Science.gov

Sample records for potent hydrolysis probes

  1. Development of a potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo.

    PubMed

    Bisogno, Tiziana; Ortar, Giorgio; Petrosino, Stefania; Morera, Enrico; Palazzo, Enza; Nalli, Marianna; Maione, Sabatino; Di Marzo, Vincenzo

    2009-01-01

    Although inhibitors of the enzymatic hydrolysis of the endocannabinoid 2-arachidonoylglycerol are available, they are either rather weak in vitro (IC(50)>30 microM) or their selectivity towards other proteins of the endocannabinoid system has not been tested. Here we describe the synthesis and activity in vitro and in vivo of a tetrahydrolipstatin analogue, OMDM169, as a potent inhibitor of 2-AG hydrolysis, capable of enhancing 2-AG levels and of exerting analgesic activity via indirect activation of cannabinoid receptors. OMDM169 exhibited 0.13 microM10 microM) at human CB(1) and CB(2) receptors. However, OMDM169 shared with tetrahydrolipstatin the capability of inhibiting the human pancreatic lipase (IC(50)=0.6 microM). OMDM169 inhibited fatty acid amide hydrolase and diacylglycerol lipase only at higher concentrations (IC(50)=3.0 and 2.8 microM, respectively), and, accordingly, it increased by approximately 1.6-fold the levels of 2-AG, but not anandamide, in intact ionomycin-stimulated N18TG2 neuroblastoma cells. Acute intraperitoneal (i.p.) administration of OMDM169 to mice inhibited the second phase of the formalin-induced nocifensive response with an IC(50) of approximately 2.5 mg/kg, and concomitantly elevated 2-AG, but not anandamide, levels in the ipsilateral paw of formalin-treated mice. The antinociceptive effect of OMDM169 was antagonized by antagonists of CB(1) and CB(2) receptors, AM251 and AM630, respectively (1 mg/kg, i.p.). OMDM69 might represent a template for the development of selective and even more potent inhibitors of 2-AG hydrolysis. PMID:19027877

  2. Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition

    NASA Astrophysics Data System (ADS)

    Brem, Jürgen; van Berkel, Sander S.; Aik, Weishen; Rydzik, Anna M.; Avison, Matthew B.; Pettinati, Ilaria; Umland, Klaus-Daniel; Kawamura, Akane; Spencer, James; Claridge, Timothy D. W.; McDonough, Michael A.; Schofield, Christopher J.

    2014-12-01

    The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including 19F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.

  3. The double helix is dehydrated: evidence from the hydrolysis of acridinium ester-labeled probes.

    PubMed

    Becker, M; Lerum, V; Dickson, S; Nelson, N C; Matsuda, E

    1999-04-27

    A highly chemiluminescent reporter molecule, acridinium ester (AE), was tethered to single-stranded oligonucleotide probes and hybridized to complementary as well as mismatched target sequences. When tethered to single-stranded probes, AE was readily hydrolyzed by water or hydroxide ion. In contrast, when hybridized to a complementary target, hydrolysis of the AE probe was markedly inhibited. Mismatches near AE eliminated the ability of the double helix to strongly inhibit AE hydrolysis. To establish the molecular basis for these remarkable hydrolysis properties of AE-labeled probes, the binding and hydrolysis mechanisms of AE-labeled probes were examined. When tethered to single- or double-stranded nucleic acids, hydrolysis of AE was found to proceed by generalized base catalysis in which a base abstracts a proton from water and the resulting hydroxide ion then hydrolyzes AE. Analysis of the hydrolysis rates of AE bound to DNA revealed that AE binds the minor groove of DNA and that its hydrolysis is inhibited by low water activity within the minor groove of the helix. Depending upon the sequence of the DNA, the water activity of the minor groove was estimated to be at least 2-4-fold lower than bulk solution. Hydrolysis measurements of AE tethered to RNA as well as RNA/DNA hybrids argued that the grooves of these double helices are also dehydrated relative to bulk solution. Remarkably, mismatched bases, regardless of their structure or sequence context, enhanced hydrolysis of AE by inducing hydration of the double helix that spread approximately five base pairs on either side of the mismatch. PMID:10220349

  4. A New Strategy for Fluorogenic Esterase Probes Displaying Low Levels of Non-specific Hydrolysis.

    PubMed

    Kim, Sungwoo; Kim, Hyunjin; Choi, Yongdoo; Kim, Youngmi

    2015-06-26

    A new design for fluorescence probes of esterase activity that features a carboxylate-side pro-fluorophore is demonstrated with boron dipyrromethene (BODIPY)-based probes 1 a and 1 b. Because the design relies on the enzyme-catalyzed hydrolysis of an ester group that is not electronically activated, these probes exhibit a stability to background hydrolysis that is far superior to classical alcohol-side profluorophore-based probes, large signal-to-noise ratios, reduced sensitivity to pH variations, and high enzymatic reactivity. The utility of probe 1 a was established with a real-time fluorescence imaging experiment of endogenous esterase activity that does not require washing of the extracellular medium. PMID:26033618

  5. Potent fluoro-oligosaccharide probes of adhesion in Toxoplasmosis.

    PubMed

    Allman, Sarah A; Jensen, Henrik H; Vijayakrishnan, Balakumar; Garnett, James A; Leon, Ester; Liu, Yan; Anthony, Daniel C; Sibson, Nicola R; Feizi, Ten; Matthews, Stephen; Davis, Benjamin G

    2009-10-12

    Unnatural, NMR- and MRI-active fluorinated sugar probes, designed and synthesised to bind to the pathogenic protein TgMIC1 from Toxoplasma gondii, were found to display binding potency equal to and above that of the natural ligand. Dissection of the binding mechanism and modes, including the first X-ray crystal structures of a fluoro-oligosaccharide bound to a lectin, demonstrate that it is possible to create effective fluorinated probe ligands for the study of, and perhaps intervention in, sugar-protein binding events. PMID:19750531

  6. Osmotic pressure probe of actin-myosin hydration changes during ATP hydrolysis.

    PubMed Central

    Highsmith, S; Duignan, K; Cooke, R; Cohen, J

    1996-01-01

    Osmotic stress in the 0.5-5 x 10(6) dyne/cm2 range was used to perturb the hydration of actin-myosin-ATP intermediates during steady-state hydrolysis. Polyethylene glycol (PEG) (1000 to 4000 Da), in the 1 to 10 wt% range, which does not cause protein precipitation, did not significantly affect the apparent KM or the Vmax for MgATP hydrolysis by myosin subfragment 1 (S1) alone, nor did it affect the value for the phosphate burst. Consistent with the kinetic data, osmotic stress did not affect nucleotide-induced changes in the fluorescence intensities of S1 tryptophans or of fluorescein attached to Cys-707. The accessibility of the fluorescent ATP analog, epsilon ADP, to acrylamide quenching was also unchanged. These data suggest that none of the steps in the ATP hydrolysis cycle involve substantial hydration changes, which might occur for the opening or closing of the ATP site or of other crevices in the S1 structure. In contrast, KM for the interaction of S1.MgADP.Pi with actin decreased tenfold in this range of osmotic pressure, suggesting that formation of actin.S1.MgADP.Pi involves net dehydration of the proteins. The dehydration volume increases as the size of the PEG is increased, as expected for a surface-excluded osmolyte. The measured dehydration volume for the formation of actin.S1.MgADP.Pi was used to estimate the surface area of the binding interface. This estimate was consistent with the area determined from the atomic structures of actin and myosin, indicating that osmotic stress is a reliable probe of actin.myosin.ATP interactions. The approach developed here should be useful for determining osmotic stress and excluded volume effects in situ, which are much larger than those of typical in vitro conditions. PMID:8744320

  7. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Brocorens, Patrick; Tonnelé, Claire; Beljonne, David; Surin, Mathieu; George, Subi J.

    2014-12-01

    Design of artificial systems, which can respond to fluctuations in concentration of adenosine phosphates (APs), can be useful in understanding various biological processes. Helical assemblies of chromophores, which dynamically respond to such changes, can provide real-time chiroptical readout of various chemical transformations. Towards this concept, here we present a supramolecular helix of achiral chromophores, which shows chiral APs responsive tunable handedness along with dynamically switchable helicity. This system, composing of naphthalenediimides with phosphate recognition unit, shows opposite handedness on binding with ATP compared with ADP or AMP, which is comprehensively analysed with molecular dynamic simulations. Such differential signalling along with stimuli-dependent fast stereomutations have been capitalized to probe the reaction kinetics of enzymatic ATP hydrolysis. Detailed chiroptical analyses provide mechanistic insights into the enzymatic hydrolysis and various intermediate steps. Thus, a unique dynamic helical assembly to monitor the real-time reaction processes via its stimuli-responsive chiroptical signalling is conceptualized.

  8. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis.

    PubMed

    Kumar, Mohit; Brocorens, Patrick; Tonnelé, Claire; Beljonne, David; Surin, Mathieu; George, Subi J

    2014-01-01

    Design of artificial systems, which can respond to fluctuations in concentration of adenosine phosphates (APs), can be useful in understanding various biological processes. Helical assemblies of chromophores, which dynamically respond to such changes, can provide real-time chiroptical readout of various chemical transformations. Towards this concept, here we present a supramolecular helix of achiral chromophores, which shows chiral APs responsive tunable handedness along with dynamically switchable helicity. This system, composing of naphthalenediimides with phosphate recognition unit, shows opposite handedness on binding with ATP compared with ADP or AMP, which is comprehensively analysed with molecular dynamic simulations. Such differential signalling along with stimuli-dependent fast stereomutations have been capitalized to probe the reaction kinetics of enzymatic ATP hydrolysis. Detailed chiroptical analyses provide mechanistic insights into the enzymatic hydrolysis and various intermediate steps. Thus, a unique dynamic helical assembly to monitor the real-time reaction processes via its stimuli-responsive chiroptical signalling is conceptualized. PMID:25511998

  9. Monochrome Multiplexing in Polymerase Chain Reaction by Photobleaching of Fluorogenic Hydrolysis Probes.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Zengerle, Roland; von Stetten, Felix

    2016-03-01

    Multiplexing in polymerase chain reaction (PCR) is a technique widely used to save cost and sample material and to increase sensitivity compared to distributing a sample to several singleplex reactions. One of the most common methods to detect the different amplification products is the use of fluorogenic probes that emit at different wavelengths (colors). To reduce the number of detection channels, several methods for monochrome multiplexing have been suggested. However, they pose restrictions to the amplifiable target length, the sequence, or the melting temperature. To circumvent these limitations, we suggest a novel approach that uses different fluorophores with the same emission maximum. Discrimination is achieved by their different fluorescence stability during photobleaching. Atto488 (emitting at the same wavelength as 6-carboxyfluorescein, FAM) and Atto467N (emitting at the same wavelength as cyanine 5, Cy5) were found to bleach significantly less than FAM and Cy5; i.e., the final fluorescence of Atto dyes was more than tripled compared to FAM and Cy5. We successfully applied this method by performing a 4-plex PCR targeting antibiotic resistance genes in S. aureus using only 2 color channels. Confidence of discrimination between the targets was >99.9% at high copy initial copy numbers of 100 000 copies. Cases where both targets were present could be discriminated with equal confidence for Cy5 channel and reduced levels of confidence (>68%) for FAM channel. Moreover, a 2-plex digital PCR reaction in 1 color channel was shown. In the future, the degree of multiplexing may be increased by adding fluorogenic probe pairs with other emission wavelengths. The method may also be applied to other probe and assay formats, such as Förster resonance energy transfer (FRET) probes and immunoassays. PMID:26840905

  10. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    PubMed Central

    Mbah, Andreas N.; Isokpehi, Raphael D.

    2013-01-01

    The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides. PMID:24151583

  11. Spectrometric study of AOT-hydrolysis reaction in water/AOT/isooctane microemulsions using phenolphthalein as a chemical probe.

    PubMed

    Mao, Shiyan; Chen, Zhiyun; Fan, Dashuang; An, Xueqin; Shen, Weiguo

    2012-01-12

    The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required. PMID:22168828

  12. Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2.

    PubMed

    Eggert, Erik; Hillig, Roman C; Koehr, Silke; Stöckigt, Detlef; Weiske, Jörg; Barak, Naomi; Mowat, Jeffrey; Brumby, Thomas; Christ, Clara D; Ter Laak, Antonius; Lang, Tina; Fernandez-Montalvan, Amaury E; Badock, Volker; Weinmann, Hilmar; Hartung, Ingo V; Barsyte-Lovejoy, Dalia; Szewczyk, Magdalena; Kennedy, Steven; Li, Fengling; Vedadi, Masoud; Brown, Peter J; Santhakumar, Vijayaratnam; Arrowsmith, Cheryl H; Stellfeld, Timo; Stresemann, Carlo

    2016-05-26

    Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents. PMID:27075367

  13. Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2

    PubMed Central

    2016-01-01

    Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents. PMID:27075367

  14. Photoactive ligands probing the sweet taste receptor. Design and synthesis of highly potent diazirinyl D-phenylalanine derivatives.

    PubMed

    Masuda, Katsuyoshi; Koizumi, Ayako; Misaka, Takumi; Hatanaka, Yasumaru; Abe, Keiko; Tanaka, Takaharu; Ishiguro, Masaji; Hashimoto, Makoto

    2010-02-01

    Some D-amino acids such as d-tryptophan and D-phenylalanine are well known as naturally-occurring sweeteners. Photoreactive D-phenylalanine derivatives containing trifluoromethyldiazirinyl moiety at 3- or 4-position of phenylalanine, were designed as sweeteners for functional analysis with photoaffinity labeling. The trifluoromethyldiazirinyl D-phenylalanine derivatives were prepared effectively with chemo-enzymatic methods using L-amino acid oxidase and were found to have potent activity toward the human sweet taste receptor. PMID:20031409

  15. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1. PMID:25437743

  16. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  17. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.

    PubMed

    Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M; Hurst, Dow P; Lynch, Diane; Reggio, Patricia H; Janero, David R; Pertwee, Roger G; Stevenson, Lesley A; Kelly, Melanie E M; Denovan-Wright, Eileen M; Thakur, Ganesh A

    2016-06-15

    One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse

  18. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.

    PubMed

    Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel

    2014-11-01

    Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar

  19. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis

    PubMed Central

    Fung, Emma; Bouet, Jean-Yves; Funnell, Barbara E.

    2001-01-01

    The ParA family of proteins is involved in partition of a variety of plasmid and bacterial chromosomes. P1 ParA plays two roles in partition: it acts as a repressor of the par operon and has an undefined yet indispensable role in P1 plasmid localization. We constructed seven mutations in three putative ATP-binding motifs of ParA. Three classes of phenotypes resulted, each represented by mutations in more than one motif. Three mutations created ‘super-repressors’, in which repressor activity was much stronger than in wild-type ParA, while the remainder damaged repressor activity. All mutations eliminated partition activities, but two showed a plasmid stability defect that was worse than that of a null mutation. Four mutant ParAs, two super-repressors and two weak repressors, were analyzed biochemically, and all exhibited damaged ATPase activity. The super-repressors bound site-specifically to the par operator sequence, and this activity was strongly stimulated by ATP and ADP. These results support the proposal that ATP binding is essential but hydrolysis is inhibitory for ParA’s repressor activity and suggest that ATP hydrolysis is essential for plasmid localization. PMID:11532954

  20. Probing the role of aromatic residues at the secondary saccharide binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding

    PubMed Central

    Ragunath, Chandran; Manuel, Suba G.A.; Venkataraman, Venkat; Sait, Hameetha B.R.; Kasinathan, Chinnasamy; Ramasubbu, Narayanan

    2008-01-01

    SUMMARY Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: 1) hydrolysis of starch; 2) binding to hydroxyapatite; and 3) binding to bacteria (e.g. viridans streptococci). Although the active site of HSAmy for starch hydrolysis is well characterized, the regions responsible for the bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one or more of the secondary saccharide binding sites harboring the aromatic residues may play an important role in bacterial binding. To test this hypothesis, the aromatic residues at five secondary binding sites were mutated to alanine to generate six mutants representing either single (W203A, Y276A and W284A), double (Y276A/W284A and W316A/W388A) or multiple (HSAmy-ar; W134A/W203A/Y276A/W284A/W316A/W388A) mutations. The crystal structure of HSAmy-ar was determined at a resolution of 1.5 Å as an acarbose complex and compared with the existing wild type acarbose complex. The wild type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch binding, hydroxyapatite and bacterial binding activities. Our results clearly showed that 1) mutation of aromatic residues does not alter the overall conformation of the molecule; 2) the single or double mutants showed either moderate or minimal changes in both starch and bacterial binding activities activity whereas the HSAmy-ar showed significant reduction in these activities; 3) the starch hydrolytic activity was reduced 10-fold in HSAmy-ar; 4) oligosaccharide hydrolytic activity was reduced in all the mutants but the action pattern was similar to that of the wild type enzyme; and 5) the hydroxyaptite binding was unaffected in HSAmy-ar. These results clearly show that the aromatic residues at the secondary saccharide binding sites in HSAmy play a critical role in bacterial binding and starch

  1. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    PubMed

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. PMID:25776549

  2. Ultrafast hydrolysis of a Lewis photoacid.

    PubMed

    Henrich, Joseph D; Suchyta, Scott; Kohler, Bern

    2015-02-12

    This study explores the concept that electronic excitation can dramatically enhance Lewis acidity. Specifically, it is shown that photoexcitation transforms an electron-deficient organic compound of negligible Lewis acidity in its electronic ground state into a potent excited-state Lewis acid that releases a proton from a nearby water molecule in 3.1 ps. It was shown previously (Peon et al. J. Phys. Chem. A 2001, 105, 5768) that the excited state of methyl viologen (MV(2+)) is quenched rapidly in aqueous solution with the formation of an unidentified photoproduct. In this study, the quenching mechanism and the identity of the photoproduct were investigated by the femtosecond transient absorption and fluorescence upconversion techniques. Transient absorption signals at UV probe wavelengths reveal a long-lived species with a pH-dependent lifetime due to reaction with hydronium ions at a bimolecular rate of 3.1 × 10(9) M(-1) s(-1). This species is revealed to be a charge-transfer complex consisting of a ground-state MV(2+) ion and a hydroxide ion formed when a water molecule transfers a proton to the bulk solvent. Formation of a contact ion pair between MV(2+) and hydroxide shifts the absorption spectrum of the former ion by a few nm to longer wavelengths, yielding a transient absorption spectrum with a distinctive triangle wave appearance. The slight shift of this spectrum, which is in excellent agreement with steady-state difference spectra recorded for MV(2+) at high pH, is consistent with an ion pair but not with a covalent adduct (pseudobase). The long lifetime of the ion pair at neutral pH indicates that dissociation occurs many orders of magnitude more slowly than predicted by the Smoluchowski-Debye equation. Remarkably, there is no evidence of geminate recombination, suggesting that the proton that is transferred to the solvent is conducted at least several water shells away. Although the hydrolysis mechanism has yet to be fully established, evidence suggests

  3. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  4. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  5. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  6. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  7. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  8. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  9. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  10. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  11. Hydrolysis reactor for hydrogen production

    SciTech Connect

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  12. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  13. HYDROLYSIS OF CHLOROSTILBENE OXIDE: I. HYDROLYSIS IN HOMOGENEOUS SYSTEMS

    EPA Science Inventory

    The hydrolysis kinetics of 4-chlorostilbene oxide (CSO) in buffered distilled water, in natural waters, and in sediment associated water are reported. he disappearance of CSO followed pseudo-first-order kinetics in buffered water over the experimental pH range of 3 to 11. elow pH...

  14. Economics of enzymatic hydrolysis processes

    SciTech Connect

    Wright, J.D.

    1988-02-01

    Enzymatic hydrolysis processes have the ability to produce high yields of sugars for fermentation to fuel ethanol from lignocellulosic biomass. However, these systems have been plagued with yields, product concentrations, and reactions rates far below those that are theoretically possible. Engineering and economic analyses are presented on several fungal enzyme hydrolysis processes to illustrate the effects of the important process parameters, to quantify the progress that has been made to date, and to estimate the cost reductions that can be made through research improvements. All enzymatic hydrolysis processes require pretreatment, hydrolysis, fermentation, and enzyme production. The key effect of pretreatment is to allow access of the enzymes to the substrate. Pretreatments have been devised that make the biomass completely digestible that increase the xylose yield and concentration, and that integrate pretreatment with lignin utilization. Major improvements in enzyme activity and use of simultaneous saccharification and fermentation (SSF) have greatly reduced the inhibition of the enzymes. It now appears that ethanol inhibition of the yeast is the limiting factor. Enzyme production costs have been dramatically reduced because use of SSF has reduced enzyme loading. However, further improvements may be possible by using soluble carbon sources for production. Over the past decade, the predicted cost of ethanol from such processes has dropped from more than $4.00/gallon to approximately $1.60. Research is currently under way in the United States and has the potential to reduce the projected cost to less than $1.00/gallon. 65 refs., 16 figs., 1 tab.

  15. Enzymatic hydrolysis of organic phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  16. Exploring potassium-dependent GTP hydrolysis in TEES family GTPases.

    PubMed

    Rafay, Abu; Majumdar, Soneya; Prakash, Balaji

    2012-01-01

    GTPases are important regulatory proteins that hydrolyze GTP to GDP. A novel GTP-hydrolysis mechanism is employed by MnmE, YqeH and FeoB, where a potassium ion plays a role analogous to the Arginine finger of the Ras-RasGAP system, to accelerate otherwise slow GTP hydrolysis rates. In these proteins, two conserved asparagines and a 'K-loop' present in switch-I, were suggested as attributes of GTPases employing a K(+)-mediated mechanism. Based on their conservation, a similar mechanism was suggested for TEES family GTPases. Recently, in Dynamin, Fzo1 and RbgA, which also conserve these attributes, a similar mechanism was shown to be operative. Here, we probe K(+)-activated GTP hydrolysis in TEES (TrmE-Era-EngA-YihA-Septin) GTPases - Era, EngB and the two contiguous G-domains, GD1 and GD2 of YphC (EngA homologue) - and also in HflX, another GTPase that also conserves the same attributes. While GD1-YphC and Era exhibit a K(+)-mediated activation of GTP hydrolysis, surprisingly GD2-YphC, EngB and HflX do not. Therefore, the attributes identified thus far, do not necessarily predict a K(+)-mechanism in GTPases and hence warrant extensive structural investigations. PMID:23650596

  17. Discovery of Potent and Selective RSK Inhibitors as Biological Probes.

    PubMed

    Jain, Rama; Mathur, Michelle; Lan, Jiong; Costales, Abran; Atallah, Gordana; Ramurthy, Savithri; Subramanian, Sharadha; Setti, Lina; Feucht, Paul; Warne, Bob; Doyle, Laura; Basham, Stephen; Jefferson, Anne B; Lindvall, Mika; Appleton, Brent A; Shafer, Cynthia M

    2015-09-10

    While the p90 ribosomal S6 kinase (RSK) family has been implicated in multiple tumor cell functions, the full understanding of this kinase family has been restricted by the lack of highly selective inhibitors. A bis-phenol pyrazole was identified from high-throughput screening as an inhibitor of the N-terminal kinase of RSK2. Structure-based drug design using crystallography, conformational analysis, and scaffold morphing resulted in highly optimized difluorophenol pyridine inhibitors of the RSK kinase family as demonstrated cellularly by the inhibition of YB1 phosphorylation. These compounds provide for the first time in vitro tools with an improved selectivity and potency profile to examine the importance of RSK signaling in cancer cells and to fully evaluate RSK as a therapeutic target. PMID:26270416

  18. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  19. HYDROLYSIS

    EPA Science Inventory

    Hydrolytic processes provide the baseline loss rate for any chemical in an aqueous envi- ronment. Although various hydrolytic pathways account for significant degradation of certain classes of organic chemicals, other organic structures are completely inert. Strictly speaking, hy...

  20. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  1. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  2. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    ERIC Educational Resources Information Center

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  3. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  4. Polyoxometalates--potent and selective ecto-nucleotidase inhibitors.

    PubMed

    Lee, Sang-Yong; Fiene, Amelie; Li, Wenjin; Hanck, Theodor; Brylev, Konstantin A; Fedorov, Vladimir E; Lecka, Joanna; Haider, Ali; Pietzsch, Hans-Jürgen; Zimmermann, Herbert; Sévigny, Jean; Kortz, Ulrich; Stephan, Holger; Müller, Christa E

    2015-01-15

    Polyoxometalates (POMs) are inorganic cluster metal complexes that possess versatile biological activities, including antibacterial, anticancer, antidiabetic, and antiviral effects. Their mechanisms of action at the molecular level are largely unknown. However, it has been suggested that the inhibition of several enzyme families (e.g., phosphatases, protein kinases or ecto-nucleotidases) by POMs may contribute to their pharmacological properties. Ecto-nucleotidases are cell membrane-bound or secreted glycoproteins involved in the hydrolysis of extracellular nucleotides thereby regulating purinergic (and pyrimidinergic) signaling. They comprise four distinct families: ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs), alkaline phosphatases (APs) and ecto-5'-nucleotidase (eN). In the present study, we evaluated the inhibitory potency of a series of polyoxometalates as well as chalcogenide hexarhenium cluster complexes at a broad range of ecto-nucleotidases. [Co4(H2O)2(PW9O34)2](10-) (5, PSB-POM142) was discovered to be the most potent inhibitor of human NTPDase1 described so far (Ki: 3.88 nM). Other investigated POMs selectively inhibited human NPP1, [TiW11CoO40](8-) (4, PSB-POM141, Ki: 1.46 nM) and [NaSb9W21O86](18-) (6, PSB-POM143, Ki: 4.98 nM) representing the most potent and selective human NPP1 inhibitors described to date. [NaP5W30O110](14-) (8, PSB-POM144) strongly inhibited NTPDase1-3 and NPP1 and may therefore be used as a pan-inhibitor to block ATP hydrolysis. The polyoxoanionic compounds displayed a non-competitive mechanism of inhibition of NPPs and eN, but appeared to be competitive inhibitors of TNAP. Future in vivo studies with selected inhibitors identified in the current study are warranted. PMID:25449596

  5. Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors.

    PubMed

    Bedingfield, J S; Jane, D E; Kemp, M C; Toms, N J; Roberts, P J

    1996-08-01

    The metabotropic glutamate (mGlu) receptor antagonist properties of novel phenylglycine analogues were investigated in adult rat cortical slices (mGlu receptors negatively coupled to adenylyl cyclase), neonatal rat cortical slices and in cultured rat cerebellar granule cells (mGlu receptors coupled to phosphoinositide hydrolysis). (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-methyl-3-carboxymethyl-4-hydroxyphenylglycine (M3CM4HPG) and (RS)-alpha-methyl-4-hydroxy-3-phosphonomethylphenylglycine (M4H3PMPG) were demonstrated to have potent and selective effects against 10 microM L-2-amino-4-phosphonobutyrate (L-AP4)- and 0.3 microM (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine (L-CCG-1)-mediated inhibition of forskolin-stimulated cAMP accumulation in the adult rat cortex. In contrast, these compounds demonstrated either weak or no antagonism at mGlu receptors coupled to phosphoinositide hydrolysis in either neonatal rat cortex or in cultured cerebellar granule cells. These compounds thus appear to be useful discriminatory pharmacological tools for mGlu receptors and form the basis for the further development of novel antagonists. PMID:8864696

  6. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  7. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  8. The detection for hypochlorite by UV-Vis and fluorescent spectra based on oxidized ring opening and successive hydrolysis reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Kangming; Yin, Caixia; Chao, Jianbin; Zhang, Yongbin; Huo, Fangjun

    2016-09-01

    In this work, two high selective and sensitive fluorescent probes for ClO-, 7-Hydroxycoumarin and 4-Hydroxycoumarin were designed. The reaction mechanism that we speculated was the oxidized ring opening reaction and hydrolysis. The detection could be realized in quasi-aqueous phase and the detection limits of probe [7] and probe [4] for ClO- were found to be 56.8 nM and 70.5 nM. Furthermore, the probes can be used to cell imagings.

  9. The detection for hypochlorite by UV-Vis and fluorescent spectra based on oxidized ring opening and successive hydrolysis reaction.

    PubMed

    Xiong, Kangming; Yin, Caixia; Chao, Jianbin; Zhang, Yongbin; Huo, Fangjun

    2016-09-01

    In this work, two high selective and sensitive fluorescent probes for ClO(-), 7-Hydroxycoumarin and 4-Hydroxycoumarin were designed. The reaction mechanism that we speculated was the oxidized ring opening reaction and hydrolysis. The detection could be realized in quasi-aqueous phase and the detection limits of probe [7] and probe [4] for ClO(-) were found to be 56.8nM and 70.5nM. Furthermore, the probes can be used to cell imagings. PMID:27214272

  10. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  11. Celebrity Patients, VIPs, and Potentates

    PubMed Central

    Groves, James E.; Dunderdale, Barbara A.; Stern, Theodore A.

    2002-01-01

    Background: During the second half of the 20th century, the literature on the doctor-patient relationship mainly dealt with the management of “difficult” (personality-disordered) patients. Similar problems, however, surround other types of “special” patients. Method: An overview and analysis of the literature were conducted. As a result, such patients can be subcategorized by their main presentations; each requires a specific management strategy. Results: Three types of “special” patients stir up irrational feelings in their caregivers. Sick celebrities threaten to focus public scrutiny on the private world of medical caregivers. VIPs generate awe in caregivers, with loss of the objectivity essential to the practice of scientific medicine. Potentates unearth narcissism in the caregiver-patient relationship, which triggers a struggle between power and shame. Pride, privacy, and the staff's need to be in control are all threatened by introduction of the special patient into medicine's closed culture. Conclusion: The privacy that is owed to sick celebrities should be extended to protect overexposed staff. The awe and loss of medical objectivity that VIPs generate are counteracted by team leadership dedicated to avoiding any deviation from standard clinical procedure. Moreover, the collective ill will surrounding potentates can be neutralized by reassuring them that they are “special”—and by caregivers mending their own vulnerable self-esteem. PMID:15014712

  12. Activity-Based Probe for N-Acylethanolamine Acid Amidase.

    PubMed

    Romeo, Elisa; Ponzano, Stefano; Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-09-18

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  13. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    SciTech Connect

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M.

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  14. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis.

    PubMed Central

    Jaffrézou, J P; Levade, T; Bettaïeb, A; Andrieu, N; Bezombes, C; Maestre, N; Vermeersch, S; Rousse, A; Laurent, G

    1996-01-01

    The nature of the signaling pathway(s) which initiate drug-triggered apoptosis remains largely unknown and is of fundamental importance in understanding cell death induced by chemotherapeutic agents. Here we show that in the leukemic cell lines U937 and HL-60, daunorubicin, at concentrations which trigger apoptosis, stimulated two distinct cycles of sphingomyelin hydrolysis (approximately 20% decrease at 1 microM) within 4-10 min and 60-75 min with concomitant ceramide generation. We demonstrate that the increase in ceramide levels, which precedes apoptosis, is mediated by a neutral sphingomyelinase and not by ceramide synthase. Indeed, potent ceramide synthase inhibitors such as fumonisin B1 did not affect daunorubicin-triggered sphingomyelin hydrolysis, ceramide generation or apoptosis. In conclusion, we provide evidence that daunorubicin-triggered apoptosis is mediated by a signaling pathway which is initiated by an early sphingomyelin-derived ceramide production. Images PMID:8665849

  15. Effects of tachykinins on inositol phospholipid hydrolysis in slices of hamster urinary bladder.

    PubMed Central

    Bristow, D. R.; Curtis, N. R.; Suman-Chauhan, N.; Watling, K. J.; Williams, B. J.

    1987-01-01

    Tachykinin-stimulated inositol phospholipid hydrolysis was examined in slices of hamster urinary bladder. In the presence of lithium, to inhibit inositol monophosphatase activity, substance P, eledoisin and related tachykinins induced large, dose-dependent increases in [3H]-inositol monophosphate accumulation. The responses to substance P and eledoisin were not antagonized by the cholinoceptor antagonist, atropine. The rank order of potency for various tachykinins was kassinin greater than neurokinin A greater than neurokinin B greater than eledoisin greater than physaelamin greater than substance P greater than substance P methyl ester. The synthetic analogue [p-Glu6, D-Pro9]SP (6-11) was considerably more potent than its L-prolyl stereoisomer at stimulating inositol phospholipid hydrolysis. These results suggest that in the hamster urinary bladder, tachykinin-induced inositol phospholipid breakdown is mediated via tachykinin receptors of the SP-E type, as opposed to the SP-P type. PMID:3028559

  16. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  17. Camptothecin-catalyzed phospholipid hydrolysis in liposomes.

    PubMed

    Saetern, Ann Mari; Skar, Merete; Braaten, Asmund; Brandl, Martin

    2005-01-01

    Hydrolysis of phospholipid (PL) within camptothecin (CPT)-containing liposomes was studied systematically, after elevated lyso-phosphatidylcholine (LPC)-concentrations in pH 5, CPT-containing liposomes (22.1+/-0.9 mol%) relative to control-liposomes (7.3+/-0.5 mol%) occasionally had been observed after four months storage in fridge. Liposomes were prepared by dispersing freeze-dried PL/CPT mixtures in 25 mM phosphate buffered saline (PBS) of varying pH (5.0-7.8) and CPT concentrations (0, 3 and 6 mM). PL-hydrolysis was monitored by HPTLC, quantifying LPC. In an accelerated stability study (60 degrees C), a catalytic effect of CPT on PL-hydrolysis was observed after 40 h, but not up to 30 h of incubation. The pH profile of the hydrolysis indicated a stability optimum at pH 6.0 for the liposomes independent of CPT. The equilibrium point between the more active lactone- and the carboxylate-form of CPT was found to be pH 6.8. As a compromise, pH 6.0 was chosen, assuring >85% CPT to be present in the lactone form. At this pH, both control- and CPT-liposomes showed only minor hydrolysis after autoclaving (121 degrees C, 15 min). Storage at room temperature and in fridge (2 months), as well as accelerated ageing (70 degrees C, 25 h), gave a significant elevation of LPC content in CPT-liposomes relative to control-liposomes. This study demonstrates a catalytic effect of CPT on PL-hydrolysis, the onset of which seems to require a certain threshold level of hydrolytic degradation. PMID:15607259

  18. N,O-diacylated-N-hydroxyarylsulfonamides: nitroxyl precursors with potent smooth muscle relaxant properties

    SciTech Connect

    Fukuto, J.M.; Hszieh, R.; Gulati, P.; Chiang, K.T.; Nagasawa, H.T. )

    1992-09-30

    N,O-Diacylated-N-hydroxyarylsulfonamides are capable of slowly releasing nitroxyl (HNO) by simple, non-enzymatic hydrolysis in Krebs solution at 37 degrees C. Release of nitric oxide (NO) was not seen. These compounds were also found to elicit vasorelaxation in rabbit thoracic aorta in vitro, presumably as a result of their ability to release HNO. This effect was enhanced by the addition of superoxide dismutase (SOD). Thus, these results are consistent with previous work indicating that HNO is a potent vasorelaxant.

  19. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  20. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  1. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  2. Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...

  3. Mechanisms of lactone hydrolysis in acidic conditions.

    PubMed

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The acid-catalyzed hydrolysis of linear esters and lactones was studied using a hybrid supermolecule-polarizable continuum model (PCM) approach including up to six water molecules. The compounds studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate, methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. The theoretical results are in good quantitative agreement with the experimental measurements reported in the literature and also in excellent qualitative agreement with long-held views regarding the nature of the hydrolysis mechanisms at molecular level. The present results help to understand the balance between the unimolecular (A(AC)1) and bimolecular (A(AC)2) reaction pathways. In contrast to the experimental setting, where one of the two branches is often occluded by the requirement of rather extreme experimental conditions, we have been able to estimate both contributions for all the compounds studied and found that a transition from A(AC)2 to A(AC)1 hydrolysis takes place as acidity increases. A parallel work addresses the neutral and base-catalyzed hydrolysis of lactones. PMID:23731203

  4. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems. PMID:11563378

  5. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  6. Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate.

    PubMed Central

    Lazarowski, E. R.; Watt, W. C.; Stutts, M. J.; Boucher, R. C.; Harden, T. K.

    1995-01-01

    1. The human P2U-purinoceptor was stably expressed in 1321N1 human astrocytoma cells and the pharmacological selectivity of the expressed receptor was studied by measurement of inositol lipid hydrolysis. 2. High basal levels of inositol phosphates occurred in P2U-purinoceptor-expressing cells. This phenomenon was shown to be due to release of large amounts of ATP from 1321N1 cells, and could be circumvented by adoption of an assay protocol that did not involve medium changes. 3. UTP, ATP and ATP gamma S were full and potent agonists for activation of phospholipase C with EC50 values of 140 nM, 230 nM, and 1.72 microM, respectively. 5BrUTP, 2C1ATP and 8BrATP were also full agonists although less potent than their natural congeners. Little or no effect was observed with the selective P2Y-, P2X-, and P2T-purinoceptor agonists, 2MeSATP, alpha,beta-MeATP, and 2MeSADP, respectively. 4. Diadenosine tetraphosphate, Ap4A, was a surprisingly potent agonist at the expressed P2U-purinoceptor with an EC50 (720 nM) in the range of the most potent P2U-purinoceptor agonists. Ap4A may be a physiologically important activator of P2U-purinoceptors. PMID:8564228

  7. Non-catalytic steam hydrolysis of fats

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  8. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase

    PubMed Central

    2015-01-01

    Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance. PMID:25309810

  9. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.

    1992-10-05

    This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).

  10. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  11. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Pretreatment of sallow prior to enzymatic hydrolysis

    SciTech Connect

    Galbe, M.; Zacchi, G.; Scott, C.D.

    1986-01-01

    Pretreatment of fast-growing sallow by steam explosion prior to enzymic hydrolysis was investigated to find optimum conditions regarding pretreatment temperature and time. Some preliminary experiments with impregnation of the material with H/sub 2/SO/sub 4/ or Na/sub 2/SO/sub 3/ were performed to reduce the byproduct formation and to increase the xylose yield. A temperature of 220 degrees for 15 minutes gave the highest yield, approximately 80% of the glucose available based on raw material. The xylose recovered was equal to or less than 20% when no chemicals were added. Impregnation with Na/sub 2/SO/sub 3/ gave an improvement compared with the unimpregnated material. About 30% of the xylose content could thus be recovered after the enzymic hydrolysis. The results are promising. (Refs. 5).

  13. Pathway of processive ATP hydrolysis by kinesin

    PubMed Central

    Gilbert, Susan P.; Webb, Martin R.; Brune, Martin; Johnson, Kenneth A.

    2007-01-01

    Direct measurement of the kinetics of kinesin dissociation from microtubules, the release of phosphate and ADP from kinesin, and rebinding of kinesin to the microtubule have defined the mechanism for the kinesin ATPase cycle. The processivity of ATP hydrolysis is ten molecules per site at low salt concentration but is reduced to one ATP per site at higher salt concentration. Kinesin dissociates from the microtubule after ATP hydrolysis. This step is rate-limiting. The subsequent rebinding of kinesin · ADP to the microtubule is fast, so kinesin spends only a small fraction of its duty cycle in the dissociated state. These results provide an explanation for the motility differences between skeletal myosin and kinesin. PMID:7854446

  14. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  15. A Potent and Site-Selective Agonist of TRPA1.

    PubMed

    Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari

    2015-12-23

    TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation. PMID:26630251

  16. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine.

    PubMed

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2014-04-14

    As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow similar catalytic reaction mechanisms, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2(a)/TS2(b) should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal mol(-1)) is 2.5 kcal mol(-1) lower than that for the BChE-catalyzed hydrolysis (20.8 kcal mol(-1)). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal mol(-1) for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2(a) relative to TS2(b). The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354

  17. PLA recycling by hydrolysis at high temperature

    NASA Astrophysics Data System (ADS)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  18. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    PubMed Central

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J.

    2010-01-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes. PMID:21151438

  19. Fungal secretomes enhance sugar beet pulp hydrolysis

    PubMed Central

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-01-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g–1 protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1–17.5 mg g–1 SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  20. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  1. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  2. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters.

    PubMed

    Wakabayashi, Hidehiko; Wakabayashi, Motoko; Eisenreich, Wolfgang; Engel, Karl-Heinz

    2003-07-16

    The enantioselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol, two potent sulfur-containing aroma compounds, by lipase-catalyzed hydrolysis of the corresponding 3-acetylthioesters was investigated. The stereochemical course of the kinetic resolutions was followed by capillary gas chromatography using modified cyclodextrins as chiral stationary phases. The enzyme preparations tested varied significantly in terms of activity and enantioselectivity (E). The highest E value (E = 36) was observed for the hydrolysis of 3-acetylthiohexanal catalyzed by lipase B from Candida antarctica resulting in (S)-configured thiol products. Immobilization of the enzyme (E = 85) and the use of tert-butyl alcohol as cosolvent (E = 49) improved the enantioselectivity. Modification of the acyl moiety of the substrate (3-benzoylthiohexanal) had no significant impact. The sulfur-containing compounds investigated possess attractive odor properties, and only one of the enantiomers exhibits the pleasant citrus type note. PMID:12848509

  3. Preparation of fluorinated RNA nucleotide analogs potentially stable to enzymatic hydrolysis in RNA and DNA polymerase assays

    PubMed Central

    Shakhmin, Anton; Jones, John-Paul; Bychinskaya, Inessa; Zibinsky, Mikhail; Oertell, Keriann; Goodman, Myron F.; Prakash, G.K. Surya

    2015-01-01

    Analogs of ribonucleotides (RNA) stable to enzymatic hydrolysis were prepared and characterized. Computational investigations revealed that this class of compounds with a modified triphosphate exhibits the correct polarity and minimal steric effects compared to the natural molecule. Non-hydrolysable properties as well as the ability of the modified nucleotide to be recognized by enzymes were probed by performing single-turnover gap filling assays with T7 RNA polymerase and DNA polymerase β. PMID:26279588

  4. The effects of (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG), a potent and selective metabotropic glutamate receptor antagonist.

    PubMed Central

    Toms, N. J.; Jane, D. E.; Kemp, M. C.; Bedingfield, J. S.; Roberts, P. J.

    1996-01-01

    1. In this study we describe the potent antagonist activity of a novel metabotropic glutamate (mGlu) receptor antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG) which exhibits selectivity for mGlu receptors (group II and III) negatively coupled to adenylyl cyclase in the adult rat cortex. 2. Both the L-2-amino-4-phosphonobutyrate (L-AP4) and (2S, 1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-1) inhibition of forskolin-stimulated cyclic AMP accumulation were potently reversed by (RS)-CPPG (IC50 values: 2.2 +/- 0.6 nM and 46.2 +/- 18.2 nM, respectively). 3. In contrast, (RS)-CPPG acted as a weak antagonist against group I mGlu receptors. In neonatal rat cortical slices, (RS)-CPPG antagonized (KB = 0.65 +/- 0.07 mM) (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD)-stimulated phosphoinositide hydrolysis. (RS)-CPPG (100 microM) failed to influence L-quisqualate-stimulated phosphoinositide hydrolysis in cultured cerebellar granule cells. 4. In the rat cerebral cortex, (RS)-CPPG is the most potent antagonist of group II/III mGlu receptors yet described (with 20 fold selectivity for group III mGlu receptors), having negligible activity at group I mGlu receptors. PMID:8922731

  5. An aqueous fluorescent probe for Hg(2+) detection with high selectivity and sensitivity.

    PubMed

    Fang, Qian; Liu, Qian; Song, Xiangzhi; Kang, Jian

    2015-12-01

    An aqueous fluorescent probe, 1, was developed for the rapid detection of Hg(2+) with high sensitivity and excellent selectivity. Upon the addition of Hg(2+) in pure aqueous media, the Hg(2+)-mediated hydrolysis of vinyl ether and subsequent cyclization reactions converted probe 1 into the corresponding iminocoumarin dye, which is strongly fluorescent when excited. The application of this probe for the detection of intracellular Hg(2+) was successfully demonstrated in living cells. PMID:25761896

  6. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  7. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    NASA Astrophysics Data System (ADS)

    Neilson, James R.

    2011-12-01

    or structure, yet subtle and systematic changes in the mean-field spin interaction strength and spin entropy loss. Meanwhile, neutron powder diffraction reveals a fully compensated Ńeel state; a detailed analysis of the local structure defines the aperiodic clusters of polyhedra responsible for magnetic order. The rate of hydrolysis of metal precursors modulates the disposition of these polyhedral clusters. The strategy of kinetically controlling aqueous hydrolysis also extends to the formation of stoichiometrically ordered bimetallic crystals [MSn(OH)6], where the hydrolysis behavior for dissimilar metal cations must be controlled via counteranions or precursor selection. In the formation of these ordered double perovskite hydroxides, the rate of hydrolysis is held constant in the limit of kinetic control. Instead, the propensities of different cations to undergo controlled hydrolysis are probed by their ability to form ordered crystals. Collectively, these studies demonstrate how systematic variation in the kinetic conditions of materials preparation and the character of each solute control the structure and properties of materials, with a precision not attainable through traditional or near-equilibrium approaches.

  8. Improved method for detection of starch hydrolysis

    SciTech Connect

    Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

  9. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  10. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  11. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum.

    PubMed

    Ogunmolu, Funso Emmanuel; Kaur, Inderjeet; Gupta, Mayank; Bashir, Zeenat; Pasari, Nandita; Yazdani, Syed Shams

    2015-10-01

    The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass. PMID:26288988

  12. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis.

    PubMed

    Ribitsch, Doris; Yebra, Antonio Orcal; Zitzenbacher, Sabine; Wu, Jing; Nowitsch, Susanne; Steinkellner, Georg; Greimel, Katrin; Doliska, Ales; Oberdorfer, Gustav; Gruber, Christian C; Gruber, Karl; Schwab, Helmut; Stana-Kleinschek, Karin; Acero, Enrique Herrero; Guebitz, Georg M

    2013-06-10

    A cutinase from Thermomyces cellullosylitica (Thc_Cut1), hydrolyzing the synthetic polymer polyethylene terephthalate (PET), was fused with two different binding modules to improve sorption and thereby hydrolysis. The binding modules were from cellobiohydrolase I from Hypocrea jecorina (CBM) and from a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM). Although both binding modules have a hydrophobic nature, it was possible to express the proteins in E. coli . Both fusion enzymes and the native one had comparable kcat values in the range of 311 to 342 s(-1) on pNP-butyrate, while the catalytic efficiencies kcat/Km decreased from 0.41 s(-1)/ μM (native enzyme) to 0.21 and 0.33 s(-1)/μM for Thc_Cut1+PBM and Thc_Cut1+CBM, respectively. The fusion enzymes were active both on the insoluble PET model substrate bis(benzoyloxyethyl) terephthalate (3PET) and on PET although the hydrolysis pattern was differed when compared to Thc_Cut1. Enhanced adsorption of the fusion enzymes was visible by chemiluminescence after incubation with a 6xHisTag specific horseradish peroxidase (HRP) labeled probe. Increased adsorption to PET by the fusion enzymes was confirmed with Quarz Crystal Microbalance (QCM-D) analysis and indeed resulted in enhanced hydrolysis activity (3.8× for Thc_Cut1+CBM) on PET, as quantified, based on released mono/oligomers. PMID:23718548

  13. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  14. Simulation of continuous and batch hydrolysis of willow

    SciTech Connect

    Zacchi, G.; Dahlbom, J.; Scott, C.D.

    1986-01-01

    The influence of product and enzyme concentrations on the kinetics of the enzymic hydrolysis of alkali-pretreated willow is studied. The hydrolysis was performed in a UF-membrane reactor in which the product concentration was kept constant. An empirical 4-parameter rate equation that gives a good correlation to both continuous and batch hydrolysis data is presented. The model comprises the effects of enzyme concentration and product inhibition. (Refs. 11).

  15. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  16. Technical bases for precipitate hydrolysis process operating parameters. Revision 1

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  17. QS-21: a potent vaccine adjuvant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  18. Phenyltriazolinones as potent factor Xa inhibitors.

    PubMed

    Quan, Mimi L; Pinto, Donald J P; Rossi, Karen A; Sheriff, Steven; Alexander, Richard S; Amparo, Eugene; Kish, Kevin; Knabb, Robert M; Luettgen, Joseph M; Morin, Paul; Smallwood, Angela; Woerner, Francis J; Wexler, Ruth R

    2010-02-15

    We have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate. PMID:20100660

  19. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  20. Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme

    PubMed Central

    Hemmert, Andrew C.; Otto, Tamara C.; Chica, Roberto A.; Wierdl, Monika; Edwards, Jonathan S.; Lewis, Steven L.; Edwards, Carol C.; Tsurkan, Lyudmila; Cadieux, C. Linn; Kasten, Shane A.; Cashman, John R.; Mayo, Stephen L.; Potter, Philip M.; Cerasoli, Douglas M.; Redinbo, Matthew R.

    2011-01-01

    Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning. PMID:21445272

  1. Nerve agent hydrolysis activity designed into a human drug metabolism enzyme.

    PubMed

    Hemmert, Andrew C; Otto, Tamara C; Chica, Roberto A; Wierdl, Monika; Edwards, Jonathan S; Lewis, Steven M; Lewis, Steven L; Edwards, Carol C; Tsurkan, Lyudmila; Cadieux, C Linn; Kasten, Shane A; Cashman, John R; Mayo, Stephen L; Potter, Philip M; Cerasoli, Douglas M; Redinbo, Matthew R

    2011-01-01

    Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning. PMID:21445272

  2. Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis

    PubMed Central

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-01-01

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases. PMID:25941362

  3. Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite.

    PubMed

    Yang, Fang; Zhang, Xiaoxian; Song, Lina; Cui, Huating; Myers, John N; Bai, Tingting; Zhou, Ying; Chen, Zhan; Gu, Ning

    2015-05-13

    Uniform and multifunctional poly(lactic acid) (PLA)-nanoparticle composite has enormous potential for applications in biomedical and materials science. A detailed understanding of the surface and interface chemistry of these composites is essential to design such materials with optimized function. Herein, we designed and investigated a simple PLA-magnetic nanoparticle composite system to elucidate the impact of nanoparticles on the degradation of polymer-nanoparticle composites. In order to have an in-depth understanding of the mechanisms of hydrolysis in PLA-nanoparticle composites, degradation processes were monitored by several surface sensitive techniques, including scanning electron microscopy, contact angle goniometry, atomic force microscopy, and sum frequency generation spectroscopy. As a second-order nonlinear optical technique, SFG spectroscopy was introduced to directly probe in situ chemical nature at the PLA-magnetic nanoparticle composite/aqueous interface, which allowed for the delineation of molecular mechanisms of various hydrolysis processes for degradation at the molecular level. The best PLA-NP material, with a concentration of 20% MNP in the composite, was found to enhance the drug release rate greater than 200 times while maintaining excellent controlled drug release characteristics. It was also found that during hydrolysis, various crystalline-like PLA domains on the surfaces of PLA-nanoparticle composites influenced various hydrolysis behaviors of PLA. Results from this study provide new insight into the design of nanomaterials with controlled degradation and drug release properties, and the underlined molecular mechanisms. The methodology developed in this study to characterize the polymer-nanoparticle composites is general and widely applicable. PMID:25881356

  4. Hydrolysis of thymic humoral factor gamma 2 by neutral endopeptidase (EC 3.4.24.11).

    PubMed Central

    Indig, F E; Pecht, M; Trainin, N; Burstein, Y; Blumberg, S

    1991-01-01

    A search for the natural substrates for neutral endopeptidase (NEP; EC 3.4.24.11) in the immune system led to investigation of the enzyme's action on thymic humoral factor gamma 2 (THF). The ectoenzyme rapidly and efficiently hydrolyses the Lys6-Phe7 bond of the octapeptide. The site of cleavage was confirmed by h.p.l.c. analysis, amino acid analysis and sequence determination of the products. Phosphoramidon (3.6 microM), a potent inhibitor of the enzyme, prevents this cleavage even during prolonged incubation. The high efficiency of hydrolysis of THF by NEP is similar to that reported for [Leu5]enkephalin, and the dipeptide Phe-Leu is the C-terminal product in the hydrolysis of both peptides. The presence of NEP, reportedly identified as the common acute lymphoblastic leukaemia antigen (CALLA), in bone-marrow cells and other cells of the immune system raises the possibility that it may play a role in modulating the activity of peptides such as THF. PMID:1898375

  5. Lisdexamfetamine prodrug activation by peptidase-mediated hydrolysis in the cytosol of red blood cells.

    PubMed

    Sharman, Johannah; Pennick, Michael

    2014-01-01

    Lisdexamfetamine dimesylate (LDX) is approved as a once-daily treatment for attention-deficit/hyperactivity disorder in children, adolescents, and adults in some countries. LDX is a prodrug comprising d-amphetamine covalently linked to l-lysine via a peptide bond. Following oral administration, LDX is rapidly taken up from the small intestine by active carrier-mediated transport, probably via peptide transporter 1. Enzymatic hydrolysis of the peptide bond to release d-amphetamine has previously been shown to occur in human red blood cells but not in several other tissues. Here, we report that LDX hydrolytic activity resides in human red blood cell lysate and cytosolic extract but not in the membrane fraction. Among several inhibitors tested, a protease inhibitor cocktail, bestatin, and ethylenediaminetetra-acetic acid each potently inhibited d-amphetamine production from LDX in cytosolic extract. These results suggest that an aminopeptidase is responsible for hydrolytic cleavage of the LDX peptide bond, although purified recombinant aminopeptidase B was not able to release d-amphetamine from LDX in vitro. The demonstration that aminopeptidase-like activity in red blood cell cytosol is responsible for the hydrolysis of LDX extends our understanding of the smooth and consistent systemic delivery of d-amphetamine by LDX and the long daily duration of efficacy of the drug in relieving the symptoms of attention-deficit/hyperactivity disorder. PMID:25489246

  6. Lisdexamfetamine prodrug activation by peptidase-mediated hydrolysis in the cytosol of red blood cells

    PubMed Central

    Sharman, Johannah; Pennick, Michael

    2014-01-01

    Lisdexamfetamine dimesylate (LDX) is approved as a once-daily treatment for attention-deficit/hyperactivity disorder in children, adolescents, and adults in some countries. LDX is a prodrug comprising d-amphetamine covalently linked to l-lysine via a peptide bond. Following oral administration, LDX is rapidly taken up from the small intestine by active carrier-mediated transport, probably via peptide transporter 1. Enzymatic hydrolysis of the peptide bond to release d-amphetamine has previously been shown to occur in human red blood cells but not in several other tissues. Here, we report that LDX hydrolytic activity resides in human red blood cell lysate and cytosolic extract but not in the membrane fraction. Among several inhibitors tested, a protease inhibitor cocktail, bestatin, and ethylenediaminetetra-acetic acid each potently inhibited d-amphetamine production from LDX in cytosolic extract. These results suggest that an aminopeptidase is responsible for hydrolytic cleavage of the LDX peptide bond, although purified recombinant aminopeptidase B was not able to release d-amphetamine from LDX in vitro. The demonstration that aminopeptidase-like activity in red blood cell cytosol is responsible for the hydrolysis of LDX extends our understanding of the smooth and consistent systemic delivery of d-amphetamine by LDX and the long daily duration of efficacy of the drug in relieving the symptoms of attention-deficit/hyperactivity disorder. PMID:25489246

  7. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  8. A novel reaction mediated by human aldehyde oxidase: amide hydrolysis of GDC-0834.

    PubMed

    Sodhi, Jasleen K; Wong, Susan; Kirkpatrick, Donald S; Liu, Lichuan; Khojasteh, S Cyrus; Hop, Cornelis E C A; Barr, John T; Jones, Jeffrey P; Halladay, Jason S

    2015-06-01

    GDC-0834, a Bruton's tyrosine kinase inhibitor investigated as a potential treatment of rheumatoid arthritis, was previously reported to be extensively metabolized by amide hydrolysis such that no measurable levels of this compound were detected in human circulation after oral administration. In vitro studies in human liver cytosol determined that GDC-0834 (R)-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo- 4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b] thiophene-2-carboxamide) was rapidly hydrolyzed with a CLint of 0.511 ml/min per milligram of protein. Aldehyde oxidase (AO) and carboxylesterase (CES) were putatively identified as the enzymes responsible after cytosolic fractionation and mass spectrometry-proteomics analysis of the enzymatically active fractions. Results were confirmed by a series of kinetic experiments with inhibitors of AO, CES, and xanthine oxidase (XO), which implicated AO and CES, but not XO, as mediating GDC-0834 amide hydrolysis. Further supporting the interaction between GDC-0834 and AO, GDC-0834 was shown to be a potent reversible inhibitor of six known AO substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834. PMID:25845827

  9. Fermentable sugars by chemical hydrolysis of biomass

    PubMed Central

    Binder, Joseph B.; Raines, Ronald T.

    2010-01-01

    Abundant plant biomass has the potential to become a sustainable source of fuels and chemicals. Realizing this potential requires the economical conversion of recalcitrant lignocellulose into useful intermediates, such as sugars. We report a high-yielding chemical process for the hydrolysis of biomass into monosaccharides. Adding water gradually to a chloride ionic liquid-containing catalytic acid leads to a nearly 90% yield of glucose from cellulose and 70–80% yield of sugars from untreated corn stover. Ion-exclusion chromatography allows recovery of the ionic liquid and delivers sugar feedstocks that support the vigorous growth of ethanologenic microbes. This simple chemical process, which requires neither an edible plant nor a cellulase, could enable crude biomass to be the sole source of carbon for a scalable biorefinery. PMID:20194793

  10. Enzymatic hydrolysis of PTT polymers and oligomers.

    PubMed

    Eberl, A; Heumann, S; Kotek, R; Kaufmann, F; Mitsche, S; Cavaco-Paulo, A; Gübitz, G M

    2008-05-20

    Oligomers and polymers (film, fabrics) of the linear aromatic polyester poly(trimethylene terephthalate) (PTT) were treated with polyesterases from Thermomyces lanuginosus, Penicillium citrinum, Thermobifida fusca and Fusarium solani pisi. The cutinase from T. fusca was found to release the highest amounts of hydrolysis products from PTT materials and was able to open and hydrolyse a cyclic PTT dimer according to RP-HPLC-UV detection. In contrast, the lipase from T. lanuginosus also showed activity on the PTT fibres and on bis(3-hydroxypropyl) terephthalate (BHPT) but was not able to hydrolyse the polymer film, mono(3-hydroxypropyl) terephthalate (MHPT) nor the cyclic dimer of PTT. As control enzymes inhibited with mercury chloride were used. Surface hydrophilicity changes were investigated with contact angle measurements and the degree of crystallinity changes were determined with DSC. PMID:18405994

  11. Catalytic Zinc Complexes for Phosphate Diester Hydrolysis**

    PubMed Central

    Tirel, Emmanuel Y; Bellamy, Zoë; Adams, Harry; Lebrun, Vincent; Duarte, Fernanda; Williams, Nicholas H

    2014-01-01

    Creating efficient artificial catalysts that can compete with biocatalysis has been an enduring challenge which has yet to be met. Reported herein is the synthesis and characterization of a series of zinc complexes designed to catalyze the hydrolysis of phosphate diesters. By introducing a hydrated aldehyde into the ligand we achieve turnover for DNA-like substrates which, combined with ligand methylation, increases reactivity by two orders of magnitude. In contrast to current orthodoxy and mechanistic explanations, we propose a mechanism where the nucleophile is not coordinated to the metal ion, but involves a tautomer with a more effective Lewis acid and more reactive nucleophile. This data suggests a new strategy for creating more efficient metal ion based catalysts, and highlights a possible mode of action for metalloenzymes. PMID:24919567

  12. Pretreatment and enzymatic hydrolysis of corn fiber

    SciTech Connect

    Grohmann, K.; Bothast, R.J.

    1996-10-01

    Corn fiber is a co-product of the corn wet milling industry which is usually marketed as a low value animal feed ingredient. Approximately 1.2 x 10{sup 6} dry tons of this material are produced annually in the United States. The fiber is composed of kernel cell wall fractions and a residual starch which can all be potentially hydrolyzed to a mixture of glucose, xylose, arabinose and galactose. We have investigated a sequential saccharification of polysaccharides in corn fiber by a treatment with dilute sulfuric acid at 100 to 160{degrees}C followed by partial neutralization and enzymatic hydrolysis with mixed cellulose and amyloglucosidase enzymes at 45{degrees}C. The sequential treatment achieved a high (approximately 85%) conversion of all polysaccharides in the corn fiber to monomeric sugars, which were in most cases fermentable to ethanol by the recombinant bacterium Escherichia coli KOll.

  13. Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin

    ERIC Educational Resources Information Center

    Marrs, Peter S.

    2004-01-01

    An exercise that provides a hands-on demonstration of the hydrolysis of aspirin is presented. The key to understanding the hydrolysis is recognizing that all six process may occur simultaneously and that the observed rate constant is the sum of the rate constants that one rate constant dominates the overall process.

  14. Reaction Dynamics of ATP Hydrolysis Catalyzed by P-Glycoprotein

    PubMed Central

    2015-01-01

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug–drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With γ18O4-labeled ATP, no positional isotope exchange is detectable at the bridging β-phosphorus–O−γ-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three 18O/two 18O/one 18O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO42– (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the γ-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  15. Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of inhibitory compounds by bioabatement, combined with xylan hydrolysis, enables effective cellulose hydrolysis of pretreated corn stover, for fermentation of the sugars to fuel ethanol or other products. The fungus Coniochaeta ligniaria NRRL30616 eliminates most enzyme and fermentation inhi...

  16. Ultrasound Enhancement of Enzymatic Hydrolysis of Cellulose Plant Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The work reported here is based on acceleration of enzymatic hydrolysis of plant biomass substrate by introduction of low intensity, uniform ultrasound field into a reaction chamber (bio-reactor). This method may serve as improvement of rates in the hydrolysis of cellulosic materials to sugars, whi...

  17. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  18. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation.

    PubMed

    Meng, Ling-hua; Ding, Jian

    2007-09-01

    Salvicine is a novel diterpenoid quinone compound obtained by structural modification of a natural product lead isolated from a Chinese herb with potent growth inhibitory activity against a wide spectrum of human tumor cells in vitro and in mice bearing human tumor xenografts. Salvicine has also been found to have a profound cytotoxic effect on multidrug-resisitant (MDR) cells. Moreover, Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft. Recent studies demonstrated that salvicine is a novel non-intercalative topoisomerase II (Topo II) poison by binding to the ATPase domain, promoting DNA-Topo II binding and inhibiting Topo II-mediated DNA relegation and ATP hydrolysis. Further studies have indicated that salcivine-elicited ROS plays a central role in salvicine-induced cellular response including Topo II inhibition, DNA damage, circumventing MDR and tumor cell adhesion inhibition. PMID:17723179

  19. Design of potent and selective human cathepsin K inhibitors that span the active site

    PubMed Central

    Thompson, Scott K.; Halbert, Stacie M.; Bossard, Mary J.; Tomaszek, Thaddeus A.; Levy, Mark A.; Zhao, Baoguang; Smith, Ward W.; Abdel-Meguid, Sherin S.; Janson, Cheryl A.; D’Alessio, Karla J.; McQueney, Michael S.; Amegadzie, Bernard Y.; Hanning, Charles R.; DesJarlais, Renee L.; Briand, Jacques; Sarkar, Susanta K.; Huddleston, Michael J.; Ijames, Carl F.; Carr, Steven A.; Garnes, Keith T.; Shu, Art; Heys, J. Richard; Bradbeer, Jeremy; Zembryki, Denise; Lee-Rykaczewski, Liz; James, Ian E.; Lark, Michael W.; Drake, Fred H.; Gowen, Maxine; Gleason, John G.; Veber, Daniel F.

    1997-01-01

    Potent and selective active-site-spanning inhibitors have been designed for cathepsin K, a cysteine protease unique to osteoclasts. They act by mechanisms that involve tight binding intermediates, potentially on a hydrolytic pathway. X-ray crystallographic, MS, NMR spectroscopic, and kinetic studies of the mechanisms of inhibition indicate that different intermediates or transition states are being represented that are dependent on the conditions of measurement and the specific groups flanking the carbonyl in the inhibitor. The species observed crystallographically are most consistent with tetrahedral intermediates that may be close approximations of those that occur during substrate hydrolysis. Initial kinetic studies suggest the possibility of irreversible and reversible active-site modification. Representative inhibitors have demonstrated antiresorptive activity both in vitro and in vivo and therefore are promising leads for therapeutic agents for the treatment of osteoporosis. Expansion of these inhibitor concepts can be envisioned for the many other cysteine proteases implicated for therapeutic intervention. PMID:9405598

  20. Hydrolysis of oligoribonucleotides: influence of sequence and length.

    PubMed Central

    Kierzek, R

    1992-01-01

    The chemical stability of phosphodiester bonds of some oligoribonucleotides in the presence of a cofactor like polyvinylpyrolidine (PVP) is sequence dependent. It was found that pyrimidine-A (YA) and pyrimidine-C (YC) are especially susceptible to hydrolysis. The hydrolyzability of this same phosphodiester bond is dependent on its position in the oligomer. The presence of 3' and 5'-adjacent nucleotides enhances hydrolysis of the UA phosphodiester bond. The acceleration of the hydrolysis of UA by a 5'-adjacent nucleotide is not base dependent. However, a 3'-adjacent purine increases hydrolysis of a UA phosphodiester bond more than a 3'-pyrimidine. The presence of the exoamino group on the 3'-side base (on 6 and 4 position for adenosine and cytidine, respectively) of YA or YZ phosphodiester bond is required for hydrolysis. Images PMID:1408823

  1. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. PMID:25898249

  2. Enzymatic hydrolysis of biomass from wood.

    PubMed

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. PMID:26833542

  3. Synthesis, hydrolysis and stability of psilocin glucuronide.

    PubMed

    Martin, Rafaela; Schürenkamp, Jennifer; Pfeiffer, Heidi; Lehr, Matthias; Köhler, Helga

    2014-04-01

    A two-step synthesis of psilocin glucuronide (PCG), the main metabolite of psilocin, with methyl 2,3,4-tri-O-isobutyryl-1-O-trichloroacetimidoyl-α-d-glucopyranuronate is reported. With the synthesized PCG, hydrolysis conditions in serum and urine were optimized. Escherichia coli proved to be a better enzyme source for β-glucuronidase than Helix pomatia. It was essential to add ascorbic acid to serum samples to protect psilocin during incubation. Furthermore the stability of PCG and psilocin was compared as stability data are the basis for forensic interpretation of measurements. PCG showed a greater long-term stability after six months in deep frozen serum and urine samples than psilocin. The short-term stability of PCG for one week in whole blood at room temperature and in deep frozen samples was also better than that of psilocin. Therefore, PCG can be considered to be more stable than the labile psilocin and should always be included if psilocin is analyzed in samples. PMID:24513688

  4. Engineered Promoters for Potent Transient Overexpression

    PubMed Central

    Ideses, Diana; Tikotzki, Ravid; Shir-Shapira, Hila; Shefi, Orit; Juven-Gershon, Tamar

    2016-01-01

    The core promoter, which is generally defined as the region to which RNA Polymerase II is recruited to initiate transcription, plays a pivotal role in the regulation of gene expression. The core promoter consists of different combinations of several short DNA sequences, termed core promoter elements or motifs, which confer specific functional properties to each promoter. Earlier studies that examined the ability to modulate gene expression levels via the core promoter, led to the design of strong synthetic core promoters, which combine different core elements into a single core promoter. Here, we designed a new core promoter, termed super core promoter 3 (SCP3), which combines four core promoter elements (the TATA box, Inr, MTE and DPE) into a single promoter that drives prolonged and potent gene expression. We analyzed the effect of core promoter architecture on the temporal dynamics of reporter gene expression by engineering EGFP expression vectors that are driven by distinct core promoters. We used live cell imaging and flow cytometric analyses in different human cell lines to demonstrate that SCPs, particularly the novel SCP3, drive unusually strong long-term EGFP expression. Importantly, this is the first demonstration of long-term expression in transiently transfected mammalian cells, indicating that engineered core promoters can provide a novel non-viral strategy for biotechnological as well as gene-therapy-related applications that require potent expression for extended time periods. PMID:26872062

  5. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel. PMID:27209457

  6. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    PubMed

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel Δ(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  7. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose.

    PubMed

    Bertran, M S; Dale, B E

    1985-02-01

    Cellulose samples from cotton and wood pulps with varying low degrees of crystallinity (mechanically decrystallized) were studied. The influence of initial cellulose crystallinity on sugar yield after enzymatic hydrolysis was determined by two different methods. As expected, samples with low crystallinity were much more accessible to enzymatic attack and glucose yields were higher than were samples of high initial crystallinity. Hydrolysis of cellulose seems more dependent on cellulose crystallinity than on the source of cellulose. It is known that decrystallized or amorphous cellulose can recrystallize under proper conditions, e.g., during acid hydrolysis. The data reported here also reveal some recrystallization during enzymatic hydrolysis which probably occurs simulataneously with a selective enzymatic attack on the amorphous regions of cellulose. In all cases, the amorphous celluloses recrystallized in the original lattice form, that of native cellulose. PMID:18553653

  8. Energetic approach of biomass hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams. PMID:25536511

  9. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  10. A General Approach for Teaching Hydrolysis of Salts.

    ERIC Educational Resources Information Center

    Aguirre-Ode, Fernando

    1987-01-01

    Presented is a general approach and equation for teaching the hydrolysis of salts. This general equation covers many more sets of conditions than those currently in textbooks. The simplifying assumptions leading to the known limiting equations are straightforward. (RH)

  11. Kinetics of the hydrolysis of guanosine 5'-phospho-2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1986-01-01

    The hydrolysis kinetics of guanosine 5'-phospho-2-methylimidazolide (2-MeImpG) in aqueous buffered solutions of various pH's was studied at 75 and 37 C, using spectrophotometric and HPLC techniques. The hydrolysis was found to be very slow even at low pH. At 75 C and pH at or below l.0, two kinetic processes were observed: the more rapid one was attributed to the hydrolysis of the phosphoimidazolide P-N bond; the second, much slower one, was attributed to the cleavage of the glycosidic bond. It is noted that the P-N hydrolysis in phosphoimidazolides is very slow compared to other phosphoramidates, and that this might be one of the reasons why the phosphoimidazolides showed an extraordinary ability to form long oligomers under template-directed conditions.

  12. Hydrolysis of Al3+ from constrained molecular dynamics.

    PubMed

    Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

    2006-02-21

    We investigated the hydrolysis reactions of Al(3+) in AlCl(3) aqueous solution using the constrained molecular dynamics based on the Car-Parrinello molecular-dynamics method. By employing the proton-aluminum coordination number as a reaction coordinate in the constrained molecular dynamics the deprotonation as well as dehydration processes are successfully realized. From our free-energy difference of DeltaG(0) approximately 8.0 kcal mol(-1) the hydrolysis constant pK(a1) is roughly estimated as 5.8, comparable to the literature value of 5.07. We show that the free-energy difference for the hydrolysis of Al(3+) in acidic conditions is at least 4 kcal mol(-1) higher than that in neutral condition, indicating that the hydrolysis reaction is inhibited by the presence of excess protons located around the hydrated ion, in agreement with the change of the predominant species by pH. PMID:16497053

  13. Sub-Equimolar Hydrolysis and Condensation of Organophosphates

    DOE PAGESBeta

    Alam, Todd M.; Kinnan, Mark K.; Wilson, Brendan W.; Wheeler, David R.

    2016-07-16

    We characterized the in-situ hydrolysis and subsequent condensation reaction of the chemical agent simulant diethyl chlorophosphate (DECP) by high-resolution 31P NMR spectroscopy following the addition of water in sub-equimolar concentrations. Moreover, the identification and quantification of the multiple pyrophosphate and larger polyphosphate chemical species formed through a series of self-condensation reactions are reported. Finally, the DECP hydrolysis kinetics and distribution of breakdown species was strongly influenced by the water concentration and reaction temperature.

  14. Monitoring of enzymatic hydrolysis of starch by microdialysis sampling coupled on-line to anion exchange chromatography and integrated pulsed electrochemical detection using post-column switching

    SciTech Connect

    Torto, N.; Gorton, L.; Emneus, J.; Laurell, T.; Marko-Varga, G.; Akerberg, C.; Zacchi, G. |

    1997-12-05

    A quantitative evaluation of the hydrolysis of wheat starch using Termamyl, a thermostable {alpha}-amylase, is reported. Data from the monitoring of the hydrolysis of wheat starch indicated that, after 1 h, glucose and maltooligosaccharides up to DP 7 were the main hydrolysis products and thus enabled optimization of a liquefaction step during the production of L-lactic acid. The monitoring system used, both in the on- and off-line mode, was based on continuous flow microdialysis sampling (CFMS) coupled to anion exchange chromatography and integrated pulsed electrochemical detection (IPED). A microdialysis probe equipped with a 5-mm polysulfone (SPS 4005) membrane, with a molecular-weight cut-off of 5 kDa, was used to sample the hydrolysis products of native wheat starch at 90 C. Characteristic fingerpoint separations were achieved by anion exchange chromatography after enzymatic hydrolysis. Post-column switching improved the detection and, consequently, also quantification of the hydrolysates as fouling of the electrode could be reduced. Maltooligosaccharide standards were used for quantification and to verify the elution of the hydrolysates by spiking the off-line samples.

  15. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  16. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

    PubMed

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K; Dean, Dennis R; Hoffman, Brian M; Antony, Edwin; Seefeldt, Lance C

    2013-10-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s(-1), 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s(-1), 25 °C), (ii) ATP hydrolysis (kATP = 70 s(-1), 25 °C), (iii) Phosphate release (kPi = 16 s(-1), 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s(-1), 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein-protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Fe(ox)(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  17. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. PMID:27130543

  18. Furfural/ethanol coproduction from biomass feedstocks using acid hydrolysis

    SciTech Connect

    Barrier, J.W.; Bulls, M.M.; Broder, J.D.

    1996-12-31

    The Tennessee Valley Authority (TVA) has been involved in research and development to produce high-value chemicals from biomass for over 15 years. Use of biomass releases less carbon dioxide than use of fossil fuels, and thus represents a more environmentally friendly source of chemicals and fuels. Two biomass conversion processes have been developed as a result of TVA`s work--concentrated acid hydrolysis and dilute acid hydrolysis. Both processes use sulfuric acid as a catalyst. Early hydrolysis research focused on improving ethanol yields through hydrolysis and five-carbon sugar fermentation research. Both processes have been demonstrated at the pilot plant scale. Current work is focused on the development of integrated systems for producing ethanol and a variety of other chemicals and products from biomass. Production of furfural and ethanol from high hemicellulose feedstocks has been identified by TVA as an integrated system with technical and economic potential for commercial success. A system design has been developed to produce ethanol and furfural using dilute acid hydrolysis of sycamore. Furfural yields for the system are estimated at 180--240 pound/ton. Ethanol process yields are 25--38 gallon/ton. Capital and operating costs for a 4,500 ton/day facility are estimated to be $609 million and $183 million, respectively. The dilute acid hydrolysis process proposed by TVA will be described along with additional process economics and potential furfural markets.

  19. Nicosulfuron: alcoholysis, chemical hydrolysis, and degradation on various minerals.

    PubMed

    Sabadie, Jean

    2002-01-30

    Alcoholysis (methanol or ethanol) and hydrolysis (pH ranging from 4 to 11) of the herbicide nicosulfuron at 30 degrees C principally involves the breakdown of the urea part of the molecule. A high yield of the corresponding carbamate was obtained along with aminopyrimidine during alcoholysis. Hydrolysis led to both aminopyrimidine and pyridylsulfonamide. The latter compound may be easily cyclized (pH > or = 7). First-order kinetics describe the rates of alcoholysis and hydrolysis well. The rate constants (0.44 days(-1) for methanolysis) decreased from 0.50 to 0.002 days(-1) as pH increased from 4 to 8, then remained stable under alkaline conditions. In acidic or neutral solution, the hydrolysis path appeared prevalent (> or =70%), whereas in an alkaline medium it decreased when pH increased. The chemical degradation of nicosulfuron on various dry minerals (calcium bentonite, kaolinite, silica gel, H(+) bentonite, montmorillonite K10, and alumina) was investigated at 30 degrees C. The best conditions for the degradation are obtained on acidic minerals after herbicide deposition using the liquid method. Under these conditions an acceptable correlation with pseudo-first-order kinetics was observed, and the major degradation path is similar to that proposed for chemical hydrolysis. Conversely, alumina seemed to favor other unknown degradation processes. The hydrolysis paths of nicosulfuron and rimsulfuron appeared to be different. PMID:11804524

  20. [Enhanced enzymatic hydrolysis of excess sludge by surfactant].

    PubMed

    Yu, Jing; Luo, Kun; Yang, Qi; Li, Xiao-Ming; Xie, Bing-Xin; Yang, Guo-Jing; Mo, Chuang-Rong

    2011-08-01

    In order to enhance the efficiency of enzymatic hydrolysis of excess sludge, sodium dodecyl sulfate (SDS) was added to the system to explore the feasibility of promotion the enzyme hydrolysis. The results showed that the enzymatic hydrolysis of excess sludge could be greatly improved by SDS, and the mixed enzymes system was more effective than that by single enzyme system. SCOD releasing increased linearly with the increase of SDS dosage at the mixed enzymes concentration of 0.06 g/g. SCOD/TCOD increased from 1.3% to 54.3% and VSS reduction achieved to 43.2% at the SDS dosage of 0.20 g/g. Further studies indicated that SDS could improve the activity of external enzymes. At SDS dosage of 0.10 g/g, the protease activity of SDS + protease showed a 2. 3-time increase and the amylase activity of SDS + amylase showed a 1.2-time increase compared with enzymatic treatment. After 4 h hydrolysis, the concentration of protein, NH4+ -N and soluble sugar in SDS + mixed enzymes system were improved by 85.4%, 92.5% and 64.0%, respectively. Correspondingly, sludge hydrolysis within prior 4 h was consistent with first-order reaction dynamics. The reaction rate constant (K) of soluble sugar increased from 0.23 to 0.41, which indicated that the reaction rate of hydrolysis increased significantly. PMID:22619958

  1. Separation of thiol and cyanide hydrolysis products of chemical warfare agents by capillary electrophoresis.

    PubMed

    Copper, Christine L; Collins, Greg E

    2004-03-01

    The fluorescence derivatizing agent, o-phthalaldehyde (OPA), has been applied to the separation and detection of cyanide and several structurally similar thiols by capillary electrophoresis (CE)-laser induced fluorescence (LIF). Of particular interest to this investigation was the separation of 2-dimethylaminoethanethiol, 2-diethylaminoethanethiol, and cyanide, each of which are hydrolysis products or hydrolysis product simulants of the chemical warfare (CW) agents O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (R-VX), and tabun (GA). Other structurally similar thiols simultaneously resolved by this method include 1-pentanethiol and 2-mercaptoethanol. Instrumental parameters were probed and optimum values for capillary length (50 cm) and inner diameter (75 microm), injection time (30 s) and field strength (15 kV) were determined. Sample stacking methods enabled detection limits of 9.3 microg/L for cyanide, 1.8 microg/L for 2-diethylaminoethanethiol, 35 microg/L for 2-dimethylaminoethanethiol, 15 microg/L for 2-mercaptoethanol, and 89 microg/L for 1-pentanethiol. The linearity of the method was verified over an order of magnitude and the reproducibility was found to be 3.0%. PMID:15004852

  2. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. PMID:22112764

  3. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  4. Hydrolysis of microporous polyamide-6 membranes as substrate for in situ synthesis of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tang, Jianxin; He, Nongyue; Nie, Libo; Xiao, Pengfeng; Chen, Hong

    2004-02-01

    This article provides a novel method of preparing substrate for in situ synthesis of oligonucleotide by hydrolyzing microporous polyamide-6 membranes in a 0.01 mol/l/NaOH/(H 2O-CH 3OH) mixture medium with refluxing about 36 h. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) demonstrated the emergence of amines (NH 2) on the surface. Optimum hydrolyzing conditions were determined through the ultra-violet (UV) spectra. A pH value of 12 and a hydrolysis time of 36 h are the preferred conditions for the modification. The treated membrane can be applied to in situ synthesis of oligonucleotide and, for example, the oligonucleotide probes of 5 '-AAC CAC CAA ACA CAC-3 ' were successfully synthesized on the hydrolyzed membrane. The single step coupling efficiency determined by ultraviolet (UV) spectra is above 98%.

  5. Potent antitrypanosomal triterpenoid saponins from Mussaenda luteola

    PubMed Central

    Mohamed, Shaymaa M.; Bachkeet, Enaam Y.; Bayoumi, Soad A.; Jain, Surendra; Cutler, Stephen J.; Tekwani, Babu L.; Ross, Samir A.

    2016-01-01

    Five new triterpenoid saponins, heinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-β-d-glucopyranoside (1), heinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (2), 2α-hydroxyheinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-β-d-glucopyranoside (3), 2α-hydroxyheinsiagenin A 3-O-[β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (4) and N-(2S, 3R, 4R-3-methyl-4-pentanolid-2-yl)-18-hydroxylanosta-8 (9), 22E, 24E-trien-27-amide-3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (5) were isolated from the aerial parts of Mussaenda luteola Delile (Rubiaceae). Structural elucidation was based on the analysis of spectroscopic data (1D and 2D NMR) and HR-ESI-MS. Compound 1 showed potent antitrypanosomal activity with an IC50 value of 8.80 μM. Compounds 2–4 showed highly potent antitrypanosomal activity with IC50 values ranging between (2.57–2.84 μM) and IC90 values ranging between (3.36–4.35 μM), which are 5 fold greater than the positive control DFMO (IC50 and IC90 values of 13.06 and 28.99 μM, respectively). Compounds 1 and 2 showed moderate affinity to μ-opioid receptors with Ki values of 9.936 μM and 0.872 μM, respectively compared to a Ki value of 1.958 nM for the positive control, naloxone HCl. PMID:26524249

  6. Potent antitrypanosomal triterpenoid saponins from Mussaenda luteola.

    PubMed

    Mohamed, Shaymaa M; Bachkeet, Enaam Y; Bayoumi, Soad A; Jain, Surendra; Cutler, Stephen J; Tekwani, Babu L; Ross, Samir A

    2015-12-01

    Five new triterpenoid saponins, heinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-β-d-glucopyranoside (1), heinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (2), 2α-hydroxyheinsiagenin A 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-β-d-glucopyranoside (3), 2α-hydroxyheinsiagenin A 3-O-[β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (4) and N-(2S, 3R, 4R-3-methyl-4-pentanolid-2-yl)-18-hydroxylanosta-8 (9), 22E, 24E-trien-27-amide-3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (5) were isolated from the aerial parts of Mussaenda luteola Delile (Rubiaceae). Structural elucidation was based on the analysis of spectroscopic data (1D and 2D NMR) and HR-ESI-MS. Compound 1 showed potent antitrypanosomal activity with an IC50 value of 8.80μM. Compounds 2-4 showed highly potent antitrypanosomal activity with IC50 values ranging between (2.57-2.84μM) and IC90 values ranging between (3.36-4.35μM), which are 5 fold greater than the positive control DFMO (IC50 and IC90 values of 13.06 and 28.99μM, respectively). Compounds 1 and 2 showed moderate affinity to μ-opioid receptors with Ki values of 9.936μM and 0.872μM, respectively compared to a Ki value of 1.958nM for the positive control, naloxone HCl. PMID:26524249

  7. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). PMID:25150520

  8. Hydrolysis and fractionation of lignocellulosic biomass

    DOEpatents

    Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.

    2000-01-01

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4

  9. Molecular Docking, Metal Substitution and Hydrolysis Reaction of Chiral Substrates of Phosphotriesterase.

    PubMed

    de Castro, Alexandre A; Caetano, Melissa S; Silva, Telles C; Mancini, Daiana T; Rocha, Eduardo Pereira; da Cunha, Elaine F F; Ramalho, Teodorico C

    2016-01-01

    During World War II, organophosphorus compounds with neurotoxic action were developed and used as the basis for the development of structures currently used as pesticides in the agricultural industry. Among the nerve agents, Tabun, Sarin, Soman and VX are the most important. The factor responsible for the high toxicity of organophosphorus (OP) is the acetylcholinesterase inhibition. However, one of the characterized enzymes capable of degrading OP is Phosphotriesterase (PTE). This enzyme has generated considerable interest for applications of rapid and complete detoxification. Due to the importance of bioremediation methods for the poisoning caused by OP, this work aims to study the interaction mode between the PTE enzyme and organophosphorus compounds, in this case, Sarin, Soman, Tabun and VX have been used, which are potent acetylcholinesterase inhibitors, taking into account the enantiomers "Rp" and " Sp" of each compound, with the Sp-enantiomers presenting the higher toxicity. With that, we were able to demonstrate the existence of the stereochemical preference by PTE in these compounds. With the purpose of increasing the speed of the hydrolysis mechanism, we have proposed a modification in the enzyme active site structure, where Zn(2+) ions were substituted by Al(3+) ions. To analyze the stability of Al(3+) ions in the wild-type PTE active site, MD simulations were also performed. This mutation brought relevant results; in this case, there was a reduction of the reaction energy barrier for all the compounds, mainly for VX in which the reaction presented lower activation energy values, and consequently, a faster hydrolysis process. PMID:27012528

  10. Hydrolysis of cisplatin--a first-principles metadynamics study.

    PubMed

    Lau, Justin Kai-Chi; Ensing, Bernd

    2010-09-21

    Cisplatin, or cis-[Pt(NH(3))(2)Cl(2)], was the first member of a new revolutionary class of anticancer drugs that is still used today for the treatment of a wide variety of cancers. The mode of action of cisplatin starts inside the cell with the hydrolysis of Pt-Cl bonds to form a Pt-aqua complex. The solvent environment plays an essential role in many biochemical processes in general, and is expected to have a particular strong effect on the activation (hydrolysis) of cisplatin and cisplatin derivatives. To investigate these solvent effects, we have studied the explicit solvent structures during cisplatin hydrolysis by means of Car-Parrinello molecular dynamics simulations. Since hydrolysis is an activated process, and thus a rare event on the simulation timescale, we have applied the metadynamics sampling technique to map out the free energy landscape from which the reaction mechanism and activation free energy are obtained. Our simulations show that hydrogen bonding between solvent water molecules and metal complexes in the hydrolyzed product systems is stronger than that in the reactant cisplatin system. In addition, the free energy profiles from our metadynamics simulations for the cisplatin hydrolysis shows that the second hydrolysis of cisplatin is thermodynamically favourable, which is in good agreement with experimental results and previous static density functional theory calculations. The reactant channels for both hydrolysis steps are rather wide and flat, indicative of a continuous spectrum of allowed mechanisms with no strong preference for either concerted dissociative or concerted associative pathways. Three or five coordinated metastable intermediates do not exist in aqueous solution. PMID:20582358

  11. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L.

    PubMed

    Miller, Bailey; Friedman, Aaron J; Choi, Hyukjae; Hogan, James; McCammon, J Andrew; Hook, Vivian; Gerwick, William H

    2014-01-24

    A number of marine natural products are potent inhibitors of proteases, an important drug target class in human diseases. Hence, marine cyanobacterial extracts were assessed for inhibitory activity to human cathepsin L. Herein, we have shown that gallinamide A potently and selectively inhibits the human cysteine protease cathepsin L. With 30 min of preincubation, gallinamide A displayed an IC50 of 5.0 nM, and kinetic analysis demonstrated an inhibition constant of ki = 9000 ± 260 M(-1) s(-1). Preincubation-dilution and activity-probe experiments revealed an irreversible mode of inhibition, and comparative IC50 values display a 28- to 320-fold greater selectivity toward cathepsin L than closely related human cysteine cathepsin V or B. Molecular docking and molecular dynamics simulations were used to determine the pose of gallinamide in the active site of cathepsin L. These data resulted in the identification of a pose characterized by high stability, a consistent hydrogen bond network, and the reactive Michael acceptor enamide of gallinamide A positioned near the active site cysteine of the protease, leading to a proposed mechanism of covalent inhibition. These data reveal and characterize the novel activity of gallinamide A as a potent inhibitor of human cathepsin L. PMID:24364476

  12. The Marine Cyanobacterial Metabolite Gallinamide A is a Potent and Selective Inhibitor of Human Cathepsin L

    PubMed Central

    Miller, Bailey; Friedman, Aaron J; Choi, Hyukjae; Hogan, James; McCammon, J. Andrew; Hook, Vivian; Gerwick, William H.

    2014-01-01

    A number of marine natural products are potent inhibitors of proteases, an important drug target class in human diseases. Hence, marine cyanobacterial extracts were assessed for inhibitory activity to human cathepsin L. Herein, we have shown that gallinamide A potently and selectively inhibits the human cysteine protease, cathepsin L. With 30 min of preincubation, gallinamide A displayed an IC50 of 5.0 nM, and kinetic analysis demonstrated an inhibition constant of ki = 9000 ± 260 M−1 s−1. Preincubation-dilution and activity-probe experiments revealed an irreversible mode of inhibition, and comparative IC50 values display a 28- to 320- fold greater selectivity toward cathepsin L than closely related human cysteine cathepsins V or B. Molecular docking and molecular dynamics simulations were used to determine the pose of gallinamide in the active site of cathepsin L. These data resulted in the identification of a pose characterized by high stability, a consistent hydrogen bond network, and the reactive Michael acceptor enamide of gallinamide A positioned near the active site cysteine of the protease, leading to a proposed mechanism of covalent inhibition. These data reveal and characterize the novel activity of gallinamide A as a potent inhibitor of human cathepsin L. PMID:24364476

  13. Potent and Selective Inhibitors of MTH1 Probe Its Role in Cancer Cell Survival.

    PubMed

    Kettle, Jason G; Alwan, Husam; Bista, Michal; Breed, Jason; Davies, Nichola L; Eckersley, Kay; Fillery, Shaun; Foote, Kevin M; Goodwin, Louise; Jones, David R; Käck, Helena; Lau, Alan; Nissink, J Willem M; Read, Jon; Scott, James S; Taylor, Ben; Walker, Graeme; Wissler, Lisa; Wylot, Marta

    2016-03-24

    Recent literature has claimed that inhibition of the enzyme MTH1 can eradicate cancer. MTH1 is one of the "housekeeping" enzymes that are responsible for hydrolyzing damaged nucleotides in cells and thus prevent them from being incorporated into DNA. We have developed orthogonal and chemically distinct tool compounds to those published in the literature to allow us to test the hypothesis that inhibition of MTH1 has wide applicability in the treatment of cancer. Here we present the work that led to the discovery of three structurally different series of MTH1 inhibitors with excellent potency, selectivity, and proven target engagement in cells. None of these compounds elicited the reported cellular phenotype, and additional siRNA and CRISPR experiments further support these observations. Critically, the difference between the responses of our highly selective inhibitors and published tool compounds suggests that the effect reported for the latter may be due to off-target cytotoxic effects. As a result, we conclude that the role of MTH1 in carcinogenesis and utility of its inhibition is yet to be established. PMID:26878898

  14. Improved hydrolysis process for the saccharification of biomass

    SciTech Connect

    Prieto, S.; Clausen, E.C.; Gaddy, J.L.; Scott, C.D.

    1986-01-01

    A single-step concentrated H/sub 2/SO/sub 4/ hydrolysis process for the conversion of lignocellulosic material to monomeric sugars was developed. The conversion of corn stover to reducing sugars using 70% H/sub 2/SO/sub 4/ at 60 degrees for 5-10 minutes yields a maximum conversion of 70% when feeding a 10% solids feed. When the hydrolysis is carried out with a 2% stover feed the conversion of stover to monomers was 90% in just over 20 minutes. A modified single-step hydrolysis using a 10% solids feed was also developed using 70% H/sub 2/SO/sub 4/ at 50 degrees for 10-20 minutes, followed by dilution and further reaction. When the initial hydrolysis is followed by a 30-40% H/sub 2/SO/sub 4/ hydrolysis at 100 degrees for 20 minutes total monomeric sugar conversion results. Analysis of the hydrolyzates from both the single-step and the modified single-step process show acceptable levels of both furfural and hydroxymethylfurfural. When using the modified single-step process with equal to or less than 37% H2SO4, the furfural concentration reached only 0.027% and the hydroxymethylfurfural concentration was zero.

  15. Enzymatic hydrolysis of fructans in the tequila production process.

    PubMed

    Avila-Fernández, Angela; Rendón-Poujol, Xóchitl; Olvera, Clarita; González, Fernando; Capella, Santiago; Peña-Alvarez, Araceli; López-Munguía, Agustín

    2009-06-24

    In contrast to the hydrolysis of reserve carbohydrates in most plant-derived alcoholic beverage processes carried out with enzymes, agave fructans in tequila production have traditionally been transformed to fermentable sugars through acid thermal hydrolysis. Experiments at the bench scale demonstrated that the extraction and hydrolysis of agave fructans can be carried out continuously using commercial inulinases in a countercurrent extraction process with shredded agave fibers. Difficulties in the temperature control of large extraction diffusers did not allow the scaling up of this procedure. Nevertheless, batch enzymatic hydrolysis of agave extracts obtained in diffusers operating at 60 and 90 degrees C was studied at the laboratory and industrial levels. The effects of the enzymatic process on some tequila congeners were studied, demonstrating that although a short thermal treatment is essential for the development of tequila's organoleptic characteristics, the fructan hydrolysis can be performed with enzymes without major modifications in the flavor or aroma, as determined by a plant sensory panel and corroborated by the analysis of tequila congeners. PMID:19473003

  16. Enzymatic hydrolysis of fractionated products from oil thermally oxidated

    SciTech Connect

    Yashida, H.; Alexander, J.C.

    1983-01-01

    Enzymatic hydrolysis of the acylglycerol products obtained from thermally oxidized vegetable oils was studied. Corn, sunflower and soybean oils were heated in the laboratory at 180/sup 0/C for 50, 70 and 100 hr with aeration and directly fractionated by silicic acid column chromatography. By successive elution with 20%, then 60% isopropyl ether in n-hexane, and diethyl ether, the thermally oxidized oils were separated into three fractions: the nonpolar fraction (monomeric compounds), slightly polar fraction (dimeric compounds), and polar fraction comprising oligomeric compounds. Enzymatic hydrolysis with pancreatic lipase showed that the monomers were hydrolyzed as rapidly as the corresponding unheated oils, the dimers much more slowly, and the oligomeric compounds barely at all. Overall, the hydrolysis of the dimers was less than 23% of that for the monomers, with small differences among the oils. Longer heating periods resulted in greater reductions in hydrolysis of the dimeric compounds. These results suggest that the degree of enzymatic hydrolysis of the fractionated acylglycerol compounds is related to differences in the thermal oxidative deterioration, and amounts of polar compounds in the products. (33 Refs.)

  17. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes.

    PubMed

    Qing, Qing; Yang, Bin; Wyman, Charles E

    2010-12-01

    Typically, the enzymatic hydrolysis rate of lignocellulosic biomass is fast initially but then slows down more rapidly than can be explained by just consumption of substrate. Although several factors including enzyme inhibition, enzyme deactivation, a drop in substrate reactivity, or nonproductive binding of enzyme to lignin could be responsible for this loss of effectiveness, we recently reported evidence that xylose, xylan, and xylooligomers dramatically decrease conversion rates and yields, but clarification was still needed for the magnitude of their effect. Therefore, in this study, xylan and various xylooligomers were added to Avicel hydrolysis at low enzyme loadings and found to have a greater effect than adding equal amounts of xylose derived from these materials or when added separately. Furthermore, xylooligomers were more inhibitory than xylan or xylose in terms of a decreased initial hydrolysis rate and a lower final glucose yield even for a low concentration of 1.67 mg/ml. At a higher concentration of 12.5mg/ml, xylooligomers lowered initial hydrolysis rates of Avicel by 82% and the final hydrolysis yield by 38%. Mixed DP xylooligomers showed strong inhibition on cellulase enzymes but not on beta-glucosidase enzymes. By tracking the profile change of xylooligomers, a large portion of the xylooligomers was found to be hydrolyzed by Spezyme CP enzyme preparations, indicating competitive inhibition by mixed xylooligomers. A comparison among glucose sugars and xylose sugars also showed that xylooligomers were more powerful inhibitors than well-established glucose and cellobiose. PMID:20708404

  18. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    PubMed

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume. PMID:26634840

  19. Hydrolysis of aluminum dross material to achieve zero hazardous waste.

    PubMed

    David, E; Kopac, J

    2012-03-30

    A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation. PMID:22326245

  20. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  1. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    DOE PAGESBeta

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However,more » UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.« less

  2. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    SciTech Connect

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However, UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.

  3. Potent effects of dioscin against liver fibrosis

    PubMed Central

    Zhang, Xiaoling; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Xu, Youwei; Sun, Huijun; Lin, Yuan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, dioscin markedly increased peroxisome proliferator activated receptor-γ (PPAR-γ) expression and significantly reduced a-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen α1 (I) (COL1A1) and collagen α1 (III) (COL3A1) levels in vitro. Notably, dioscin inhibited HSCs activation and induced apoptosis in activated HSCs. In vivo, dioscin significantly improved body weight and hydroxylproline, laminin, α-SMA, TGF-β1, COL1A1 and COL3A1 levels, which were confirmed by histopathological assays. Dioscin facilitated matrix degradation, and exhibited hepatoprotective effects through the attenuation of oxidative stress and inflammation, in addition to exerting anti-fibrotic effects through the modulation of the TGF-β1/Smad, Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and mitochondrial signaling pathways, which triggered the senescence of activated HSCs. In conclusion, dioscin exhibited potent effects against liver fibrosis through the modulation of multiple targets and signaling pathways and should be developed as a novel candidate for the treatment of liver fibrosis in the future. PMID:25853178

  4. Potent effects of dioscin against liver fibrosis.

    PubMed

    Zhang, Xiaoling; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Xu, Youwei; Sun, Huijun; Lin, Yuan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, dioscin markedly increased peroxisome proliferator activated receptor-γ (PPAR-γ) expression and significantly reduced a-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen α1 (I) (COL1A1) and collagen α1 (III) (COL3A1) levels in vitro. Notably, dioscin inhibited HSCs activation and induced apoptosis in activated HSCs. In vivo, dioscin significantly improved body weight and hydroxylproline, laminin, α-SMA, TGF-β1, COL1A1 and COL3A1 levels, which were confirmed by histopathological assays. Dioscin facilitated matrix degradation, and exhibited hepatoprotective effects through the attenuation of oxidative stress and inflammation, in addition to exerting anti-fibrotic effects through the modulation of the TGF-β1/Smad, Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and mitochondrial signaling pathways, which triggered the senescence of activated HSCs. In conclusion, dioscin exhibited potent effects against liver fibrosis through the modulation of multiple targets and signaling pathways and should be developed as a novel candidate for the treatment of liver fibrosis in the future. PMID:25853178

  5. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases.

    PubMed

    Zhen, R. G.; Baykov, A. A.; Bakuleva, N. P.; Rea, P. A.

    1994-01-01

    The suitability of different pyrophosphate (PPi) analogs as inhibitors of the vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) of tonoplast vesicles isolated from etiolated hypocotyls of Vigna radiata was investigated. Five 1,1-diphosphonates and imidodiphosphate were tested for their effects on substrate hydrolysis by the V-PPase at a substrate concentration corresponding to the Km of the enzyme. The order of inhibitory potency (apparent inhibition constants, Kiapp values, [mu]M, in parentheses) of the compounds examined was aminomethylenediphosphonate (1.8) > hydroxymethylenediphosphonate (5.7) [almost equal to] ethane-1-hydroxy-1,1-diphosphonate (6.5) > imidodiphosphate (12) > methylenediphosphonate (68) > dichloromethylenediphosphonate (>500). The specificity of three of these compounds, aminomethylenediphosphonate, imidodiphosphate, and methylenediphosphonate, was determined by comparing their effects on the V-PPase and vacuolar H+-ATPase from Vigna, plasma membrane H+-ATPase from Beta vulgaris, H+-PPi synthase of chromatophores prepared from Rhodospirillum rubrum, soluble PPase from Saccharomyces cerevisiae, alkaline phosphatase from bovine intestinal mucosa, and nonspecific monophosphoesterase from Vigna at a PPi concentration equivalent to 10 times the Km of the V-PPase. Although all three PPi analogs inhibited the plant V-PPase and bacterial H+-PPi synthase with qualitatively similar kinetics, whether substrate hydrolysis or PPi-dependent H+-translocation was measured, neither the vacuolar H+-ATPase nor plasma membrane H+-ATPase nor any of the non-V-PPase-related PPi hydrolases were markedly inhibited under these conditions. It is concluded that 1, 1-diphosphonates, in general, and aminomethylenediphosphonate, in particular, are potent type-specific inhibitors of the V-PPase and its putative bacterial homolog, the H+-PPi synthase of Rhodospirillum. PMID:12232069

  6. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases.

    PubMed Central

    Zhen, R. G.; Baykov, A. A.; Bakuleva, N. P.; Rea, P. A.

    1994-01-01

    The suitability of different pyrophosphate (PPi) analogs as inhibitors of the vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) of tonoplast vesicles isolated from etiolated hypocotyls of Vigna radiata was investigated. Five 1,1-diphosphonates and imidodiphosphate were tested for their effects on substrate hydrolysis by the V-PPase at a substrate concentration corresponding to the Km of the enzyme. The order of inhibitory potency (apparent inhibition constants, Kiapp values, [mu]M, in parentheses) of the compounds examined was aminomethylenediphosphonate (1.8) > hydroxymethylenediphosphonate (5.7) [almost equal to] ethane-1-hydroxy-1,1-diphosphonate (6.5) > imidodiphosphate (12) > methylenediphosphonate (68) >> dichloromethylenediphosphonate (>500). The specificity of three of these compounds, aminomethylenediphosphonate, imidodiphosphate, and methylenediphosphonate, was determined by comparing their effects on the V-PPase and vacuolar H+-ATPase from Vigna, plasma membrane H+-ATPase from Beta vulgaris, H+-PPi synthase of chromatophores prepared from Rhodospirillum rubrum, soluble PPase from Saccharomyces cerevisiae, alkaline phosphatase from bovine intestinal mucosa, and nonspecific monophosphoesterase from Vigna at a PPi concentration equivalent to 10 times the Km of the V-PPase. Although all three PPi analogs inhibited the plant V-PPase and bacterial H+-PPi synthase with qualitatively similar kinetics, whether substrate hydrolysis or PPi-dependent H+-translocation was measured, neither the vacuolar H+-ATPase nor plasma membrane H+-ATPase nor any of the non-V-PPase-related PPi hydrolases were markedly inhibited under these conditions. It is concluded that 1, 1-diphosphonates, in general, and aminomethylenediphosphonate, in particular, are potent type-specific inhibitors of the V-PPase and its putative bacterial homolog, the H+-PPi synthase of Rhodospirillum. PMID:12232069

  7. Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac].

    PubMed

    Song, Xiuyan; Liu, Fusheng; Li, Lei; Yang, Xuequn; Yu, Shitao; Ge, Xiaoping

    2013-01-15

    Hydrolysis of polycarbonate (PC) was studied using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as a catalyst. The influences of temperature, time, water dosage and [Bmim][Ac] dosage on the hydrolysis reaction were examined. Under the conditions of temperature 140°C, reaction time 3.0 h, m([Bmim][Ac]):m(PC)=1.5:1 and m(H(2)O):m(PC)=0.35:1, the conversion of PC was nearly 100% and the yield of bisphenol A (BPA) was over 96%. The ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PC and yield of BPA. The kinetics of the reaction was also investigated. The results showed that the hydrolysis of PC in [Bmim][Ac] was a first-order kinetic reaction with an activation energy of 228 kJ/mol. PMID:23246956

  8. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.

    PubMed

    Hernández-Salas, J M; Villa-Ramírez, M S; Veloz-Rendón, J S; Rivera-Hernández, K N; González-César, R A; Plascencia-Espinosa, M A; Trejo-Estrada, S R

    2009-02-01

    Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline-enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11-20%) compared to agave bagasse (12-58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion. PMID:19000863

  9. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. PMID:27507440

  10. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  11. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  12. Identification of the Major ACE-Inhibitory Peptides Produced by Enzymatic Hydrolysis of a Protein Concentrate from Cuttlefish Wastewater

    PubMed Central

    Rodríguez Amado, Isabel; Vázquez, José Antonio; González, Pilar; Esteban-Fernández, Diego; Carrera, Mónica; Piñeiro, Carmen

    2014-01-01

    The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with alcalase of the retained fraction. Alcalase produced ACE inhibitors reaching the highest activity (IC50 = 76.8 ± 15.2 μg mL−1) after 8 h of proteolysis. Sequential ultrafiltration of the 8 h hydrolysate with molecular weight cut-off (MWCO) membranes of 10 and 1 kDa resulted in the increased activity of each permeate, with a final IC50 value of 58.4 ± 4.6 μg mL−1. Permeate containing peptides lower than 1 kDa was separated by reversed-phase high performance liquid chromatography (RP-HPLC). Four fractions (A–D) with potent ACE inhibitory activity were isolated and their main peptides identified using high performance liquid chromatography coupled to an electrospray ion trap Fourier transform ion cyclotron resonance-mass spectrometer (HPLC-ESI-IT-FTICR) followed by comparison with databases and de novo sequencing. The amino acid sequences of the identified peptides contained at least one hydrophobic and/or a proline together with positively charged residues in at least one of the three C-terminal positions. The IC50 values of the fractions ranged from 1.92 to 8.83 μg mL−1, however this study fails to identify which of these peptides are ultimately responsible for the potent antihypertensive activity of these fractions. PMID:24619242

  13. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    PubMed Central

    Thygesen, Lisbeth G.; Thybring, Emil E.; Johansen, Katja S.; Felby, Claus

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry, particularly when it comes to up-scaling of processes based on insoluble feed stocks. PMID:25232741

  14. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.

    PubMed

    Sorgato, M C; Galiazzo, F; Valente, M; Cavallini, L; Ferguson, S J

    1982-08-20

    ITP hydrolysis catalysed by the ATPase of submitochondrial particles from both bovine heart and rat liver is shown to be linked to the generation of a membrane potential, and therefore also to proton translocation. The magnitude of the membrane potential is similar to that observed during ATP hydrolysis at equivalent concentrations of phosphate and nucleoside tri- and diphosphates. An explanation is suggested for why in other reports ITP was found to be a poor substrate for supporting energy-linked reactions that are driven by the membrane potential. PMID:6214275

  15. Hydrolysis of xylan by an immobilized xylanase from Aureobasidium pullulans

    SciTech Connect

    Allenza, P.; Scherl, D.S.; Detroy, R.W.; Leathers, T.D.; Scott, C.D. .

    1986-01-01

    The beta-(1,4)-linked xylose residues that comprise the backbone of the abundant plant polymer xylan can be released by enzymic hydrolysis. Xylanase, which is produced in exceptionally high levels by the color-variant strain Y-2311-1 of A. pullulans, was immobilized onto a macroporous ceramic carrier. Despite a low coupling efficiency, it was possible to run the reactor under a wide range of conditions with flow rates of 3-10 bed volumes/minute of 1% soluble xylan with no detectable leaching of enzyme. The size distribution of products and rate of xylan hydrolysis were very similar for the immobilized and soluble enzymes. (Refs. 13).

  16. Hydrolysis of xylan by an immobilized xylanase from Aureobasidium pullanans

    SciTech Connect

    Allenza, P.; Scherl, D.S.; Detroy, R.W.; Leathers, T.D.; Scott, C.D.

    1986-01-01

    The beta-(1,4)-linked xylose residues that comprise the backbone of the abundant plant polymer xylan can be released by enzymic hydrolysis. Xylanase, which is produced in exceptionally high levels by the color-variant strain of A. pullulans, was immobilized onto a macroporous ceramic carrier. Despite a low coupling efficiency, it was possible to run the reactor under a wide range of conditions with flow rates of 3-10 bed volumes/minute of 1% soluble xylan with no detectable leaching of enzyme. The size distribution of products and rate of xylan hydrolysis were very similar for the immobilized and soluble enzymes. (Refs. 13).

  17. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  18. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  19. Protein-water network dynamics during metalloenzyme hydrolysis observed by kinetic THz absorption (KITA)

    NASA Astrophysics Data System (ADS)

    Born, Benjamin; Heyden, Matthias; Grossman, Moran; Sagi, Irit; Havenith, Martina

    2013-02-01

    For long, the contribution of water network motions to enzymatic reactions was enigmatic due to the complexity of biological systems and to experimental limitations. Thanks to the development of new powerful THz emitters and detectors in the last decades, it is now possible to probe dynamics on the timescale of the fast hydrogen bond rearrangements during biochemical reactions. For this purpose, we developed a kinetic terahertz absorption (KITA) spectrometer which combines the strength of THz radiation (~1012 Hz = 1 ps) to directly probe collective picosecond protein-water dynamics with the fast mixing properties of a stopped-flow apparatus which initializes a biochemical reaction within milliseconds. With KITA, we analyzed the collective water dynamics during substrate hydrolyses by a human matrix-metalloproteinase. In addition, we studied the reorganization and electrostatic changes at the catalytic zinc-ion from the enzyme active site and performed molecular dynamics simulations of the enzyme-substrate-water system. Our results revealed a systematic gradient of water network motions: From the active site to the bulk water hydrogen bond dynamics increased from 7 ps (active site) to 1ps (bulk water) prior to substrate binding and hydrolysis. The approaching substrate perturbs the dynamic water gradient resulting in an overshoot of KITA signal which then relaxes back during onset of substrate hydrolyses. Our findings suggest that collective water dynamics may contribute to effective substrate binding to enzyme active sites and could be induced by the charge of the catalytic zinc-ion residing at the active site.

  20. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  1. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  2. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  3. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  4. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate bound procyanidins from dried cranberry pomace. Five mL of sodium hydroxide (2, 4, or 6N) was added to 0.5 g of cranberry pomace in screw top glass tubes,...

  5. Acid hydrolysis of cellulose in zinc chloride solution

    SciTech Connect

    Cao, N.J.; Xu, Q.; Chen, L.F.

    1995-12-31

    The efficient conversion of cellulosic materials to ethanol has been hindered by the low yield of sugars, the high energy consumption in pretreatment processes, and the difficulty of recycling the pre-treatment agents. Zinc chloride may provide an alternative for pre-treating biomass prior to the hydrolysis of cellulose. The formation of a zinc-cellulose complex during the pretreatment of cellulose improves the yield of glucose in both the enzymatic and acid hydrolysis of cellulose. Low-temperature acid hydrolysis of cellulose in zinc chloride solution is carried out in two stages, a liquefaction stage and a saccharification stage. Because of the formation of zinc-cellulose complex in the first stage, the required amount of acid in the second stage has been decreased significantly. In 67% zinc chloride solution, a 99.5% yield of soluble sugars has been obtained at 70{degrees}C and 0.5M acid concentration. The ratio of zinc chloride to cellulose has been reduced from 4.5 to 1.5, and the yield of soluble sugars is kept above 80%. The rate of hydrolysis is affected by the ratio of zinc chloride to cellulose, acid concentration, and temperature.

  6. Small peptides hydrolysis in dry-cured meats.

    PubMed

    Mora, Leticia; Gallego, Marta; Escudero, Elizabeth; Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Large amounts of different peptides are naturally generated in dry-cured meats as a consequence of the intense proteolysis mechanisms which take place during their processing. In fact, meat proteins are extensively hydrolysed by muscle endo-peptidases (mainly calpains and cathepsins) followed by exo-peptidases (mainly, tri- and di-peptidyl peptidases, dipeptidases, aminopeptidases and carboxypeptidases). The result is a large amount of released free amino acids and a pool of numerous peptides with different sequences and lengths, some of them with interesting sequences for bioactivity. This manuscript is presenting the proteomic identification of small peptides resulting from the hydrolysis of four target proteins (glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, myozenin-1 and troponin T) and discusses the enzymatic routes for their generation during the dry-curing process. The results indicate that the hydrolysis of peptides follows similar exo-peptidase mechanisms. In the case of dry-fermented sausages, most of the observed hydrolysis is the result of the combined action of muscle and microbial exo-peptidases except for the hydrolysis of di- and tri-peptides, mostly due to microbial di- and tri-peptidases, and the release of amino acids at the C-terminal that appears to be mostly due to muscle carboxypeptidases. PMID:25944374

  7. Structural modifications of lignocellulosics by pretreatments to enhance enzymatic hydrolysis

    SciTech Connect

    Gharpuray, M.M.; Lee, Y.F.; Fan, L.T.

    1983-01-01

    In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hyrolysis rate upon pretreatment. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ball-milling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content. (Refs. 23).

  8. Atmospheric Plasma-Enhanced Soft Hydrolysis of Southern Pine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of fermentable sugars from southern pine using atmospheric plasma (AP) was studied. AP processing in the dielectric barrier discharge (DBD) configuration was coupled with acid hydrolysis in an effort to determine how AP can impact a standard conversion technique. The effects of plas...

  9. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  10. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  11. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioabatement, using the fungus Coniochaeta ligniaria NRRL30616 can effectively eliminate enzyme inhibitors from pretreated biomass hydrolysis. However, our recent research suggested that bioabatement had no beneficial effect on removing xylo-oligomers which were identified as strong inhibitors to ce...

  12. Evaluation of Cation Hydrolysis Schemes with a Pocket Calculator.

    ERIC Educational Resources Information Center

    Clare, Brian W.

    1979-01-01

    Described is the use of two models of pocket calculators. The Hewlett-Packard HP67 and the Texas Instruments TI59, to solve problems arising in connection with ionic equilibria in solution. A three-parameter regression program is described and listed as a specific example, the hydrolysis of hexavalent uranium, is provided. (BT)

  13. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentation of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.

  14. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  15. Enzymatic hydrolysis of haloperidol decanoate and its inhibition by proteins.

    PubMed

    Nambu, K; Miyazaki, H; Nakanishi, Y; Oh-e, Y; Matsunaga, Y; Hashimoto, M

    1987-05-15

    When [14C]haloperidol decanoate, a long-acting neuroleptic and an ester of haloperidol and decanoic acid, was incubated in human whole blood and plasma and in rat plasma and homogenates of rat brain, lung, liver, kidney, pancreas and muscle, no hydrolysis of the ester was seen. Although the decanoate was hydrolyzed by partially purified carboxylesterase, addition of rat plasma or liver homogenate to the enzymic reaction mixture resulted in marked inhibition of hydrolysis, whereas addition of the defatted residues of plasma or liver produced only partial inhibition. The enzymic hydrolysis was inhibited also by beta-lipoprotein and albumin, depending on their concentrations. The assumption that interaction between haloperidol decanoate and protein resulted in inhibition of the hydrolytic reaction mediated by the enzyme was validated by kinetic models and experimental data. The kinetics were apparently competitive. Based on the kinetic analysis, the interaction between the decanoate and albumin or beta-lipoprotein was investigated by measuring their equilibrium constants and extent of protein binding. Haloperidol decanoate appeared to interact with several proteins; this was exemplified by other measures of protein binding, an increasing effect of proteins on the solubility, and the partition ratio of the ester. The interaction between haloperidol decanoate and proteins caused marked stabilization of this ester against enzymatic hydrolysis and, thereby, influenced its metabolism. PMID:3593395

  16. REVISED TREATMENT OF N2 O5 HYDROLYSIS IN CMAQ

    EPA Science Inventory

    In this presentation, revised treatment of homogeneous and heterogeneous hydrolysis of dinitrogen pentoxide in the Community Multiscale Air Quality model version 4.6 are described. A series of model sensitivity tests are conducted and compared with observations of total atmosphe...

  17. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  18. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  19. [Study of plasma and hepatic hydrolysis of nitroxinil derivatives].

    PubMed

    Baziard-Mouysset, G; Alvinerie, M; Galtier, P; Ane-Margail, M; Floch, R; Payard, M

    1996-01-01

    Seven esters derivatives of Nitroxinil were prepared and their structures were assigned by IR and 1H-NMR spectroscopy. The rate of plasma and hepatic hydrolysis were evaluated in vitro in sheep and rabbit. In view of this profile of activity, pivaloyl derivative merits evaluation, in vivo. PMID:8953797

  20. Mechanisms of lactone hydrolysis in neutral and alkaline conditions.

    PubMed

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The neutral and base-catalyzed hydrolysis of nine carboxylic acid esters was studied using a hybrid supermolecule-PCM approach including six explicit water molecules. The molecules studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate and methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. DFT and ab initio methods were used to analyze the features of the various possible hydrolysis mechanisms. For all compounds, reasonable to very good qualitative and quantitative agreement with experimental work was found, and evidence is provided to support long-standing hypotheses regarding the role of solvent molecule as a base catalyst. In addition, novel evidence is presented for the existence of an elimination-addition mechanism in the basic hydrolysis of diketene. A parallel work addresses the acid-catalyzed hydrolysis of lactones. PMID:23758295

  1. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    ERIC Educational Resources Information Center

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  2. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  3. Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work is the first report of the successful design, construction, and application of multi-functional, self-assembling biocatalysts for targeted xylan hydrolysis, termed xylanosomes. Using the architecture of cellulosomes found in some anaerobic cellulolytic microbes, four different xylanosomes...

  4. Effects of hydrolysis and carbonization reactions on hydrochar production.

    PubMed

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  5. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?

    PubMed

    Gui, Jiadong; Fu, Xiumin; Zhou, Ying; Katsuno, Tsuyoshi; Mei, Xin; Deng, Rufang; Xu, Xinlan; Zhang, Linyun; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-08-12

    It was generally thought that aroma of oolong tea resulted from hydrolysis of glycosidically bound volatiles (GBVs). In this study, most GBVs showed no reduction during the oolong tea manufacturing process. β-Glycosidases either at protein or gene level were not activated during the manufacturing process. Subcellular localization of β-primeverosidase provided evidence that β-primeverosidase was located in the leaf cell wall. The cell wall remained intact during the enzyme-active manufacturing process. After the leaf cell disruption, GBV content was reduced. These findings reveal that, during the enzyme-active process of oolong tea, nondisruption of the leaf cell walls resulted in impossibility of interaction of GBVs and β-glycosidases. Indole, jasmine lactone, and trans-nerolidol were characteristic volatiles produced from the manufacturing process. Interestingly, the contents of the three volatiles was reduced after the leaf cell disruption, suggesting that mechanical damage with the cell disruption, which is similar to black tea manufacturing, did not induce accumulation of the three volatiles. In addition, 11 volatiles with flavor dilution factor ≥4(4) were identified as relatively potent odorants in the oolong tea. These results suggest that enzymatic hydrolysis of GBVs was not involved in the formation of volatiles of oolong tea, and some characteristic volatiles with potent odorants were produced from the manufacturing process. PMID:26212085

  6. Naphthalimide derived fluorescent probes with turn-on response for Au(3+) and the application for biological visualization.

    PubMed

    Li, Yan; Qiu, Yanxin; Zhang, Jianjian; Zhu, Xinyue; Zhu, Bin; Liu, Xiaoyan; Zhang, Xiaoyu; Zhang, Haixia

    2016-09-15

    The 4-N,N-dimethyl-1,8-naphthalimide based fluorescent probes have been explored for selective detection of Au(3+). Both probes show a pronounced fluorescence enhancement response to Au(3+). Hydroxy is introduced as ligand of Au(3+) for Probe 1 and the newly designed Probe 2 contains an alkyne moiety to recognize Au(3+) through an irreversible C≡C bond hydrolysis reaction. Probe 1 exhibits higher performance such as faster response, lower detection limit of 0.050μM and the better responsive effect in 99.5% water system compared with most of probes published. The Probe 2 displays high stability to pH, suitable water solubility, wider linear range (0-100μM) to Au(3+), and live-cells imaging with low cytotoxicity. PMID:27135938

  7. Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling.

    PubMed

    Li, Tiezheng; Tong, Xin; Yang, Qiang; Giddens, John P; Wang, Lai-Xi

    2016-08-01

    Glycosylation can exert a profound impact on the structures and biological functions of antibodies. Glycosylation remodeling using the endoglycosidase-catalyzed deglycosylation and transglycosylation approach is emerging as a promising platform to produce homogeneous glycoforms of antibodies, but the broad application of this method will require the availability of highly efficient glycosynthase mutants. We describe in this paper a systematic site-directed mutagenesis of an endoglycosidase from Streptococcus pyogenes of serotype M49 (Endo-S2) and the evaluation of the resulting mutants for their hydrolysis and transglycosylation activities. We found that mutations at the Asp-184 residue gave mutants that demonstrated significantly different properties, some possessed potent transglycosylation activity with diminished hydrolysis activity but others did not, which would be otherwise difficult to predict without the comparative study. In contrast to the previously reported Endo-S mutants that are limited to action on complex type N-glycans, the Endo-S2 glycosynthases described here, including D184M and D184Q, were found to have remarkably relaxed substrate specificity and were capable of transferring three major types (complex, high-mannose, and hybrid type) of N-glycans for antibody glycosylation remodeling. In addition, the Endo-S2 glycosynthase mutants were found to be much more active in general than the Endo-S mutants for transglycosylation. The usefulness of these Endo-S2 glycosynthase mutants was exemplified by an efficient glycosylation remodeling of two therapeutic monoclonal antibodies, rituximab and trastuzumab (Herceptin). PMID:27288408

  8. Non-catalytic steam hydrolysis of fats. Final report

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  9. Hydrolysis of thorium(iv) at variable temperatures.

    PubMed

    Zanonato, P L; Di Bernardo, P; Zhang, Z; Gong, Y; Tian, G; Gibson, J K; Rao, L

    2016-08-01

    Hydrolysis of Th(iv) was studied in tetraethylammonium perchlorate (0.10 mol kg(-1)) at variable temperatures (283-358 K) by potentiometry and microcalorimetry. Three hydrolysis reactions, mTh(4+) + nH2O = Thm(OH)n((4m-n)+) + nH(+), in which (n,m) = (2,2), (8,4), and (15,6), were invoked to describe the potentiometric and calorimetric data for solutions with the [hydroxide]/[Th(iv)] ratio ≤ 2. At higher ratios, the formation of (16,5) cannot be excluded. The hydrolysis constants, *β2,2, *β8,4, and *β15,6, increased by 3, 7, and 11 orders of magnitude, respectively, as the temperature was increased from 283 to 358 K. The enhancement is mainly due to the significant increase of the degree of ionization of water as the temperature rises. All three hydrolysis reactions are endothermic at 298 K, with enthalpies of (118 ± 4) kJ mol(-1), (236 ± 7) kJ mol(-1), and (554 ± 4) kJ mol(-1) for ΔH2,2, ΔH8,4, and ΔH15,6 respectively. The hydrolysis constants at infinite dilution have been obtained with the specific ion interaction approach. The applicability of three approaches for estimating the equilibrium constants at different temperatures, including the constant enthalpy approach, the constant heat capacity approach and the DQUANT equation was evaluated with the data from this work. PMID:27460458

  10. Generation of group B soyasaponins I and III by hydrolysis.

    PubMed

    Zhang, Wei; Teng, Su Ping; Popovich, David G

    2009-05-13

    Soyasaponins are a group of oleanane triterpenoids found in soy and other legumes that have been associated with some of the benefits achieved by consuming plant-based diets. However, these groups of compounds are diverse and structurally complicated to chemically characterize, separate from the isoflavones, and isolate in sufficient quantities for bioactive testing. Therefore, the aim of this study was to maximize the extraction of soyasaponins from soy flour, remove isoflavones, separate group B soyasaponins from group A, and produce an extract that contained a majority of non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one)-conjugated group B soyasaponins I and III. Room temperature extraction in methanol for 24 or 48 h resulted in the maximum recovery of soyasaponins, and Soxhlet extraction resulted in the least. A solid-phase extraction using methanol (45%) was found to virtually eliminate the interfering isoflavones as compared to butanol-water liquid-liquid extraction and ammonium sulfate precipitation, while maximizing saponin recovery. Alkaline hydrolysis in anhydrous methanol produced the maximum amount of soyasaponins I and III as compared to aqueous methanol and acid hydrolysis in both aqueous and anhydrous methanol. The soyasaponin I amount was increased by 175%, and soyasaponin III was increased by 211% after alkaline hydrolysis. Furthermore, after alkaline hydrolysis, a majority of DDMP-conjugated group B soyasaponins such as betag, betaa, gammag, and gammaa transformed into the non-DDMP-conjugated soyasaponins I and III without affecting the glycosidic bond at position C-3 of the ring structure. Therefore, we have developed a method that maximizes the recovery of DDMP-conjugated saponins and uses alkaline hydrolysis to produce an extract containing mainly soyasaponins I and III. PMID:19338335

  11. Monitoring real-time enzymatic hydrolysis of Distillers Dried Grains with Solubles (DDGS) by dielectric spectroscopy following hydrothermal pre-treatment by steam explosion.

    PubMed

    Bryant, David N; Firth, Elliot; Kaderbhai, Naheed; Taylor, Stephen; Morris, Stephen M; Logan, Daniel; Garcia, Naroa; Ellis, Andrew; Martin, Steven M; Gallagher, Joe A

    2013-01-01

    Dielectric spectroscopy (DS) has been used to monitor the simultaneous saccharification and fermentation of lignocellulosic biomass by measuring its dielectric state. However, it is unknown whether following steam explosion (SE) pre-treatment, lignocellulose would still maintain a dielectric state, and, if maintained, whether the dissipation during enzymatic hydrolysis could be monitored. Distillers Dried Grains with Solubles (DDGS), pre-treated by SE, was found to have a capacitance (C = 580 kHz) of approximately 24 pF cm(-1). Following addition of full-strength cellulolytic cocktail A (CC-A; R(2) = 0.97) and 1/3 strength cocktail B (CC-B; R(2) = 0.96), a natural logarithmic decay in capacitance was determined. Furthermore, the DS biomass probes quantified the initial linear rate of dissipation in capacitance during hydrolysis. The rate of CC-B was 34% that of CC-A. These data extend scope and utility of DS biomass probes for monitoring the enzymatic hydrolysis of SE-pre-treated lignocellulosic substrates in real-time. PMID:23228453

  12. Potent Schistosomicidal Constituents from Garcinia brasiliensis.

    PubMed

    Castro, Aline Pereira; de Mattos, Ana Carolina Alves; Pereira, Neusa Araújo; Anchieta, Naira Ferreira; Silva, Matheus Siqueira; Dias, Danielle Ferreira; Silva, Claudinei Alves; Barros, Giulliano Vilela; Souza, Raquel Lopes Martins; Dos Santos, Marcelo Henrique; Marques, Marcos José

    2015-06-01

    Praziquantel is the drug of choice for the treatment of schistosomiasis. However, several strains of Schistosoma mansoni are resistant to praziquantel, making it necessary to discover new drugs that might be used for its treatment. With this in mind, the properties of a schistosomicidal ethanolic extract of Garcinia brasiliensis Mart. epicarp, the fractions obtained by partitioning this extract, including the hexane fractions, ethyl acetate fraction, and the aqueous fraction, and the isolated compounds 7-epiclusianone, a major component from these fractions, and fukugetin were tested in vitro on adult worms of S. mansoni. Mortality, damage to membranes, and excretory system activity were observed at 100.0, 50.0, 75.0, and 14.0 µg/mL for the ethanolic extract of G. brasiliensis Mart. epicarp, its hexane fractions, the ethyl acetate fraction, and 7-epiclusianone, respectively. For 7-epiclusianone, these data were confirmed by fluorescent probe Hoechst 33 258 and resorufin. Additionally, the biocidal effect of 7-epiclusianone was even higher than the hexane fractions. Moreover, an inhibitory effect of 7-epiclusianone on the egg laying of female adult S. mansoni worms was observed in cercariae and schistossomula. Thus, 7-epiclusianone is a promising schistosomicidal compound; however, more studies are needed to elucidate its mechanism of toxicity and to evaluate the in vivo activity of this compound. PMID:25905590

  13. A kinetic study of hydrolysis of polyester elastomer in magnetic tape

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Watanabe, H.

    1994-01-01

    A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.

  14. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  15. Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration.

    PubMed

    Yang, Jing; Zhang, Xiaoping; Yong, Qiang; Yu, Shiyuan

    2011-04-01

    The feasibility of three-stage hydrolysis of steam-exploded corn stover at high-substrate concentration was investigated. When substrate concentration was 30% and enzyme loading was 15-30 FPU/g cellulose, three-stage (9+9+12 h) hydrolysis could reach a hydrolysis yield of 59.9-81.4% in 30 h. Compared with one-stage hydrolysis for 72 h, an increase of 34-37% in hydrolysis yield could be achieved. When steam-exploded corn stover was used as the substrate for enzyme synthesis and hydrolysis was conducted at a substrate concentration of 25% with an enzyme loading of 20 FPU/g cellulose, a hydrolysis yield of 85.1% was obtained, 19% higher than that the commercial cellulase could reach under the same conditions. The removal of end products was suggested to improve the adsorption of cellulase on the substrate and enhance the productivity of enzymatic hydrolysis. PMID:21300538

  16. Functional probes for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio; Akiyama, Kotone; Hamada, Masayuki; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Sakurai, Toshio

    2008-03-01

    Inspite of importance of the probe in scanning probe microscopy (SPM), little attention was paid for the SPM probes for most of the measurements of SPM. We developed sharp metal-tip cantilevers with a typical curvature radius better than 5nm using focused ion beam (FIB) suitable for Kelvin probe force microscopy (KFM)^1. We obtained atomically resolved KFM images with an energy resolution less than 3meV with the probe^2. We also developed a glass-coated tungsten tip for synchrotron radiation-scanning tunneling microscopy with the FIB method^3 and obtained elementally resolved images in a resolution less than 20nm^4. We are now developing a precise atomic force microscope (AFM) lithography^5 with the FIB-milled tip attached to a quartz tuning fork controlled by noncontact AFM. We will present recent results of our AFM lithography, such as an Au line with a width of 20˜30 nm and characters drawn with Au nano dots on a Si surface. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL 89, 243119 (2006) 5 K. Akiyama et al., JP 61, 22 (2007).

  17. Periodontal probing: a review.

    PubMed

    Al Shayeb, Kwthar Nassar A; Turner, Wendy; Gillam, David G

    2014-08-01

    Periodontal probes are the main instruments that are used to assess the status of the periodontium, either for screening purposes or to evaluate periodontal changes throughout the treatment process. With increased knowledge and understanding of periodontal disease, the probes have evolved from a unidimensional manual shape into a more sophisticated computerised instrument. This is due to the need to increase the accuracy and reproducibility of readings and to improve efficiency (time, effort, money). Each probe has characteristic features that makes it unique and, in some cases, specific and limited to use. The aim of this paper is to present a brief introduction to periodontal disease and the methodology of measuring it, followed by probing limitations. The paper will also discuss the methodology of reducing probing error, examiner calibration and probing reproducibility. PMID:25198634

  18. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  19. Intra- And Inter-Monomer Interactions are Required to Synergistically Facilitate ATP Hydrolysis in HSP90

    SciTech Connect

    Cunningham, C.N.; Krukenberg, K.A.; Agard, D.A.

    2009-05-12

    Nucleotide-dependent conformational changes of the constitutively dimeric molecular chaperone Hsp90 are integral to its molecular mechanism. Recent full-length crystal structures (Protein Data Bank codes 2IOQ, 2CG9, AND 2IOP) of Hsp90 homologs reveal large scale quaternary domain rearrangements upon the addition of nucleotides. Although previous work has shown the importance of C-terminal domain dimerization for efficient ATP hydrolysis, which should imply cooperativity, other studies suggest that the two ATPases function independently. Using the crystal structures as a guide, we examined the role of intra- and intermonomer interactions in stabilizing the ATPase activity of a single active site within an intact dimer. This was accomplished by creating heterodimers that allow us to differentially mutate each monomer, probing the context in which particular residues are important for ATP hydrolysis. Although the ATPase activity of each monomer can function independently, we found that the activity of one monomer could be inhibited by the mutation of hydrophobic residues on the trans N-terminal domain (opposite monomer). Furthermore, these trans interactions are synergistically mediated by a loop on the cis middle domain. This loop contains hydrophobic residues as well as a critical arginine that provides a direct linkage to the {gamma}-phosphate of bound ATP. Small angle x-ray scattering demonstrates that deleterious mutations block domain closure in the presence of AMPPNP (5{prime}-adenylyl-{beta},{gamma}-imidodiphosphate), providing a direct linkage between structural changes and functional consequences. Together, these data indicate that both the cis monomer and the trans monomer and the intradomain and interdomain interactions cooperatively stabilize the active conformation of each active site and help explain the importance of dimer formation.

  20. Design of enzymatically cleavable prodrugs of a potent platinum-containing anticancer agent.

    PubMed

    Ding, Song; Pickard, Amanda J; Kucera, Gregory L; Bierbach, Ulrich

    2014-12-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum-acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the prodrug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  1. Design of Enzymatically Cleavable Prodrugs of a Potent Platinum-Containing Anticancer Agent

    PubMed Central

    Ding, Song; Pickard, Amanda J.; Kucera, Gregory L.

    2014-01-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum–acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the pro-drug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  2. New-to-nature sophorose analog: a potent inducer for gene expression in Trichoderma reesei.

    PubMed

    Huang, Tom Tao; Wages, John M

    2016-04-01

    Controlled hydrolysis of lactonic sophorolipids from Starmerella bombicola yields a previously undescribed sophorose analog that potently induces cellulase in Trichoderma reesei Rut-C30. Acid treatment of natural sophorolipids results in a mixture of monoacetylated, deacetylated, and diacetylated sophorolipids in acidic and lactonic forms. Isolation of the active components of the mixture, followed by structure determination by MS and NMR, reveals a new chemical entity, in which the lactone ring has been opened at the C-1' rather than at the C-4″ position of the sophorose moiety. This sophorose ester is resistant to degradation by the host and is at least 28 times more powerful an inducer than sophorose in shake-flask culture. Even at low concentrations (0.05 mM), the chemically modified sophorolipid effectively induces cellulase. With further improvements, this highly enabling technology can potentially reduce the cost of enzymes produced in T. reesei and can facilitate the rapid deployment of enzyme plants to support the nascent cellulosic biofuels and biochemicals industries. PMID:26920480

  3. Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase.

    PubMed

    Degorce, Sébastien L; Barlaam, Bernard; Cadogan, Elaine; Dishington, Allan; Ducray, Richard; Glossop, Steven C; Hassall, Lorraine A; Lach, Franck; Lau, Alan; McGuire, Thomas M; Nowak, Thorsten; Ouvry, Gilles; Pike, Kurt G; Thomason, Andrew G

    2016-07-14

    A novel series of 3-quinoline carboxamides has been discovered and optimized as selective inhibitors of the ataxia telangiectasia mutated (ATM) kinase. From a modestly potent HTS hit (4), we identified molecules such as 6-[6-(methoxymethyl)-3-pyridinyl]-4-{[(1R)-1-(tetrahydro-2H-pyran-4-yl)ethyl]amino}-3-quinolinecarboxamide (72) and 7-fluoro-6-[6-(methoxymethyl)pyridin-3-yl]-4-{[(1S)-1-(1-methyl-1H-pyrazol-3-yl)ethyl]amino}quinoline-3-carboxamide (74) as potent and highly selective ATM inhibitors with overall ADME properties suitable for oral administration. 72 and 74 constitute excellent oral tools to probe ATM inhibition in vivo. Efficacy in combination with the DSB-inducing agent irinotecan was observed in a disease relevant model. PMID:27259031

  4. A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation.

    PubMed

    Ribeiro, Alison; Pontis, Silvia; Mengatto, Luisa; Armirotti, Andrea; Chiurchiù, Valerio; Capurro, Valeria; Fiasella, Annalisa; Nuzzi, Andrea; Romeo, Elisa; Moreno-Sanz, Guillermo; Maccarrone, Mauro; Reggiani, Angelo; Tarzia, Giorgio; Mor, Marco; Bertozzi, Fabio; Bandiera, Tiziano; Piomelli, Daniele

    2015-08-21

    Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-α peroxisome proliferator-activated receptors (PPAR-α). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of β-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs. PMID:25874594

  5. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  6. Discovery of novel and potent CRTH2 antagonists.

    PubMed

    Ito, Shinji; Terasaka, Tadashi; Zenkoh, Tatsuya; Matsuda, Hiroshi; Hayashida, Hisashi; Nagata, Hiroshi; Imamura, Yoshimasa; Kobayashi, Miki; Takeuchi, Makoto; Ohta, Mitsuaki

    2012-01-15

    High throughput screening of our chemical library for CRTH2 antagonists provided a lead compound 1a. Initial optimization of the lead led to the discovery of a novel, potent and orally bioavailable CRTH2 antagonist 17. PMID:22178554

  7. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  8. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted silane, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10499 Substituted silane, hydrolysis products with... substances identified generically as substituted silane, hydrolysis products with silica (PMNs P-06-278 and...

  9. MATHEMATICAL MODELING OF ENZYMATIC HYDROLYSIS OF STARCH: APPLICATION TO FUEL ETHANOL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis of starch in corn is an important step that determines fermentation efficiency. Corn genetics, post harvest handling and process conditions are factors that affect starch hydrolysis. There is a lack of mathematical models for starch hydrolysis in the dry grind corn process tha...

  10. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl ester, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10498 Substituted alkyl ester, hydrolysis products... chemical substances identified generically as substituted alkyl ester, hydrolysis products with...

  11. Discovery of a Potent And Selective Aurora Kinase Inhibitor

    SciTech Connect

    Oslob, J.D.; Romanowski, M.J.; Allen, D.A.; Baskaran, S.; Bui, M.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.; Heumann, S.A.; Hoch, U.; Jacobs, J.W.; Lam, J.; Lawrence, C.E.; McDowell, R.S.; Nannini, M.A.; Shen, W.; Silverman, J.A.; Sopko, M.M.; Tangonan, B.T.

    2009-05-21

    This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.

  12. Radio frequency-compensated Langmuir probe with auxiliary double probes

    SciTech Connect

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-15

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  13. Radio frequency-compensated Langmuir probe with auxiliary double probes.

    PubMed

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-01

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas. PMID:20886976

  14. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  15. Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase.

    PubMed

    Yin, De Lu Tyler; Bernhardt, Peter; Morley, Krista L; Jiang, Yun; Cheeseman, Jeremy D; Purpero, Vincent; Schrag, Joseph D; Kazlauskas, Romas J

    2010-03-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access

  16. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  17. Evaluation of NHS Carbamates as a Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors

    PubMed Central

    2013-01-01

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme’s function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors. PMID:23731016

  18. Formative Assessment Probes

    ERIC Educational Resources Information Center

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  19. Magnetically driven filament probe.

    PubMed

    Schmid, A; Herrmann, A; Rohde, V; Maraschek, M; Müller, H W

    2007-05-01

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma. PMID:17552815

  20. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.

    PubMed

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe

    2016-05-26

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application. PMID:27120257

  1. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  2. 1-Aminobenzotriazole coincubated with (S)-warfarin results in potent inactivation of CYP2C9.

    PubMed

    Sodhi, Jasleen K; Ford, Kevin A; Mukadam, Sophie; Wong, Susan; Hop, Cornelis E C A; Khojasteh, S Cyrus; Halladay, Jason S

    2014-05-01

    1-Aminobenzotriazole (ABT) is a nonselective, mechanism-based inactivator of cytochrome P450 (P450) and a useful tool compound to discern P450- from non-P450-mediated metabolism. ABT effectively inactivates major human P450 isoforms, with the notable exception of CYP2C9. Here we propose that ABT preferentially binds to the warfarin-binding pocket in the CYP2C9 active-site cavity; thus, ABT bioactivation and subsequent inactivation is not favored. Therefore, coincubation with (S)-warfarin would result in displacement of ABT from the warfarin-binding pocket and subsequent binding to the active site, converting ABT into a potent inactivator of CYP2C9. To test this hypothesis, in vitro studies were conducted using various coincubation combinations of ABT and (S)-warfarin or diclofenac to modulate the effectiveness of CYP2C9 inactivation by ABT. Coincubation of ABT with (S)-warfarin (diclofenac probe substrate) resulted in potent inactivation, whereas weak inactivation was observed following coincubation of ABT with diclofenac [(S)-warfarin probe substrate]. The kinetic parameters of time-dependent inhibition of ABT for CYP2C9 in the absence and presence of (S)-warfarin (20 μM) were 0.0826 and 0.273 min(-1) for kinact and 3.49 and 0.157 mM for KI, respectively. In addition, a 73.4-fold shift was observed in the in vitro potency (kinact/KI ratio), with an increase from 23.7 ml/min/mmol (ABT alone) to 1740 ml/min/mmol [ABT with (S)-warfarin (20 μM)]. These findings were supported by in silico structural modeling, which showed ABT preferentially binding to the warfarin-binding pocket and the displacement of ABT to the active site in the presence of (S)-warfarin. PMID:24550229

  3. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    SciTech Connect

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P.

    2010-09-13

    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  4. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  5. Hydrolysis kinetics of lead silicate glass in acid solution

    NASA Astrophysics Data System (ADS)

    Rahimi, Rafi Ali; Sadrnezhaad, Sayed Khatibuleslam; Raisali, Gholamreza; Hamidi, Amir

    2009-06-01

    Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO 3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy obtained for hydrolysis reaction was Qche = 56.07 kJ/mole. The diffusion coefficient of the Pb ions from the gel layer was determined by using its concentration in solution and in LSG. The shrinkage of the sample and the gel layer thickness during dissolution process were determined.

  6. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  7. Modeling and analysis of CaBr{sub 2} hydrolysis.

    SciTech Connect

    Lottes, S. A.; Lyczkowski, R. W.; Energy Systems

    2006-01-01

    The main focus of this paper is the modeling, simulation, and analysis of the CaBr{sub 2} hydrolysis reactor stage in the Calcium-Bromine thermochemical water splitting cycle for nuclear hydrogen production. One concept is to use a spray reactor of CaBr{sub 2} into steam. Droplet models were built up in a series of steps that consider various physical phenomena separately, including droplet flow, heat transfer, phase change, and reaction. Given the large heat reservoir contained in a pool of liquid CaBr{sub 2} that allows bubbles to rise easily, using a bubble column for the hydrolysis reaction appears to be a feasible and promising alternative to the spray reactor concept. The two limiting cases of bubble geometry, spherical and spherical-cap, are considered in the modeling. Results for both droplet and bubble modeling with COMSOL are presented together with recommendations for the path forward.

  8. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  9. Simultaneous pretreatment and enzymatic hydrolysis of forage biomass

    SciTech Connect

    Henk, L.; Linden, J.C.

    1993-12-31

    Sweet sorghum is an attractive fermentation feedstock because as much as 40% of the dry weight consists of readily femented sugars such as sucrose, glucose and frutose. Cellulose and hemicellulose comprise another 50%. However, if this material is to be used a year-round feedstock for ethanol production, a stable method of storage must be developed to maintain the sugar content. A modified version of the traditional ensiling process is made effective by the addition of cellulolytic/hemicellulolytic enzymes and lactic acid bacteria to freshly chopped sweet sorghum prior to the production of silage. In situ hydrolysis of cellulose and hemicellulose occurs concurrently with the acidic ensiling fementation. By hydolyzing the acetyl groups using acetyl xylan esterase and 3-0-methyl glucuronyl side chains using pectinase from hemicellulose, cellulose becomes accessible to hydrolysis by cellulase, both during in situ ensiling with enzymes and in the simultaneous saccharification and fermentation (SSF) to ethanol.

  10. Novel agents for enzymatic and fungal hydrolysis of stevioside

    PubMed Central

    Milagre, H.M.S.; Martins, L.R.; Takahashi, J.A.

    2009-01-01

    A comparative study on the potential of some biological agents to perform the hydrolysis of stevioside was carried out, aiming at establishing an alternative methodology to achieve the aglycon steviol or its rearranged derivative isosteviol, in high yields to be used in the preparation of novel bioactive compounds. Hydrolysis reactions were performed by using filamentous fungi (Aspergillus niger, Rhizopus stolonifer and Rhizopus arrhizus), a yeast (Saccharomyces cerevisiae) and enzymes (pancreatin and lipases PL250 and VFL 8000). Pancreatin showed the best hydrolytic activity, furnishing isosteviol at 93.9% of yield, at pH 4.0, using toluene as a co-solvent. Steviol was produced using both pancreatin at pH 7.0 (20.2% yield) and A. niger at pH 7 (20.8% yield). PMID:24031374