, Jovana; Buckler-White, Alicia; Sadjadpour, Reza; Wang, Keyun; Mankoff, Zachary; Schmidt, Stephen D; Lifson, Jeffrey D; Mascola, John R; Nussenzweig, Michel C; Martin, Malcolm A

    2016-05-01

    Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission. PMID:27120156

  18. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides

    PubMed Central

    Rollenhagen, C; Lathrop, M J; Macura, S L; Doncel, G F; Asin, S N

    2014-01-01

    Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4+/CCR5+/CD38+ T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1. PMID:24496317

  19. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  20. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression.

    PubMed

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. PMID:27371828

  1. Neuropathology of early HIV-1 infection.

    PubMed

    Gray, F; Scaravilli, F; Everall, I; Chretien, F; An, S; Boche, D; Adle-Biassette, H; Wingertsmann, L; Durigon, M; Hurtrel, B; Chiodi, F; Bell, J; Lantos, P

    1996-01-01

    Early HIV-1 invasion of the central nervous system has been demonstrated by many cerebrospinal fluid studies; however, most HIV-1 carriers remain neurologically unimpaired during the so called "asymptomatic" period lasting from seroconversion to symptomatic AIDS. Therefore, neuropathological studies in the early pre-AIDS stages are very few, and the natural history of central nervous system changes in HIV-1 infection remains poorly understood. Examination of brains of asymptomatic HIV-1 positive individuals who died accidentally and of rare cases with acute fatal encephalopathy revealing HIV infection, and comparison with experimental simian immunodeficiency virus and feline immunodeficiency virus infections suggest that, invasion of the CNS by HIV-1 occurs at the time of primary infection and induces an immunological process in the central nervous system. This includes an inflammatory T-cell reaction with vasculitis and leptomeningitis, and immune activation of brain parenchyma with increased number of microglial cells, upregulation of major histocompatibility complex class II antigens and local production of cytokines. Myelin pallor and gliosis of the white matter are usually found and are likely to be the consequence of opening of the blood brain barrier due to vasculitis; direct damage to oligodendrocytes by cytokines may also interfere. These white matter changes may explain, at least partly, the early cerebral atrophy observed, by magnetic resonance imaging, in asymptomatic HIV-1 carriers. In contrast, cortical damage seems to be a late event in the course of HIV-1 infection. There is no significant neuronal loss at the early stages of the disease, no accompanying increase in glial fibrillary acid protein staining in the cortex, and only exceptional neuronal apoptosis. Although HIV-1 proviral DNA may be demonstrated in a number of brains, viral replication remains very low during the asymptomatic stage of HIV-1 infection. This makes it likely that, although

  2. TopoisomeraseIIβ in HIV-1 transactivation.

    PubMed

    Chekuri, Anil; Bhaskar, C; Bollimpelli, V Satish; Kondapi, Anand K

    2016-03-01

    TopoisomeraseIIβ, an isoform of type II topoisomerase, was found to be functional in various viral infections. Its plausible role in HIV life cycle was also suggested earlier, but not clearly established. In the present study, we have investigated the role of TopoIIβ in HIV-1 infection by its gain and loss of function. Overexpression of TopoIIβ lead to an increase in viral replication, resulting in enhanced virion production. HIV-1 replication was impaired when TopoIIβ was down regulated by siRNA and inhibited by ICRF-193 and merbarone. The role of TopoIIβ in HIV-1 transcription was shown through its interaction with Tat and recruitement to long terminal repeat (LTR) region by co-immunoprecipitation and ChIP assays. Involvement of TopoIIβ in transactivation of HIV-1 LTR was confirmed by luciferase assay in reporter cell line, TZM bl and also by transfection of reporter exogenously. It was also observed that LTR transactivation commensurated with the expression of TopoIIβ in the presence of Tat. In addition, a decreased viral gene expression on treatment with merbarone exemplifies the importance of catalytic activity of TopoIIβ in viral replication. These observations indicate that TopoIIβ is involved in the cascade of coactivator complexes that are recruited to LTR for regulation of HIV-1 transcription. PMID:26876283

  3. HIV-1 Genetic Variability and Clinical Implications

    PubMed Central

    Santoro, Maria Mercedes; Perno, Carlo Federico

    2013-01-01

    Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development. PMID:23844315

  4. Long-Term Non-Progression and Broad HIV-1-Specific Proliferative T-Cell Responses

    PubMed Central

    Imami, Nesrina; Westrop, Samantha J.; Grageda, Nathali; Herasimtschuk, Anna A.

    2013-01-01

    Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1+ patients during early stages of disease, and are maintained in long-term non-progressing subjects. In the vast majority of HIV-1+ patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilizing cure, involving clearance of virus from the host, remains a primary aim, a “functional cure” may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilized in future strategies designed to improve upon existing therapy. The aim will be to induce long-term non-progressor or elite controller status in every infected host, through immune-mediated control of viremia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates. PMID:23459797

  5. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation.

    PubMed

    Rosemary Bastian, Arangassery; Nangarlia, Aakansha; Bailey, Lauren D; Holmes, Andrew; Kalyana Sundaram, R Venkat; Ang, Charles; Moreira, Diogo R M; Freedman, Kevin; Duffy, Caitlin; Contarino, Mark; Abrams, Cameron; Root, Michael; Chaiken, Irwin

    2015-01-01

    Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally. PMID:25371202

  6. Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity.

    PubMed

    Krapp, Christian; Hotter, Dominik; Gawanbacht, Ali; McLaren, Paul J; Kluge, Silvia F; Stürzel, Christina M; Mack, Katharina; Reith, Elisabeth; Engelhart, Susanne; Ciuffi, Angela; Hornung, Veit; Sauter, Daniel; Telenti, Amalio; Kirchhoff, Frank

    2016-04-13

    Guanylate binding proteins (GBPs) are an interferon (IFN)-inducible subfamily of guanosine triphosphatases (GTPases) with well-established activity against intracellular bacteria and parasites. Here we show that GBP5 potently restricts HIV-1 and other retroviruses. GBP5 is expressed in the primary target cells of HIV-1, where it impairs viral infectivity by interfering with the processing and virion incorporation of the viral envelope glycoprotein (Env). GBP5 levels in macrophages determine and inversely correlate with infectious HIV-1 yield over several orders of magnitude, which may explain the high donor variability in macrophage susceptibility to HIV. Antiviral activity requires Golgi localization of GBP5, but not its GTPase activity. Start codon mutations in the accessory vpu gene from macrophage-tropic HIV-1 strains conferred partial resistance to GBP5 inhibition by increasing Env expression. Our results identify GBP5 as an antiviral effector of the IFN response and may explain the increased frequency of defective vpu genes in primary HIV-1 strains. PMID:26996307

  7. HIV-1 gp120 as a therapeutic target: Navigating a moving labyrinth

    PubMed Central

    Acharya, Priyamvada; Lusvarghi, Sabrina; Bewley, Carole A.; Kwong, Peter D.

    2015-01-01

    Introduction The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. Areas covered An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. Expert opinion The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets, and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target. PMID:25724219

  8. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    SciTech Connect

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E. . E-mail: sylvieb@burnham.org

    2006-09-08

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.

  9. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry.

    PubMed

    Cimbro, Raffaello; Peterson, Francis C; Liu, Qingbo; Guzzo, Christina; Zhang, Peng; Miao, Huiyi; Van Ryk, Donald; Ambroggio, Xavier; Hurt, Darrell E; De Gioia, Luca; Volkman, Brian F; Dolan, Michael A; Lusso, Paolo

    2016-08-01

    Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. PMID:27389109

  10. Design and synthesis of small molecule-sulfotyrosine mimetics that inhibit HIV-1 entry.

    PubMed

    Dogo-Isonagie, Cajetan; Lee, Su-Lin; Lohith, Katheryn; Liu, Hongbing; Mandadapu, Sivakoteswara R; Lusvarghi, Sabrina; O'Connor, Robert D; Bewley, Carole A

    2016-04-15

    In the absence of a cure or vaccine for HIV/AIDS, small molecule inhibitors remain an attractive choice for antiviral therapeutics. Recent structural and functional studies of the HIV-1 surface envelope glycoprotein gp120 have revealed sites of vulnerability that can be targeted by small molecule and peptide inhibitors, thereby inhibiting HIV-1 infection. Here we describe a series of small molecule entry inhibitors that were designed to mimic the sulfated N-terminal peptide of the HIV-1 coreceptor CCR5. From a panel of hydrazonothiazolyl pyrazolinones, we demonstrate that compounds containing naphthyl di- and tri-sulfonic acids inhibit HIV-1 infection in single round infectivity assays with the disulfonic acids being the most potent. Molecular docking supports the observed structure activity relationship, and SPR confirmed binding to gp120. In infectivity assays treatment with a representative naphthyl disulfonate and a disulfated CCR5 N-terminus peptide results in competitive inhibition, with combination indices >2. In total this work shows that gp120 and HIV-1 infection can be inhibited by small molecules that mimic the function of, and are competitive with the natural sulfated CCR5 N-terminus. PMID:26968647

  11. Microplate-Based Assay for Identifying Small Molecules That Bind a Specific Intersubunit Interface within the Assembled HIV-1 Capsid

    PubMed Central

    Halambage, Upul D.; Wong, Jason P.; Melancon, Bruce J.; Lindsley, Craig W.

    2015-01-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid–targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity. PMID:26077250

  12. Molecular modeling, synthesis and biological evaluation of N-heteroaryl compounds as reverse transcriptase inhibitors against HIV-1.

    PubMed

    Singh, Anuradha; Yadav, Dipti; Yadav, Madhu; Dhamanage, Ashwini; Kulkarni, Smita; Singh, Ramendra K

    2015-03-01

    Different N-heteroaryl compounds bearing pyrimidine and benzimidazole moieties have been designed in silico using Discovery studio 2.5 software, synthesized and evaluated for their inhibitory activity as reverse transcriptase inhibitors against HIV-1 replication using laboratory adapted strains HIV-1IIIB (X4, subtype B) and HIV-1Ada5 (R5, subtype B), and the primary isolates HIV-1UG070 (X4, subtype D) and HIV-1VB59 (R5, subtype C). Cell-based assay showed that compounds were active at 1.394 μm concentrations (Selectivity Index: 1.29-38.39). The studies on structure-activity relationship clearly suggested anti-HIV activity of pyrimidine and benzimidazole derivatives and these findings were consistent with the in vitro cell-based experimental data. The results of molecular modeling and docking confirmed that all compounds assumed a butterfly-like conformation and showed H-bond, 'π-π' and 'π-+' and hydrophobic interactions within flexible non-nucleoside inhibitor binding pocket of HIV-1 reverse transcriptase, similar to known non-nucleoside reverse transcriptase inhibitors, such as nevirapine. In view of the results obtained, it can be said that the chemical skeletons of N, N'-bis-(pyridin-2-yl)-succinamide (14 and 15) and 1, 4-bis-benzoimidazol-1-yl-butane-1, 4-dione (16 and 17) may be used for developing potent inhibitors of HIV-1 replication, with suitable structure/pharmacophore modifications. PMID:25055732

  13. Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid.

    PubMed

    Halambage, Upul D; Wong, Jason P; Melancon, Bruce J; Lindsley, Craig W; Aiken, Christopher

    2015-09-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity. PMID:26077250

  14. Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency.

    PubMed

    Bournazos, Stylianos; Gazumyan, Anna; Seaman, Michael S; Nussenzweig, Michel C; Ravetch, Jeffrey V

    2016-06-16

    Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection. PMID:27315478

  15. Crystal structure of a soluble cleaved HIV-1 envelope trimer.

    PubMed

    Julien, Jean-Philippe; Cupo, Albert; Sok, Devin; Stanfield, Robyn L; Lyumkis, Dmitry; Deller, Marc C; Klasse, Per-Johan; Burton, Dennis R; Sanders, Rogier W; Moore, John P; Ward, Andrew B; Wilson, Ian A

    2013-12-20

    HIV-1 entry into CD4(+) target cells is mediated by cleaved envelope glycoprotein (Env) trimers that have been challenging to characterize structurally. Here, we describe the crystal structure at 4.7 angstroms of a soluble, cleaved Env trimer that is stabilized and antigenically near-native (termed the BG505 SOSIP.664 gp140 trimer) in complex with a potent broadly neutralizing antibody, PGT122. The structure shows a prefusion state of gp41, the interaction between the component gp120 and gp41 subunits, and how a close association between the gp120 V1/V2/V3 loops stabilizes the trimer apex around the threefold axis. The complete epitope of PGT122 on the trimer involves gp120 V1, V3, and several surrounding glycans. This trimer structure advances our understanding of how Env functions and is presented to the immune system, and provides a blueprint for structure-based vaccine design. PMID:24179159

  16. HIV-1 Reservoirs During Suppressive Therapy.

    PubMed

    Barton, Kirston; Winckelmann, Anni; Palmer, Sarah

    2016-05-01

    The introduction of antiretroviral therapy (ART) 20 years ago has dramatically reduced morbidity and mortality associated with HIV-1. Initially there was hope that ART would be curative, but it quickly became clear that even though ART was able to restore CD4(+) T cell counts and suppress viral loads below levels of detection, discontinuation of treatment resulted in a rapid rebound of infection. This is due to persistence of a small reservoir of latently infected cells with a long half-life, which necessitates life-long ART. Over the past few years, significant progress has been made in defining and characterizing the latent reservoir of HIV-1, and here we review how understanding the latent reservoir during suppressive therapy will lead to significant advances in curative approaches for HIV-1. PMID:26875617

  17. HIV-1 immunopathogenesis in humanized mouse models

    PubMed Central

    Zhang, Liguo; Su, Lishan

    2012-01-01

    In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4+ T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies. PMID:22504952

  18. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. PMID:26652000

  19. Pyrazolo[1,5-a]pyrimidine-based macrocycles as novel HIV-1 inhibitors: a patent evaluation of WO2015123182.

    PubMed

    Sun, Lin; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-09-01

    The emergence of drug resistance in Combination Antiretroviral Therapy (cART) confirms a continuing need to investigate novel HIV-1 inhibitors with unexplored mechanisms of action. Recently, a series of pyrazolopyrimidine-based macrocyclic compounds were reported as inhibitors of HIV-1 replication disclosed in the patent WO2015123182. Most of the disclosed compounds possessed in vitro antiviral potency in single-digit nanomolar range, which were determined by MT-2 cell assay. Then, the structural diversity, pharmacophore similarity of HIV-1 IN-LEDGF/p75 inhibitors, and implications for drug design were analyzed. In the end of this article, a glimpse of some macrocycles as potent antiviral agents (drug candidates) was provided. Some strategies and technologies enabling macrocycle design were also described. We expect that further development of these macrocyclic compounds will offer new anti-HIV-1 drug candidates. PMID:27398994

  20. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1.

    PubMed

    Caucheteux, Stephan M; Mitchell, John P; Ivory, Matthew O; Hirosue, Sachiko; Hakobyan, Svetlana; Dolton, Garry; Ladell, Kristin; Miners, Kelly; Price, David A; Kan-Mitchell, June; Sewell, Andrew K; Nestle, Frank; Moris, Arnaud; Karoo, Richard O; Birchall, James C; Swartz, Melody A; Hubbel, Jeffrey A; Blanchet, Fabien P; Piguet, Vincent

    2016-06-01

    Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1. PMID:26896775

  1. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency.

    PubMed

    Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka

    2016-05-20

    Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication. PMID:26910179

  2. HIV-1 subtype characteristics of infected persons living in southwestern Greece

    PubMed Central

    Davanos, Nikolaos; Panos, George; Gogos, Charalambos A; Mouzaki, Athanasia

    2015-01-01

    Background The rapid replication rate of HIV-1, coupled with a high mutation rate and recombination, is the underlying force driving its genetic diversity. In the infected individual, a population of highly related but nonidentical strains exists. At the population level, multiple subtypes often cocirculate, leading to the generation of intersubtype recombinant forms. As a result, the geographic distribution of subtypes and recombinant forms is complex and uneven. Genetic subtyping of HIV-1 isolates has been shown to be helpful for understanding the genetic evolution, the worldwide spread of the virus, and the evaluation of drug resistance. Materials and methods We determined the genetic heterogeneity of HIV-1 group M in southwestern Greece. Protease and partial reverse-transcriptase sequences were generated from 150 HIV-1-infected individuals attending the Division of Infectious Diseases of Patras University Hospital, Greece, from 2006 to 2012, and analyzed using online subtyping tools and phylogenetic methods. Results The majority of the infected individuals were male (77%). HIV-1 subtype A1 was responsible for 51.3% of infections, followed by subtypes B (34%), G (4%), F1 (2%), and the circulating recombinant forms 02_AG (2.7%), 14_BG (1.3%), 35_AD (1.3%), and 01_AE (0.7%). Additionally, we identified three cases with a recombinant B/CRF02_AG strain (2%) and one with a recombinant G/GRF_AG strain. Sexual transmission was responsible for 96.3% of cases. Heterosexual transmission was responsible for 70.2% of subtype-A1 infections, whereas subtype B was transmitted by men who have sex with men in 75.5% of cases. Protease substitutions I13V, E35D, M36I, R57K, H69K, and L89M, which serve as drug-resistance support mutations in subtype B, were present in the majority of subtype-A1 sequences of the population. Conclusion HIV-1 infection in southwestern Greece is sexually transmitted and highly heterogeneous. Subtype A1 has surpassed subtype B, and is the most prevalent

  3. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase

    PubMed Central

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C.; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M.

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1–50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  4. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase.

    PubMed

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1-50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  5. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  6. MAS NMR of HIV-1 protein assemblies.

    PubMed

    Suiter, Christopher L; Quinn, Caitlin M; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates. PMID:25797001

  7. Novel vaccine vectors for HIV-1

    PubMed Central

    Picker, Louis J.

    2014-01-01

    The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in both preclinical and clinical trials, but, given the disappointing results of the clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting, but potentially complementary, vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms. PMID:25296195

  8. Laparoscopic sterilization in HIV-1-positive women.

    PubMed

    Intaraprasert, S; Taneepanichskul, S; Chaturachinda, K

    1996-11-01

    Laparoscopic sterilizations in HIV-1-positive women were performed. Patients, who were HIV-1-positive, underwent voluntary laparoscopic sterilization. The mean age of patients was 27.5 +/- 3.8 years. Most were of low socioeconomic status. The mean duration of the operation was 14.4 +/- 5.4 min. No accidental injury to the surgical team was recorded, and no complications occurred among the patients. It was concluded that laparoscopic sterilization in HIV-positive patients was safe with low risk of HIV transmission to the surgical team. PMID:8934065

  9. Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA Decline during Latency-Reversing Treatment with Panobinostat

    PubMed Central

    Olesen, Rikke; Vigano, Selena; Rasmussen, Thomas A.; Søgaard, Ole S.; Ouyang, Zhengyu; Buzon, Maria; Bashirova, Arman; Carrington, Mary; Palmer, Sarah; Brinkmann, Christel R.; Yu, Xu G.; Østergaard, Lars; Tolstrup, Martin

    2015-01-01

    ABSTRACT The pharmaceutical reactivation of dormant HIV-1 proviruses by histone deacetylase inhibitors (HDACi) represents a possible strategy to reduce the reservoir of HIV-1-infected cells in individuals treated with suppressive combination antiretroviral therapy (cART). However, the effects of such latency-reversing agents on the viral reservoir size are likely to be influenced by host immune responses. Here, we analyzed the immune factors associated with changes in proviral HIV-1 DNA levels during treatment with the potent HDACi panobinostat in a human clinical trial involving 15 cART-treated HIV-1-infected patients. We observed that the magnitude, breadth, and cytokine secretion profile of HIV-1-specific CD8 T cell responses were unrelated to changes in HIV-1 DNA levels in CD4 T cells during panobinostat treatment. In contrast, the proportions of CD3− CD56+ total NK cells and CD16+ CD56dim NK cells were inversely correlated with HIV-1 DNA levels throughout the study, and changes in HIV-1 DNA levels during panobinostat treatment were negatively associated with the corresponding changes in CD69+ NK cells. Decreasing levels of HIV-1 DNA during latency-reversing treatment were also related to the proportions of plasmacytoid dendritic cells, to distinct expression patterns of interferon-stimulated genes, and to the expression of the IL28B CC genotype. Together, these data suggest that innate immune activity can critically modulate the effects of latency-reversing agents on the viral reservoir and may represent a target for future immunotherapeutic interventions in HIV-1 eradication studies. IMPORTANCE Currently available antiretroviral drugs are highly effective in suppressing HIV-1 replication, but the virus persists, despite treatment, in a latent form that does not actively express HIV-1 gene products. One approach to eliminate these cells, colloquially termed the “shock-and-kill” strategy, focuses on the use of latency-reversing agents that induce active

  10. GPI-anchored single chain Fv - an effective way to capture transiently-exposed neutralization epitopes on HIV-1 envelope spike

    PubMed Central

    2010-01-01

    Background Identification of broad neutralization epitopes in HIV-1 envelope spikes is paramount for HIV-1 vaccine development. A few broad neutralization epitopes identified so far are present on the surface of native HIV-1 envelope spikes whose recognition by antibodies does not depend on conformational changes of the envelope spikes. However, HIV-1 envelope spikes also contain transiently-exposed neutralization epitopes, which are more difficult to identify. Results In this study, we constructed single chain Fvs (scFvs) derived from seven human monoclonal antibodies and genetically linked them with or without a glycosyl-phosphatidylinositol (GPI) attachment signal. We show that with a GPI attachment signal the scFvs are targeted to lipid rafts of plasma membranes. In addition, we demonstrate that four of the GPI-anchored scFvs, but not their secreted counterparts, neutralize HIV-1 with various degrees of breadth and potency. Among them, GPI-anchored scFv (X5) exhibits extremely potent and broad neutralization activity against multiple clades of HIV-1 strains tested. Moreover, we show that GPI-anchored scFv (4E10) also exhibited more potent neutralization activity than its secretory counterpart. Finally, we demonstrate that expression of GPI-anchored scFv (X5) in the lipid raft of plasma membrane of human CD4+ T cells confers long-term resistance to HIV-1 infection, HIV-1 envelope-mediated cell-cell fusion, and the infection of HIV-1 captured and transferred by human DCs. Conclusions Thus GPI-anchored scFv could be used as a general and effective way to identify antibodies that react with transiently-exposed neutralization epitopes in envelope proteins of HIV-1 and other enveloped viruses. The GPI-anchored scFv (X5), because of its breadth and potency, should have a great potential to be developed into anti-viral agent for HIV-1 prevention and therapy. PMID:20923574

  11. Multiple drug resistant mechanisms against darunavir, amprenavir, and nelfinavir of HIV-1 PR

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Dai, Qi; Xiu, Zhilong

    2013-02-01

    Acquired immune deficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV), which is infecting more humans and is expanding faster in the world. The illness interferes with the immune system, making people with AIDS much more likely to get infections, including opportunistic infections and tumors that do not affect people with working immune systems. HIV-1 PR is one of the major targets of anti-AIDS drug discovery. It is, therefore, necessary to develop some inhibitors against HIV-1 PR. In this work, we executed molecular dynamics (MDs) simulation of HIV-1 PR with drugs darunavir (DRV), amprenavir (APV), nelfinavir (NFV), and examined the resistant mechanism of L10I, G48V, I54V, and L90M mutations of this PR, aiming at designing promising drugs. The comparative analysis suggests that the existences of dodecahydroisoquinoline ring at P1' subsite, 4-aminophenylsulfonamide at P2' subsite, and bis-tetrahydrofuranylurethane at P2 subsite are helpful for maintaining the high affinity of the inhibitor for the protease and exhibiting high potency against multiple drug resistance (MDR) mutant protease.

  12. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors

    SciTech Connect

    Spallarossa, Andrea Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0 A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  13. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  14. Colorectal Mucus Binds DC-SIGN and Inhibits HIV-1 Trans-Infection of CD4+ T-Lymphocytes

    PubMed Central

    van Montfort, Thijs; Sanders, Rogier W.; de Vries, Henry J. C.; Dekker, Henk L.; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A.

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1–3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa. PMID:25793526

  15. The HPA axis in HIV-