Science.gov

Sample records for potent ichthyotoxic neurotoxins

  1. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish✩

    PubMed Central

    Naar, Jerome P.; Flewelling, Leanne J.; Lenzi, Allison; Abbott, Jay P.; Granholm, April; Jacocks, Henry M.; Gannon, Damon; Henry, Michael; Pierce, Richard; Baden, Daniel G.; Wolny, Jennifer; Landsberg, Jan H.

    2009-01-01

    Brevetoxins and ciguatoxins are closely related potent marine neurotoxins. Although ciguatoxins accumulate in fish to levels that are dangerous for human consumption, live fish have not been considered as potential sources of brevetoxin exposure in humans. Here we show that, analogous to ciguatoxins, brevetoxins can accumulate in live fish by dietary transfer. We experimentally identify two pathways leading to brevetoxin-contaminated omnivorous and planktivorous fish. Fish fed with toxic shellfish and Karenia brevis cultures remained healthy and accumulated high brevetoxin levels in their tissues (up to 2675 ng g−1 in viscera and 1540 ng g−1 in muscle). Repeated collections of fish from St. Joseph Bay in the Florida panhandle reveal that accumulation of brevetoxins in healthy fish occurs in the wild. We observed that levels of brevetoxins in the muscle of fish at all trophic levels rise significantly, but not to dangerous levels, during a K. brevis bloom. Concentrations were highest in fish liver and stomach contents, and increased during and immediately following the bloom. The persistence of brevetoxins in the fish food web was followed for 1 year after the K. brevis bloom. PMID:17675204

  2. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses

    PubMed Central

    Lago, Jorge; Rodríguez, Laura P.; Blanco, Lucía; Vieites, Juan Manuel; Cabado, Ana G.

    2015-01-01

    Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of “fugu” is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains. PMID:26492253

  3. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses.

    PubMed

    Lago, Jorge; Rodríguez, Laura P; Blanco, Lucía; Vieites, Juan Manuel; Cabado, Ana G

    2015-10-01

    Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of "fugu" is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains. PMID:26492253

  4. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    SciTech Connect

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  5. A Potent Peptidomimetic Inhibitor of Botulinum Neurotoxin Serotype a Has a Very Different Conformation Than SNAP-25 Substrate

    SciTech Connect

    Zuniga, J.E.; Schmidt, J.J.; Fenn, T.; Burnett, J.C.; Arac, D.; Gussio, R.; Stafford, R.G.; Badie, S.S.; Bavari, S.; Brunger, A.T.

    2009-05-28

    Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (Ki = 41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the 'proton shuttle' E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft, and the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.

  6. Molecular Evolution of α-Latrotoxin, the Exceptionally Potent Vertebrate Neurotoxin in Black Widow Spider Venom

    PubMed Central

    Garb, Jessica E.; Hayashi, Cheryl Y.

    2013-01-01

    Black widow spiders (members of the genus Latrodectus) are widely feared because of their potent neurotoxic venom. α-Latrotoxin is the vertebrate-specific toxin responsible for the dramatic effects of black widow envenomation. The evolution of this toxin is enigmatic because only two α-latrotoxin sequences are known. In this study, ∼4 kb α-latrotoxin sequences and their homologs were characterized from a diversity of Latrodectus species, and representatives of Steatoda and Parasteatoda, establishing the wide distribution of latrotoxins across the mega-diverse spider family Theridiidae. Across black widow species, α-latrotoxin shows ≥94% nucleotide identity and variability consistent with purifying selection. Multiple codon and branch-specific estimates of the nonsynonymous/synonymous substitution rate ratio also suggest a long history of purifying selection has acted on α-latrotoxin across Latrodectus and Steatoda. However, α-latrotoxin is highly divergent in amino acid sequence between these genera, with 68.7% of protein differences involving non-conservative substitutions, evidence for positive selection on its physiochemical properties and particular codons, and an elevated rate of nonsynonymous substitutions along α-latrotoxin’s Latrodectus branch. Such variation likely explains the efficacy of red-back spider, L. hasselti, antivenom in treating bites from other Latrodectus species, and the weaker neurotoxic symptoms associated with Steatoda and Parasteatoda bites. Long-term purifying selection on α-latrotoxin indicates its functional importance in black widow venom, even though vertebrates are a small fraction of their diet. The greater differences between Latrodectus and Steatoda α-latrotoxin, and their relationships to invertebrate-specific latrotoxins, suggest a shift in α-latrotoxin toward increased vertebrate toxicity coincident with the evolution of widow spiders. PMID:23339183

  7. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.

    PubMed

    Kumaran, Desigan; Adler, Michael; Levit, Matthew; Krebs, Michael; Sweeney, Richard; Swaminathan, Subramanyam

    2015-11-15

    The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter. PMID:26522088

  8. Potent Neutralization of Botulinum Neurotoxin/B by Synergistic Action of Antibodies Recognizing Protein and Ganglioside Receptor Binding Domain

    PubMed Central

    Mao, Xiaoyan; Zhang, Tiancheng; Ji, Guanghui; Shi, Xin; Xia, Tian; Lu, Weijia; Zhang, Dapeng; Dai, Jianxin; Guo, Yajun

    2012-01-01

    Background Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. Methods and Findings We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. Conclusions The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes. PMID:22952786

  9. Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria.

    PubMed

    Videnović, Milica; Opsenica, Dejan M; Burnett, James C; Gomba, Laura; Nuss, Jonathan E; Selaković, Zivota; Konstantinović, Jelena; Krstić, Maja; Segan, Sandra; Zlatović, Mario; Sciotti, Richard J; Bavari, Sina; Solaja, Bogdan A

    2014-05-22

    Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 μM). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the Ki of compound 67 is 0.10 μM). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds' in vitro potencies. In addition to specific residue contacts, coordination of the enzyme's catalytic zinc and expulsion of the enzyme's catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2. PMID:24742203

  10. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels

    PubMed Central

    Bende, Niraj S.; Kang, Eunji; Herzig, Volker; Bosmans, Frank; Nicholson, Graham M.; Mobli, Mehdi; King, Glenn F.

    2013-01-01

    One of the most potent insecticidal venom peptides described to date is Aps III from the venom of the trapdoor spider Apomastus schlingeri. Aps III is highly neurotoxic to lepidopteran crop pests, making it a promising candidate for bioinsecticide development. However, its disulfide-connectivity, three-dimensional structure, and mode of action have not been determined. Here we show that recombinant Aps III (rAps III) is an atypical knottin peptide; three of the disulfide bridges form a classical inhibitor cystine knot motif while the fourth disulfide acts as a molecular staple that restricts the flexibility of an unusually large β hairpin loop that often houses the pharmacophore in this class of toxins. We demonstrate that the irreversible paralysis induced in insects by rAps III results from a potent block of insect voltage-gated sodium channels. Channel block by rAps III is voltage-independent insofar as it occurs without significant alteration in the voltage-dependence of channel activation or steady-state inactivation. Thus, rAps III appears to be a pore blocker that plugs the outer vestibule of insect voltage-gated sodium channels. This mechanism of action contrasts strikingly with virtually all other sodium channel modulators isolated from spider venoms that act as gating modifiers by interacting with one or more of the four voltage-sensing domains of the channel. PMID:23473802

  11. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels.

    PubMed

    Bende, Niraj S; Kang, Eunji; Herzig, Volker; Bosmans, Frank; Nicholson, Graham M; Mobli, Mehdi; King, Glenn F

    2013-05-15

    One of the most potent insecticidal venom peptides described to date is Aps III from the venom of the trapdoor spider Apomastus schlingeri. Aps III is highly neurotoxic to lepidopteran crop pests, making it a promising candidate for bioinsecticide development. However, its disulfide-connectivity, three-dimensional structure, and mode of action have not been determined. Here we show that recombinant Aps III (rAps III) is an atypical knottin peptide; three of the disulfide bridges form a classical inhibitor cystine knot motif while the fourth disulfide acts as a molecular staple that restricts the flexibility of an unusually large β hairpin loop that often houses the pharmacophore in this class of toxins. We demonstrate that the irreversible paralysis induced in insects by rAps III results from a potent block of insect voltage-gated sodium channels. Channel block by rAps III is voltage-independent insofar as it occurs without significant alteration in the voltage-dependence of channel activation or steady-state inactivation. Thus, rAps III appears to be a pore blocker that plugs the outer vestibule of insect voltage-gated sodium channels. This mechanism of action contrasts strikingly with virtually all other sodium channel modulators isolated from spider venoms that act as gating modifiers by interacting with one or more of the four voltage-sensing domains of the channel. PMID:23473802

  12. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    SciTech Connect

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D.

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  13. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    DOE PAGESBeta

    Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S.

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care;more » therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a Ki of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter« less

  14. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    SciTech Connect

    Kumaran, D.; Adler, M.; Levit, M.; Krebs, M.; Sweeney, R.; Swaminathan, S.

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a Ki of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter

  15. Epitope targeting of tertiary protein structure enables target-guided synthesis of a potent in-cell inhibitor of botulinum neurotoxin.

    PubMed

    Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M; Das, Samir; Nag, Arundhati; Agnew, Heather D; Heath, James R

    2015-06-01

    Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model. PMID:25925721

  16. Comparison of oral toxicological properties of botulinum neurotoxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated ...

  17. Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas.

    PubMed

    Vanlandeghem, Matthew M; Meyer, Matthew D; Cox, Stephen B; Sharma, Bibek; Patiño, Reynaldo

    2012-12-15

    The Double Mountain Fork Brazos River (Texas, USA) consists of North (NF) and South Forks (SF). The NF receives urban runoff and twice-reclaimed wastewater effluent, whereas the SF flows through primarily rural areas. The objective of this study was to determine and compare associations between standard water quality variables and ichthyotoxicity at a landscape scale that included urban (NF) and rural (SF) sites. Five NF and three SF sites were sampled quarterly from March 2008 to March 2009 for specific conductance, salinity, hardness, pH, temperature, and turbidity; and a zebrafish (Danio rerio) embryo bioassay was used to determine ichthyotoxicity. Metal and nutrient concentrations at all sites were also measured in addition to standard water quality variables in spring 2009. Principal component analyses identified hardness, specific conductance, and salinity as the water variables that best differentiate the urban NF (higher levels) from rural SF habitat. Nutrient levels were also higher in the NF, but no landscape scale patterns in metal concentrations were observed. Ichthyotoxicity was generally higher in NF water especially in winter, and multiple regression analyses suggested a positive association between water hardness and ichthyotoxicity. To test for the potential influence of the toxic golden alga (Prymnesium parvum) on overall ichthyotoxicity, a cofactor known to enhance golden alga toxin activity was used in the bioassays. Golden alga ichthyotoxicity was detected in the NF but not the SF, suggesting golden alga may have contributed to overall ichthyotoxicity in the urban but not in the rural system. In conclusion, the physicochemistry of the urban-influenced NF water was conducive to the expression of ichthyotoxicity and also point to water hardness as a novel factor influencing golden alga ichthyotoxicity in surface waters. PMID:22682267

  18. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    PubMed Central

    Pang, Yuan-Ping; Vummenthala, Anuradha; Mishra, Rajesh K.; Park, Jewn Giew; Wang, Shaohua; Davis, Jon; Millard, Charles B.; Schmidt, James J.

    2009-01-01

    Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe) are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a Kiapp value of 3.8±0.8 µM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC50 value of 100 µM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 Å2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750–1,500 Å2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a Ki value of 760±170 nM using synthesis-based computer-aided molecular design (SBCAMD). This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight into structural modification

  19. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products.

    PubMed

    Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun

    2016-04-01

    Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products. PMID:26838966

  20. Prymnesium parvum revisited: relationship between allelopathy, ichthyotoxicity, and chemical profiles in 5 strains.

    PubMed

    Blossom, Hannah E; Rasmussen, Silas A; Andersen, Nikolaj G; Larsen, Thomas O; Nielsen, Kristian F; Hansen, Per J

    2014-12-01

    Bioassay-guided discovery of ichthyotoxic algal compounds using in vivo fish assays is labor intensive, costly, and highly regulated. Since the mode of action of most known algal-mediated fish-killing toxins is damage to the cell membranes in the gills, various types of cell-based bioassays are often used for bioassay guided purification of new ichthyotoxins. Here we tested the hypothesis that allelopathy is related to ichthyotoxicity and thus that a microalgal bioassay can be used as a proxy for ichthyotoxicity by comparing the toxicity of five strains of Prymnesium parvum toward rainbow trout (Oncorhynchus mykiss, 10 g) and the microalga Teleaulax acuta. No relationship between median effective concentrations (EC50s) on fish and median lethal concentrations (LC50s) on algae was observed in the 5 strains showing that a microalgal bioassay cannot be used as a proxy for ichthyotoxicity. Fish were more sensitive to P. parvum with EC50s ranging from 6×10(3) to 40×10(3) cells ml(-1), compared to the test alga where LC50s ranged from 30×10(3) to nearly non-toxic at 500×10(3) cells ml(-1). In addition, the cellular concentrations of two recently suggested ichthyotoxins produced by P. parvum, the "golden algae toxins", GAT 512 and a novel GAT 510, did not show any relationship to either ichthyotoxicity or allelopathy, and are not the biologically relevant toxins, but are simply lipids found in algal chloroplasts. Finally, we demonstrate that the recently suggested ichthyotoxin, oleamide, could not be detected in any of the five P. parvum strains above the limit of detection, nor was it found in a (13)C-labeled strain. Instead we document that oleamide can easily be extracted from plastic materials, which may have been the source of oleamide reported previously. PMID:25456230

  1. Zebrafish Sensitivity to Botulinum Neurotoxins.

    PubMed

    Chatla, Kamalakar; Gaunt, Patricia S; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  2. Zebrafish Sensitivity to Botulinum Neurotoxins

    PubMed Central

    Chatla, Kamalakar; Gaunt, Patricia S.; Petrie-Hanson, Lora; Ford, Lorelei; Hanson, Larry A.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight) at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg)/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins. PMID:27153088

  3. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge

    PubMed Central

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4+ T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins. PMID:26158319

  4. Botulinum Neurotoxin Injections

    MedlinePlus

    ... years without side effects from long-term use. Immunity Because botulinum neurotoxin is a biological product, it ... for the body to create antibodies and develop immunity to the effects of the toxin. Measures are ...

  5. Sublethal concentrations of ichthyotoxic alga Prymnesium parvum affect rainbow trout susceptibility to viral haemorrhagic septicaemia virus.

    PubMed

    Andersen, Nikolaj Gedsted; Lorenzen, Ellen; Snogdal Boutrup, Torsten; Hansen, Per Juel; Lorenzen, Niels

    2016-01-13

    Ichthyotoxic algal blooms are normally considered a threat to maricultured fish only when blooms reach lethal cell concentrations. The degree to which sublethal algal concentrations challenge the health of the fish during blooms is practically unknown. In this study, we analysed whether sublethal concentrations of the ichthyotoxic alga Prymnesium parvum affect the susceptibility of rainbow trout Oncorhynchus mykiss to viral haemorrhagic septicaemia virus (VHSV). During exposure to sublethal algal concentrations, the fish increased production of mucus on their gills. When fish were exposed to the algae for 12 h prior to the addition of virus, a marginal decrease in the susceptibility to VHSV was observed compared to fish exposed to VHSV without algae. If virus and algae were added simultaneously, inclusion of the algae increased mortality by 50% compared to fish exposed to virus only, depending on the experimental setup. We concluded that depending on the local exposure conditions, sublethal concentrations of P. parvum could affect susceptibility of fish to infectious agents such as VHSV. PMID:26758652

  6. Botulinum Neurotoxin Research at the Western Regional Research Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent toxins to humans. The most common route of intoxication is through ingestion of contaminated food or drink. In addition, these toxins are likely targets for use in intentional adulteration of food or animal feeds and are thus classified as Se...

  7. Botulinum neurotoxin: a deadly protease with applications to human medicine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent biological toxins to humans. They are synthesized by the gram-positive, spore-forming bacterium Clostridium botulinum. BoNT is secreted from the bacterium as a ~150 kDa polypeptide which is cleaved by bacterial or host proteases into a ~50 kD...

  8. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  9. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  10. Strain variability in fatty acid composition of Chattonella marina (Raphidophyceae) and its relation to differing ichthyotoxicity toward rainbow trout gill cells.

    PubMed

    Dorantes-Aranda, Juan José; Nichols, Peter D; David Waite, Trevor; Hallegraeff, Gustaaf M

    2013-04-01

    Lipid profiles of three strains (Mexico, Australia, Japan) of Chattonella marina (Subrahmanyan) Hara et Chihara were studied under defined growth (phosphate, light, and growth phase) and harvest (intact and ruptured cells) conditions. Triacylglycerol levels were always <2%, sterols <7%, free fatty acids varied between 2 and 33%, and polar lipids were the most abundant lipid class (>51% of total lipids). The major fatty acids in C. marina were palmitic (16:0), eicosapentaenoic (EPA, 20:5ω3), octadecatetraenoic (18:4ω3), myristic (14:0), and palmitoleic (16:1ω7c) acids. Higher levels of EPA were found in ruptured cells (21.4-29.4%) compared to intact cells (8.5-25.3%). In general, Japanese N-118 C. marina was the highest producer of EPA (14.3-29.4%), and Mexican CMCV-1 the lowest producer (7.9-27.1%). Algal cultures, free fatty acids from C. marina, and the two aldehydes 2E,4E-decadienal and 2E,4E-heptadienal (suspected fatty acid-derived products) were tested against the rainbow trout fish gill cell line RTgill-W1. The configuration of fatty acids plays an important role in ichthyotoxicity. Free fatty acid fractions, obtained by base saponification of total lipids from C. marina showed a potent toxicity toward gill cells (median lethal concentration, LC50 (at 1 h) of 0.44 μg · mL(-1) in light conditions, with a complete loss of viability at >3.2 μg · mL(-1) ). Live cultures of Mexican C. marina were less toxic than Japanese and Australian strains. This difference could be related to differing EPA content, superoxide anion production, and cell fragility. The aldehydes 2E,4E-decadienal and 2E,4E-heptadienal also showed high impact on gill cell viability, with LC50 (at 1 h) of 0.34 and 0.36 μg · mL(-1) , respectively. Superoxide anion production was highest in Australian strain CMPL01, followed by Japanese N-118 and Mexican CMCV-1 strains. Ruptured cells showed higher production of superoxide anion compared to intact cells (e.g., 19 vs. 9.5

  11. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  12. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are highly potent oral poisons produced by Clostridium botulinum. BoNTs are secreted along with several auxiliary proteins forming progenitor toxin complexes (PTC). Here, we report the structure of a ~760 kDa 14-subunit PTC using a combination of X-ray crystallography a...

  13. Rapid microfluidic assay for the detection of botulinum neurotoxin in animal sera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potent botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit f...

  14. Use of monoclonal antibodies in the sensitive detection and neutralization of botulinum neurotoxin serotype B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed sensitive electrochemiluminescent (ECL) i...

  15. Effects of purification on the bioavailability of botulinum neurotoxin type A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent biological toxins for humans. They are primarily produced by the gram-positive, anaerobic spore-forming bacterium, Clostridium botulinum. In bacterial cultures, secreted BoNTs are associated with non-toxic accessory proteins such as hemagglut...

  16. Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin.

    PubMed

    Sheumack, D D; Howden, M E; Spence, I; Quinn, R J

    1978-01-13

    Maculotoxin, a potent neurotoxin isolated from the posterior salivary glands of the blue-ringed octopus. Hapalochlaena maculosa, has now been identified as tetrodotoxin. This is the first reported case in which tetrodotoxin has been found to occur in a venom. PMID:619451

  17. DOMOIC ACID AS A DEVELOPMENTAL NEUROTOXIN

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro; Faustman, Elaine M.

    2010-01-01

    Domoic acid (DomA) is an excitatory aminoacid which can accumulate in shellfish and finfish under certain environmental conditions. DomA is a potent neurotoxin. In humans and in non-human primates, oral exposure to a few mg/kg DomA elicits gastrointestinal effects, while slightly higher doses cause neurological symptoms, seizures, memory impairment, and limbic system degeneration. In rodents, which appear to be less sensitive than humans or non-human primates, oral doses cause behavioral abnormalities (e.g. hindlimb scratching), followed by seizures and hippocampal degeneration. Similar effects are also seen in other species (from sea-lions to zebrafish), indicating that DomA exerts similar neurotoxic effects across species. The neurotoxicity of DomA is ascribed to its ability to interact and activate the AMPA/KA receptors, a subfamily of receptors for the neuroexcitatory neurotransmitter glutamate. Studies exploring the neurotoxic effects of DomA on the developing nervous system indicate that DomA elicits similar behavioral, biochemical and morphological effects as in adult animals. However, most importantly, developmental neurotoxicity is seen at doses of DomA that are one to two orders of magnitude lower than those exerting neurotoxicity in adults. This difference may be due to toxicokinetic and/or toxicodynamic differences. Estimated safe doses may be exceeded in adults by high consumption of shellfish contaminated with DomA at the current limit of 20 ug/g. Given the potential higher susceptibility of the young to DomA neurotoxicity, additional studies investigating exposure to, and effects of this neurotoxin during brain development are warranted. PMID:20471419

  18. Botulinum neurotoxin: the ugly duckling.

    PubMed

    Koussoulakos, Stauros

    2009-01-01

    This review presents a brief account of the most significant biological effects and clinical applications of botulinum neurotoxins, in a way comprehensive even for casual readers who are not familiar with the subject. The most toxic known substances in botulinum neurotoxins are polypeptides naturally synthesized by bacteria of the genus Clostridium. These polypeptides inhibit acetylcholine release at neuromuscular junctions, thus causing muscle paralysis involving both somatic and autonomic innervation. There is substantial evidence that this muscle-paralyzing feature of botulinum neurotoxins is useful for their beneficial influence on more than 50 pathological conditions such as spastic paralysis, cerebral palsy, focal dystonia, essential tremor, headache, incontinence and a variety of cosmetic interventions. Injection of adequate quantities of botulinum toxins in spastic muscles is considered as a highly hopeful procedure for the treatment of people who suffer from dystonia, cerebral palsy or have experienced a stroke. So far, numerous and reliable studies have established the safety and efficacy of botulinum neurotoxins and advocate wider clinical therapeutic and cosmetic applications. PMID:19365125

  19. A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins.

    PubMed

    Azarnia Tehran, Domenico; Zanetti, Giulia; Leka, Oneda; Lista, Florigio; Fillo, Silvia; Binz, Thomas; Shone, Clifford C; Rossetto, Ornella; Montecucco, Cesare; Paradisi, Cristina; Mattarei, Andrea; Pirazzini, Marco

    2015-01-01

    Botulinum neurotoxins (BoNTs) form a large class of potent and deadly neurotoxins. Given their growing number, it is of paramount importance to discover novel inhibitors targeting common steps of their intoxication process. Recently, EGA was shown to inhibit the action of bacterial toxins and viruses exhibiting a pH-dependent translocation step in mammalian cells, by interfering with their entry route. As BoNTs act in the cytosol of nerve terminals, the entry into an appropriate compartment wherefrom they translocate the catalytic moiety is essential for toxicity. Herein we propose an optimized procedure to synthesize EGA and we show that, in vitro, it prevents the neurotoxicity of different BoNT serotypes by interfering with their trafficking. Furthermore, in mice, EGA mitigates botulism symptoms induced by BoNT/A and significantly decreases the lethality of BoNT/B and BoNT/D. This opens the possibility of using EGA as a lead compound to develop novel inhibitors of botulinum neurotoxins. PMID:26670952

  20. A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins

    PubMed Central

    Azarnia Tehran, Domenico; Zanetti, Giulia; Leka, Oneda; Lista, Florigio; Fillo, Silvia; Binz, Thomas; Shone, Clifford C.; Rossetto, Ornella; Montecucco, Cesare; Paradisi, Cristina; Mattarei, Andrea; Pirazzini, Marco

    2015-01-01

    Botulinum neurotoxins (BoNTs) form a large class of potent and deadly neurotoxins. Given their growing number, it is of paramount importance to discover novel inhibitors targeting common steps of their intoxication process. Recently, EGA was shown to inhibit the action of bacterial toxins and viruses exhibiting a pH-dependent translocation step in mammalian cells, by interfering with their entry route. As BoNTs act in the cytosol of nerve terminals, the entry into an appropriate compartment wherefrom they translocate the catalytic moiety is essential for toxicity. Herein we propose an optimized procedure to synthesize EGA and we show that, in vitro, it prevents the neurotoxicity of different BoNT serotypes by interfering with their trafficking. Furthermore, in mice, EGA mitigates botulism symptoms induced by BoNT/A and significantly decreases the lethality of BoNT/B and BoNT/D. This opens the possibility of using EGA as a lead compound to develop novel inhibitors of botulinum neurotoxins. PMID:26670952

  1. Neurotoxins: Free Radical Mechanisms and Melatonin Protection

    PubMed Central

    Reiter, Russel J.; Manchester, Lucien C.; Tan, Dun-Xian

    2010-01-01

    Toxins that pass through the blood-brain barrier put neurons and glia in peril. The damage inflicted is usually a consequence of the ability of these toxic agents to induce free radical generation within cells but especially at the level of the mitochondria. The elevated production of oxygen and nitrogen-based radicals and related non-radical products leads to the oxidation of essential macromolecules including lipids, proteins and DNA. The resultant damage is referred to as oxidative and nitrosative stress and, when the molecular destruction is sufficiently severe, it causes apoptosis or necrosis of neurons and glia. Loss of brain cells compromises the functions of the central nervous system expressed as motor, sensory and cognitive deficits and psychological alterations. In this survey we summarize the publications related to the following neurotoxins and the protective actions of melatonin: aminolevulinic acid, cyanide, domoic acid, kainic acid, metals, methamphetamine, polychlorinated biphenyls, rotenone, toluene and 6-hydroxydopamine. Given the potent direct free radical scavenging activities of melatonin and its metabolites, their ability to indirectly stimulate antioxidative enzymes and their efficacy in reducing electron leakage from mitochondria, it would be expected that these molecules would protect the brain from oxidative and nitrosative molecular mutilation. The studies summarized in this review indicate that this is indeed the case, an action that is obviously assisted by the fact that melatonin readily crosses the blood brain barrier. PMID:21358970

  2. High-Throughput Screening Uncovers Novel Botulinum Neurotoxin Inhibitor Chemotypes.

    PubMed

    Bompiani, Kristin M; Caglič, Dejan; Krutein, Michelle C; Benoni, Galit; Hrones, Morgan; Lairson, Luke L; Bian, Haiyan; Smith, Garry R; Dickerson, Tobin J

    2016-08-01

    Botulism is caused by potent and specific bacterial neurotoxins that infect host neurons and block neurotransmitter release. Treatment for botulism is limited to administration of an antitoxin within a short time window, before the toxin enters neurons. Alternatively, current botulism drug development targets the toxin light chain, which is a zinc-dependent metalloprotease that is delivered into neurons and mediates long-term pathology. Several groups have identified inhibitory small molecules, peptides, or aptamers, although no molecule has advanced to the clinic due to a lack of efficacy in advanced models. Here we used a homogeneous high-throughput enzyme assay to screen three libraries of drug-like small molecules for new chemotypes that modulate recombinant botulinum neurotoxin light chain activity. High-throughput screening of 97088 compounds identified numerous small molecules that activate or inhibit metalloprotease activity. We describe four major classes of inhibitory compounds identified, detail their structure-activity relationships, and assess their relative inhibitory potency. A previously unreported chemotype in any context of enzyme inhibition is described with potent submicromolar inhibition (Ki = 200-300 nM). Additional detailed kinetic analyses and cellular cytotoxicity assays indicate the best compound from this series is a competitive inhibitor with cytotoxicity values around 4-5 μM. Given the potency and drug-like character of these lead compounds, further studies, including cellular activity assays and DMPK analysis, are justified. PMID:27314875

  3. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum. PMID:24605815

  4. Detection of botulinum neurotoxin serotypes A and B using chemiluminescence and electrochemiluninescene immunoassays in food and serum matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNT) are some of the most potent biological toxins with serotypes A and B being most prevalent in foodborne contaminations. BoNTs are also likely targets for use in intentional adulteration of food or animal feeds and are thus classified as Select Agents. In our laboratories,...

  5. Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent biological toxins. High-affinity monoclonal antibodies (mAbs) have been developed for the detection of BoNT serotypes A and B using a chemiluminescent capture enzyme-linked immunosorbent assay (ELISA). In an effort to improve toxin detection ...

  6. Rapid and selective detection of botulinum neurotoxin serotypes-A and –B with a single immunochromatographic test strip

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven, antigenically distinct botulinum neurotoxins (BoNT) are produced by the bacterium Clostridium botulinum and classified into serotypes designated A-G. In animals these potent toxin acts to inhibit acetylcholine release, resulting in paralysis and death. BoNT/A and /B, together represent >80% o...

  7. Synthesis/biological evaluation of hydroxamic acids and their prodrugs as inhibitors for Botulinum neurotoxin A light chain

    PubMed Central

    Seki, Hajime; Pellett, Sabine; Šilhár, Peter; Stowe, G. Neil; Blanco, Beatriz; Lardy, Matthew; Johnson, Eric A.; Janda, Kim D.

    2014-01-01

    Botulinum neurotoxin A (BoNT/A) is the most potent toxin known. Unfortunately, it is also a potential bioweapon in terrorism, which is without an approved therapeutic treatment once cellular intoxication takes place. Previously, we reported how hydroxamic acid prodrug carbamates increased cellular uptake, which translated to successful inhibition of this neurotoxin. Building upon this research, we detail BoNT/A protease molecular modeling studies accompanied by the construction of small library of hydroxamic acids based on 2,4-dichlorocinnamic hydroxamic acid scaffold and their carbamate prodrug derivatization along with the evaluation of these molecules in both enzymatic and cellular models. PMID:24360826

  8. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

    PubMed

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2012-04-01

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones. PMID:22048953

  9. Structure- and Substrate- Based Inhibitor Design for Clostridium botulinum Neurotoxin Serotype A*

    SciTech Connect

    Kumaran,D.; Rawat, R.; Ludivico, M.; Ahmed, S.; Swaminathan, S.

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins cleave specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex proteins and block the release of neurotransmitters that cause flaccid paralysis and are considered potential bioweapons. Botulinum neurotoxin type A is the most potent among the clostridial neurotoxins, and to date there is no post-exposure therapeutic intervention available. To develop inhibitors leading to drug design, it is imperative that critical interactions between the enzyme and the substrate near the active site are known. Although enzyme-substrate interactions at exosites away from the active site are mapped in detail for botulinum neurotoxin type A, information about the active site interactions is lacking. Here, we present the crystal structures of botulinum neurotoxin type A catalytic domain in complex with four inhibitory substrate analog tetrapeptides, viz. RRGC, RRGL, RRGI, and RRGM at resolutions of 1.6-1.8 Angstroms . These structures show for the first time the interactions between the substrate and enzyme at the active site and delineate residues important for substrate stabilization and catalytic activity. We show that OH of Tyr366 and NH2 of Arg363 are hydrogen-bonded to carbonyl oxygens of P1 and P1' of the substrate analog and position it for catalytic activity. Most importantly, the nucleophilic water is replaced by the amino group of the N-terminal residue of the tetrapeptide. Furthermore, the S1' site is formed by Phe194, Thr215, Thr220, Asp370, and Arg363. The Ki of the best inhibitory tetrapeptide is 157 nm.

  10. Current gaps in basic science knowledge of botulinum neurotoxin biological actions.

    PubMed

    Rossetto, Ornella; Pirazzini, Marco; Montecucco, Cesare

    2015-12-01

    Botulinum neurotoxins are produced by anaerobic spore-forming bacteria of the genus Clostridium in several dozens of variants that inactivate neurotransmitter release owing to their metalloprotease activity. This results in a persistent paralysis of peripheral nerve terminals known as botulism. They are the most potent toxins known and are classified as one of the six highest-risk threat agents of bioterrorism. Despite their high toxicity, two of them are used as valuable pharmaceutical for the therapy of many neurological and non-neurological disorders. Notwithstanding the many advances in our understanding of the genetics and structure of botulinum neurotoxins, there are still many gaps in knowledge of toxin mechanism of action that will be discussed here. PMID:26163315

  11. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    SciTech Connect

    Kumaran, D.; Rawat, R; Ahmed, A; Swaminathan, S

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  12. Synthesis and Biological Evaluation of Botulinum Neurotoxin A Protease Inhibitors

    PubMed Central

    Li, Bing; Pai, Ramdas; Cardinale, Steven C.; Butler, Michelle M.; Peet, Norton P.; Moir, Donald T.; Bavari, Sina; Bowlin, Terry L.

    2010-01-01

    NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogs have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC50 = 2.5 µM, FRET assay), which is 4.4-fold more potent than the lead structure, and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity. PMID:20155918

  13. The long journey of botulinum neurotoxins into the synapse.

    PubMed

    Rummel, Andreas

    2015-12-01

    Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE

  14. Substrate-based inhibitors exhibiting excellent protective and therapeutic effects against Botulinum Neurotoxin A intoxication

    PubMed Central

    Guo, Jiubiao; Wang, Jinglin; Gao, Shan; Ji, Bin; Waichi Chan, Edward; Chen, Sheng

    2015-01-01

    Potent inhibitors to reverse Botulinum neurotoxins (BoNTs) activity in neuronal cells are currently not available. A better understanding of the substrate recognition mechanism of BoNTs enabled us to design a novel class of peptide inhibitors which were derivatives of the BoNT/A substrate, SNAP25. Through a combination of in vitro, cellular based, and in vivo mouse assays, several potent inhibitors of approximately one nanomolar inhibitory strength both in vitro and in vivo have been identified. These compounds represent the first set of inhibitors that exhibited full protection against BoNT/A intoxication in mice model with undetectable toxicity. Our findings validated the hypothesis that a peptide inhibitor targeting the two BoNT structural regions which were responsible for substrate recognition and cleavage respectively could exhibit excellent inhibitory effect, thereby providing insight on future development of more potent inhibitors against BoNTs. PMID:26584873

  15. Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells

    PubMed Central

    Popoff, Michel R.; Poulain, Bernard

    2010-01-01

    Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons. PMID:22069606

  16. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.

    PubMed

    Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja; Janzen, Constantin; Lou, Jianlong; Marks, James D; Binz, Thomas; Rummel, Andreas

    2014-04-01

    Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release by hydrolysing SNARE proteins. The most important serotype BoNT/A employs the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C as neuronal receptors. Here, we identified their binding site by blocking SV2 interaction using monoclonal antibodies with characterised epitopes within the cell binding domain (HC). The site is located on the backside of the conserved ganglioside binding pocket at the interface of the HCC and HCN subdomains. The dimension of the binding pocket was characterised in detail by site directed mutagenesis allowing the development of potent inhibitors as well as modifying receptor binding properties. PMID:24583011

  17. Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons.

    PubMed

    Höltje, Markus; Schulze, Sebastian; Strotmeier, Jasmin; Mahrhold, Stefan; Richter, Karin; Binz, Thomas; Bigalke, Hans; Ahnert-Hilger, Gudrun; Rummel, Andreas

    2013-12-01

    The modular four domain structure of clostridial neurotoxins supports the idea to reassemble individual domains from tetanus and botulinum neurotoxins to generate novel molecules with altered pharmacological properties. To treat disorders of the central nervous system drug transporter molecules based on catalytically inactive clostridial neurotoxins circumventing the passage of the blood-brain-barrier are desired. Such molecules can be produced based on the highly effective botulinum neurotoxin serotype A incorporating the retrograde axonal sorting property of tetanus neurotoxin which is supposed to be encoded within its C-terminal cell binding domain HC. The corresponding exchange of the tetanus neurotoxin HC-fragment in botulinum neurotoxin A yielded the novel hybrid molecule AATT which displayed decreased potency at the neuromuscular junction like tetanus neurotoxin but exerted equal activity in cortical neurons compared to botulinum neurotoxin A wild-type. Minimizing the tetanus neurotoxin cell binding domain to its N- or C-terminal half drastically reduced the potencies of AATA and AAAT in cortical neurons indicating that the structural motif mediating sorting of tetanus neurotoxin is predominantly encoded within the entire HC-fragment. However, the reciprocal exchange resulted in TTAA which showed a similar potency as tetanus neurotoxin at the neuromuscular junction indicating that the tetanus neurotoxin portion prevents a high potency as observed for botulinum neurotoxins. In conclusion, clostridial neurotoxin based inactivated drug transporter for targeting central neurons should contain the cell binding domain of tetanus neurotoxin to exert its tropism for the central nervous system. PMID:23817019

  18. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    SciTech Connect

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.; Baldwin, Michael R.

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.

  19. The Zinc-Dependent Protease Activity of the Botulinum Neurotoxins

    PubMed Central

    Lebeda, Frank J.; Cer, Regina Z.; Mudunuri, Uma; Stephens, Robert; Singh, Bal Ram; Adler, Michael

    2010-01-01

    The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov). PMID:22069621

  20. A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro.

    PubMed

    Chaddock, J A; Purkiss, J R; Duggan, M J; Quinn, C P; Shone, C C; Foster, K A

    2000-01-01

    Nerve growth factor (NGF) receptor binding, internalisation and transportation of NGF has been identified as a potential route of delivery for other molecules. A derivative of Clostridium botulinum neurotoxin type A (LHN) that retains catalytic activity but has significantly reduced cell-binding capability has been prepared and chemically coupled to NGF. Intact clostridial neurotoxins potently inhibit neurotransmitter release at the neuromuscular junction by proteolysis of specific components of the vesicle docking/fusion complex. Here we report that the NGF-LHN/A conjugate, when applied to PC12 cells, significantly inhibited neurotransmitter release and cleaved the type A toxin substrate. This work represents the successful use of NGF as a targeting moiety for the delivery of a neurotoxin fragment. PMID:11019785

  1. Botulinum neurotoxin type A: Actions beyond SNAP-25?

    PubMed

    Matak, Ivica; Lacković, Zdravko

    2015-09-01

    Botulinum neurotoxin type A (BoNT/A), the most potent toxin known in nature which causes botulism, is a commonly used therapeutic protein. It prevents synaptic vesicle neuroexocytosis by proteolytic cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25). It is widely believed that BoNT/A therapeutic or toxic actions are exclusively mediated by SNAP-25 cleavage. On the other hand, in vitro and in vivo findings suggest that several BoNT/A actions related to neuroexocytosis, cell cycle and apoptosis, neuritogenesis and gene expression are not necessarily mediated by this widely accepted mechanism of action. In present review we summarize the literature evidence which point to the existence of unknown BoNT/A molecular target(s) and modulation of unknown signaling pathways. The effects of BoNT/A apparently independent of SNAP-25 occur at similar doses/concentrations known to induce SNAP-25 cleavage and prevention of neurotransmitter release. Accordingly, these effects might be pharmacologically significant. Potentially the most interesting are observations of antimitotic and antitumor activity of BoNT/A. However, the exact mechanisms require further studies. PMID:26169827

  2. Clostridial neurotoxins: mode of substrate recognition and novel therapy development.

    PubMed

    Chen, Sheng

    2014-01-01

    The clostridial neurotoxins (CNTs) are among the most potent protein toxins known to humans. CNTs include seven serotypes (A~G) of botulinum toxins (BoNTs), which cause botulism, a flaccid paralysis, and tetanus toxin (TeNT), which causes spastic paralysis. BoNTs are classified as category A agent and may be used as potential bioterrorism weapons. On the other hand, the ability of an extremely low dosage of BoNTs (less than 1 ng) to cause reversible partial paralysis upon injection into muscle has turned BoNTs, in particular serotypes A and B, from deadly agents to novel therapeutic agents for treatment of a wide range of clinical conditions associated with involuntary muscle spasm and contractions. In addition to clinical use, they may also be used in cosmetics. Further indications for BoNTs will continue to be developed, although current BoNT therapies have encountered some limitations due to the pharmacological properties of BoNTs, such as their ability to elicit immunoresistance in patients upon periodical injections. This review summarizes the present knowledge of the mechanisms of action of CNTs, with particular focus on the mode of substrate recognition by CNT catalytic domains and knowledge regarding substrate recognition can be utilized to develop novel BoNT products to extend its usefulness in therapeutic interventions and overcome the immunoresistance problems. PMID:24106961

  3. Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A

    SciTech Connect

    Teng, Y. G.; Berger, W. T.; Nesbitt, N. M.; Kumar, K.; Balius, T. E.; Rizzo, R. C.; Tonge, P. J.; Ojima, I.; Swaminathan, S.

    2015-07-27

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxin known to humans, and are classified as Category A bioterrorism agents by the Centers for Disease Control and prevention (CDC). There are seven known BoNT serotypes (A-G) which have been thus far identified in literature. BoNTs have been shown to block neurotransmitter release by cleaving proteins of the soluble NSF attachment protein receptor (SNARE) complex. Disruption of the SNARE complex precludes motor neuron failure which ultimately results in flaccid paralysis in humans and animals. Currently, there are no effective therapeutic treatments against the neurotoxin light chain (LC) after translocation into the cytosols of motor neurons. In this work, high-throughput virtual screening was employed to screen a library of commercially available compounds from ZINC database against BoNT/A-LC. Among the hit compounds from the in-silico screening, two lead compounds were identified and found to have potent inhibitory activity against BoNT/A-LC in vitro, as well as in Neuro-2a cells. A few analogues of the lead compounds were synthesized and their potency examined. One of these analogues showed an enhanced activity than the lead compounds

  4. Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A

    DOE PAGESBeta

    Teng, Y. G.; Berger, W. T.; Nesbitt, N. M.; Kumar, K.; Balius, T. E.; Rizzo, R. C.; Tonge, P. J.; Ojima, I.; Swaminathan, S.

    2015-07-27

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxin known to humans, and are classified as Category A bioterrorism agents by the Centers for Disease Control and prevention (CDC). There are seven known BoNT serotypes (A-G) which have been thus far identified in literature. BoNTs have been shown to block neurotransmitter release by cleaving proteins of the soluble NSF attachment protein receptor (SNARE) complex. Disruption of the SNARE complex precludes motor neuron failure which ultimately results in flaccid paralysis in humans and animals. Currently, there are no effective therapeutic treatments against the neurotoxin light chain (LC) after translocation intomore » the cytosols of motor neurons. In this work, high-throughput virtual screening was employed to screen a library of commercially available compounds from ZINC database against BoNT/A-LC. Among the hit compounds from the in-silico screening, two lead compounds were identified and found to have potent inhibitory activity against BoNT/A-LC in vitro, as well as in Neuro-2a cells. A few analogues of the lead compounds were synthesized and their potency examined. One of these analogues showed an enhanced activity than the lead compounds« less

  5. Computer-aided identification, synthesis, and biological evaluation of novel inhibitors for botulinum neurotoxin serotype A.

    PubMed

    Teng, Yu-Han Gary; Berger, William T; Nesbitt, Natasha M; Kumar, Kunal; Balius, Trent E; Rizzo, Robert C; Tonge, Peter J; Ojima, Iwao; Swaminathan, Subramanyam

    2015-09-01

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxin known to humans, and are classified as Category A bioterrorism agents by the Centers for Disease Control and prevention (CDC). There are seven known BoNT serotypes (A-G) which have been thus far identified in literature. BoNTs have been shown to block neurotransmitter release by cleaving proteins of the soluble NSF attachment protein receptor (SNARE) complex. Disruption of the SNARE complex precludes motor neuron failure which ultimately results in flaccid paralysis in humans and animals. Currently, there are no effective therapeutic treatments against the neurotoxin light chain (LC) after translocation into the cytosols of motor neurons. In this work, high-throughput in silico screening was employed to screen a library of commercially available compounds from ZINC database against BoNT/A-LC. Among the hit compounds from the in silico screening, two lead compounds were identified and found to have potent inhibitory activity against BoNT/A-LC in vitro, as well as in Neuro-2a cells. A few analogs of the lead compounds were synthesized and their potency examined. One of these analogs showed an enhanced activity than the lead compounds. PMID:26275678

  6. The ichthyotoxic alga Chattonella marina induces Na{sup +}, K{sup +}-ATPase, and CFTR proteins expression in fish gill chloride cells in vivo

    SciTech Connect

    Tang, Janet Y.M.; Wong, Chris K.C.; Au, Doris W.T. . E-mail: bhdwtau@cityu.edu.hk

    2007-02-02

    Our previous studies demonstrated that the ichthyotoxic Chattonella marina stimulated proliferation of branchial chloride cell (CC) and induced osmotic distress akin to hyperactive elimination of ions in fish (Rhabdosargus sarba). To ascertain the in vivo effects of C. marina on key CC ion transporters, the localization and expression of Na{sup +}, K{sup +}-ATPase (NKA) and cystic fibrosis transmembrane conductance regulator (CFTR) proteins in response to C. marina exposure were investigated, using a quantitative immunocytochemical approach. The polarized distributions of NKA ({alpha} subunit) and CFTR proteins in branchial CCs of R. sarba remained unchanged under C. marina exposure. However, significant inductions of these two ion-transporters were detected in CCs of fish after 6 h exposure. By real-time PCR, no significant changes in gill NKA and CFTR mRNA expressions were detected, suggesting a post-transcriptional pathway is likely involved in regulating the ion transporters abundance. This study is the first to demonstrate the in vivo effects of harmful algal toxin on NKA and CFTR protein expressions in gill transepithelial cells. Taken together, an augmentation of branchial CCs together with hyper-stimulation of NKA and CFTR in CCs attribute to the rapid development of osmotic distress in C. marina susceptible fish.

  7. Therapeutic applications of botulinum neurotoxins in head and neck disorders

    PubMed Central

    Alshadwi, Ahmad; Nadershah, Mohammed; Osborn, Timothy

    2014-01-01

    Objective The aim of this article is to review the mechanism of action, physiological effects, and therapeutic applications of botulinum neurotoxins in the head and neck area. Study design An extensive literature search was performed using keywords. The resulting articles were analyzed for relevance in four areas: overview on botulinum neurotoxins, the role of botulinum neurotoxins in the management of salivary secretory disorders, the role of botulinum neurotoxins in the management of facial pain, and the role of botulinum neurotoxins in head and neck movement disorders. Institutional review board approval was not needed due the nature of the study. Results Botulinum neurotoxin therapy was demonstrated to be a valuable alternative to conventional medical therapy for many conditions affecting the head and neck area in terms of morbidly, mortality, and patient satisfaction with treatment outcomes. Conclusion Botulinum neurotoxin therapy provides viable alternatives to traditional treatment modalities for some conditions affecting the head and neck region that have neurological components. This therapy can overcome some of the morbidities associated with conventional therapy. More research is needed to determine the ideal doses of botulinum neurotoxin to treat different diseases affecting the head and neck regions. PMID:25544809

  8. Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin.

    PubMed

    Chen, Sheng; Hall, Cherisse; Barbieri, Joseph T

    2008-07-25

    Botulinum neurotoxin (BoNT; serotypes A-G) and tetanus neurotoxin elicit flaccid and spastic paralysis, respectively. These neurotoxins are zinc proteases that cleave SNARE proteins to inhibit synaptic vesicle fusion to the plasma membrane. Although BoNT/B and tetanus neurotoxin (TeNT) cleave VAMP-2 at the same scissile bond, their mechanism(s) of VAMP-2 recognition is not clear. Mapping experiments showed that residues 60-87 of VAMP-2 were sufficient for efficient cleavage by BoNT/B and that residues 40-87 of VAMP-2 were sufficient for efficient TeNT cleavage. Alanine-scanning mutagenesis and kinetic analysis identified three regions within VAMP-2 that were recognized by BoNT/B and TeNT: residues adjacent to the site of scissile bond cleavage (cleavage region) and residues located within N-terminal and C-terminal regions relative to the cleavage region. Analysis of residues within the cleavage region showed that mutations at the P7, P4, P2, and P1' residues of VAMP-2 had the greatest inhibition of LC/B cleavage (> or =32-fold), whereas mutations at P7, P4, P1', and P2' residues of VAMP-2 had the greatest inhibition of LC/TeNT cleavage (> or =64-fold). Residues within the cleavage region influenced catalysis, whereas residues N-terminal and C-terminal to the cleavage region influenced binding affinity. Thus, BoNT/B and TeNT possess similar organization but have unique residues to recognize and cleave VAMP-2. These studies provide new insights into how the clostridial neurotoxins recognize their substrates. PMID:18511417

  9. Development of recombinant vaccines for botulinum neurotoxin.

    PubMed

    Smith, L A

    1998-11-01

    Synthetic genes encoding non-toxic, carboxyl-terminal regions (approximately 50 kDa) of botulinum neurotoxin (BoNT) serotypes A and B (referred to as fragment C or HC) were constructed and cloned into the methylotropic yeast, Pichia pastoris. Genes specifying BoNTA(HC) and BoNTB(HC) were expressed as both intracellular and secreted products. Recombinants, expressed intracellularly, yielded products with the expected molecular weight as judged by SDS PAGE and Western blot (immunoblot) analysis, while secreted products were larger due to glycosylation. Gene products were used to vaccinate mice and evaluated for their ability to elicit protective antibody titers in vivo. Mice given three intramuscular vaccinations with yeast supernatant containing glycosylated BoNTA(HC) were protected against an intraperitoneal challenge of 10(6) 50% mouse lethal doses (MLD50) of serotype A neurotoxin, a result not duplicated by its BoNTB(HC) counterpart. Vaccinating mice with cytoplasmically produced BoNTA(HC) and BoNTB(HC) protected animals from a challenge of 10(6) MLD50 of serotype A and B toxins, respectively. Because of the glycosylation encountered with secreted BoNT(HC), our efforts focused on the production and purification of products from intracellular expression. PMID:9792170

  10. Neurodegenerative Diseases: Neurotoxins as Sufficient Etiologic Agents?

    PubMed Central

    Shaw, Christopher A.; Höglinger, Günter U.

    2008-01-01

    A dominant paradigm in neurological disease research is that the primary etiological factors for diseases such as Alzheimer’s (AD), Parkinson’s (PD), and amyotrophic lateral sclerosis (ALS) are genetic. Opposed to this perspective are the clear observations from epidemiology that purely genetic casual factors account for a relatively small fraction of all cases. Many who support a genetic etiology for neurological disease take the view that while the percentages may be relatively small, these numbers will rise in the future with the inevitable discoveries of additional genetic mutations. The follow up argument is that even if the last is not true, the events triggered by the aberrant genes identified so far will be shown to impact the same neuronal cell death pathways as those activated by environmental factors that trigger most sporadic disease cases. In this article we present a countervailing view that environmental neurotoxins may be the sole sufficient factor in at least three neurological disease clusters. For each, neurotoxins have been isolated and characterized that, at least in animal models, faithfully reproduce each disorder without the need for genetic co-factors. Based on these data, we will propose a set of principles that would enable any potential toxin to be evaluated as an etiological factor in a given neurodegenerative disease. Finally, we will attempt to put environmental toxins into the context of possible genetically-determined susceptibility. PMID:17985252

  11. Neurotoxins from Marine Dinoflagellates: A Brief Review

    PubMed Central

    Wang, Da-Zhi

    2008-01-01

    Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels. PMID:18728731

  12. Temporal characteristics of botulinum neurotoxin therapy

    PubMed Central

    Lebeda, Frank J; Cer, Regina Z; Stephens, Robert M; Mudunuri, Uma

    2010-01-01

    Botulinum neurotoxin is a pharmaceutical treatment used for an increasing number of neurological and non-neurological indications, symptoms and diseases. Despite the wealth of clinical reports that involve the timing of the therapeutic effects of this toxin, few studies have attempted to integrate these data into unified models. Secondary reactions have also been examined including the development of adverse events, resistance to repeated applications, and nerve terminal sprouting. Our primary intent for conducting this review was to gather relevant pharmacodynamic data from suitable biomedical literature regarding botulinum neurotoxins via the use of automated data-mining techniques. We envision that mathematical models will ultimately be of value to those who are healthcare decision makers and providers, as well as clinical and basic researchers. Furthermore, we hypothesize that the combination of this computer-intensive approach with mathematical modeling will predict the percentage of patients who will favorably or adversely respond to this treatment and thus will eventually assist in developing the increasingly important area of personalized medicine. PMID:20021324

  13. A 1-D simulation analysis of the development and maintenance of the 2001 red tide of the ichthyotoxic dinoflagellate Karenia brevis on the West Florida shelf

    NASA Astrophysics Data System (ADS)

    Lenes, J. M.; Darrow, B. P.; Walsh, J. J.; Jolliff, J. K.; Chen, F. R.; Weisberg, R. H.; Zheng, L.

    2012-06-01

    A one-dimensional (1-D) ecological model, HABSIM, examined the initiation and maintenance of the 2001 red tide on the West Florida shelf (WFS). Phytoplankton competition among toxic dinoflagellates (Karenia brevis), nitrogen fixing cyanophytes (Trichodesmium erythraeum), large siliceous phytoplankton (diatoms), and small non-siliceous phytoplankton (microflagellates) explored the sequence of events required to support the observed red tide from August to December 2001. The ecological model contained 24 state variables within five submodels: circulation, atmospheric (iron deposition), bio-optics, pelagic (phytoplankton, nutrients, bacteria, zooplankton, and fish), and benthic (nutrient regeneration). The 2001 model results reaffirmed that diazotrophs are the basis for initiation of red tides of K. brevis on the WFS. A combination of selective grazing pressure, iron fertilization, low molar nitrogen to phosphorus ratios, and eventual silica limitation of fast-growing diatoms set the stage for dominance of nitrogen fixers. "New" nitrogen was made available for subsequent blooms of K. brevis through the release of ammonium and urea during nitrogen fixation, as well as during cell lysis, by the Trichodesmium population. Once K. brevis biomass reached ichthyotoxic levels, rapid decay of subsequent fish kills supplied additional organic nutrients for utilization by these opportunistic toxic algae. Both nutrient vectors represented organic non-siliceous sources of nitrogen and phosphorus, further exacerbating silica limitation of the diatom population. The model reproduced this spring transition from a simple estuarine-driven, diatom-based food chain to a complex summer-fall system of Trichodesmium and toxic dinoflagellates. While the model was able to replicate the initiation and maintenance of the 2001 red tide, bloom termination was not captured by this 1-D form on the WFS. Here, horizontal advection and perhaps cell lysis loss terms might play a significant role, to be

  14. Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins.

    PubMed

    Hill, K K; Xie, G; Foley, B T; Smith, T J

    2015-12-01

    The recent availability of multiple Clostridium botulinum genomic sequences has initiated a new genomics era that strengthens our understanding of the bacterial species that produce botulinum neurotoxins (BoNTs). Analysis of the genomes has reinforced the historical Group I-VI designations and provided evidence that the bont genes can be located within the chromosome, phage or plasmids. The sequences provide the opportunity to examine closely the variation among the toxin genes, the composition and organization of the toxin complex, the regions flanking the toxin complex and the location of the toxin within different bacterial strains. These comparisons provide evidence of horizontal gene transfer and site-specific insertion and recombination events that have contributed to the variation observed among the neurotoxins. Here, examples that have contributed to the variation observed in serotypes A-H strains are presented to illustrate the mechanisms that have contributed to their variation. PMID:26368006

  15. Re-engineering clostridial neurotoxins for the treatment of chronic pain: current status and future prospects.

    PubMed

    Pickett, Andy

    2010-06-01

    Clostridial neurotoxins from the botulinum neurotoxin (BoNT) family are protein complexes, derived from the bacterium Clostridium botulinum, which potently inhibit acetylcholine release and result in a reversible blockade of the neuromuscular junction. This feature led to the clinical development of BoNT-A for a number of neuromuscular disorders. BoNT-A toxins are commercially available as three different preparations: Dysport/Azzalure, Botox/Vistabel, and Xeomin/Bocouture. Although BoNT-A preparations have not yet been approved for the treatment of pain, a substantial body of preclinical and clinical evidence shows that BoNT-A is effective in treating a number of different types of pain. It is thought to exert an analgesic effect both via muscle-relaxant properties and also directly, via inhibition of nociceptive neuropeptides. This review explores the mechanistic basis of this analgesic effect, summarizing current knowledge of the structure-function relationship of BoNT and discussing effects on both motor and pain neurons. For a complete picture of the analgesic properties of BoNT-A, clinical evidence of efficacy in myofascial pain and neuropathic pain is considered in tandem with a mechanistic rationale for activity. Patients experiencing chronic pain are clear candidates for treatment with a modified clostridial endopeptidase that would provide enduring inhibition of neurotransmitter release. A strong preclinical evidence base underpins the concept that re-engineering of BoNT could be used to enhance the analgesic potential of this neurotoxin, and it is hoped that the first clinical studies examining re-engineered BoNT-A will confirm this potential. PMID:20462283

  16. Progress in Cell Based Assays for Botulinum Neurotoxin Detection

    PubMed Central

    2013-01-01

    Botulinum neurotoxins (BoNTs) are the most potent human toxins known and the causative agent of botulism, and are widely used as valuable pharmaceuticals. The BoNTs are modular proteins consisting of a heavy chain and a light chain linked by a disulfide bond. Intoxication of neuronal cells by BoNTs is a multi-step process including specific cell binding, endocytosis, conformational change in the endosome, translocation of the enzymatic light chain into the cells cytosol, and SNARE target cleavage. The quantitative and reliable potency determination of fully functional BoNTs produced as active pharmaceutical ingredient (API) requires an assay that considers all steps in the intoxication pathway. The in vivo mouse bioassay has for years been the ‘gold standard’ assay used for this purpose, but it requires the use of large numbers of mice and thus causes associated costs and ethical concerns. Cell-based assays are currently the only in vitro alternative that detect fully functional BoNTs in a single assay and have been utilized for years for research purposes. Within the last 5 years, several cell-based BoNT detection assays have been developed that are able to quantitatively determine BoNT potency with similar or greater sensitivity than the mouse bioassay. These assays now offer an alternative method for BoNT potency determination. Such quantitative and reliable BoNT potency determination is a crucial step in basic research, in the development of pharmaceutical BoNTs, and in the quantitative detection of neutralizing antibodies. PMID:23239357

  17. Benzoquinones as inhibitors of botulinum neurotoxin serotype A.

    PubMed

    Bremer, Paul T; Hixon, Mark S; Janda, Kim D

    2014-08-01

    Although botulinum neurotoxin serotype A (BoNT/A) is known for its use in cosmetics, it causes a potentially fatal illness, botulism, and can be used as a bioterror weapon. Many compounds have been developed that inhibit the BoNTA zinc-metalloprotease light chain (LC), however, none of these inhibitors have advanced to clinical trials. In this study, a fragment-based approach was implemented to develop novel covalent inhibitors of BoNT/A LC. First, electrophilic fragments were screened against BoNT/A LC, and benzoquinone (BQ) derivatives were found to be active. In kinetic studies, BQ compounds acted as irreversible inhibitors that presumably covalently modify cysteine 165 of BoNT/A LC. Although most BQ derivatives were highly reactive toward glutathione in vitro, a few compounds such as natural product naphthazarin displayed low thiol reactivity and good BoNT/A inhibition. In order to increase the potency of the BQ fragment, computational docking studies were employed to elucidate a scaffold that could bind to sites adjacent to Cys165 while positioning a BQ fragment at Cys165 for covalent modification; 2-amino-N-arylacetamides met these criteria and when linked to BQ displayed at least a 20-fold increase in activity to low μM IC₅₀ values. Unlike BQ alone, the linked-BQ compounds demonstrated only weak irreversible inhibition and therefore acted mainly as non-covalent inhibitors. Further kinetic studies revealed a mutual exclusivity of BQ covalent inactivation and competitive inhibitor binding to sites adjacent to Cys165, refuting the viability of the current strategy for developing more potent irreversible BoNT/A inhibitors. The highlights of this study include the discovery of BQ compounds as irreversible BoNT/A inhibitors and the rational design of low μM IC50 competitive inhibitors that depend on the BQ moiety for activity. PMID:24984937

  18. Benzoquinones as Inhibitors of Botulinum Neurotoxin Serotype A

    PubMed Central

    Bremer, Paul T.; Hixon, Mark S.; Janda, Kim D.

    2014-01-01

    Although botulinum neurotoxin serotype A (BoNT/A) is known for its use in cosmetics, it causes a potentially fatal illness, botulism, and can be used as a bioterror weapon. Many compounds have been developed that inhibit the BoNTA zinc-metalloprotease light chain (LC), however, none of these inhibitors have advanced to clinical trials. In this study, a fragment-based approach was implemented to develop novel covalent inhibitors of BoNT/A LC. First, electrophilic fragments were screened against BoNT/A LC, and benzoquinone (BQ) derivatives were found to be active. In kinetic studies, BQ compounds acted as irreversible inhibitors that presumably covalently modify cysteine 165 of BoNT/A LC. Although most BQ derivatives were highly reactive toward glutathione in vitro, a few compounds such as natural product naphthazarin displayed low thiol reactivity and good BoNT/A inhibition. In order to increase the potency of the BQ fragment, computational docking studies were employed to elucidate a scaffold that could bind to sites adjacent to Cys165 while positioning a BQ fragment at Cys165 for covalent modification; 2-amino-N-arylacetamides met these criteria and when linked to BQ displayed at least a 20-fold increase in activity to low μM IC50 values. Unlike BQ alone, the linked-BQ compounds demonstrated only weak irreversible inhibition and therefore acted mainly as non-covalent inhibitors. Further kinetic studies revealed a mutual exclusivity of BQ covalent inactivation and competitive inhibitor binding to sites adjacent to Cys165, refuting the viability of the current strategy for developing more potent irreversible BoNT/A inhibitors. The highlights of this study include the discovery of BQ compounds as irreversible BoNT/A inhibitors and the rational design of low μM IC50 competitive inhibitors that depend on the BQ moiety for activity. PMID:24984937

  19. Molecular assembly of botulinum neurotoxin progenitor complexes.

    PubMed

    Benefield, Desirée A; Dessain, Scott K; Shine, Nancy; Ohi, Melanie D; Lacy, D Borden

    2013-04-01

    Botulinum neurotoxin (BoNT) is produced by Clostridium botulinum and associates with nontoxic neurotoxin-associated proteins to form high-molecular weight progenitor complexes (PCs). The PCs are required for the oral toxicity of BoNT in the context of food-borne botulism and are thought to protect BoNT from destruction in the gastrointestinal tract and aid in absorption from the gut lumen. The PC can differ in size and protein content depending on the C. botulinum strain. The oral toxicity of the BoNT PC increases as the size of the PC increases, but the molecular architecture of these large complexes and how they contribute to BoNT toxicity have not been elucidated. We have generated 2D images of PCs from strains producing BoNT serotypes A1, B, and E using negative stain electron microscopy and single-particle averaging. The BoNT/A1 and BoNT/B PCs were observed as ovoid-shaped bodies with three appendages, whereas the BoNT/E PC was observed as an ovoid body. Both the BoNT/A1 and BoNT/B PCs showed significant flexibility, and the BoNT/B PC was documented as a heterogeneous population of assembly/disassembly intermediates. We have also determined 3D structures for each serotype using the random conical tilt approach. Crystal structures of the individual proteins were placed into the BoNT/A1 and BoNT/B PC electron density maps to generate unique detailed models of the BoNT PCs. The structures highlight an effective platform that can be engineered for the development of mucosal vaccines and the intestinal absorption of oral biologics. PMID:23509303

  20. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin

    PubMed Central

    Barrera, Daniel J.; Rosenberg, Julian N.; Chiu, Joanna G.; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T.; Shoemaker, Charles B.; Oyler, George A.; Mayfield, Stephen P.

    2015-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VHH) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen binding proteins and the heterodimer fusion protein containing two VHH domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism. PMID:25229405

  1. Exploration of endogenous substrate cleavage by various forms of botulinum neurotoxins.

    PubMed

    Guo, Jiubiao; Wang, Jinglin; Chan, Edward Waichi; Chen, Sheng

    2015-06-15

    Botulinum neurotoxins are the most potent protein neurotoxin known to human. The dual roles of BoNTs as both the causative agent of human botulism and a widely used protein-based therapeutic agent for treatment of numerous neuromuscular disorders/cosmetic uses make it an extremely hot topic of research. Biochemical characterization of these toxins was mainly confined to the recombinant light chains and substrate and little is known about their efficiency on the cleavage of endogenous substrates. In the present study, we showed that BoNTs exhibited variable activities on their endogenous substrates and that their efficiency to cleave recombinant and endogenous substrate was not consistent, presumably due to the differential recognition of their respective substrates in the natural SNARE complex format. Through testing the combinatorial effects of different BoNTs on cleavage of endogenous substrates, we showed that the combinations of LC/A and LC/B, as well as LC/A and LC/F, could enhance the activity of each individual BoNT. This finding may shed light on the future development of new BoNT serotypes for clinical application, and formulation of combinatorial uses of different BoNTs to minimize the development of immuno-resistance by using a lower amount of individual type. PMID:25912942

  2. New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food

    PubMed Central

    Mura, Ivan; Malakar, Pradeep K.; Walshaw, John; Peck, Michael W.; Barker, G. C.

    2015-01-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food. Currently, mathematical models relating to the hazards associated with C. botulinum, which are largely empirical, make major contributions to botulinum risk assessment. Evaluated using statistical techniques, these models simulate the response of the bacterium to environmental conditions. Though empirical models have been successfully incorporated into risk assessments to support food safety decision making, this process includes significant uncertainties so that relevant decision making is frequently conservative and inflexible. Progression involves encoding into the models cellular processes at a molecular level, especially the details of the genetic and molecular machinery. This addition drives the connection between biological mechanisms and botulism risk assessment and hazard management strategies. This review brings together elements currently described in the literature that will be useful in building quantitative models of C. botulinum neurotoxin production. Subsequently, it outlines how the established form of modeling could be extended to include these new elements. Ultimately, this can offer further contributions to risk assessments to support food safety decision making. PMID:26350137

  3. New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food.

    PubMed

    Ihekwaba, Adaoha E C; Mura, Ivan; Malakar, Pradeep K; Walshaw, John; Peck, Michael W; Barker, G C

    2016-01-01

    Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food. Currently, mathematical models relating to the hazards associated with C. botulinum, which are largely empirical, make major contributions to botulinum risk assessment. Evaluated using statistical techniques, these models simulate the response of the bacterium to environmental conditions. Though empirical models have been successfully incorporated into risk assessments to support food safety decision making, this process includes significant uncertainties so that relevant decision making is frequently conservative and inflexible. Progression involves encoding into the models cellular processes at a molecular level, especially the details of the genetic and molecular machinery. This addition drives the connection between biological mechanisms and botulism risk assessment and hazard management strategies. This review brings together elements currently described in the literature that will be useful in building quantitative models of C. botulinum neurotoxin production. Subsequently, it outlines how the established form of modeling could be extended to include these new elements. Ultimately, this can offer further contributions to risk assessments to support food safety decision making. PMID:26350137

  4. Mechanism of substrate recognition by the novel Botulinum Neurotoxin subtype F5.

    PubMed

    Guo, Jiubiao; Chan, Edward Wai Chi; Chen, Sheng

    2016-01-01

    Botulinum Neurotoxins (BoNTs) are the causative agents of botulism, which act by potently inhibiting the neurotransmitter release in motor neurons. Seven serotypes of BoNTs designated as BoNT/A-G have been identified. Recently, two novel types of Botulinum neurotoxins, which cleave a novel scissile bond, L(54)-E(55), of VAMP-2 have been reported including BoNT/F subtype F5 and serotype H. However, little has been known on how these BoNTs recognize their substrates. The present study addressed for the first time the unique substrate recognition mechanism of LC/F5. Our data indicated that the optimal peptide required for efficient LC/F5 substrate cleavage is VAMP-2 (20-65). Interestingly, the overall mode of substrate recognition adopted by LC/F5 was similar to LC/F1, except that its recognition sites were shifted one helix toward the N-terminus of VAMP-2 when compared to that of LC/F1. The composition of LC/F5 pockets were found to have changed accordingly to facilitate specific recognition of these new sites of VAMP-2, including the P2', P1', P2, P3, B3, B2 and B1 sites. The study provides direct evidence of the evolutionary adaption of BoNT to recognize its substrate which is useful for effective antitoxin and inhibitor development. PMID:26794648

  5. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles

    PubMed Central

    Harper, Callista B.; Papadopulos, Andreas; Martin, Sally; Matthews, Daniel R.; Morgan, Garry P.; Nguyen, Tam H.; Wang, Tong; Nair, Deepak; Choquet, Daniel; Meunier, Frederic A.

    2016-01-01

    Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles. PMID:26805017

  6. Botulinum Neurotoxin Serotype a Specific Cell-Based Potency Assay to Replace the Mouse Bioassay

    PubMed Central

    Fernández-Salas, Ester; Wang, Joanne; Molina, Yanira; Nelson, Jeremy B.; Jacky, Birgitte P. S.; Aoki, K. Roger

    2012-01-01

    Botulinum neurotoxin serotype A (BoNT/A), a potent therapeutic used to treat various disorders, inhibits vesicular neurotransmitter exocytosis by cleaving SNAP25. Development of cell-based potency assays (CBPAs) to assess the biological function of BoNT/A have been challenging because of its potency. CBPAs can evaluate the key steps of BoNT action: receptor binding, internalization-translocation, and catalytic activity; and therefore could replace the current mouse bioassay. Primary neurons possess appropriate sensitivity to develop potential replacement assays but those potency assays are difficult to perform and validate. This report describes a CBPA utilizing differentiated human neuroblastoma SiMa cells and a sandwich ELISA that measures BoNT/A-dependent intracellular increase of cleaved SNAP25. Assay sensitivity is similar to the mouse bioassay and measures neurotoxin biological activity in bulk drug substance and BOTOX® product (onabotulinumtoxinA). Validation of a version of this CBPA in a Quality Control laboratory has led to FDA, Health Canada, and European Union approval for potency testing of BOTOX®, BOTOX® Cosmetic, and Vistabel®. Moreover, we also developed and optimized a BoNT/A CBPA screening assay that can be used for the discovery of novel BoNT/A inhibitors to treat human disease. PMID:23185348

  7. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    SciTech Connect

    Karalewitz, Andrew P.-A.; Kroken, Abby R.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2010-09-22

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.

  8. Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin.

    PubMed

    Barrera, Daniel J; Rosenberg, Julian N; Chiu, Joanna G; Chang, Yung-Nien; Debatis, Michelle; Ngoi, Soo-Mun; Chang, John T; Shoemaker, Charles B; Oyler, George A; Mayfield, Stephen P

    2015-01-01

    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VH H) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen-binding proteins and the heterodimer fusion protein containing two VH H domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin-producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism. PMID:25229405

  9. Mechanism of substrate recognition by the novel Botulinum Neurotoxin subtype F5

    PubMed Central

    Guo, Jiubiao; Chan, Edward Wai Chi; Chen, Sheng

    2016-01-01

    Botulinum Neurotoxins (BoNTs) are the causative agents of botulism, which act by potently inhibiting the neurotransmitter release in motor neurons. Seven serotypes of BoNTs designated as BoNT/A-G have been identified. Recently, two novel types of Botulinum neurotoxins, which cleave a novel scissile bond, L54-E55, of VAMP-2 have been reported including BoNT/F subtype F5 and serotype H. However, little has been known on how these BoNTs recognize their substrates. The present study addressed for the first time the unique substrate recognition mechanism of LC/F5. Our data indicated that the optimal peptide required for efficient LC/F5 substrate cleavage is VAMP-2 (20–65). Interestingly, the overall mode of substrate recognition adopted by LC/F5 was similar to LC/F1, except that its recognition sites were shifted one helix toward the N-terminus of VAMP-2 when compared to that of LC/F1. The composition of LC/F5 pockets were found to have changed accordingly to facilitate specific recognition of these new sites of VAMP-2, including the P2′, P1′, P2, P3, B3, B2 and B1 sites. The study provides direct evidence of the evolutionary adaption of BoNT to recognize its substrate which is useful for effective antitoxin and inhibitor development. PMID:26794648

  10. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles.

    PubMed

    Harper, Callista B; Papadopulos, Andreas; Martin, Sally; Matthews, Daniel R; Morgan, Garry P; Nguyen, Tam H; Wang, Tong; Nair, Deepak; Choquet, Daniel; Meunier, Frederic A

    2016-01-01

    Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles. PMID:26805017

  11. A simple, rapid and sensitive FRET assay for botulinum neurotoxin serotype B detection.

    PubMed

    Guo, Jiubiao; Xu, Ci; Li, Xuechen; Chen, Sheng

    2014-01-01

    Botulinum neurotoxins (BoNTs), the most potent naturally-occurring neurotoxins known to humans, comprise seven distinct serotypes (BoNT/A-G), each of which exhibits unique substrate specificity. Many methods have been developed for BoNT detection, in particular for BoNT/A, with various complexity and sensitivity, while substrate based FRET assay is considered as the most widely used approach due to its simplicity and sensitivity. In this study, we designed a vesicle-associated membrane protein 2 (VAMP2) based FRET assay based on the understanding of the VAMP2 and light chain/B (LC/B) interactions in our previous studies. The current design constituted the shortest peptide, VAMP2 (63-85), with FRET dyes (EDAN and Dabcyl) labelled at position 76 and 85, respectively, which showed minimal effect on VAMP2 substrate catalysis by LC/B and therefore enhanced the sensitivity of the assay. The FRET peptide, designated as FVP-B, was specific to LC/B, with a detection sensitivity as low as ∼20 pM in 2 h. Importantly, FVP-B showed the potential to be scaled up and used in high throughput screening of LC/B inhibitor. The currently developed FRET assay is one of the most economic and rapid FRET assays for LC/B detection. PMID:25437190

  12. CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN SEROTYPE B.

    SciTech Connect

    SWAMINATHAN,S.; ESWARAMOORTHY,S.

    2001-11-19

    The toxigenic strains of Clostridium botulinum produce seven serologically distinct types of neurotoxins labeled A - G (EC 3.4.24.69), while Clostridium tetani produces tetanus neurotoxin (EC 3.4.24.68). Botulinum and tetanus neurotoxins (BoNTs and TeNT) are produced as single inactive chains of molecular mass of approximately 150 kDa. Most of these neurotoxins are released after being cleaved into two chains, a heavy chain (HI) of 100 kDa and a light chain (L) of 50 kDa held together by an interchain disulfide bond, by tissue proteinases. BoNT/E is released as a single chain but cleaved by host proteinases [1]. Clostvidium botulinum neurotoxins are extremely poisonous proteins with their LD{sub 50} for humans in the range of 0.1 - 1 ng kg{sup -1} [2]. Botulinum neurotoxins are responsible for neuroparalytic syndromes of botulism characterized by serious neurological disorders and flaccid paralysis. BoNTs block the release of acetylcholine at the neuromuscular junction causing flaccid paralysis while TeNT blocks the release of neurotransmitters like glycine and {gamma}-aminobutyric acid (GABA) in the inhibitory interneurons of the spinal cord resulting in spastic paralysis. In spite of different clinical symptoms, their aetiological agents intoxicate neuronal cells in the same way and these toxins have similar structural organization [3].

  13. Cyanobacterial blooms and biomagnification of the neurotoxin BMAA in South Florida coastal waters

    NASA Astrophysics Data System (ADS)

    Brand, L.; Mash, D.

    2008-12-01

    Blooms of cyanobacteria have developed in Florida Bay, Biscayne Bay and other coastal waters of South Florida. It has recently been shown that virtually all cyanobacteria produce the potent neurotoxin, beta-N- methylamino-L-alanine (BMAA). Studies in Guam indicate that BMAA can biomagnify up the food chain from cyanobacteria to human food and humans. Recent studies in Guam and on human brains in North America suggest an association between BMAA and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS). A variety of organisms from South Florida coastal waters are being analyzed for BMAA content to determine if BMAA is biomagnifying in these food chains and if it is a potential human health hazard. Some have extremely high concentrations of BMAA.

  14. Brevetoxin derivatives act as partial agonists at neurotoxin site 5 on the voltage-gated Na+ channel.

    PubMed

    LePage, K T; Baden, D G; Murray, T F

    2003-01-01

    Brevetoxins (PbTx-1 to PbTx-10) are potent lipid-soluble polyether neurotoxins produced by the marine dinoflagellate Karina brevis, an organism associated with 'red tide' blooms in the Gulf of Mexico. Ingestion of shellfish contaminated with K. brevis produces neurotoxic shellfish poisoning (NSP) in humans. NSP symptoms emanate from brevetoxin activation of neurotoxin site 5 on voltage-gated sodium channels (VGSC) [Toxicon 20 (1982) 457]. In primary cultures of rat cerebellar granule neurons (CGN), brevetoxins produce acute neuronal injury and death. The ability of a series of naturally occurring and synthetic brevetoxins to trigger Ca(2+) influx in CGN was explored in the present study. Intracellular Ca(2+) concentration was monitored in fluo-3-loaded CGN using a fluorescent laser imaging plate reader. The naturally occurring derivatives PbTx-1, PbTx-2 and PbTx-3 all produced a rapid and concentration-dependent increase in cytosolic [Ca(2+)]. The maximum response to PbTx-1 was approximately two-fold greater than that of either PbTx-2 or PbTx-3. Two synthetic derivatives of PbTx-3, alpha-naphthoyl-PbTx-3 and beta-naphthoyl-PbTx-3, were also tested. Both alpha- and beta-naphthoyl-PbTx-3 stimulated a rapid and concentration-dependent Ca(2+) influx that was, however, less efficacious than that of PbTx-3. These data indicate that, analogous to neurotoxin site 2 ligands, activators of neurotoxin site 5 display a range of efficacies, with PbTx-1 being a full agonist and other derivatives acting as partial agonists. PMID:12480165

  15. SjAPI-2 is the first member of a new neurotoxin family with Ascaris-type fold and KCNQ1 inhibitory activity.

    PubMed

    Chen, Jing; Zhang, Chuangeng; Yang, Weishan; Cao, Zhijian; Li, Wenxin; Chen, Zongyun; Wu, Yingliang

    2015-08-01

    Peptides with Ascaris-type fold are a new kind of toxins founded from venomous animals recently. Functionally, these unique toxin peptides had been identified as potent protease inhibitors, which was similar to other known Ascaris-type peptides from non-venomous animals. Whether Ascaris-type peptides from venom animals have neurotoxin activities remains unclear. Here, a scorpion toxin SjAPI-2 with Ascaris-type fold was characterized to have a neurotoxin activity, which can selectively inhibit KCNQ1 potassium channel. SjAPI-2 had 62 amino acid residues, including 10 cysteine residues. Charged residue analyses showed that two acidic residues of SjAPI-2 were regionally distributed, and 10 basic residues were distributed widely throughout the whole peptide, which was similar to classical potassium channel toxins. Pharmacological studies confirmed that SjAPI-2 was a selective KCNQ1 potassium channel inhibitor with weak effects on other potassium channels, such as Kv1.1, Kv1.2, Kv1.3, SKCa2, SKCa3, and IKCa channels. Concentration-dependent studies showed that SjAPI-2 inhibited the KCNQ1 potassium channel with an IC50 of 771.5±169.9 nM. To the best of our knowledge, SjAPI-2 is the first neurotoxin with a unique Ascaris-type fold, providing novel insights into the divergent evolution of neurotoxins from venomous animals. PMID:26014142

  16. Neutralization of Botulinum Neurotoxin by a Human Monoclonal Antibody Specific for the Catalytic Light Chain

    PubMed Central

    Adekar, Sharad P.; Takahashi, Tsuyoshi; Jones, R. Mark; Al-Saleem, Fetweh H.; Ancharski, Denise M.; Root, Michael J.; Kapadnis, B. P.; Simpson, Lance L.; Dessain, Scott K.

    2008-01-01

    Background Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. Methods and Findings We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusions An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure. PMID:18714390

  17. Comparison and Overview of Currently Available Neurotoxins

    PubMed Central

    Walker, Thomas J.; Dayan, Steven H.

    2014-01-01

    Background: Botulinum toxin has been in use since the 1970s. Over the last few years, the indications for botulinum toxin use have extended for cosmetic and noncosmetic applications. Three preparations of botulinum toxin type A and one preparation of botulinum toxin type B are commercially available and approved for use in the United States by the United States Food and Drug Administration. Objective: To review the most recent literature on all commercially available botulinum toxins in the United States, their indications, Food and Drug Administration approvals, and handling (reconstitution, storage, and dilution). Methods: A literature review (not Cochrane type analysis) using several databases (PubMed, MEDLINE, textbooks, Food and Drug Administration homepage, and manufacturer information) was performed. Conclusion: Several different preparations of botulinum toxins exist worldwide, none of which are identical or interchangeable. Manufacturer recommendations on all available botulinum neurotoxins advise the use of unpreserved saline for reconstitution. Side effects are mostly mild and always self-limited. More serious complications are associated with higher doses, improper injection techniques, and occur in patients with underlying comorbidities. PMID:24587850

  18. Botulinum Neurotoxin Type A in Neurology: Update

    PubMed Central

    Orsini, Marco; Leite, Marco Antonio Araujo; Chung, Tae Mo; Bocca, Wladimir; de Souza, Jano Alves; de Souza, Olivia Gameiro; Moreira, Rayele Priscila; Bastos, Victor Hugo; Teixeira, Silmar; Oliveira, Acary Bulle; Moraes, Bruno da Silva; Matta, André Palma; Jacinto, Luis Jorge

    2015-01-01

    This paper reviews the current and most neurological (central nervous system, CNS) uses of the botulinum neurotoxin type A. The effect of these toxins at neuromuscular junction lends themselves to neurological diseases of muscle overactivity, particularly abnormalities of muscle control. There are seven serotypes of the toxin, each with a specific activity at the molecular level. Currently, serotypes A (in two preparations) and B are available for clinical purpose, and they have proved to be safe and effective for the treatment of dystonia, spasticity, headache, and other CNS disorders in which muscle hyperactivity gives rise to symptoms. Although initially thought to inhibit acetylcholine release only at the neuromuscular junction, botulinum toxins are now recognized to inhibit acetylcholine release at autonomic cholinergic nerve terminals, as well as peripheral release of neuro-transmitters involved in pain regulation. Its effects are transient and nondestructive, and largely limited to the area in which it is administered. These effects are also graded according to the dose, allowing individualized treatment of patients and disorders. It may also prove to be useful in the control of autonomic dysfunction and sialorrhea. In over 20 years of use in humans, botulinum toxin has accumulated a considerable safety record, and in many cases represents relief for thousands of patients unaided by other therapy. PMID:26487928

  19. The Identification and Biochemical Characterization of Drug-Like Compounds that Inhibit Botulinum Neurotoxin Serotype A Endopeptidase Activity

    PubMed Central

    Cai, Shuowei; Lindo, Paul; Park, Jong-Beak; Vasa, Kruti; Singh, Bal Ram

    2009-01-01

    A robust, high throughput, two-tiered assay for screening small molecule inhibitors against botulinum neurotoxin serotype A was developed and employed to screen 16,544 compounds. Thirty-four compounds were identified as potent hits employing the first-tier assay. Subsequently, nine were confirmed as actives by our second-tier confirmatory assay. Of these, one displayed potent inhibitory efficacy, possessing an IC50 = 16 μM (± 1.6 μM) in our in vitro assay. This inhibitor (0831–1035) is highly water-soluble, and possesses an IC50 = 47 μM (± 7.0 μM) in our primary cell culture assay (with virtually no cytotoxicity up to 500 μM) suggesting that this inhibitor is a good candidate for further development as a therapeutic countermeasure to treat botulism resulting from botulinum neurotoxin serotype A intoxication. An enzyme kinetics study indicated that this inhibitor exhibits mixed non-competitive inhibition, with a KI = 9 μM. PMID:20003913

  20. Positive Regulation of Botulinum Neurotoxin Gene Expression by CodY in Clostridium botulinum ATCC 3502

    PubMed Central

    Zhang, Zhen; Dahlsten, Elias; Korkeala, Hannu

    2014-01-01

    Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status. PMID:25281376

  1. A Novel Neurotoxin from Venom of the Spider, Brachypelma albopilosum

    PubMed Central

    Yuan, Mingwei; Li, Hongli; Wang, Ping; Yuan, Minglong; Lu, Qiumin

    2014-01-01

    Spiders have evolved highly selective toxins for insects. There are many insecticidal neurotoxins in spider venoms. Although a large amount of work has been done to focus on neurotoxicity of spider components, little information, which is related with effects of spider toxins on tumor cell proliferation and cytotoxicity, is available for Brachypelma albopilosum venom. In this work, a novel spider neurotoxin (brachyin) was identified and characterized from venoms of the spider, Brachypelma albopilosum. Brachyin is composed of 41 amino acid residues with the sequence of CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS. There are six cysteines in this sequence, which form three disulfided bridges. The serine residue at the C-terminus is amidated. Brachyin showed strong lethal effects on American cockroaches (Periplaneta americana) and Tenebrio molitor (common mealbeetle). This neurotoxin also showed significant analgesic effects in mice models including abdominal writhing induced by acetic acid and formalin-induced paw licking tests. It was interesting that brachyin exerted marked inhibition on tumor cell proliferation. PMID:25329070

  2. Mechanism of action of tetanus and botulinum neurotoxins.

    PubMed

    Montecucco, C; Schiavo, G

    1994-07-01

    The clostridial neurotoxins responsible for tetanus and botulism are metallo-proteases that enter nerve cells and block neurotransmitter release via zinc-dependent cleavage of protein components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction and is internalized and transported retroaxonally to the spinal cord. Whilst TeNT causes spastic paralysis by acting on the spinal inhibitory interneurons, the seven serotypes of botulinum neurotoxins (BoNT) induce a flaccid paralysis because they intoxicate the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G specifically cleave VAMP/synaptobrevin, a membrane protein of small synaptic vesicles, at different single peptide bonds. Proteins of the presynaptic membrane are specifically attacked by the other BoNTs: serotypes A and E cleave SNAP-25 at two different sites located within the carboxyl terminus, whereas the specific target of serotype C is syntaxin. PMID:7527117

  3. SV2 mediates entry of tetanus neurotoxin into central neurons.

    PubMed

    Yeh, Felix L; Dong, Min; Yao, Jun; Tepp, William H; Lin, Guangyun; Johnson, Eric A; Chapman, Edwin R

    2010-01-01

    Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons. PMID:21124874

  4. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II

    PubMed Central

    Carter, Andrew T.; Peck, Michael W.

    2015-01-01

    Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised. PMID:25445012

  5. Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A

    PubMed Central

    Wang, Tong; Martin, Sally; Papadopulos, Andreas; Harper, Callista B.; Mavlyutov, Timur A.; Niranjan, Dhevahi; Glass, Nick R.; Cooper-White, Justin J.; Sibarita, Jean-Baptiste; Choquet, Daniel; Davletov, Bazbek; Meunier, Frédéric A.

    2015-01-01

    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity. PMID:25878289

  6. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.

    PubMed

    Wang, Tong; Martin, Sally; Papadopulos, Andreas; Harper, Callista B; Mavlyutov, Timur A; Niranjan, Dhevahi; Glass, Nick R; Cooper-White, Justin J; Sibarita, Jean-Baptiste; Choquet, Daniel; Davletov, Bazbek; Meunier, Frédéric A

    2015-04-15

    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity. PMID:25878289

  7. Botulinum neurotoxin serotypes detected by electrochemical impedance spectroscopy.

    PubMed

    Savage, Alison C; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-05-01

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A-E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins. PMID:25954998

  8. Antibody Protection Against Botulinum Neurotoxin Intoxication In Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adulteration of food or feed with any of the seven serotypes of botulinum neurotoxin (BoNT) is a potential bioterrorism concern. Currently, there is strong interest in the development of detection reagents, vaccines, therapeutics and other countermeasures. A sensitive immunoassay for detecting BoNT/...

  9. Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy

    PubMed Central

    Savage, Alison C.; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-01-01

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A–E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins. PMID:25954998

  10. The neurotoxins of the sea snake Laticauda schistorhynchus.

    PubMed Central

    Guinea, M L; Tamiya, N; Cogger, H G

    1983-01-01

    Erabutoxins a and b, the major neurotoxins in the venom of the sea snake Laticauda semifasciata, were detected in the venom of Laticauda schistorhynchus. The identity of the toxins was confirmed on the basis of elution position on CM-cellulose column chromatography, disc electrophoretic mobility, amino acid analysis and toxicity measurement. PMID:6615432

  11. Botulinum neurotoxin: Where are we with detection technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poisonous nature of botulinum neurotoxin (BoNT) poses a great risk to humans and also can be exploited as a possible bioterrorism and biological warfare agent. BoNT serotypes A and B have emerged as effective treatments for a variety of neurological disorders, in addition to their applicability ...

  12. Characterization of monoclonal antibodies against Naja naja oxiana neurotoxin I.

    PubMed

    Stiles, B G; Sexton, F W; Guest, S B; Olson, M A; Hack, D C

    1994-10-01

    Seven monoclonal antibodies (mAbs) were developed against neurotoxin I (NT-1), a protein from central Asian cobra (Naja naja oxiana) venom which binds specifically to nicotinic acetylcholine receptor (AchR). All of the mAbs cross-reacted with another long-chain post-synaptic neurotoxin, Bungarus multicinctus alpha-bungarotoxin (alpha-BT), but not Naja naja kaouthia alpha-cobratoxin, in an enzyme-linked immunosorbent assay (e.l.i.s.a.). Short-chain post-synaptic neurotoxins like Naja naja atra cobrotoxin, Laticauda semifasciata erabutoxin b, or N. n. oxiana neurotoxin II did not cross-react with the NT-1 mAbs, but an antigen(s) found in Dendroaspis polylepis, Acanthophis antarcticus and Pseudechis australis venoms was immunoreactive. The e.l.i.s.a. readings for dithiothreitol-reduced NT-1 and NT-1 mAbs ranged from 13 to 27% of those for native toxin but reduced alpha-BT was not immunoreactive. Synthetic NT-1 peptides were used in epitope-mapping studies and two, non-contiguous regions (Cys15-Tyr23 and Lys25-Gly33 or Pro17-Lys25 and Asp29-Lys37) were recognized by the NT-1 mAbs. The NT-1 mAbs individually inhibited 31-71% of alpha-BT binding to AchR in vitro and afforded a slight protective effect in vivo with a toxin: antibody mole ratio of 1:1.5. This report is the first to describe mAbs which recognize and protect against a heterologous, long-chain, post-synaptic neurotoxin from snake venom. PMID:7945236

  13. Characterization of monoclonal antibodies against Naja naja oxiana neurotoxin I.

    PubMed Central

    Stiles, B G; Sexton, F W; Guest, S B; Olson, M A; Hack, D C

    1994-01-01

    Seven monoclonal antibodies (mAbs) were developed against neurotoxin I (NT-1), a protein from central Asian cobra (Naja naja oxiana) venom which binds specifically to nicotinic acetylcholine receptor (AchR). All of the mAbs cross-reacted with another long-chain post-synaptic neurotoxin, Bungarus multicinctus alpha-bungarotoxin (alpha-BT), but not Naja naja kaouthia alpha-cobratoxin, in an enzyme-linked immunosorbent assay (e.l.i.s.a.). Short-chain post-synaptic neurotoxins like Naja naja atra cobrotoxin, Laticauda semifasciata erabutoxin b, or N. n. oxiana neurotoxin II did not cross-react with the NT-1 mAbs, but an antigen(s) found in Dendroaspis polylepis, Acanthophis antarcticus and Pseudechis australis venoms was immunoreactive. The e.l.i.s.a. readings for dithiothreitol-reduced NT-1 and NT-1 mAbs ranged from 13 to 27% of those for native toxin but reduced alpha-BT was not immunoreactive. Synthetic NT-1 peptides were used in epitope-mapping studies and two, non-contiguous regions (Cys15-Tyr23 and Lys25-Gly33 or Pro17-Lys25 and Asp29-Lys37) were recognized by the NT-1 mAbs. The NT-1 mAbs individually inhibited 31-71% of alpha-BT binding to AchR in vitro and afforded a slight protective effect in vivo with a toxin: antibody mole ratio of 1:1.5. This report is the first to describe mAbs which recognize and protect against a heterologous, long-chain, post-synaptic neurotoxin from snake venom. PMID:7945236

  14. Light chain of botulinum A neurotoxin expressed as an inclusion body from a synthetic gene is catalytically and functionally active.

    PubMed

    Ahmed, S A; Smith, L A

    2000-08-01

    Botulinum neurotoxins, the most potent of all toxins, induce lethal neuromuscular paralysis by inhibiting exocytosis at the neuromuscular junction. The light chains (LC) of these dichain neurotoxins are a new class of zinc-endopeptidases that specifically cleave the synaptosomal proteins, SNAP-25, VAMP, or syntaxin at discrete sites. To facilitate the structural and functional characterization of these unique endopeptidases, we constructed a synthetic gene for the LC of the botulinum neurotoxin serotype A (BoNT/A), overexpressed it in Escherichia coli, and purified the gene product from inclusion bodies. Our procedure can provide 1.1 g of the LC from 1 L of culture. The LC product was stable in solution at 4 degrees C for at least 6 months. This rBoNT/A LC was proteolytically active, specifically cleaving the Glu-Arg bond in a 17-residue synthetic peptide of SNAP-25, the reported cleavage site of BoNT/A. Its calculated catalytic efficiency kcat/Km was higher than that reported for the native BoNT/A dichain. Treating the rBoNT/A LC with mercuric compounds completely abolished its activity, most probably by modifying the cysteine-164 residue located in the vicinity of the active site. About 70% activity of the LC was restored by adding Zn2+ to a Zn2+-free, apo-LC preparation. The LC was nontoxic to mice and failed to elicit neutralizing epitope(s) when the animals were vaccinated with this protein. In addition, injecting rBoNT/A LC into sea urchin eggs inhibited exocytosis-dependent plasma membrane resealing. For the first time, results of our study make available a large amount of the biologically active toxin fragment in a soluble and stable form. PMID:11195972

  15. Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors

    PubMed Central

    Masuyer, Geoffrey; Davies, Jonathan R.; Moore, Kevin; Chaddock, John A.; Ravi Acharya, K.

    2015-01-01

    The botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3 Å, and that of SXN101959 at 3.1 Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B, and D. Taken together, these results demonstrate the robustness of the ‘LHn fold’ across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin, and serotype D in particular, as a basis for engineering novel secretion inhibitors. PMID:26324071

  16. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure-activity relationship and pharmacophore modeling

    SciTech Connect

    Kumar G.; Swaminathan S.; Kumaran, D.; Ahmed, S. A.

    2012-05-01

    Clostridium botulinum neurotoxins are classified as Category A bioterrorism agents by the Centers for Disease Control and Prevention (CDC). The seven serotypes (A-G) of the botulinum neurotoxin, the causative agent of the disease botulism, block neurotransmitter release by specifically cleaving one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and induce flaccid paralysis. Using a structure-based drug-design approach, a number of peptide inhibitors were designed and their inhibitory activity against botulinum serotype A (BoNT/A) protease was determined. The most potent peptide, RRGF, inhibited BoNT/A protease with an IC{sub 50} of 0.9 {micro}M and a K{sub i} of 358 nM. High-resolution crystal structures of various peptide inhibitors in complex with the BoNT/A protease domain were also determined. Based on the inhibitory activities and the atomic interactions deduced from the cocrystal structures, the structure-activity relationship was analyzed and a pharmacophore model was developed. Unlike the currently available models, this pharmacophore model is based on a number of enzyme-inhibitor peptide cocrystal structures and improved the existing models significantly, incorporating new features.

  17. Structures of Clostridium Botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility

    SciTech Connect

    Silvaggi,N.; Boldt, G.; Hixon, M.; Kennedy, J.; Tzipori, S.; Janda, K.; Allen, K.

    2007-01-01

    The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.

  18. Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors.

    PubMed

    Masuyer, Geoffrey; Davies, Jonathan R; Moore, Kevin; Chaddock, John A; Ravi Acharya, K

    2015-01-01

    The botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3 Å, and that of SXN101959 at 3.1 Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B, and D. Taken together, these results demonstrate the robustness of the 'LHn fold' across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin, and serotype D in particular, as a basis for engineering novel secretion inhibitors. PMID:26324071

  19. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone.

    PubMed

    Jouiaei, Mahdokht; Sunagar, Kartik; Federman Gross, Aya; Scheib, Holger; Alewood, Paul F; Moran, Yehu; Fry, Bryan G

    2015-06-01

    Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade. PMID:25757852

  20. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure-activity relationship and a pharmacophore model.

    PubMed

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2016-09-15

    Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. The structure-activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values. PMID:27353886

  1. Isolation and Pharmacological Characterization of α-Elapitoxin-Ot1a, a Short-Chain Postsynaptic Neurotoxin from the Venom of the Western Desert Taipan, Oxyuranus temporalis

    PubMed Central

    Barber, Carmel M.; Ahmad Rusmili, Muhamad Rusdi; Hodgson, Wayne C.

    2016-01-01

    Taipans (Oxyuranus spp.) are elapids with highly potent venoms containing presynaptic (β) and postsynaptic (α) neurotoxins. O. temporalis (Western Desert taipan), a newly discovered member of this genus, has been shown to possess venom which displays marked in vitro neurotoxicity. No components have been isolated from this venom. We describe the characterization of α-elapitoxin-Ot1a (α-EPTX-Ot1a; 6712 Da), a short-chain postsynaptic neurotoxin, which accounts for approximately 30% of O. temporalis venom. α-Elapitoxin-Ot1a (0.1–1 µM) produced concentration-dependent inhibition of indirect-twitches, and abolished contractile responses to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The inhibition of indirect twitches by α-elapitoxin-Ot1a (1 µM) was not reversed by washing the tissue. Prior addition of taipan antivenom (10 U/mL) delayed the neurotoxic effects of α-elapitoxin-Ot1a (1 µM) and markedly attenuated the neurotoxic effects of α-elapitoxin-Ot1a (0.1 µM). α-Elapitoxin-Ot1a displayed pseudo-irreversible antagonism of concentration-response curves to carbachol with a pA2 value of 8.02 ± 0.05. De novo sequencing revealed the main sequence of the short-chain postsynaptic neurotoxin (i.e., α-elapitoxin-Ot1a) as well as three other isoforms found in O. temporalis venom. α-Elapitoxin-Ot1a shows high sequence similarity (i.e., >87%) with other taipan short-chain postsynaptic neurotoxins. PMID:26938558

  2. Botulinum neurotoxins: new questions arising from structural biology.

    PubMed

    Kammerer, Richard A; Benoit, Roger M

    2014-11-01

    Botulinum neurotoxins (BoNTs) are the most toxic substances known and cause botulism in vertebrates. They have also emerged as effective and powerful reagents for cosmetic and medical applications. One important prerequisite for understanding BoNT function in disease, and the further development of the toxins for cosmetic and medical applications, is a detailed knowledge of BoNT interactions with non-toxic neurotoxin-associated proteins and cell surface receptors. Based on the substantial recent progress in obtaining high-resolution crystal structures of key BoNT complexes, we summarize the major advances in understanding BoNT interactions and discuss the resulting potential implications, in particular those relating to BoNT serotype A. PMID:25282537

  3. Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins

    DOEpatents

    Schmidt, Jurgen G.; Boyer, Anne E.; Kalb, Suzanne R.; Moura, Hercules; Barr, John R.; Woolfitt, Adrian R.

    2009-11-03

    The present invention is directed to a method for detecting the presence of clostridial neurotoxins in a sample by mixing a sample with a peptide that can serve as a substrate for proteolytic activity of a clostridial neurotoxin; and measuring for proteolytic activity of a clostridial neurotoxin by a mass spectroscopy technique. In one embodiment, the peptide can have an affinity tag attached at two or more sites.

  4. Aphicidal efficacy of scorpion- and spider-derived neurotoxins.

    PubMed

    Pal, Narinder; Yamamoto, Takashi; King, Glenn F; Waine, Clement; Bonning, Bryony

    2013-08-01

    Insect-specific neurotoxins that act within the insect hemocoel (body cavity) represent an untapped resource for insect pest management. On the basis of recent advances made in development of appropriate delivery systems for transport of these toxins from the insect gut, across the gut epithelium to their target site, we screened neurotoxins derived from scorpion or spider venom for efficacy against the pea aphid, Acyrthosiphon pisum, and the green peach aphid, Myzus persicae. Toxins were selected to represent different modes of electrophysiological action, including activity on voltage-gated calcium channels (ω-TRTX-Gr1a, ω-agatoxin Aa4a, ω-hexatoxin-Hv1a), calcium- and voltage-activated potassium channels (charybdotoxin, maurotoxin), chloride channels (chlorotoxin) and voltage-gated sodium channels (LqhαIT). The Bacillus thuringiensis-derived toxin Cyt1Aa was also tested as a positive control for toxicity. In per os bioassays with both aphid species, toxicity was only seen for ω-TRTX-Gr1a and Cyt1Aa. On injection into the hemocoel of A. pisum, LD₅₀ values ranged from 1 to 8 ng/mg body weight, with ω-hexatoxin-Hv1a being the most toxic (1.02 ng/mg body weight). All neurotoxins caused rapid paralysis, with charybdotoxin, maurotoxin and chlorotoxin also causing melanization of injected aphids. These data represent the first comprehensive screen of neurotoxins against aphids, and highlight the potential for practical use of the insect-specific toxin ω-hexatoxin-Hv1a in aphid management. PMID:23651761

  5. Substrate recognition mechanism of VAMP/synaptobrevin-cleaving clostridial neurotoxins.

    PubMed

    Sikorra, Stefan; Henke, Tina; Galli, Thierry; Binz, Thomas

    2008-07-25

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond. PMID:18511418

  6. Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses.

    PubMed Central

    Pellizzari, R; Rossetto, O; Schiavo, G; Montecucco, C

    1999-01-01

    The clostridial neurotoxins responsible for tetanus and botulism are proteins consisting of three domains endowed with different functions: neurospecific binding, membrane translocation and proteolysis for specific components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction, is internalized and transported retroaxonally to the spinal cord. The spastic paralysis induced by the toxin is due to the blockade of neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven serotypes of botulinum neurotoxins (BoNTs) act at the periphery by inducing a flaccid paralysis due to the inhibition of acetylcholine release at the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G cleave specifically at single but different peptide bonds, of the vesicle associated membrane protein (VAMP) synaptobrevin, a membrane protein of small synaptic vesicles (SSVs). BoNT types A, C and E cleave SNAP-25 at different sites located within the carboxyl-terminus, while BoNT type C additionally cleaves syntaxin. The remarkable specificity of BoNTs is exploited in the treatment of human diseases characterized by a hyperfunction of cholinergic terminals. PMID:10212474

  7. Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food.

    PubMed

    Franciosa, G; Fenicia, L; Pourshaban, M; Aureli, P

    1997-03-01

    A rare strain of Clostridium botulinum subtype Ab was isolated from a canned macrobiotic food suspected of being linked to a fatal case of food-borne botulism. The strain was recovered and identified by conventional methods modified by the inclusion of a PCR assay (G. Franciosa, J.L. Ferreira, and C.L. Hatheway, J. Clin. Microbiol. 32:1911-1917, 1994). The titers of neurotoxins produced by the strain were evaluated by a mouse bioassay. PMID:9055430

  8. Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food.

    PubMed Central

    Franciosa, G; Fenicia, L; Pourshaban, M; Aureli, P

    1997-01-01

    A rare strain of Clostridium botulinum subtype Ab was isolated from a canned macrobiotic food suspected of being linked to a fatal case of food-borne botulism. The strain was recovered and identified by conventional methods modified by the inclusion of a PCR assay (G. Franciosa, J.L. Ferreira, and C.L. Hatheway, J. Clin. Microbiol. 32:1911-1917, 1994). The titers of neurotoxins produced by the strain were evaluated by a mouse bioassay. PMID:9055430

  9. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B

    PubMed Central

    Cheng, Luisa W.; Henderson, Thomas D.; Lam, Tina I.; Stanker, Larry H.

    2015-01-01

    Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism. PMID:26633496

  10. Plasma membrane localization signals in the light chain of botulinum neurotoxin

    PubMed Central

    Fernández-Salas, Ester; Steward, Lance E.; Ho, Helen; Garay, Patton E.; Sun, Sarah W.; Gilmore, Marcella A.; Ordas, Joseph V.; Wang, Joanne; Francis, Joseph; Aoki, K. Roger

    2004-01-01

    Botulinum neurotoxin (BoNT) is a potent biological substance used to treat neuromuscular and pain disorders. Both BoNT type A and BoNT type E display high-affinity uptake into motor neurons and inhibit exocytosis through cleavage of the synaptosome-associated protein of 25 kDa (SNAP25). The therapeutic effects of BoNT/A last from 3 to 12 months, whereas the effects of BoNT/E last less than 4 weeks. Using confocal microscopy and site-specific mutagenesis, we have determined that the protease domain of BoNT/A light chain (BoNT/A-LC) localizes in a punctate manner to the plasma membrane, colocalizing with the cleaved product, SNAP25197. In contrast, the short-duration BoNT/E serotype is cytoplasmic. Mutations in the BoNT/A-LC have revealed sequences at the N terminus necessary for plasma membrane localization, and an active dileucine motif in the C terminus that is likely involved in trafficking and interaction with adaptor proteins. These data support sequence-specific signals as determinants of intracellular localization and as a basis for the different durations of action in these two BoNT serotypes. PMID:14982988

  11. Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse intestinal wall.

    PubMed

    Connan, Chloé; Varela-Chavez, Carolina; Mazuet, Christelle; Molgó, Jordi; Haustant, Georges Michel; Disson, Olivier; Lecuit, Marc; Vandewalle, Alain; Popoff, Michel R

    2016-02-01

    Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis (botulism), which in most cases enter the organism via the digestive tract and then disseminate into the blood or lymph circulation to target autonomic and motor nerve endings. The passage way of BoNTs alone or in complex forms with associated nontoxic proteins through the epithelial barrier of the digestive tract still remains unclear. Here, we show using an in vivo model of mouse ligated intestinal loop that BoNT/B alone or the BoNT/B C-terminal domain of the heavy chain (HCcB), which interacts with cell surface receptors, translocates across the intestinal barrier. The BoNT/B or HCcB translocation through the intestinal barrier occurred via an endocytosis-dependent mechanism within 10-20 min, because Dynasore, a potent endocytosis inhibitor, significantly prevented BoNT/B as well as HCcB translocation. We also show that HCcB or BoNT/B specifically targets neuronal cells and neuronal extensions in the intestinal submucosa and musculosa expressing synaptotagmin, preferentially cholinergic neurons and to a lower extent other neuronal cell types, notably serotonergic neurons. Interestingly, rare intestinal epithelial cells accumulated HCcB suggesting that distinct cell types of the intestinal epithelium, still undefined, might mediate efficient translocation of BoNT/B. PMID:26294282

  12. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera

    PubMed Central

    Babrak, Lmar; Lin, Alice; Stanker, Larry H.; McGarvey, Jeffery; Hnasko, Robert

    2016-01-01

    Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL−1 limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings. PMID:26742073

  13. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera.

    PubMed

    Babrak, Lmar; Lin, Alice; Stanker, Larry H; McGarvey, Jeffery; Hnasko, Robert

    2016-01-01

    Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL(-1) limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings. PMID:26742073

  14. Searching for Therapeutics Against Botulinum Neurotoxins: A True Challenge for Drug Discovery.

    PubMed

    Duplantier, Allen J; Kane, Christopher D; Bavari, Sina

    2016-01-01

    Botulinum neurotoxins (BoNTs), the most potent known toxins, cause severe muscle paralysis and death at nanogram exposures and are considered biothreat agents. BoNTs target the neuromuscular junction where they release smaller zinc metalloprotease light chains (LCs) into the neuron cytosol that selectively cleave SNARE proteins and thus block the exocytosis of acetylcholine neurotransmitters necessary for skeletal muscle contraction. The majority of efforts to develop post-symptomatic therapeutics for botulism poisoning have focused on inhibiting the LC and tremendous strides have been made in understanding how the LC binds to the SNARE proteins via X-ray crystallography. Subsequent homology modeling and structure based drug design have led to the discovery of multiple small molecule BoNT/A inhibitors in the 0.05 ~10 μΜ range, but to date none have shown significant post-symptomatic efficacy in an animal model of botulinum intoxication. With the lack of reported pharmacokinetic data, we have analyzed the BoNT/A inhibitor lead chemical matter from a physicochemical property point of view and have attempted to understand if bioavailability of drug at the neuromuscular junction is the root cause of this apparent in vitro/in vivo disconnect in the field. PMID:27072693

  15. Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism*

    PubMed Central

    Harper, Callista B.; Martin, Sally; Nguyen, Tam H.; Daniels, Shari J.; Lavidis, Nickolas A.; Popoff, Michel R.; Hadzic, Gordana; Mariana, Anna; Chau, Ngoc; McCluskey, Adam; Robinson, Phillip J.; Meunier, Frederic A.

    2011-01-01

    The botulinum neurotoxins (BoNTs) are di-chain bacterial proteins responsible for the paralytic disease botulism. Following binding to the plasma membrane of cholinergic motor nerve terminals, BoNTs are internalized into an endocytic compartment. Although several endocytic pathways have been characterized in neurons, the molecular mechanism underpinning the uptake of BoNTs at the presynaptic nerve terminal is still unclear. Here, a recombinant BoNT/A heavy chain binding domain (Hc) was used to unravel the internalization pathway by fluorescence and electron microscopy. BoNT/A-Hc initially enters cultured hippocampal neurons in an activity-dependent manner into synaptic vesicles and clathrin-coated vesicles before also entering endosomal structures and multivesicular bodies. We found that inhibiting dynamin with the novel potent Dynasore analog, Dyngo-4aTM, was sufficient to abolish BoNT/A-Hc internalization and BoNT/A-induced SNAP25 cleavage in hippocampal neurons. Dyngo-4a also interfered with BoNT/A-Hc internalization into motor nerve terminals. Furthermore, Dyngo-4a afforded protection against BoNT/A-induced paralysis at the rat hemidiaphragm. A significant delay of >30% in the onset of botulism was observed in mice injected with Dyngo-4a. Dynamin inhibition therefore provides a therapeutic avenue for the treatment of botulism and other diseases caused by pathogens sharing dynamin-dependent uptake mechanisms. PMID:21832053

  16. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B.

    PubMed

    Cheng, Luisa W; Henderson, Thomas D; Lam, Tina I; Stanker, Larry H

    2015-12-01

    Botulinum neurotoxins (BoNT) are some of nature's most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism. PMID:26633496

  17. Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity

    PubMed Central

    Jin, Lei; Le, Thi Tuc Nghi; Cheng, Luisa W.; Strotmeier, Jasmin; Kruel, Anna Magdalena; Yao, Guorui; Perry, Kay; Rummel, Andreas; Jin, Rongsheng

    2013-01-01

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry. PMID:24130488

  18. Epitope Characterization of Sero-Specific Monoclonal Antibody to Clostridium botulinum Neurotoxin Type A

    PubMed Central

    Ballegeer, Erin; Weedmark, Kelly A.; Elias, M.D.; Al-Saleem, Fetweh H.; Ancharski, Denise M.; Simpson, Lance L.; Berry, Jody D.

    2011-01-01

    Botulinum neurotoxins (BoNTs) are extremely potent toxins that can contaminate foods and are a public health concern. Anti-BoNT antibodies have been described that are capable of detecting BoNTs; however there still exists a need for accurate and sensitive detection capabilities for BoNTs. Herein, we describe the characterization of a panel of eight monoclonal antibodies (MAbs) generated to the non-toxic receptor-binding domain of BoNT/A (HC50/A) developed using a high-throughput screening approach. In two independent hybridoma fusions, two groups of four IgG MAbs were developed against recombinant HC50/A. Of these eight, only a single MAb, F90G5-3, bound to the whole BoNT/A protein and was characterized further. The F90G5-3 MAb slightly prolonged time to death in an in vivo mouse bioassay and was mapped by pepscan to a peptide epitope in the N-terminal subdomain of HC50/A (HCN25/A) comprising amino acid residues 985WTLQDTQEIKQRVVF999, an epitope that is highly immunoreactive in humans. Furthermore, we demonstrate that F90G5-3 binds BoNT/A with nanomolar efficiency. Together, our results indicate that F90G5-3 is of potential value as a diagnostic immunoreagent for BoNT/A capture assay development and bio-forensic analysis. PMID:22149274

  19. Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples Botulinum neurotoxins (BoNTs), the causative agents of botulism, are among the most lethal human bacterial toxins and the causative agent of botulism. BoNTs are also classified as Select Agents ...

  20. Clostridium botulinum neurotoxin type B is heat-stable in milk and not inactivated by pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne botulism is caused by the ingestion of foods containing botulinum neurotoxins (BoNTs). Currently, the only accepted assay to detect active C. botulinum neurotoxin is an in vivo mouse bioassay, which raises ethical concerns with regard to the use of experimental animals. Therefore, there is...

  1. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice. PMID:15302536

  2. Translocation of botulinum neurotoxin serotype a and associated proteins across the intestinal epithelia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins and considered to be a major venue of bioterrorist threat. BoNTs associate with neurotoxin associated proteins (NAPs), forming large complexes. NAPs have been shown to shield the BoNT holotoxin from the harsh environment of ...

  3. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium botulinum strain PS-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins (NAPs). The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presenc...

  4. Molecular Structures and Functional Relationships in Clostridial Neurotoxins

    SciTech Connect

    Swaminathan S.

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.

  5. Sequence homology and structural analysis of the clostridial neurotoxins.

    PubMed

    Lacy, D B; Stevens, R C

    1999-09-01

    The clostridial neurotoxins (CNTs), comprised of tetanus neurotoxin (TeNT) and the seven serotypes of botulinum neurotoxin (BoNT A-G), specifically bind to neuronal cells and disrupt neurotransmitter release by cleaving proteins involved in synaptic vesicle membrane fusion. In this study, multiple CNT sequences were analyzed within the context of the 1277 residue BoNT/A crystal structure to gain insight into the events of binding, pore formation, translocation, and catalysis that are required for toxicity. A comparison of the TeNT-binding domain structure to that of BoNT/A reveals striking differences in their surface properties. Further, the solvent accessibility of a key tryptophan in the C terminus of the BoNT/A-binding domain refines the location of the ganglioside-binding site. Data collected from a single frozen crystal of BoNT/A are included in this study, revealing slight differences in the binding domain orientation as well as density for a previously unobserved translocation domain loop. This loop and the conservation of charged residues with structural proximity to putative pore-forming sequences lend insight into the CNT mechanism of pore formation and translocation. The sequence analysis of the catalytic domain revealed an area near the active-site likely to account for specificity differences between the CNTs. It revealed also a tertiary structure, highly conserved in primary sequence, which seems critical to catalysis but is 30 A from the active-site zinc ion. This observation, along with an analysis of the 54 residue "belt" from the translocation domain are discussed with respect to the mechanism of catalysis. PMID:10518945

  6. Marine Toxins Potently Affecting Neurotransmitter Release

    NASA Astrophysics Data System (ADS)

    Meunier, Frédéric A.; Mattei, César; Molgó, Jordi

    Synapses are specialised structures where interneuronal communication takes place. Not only brain function is absolutely dependent on synaptic activity, but also most of our organs are intimately controlled by synaptic activity. Synapses re therefore an ideal target to act upon and poisonous species have evolved fascinating neurotoxins capable of shutting down neuronal communication by blocking or activating essential components of the synapse. By hijacking key proteins of the communication machinery, neurotoxins are therefore extremely valuable tools that have, in turn, greatly helped our understanding of synaptic biology. Moreover, analysis and understanding of the molecular strategy used by certain neurotoxins has allowed the design of entirely new classes of drugs acting on specific targets with high selectivity and efficacy. This chapter will discuss the different classes of marine neurotoxins, their effects on neurotransmitter release and how they act to incapacitate key steps in the process leading to synaptic vesicle fusion.

  7. Sensing the Deadliest Toxin: Technologies for Botulinum Neurotoxin Detection

    PubMed Central

    Čapek, Petr; Dickerson, Tobin J.

    2010-01-01

    Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples. PMID:22069545

  8. Serological identification of botulinum neurotoxins: A critical overview.

    PubMed

    Giménez, Domingo F

    2016-08-01

    The reasons that gave rise to the controversy over the serological method (SerM) and genetics regarding the identification of an alleged novel botulinum neurotoxin (BoNT), type H, have been concisely examined. This discussion will remain opened inasmuch as the SerM is not performed according to the recommended procedures outlined in this overview and thoroughly discussed on previous publications. If correctly performed and interpreted, the SerM will keep its preeminence in the identification, typing and taxonomy of BoNTs. PMID:27130373

  9. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity

    PubMed Central

    Opsenica, Igor M.; Tot, Mikloš; Gomba, Laura; Nuss, Jonathan E.; Sciotti, Richard J.; Bavari, Sina; Burnett, James C.; Šolaja, Bogdan A.

    2013-01-01

    Structurally simplified analogs of dual antimalarial and botulinum neurotoxin serotype A light chain (BoNT/A LC) inhibitor bis-aminoquinoline (1) were prepared. New compounds were designed to improve ligand efficiency while maintaining or exceeding the inhibitory potency of 1. Three of the new compounds are more active than 1 against both indications. Metabolically, the new inhibitors are relatively stable and non-toxic. Twelve, 14, and 15 are more potent BoNT/A LC inhibitors than 1. Additionally, 15 has excellent in vitro antimalarial efficacy, with IC90 values ranging from 4.45-12.11 nM against five Plasmodium falciparum (P.f.) strains: W2, D6, C235, C2A, C2B. The results indicate that the same level of inhibitory efficacy provided by 1 can be retained/exceeded with less structural complexity. Twelve, 14, and 15 provide new platforms for the development of more potent dual BoNT/A LC and P.f. inhibitors adhering to generally accepted chemical properties associated with the druggability of synthetic molecules. PMID:23815186

  10. Botulinum neurotoxin A and an engineered derivate targeted secretion inhibitor (TSI) A enter cells via different vesicular compartments.

    PubMed

    Fonfria, Elena; Donald, Sarah; Cadd, Verity A

    2016-01-01

    Botulinum neurotoxins (BoNTs) are highly potent multi-domain proteins, responsible for botulism in animals and humans. The modular structural organization of BoNTs has led to the development of novel engineered bio-therapeutic proteins called targeted secretion inhibitors (TSIs). We report here that botulinum neurotoxin A (BoNT/A) and a TSI/A in which the neuronal binding domain of BoNT/A has been substituted by an epidermal growth factor (EGF) ligand, named EGFR-targeted TSI/A, exploit different routes to gain entry in the same in vitro neuroblastoma cell system, SiMa cells. We found that the EGF ligand conferred the affinity to the EGFR-targeted TSI/A at the EGF receptor when compared to an untargeted TSI/A and also the ability to internalize into the cells and cleave its cytosolic target protein SNAP-25. Using high content analysis we found that both BoNT/A and the EGFR-targeted TSI/A enter the cell in a concentration-dependent manner and in compartments which are able to translocate the proteins into the cytosol within 4 h. The EGFR-targeted TSI/A internalized into a compartment which gave a punctate staining pattern by immunofluorescence and partially overlapped with structures positive for the early endosomal marker EAA1; whereas BoNT/A did not internalize into a punctate compartment but did so in an acidifying compartment consistent with local synaptic vesicle recycling. These findings show that the BoNT/A translocation domain, common to both BoNT/A and the EGFR-targeted TSI/A, is a versatile tool for cytosolic delivery from distinct intracellular vesicular compartments. PMID:26329879

  11. Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells.

    PubMed

    Orndorff, Rebecca L; Rosenthal, Sandra J

    2009-07-01

    High affinity peptide neurotoxins are effective agents for integrating technological advances with biological inquiries. Both chlorotoxin (CTX) and dendrotoxin-1 (DTX-1) are peptide neurotoxins demonstrated to bind targets expressed by glioma cancer cells and are suitable ligands for quantum dot (QD) live cell investigations. Here, we present dual labeling of endogenously expressed cellular proteins within living cells utilizing high affinity peptide neurotoxins conjugated to QDs. Multiplexing experiments reveal quantifiable evidence that CTX and DTX-1 conjugated QDs may potentially be used as a live assessment of markers toward identification of cancer cell presence. PMID:19507837

  12. Complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in Clostridium botulinum type B strain 111 isolated from an infant patient in Japan.

    PubMed

    Hosomi, Koji; Sakaguchi, Yoshihiko; Kohda, Tomoko; Gotoh, Kazuyoshi; Motooka, Daisuke; Nakamura, Shota; Umeda, Kaoru; Iida, Tetsuya; Kozaki, Shunji; Mukamoto, Masafumi

    2014-12-01

    Botulinum neurotoxins (BoNTs) are highly potent toxins that are produced by Clostridium botulinum. We determined the complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in C. botulinum type B strain 111 in order to obtain an insight into the toxigenicity and evolution of the bont gene in C. botulinum. Group I C. botulinum type B strain 111 was isolated from the first case of infant botulism in Japan in 1995. In previous studies, botulinum neurotoxin subtype B2 (BoNT/B2) produced by strain 111 exhibited different antigenic properties from those of authentic BoNT/B1 produced by strain Okra. We have recently shown that the isolates of strain 111 that lost toxigenicity were cured of the plasmid containing the bont/B2 gene. In the present study, the plasmid (named pCB111) was circular 265,575 bp double-stranded DNA and contained 332 predicted open reading frames (ORFs). 85 gene products of these ORFs could be functionally assigned on the basis of sequence homology to known proteins. The bont/B2 complex genes were located on pCB111 and some gene products may be involved in the conjugative plasmid transfer and horizontal transfer of bont genes. pCB111 was similar to previously identified plasmids containing bont/B1, /B5, or/A3 complex genes in other group I C. botulinum strains. It was suggested that these plasmids had been derived from a common ancestor and had played important roles for the bont gene transfer between C. botulinum. PMID:25149145

  13. Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates

    PubMed Central

    Stüken, Anke; Orr, Russell J. S.; Kellmann, Ralf; Murray, Shauna A.; Neilan, Brett A.; Jakobsen, Kjetill S.

    2011-01-01

    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×106 mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment. PMID:21625593

  14. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    SciTech Connect

    Inui, Ken; Sagane, Yoshimasa; Miyata, Keita; Miyashita, Shin-Ichiro; Suzuki, Tomonori; Shikamori, Yasuyuki; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  15. Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B.

    PubMed

    Fan, Yongfeng; Dong, Jianbo; Lou, Jianlong; Wen, Weihua; Conrad, Fraser; Geren, Isin N; Garcia-Rodriguez, Consuelo; Smith, Theresa J; Smith, Leonard A; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A; Marks, James D

    2015-09-01

    Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors. PMID:26343720

  16. Botulinum Neurotoxin Type A Induces TLR2-Mediated Inflammatory Responses in Macrophages

    PubMed Central

    Kim, Yun Jeong; Kim, Jeong-Hee; Lee, Kwang-Jun; Choi, Myung-Min; Kim, Yeon Hee; Rhie, Gi-eun; Yoo, Cheon-Kwon; Cha, Kiweon; Shin, Na-Ri

    2015-01-01

    Botulinum neurotoxin type A (BoNT/A) is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO) and tumor necrosis factor alpha (TNFα) were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2) and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK), extracellular signal–regulated kinase (ERK), and p38 mitogen–activated protein kinase (MAPK). BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK. PMID:25853816

  17. Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B

    PubMed Central

    Fan, Yongfeng; Dong, Jianbo; Lou, Jianlong; Wen, Weihua; Conrad, Fraser; Geren, Isin N.; Garcia-Rodriguez, Consuelo; Smith, Theresa J.; Smith, Leonard A.; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Marks, James D.

    2015-01-01

    Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors. PMID:26343720

  18. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice

    PubMed Central

    2012-01-01

    Background The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain. The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate whether endogenous dynorphin has neuroprotective roles in vivo. Methods 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (MA), two commonly used neurotoxins in rodent models of Parkinson’s disease, were administered to wild-type (Dyn+/+) and prodynorphin-deficient mice (Dyn−/−). We examined dopaminergic neurotoxicity by using an automated video tracking system, HPLC, immunocytochemistry, and reverse transcription and polymerase chain reaction (RT-PCR). Results Treatment with MPTP resulted in behavioral impairments in both strains. However, these impairments were more pronounced in Dyn-l- than in Dyn+/+. Dyn−/− showed more severe MPTP-induced dopaminergic neuronal loss in the substantia nigra and striatum than Dyn+/+. Similarly, the levels of dopamine and its metabolites in the striatum were depleted to a greater extent in Dyn−/− than in Dyn+/+. Additional mechanistic studies revealed that MPTP treatment caused a higher degree of microglial activation and M1 phenotype differentiation in Dyn−/− than in Dyn+/+. Consistent with these observations, prodynorphin deficiency also exacerbated neurotoxic effects induced by MA, although this effect was less pronounced than that of MPTP. Conclusions The in vivo results presented here extend our previous in vitro findings and further indicate that endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects. PMID:22695044

  19. Solubility of the catalytic domains of Botulinum neurotoxin serotype E subtypes.

    PubMed

    Chen, Sheng; Barbieri, Joseph T

    2016-02-01

    The Clostridium botulinum neurotoxins (BoNTs) are the most potent protein toxins known to humans. There are seven serotypes of the BoNTs (A-G), among which serotypes A, B, E and F are known to cause natural human intoxication. To date, eleven subtypes of LC/E, termed E1∼E11, have been identified. The LCs of BoNT/E were insoluble, prohibiting studies towards understanding the mechanisms of toxin action and substrate recognition. In this work, the molecular basis of insolubility of the recombinant LCs of two representative subtypes of BoNT/E, E1(Beluga) and E3 (Alaska), was determined. Hydrophobicity profile and structural modeling predicted a C-terminal candidate region responsible for the insolubility of LC/Es. Deletion of C-terminal 19 residues of LC/E(1-400) resulted in enhanced solubility, from 2 to ∼50% for LC/EAlaska and from 16 to ∼95% for LC/EBeluga. In addition, resides 230-236 were found to contribute to a different solubility level of LC/EAlaska when compared to LC/EBeluga. Substituting residues (230)TCI(232) in LC/EAlaska to the corresponding residues of (230)KYT(232) in LC/EBeluga enhanced the solubility of LC/EAlaska to a level approaching that of LC/EBeluga. Among these LC/Es and their derivatives, LC/EBeluga 1-400 was the most soluble and stable protein. Each LC/E derivative possessed similar catalytic activity, suggesting that the C-terminal region of LC/Es contributed to protein solubility, but not catalytic activity. In conclusion, this study generated a soluble and stable recombinant LC/E and provided insight into the structural components that govern the solubility and stability of the LCs of other BoNT serotypes and Tetanus toxin. PMID:26477500

  20. Expression and biochemical characterization of light chains of Botulinum neurotoxin subtypes F5 and F7.

    PubMed

    Guo, Jiubiao; Chen, Sheng

    2015-07-01

    Botulinum neurotoxins are the most potent protein toxins known to human. To date, seven subtypes of the BoNT/F serotype (BoNT/F1 to BoNT/F7) have been identified, among which BoNT/F5 and BoNT/F7 are the most divergent. However, little structural and functional information is available for these two subtypes due to a lack of suitable recombinant proteins for biochemical characterization, except that they appear to possess unique substrate recognition mechanisms, thereby impeding development of vaccine or inhibitors against these proteins. In the present study, we utilized a combinatorial approach which involved examining the effects of different affinity tags, mapping C-terminal truncation mutants and optimization of expression and purification conditions, that allowed us to successfully express and purify soluble and highly active recombinant LC/F5 and LC/F7 proteins. GST-LC/F5(1-450) and 6× His-LC/F5(1-405) were the formats which exhibit the highest level of solubility and activity, whereas GST-LC/F7(1-405) was the most active form of LC/F7. In comparison, GST-LC/F5(1-450) was more active than GST-LC/F7(1-405), which was in turn more active than the LC/F1 control. Our data suggest that solubility of these proteins strongly correlated with their catalytic activity. Successful expression and purification of LC/F5 and LC/F7 in this work will, for the first time, provide materials for further characterization of these two subtypes of BoNT/F, which is essential for future development of protective vaccine or other therapeutic strategies, as well as BoNT/F protein engineering. PMID:25858313

  1. Widespread Sequence Variations in VAMP1 across Vertebrates Suggest a Potential Selective Pressure from Botulinum Neurotoxins

    PubMed Central

    Peng, Lisheng; Adler, Michael; Demogines, Ann; Borrell, Andrew; Liu, Huisheng; Tao, Liang; Tepp, William H.; Zhang, Su-Chun; Johnson, Eric A.; Sawyer, Sara L.; Dong, Min

    2014-01-01

    Botulinum neurotoxins (BoNT/A-G), the most potent toxins known, act by cleaving three SNARE proteins required for synaptic vesicle exocytosis. Previous studies on BoNTs have generally utilized the major SNARE homologues expressed in brain (VAMP2, syntaxin 1, and SNAP-25). However, BoNTs target peripheral motor neurons and cause death by paralyzing respiratory muscles such as the diaphragm. Here we report that VAMP1, but not VAMP2, is the SNARE homologue predominantly expressed in adult rodent diaphragm motor nerve terminals and in differentiated human motor neurons. In contrast to the highly conserved VAMP2, BoNT-resistant variations in VAMP1 are widespread across vertebrates. In particular, we identified a polymorphism at position 48 of VAMP1 in rats, which renders VAMP1 either resistant (I48) or sensitive (M48) to BoNT/D. Taking advantage of this finding, we showed that rat diaphragms with I48 in VAMP1 are insensitive to BoNT/D compared to rat diaphragms with M48 in VAMP1. This unique intra-species comparison establishes VAMP1 as a physiological toxin target in diaphragm motor nerve terminals, and demonstrates that the resistance of VAMP1 to BoNTs can underlie the insensitivity of a species to members of BoNTs. Consistently, human VAMP1 contains I48, which may explain why humans are insensitive to BoNT/D. Finally, we report that residue 48 of VAMP1 varies frequently between M and I across seventeen closely related primate species, suggesting a potential selective pressure from members of BoNTs for resistance in vertebrates. PMID:25010769

  2. Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins.

    PubMed

    Peng, Lisheng; Adler, Michael; Demogines, Ann; Borrell, Andrew; Liu, Huisheng; Tao, Liang; Tepp, William H; Zhang, Su-Chun; Johnson, Eric A; Sawyer, Sara L; Dong, Min

    2014-07-01

    Botulinum neurotoxins (BoNT/A-G), the most potent toxins known, act by cleaving three SNARE proteins required for synaptic vesicle exocytosis. Previous studies on BoNTs have generally utilized the major SNARE homologues expressed in brain (VAMP2, syntaxin 1, and SNAP-25). However, BoNTs target peripheral motor neurons and cause death by paralyzing respiratory muscles such as the diaphragm. Here we report that VAMP1, but not VAMP2, is the SNARE homologue predominantly expressed in adult rodent diaphragm motor nerve terminals and in differentiated human motor neurons. In contrast to the highly conserved VAMP2, BoNT-resistant variations in VAMP1 are widespread across vertebrates. In particular, we identified a polymorphism at position 48 of VAMP1 in rats, which renders VAMP1 either resistant (I48) or sensitive (M48) to BoNT/D. Taking advantage of this finding, we showed that rat diaphragms with I48 in VAMP1 are insensitive to BoNT/D compared to rat diaphragms with M48 in VAMP1. This unique intra-species comparison establishes VAMP1 as a physiological toxin target in diaphragm motor nerve terminals, and demonstrates that the resistance of VAMP1 to BoNTs can underlie the insensitivity of a species to members of BoNTs. Consistently, human VAMP1 contains I48, which may explain why humans are insensitive to BoNT/D. Finally, we report that residue 48 of VAMP1 varies frequently between M and I across seventeen closely related primate species, suggesting a potential selective pressure from members of BoNTs for resistance in vertebrates. PMID:25010769

  3. Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex

    SciTech Connect

    Gu, Shenyan; Rumpel, Sophie; Zhou, Jie; Strotmeier, Jasmin; Bigalke, Hans; Perry, Kay; Shoemaker, Charles B.; Rummel, Andreas; Jin, Rongsheng

    2012-03-28

    Botulinum neurotoxins (BoNTs) are highly poisonous substances that are also effective medicines. Accidental BoNT poisoning often occurs through ingestion of Clostridium botulinum-contaminated food. Here, we present the crystal structure of a BoNT in complex with a clostridial nontoxic nonhemagglutinin (NTNHA) protein at 2.7 angstroms. Biochemical and functional studies show that NTNHA provides large and multivalent binding interfaces to protect BoNT from gastrointestinal degradation. Moreover, the structure highlights key residues in BoNT that regulate complex assembly in a pH-dependent manner. Collectively, our findings define the molecular mechanisms by which NTNHA shields BoNT in the hostile gastrointestinal environment and releases it upon entry into the circulation. These results will assist in the design of small molecules for inhibiting oral BoNT intoxication and of delivery vehicles for oral administration of biologics.

  4. Botulinum neurotoxin: where are we with detection technologies?

    PubMed

    Singh, Ajay K; Stanker, Larry H; Sharma, Shashi K

    2013-02-01

    Because of its high toxicity, botulinum neurotoxin (BoNT) poses a significant risk to humans and it represents a possible biological warfare agent. Nevertheless, BoNT serotypes A and B are considered an effective treatment for a variety of neurological disorders. The growing applicability of BoNT as a drug, and its potential use as a biological threat agent, highlight the urgent need to develop sensitive detection assays and therapeutic counter measures. In the last decade, significant progress has been made in BoNT detection technologies but none have fully replaced the mouse lethality assay, the current "gold standard". Recently, new advances in robotics and the availability of new reagents have allowed development of methods for rapid toxin analysis. These technologies while promising need further refinement. PMID:22676403

  5. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  6. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H

    PubMed Central

    Fan, Yongfeng; Barash, Jason R.; Lou, Jianlong; Conrad, Fraser; Marks, James D.; Arnon, Stephen S.

    2016-01-01

    Background. Only Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed. Methods. We therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay. Results. Anti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10−8 M) than its BoNT/F affinity (KD = 9.1 × 10−11 M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD = 1.48 × 10−10 M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody. Conclusions. This 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism. PMID:26936913

  7. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    SciTech Connect

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  8. Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody.

    PubMed

    Derman, Yağmur; Selby, Katja; Miethe, Sebastian; Frenzel, André; Liu, Yvonne; Rasetti-Escargueil, Christine; Avril, Arnaud; Pelat, Thibaut; Urbain, Remi; Fontayne, Alexandre; Thullier, Philippe; Sesardic, Dorothea; Lindström, Miia; Hust, Michael; Korkeala, Hannu

    2016-01-01

    Botulinum neurotoxins (BoNTs) cause botulism and are the deadliest naturally-occurring substances known to humans. BoNTs have been classified as one of the category A agents by the Centers for Disease Control and Prevention, indicating their potential use as bioweapons. To counter bio-threat and naturally-occurring botulism cases, well-tolerated antibodies by humans that neutralize BoNTs are relevant. In our previous work, we showed the neutralizing potential of macaque (Macaca fascicularis)-derived scFv-Fc (scFv-Fc ELC18) by in vitro endopeptidase immunoassay and ex vivo mouse phrenic nerve-hemidiaphragm assay by targeting the light chain of the botulinum neurotoxin type E (BoNT/E). In the present study, we germline-humanized scFv-Fc ELC18 into a full IgG hu8ELC18 to increase its immunotolerance by humans. We demonstrated the protection and prophylaxis capacity of hu8ELC18 against BoNT/E in a mouse model. A concentration of 2.5 ng/mouse of hu8ELC18 protected against 5 mouse lethal dose (MLD) in a mouse protection assay and complete neutralization of 1 LD50 of pure BoNT/E toxin was achieved with 8 ng of hu8ELC18 in mouse paralysis assay. Furthermore, hu8ELC18 protected mice from 5 MLD if injected up to 14 days prior to intraperitoneal BoNT/E administration. This newly-developed humanized IgG is expected to have high tolerance in humans. PMID:27626446

  9. Structure-based sequence alignment for the beta-trefoil subdomain of the clostridial neurotoxin family provides residue level information about the putative ganglioside binding site.

    PubMed

    Ginalski, K; Venclovas, C; Lesyng, B; Fidelis, K

    2000-09-29

    Clostridial neurotoxins embrace a family of extremely potent toxins comprised of tetanus toxin (TeNT) and seven different serotypes of botulinum toxin (BoNT/A-G). The beta-trefoil subdomain of the C-terminal part of the heavy chain (H(C)), responsible for ganglioside binding, is the most divergent region in clostridial neurotoxins with sequence identity as low as 15%. We re-examined the alignment between family sequences within this subdomain, since in this region all alignments published to date show obvious inconsistencies with the beta-trefoil fold. The final alignment was obtained by considering the general constraints imposed by this fold, and homology modeling studies based on the TeNT structure. Recently solved structures of BoNT/A confirm the validity of this structure-based approach. Taking into account biochemical data and crystal structures of TeNT and BoNT/A, we also re-examined the location of the putative ganglioside binding site and, using the new alignment, characterized this site in other BoNT serotypes. PMID:11018534

  10. [Neurotoxins with anticholinesterase activity and their possible use as warfare agents].

    PubMed

    Pita, René; Anadón, Arturo; Martínez-Larrañaga, María Rosa

    2003-10-18

    Anatoxin-a(s), onchidal and fasciculins are neurotoxins with anticholinesterase activity. An intoxication by these neurotoxins is characterized by cholinergic syndromes similar to organophosphate insecticide and nerve agent intoxications. Anticholinesterase neurotoxins, as well as other toxins, have some disadvantages if used as weapons of mass destruction. Drawbacks include difficulties to produce them in big quantities and their dissemination in form of aerosols. However, other properties such as high toxicity, improbable identification with common commercial portable detectors for chemical warfare agents and toxic industrial chemicals, as well as the lack of effectiveness of antidotal treatments with oximes may make them attractive in order to be used in military operations or terrorist attacks. For these reasons, it should be necessary to control these neurotoxins through international treaties which have real verification measures such as the Chemical Weapons Convention. PMID:14588195

  11. Purification and characterization of a neurotoxin from the venom of Ophiophagus hannah (king cobra).

    PubMed

    Chang, Long-Sen; Liou, Jau-Cheng; Lin, Shinne-Ren; Huang, Hsien-Bin

    2002-06-14

    A neurotoxin, Oh9-1, from the venom of Ophiophagus hannah was isolated by a combination of ion-exchange chromatography and reverse phase HPLC. Amino acid sequence analysis revealed that Oh9-1 consists of 57 amino acids and eight cysteine residues. This protein was mainly constituted with beta-sheet as evidenced by CD spectrum. Oh9-1 inhibited carbachol-induced muscle contraction in an irreversible manner and the dose for achieving 50% inhibition was approximately fourfold that of alpha-bungarotoxin. Since the residues in alpha-neurotoxins closely involve in the binding with acetylcholine receptors are not highly conserved in this toxin molecule, Oh9-1 represents a novel type of neurotoxin structurally distinct from alpha-neurotoxins. PMID:12056805

  12. Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction.

    PubMed Central

    Szabo, E A; Pemberton, J M; Desmarchelier, P M

    1993-01-01

    The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains. Images PMID:8215372

  13. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain.

    PubMed

    Pellett, Sabine; Tepp, William H; Bradshaw, Marite; Kalb, Suzanne R; Dykes, Janet K; Lin, Guangyun; Nawrocki, Erin M; Pier, Christina L; Barr, John R; Maslanka, Susan E; Johnson, Eric A

    2016-01-01

    Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated "type H," has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 10(7) mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A

  14. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain

    PubMed Central

    Pellett, Sabine; Tepp, William H.; Bradshaw, Marite; Kalb, Suzanne R.; Dykes, Janet K.; Lin, Guangyun; Nawrocki, Erin M.; Pier, Christina L.; Barr, John R.; Maslanka, Susan E.

    2016-01-01

    ABSTRACT Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated “type H,” has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 107 mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes

  15. Production and characterization of a recombinant chimeric antigen consisting botulinum neurotoxin serotypes A, B and E binding subdomains.

    PubMed

    Ebrahimi, Firouz; Rasaee, Mohammad Javad; Mousavi, Seyed Latif; Babaeipour, Valiollah

    2010-02-01

    Botulinum neurotoxins (BoNTs) are potent toxicant proteins composed of a heavy chain (100 kDa) and a light chain (50 kDa) of seven (A-G) serotypes that is responsible for botulism syndrome. In this study, polypeptides from C-terminal heavy chain of BoNTs serotypes A, B and E to the length of 54, 45 and 48 amino acid respectively were selected, linked together using a hydrophobic linker and expressed in E. coli. The expression efficiency of the chimeric protein was found to be 51%. The chimeric protein was produced in the form of inclusion body (IB) both at two studied temperatures, 30 degrees C and 37 degrees C. This IB was extracted by ultracentrifugation and followed for chimeric protein solubilization and purification using of ultrafiltration and preparative electrophoresis. The purified chimeric protein was characterized using blotting and ELISA. To evaluate the protection ability of this chimeric antigen against their active toxins, it was injected to mice and the antibody titer as well as the extent of protectivity were determined. Mice given three injections (10 microg/mice) of the antigen were protected against an intra-peritoneal administration of 10 LD(50 )of serotypes A and E, but 100 LD(50) of serotype B. We conclude that a significant correlation exists between the antigenic characteristics and protection capability of the chimeric protein prepared in this study. PMID:20118620

  16. In vitro potency determination of botulinum neurotoxin B based on its receptor-binding and proteolytic characteristics.

    PubMed

    Wild, Emina; Bonifas, Ursula; Klimek, Jolanta; Trösemeier, Jan-Hendrik; Krämer, Beate; Kegel, Birgit; Behrensdorf-Nicol, Heike A

    2016-08-01

    Botulinum neurotoxins (BoNTs) are the most potent toxins known. However, the paralytic effect caused by BoNT serotypes A and B is taken advantage of to treat different forms of dystonia and in cosmetic procedures. Due to the increasing areas of application, the demand for BoNTs A and B is rising steadily. Because of the high toxicity, it is mandatory to precisely determine the potency of every produced BoNT batch, which is usually accomplished by performing toxicity testing (LD50 test) in mice. Here we describe an alternative in vitro assay for the potency determination of the BoNT serotype B. In this assay, the toxin is first bound to its specific receptor molecules. After the proteolytic subunit of the toxin has been released and activated by chemical reduction, it is exposed to synaptobrevin, its substrate protein. Finally the proteolytic cleavage is quantified by an antibody-mediated detection of the neoepitope, reaching a detection limit below 0.1mouseLD50/ml. Thus, the assay, named BoNT/B binding and cleavage assay (BoNT/B BINACLE), takes into account the binding as well as the protease function of the toxin, thereby measuring its biological activity. PMID:27032463

  17. Two-Component Systems Are Involved in the Regulation of Botulinum Neurotoxin Synthesis in Clostridium botulinum Type A Strain Hall

    PubMed Central

    Connan, Chloé; Brueggemann, Holger; Mazuet, Christelle; Raffestin, Stéphanie; Cayet, Nadège; Popoff, Michel R.

    2012-01-01

    Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs. PMID:22848632

  18. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A.

    PubMed

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-Ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-07-01

    Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates-is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors. PMID:27294781

  19. Effects of COX inhibitors on neurodegeneration and survival in mice exposed to the marine neurotoxin domoic acid.

    PubMed

    Ryan, James C; Cross, Cheryl A; Van Dolah, Frances M

    2011-01-01

    The marine neurotoxin domoic acid (DA) is a rigid analogue of the neurotransmitter glutamate and a potent agonist of kainate subtype glutamate receptors. Persistent activation of these receptor subtypes results in rapid excitotoxicity, calcium-dependent cell death, and neuronal degeneration in regions of the brain where glutamatergic pathways are concentrated. Previous work has shown that DA promotes the expression of inflammatory genes in the brain, such as cyclooxygenase 2 (COX2). To investigate the impact of inflammation on the development of neurodegeneration, and ultimately survival following DA administration, we used selective (L745337, Merck) and non-selective (acetylsalicylic acid (ASA)) COX inhibitors in DA exposed mice. Adult male ICR mice were given a regime of either ASA or L23547 both before and after a single LD50 dose of DA. Mice were observed immediately after toxin introduction and then sacrificed at 2 days post exposure. Our lower dose of L23547 increased survival and was most effective at decreasing neuronal degeneration in the CA1 and CA3 regions of the hippocampus, areas especially sensitive to DA excitotoxicity. This study shows that COX2 plays a role in DA induced neurodegeneration and death, and that inhibitors may be of value for treatment in human and wildlife DA exposure. PMID:20934488

  20. Novel co-operation between eotaxin and substance-P in inducing eosinophil-derived neurotoxin release.

    PubMed Central

    El-Shazly, A; Ishikawa, T

    1999-01-01

    Eosinophils, chemokines, and neuropeptides are thought to play effector roles in the pathogenesis of allergic diseases such as rhinitis. Eotaxin is a novel C-C chemokine with a potent and relatively specific eosinophil chemoattractant activity that binds selectively to CCR3 receptor, however, its activity in inducing eosinophil granules proteins release is poorly characterized. This study was performed to determine whether eotaxin primes eosinophil exocytosis and whether this co-operates with the sensory neuroimmune-axis. In the present communication, we show that 10 ng/ml eotaxin primed normal human eosinophil for exaggerated eosonophil-derived neurotoxin (EDN) release stimulated by 10(-8) M Substance-P (SP). This novel priming was blocked by; 7B11 and Herbimycin A (HA), the CCR3 antagonist and the tyrosine kinase inhibitor, respectively. SDS-Page studies showed significant tyrosine phosphorylation of several protein residues induced by 10(-8) M SP only after priming with 10 ng/ml eotaxin. These results demonstrate a novel co-operation between eotaxin and SP in inducing eosinophil cytotoxicity, which at least in part involves tyrosine kinases pathway(s). PMID:10704057

  1. A High-throughput-compatible FRET-based Platform for Identification and Characterization of Botulinum Neurotoxin Light Chain Modulators

    PubMed Central

    Caglič, Dejan; Bompiani, Kristin M.; Krutein, Michelle C.; Čapek, Petr; Dickerson, Tobin J.

    2013-01-01

    Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds. PMID:24430674

  2. Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening.

    PubMed

    Hu, Xin; Legler, Patricia M; Southall, Noel; Maloney, David J; Simeonov, Anton; Jadhav, Ajit

    2014-07-01

    Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for small molecule intervention, but their suitability for inhibitor design remains largely unexplored. In this study, we employed two recently identified exosite inhibitors, D-chicoric acid and lomofungin, to probe the structural features of the exosites and molecular mechanisms of synergistic inhibition. The results showed that D-chicoric acid favors binding at the α-exosite, whereas lomofungin preferentially binds at the β-exosite by mimicking the substrate β-sheet binding interaction. Molecular dynamics simulations and binding interaction analysis of the exosite inhibitors with BoNT/A revealed key elements and hotspots that likely contribute to the inhibitor binding and synergistic inhibition. Finally, we performed database virtual screening for novel inhibitors of BoNT/A targeting the exosites. Hits C1 and C2 showed non-competitive inhibition and likely target the α- and β-exosites, respectively. The identified exosite inhibitors may provide novel candidates for structure-based development of therapeutics against BoNT/A intoxication. PMID:24958623

  3. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins.

    PubMed

    Simpson, L L

    1988-06-01

    The pharmacologic activity of several clostridial neurotoxins was assayed on the mouse phrenic nerve-hemidiaphragm preparation. The substances that were assayed included botulinum neurotoxin types A, B, C and E and tetanus toxin. Experiments were done in the presence or absence of antagonists that inhibit either the internalization of toxins or intracellular expression of toxicity. Ammonium chloride and methylamine hydrochloride, agents that inhibit toxins that enter cells by receptor-mediated endocytosis, antagonized botulinum and tetanus neurotoxins. The magnitude of antagonism was substantial for all toxins. Calcium, 3,4-diaminopyridine and guanidine, agents that alter the intracellular expression of toxicity, produced a variable result. They were effective antagonists of botulinum neurotoxin type A, but they were less effective or inactive against the other neurotoxins. The ability of 3,4-diaminopyridine and guanidine to antagonize botulinum neurotoxin type A was highly calcium dependent. When ambient levels of the cation were reduced from 1.8 to 1.0 mM, the activity of the drugs was substantially reduced. The ability of these drugs to produce antagonism was also time dependent. When added simultaneously with toxin, they were maximally active; when added at later times, activity was diminished. A host of agents that alter intracellular levels of cyclic AMP, including theophylline, forskolin, isobutylmethylxanthine and cholera toxin, were evaluated as potential neurotoxin antagonists. Theophylline and isobutylmethylxanthine produced a transient increase in nerve-evoked muscle twitch. None of the drugs that alter tissue levels of cyclic AMP had a universal effect in antagonizing clostridial toxins. The data here have been compared with published data on drugs that antagonize binding of botulinum toxin and tetanus toxin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2455038

  4. Sweet Poisons: Honeys Contaminated with Glycosides of the Neurotoxin Tutin.

    PubMed

    Larsen, Lesley; Joyce, Nigel I; Sansom, Catherine E; Cooney, Janine M; Jensen, Dwayne J; Perry, Nigel B

    2015-06-26

    Poisonings due to consumption of honeys containing plant toxins have been reported widely. One cause is the neurotoxin tutin, an oxygenated sesquiterpene picrotoxane, traced back to honeybees (Apis mellifera) collecting honeydew produced by passionvine hoppers (Scolypopa australis) feeding on sap of the poisonous shrub tutu (Coriaria spp.). However, a pharmacokinetic study suggested that unidentified conjugates of tutin were also present in such honeys. We now report the discovery, using ion trap LC-MS, of two tutin glycosides and their purification and structure determination as 2-(β-d-glucopyranosyl)tutin (4) and 2-[6'-(α-d-glucopyranosyl)-β-d-glucopyranosyl]tutin (5). These compounds were used to develop a quantitative triple quadrupole LC-MS method for honey analysis, which showed the presence of tutin (3.6 ± 0.1 μg/g honey), hyenanchin (19.3 ± 0.5), tutin glycoside (4) (4.9 ± 0.4), and tutin diglycoside (5) (4.9 ± 0.1) in one toxic honey. The ratios of 4 and 5 to tutin varied widely in other tutin-containing honeys. The glycosidation of tutin may represent detoxification by one or both of the insects involved in the food chain from plant to honey. PMID:25993882

  5. Dopaminergic neurotoxins require excitotoxic stimulation in organotypic cultures.

    PubMed

    Kress, Geraldine J; Reynolds, Ian J

    2005-12-01

    We have investigated the properties of the dopaminergic neurotoxins 6-hydroxydopamine, 1-methyl-4-phenylpyridinium and rotenone using an organotypic culture that included slices of substantia nigra, striatum and cortex maintained for about 20 days in vitro. At this age, the organotypic culture contains dopaminergic neurons, visualized using tyrosine hydroxylase (TH) immunohistochemistry, that project into the striatal slice and extend up to 1 mm into the cortical slice. Using TH immunohistochemistry to assess survival of dopaminergic neurons, we found that the three dopaminergic toxins alone were not selectively neurotoxic. However, the addition of a low concentration of N-methyl-d-aspartate together with each individual toxin resulted in profound injury to the dopaminergic neurons, reflected by the loss of cell bodies and the fragmentation of processes. The combined toxicity was completely blocked by MK801. To assess the specificity of the injury, we measured the diameter of cell nuclei in the organotypic culture stained with Hoechst 33342 because the nucleus shrinks when neurons are injured. These measurements showed that the combined toxin treatment selectively injured only the TH immunoreactive cells. Thus, in a model culture system where dopaminergic neurons innervate appropriate targets, excitotoxicity appears to be essential for the manifestation of the toxic actions of 6-hydroxydopamine, 1-methyl-4-phenylpyridinium and rotenone. PMID:15996475

  6. Botulinum neurotoxins in the treatment of refractory pain.

    PubMed

    Jabbari, Bahman

    2008-12-01

    The proper management of pain is a critical issue in the practice of medicine. Despite the availability of a large number of analgesic medications, management of pain that is refractory to conventional treatments remains a challenge for both clinicians and surgeons. Botulinum neurotoxin (BoNT) has recently emerged as a potential novel approach to control pain. Animal studies have revealed a number of mechanisms by which BoNTs can influence and alleviate chronic pain, including inhibition of pain peptide release from nerve terminals and sensory ganglia, anti-inflammatory and antiglutaminergic effects, reduction of sympathetic neural discharge, and inhibition of muscle spindle discharge. In humans, prospective, placebo-controlled, double-blind studies have also provided evidence for effectiveness of BoNT therapy in a number of painful disorders. These include cervical dystonia, pelvic pain, low back pain, plantar fasciitis, postsurgical painful spasms, myofascial pain syndromes, migraine, and chronic daily headaches. Long-term studies on cervical dystonia and low back pain have demonstrated safety and sustained efficacy after repeated injections. This Review focuses on the analgesic effects of BoNT and the mechanisms of its pain control as revealed by animal models, and provides evidence-based data on the efficacy of BoNT therapy in various pain syndromes in humans. PMID:19043424

  7. Tetanus neurotoxin utilizes two sequential membrane interactions for channel formation.

    PubMed

    Burns, Joshua R; Baldwin, Michael R

    2014-08-01

    Tetanus neurotoxin (TeNT) causes neuroparalytic disease by entering the neuronal soma to block the release of neurotransmitters. However, the mechanism by which TeNT translocates its enzymatic domain (light chain) across endosomal membranes remains unclear. We found that TeNT and a truncated protein devoid of the receptor binding domain (TeNT-LHN) associated with membranes enriched in acidic phospholipids in a pH-dependent manner. Thus, in contrast to diphtheria toxin, the formation of a membrane-competent state of TeNT requires the membrane interface and is modulated by the bilayer composition. Channel formation is further enhanced by tethering of TeNT to the membrane through ganglioside co-receptors prior to acidification. Thus, TeNT channel formation can be resolved into two sequential steps: 1) interaction of the receptor binding domain (heavy chain receptor binding domain) with ganglioside co-receptors orients the translocation domain (heavy chain translocation domain) as the lumen of the endosome is acidified and 2) low pH, in conjunction with acidic lipids within the membrane drives the conformational changes in TeNT necessary for channel formation. PMID:24973217

  8. Time-dependent botulinum neurotoxin serotype A metalloprotease inhibitors

    PubMed Central

    Cardinale, Steven C.; Butler, Michelle M.; Pai, Ramdas; Nuss, Jonathan E.; Peet, Norton P.; Bavari, Sina; Bowlin, Terry L.

    2011-01-01

    Botulinum neurotoxins (BoNTs) are the most lethal of biological substances, and are categorized as class A biothreat agents by the Centers for Disease Control and Prevention. There are currently no drugs to treat the deadly flaccid paralysis resulting from BoNT intoxication. Among the seven BoNT serotypes, the development of therapeutics to counter BoNT/A is a priority (due to its long half-life in the neuronal cytosol and its ease of production). In this regard, the BoNT/A enzyme light chain (LC) component, a zinc metalloprotease responsible for the intracellular cleavage of synaptosomal-associated protein of 25 kDa, is a desirable target for developing post-BoNT/A intoxication rescue therapeutics. In an earlier study, we reported the high throughput screening of a library containing 70,000 compounds, and uncovered a novel class of benzimidazole acrylonitrile-based BoNT/A LC inhibitors. Herein, we present both structure-activity relationships and a proposed mechanism of action for this novel inhibitor chemotype. PMID:22082667

  9. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction

    PubMed Central

    Duregotti, Elisa; Zanetti, Giulia; Scorzeto, Michele; Megighian, Aram; Montecucco, Cesare; Pirazzini, Marco; Rigoni, Michela

    2015-01-01

    Botulinum neurotoxins (BoNTs) and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body. PMID:26670253

  10. Preparation of a potent anti-scorpion-venom-serum against the venom of red scorpion (Buthus tamalus).

    PubMed

    Kankonkar, R C; Kulkurni, D G; Hulikavi, C B

    1998-01-01

    A number of children and adults, especially pregnant women succumb to the sting by red Scorpion (Buthus tamalus) in Konkan region--particularly on the coastal line. No specific antiserum or any other antidote is available to treat a victim of scorpion bite and hence the need to prepare a potent antiserum. Red Scorpion (B. tamalus) venom is a mixture of a number of protein moieties and neurotoxins of low molecular weight. Therefore, the venom is poor in antigenic composition and it is difficult to get antibodies specific to neutralise lethal factor/factors. Using Bentonite as an adjuvant and extending the period of immunization a potent antiserum has been prepared capable of neutralising the lethal factor/factors. In vivo testing carried out in albino mice, guinea pigs, dogs and langurs confirms this finding and shows that the antiserum is quite effective in neutralising the scorpion venom to save the life of envenomated animals. PMID:10703580

  11. Structural and functional characterization of a novel homodimeric three-finger neurotoxin from the venom of Ophiophagus hannah (king cobra).

    PubMed

    Roy, Amrita; Zhou, Xingding; Chong, Ming Zhi; D'hoedt, Dieter; Foo, Chun Shin; Rajagopalan, Nandhakishore; Nirthanan, Selvanayagam; Bertrand, Daniel; Sivaraman, J; Kini, R Manjunatha

    2010-03-12

    Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs. The high resolution (1.5 A) crystal structure revealed haditoxin to be a homodimer, like kappa-neurotoxins, which target neuronal alpha(3)beta(2)- and alpha(4)beta(2)-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain alpha-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain alpha-neurotoxins and kappa-neurotoxins notwithstanding, haditoxin exhibited unique blockade of alpha(7)-nAChRs (IC(50) 180 nm), which is recognized by neither short-chain alpha-neurotoxins nor kappa-neurotoxins. This is the first report of a dimeric short-chain alpha-neurotoxin interacting with neuronal alpha(7)-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs. PMID:20071329

  12. Production and purification of Clostridium botulinum type C and D neurotoxin.

    PubMed

    Gessler, F; Böhnel, H

    1999-07-01

    Neurotoxins of Clostridium botulinum are needed in basic neurologic research, but as therapeutic agent for certain neuromuscular disorders like strabism as well. A method for the production and purification of botulinum neurotoxins C and D is reported using a two-step hollow-fiber cross flow filtration and a newly developed chromatographic purification procedure. Hollow-fiber filtration proved to be a rapid and safe concentration and pre-purification step, which can easily be scaled up. The chromatographic purification included hydrophobic interaction, anion exchange and size exclusion chromatography runs. Botulinum neurotoxins C and D could be recovered with an overall yield of 12.6% and 10.6%, respectively. A specific toxicity of 1.86 x 10(7) minimal lethal dose mg(-1) (type C) and 5.26 x 10(7) minimal lethal dose mg(-1) (type D) was determined in the mouse bioassay. PMID:10397323

  13. Molecular structure and conformations of caramboxin, a natural neurotoxin from the star fruit: A computational study

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2015-01-01

    Using density functional theory calculations we investigate the molecular structure and conformations of caramboxin, a neurotoxin recently isolated from the star fruit Averroha carambola. Among the seven conformers that exist within an energy window of ∼16.0 kcal/mol, two of them are the most favored ones with an energy difference of less than 2.0 kcal/mol. The computed chemical shifts of these two low-energy conformers are in good agreement with the experimental values determined in deuterated dimethylsulfoxide thus confirming the 2D chemical structure assigned to the neurotoxin. A topological analysis of the theoretical electronic charge density of four caramboxin conformers reveals the existence of intramolecular CH⋯O/N interactions which, in addition to the classical OH⋯O/N H-bonding interactions, contribute to decrease the conformational freedom of the neurotoxin.

  14. Neurotoxin-induced neuropeptide perturbations in striatum of neonatal rats.

    PubMed

    Karlsson, Oskar; Kultima, Kim; Wadensten, Henrik; Nilsson, Anna; Roman, Erika; Andrén, Per E; Brittebo, Eva B

    2013-04-01

    The cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) is suggested to play a role in neurodegenerative disease. We have previously shown that although the selective uptake of BMAA in the rodent neonatal striatum does not cause neuronal cell death, exposure during the neonatal development leads to cognitive impairments in adult rats. The aim of the present study was to characterize the changes in the striatal neuropeptide systems of male and female rat pups treated neonatally (postnatal days 9-10) with BMAA (40-460 mg/kg). The label-free quantification of the relative levels of endogenous neuropeptides using mass spectrometry revealed that 25 peptides from 13 neuropeptide precursors were significantly changed in the rat neonatal striatum. The exposure to noncytotoxic doses of BMAA induced a dose-dependent increase of neurosecretory protein VGF-derived peptides, and changes in the relative levels of cholecystokinin, chromogranin, secretogranin, MCH, somatostatin and cortistatin-derived peptides were observed at the highest dose. In addition, the results revealed a sex-dependent increase in the relative level of peptides derived from the proenkephalin-A and protachykinin-1 precursors, including substance P and neurokinin A, in female pups. Because several of these peptides play a critical role in the development and survival of neurons, the observed neuropeptide changes might be possible mediators of BMAA-induced behavioral changes. Moreover, some neuropeptide changes suggest potential sex-related differences in susceptibility toward this neurotoxin. The present study also suggests that neuropeptide profiling might provide a sensitive characterization of the BMAA-induced noncytotoxic effects on the developing brain. PMID:23410195

  15. Gangliosides as high affinity receptors for tetanus neurotoxin.

    PubMed

    Chen, Chen; Fu, Zhuji; Kim, Jung-Ja P; Barbieri, Joseph T; Baldwin, Michael R

    2009-09-25

    Tetanus neurotoxin (TeNT) is an exotoxin produced by Clostridium tetani that causes paralytic death to hundreds of thousands of humans annually. TeNT cleaves vesicle-associated membrane protein-2, which inhibits neurotransmitter release in the central nervous system to elicit spastic paralysis, but the molecular basis for TeNT entry into neurons remains unclear. TeNT is a approximately 150-kDa protein that has AB structure-function properties; the A domain is a zinc metalloprotease, and the B domain encodes a translocation domain and C-terminal receptor-binding domain (HCR/T). Earlier studies showed that HCR/T bound gangliosides via two carbohydrate-binding sites, termed the lactose-binding site (the "W" pocket) and the sialic acid-binding site (the "R" pocket). Here we report that TeNT high affinity binding to neurons is mediated solely by gangliosides. Glycan array and solid phase binding analyses identified gangliosides that bound exclusively to either the W pocket or the R pocket of TeNT; GM1a bound to the W pocket, and GD3 bound to the R pocket. Using these gangliosides and mutated forms of HCR/T that lacked one or both carbohydrate-binding pocket, gangliosides binding to both of the W and R pockets were shown to be necessary for high affinity binding to neuronal and non-neuronal cells. The crystal structure of a ternary complex of HCR/T with sugar components of two gangliosides bound to the W and R supported the binding of gangliosides to both carbohydrate pockets. These data show that gangliosides are functional dual receptors for TeNT. PMID:19602728

  16. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors.

    PubMed

    Kudryavtsev, Denis S; Shelukhina, Irina V; Son, Lina V; Ojomoko, Lucy O; Kryukova, Elena V; Lyukmanova, Ekaterina N; Zhmak, Maxim N; Dolgikh, Dmitry A; Ivanov, Igor A; Kasheverov, Igor E; Starkov, Vladislav G; Ramerstorfer, Joachim; Sieghart, Werner; Tsetlin, Victor I; Utkin, Yuri N

    2015-09-11

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors. PMID:26221036

  17. Environmental risk factors for temporal lobe epilepsy--is prenatal exposure to the marine algal neurotoxin domoic acid a potentially preventable cause?

    PubMed

    Stewart, Ian

    2010-03-01

    Temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) is one of the more common forms of chronic epilepsy. Its aetiology is unknown, though an early developmental insult is thought by some to be an important trigger. There is not a strong genetic predisposition; gene-environment interactions are more significant considerations. Environmental risk factors for TLE-HS are under-researched. Domoic acid (DA) is an environmental neurotoxin of algal origin that can contaminate marine food webs. DA can cross the placenta, is significantly more toxic to the developing brain compared to the adult brain, and has affected humans and marine wildlife through mass poisonings. DA coincidentally has a decades-long history of use as a chemical model of temporal lobe epilepsy, along with its close structural analogue kainic acid (also of algal origin). The principal hypothesis presented here is that dietary exposure to doses of DA that are sub-clinical in pregnant women may be sufficient to damage the foetal hippocampus and initiate epileptogenesis. The hypothesis could be tested both experimentally by in vivo proof-of-concept animal studies that expand on current knowledge of prenatal susceptibility to DA neurotoxicity, and by epidemiological investigations directed towards dietary exposure to marine food products. If only a small proportion of the attributable risk for TLE-HS is found to be due to gestational exposure to DA, the public health implications would still be of great significance, as this would represent a potentially preventable exposure. Other potent neurotoxins are produced by marine microalgae and freshwater cyanobacteria. These structurally and mechanistically diverse toxins can also contaminate water supplies, seafood and shellfish. Several operate by modulating ion channels, so may also be of interest to epilepsy researchers. DA is also the subject of preliminary scrutiny in strandings involving odontocete cetaceans. The implications of such work are

  18. Clinical differences between botulinum neurotoxin type A and B.

    PubMed

    Bentivoglio, Anna Rita; Del Grande, Alessandra; Petracca, Martina; Ialongo, Tamara; Ricciardi, Lucia

    2015-12-01

    In humans, the therapeutic use of botulinum neurotoxin A (BoNT/A) is well recognized and continuously expanding. Four BoNTs are widely available for clinical practice: three are serotype A and one is serotype B: onabotulinumtoxinA (A/Ona), abobotulinumtoxinA (A/Abo) and incobotulinumtoxinA (A/Inco), rimabotulinumtoxinB (B/Rima). A/Abo, A/Inco, A/Ona and B/Rima are all licensed worldwide for cervical dystonia. In addition, the three BoNT/A products are approved for blepharospasm and focal dystonias, spasticity, hemifacial spasm, hyperhidrosis and facial lines, with remarkable regional differences. These toxin brands differ for specific activity, packaging, constituents, excipient, and storage. Comparative literature assessing the relative safety and efficacy of different BoNT products is limited, most data come from reports on small samples, and only a few studies meet criteria of evidence-based medicine. One study compared the effects of BoNT/A and BoNT/B on muscle activity of healthy volunteers, showing similar neurophysiological effects with a dose ratio of 1:100. In cervical dystonia, when comparing the effects of BoNT/A and BoNT/B, results are more variable, some studies reporting roughly similar peak effect and overall duration (at a ratio of 1:66, others reporting substantially shorter duration of BoNT/B than BoNT/A (at a ratio 1/24). Although the results of clinical studies are difficult to compare for methodological differences (dose ratio, study design, outcome measures), it is widely accepted that: BoNT/B is clinically effective using appropriate doses as BoNT/A (1:40-50), injections are generally more painful, in most of the studies on muscular conditions, efficacy is shorter, and immunogenicity higher. Since the earliest clinical trials, it has been reported that autonomic side effects are more frequent after BoNT/B injections, and this observation encouraged the use of BoNT/B for sialorrhea, hyperhidrosis and other non-motor symptoms. In these

  19. Fungal bis-naphthopyrones as inhibitors of botulinum neurotoxin serotype A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in silico screen of the Molecular Library Small Molecule Repository (MLSMR) of ˜350,000 compounds and confirmatory bioassays led to identification of the fungal natural product chaetochromin A (1) as an inhibitor of botulinum neurotoxin serotype A (BoNT A). Subsequent acquisition and testing of a...

  20. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-toxic derivatives of Botulinum neurotoxin A (BoNT/A) have potential use as neuron-targeting delivery vehicles, and as reagents to study intracellular trafficking. We have designed and expressed an atoxic derivative of BoNT/A (BoNT/A ad) as a full-length 150kDa molecule consisting of a 50 kDa lig...

  1. Comparison of Toxicological Properties of Botulinum Neurotoxin Serotypes A and B in Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are among the most toxic biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the human foodborne intoxications. In this study, we compared the toxicological properties of BoNT serotype A and B holotoxins and compl...

  2. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  3. In vitro peptide cleavage assay for detection of Botulinum Neurotoxin-A activity in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gold standard assay for measuring the activity and typing of Clostridium botulinum neurotoxins is the mouse bioassay. The mouse bioassay is sensitive, robust and does not require specialized equipment. However, the mouse bioassay is slow, not practical for many settings and results in the death ...

  4. Substrates and controls for the quantitative detection of active botulinum neurotoxin in protease-containing samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) enjoy a wide variety of medical applications. However, limited pharmacokinetic data on active BoNT is available. Monitoring BoNT activity in the circulation is a challenging task, due to BoNT’s enormous toxicity, rapid neuronal uptake, and removal from the bloodstream. ...

  5. Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells.

    PubMed

    Uotsu, Nobuo; Nishikawa, Atsushi; Watanabe, Toshihiro; Ohyama, Tohru; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji

    2006-01-01

    The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res. Commun. 319 (2004) 327-333] [21]. Based on this, it was hypothesized that the C16S toxin is internalized via clathrin-coated pits. To examine this possibility, the internalized toxin was observed with a fluorescent antibody using confocal laser-scanning microscopy. The confocal images clearly indicated that the C16S toxin was internalized mainly via clathrin-coated pits and localized in early endosomes. The toxin was colocalized with caveolin-1 which is one of the components of caveolae, however, implying the toxin was also internalized via caveolae. The confocal images also showed that the neurotoxin transported to the endosome was transferred to the Golgi apparatus. However, the non-toxic components were not merged with the Golgi marker protein, TGN38, implying the neurotoxin was dissociated from progenitor toxin in endosomes. These results suggested that the C16S toxin was separated to the neurotoxin and other proteins in endosome and the neurotoxin was further transferred to the Golgi apparatus which is the center for protein sorting. PMID:16413070

  6. Development of a quail embryo model for the detection of botulinum neurotoxin activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium botulinum is a ubiquitous microorganism that under anaerobic conditions produces botulinum neurotoxins. In regards to both food-borne illness and the potential use of botulinum toxin as a biological weapon, the capability to assess the amount of toxin in a food or environmental sample e...

  7. Multiplex PCR for Detection of Botulinum Neurotoxin-Producing Clostridia in Clinical, Food, and Environmental Samples▿

    PubMed Central

    De Medici, Dario; Anniballi, Fabrizio; Wyatt, Gary M.; Lindström, Miia; Messelhäußer, Ute; Aldus, Clare F.; Delibato, Elisabetta; Korkeala, Hannu; Peck, Michael W.; Fenicia, Lucia

    2009-01-01

    Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes. PMID:19684163

  8. Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples.

    PubMed

    De Medici, Dario; Anniballi, Fabrizio; Wyatt, Gary M; Lindström, Miia; Messelhäusser, Ute; Aldus, Clare F; Delibato, Elisabetta; Korkeala, Hannu; Peck, Michael W; Fenicia, Lucia

    2009-10-01

    Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes. PMID:19684163

  9. Translocation of botulinum neurotoxins and associated proteins across intestinal epithelial cells(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins(BoNTs)secreted by Clostridium botulinum are some of the most poisonous toxins in nature and considered to be major bioterrorism threats. To date, seven BoNT subtypes (A to G) have been identified. When secreted from bacteria, some BoNTs associate with a non-toxic, non hemagglu...

  10. Inhibiting oral intoxication of botulinum neurotoxin A by carbohydrate receptor mimics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) cause the disease botulism manifested by flaccid paralysis that could be fatal to humans and animals. Oral ingestion of the toxin with contaminated food is one of the most common routes of BoNT intoxication, where BoNT assembles with several auxiliary proteins to surviv...

  11. A monoclonal antibody based capture ELISA for botulinum neurotoxin serotype B: toxin detection in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulism is a serious foodborne neuroparalyic disease caused by botulinum neurotoxin (BoNT) produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A-H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We repo...

  12. Zebrafish (Danio rerio) bioassay for visceral toxicosis of catfish and botulinum neurotoxin serotype E

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visceral toxicosis of catfish (VTC), a sporadic disease of cultured channel catfish (Ictalurus punctatus) often with high mortality, is caused by botulinum neurotoxin serotype E (BoNT/E). Presumptive diagnosis of VTC is based on characteristic clinical signs and lesions, and the production of these ...

  13. Atoxic derivative of botulinum neurotoxin A as a prototype vehicle for targeted delivery to neuronal cytoplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously described genetic constructs and expression systems that enable facile production of recombinant derivatives of botulinum neurotoxins (BoNTs) that retain the structural and trafficking properties of wt BoNTs. In this report we describe the properties of one such derivative, BoNT/A...

  14. Rapid multiplex immunoassay to distinguish botulinum neurotoxin serotypes on a single lateral flow device(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium botulinum produces seven antigenically distinct serotypes of botulinum neurotoxin (BoNT/A–G). The potency of these toxins result in a high mortality rate with BoNT/A and /B accounting for most of the naturally occurring outbreaks. The ease of BoNT production and their potential use as bi...

  15. Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B.

    PubMed

    Masuyer, Geoffrey; Beard, Matthew; Cadd, Verity A; Chaddock, John A; Acharya, K Ravi

    2011-04-01

    Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. BoNTs consist of three essential domains for toxicity: the cell binding domain (Hc), the translocation domain (Hn) and the catalytic domain (LC). A functional derivative (LHn) of the parent neurotoxin B composed of Hn and LC domains was recombinantly produced and characterised. LHn/B crystallographic structure at 2.8Å resolution is reported. The catalytic activity of LHn/B towards recombinant human VAMP was analysed by substrate cleavage assay and showed a higher specificity for VAMP-1, -2 compared to VAMP-3. LHn/B also showed measurable activity in living spinal cord neurons. Despite lacking the Hc (cell-targeting) domain, LHn/B retained the capacity to internalize and cleave intracellular VAMP-1 and -2 when added to the cells at high concentration. These activities of the LHn/B fragment demonstrate the utility of engineered botulinum neurotoxin fragments as analytical tools to study the mechanisms of action of BoNT neurotoxins and of SNARE proteins. PMID:21078393

  16. Botulinum Neurotoxin Serotype A Recognizes Its Protein Receptor SV2 by a Different Mechanism than Botulinum Neurotoxin B Synaptotagmin.

    PubMed

    Weisemann, Jasmin; Stern, Daniel; Mahrhold, Stefan; Dorner, Brigitte G; Rummel, Andreas

    2016-01-01

    Botulinum neurotoxins (BoNTs) exhibit extraordinary potency due to their exquisite neurospecificity, which is achieved by dual binding to complex polysialo-gangliosides and synaptic vesicle proteins. The luminal domain 4 (LD4) of the three synaptic vesicle glycoprotein 2 isoforms, SV2A-C, identified as protein receptors for the most relevant serotype BoNT/A, binds within the 50 kDa cell binding domain HC of BoNT/A. Here, we deciphered the BoNT/A-SV2 interactions in more detail. In pull down assays, the binding of HCA to SV2-LD4 isoforms decreases from SV2C > SV2A > SV2B. A binding constant of 200 nM was determined for BoNT/A to rat SV2C-LD4 in GST pull down assay. A similar binding constant was determined by surface plasmon resonance for HCA to rat SV2C and to human SV2C, the latter being slightly lower due to the substitution L563F in LD4. At pH 5, as measured in acidic synaptic vesicles, the binding constant of HCA to hSV2C is increased more than 10-fold. Circular dichroism spectroscopy reveals that the quadrilateral helix of SV2C-LD4 already exists in solution prior to BoNT/A binding. Hence, the BoNT/A-SV2C interaction is of different nature compared to BoNT/B-Syt-II. In particular, the preexistence of the quadrilateral β-sheet helix of SV2 and its pH-dependent binding to BoNT/A via backbone-backbone interactions constitute major differences. Knowledge of the molecular details of BoNT/A-SV2 interactions drives the development of high affinity peptides to counteract BoNT/A intoxications or to capture functional BoNT/A variants in innovative detection systems for botulism diagnostic. PMID:27196927

  17. Botulinum Neurotoxin Serotype A Recognizes Its Protein Receptor SV2 by a Different Mechanism than Botulinum Neurotoxin B Synaptotagmin

    PubMed Central

    Weisemann, Jasmin; Stern, Daniel; Mahrhold, Stefan; Dorner, Brigitte G.; Rummel, Andreas

    2016-01-01

    Botulinum neurotoxins (BoNTs) exhibit extraordinary potency due to their exquisite neurospecificity, which is achieved by dual binding to complex polysialo-gangliosides and synaptic vesicle proteins. The luminal domain 4 (LD4) of the three synaptic vesicle glycoprotein 2 isoforms, SV2A‐C, identified as protein receptors for the most relevant serotype BoNT/A, binds within the 50 kDa cell binding domain HC of BoNT/A. Here, we deciphered the BoNT/A‐SV2 interactions in more detail. In pull down assays, the binding of HCA to SV2-LD4 isoforms decreases from SV2C >> SV2A > SV2B. A binding constant of 200 nM was determined for BoNT/A to rat SV2C-LD4 in GST pull down assay. A similar binding constant was determined by surface plasmon resonance for HCA to rat SV2C and to human SV2C, the latter being slightly lower due to the substitution L563F in LD4. At pH 5, as measured in acidic synaptic vesicles, the binding constant of HCA to hSV2C is increased more than 10-fold. Circular dichroism spectroscopy reveals that the quadrilateral helix of SV2C-LD4 already exists in solution prior to BoNT/A binding. Hence, the BoNT/A‐SV2C interaction is of different nature compared to BoNT/B‐Syt-II. In particular, the preexistence of the quadrilateral β-sheet helix of SV2 and its pH-dependent binding to BoNT/A via backbone–backbone interactions constitute major differences. Knowledge of the molecular details of BoNT/A‐SV2 interactions drives the development of high affinity peptides to counteract BoNT/A intoxications or to capture functional BoNT/A variants in innovative detection systems for botulism diagnostic. PMID:27196927

  18. Peptide Neurotoxins that Affect Voltage-Gated Calcium Channels: A Close-Up on ω-Agatoxins

    PubMed Central

    Pringos, Emilie; Vignes, Michel; Martinez, Jean; Rolland, Valerie

    2011-01-01

    Peptide neurotoxins found in animal venoms have gained great interest in the field of neurotransmission. As they are high affinity ligands for calcium, potassium and sodium channels, they have become useful tools for studying channel structure and activity. Peptide neurotoxins represent the clinical potential of ion-channel modulators across several therapeutic fields, especially in developing new strategies for treatment of ion channel-related diseases. The aim of this review is to overview the latest updates in the domain of peptide neurotoxins that affect voltage-gated calcium channels, with a special focus on ω-agatoxins. PMID:22069688

  19. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    PubMed Central

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-01-01

    Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks. PMID:19298644

  20. Translocation of botulinum neurotoxin serotype A and associated proteins across the intestinal epithelia

    PubMed Central

    Lam, Tina I; Stanker, Larry H; Lee, Kwangkook; Jin, Rongsheng; Cheng, Luisa W

    2015-01-01

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins. Botulinum neurotoxins associate with neurotoxin-associated proteins (NAPs) forming large complexes that are protected from the harsh environment of the gastrointestinal tract. However, it is still unclear how BoNT complexes as large as 900 kDa traverse the epithelial barrier and what role NAPs play in toxin translocation. In this study, we examined the transit of BoNT serotype A (BoNT/A) holotoxin, complex and recombinantly purified NAP complex through cultured and polarized Caco-2 cells and, for the first time, in the small mouse intestine. Botulinum neurotoxin serotype A and NAPs in the toxin complex were detectable inside intestinal cells beginning at 2 h post intoxication. Appearance of the BoNT/A holotoxin signal was slower, with detection starting at 4–6 h. This indicated that the holotoxin alone was sufficient for entry but the presence of NAPs enhanced the rate of entry. Botulinum neurotoxin serotype A detection peaked at approximately 6 and 8 h for complex and holotoxin, respectively, and thereafter began to disperse with some toxin remaining in the epithelia after 24 h. Purified HA complexes alone were also internalized and followed a similar time course to that of BoNT/A complex internalization. However, recombinant HA complexes did not enhance BoNT/A holotoxin entry in the absence of a physical link with BoNT/A. We propose a model for BoNT/A toxin complex translocation whereby toxin complex entry is facilitated by NAPs in a receptor-mediated mechanism. Understanding the intestinal uptake of BoNT complexes will aid the development of new measures to prevent or treat oral intoxications. PMID:25640773

  1. Translocation of botulinum neurotoxin serotype A and associated proteins across the intestinal epithelia.

    PubMed

    Lam, Tina I; Stanker, Larry H; Lee, Kwangkook; Jin, Rongsheng; Cheng, Luisa W

    2015-08-01

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins. Botulinum neurotoxins associate with neurotoxin-associated proteins (NAPs) forming large complexes that are protected from the harsh environment of the gastrointestinal tract. However, it is still unclear how BoNT complexes as large as 900 kDa traverse the epithelial barrier and what role NAPs play in toxin translocation. In this study, we examined the transit of BoNT serotype A (BoNT/A) holotoxin, complex and recombinantly purified NAP complex through cultured and polarized Caco-2 cells and, for the first time, in the small mouse intestine. Botulinum neurotoxin serotype A and NAPs in the toxin complex were detectable inside intestinal cells beginning at 2 h post intoxication. Appearance of the BoNT/A holotoxin signal was slower, with detection starting at 4-6 h. This indicated that the holotoxin alone was sufficient for entry but the presence of NAPs enhanced the rate of entry. Botulinum neurotoxin serotype A detection peaked at approximately 6 and 8 h for complex and holotoxin, respectively, and thereafter began to disperse with some toxin remaining in the epithelia after 24 h. Purified HA complexes alone were also internalized and followed a similar time course to that of BoNT/A complex internalization. However, recombinant HA complexes did not enhance BoNT/A holotoxin entry in the absence of a physical link with BoNT/A. We propose a model for BoNT/A toxin complex translocation whereby toxin complex entry is facilitated by NAPs in a receptor-mediated mechanism. Understanding the intestinal uptake of BoNT complexes will aid the development of new measures to prevent or treat oral intoxications. PMID:25640773

  2. Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their Re-Engineering for Human SNAP-23.

    PubMed

    Sikorra, Stefan; Litschko, Christa; Müller, Carina; Thiel, Nadine; Galli, Thierry; Eichner, Timo; Binz, Thomas

    2016-01-29

    Botulinum neurotoxins (BoNTs) are highly potent bacterial proteins that block neurotransmitter release at the neuromuscular junction by cleaving SNAREs (soluble N-ethyl maleimide sensitive factor attachment protein receptors). However, their serotype A (BoNT/A) that cleaves SNAP-25 (synaptosomal-associated protein of 25 kDa) has also been an established pharmaceutical for treatment of medical conditions that rely on hyperactivity of cholinergic nerve terminals for 25 years. The expansion of its use to a variety of further medical conditions associated with hypersecretion components is prevented partly because the involved SNARE isoforms are not cleaved. Therefore, we examined by mutational analyses the reason for the resistance of human SNAP-23, an isoform of SNAP-25. We show that replacement of 10 SNAP-23 residues with their SNAP-25 counterparts effects SNAP-25-like cleavability. Conversely, transfer of each of the replaced SNAP-23 residues to SNAP-25 drastically decreased the cleavability of SNAP-25. By means of the existing SNAP-25-toxin co-crystal structure, molecular dynamics simulations, and corroborative mutagenesis studies, the appropriate binding pockets for these residues in BoNT/A were characterized. Systematic mutagenesis of two major BoNT/A binding pockets was conducted in order to adapt these pockets to corresponding amino acids of human SNAP-23. Human SNAP-23 cleaving mutants were isolated using a newly established yeast-based screening system. This method may be useful for engineering novel BoNT/A pharmaceuticals for the treatment of diseases that rely on SNAP-23-mediated hypersecretion. PMID:26523682

  3. A microscale neuron and Schwann cell coculture model for increasing detection sensitivity of botulinum neurotoxin type A.

    PubMed

    Hong, Won S; Young, Edmond W K; Tepp, William H; Johnson, Eric A; Beebe, David J

    2013-07-01

    Botulinum neurotoxin (BoNT) is a potent and specific biomolecule that is both implicated as a potential threat in bioterrorism and used in therapeutics. Highly sensitive and robust assays that measure BoNT activity are needed to manage outbreak or controlled distribution of BoNT. Current in vivo and in vitro assays have limitations, including high costs and variability for mouse bioassays, extensive preparations for primary and stem cell-derived neurons, and inherent low sensitivity for cell lines. Sensitivity of cell lines can be increased by direct differentiation and with their physiological relevance (compared with cell-free strategies) and robustness (compared with primary cell strategies); adopting cell lines is an attractive alternative to in vivo assays. Here, we present two distinct strategies that improved sensitivity of a cell line to BoNT serotype A (BoNT/A) without direct differentiation. We developed a cell-based BoNT assay using microscale culture and coculture of neuronal and Schwann cell lines, NG108-15 and S16, respectively, to improve both sensitivity and physiological relevance. Results showed that NG108-15 and S16 coculture decreased EC50 from 12.5 to 0.8ng/µl (p < 0.001) in macroscale and from 2.6 to 1.1ng/µl (p = 0.006) in microscale. In addition, NG108-15 monoculture at microscale decreased EC50 from 12.5 to 2.6ng/µl (p < 0.001) compared with macroscale. Finally, controlling the spatial arrangement of microscale coculture revealed that S16-derived soluble factors can increase sensitivity. Thus, our study demonstrates two distinct strategies for increasing the sensitivity of a cell line to BoNT using coculture and microscale culture, thereby advancing assay technology for BoNT detection. PMID:23564642

  4. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    PubMed Central

    Beske, Phillip H.; Scheeler, Stephen M.; Adler, Michael; McNutt, Patrick M.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs) are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ pre-synaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT. PMID:25954159

  5. Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip.

    PubMed

    Ching, Kathryn H; Lin, Alice; McGarvey, Jeffery A; Stanker, Larry H; Hnasko, Robert

    2012-06-29

    Botulinum neurotoxins (BoNT) are the most potent toxins known. Produced by Clostridium botulinum, BoNTs are classified into seven, antigenically distinct serotypes, designated A-G. The toxin acts to inhibit acetylcholine release, resulting in paralysis and death. Naturally occurring foodborne disease is most often the result of improper canning of foods, while wound botulism, associated with injection drug users, is on the rise. Because of its potency, BoNTs have also been identified as targets for use by bioterrorists. The 'gold standard' of detection of BoNTs is the mouse bioassay, an expensive and time consuming test that requires specialized equipment and trained personnel. There is a need for a rapid, sensitive diagnostic for BoNTs that could be used by minimally trained personnel in the event of a foodborne outbreak or a bioterrorist threat. Here, we describe the use of a single lateral flow device (LFD) that can detect and distinguish between BoNT/A and B, two of the four serotypes that are known to intoxicate humans and together represent >80% of naturally occurring illness. The device could detect as little as 5 ng/mL of purified BoNT/A and 10 ng/mL of BoNT/B in 2% and 1% milk, respectively. In undiluted apple juice, 25 ng/mL of BoNT/A and 10 ng/mL of BoNT/B could be detected. No cross reactivity between BoNT/A and B antibodies was observed. The LFD described here is easy to use, requires no specialized training or equipment, and can identify and distinguish between BoNT/A and /B serotypes. These attributes make this rapid diagnostic device a potentially valuable tool in the fields of food safety and homeland security. PMID:22504369

  6. Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity.

    PubMed

    Ji, Y H; Mansuelle, P; Terakawa, S; Kopeyan, C; Yanaihara, N; Hsu, K; Rochat, H

    1996-09-01

    Two neurotoxins, BmK I and BmK II, were purified from the venom of the Chinese scorpion Buthus martensi Karsch. The complete amino acid sequences of both toxins, each containing 64 amino acid residues, were determined by the automatic sequencing of reduced and S-carboxymethylated toxins and their peptides, obtained after cleavage with TPCK-treated trypsin and Staphylococcus aureus V8 protease, respectively. Toxicity as minimum lethal dose tested by i.c.v. injection in mice showed that BmK I was six times more potent than BmK II. Only two amino acid replacements were found: at position 59 Val in BmK I was replaced by Ile in BmK II, and at position 62 a basic Lys residue in BmK I was substituted by a neutral Asn residue in BmK II. These features suggest that the positively charged residue (Lys or Arg) in the C-terminal position 62 (or 61 or 63) may also play an important role in facilitating the interaction between scorpion neurotoxins and the receptor on sodium channels. The effects of BmK I on nerve excitability were examined with the crayfish axon using intracellular recording and voltage-clamp conditions. The results indicate that BmK I preferentially blocks the sodium channel inactivation process. Thus, functional and structural similarities suggest that BmK I and BmK II belong to group 3 of scorpion alpha-type toxins. PMID:8896191

  7. Celebrity Patients, VIPs, and Potentates

    PubMed Central

    Groves, James E.; Dunderdale, Barbara A.; Stern, Theodore A.

    2002-01-01

    Background: During the second half of the 20th century, the literature on the doctor-patient relationship mainly dealt with the management of “difficult” (personality-disordered) patients. Similar problems, however, surround other types of “special” patients. Method: An overview and analysis of the literature were conducted. As a result, such patients can be subcategorized by their main presentations; each requires a specific management strategy. Results: Three types of “special” patients stir up irrational feelings in their caregivers. Sick celebrities threaten to focus public scrutiny on the private world of medical caregivers. VIPs generate awe in caregivers, with loss of the objectivity essential to the practice of scientific medicine. Potentates unearth narcissism in the caregiver-patient relationship, which triggers a struggle between power and shame. Pride, privacy, and the staff's need to be in control are all threatened by introduction of the special patient into medicine's closed culture. Conclusion: The privacy that is owed to sick celebrities should be extended to protect overexposed staff. The awe and loss of medical objectivity that VIPs generate are counteracted by team leadership dedicated to avoiding any deviation from standard clinical procedure. Moreover, the collective ill will surrounding potentates can be neutralized by reassuring them that they are “special”—and by caregivers mending their own vulnerable self-esteem. PMID:15014712

  8. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery

    PubMed Central

    Lam, Kwok-Ho; Jin, Rongsheng

    2015-01-01

    Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier. PMID:25889616

  9. Comparative cytotoxicity of gambierol versus other marine neurotoxins.

    PubMed

    Cagide, E; Louzao, M C; Espiña, B; Ares, I R; Vieytes, M R; Sasaki, M; Fuwa, H; Tsukano, C; Konno, Y; Yotsu-Yamashita, M; Paquette, L A; Yasumoto, T; Botana, L M

    2011-06-20

    Many microalgae produce compounds that exhibit potent biological activities. Ingestion of marine organisms contaminated with those toxins results in seafood poisonings. In many cases, the lack of toxic material turns out to be an obstacle to make the toxicological investigations needed. In this study, we evaluate the cytotoxicity of several marine toxins on neuroblastoma cells, focusing on gambierol and its effect on cytosolic calcium levels. In addition, we compared the effects of this toxin with ciguatoxin, brevetoxin, and gymnocin-A, with which gambierol shares a similar ladder-like backbone, as well as with polycavernoside A analogue 5, a glycosidic macrolide toxin. For this purpose, different fluorescent dyes were used: Fura-2 to monitor variations in cytosolic calcium levels, Alamar Blue to detect cytotoxicity, and Oregon Green 514 Phalloidin to quantify and visualize modifications in the actin cytoskeleton. Data showed that, while gambierol and ciguatoxin were successful in producing a calcium influx in neuroblastoma cells, gymnocin-A was unable to modify this parameter. Nevertheless, none of the toxins induced morphological changes or alterations in the actin assembly. Although polycavernoside A analogue 5 evoked a sharp reduction of the cellular metabolism of neuroblastoma cells, gambierol scarcely reduced it, and ciguatoxin, brevetoxin, and gymnocin-A failed to produce any signs of cytotoxicity. According to this, sharing a similar polycyclic ether backbone is not enough to produce the same effects on neuroblastoma cells; therefore, more studies should be carried out with these toxins, whose effects may be being underestimated. PMID:21517028

  10. Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels

    PubMed Central

    Stevens, Marijke; Peigneur, Steve; Tytgat, Jan

    2011-01-01

    Voltage-gated sodium channels (VGSCs) are large transmembrane proteins that conduct sodium ions across the membrane and by doing so they generate signals of communication between many kinds of tissues. They are responsible for the generation and propagation of action potentials in excitable cells, in close collaboration with other channels like potassium channels. Therefore, genetic defects in sodium channel genes can cause a wide variety of diseases, generally called “channelopathies.” The first insights into the mechanism of action potentials and the involvement of sodium channels originated from Hodgkin and Huxley for which they were awarded the Nobel Prize in 1963. These concepts still form the basis for understanding the function of VGSCs. When VGSCs sense a sufficient change in membrane potential, they are activated and consequently generate a massive influx of sodium ions. Immediately after, channels will start to inactivate and currents decrease. In the inactivated state, channels stay refractory for new stimuli and they must return to the closed state before being susceptible to a new depolarization. On the other hand, studies with neurotoxins like tetrodotoxin (TTX) and saxitoxin (STX) also contributed largely to our today’s understanding of the structure and function of ion channels and of VGSCs specifically. Moreover, neurotoxins acting on ion channels turned out to be valuable lead compounds in the development of new drugs for the enormous range of diseases in which ion channels are involved. A recent example of a synthetic neurotoxin that made it to the market is ziconotide (Prialt®, Elan). The original peptide, ω-MVIIA, is derived from the cone snail Conus magus and now FDA/EMA-approved for the management of severe chronic pain by blocking the N-type voltage-gated calcium channels in pain fibers. This review focuses on the current status of research on neurotoxins acting on VGSC, their contribution to further unravel the structure and

  11. Neurotoxins and their binding areas on voltage-gated sodium channels.

    PubMed

    Stevens, Marijke; Peigneur, Steve; Tytgat, Jan

    2011-01-01

    Voltage-gated sodium channels (VGSCs) are large transmembrane proteins that conduct sodium ions across the membrane and by doing so they generate signals of communication between many kinds of tissues. They are responsible for the generation and propagation of action potentials in excitable cells, in close collaboration with other channels like potassium channels. Therefore, genetic defects in sodium channel genes can cause a wide variety of diseases, generally called "channelopathies." The first insights into the mechanism of action potentials and the involvement of sodium channels originated from Hodgkin and Huxley for which they were awarded the Nobel Prize in 1963. These concepts still form the basis for understanding the function of VGSCs. When VGSCs sense a sufficient change in membrane potential, they are activated and consequently generate a massive influx of sodium ions. Immediately after, channels will start to inactivate and currents decrease. In the inactivated state, channels stay refractory for new stimuli and they must return to the closed state before being susceptible to a new depolarization. On the other hand, studies with neurotoxins like tetrodotoxin (TTX) and saxitoxin (STX) also contributed largely to our today's understanding of the structure and function of ion channels and of VGSCs specifically. Moreover, neurotoxins acting on ion channels turned out to be valuable lead compounds in the development of new drugs for the enormous range of diseases in which ion channels are involved. A recent example of a synthetic neurotoxin that made it to the market is ziconotide (Prialt(®), Elan). The original peptide, ω-MVIIA, is derived from the cone snail Conus magus and now FDA/EMA-approved for the management of severe chronic pain by blocking the N-type voltage-gated calcium channels in pain fibers. This review focuses on the current status of research on neurotoxins acting on VGSC, their contribution to further unravel the structure and function of

  12. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity.

    PubMed

    Rummel, Andreas

    2013-01-01

    The high potency of the botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mainly due to their neurospecific binding which is mediated by the interaction with two receptor components. TeNT and all BoNT bind first to complex polysialo-gangliosides abundantly present on the outer leaflet of neuronal membranes. The ganglioside binding occurs in BoNT/A, B, E, F and G via a conserved ganglioside binding pocket within the most carboxyl-terminal 25 kDa domain H(CC) whereas TeNT, BoNT/C and D display two different ganglioside binding sites within their H(CC)-domain. Subsequently, upon exocytosis the intraluminal domains of synaptic vesicle proteins are exposed and can be accessed by the surface accumulated neurotoxins. BoNT/B and G bind with their H(CC)-domain to a 20-mer membrane juxtaposed segment of the intraluminal domain of synaptotagmin-I and -II, respectively. BoNT/A and E employ the intraluminal domain 4 of the synaptic vesicle glycoprotein 2 (SV2) as protein receptor. Whereas the 50 kDa cell binding domain H(C) of BoNT/A interacts with all three SV2 isoforms, BoNT/E H(C) only binds SV2A and SV2B. Also, BoNT/D, F, and TeNT employ SV2 for binding and uptake. Thereafter, the synaptic vesicle is recycled and the anchored neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain followed by pore formation and finally translocation of the enzymatically active light chain to its site of action leading to block of neurotransmitter release. PMID:23239349

  13. Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin.

    PubMed

    Meng, Lanxia; Xie, Zili; Zhang, Qian; Li, Yang; Yang, Fan; Chen, Zongyun; Li, Wenxin; Cao, Zhijian; Wu, Yingliang

    2016-03-25

    The structural similarity between defensins and scorpion neurotoxins suggests that they might have evolved from a common ancestor. However, there is no direct experimental evidence demonstrating a functional link between scorpion neurotoxins and defensins. The scorpion defensin BmKDfsin4 from Mesobuthus martensiiKarsch contains 37 amino acid residues and a conserved cystine-stabilized α/β structural fold. The recombinant BmKDfsin4, a classical defensin, has been found to have inhibitory activity against Gram-positive bacteria such as Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteusas well as methicillin-resistant Staphylococcus aureus Interestingly, electrophysiological experiments showed that BmKDfsin4,like scorpion potassium channel neurotoxins, could effectively inhibit Kv1.1, Kv1.2, and Kv1.3 channel currents, and its IC50value for the Kv1.3 channel was 510.2 nm Similar to the structure-function relationships of classical scorpion potassium channel-blocking toxins, basic residues (Lys-13 and Arg-19) of BmKDfsin4 play critical roles in peptide-Kv1.3 channel interactions. Furthermore, mutagenesis and electrophysiological experiments demonstrated that the channel extracellular pore region is the binding site of BmKDfsin4, indicating that BmKDfsin4 adopts the same mechanism for blocking potassium channel currents as classical scorpion toxins. Taken together, our work identifies scorpion BmKDfsin4 as the first invertebrate defensin to block potassium channels. These findings not only demonstrate that defensins from invertebrate animals are a novel type of potassium channel blockers but also provide evidence of a functional link between defensins and neurotoxins. PMID:26817841

  14. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin

    PubMed Central

    Janardhanan, Pavithra; Mello, Charlene M.; Singh, Bal Ram; Lou, Jianlong; Marks, James D.; Cai, Shuowei

    2013-01-01

    A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 minutes. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91% to 116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. PMID:24209341

  15. Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin A light chain.

    PubMed

    Liu, Xiaohu; Wang, Yi; Chen, Peng; Wang, Yusong; Zhang, Jinling; Aili, Daniel; Liedberg, Bo

    2014-03-01

    Botulinum neurotoxin is considered as one of the most toxic food-borne substances and is a potential bioweapon accessible to terrorists. The development of an accurate, convenient, and rapid assay for botulinum neurotoxins is therefore highly desirable for addressing biosafety concerns. Herein, novel biotinylated peptide substrates designed to mimic synaptosomal-associated protein 25 (SNAP-25) are utilized in gold nanoparticle-based assays for colorimetric detection of botulinum neurotoxin serotype A light chain (BoLcA). In these proteolytic assays, biotinylated peptides serve as triggers for the aggregation of gold nanoparticles, while the cleavage of these peptides by BoLcA prevents nanoparticle aggregation. Two different assay strategies are described, demonstrating limits of detection ranging from 5 to 0.1 nM of BoLcA with an overall assay time of 4 h. These hybrid enzyme-responsive nanomaterials provide rapid and sensitive detection for one of the most toxic substances known to man. PMID:24484451

  16. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin.

    PubMed

    Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Lou, Jianlong; Marks, James D; Cai, Shuowei

    2013-12-15

    A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91-116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. PMID:24209341

  17. Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils

    USGS Publications Warehouse

    Fillipelli, Gabriel M.; Risch, Martin R.; Laidlaw, Mark A. S.; Nichols, Deborah E.; Crewe, Julie

    2015-01-01

    Acute exposure to lead (Pb), a powerful neurotoxin to which children are particularly susceptible, has largely been eliminated in the U.S. and other countries through policy-based restrictions on leaded gasoline and lead-based paints. But the legacy of these sources remains in the form of surface soil Pb contamination, a common problem in cities and one that has only recently emerged as a widespread chronic exposure mechanism in cities. Some urban soils are also contaminated with another neurotoxin, mercury (Hg). The greatest human exposure to Hg is through fish consumption, so eating fish caught in urban areas presents risks for toxic Hg exposure. The potential double impact of chronic exposure to these two neurotoxins is pronounced in cities. Overall, there is a paradigmatic shift from reaction to and remediation of acute exposures towards a more nuanced understanding of the dynamic cycling of persistent environmental contaminants with resultant widespread and chronic exposure of inner-city dwellers, leading to chronic toxic illness and disability at substantial human and social cost.

  18. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments.

    PubMed

    Pirazzini, Marco; Azarnia Tehran, Domenico; Leka, Oneda; Zanetti, Giulia; Rossetto, Ornella; Montecucco, Cesare

    2016-03-01

    Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. PMID:26307528

  19. Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F.

    PubMed

    Chen, Sheng; Wan, Hoi Ying

    2011-01-15

    BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions. PMID:21029044

  20. An Overview on the Marine Neurotoxin, Saxitoxin: Genetics, Molecular Targets, Methods of Detection and Ecological Functions

    PubMed Central

    Cusick, Kathleen D.; Sayler, Gary S.

    2013-01-01

    Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin’s ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s) PSTs may serve for phytoplankton species that produce them are also discussed. PMID:23535394

  1. Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation.

    PubMed

    Yu, Xue-Feng; Sun, Zhengbo; Li, Min; Xiang, Yang; Wang, Qu-Quan; Tang, Fenfen; Wu, Yingliang; Cao, Zhijian; Li, Wenxin

    2010-11-01

    We report the development of neurotoxin-mediated upconversion nanoprobes for tumor targeting and visualization in living animals. The nanoprobes were synthesized by preparing polyethylenimine-coated hexagonal-phase NaYF(4):Yb,Er/Ce nanoparticles and conjugating them with recombinant chlorotoxin, a typical peptide neurotoxin that could bind with high specificity to many types of cancer cells. Nanoprobes that specifically targeted glioma cells were visualized by laser scanning upconversion fluorescence microscopy. Good probe biocompatibility was displayed with cellular and animal toxicity determinations. Animal studies were performed using Balb-c nude mice injected intravenously with the nanoprobes. The obtained high-contrast images demonstrated highly specific tumor binding and direct tumor visualization with bright red fluorescence under 980-nm near-infrared irradiation. The high sensitivity and high specificity of the neurotoxin-mediated upconversion nanoprobes and the simplification of the required optical device for tumor visualization suggest an approach that may help improve the effectiveness of the diagnostic and therapeutic modalities available for tumor patients. PMID:20728213

  2. Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes.

    PubMed

    Smith, Theresa J; Hill, Karen K; Xie, Gary; Foley, Brian T; Williamson, Charles H D; Foster, Jeffrey T; Johnson, Shannon L; Chertkov, Olga; Teshima, Hazuki; Gibbons, Henry S; Johnsky, Lauren A; Karavis, Mark A; Smith, Leonard A

    2015-03-01

    The whole genomes for six botulinum neurotoxin-producing clostridial strains were sequenced to provide references for under-represented toxin types, bivalent strains or unusual toxin complexes associated with a bont gene. The strains include three Clostridium botulinum Group I strains (CDC 297, CDC 1436, and Prevot 594), a Group II C. botulinum strain (Eklund 202F), a Group IV Clostridium argentinense strain (CDC 2741), and a Group V Clostridium baratii strain (Sullivan). Comparisons of the Group I genomic sequences revealed close relationships and conservation of toxin gene locations with previously published Group I C. botulinum genomes. The bont/F6 gene of strain Eklund 202F was determined to be a chimeric toxin gene composed of bont/F1 and bont/F2. The serotype G strain CDC 2741 remained unfinished in 20 contigs with the bont/G located within a 1.15Mb contig, indicating a possible chromosomal location for this toxin gene. Within the genome of C. baratii Sullivan strain, direct repeats of IS1182 insertion sequence (IS) elements were identified flanking the bont/F7 toxin complex that may be the mechanism of bont insertion into C. baratii. Highlights of the six strains are described and release of their genomic sequences will allow further study of unusual neurotoxin-producing clostridial strains. PMID:25489752

  3. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus

    PubMed Central

    Opsenica, Igor; Burnett, James C.; Gussio, Rick; Opsenica, Dejan; Todorović, Nina; Lanteri, Charlotte A.; Sciotti, Richard J.; Gettayacamin, Montip; Basilico, Nicoletta; Taramelli, Donatella; Nuss, Jonathan E.; Wanner, Laura; Panchal, Rekha G.; Šolaja, Bogdan A.; Bavari, Sina

    2011-01-01

    A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum, and in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials, and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities. PMID:21265542

  4. SRC family kinase inhibitors antagonize the toxicity of multiple serotypes of botulinum neurotoxin in human embryonic stem cell-derived motor neurons.

    PubMed

    Kiris, Erkan; Burnett, James C; Nuss, Jonathan E; Wanner, Laura M; Peyser, Brian D; Du, Hao T; Gomba, Glenn Y; Kota, Krishna P; Panchal, Rekha G; Gussio, Rick; Kane, Christopher D; Tessarollo, Lino; Bavari, Sina

    2015-05-01

    Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins' proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin's enzymatic components, to antagonize multiple BoNT serotypes in motor neurons. PMID:25782580

  5. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity.

    PubMed

    Shi, Jingyu; Guo, Jiubiao; Bai, Gongxun; Chan, Chunyu; Liu, Xuan; Ye, Weiwei; Hao, Jianhua; Chen, Sheng; Yang, Mo

    2014-10-23

    Botulinum neurotoxins (BoNTs) are among the most potent toxic bacterial proteins for humans, which make them potential agents for bioterrorism. Therefore, an ultrasensitive detection of BoNTs and their active states is in great need as field-deployable systems for anti-terrorism applications. We report the construction of a novel graphene oxide (GO)-peptide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of the BoNT serotype A light chain (BoNT-LcA) protease activity. A green fluorescence protein (GFP) modified SNAP-25 peptide substrate (SNAP-25-GFP) was optimally designed and synthesized with the centralized recognition/cleavage sites. This FRET platform was constructed by covalent immobilization of peptide substrate on GO with BSA passivation which have advantages of low non-specific adsorption and high stability in protein abundant solution. BoNT-LcA can specifically cleave SNAP-25-GFP substrate covalently immobilized on GO to release the fragment with GFP. Based on fluorescence signal recovery measurement, the target BoNT-LcA was detected sensitively and selectively with the linear detection range from 1fg/mL to 1pg/mL. The limit of detection (LOD) for BoNT-LcA is around 1fg/mL. PMID:25461164

  6. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype.

    PubMed

    Kull, Skadi; Schulz, K Melanie; Weisemann, Jasmin; Kirchner, Sebastian; Schreiber, Tanja; Bollenbach, Alexander; Dabrowski, P Wojtek; Nitsche, Andreas; Kalb, Suzanne R; Dorner, Martin B; Barr, John R; Rummel, Andreas; Dorner, Brigitte G

    2015-01-01

    Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might

  7. Molecular structure of tetanus neurotoxin as revealed by Fourier transform infrared and circular dichroic spectroscopy.

    PubMed

    Singh, B R; Fuller, M P; Schiavo, G

    1990-07-01

    Secondary structure contents of tetanus neurotoxin have been estimated at neutral and acidic pH using circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. An analysis of the far-ultraviolet CD spectra of the neurotoxin dissolved in 50 mM citrate-phosphate buffer (pH 7.0) revealed 20.0 +/- 2.1% alpha-helix, 50.5 +/- 2.1% beta-pleated sheets, no beta-turns, and 29.5% random coils, which is at considerable variance with results from an earlier detailed study of tetanus neurotoxin's secondary structures (J.P. Robinson, L.A. Holladay, J.H. Hash and D. Puett, J. Biol. Chem. 257 (1982) 407). However, the alpha-helix content estimated in this study is consistent with the earlier studies of Robinson et al. (J.P. Robinson, L.A. Holladay, J.B. Picklesimer and D. Puett, Mol. Cell. Biochem. 5 (1974) 147; J.P. Robinson, J.B. Picklesimer and D. Puett, J. Biol. Chem. 250 (1975) 7435) and with the study by Lazarovici et al. (P. Lazarovici, P. Yanai and E. Yavin, J. Biol. Chem. 262 (1986) 2645), although other secondary structural features do not agree with those of the previous studies. Secondary structure estimation from Fourier transform infrared spectra in both amide I and amide III frequency regions revealed 22-23% alpha-helix, 49-51% beta-pleated sheets and 27-28% random coils, indicating a good correlation with the secondary structure content estimated from CD analysis. Lowering of the pH of the neurotoxin to 5.5 or 4.0 did not result in any noticeable change in the overall secondary structures. However, there were significant pH-induced variations observed in the individual curve-fitted FT-IR bands in the amide III frequency region. For example, the 1302 cm-1 band (relative area, 4.2%) observed at pH 7.0 was shifted to 1297 cm-1 (relative area, 2.2%) at pH 5.5, and the relative area of the band at 1316-1317 cm-1 (alpha-helix) increased by approx. 40%. This study suggests that contrary to earlier reports, tetanus neurotoxin is a beta-pleated sheet

  8. Three Classes of Plasmid (47–63 kb) Carry the Type B Neurotoxin Gene Cluster of Group II Clostridium botulinum

    PubMed Central

    Carter, Andrew T.; Austin, John W.; Weedmark, Kelly A.; Corbett, Cindi; Peck, Michael W.

    2014-01-01

    Pulsed-field gel electrophoresis and DNA sequence analysis of 26 strains of Group II (nonproteolytic) Clostridium botulinum type B4 showed that 23 strains carried their neurotoxin gene cluster on a 47–63 kb plasmid (three strains lacked any hybridization signal for the neurotoxin gene, presumably having lost their plasmid). Unexpectedly, no neurotoxin genes were found on the chromosome. This apparent constraint on neurotoxin gene transfer to the chromosome stands in marked contrast to Group I C. botulinum, in which neurotoxin gene clusters are routinely found in both locations. The three main classes of type B4 plasmid identified in this study shared different regions of homology, but were unrelated to any Group I or Group III plasmid. An important evolutionary aspect firmly links plasmid class to geographical origin, with one class apparently dominant in marine environments, whereas a second class is dominant in European terrestrial environments. A third class of plasmid is a hybrid between the other two other classes, providing evidence for contact between these seemingly geographically separated populations. Mobility via conjugation has been previously demonstrated for the type B4 plasmid of strain Eklund 17B, and similar genes associated with conjugation are present in all type B4 plasmids now described. A plasmid toxin–antitoxin system pemI gene located close to the neurotoxin gene cluster and conserved in each type B4 plasmid class may be important in understanding the mechanism which regulates this unique and unexpected bias toward plasmid-borne neurotoxin genes in Group II C. botulinum type B4. PMID:25079343

  9. Nuclear magnetic resonance solution structure of the alpha-neurotoxin from the black mamba (Dendroaspis polylepis polylepis).

    PubMed

    Brown, L R; Wüthrich, K

    1992-10-20

    The three-dimensional structure in solution of the alpha-neurotoxin from the black mamba (Dendroaspis polylepis polylepis) has been determined by nuclear magnetic resonance spectroscopy. A high quality structure for this 60-residue protein was obtained from 656 NOE distance constraints and 143 dihedral angle constraints, using the distance geometry program DIANA for the structure calculation and AMBER for restrained energy minimization. For a group of 20 conformers used to represent the solution structure, the average root-mean-square deviation value calculated for the polypeptide backbone heavy atoms relative to the mean structure was 0.45 A. The protein consists of a core region from which three finger-like loops extend outwards. It includes a short, two-stranded antiparallel beta-sheet of residues 1-5 and 13-17, a three-stranded antiparallel beta-sheet involving residues 23-31, 34-42 and 51-55, and four disulfide bridges in the core region. There is also extensive non-regular hydrogen bonding between the carboxy-terminal tail of the polypeptide chain and the rest of the core region. Comparison with the crystal structure of erabutoxin-b indicates that the structure of alpha-neurotoxin is quite similar to other neurotoxin structures, but that local structural differences are seen in regions thought to be important for binding of neurotoxins to the acetylcholine receptor. For two regions of the alpha-neurotoxin structure there is evidence for an equilibrium between multiple conformations, which might be related to conformational rearrangements upon binding to the receptor. Overall, the alpha-neurotoxin presents itself as a protein with a stable core and flexible surface areas that interact with the acetylcholine receptor in such a way that high affinity binding is achieved by conformational rearrangements of the deformable regions of the neurotoxin structure. PMID:1433289

  10. Botulinum neurotoxin type A: structure and interaction with the micellar concentration of SDS determined by FT-IR spectroscopy.

    PubMed

    Singh, B R; Fuller, M P; DasGupta, B R

    1991-12-01

    Secondary structures of botulinum neurotoxin type A have been determined using Fourier transform infrared spectroscopy in the amide I and amide III frequency regions. Using Fourier self-deconvolution, second derivatization, and curve-fit analysis, the amide I frequency contour was resolved into Gaussian bands at 1678, 1654, 1644, and 1634 cm-1. In the amide III frequency region, several small bands were resolved between 1320 and 1225 cm-1. Assignments of the bands in both amide I and amide III frequency regions to various types of secondary structures and the estimation of spectral band strengths by integrating areas under each band suggested that the neurotoxin contains 29% alpha-helix, 45-49% beta-sheets and 22-26% random coils. These values agreed very well with those determined earlier from CD spectra. The neurotoxin was treated with a micellar concentration of sodium dodecyl sulfate to simulate interaction between the protein and the amphipathic molecules. Sodium dodecyl sulfate micelles induced significant alterations both in the spectral band positions, and their strengths suggest refolding of the neurotoxin polypeptides. However, these changes were not entirely reversible, which could implicate the role of the altered structures in the function of the neurotoxin. PMID:1815589