Sample records for potent orally active

  1. Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Kunitomo, Jun; Tomata, Yoshihide; Nishiyama, Keiji; Nakashima, Masato; Hirozane, Mariko; Yoshikubo, Shin-Ichi; Hirai, Keisuke; Marui, Shogo

    2011-11-01

    During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Molecular design and structure--activity relationships leading to the potent, selective, and orally active thrombin active site inhibitor BMS-189664.

    PubMed

    Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L

    2002-01-07

    A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.

  3. Optimization of 2-Anilino 4-Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity.

    PubMed

    Gilson, Paul R; Tan, Cyrus; Jarman, Kate E; Lowes, Kym N; Curtis, Joan M; Nguyen, William; Di Rago, Adrian E; Bullen, Hayley E; Prinz, Boris; Duffy, Sandra; Baell, Jonathan B; Hutton, Craig A; Jousset Subroux, Helene; Crabb, Brendan S; Avery, Vicky M; Cowman, Alan F; Sleebs, Brad E

    2017-02-09

    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against P. falciparum parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved in vitro metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of P. falciparum and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden.

  4. Pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase.

    PubMed Central

    McMillan, R. M.; Spruce, K. E.; Crawley, G. C.; Walker, E. R.; Foster, S. J.

    1992-01-01

    1. This paper describes the pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase which is undergoing clinical evaluation. 2. ICI D2138 potently inhibited leukotriene synthesis in murine peritoneal macrophages (IC50 = 3 nM) and human blood (IC50 = 20 nM). In human and dog blood, ICI D2138 did not inhibit thromboxane B2 synthesis at a concentration of 500 microM, thus the selectivity ratio (cyclo-oxygenase: 5-lipoxygenase) was greater than 20,000. In contrast, zileuton (a 5-lipoxygenase inhibitor also undergoing clinical evaluation) exhibited a selectivity ratio of 15-100. 3. ICI D2138 potently and dose-dependently inhibited ex vivo leukotriene B4 (LTB4) synthesis by rat blood with ED50 values of 0.9, 4.0 and 80.0 mg kg-1 p.o. at 3, 10 and 20 h respectively after dosing. Similar activity was observed for inhibition of LTB4 production in a zymosan-inflamed rat air pouch model. Zileuton produced ED50 values of 5 and 20 mg kg-1 at 3 and 10 h respectively. 4. Oral administration of 1, 3 or 10 mg kg-1 ICI D2138 to dogs produced maximal inhibition of ex vivo LTB4 synthesis by blood for 5, 9 and 31 h respectively. A dose of 5 mg kg-1 p.o. of zileuton caused maximal inhibition of LTB4 for 24 h. 5. Oral administration of 10 mg kg-1 ICI D2138 caused total inhibition of LTB4 production in zymosan-inflamed rabbit knee joint. 6. Topical administration of ICI D2138 to rabbit skin caused a dose-related inhibition of arachidonic acid-induced plasma extravasation with an ID30 of 1.08 nmol per site.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1334748

  5. Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system.

    PubMed

    Ishihara, Tsukasa; Koga, Yuji; Iwatsuki, Yoshiyuki; Hirayama, Fukushi

    2015-01-15

    Anticoagulant agents have emerged as a promising class of therapeutic drugs for the treatment and prevention of arterial and venous thrombosis. We investigated a series of novel orally active factor Xa inhibitors designed using our previously reported conjugation strategy to boost oral anticoagulant effect. Structural optimization of anthranilamide derivative 3 as a lead compound with installation of phenolic hydroxyl group and extensive exploration of the P1 binding element led to the identification of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide (33, AS1468240) as a potent factor Xa inhibitor with significant oral anticoagulant activity. We also reported a newly developed Free-Wilson-like fragment recommender system based on the integration of R-group decomposition with collaborative filtering for the structural optimization process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Newly discovered orally active pure antiestrogens.

    PubMed

    Kanbe, Yoshitake; Kim, Myung-Hwa; Nishimoto, Masahiro; Ohtake, Yoshihito; Yoneya, Takaaki; Ohizumi, Iwao; Tsunenari, Toshiaki; Taniguchi, Kenji; Kaiho, Shin-ichi; Nabuchi, Yoshiaki; Araya, Hiroshi; Kawata, Setsu; Morikawa, Kazumi; Jo, Jae-Chon; Kwon, Hee-An; Lim, Hyun-Suk; Kim, Hak-Yeop

    2006-09-15

    In order to develop orally active pure antiestrogens, we incorporated the carboxy-containing side chains into the 7alpha-position of the steroid scaffold and found that 17-keto derivative CH4893237 (12b) functioned as a pure antiestrogen with its oral activity much superior to clinically used pure antiestrogen, ICI182,780. Results from the pharmacokinetic evaluation indicated that the potent antiestrogen activity at oral dosing in mice attributed to both improved absorption from the intestinal wall and metabolic stability in liver.

  7. Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor.

    PubMed

    Fujimoto, Takuya; Imaeda, Yasuhiro; Konishi, Noriko; Hiroe, Katsuhiko; Kawamura, Masaki; Textor, Garret P; Aertgeerts, Kathleen; Kubo, Keiji

    2010-05-13

    Coagulation enzyme factor Xa (FXa) is a particularly promising target for the development of new anticoagulant agents. We previously reported the imidazo[1,5-c]imidazol-3-one derivative 1 as a potent and orally active FXa inhibitor. However, it was found that 1 predominantly undergoes hydrolysis upon incubation with human liver microsomes, and the human specific metabolic pathway made it difficult to predict the human pharmacokinetics. To address this issue, our synthetic efforts were focused on modification of the imidazo[1,5-c]imidazol-3-one moiety of the active metabolite 3a, derived from 1, which resulted in the discovery of the tetrahydropyrimidin-2(1H)-one derivative 5k as a highly potent and selective FXa inhibitor. Compound 5k showed no detectable amide bond cleavage in human liver microsomes, exhibited a good pharmacokinetic profile in monkeys, and had a potent antithrombotic efficacy in a rabbit model without prolongation of bleeding time. Compound 5k is currently under clinical development with the code name TAK-442.

  8. Characterization of SB-271046: A potent, selective and orally active 5-HT6 receptor antagonist

    PubMed Central

    Routledge, Carol; Bromidge, Steven M; Moss, Stephen F; Price, Gary W; Hirst, Warren; Newman, Helen; Riley, Graham; Gager, Tracey; Stean, Tania; Upton, Neil; Clarke, Stephen E; Brown, Anthony M; Middlemiss, Derek N

    2000-01-01

    SB-271046, potently displaced [3H]-LSD and [125I]-SB-258585 from human 5-HT6 receptors recombinantly expressed in HeLa cells in vitro (pKi 8.92 and 9.09 respectively). SB-271046 also displaced [125I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pKi 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT6 receptor vs 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT6 receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA2 of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of ⩽0.1 mg kg−1 p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC50 of 0.16 μM) and brain concentrations of 0.01–0.04 μM at Cmax. These data, together with the observed anticonvulsant activity of other selective 5-HT6 receptor antagonists, SB-258510 (10 mg kg−1, 2–6 h pre-test) and Ro 04-6790 (1–30 mg kg−1, 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT6 receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT6 receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT6 receptors. PMID:10928964

  9. SCH 206272: a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist.

    PubMed

    Anthes, John C; Chapman, Richard W; Richard, Christian; Eckel, Stephen; Corboz, Michel; Hey, John A; Fernandez, Xiomara; Greenfeder, Scott; McLeod, Robbie; Sehring, Susan; Rizzo, Charles; Crawley, Yvette; Shih, Neng-Yang; Piwinski, John; Reichard, Greg; Ting, Pauline; Carruthers, Nick; Cuss, Francis M; Billah, Motasim; Kreutner, William; Egan, Robert W

    2002-08-23

    Experiments were performed to characterize the pharmacology of SCH 206272 [(R,R)-1'[5-[(3,5-dichlorobenzoyl)methylamino]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl]-N-methyl-2-oxo-[1,4'bipiperidine]-3-acetamide] as a potent and selective antagonist of tachykinin (NK) NK(1), NK(2), and NK(3) receptors. SCH 206272 inhibited binding at human tachykinin NK(1), NK(2), and NK(3) receptors (K(i) = 1.3, 0.4, and 0.3 nM, respectively) and antagonized [Ca(2+)](i) mobilization in Chinese hamster ovary (CHO) cells expressing the cloned human tachykinin NK(1), NK(2), or NK(3) receptors. SCH 206272 inhibited relaxation of the human pulmonary artery (pK(b) = 7.7 +/- 0.3) induced by the tachykinin NK(1) receptor agonist, [Met-O-Me] substance P and contraction of the human bronchus (pK(b = 8.2 +/- 0.3) induced by the tachykinin NK(2) receptor agonist, neurokinin A. In isolated guinea pig tissues, SCH 206272 inhibited substance P-induced enhancement of electrical field stimulated contractions of the vas deferens, (pK(b = 7.6 +/- 0.2), NKA-induced contraction of the bronchus (pK(b) = 7.7 +/- 0.2), and senktide-induced contraction of the ileum. In vivo, oral SCH 206272 (0.1-10 mg/kg, p.o.) inhibited substance P-induced airway microvascular leakage and neurokinin A-induced bronchospasm in the guinea pig. In a canine in vivo model, SCH 206272 (0.1-3 mg/kg, p.o.) inhibited NK(1) and NK(2) activities induced by exogenous substance P and neurokinin A. Furthermore, in guinea pig models involving endogenously released tachykinins, SCH 206272 inhibited hyperventilation-induced bronchospasm, capsaicin-induced cough, and airway microvascular leakage induced by nebulized hypertonic saline. These data demonstrate that SCH 206272 is a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist. This compound may have beneficial effects in diseases thought to be mediated by tachykinins, such as cough, asthma, and chronic obstructive pulmonary disease. Copyright 2002 Elsevier

  10. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core.

    PubMed

    Dow, Robert L; Andrews, Melissa; Aspnes, Gary E; Balan, Gayatri; Michael Gibbs, E; Guzman-Perez, Angel; Karki, Kapil; Laperle, Jennifer L; Li, Jian-Cheng; Litchfield, John; Munchhof, Michael J; Perreault, Christian; Patel, Leena

    2011-10-15

    A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration.

    PubMed

    Bannenberg, Gerard; Moussignac, Rose-Laure; Gronert, Karsten; Devchand, Pallavi R; Schmidt, Birgitta A; Guilford, William J; Bauman, John G; Subramanyam, Babu; Perez, H Daniel; Parkinson, John F; Serhan, Charles N

    2004-09-01

    1. Lipoxins (LX) and aspirin-triggered 15-epi-lipoxins (ATL) exert potent anti-inflammatory actions. In the present study, we determined the anti-inflammatory efficacy of endogenous LXA(4) and LXB(4), the stable ATL analog ATLa2, and a series of novel 3-oxa-ATL analogs (ZK-996, ZK-990, ZK-994, and ZK-142) after intravenous, oral, and topical administration in mice. 2. LXA(4), LXB(4), ATLa2, and ZK-994 were orally active, exhibiting potent systemic inhibition of zymosan A-induced peritonitis at very low doses (50 ng kg(-1)-50 microg kg(-1)). 3. Intravenous ZK-994 and ZK-142 (500 microg kg(-1)) potently attenuated hind limb ischemia/reperfusion-induced lung injury, with 32+/-12 and 53+/-5% inhibition (P<0.05), respectively, of neutrophil accumulation in lungs. The same dose of ATLa2 had no significant protective action. 4. Topical application of ATLa2, ZK-994, and ZK-142 ( approximately 20 microg cm(-2)) prevented vascular leakage and neutrophil infiltration in LTB(4)/PGE(2)-stimulated ear skin inflammation. While ATLa2 and ZK-142 displayed approximately equal anti-inflammatory efficacy in this model, ZK-994 displayed a slower onset of action. 5. In summary, native LXA(4) and LXB(4), and analogs ATLa2, ZK-142, and ZK-994 retain broad anti-inflammatory effects after intravenous, oral, and topical administration. The 3-oxa-ATL analogs, which have enhanced metabolic and chemical stability and a superior pharmacokinetic profile, provide new opportunities to explore the actions and therapeutic potential for LX and ATL.

  12. Discovery of methylsulfonyl indazoles as potent and orally active respiratory syncytial Virus(RSV) fusion inhibitors.

    PubMed

    Feng, Song; Li, Chao; Chen, Dongdong; Zheng, Xiufang; Yun, Hongying; Gao, Lu; Shen, Hong C

    2017-09-29

    Recently we described a novel class of imidazopyridine compounds that showed exceptional anti-RSV potency in cell culture. However, unfavorable pharmacokinetic (PK) properties and glutathione (GSH) adduct liabilities impeded their further development. In a bid to address the PK and early safety concerns, a small compound library consisting of dozens of scaffold-hopping analogues was designed and synthesized for RSV CPE assay screening, which led to the identification of a new chemical starting point: methylsulfonyl indole compound 8. In this paper, we report the discovery and optimization of a series of methylsulfonyl indazoles as potent RSV fusion inhibitors. In particular, compound 47 was orally efficacious in a RSV mouse model, with 1.6 log unit viral load reduction at 25 mg/kg BID upon oral dosing. The results may have broad implications for the design of new RSV fusion inhibitors, and demonstrate the potential for developing novel therapies for RSV infection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  14. Imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV-1.

    PubMed

    Gudmundsson, Kristjan S; Boggs, Sharon D; Catalano, John G; Svolto, Angilique; Spaltenstein, Andrew; Thomson, Michael; Wheelan, Pat; Jenkinson, Stephen

    2009-11-15

    Synthesis of several novel imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV are described. Synthetic approaches allowing for variation of the substitution pattern are outlined and resulting changes in antiviral activity and pharmacokinetics are highlighted. Several compounds with low nanomolar anti-HIV activity and oral bioavailability are described.

  15. SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cuirong; Yue, Bin; Liu, Huiping

    2012-08-01

    SL-01, an oral gemcitabine derivative, was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl)pyrazine-2-carbonyl at the N4-position on the cytidine ring of gemcitabine. Our goal in this study was to evaluate the efficacy of SL-01 on the growth of human cancers with gemcitabine as control. Experiments were performed on human non-small cell lung cancer NCI-H460 and colon cancer HCT-116 both in vitro and in vivo. In vitro assays, SL-01 significantly inhibited the growth of cancer cells as determined by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Further studies indicated that SL-01 induced the cancer cells to apoptosis showing chromatin condensation andmore » externalization of phosphatidylserine. In in vivo studies, we evaluated the efficacy of SL-01 in nude mice bearing human cancer xenografts. SL-01 effectively delayed the growth of NCI-H460 and HCT-116 without significant loss of body weight. Molecular analysis indicated that the high efficacy of SL-01 was associated with its ability to induce apoptosis as evidenced by increase of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining cells, activation of caspase-9, caspase-3 and cleaved poly ADP-ribose polymerase (PARP) in tumor tissues. SL-01 also increased Bax/Bcl-2 ratio in cancer cells. These biological activities of SL-01 were more potential than that of gemcitabine. Based on these in vitro and in vivo results, SL-01 is proposed as a potent oral anticancer agent that may supplant the use of gemcitabine in the clinic. -- Highlights: ► An oral gemcitabine derivative SL-01 was synthesized. ► The effects of SL-01 were evaluated and its efficacy was compared with gemcitabine. ► The biological activities of SL-01 were more potent than that of gemcitabine. ► SL-01 could replace gemcitabine for clinical use.« less

  16. Flavonoids of Cynara scolymus possess potent xanthinoxidase inhibitory activity in vitro but are devoid of hypouricemic effects in rats after oral application.

    PubMed

    Sarawek, Sasiporn; Feistel, Bjoern; Pischel, Ivo; Butterweck, Veronika

    2008-02-01

    Artichoke (Cynara scolymus L.) leaves have been historically used for the treatment of hyperuricemia and gout, however whether artichoke is truly efficacious for this indication, is still a matter of debate. Thus, the goal of the present study was first to examine the xanthine oxidase (XO) inhibitory activity of an artichoke leaf extract (ALE) and some of its main compounds in vitro and then further test potentially active substances for possible hypouricemic effects using an in vivo rat model. The in vitro study showed that ALE inhibited XO with only minimal inhibitory action (< 5 %) at 100 microg/mL. However, when selected compounds were tested, the caffeic acid derivatives revealed a weak XO inhibitory effect with IC (50) > 100 microM. From the tested flavones the aglycone luteolin potently inhibited XO with an IC (50) value of 1.49 microM. Luteolin 7-O-glucoside and luteolin 7-O-glucuronide showed lower XO inhibition activities with IC (50) values of 19.90 microM and 20.24 microM, respectively. However, oral administration of an aqueous ALE, luteolin, and luteolin 7-O-glucoside did not produce any observable hypouricemic effects after acute oral treatment in potassium oxonate-treated rats. After intraperitoneal injection of luteolin a decrease in uric acid levels was detected suggesting that the hypouricemic effects of luteolin are due to its original form rather than its metabolites produced by the gut flora. In conclusion, an aqueous ALE, caffeic acid derivatives and flavones exerted XO inhibitory effects in vitro but a hypouricemic activity could not be confirmed after oral administration.

  17. Novel 5-aryl-1,3-dihydro-indole-2-thiones. potent, orally active progesterone receptor agonists.

    PubMed

    Fensome, Andrew; Koko, Marci; Wrobel, Jay; Zhang, Puwen; Zhang, Zhiming; Cohen, Jeffrey; Lundeen, Scott; Rudnick, Kelly; Zhu, Yuan; Winneker, Richard

    2003-04-07

    During the course of our studies on 3,3-disubstituted-5-aryloxindoles derived progesterone receptor (PR) antagonists we discovered that changing the amide funtionality to a thio-amide resulted in compounds displaying potent PR agonist activity. In this communication, the synthesis, structure activity relationships (SAR) and in vivo activity of various 5-arylthio-oxindoles will be discussed.

  18. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostov, Rumen V.; Knatko, Elena V.; McLaughlin, Lesley A.

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 minmore » and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC{sub 0–24h} was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the k{sub el} was 0.068 h{sup −1}. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. - Highlights: • TBE-31 is a cysteine targeting compound with a reversible covalent mode of action. • After a single oral dose, the blood concentration of TBE-31 exhibits two peaks. • Oral TBE-31 is a potent activator of Nrf2-dependent enzymes

  19. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor.

    PubMed

    van de Lagemaat, R; Timmers, C M; Kelder, J; van Koppen, C; Mosselman, S; Hanssen, R G J M

    2009-03-01

    In assisted reproductive technology, human chorionic gonadotrophin (hCG) is administered subcutaneously for the induction of oocyte maturation and ovulation. Our efforts to develop orally bioavailable luteinizing hormone (LH) receptor agonists have led to the discovery of Org 43553, a low molecular weight (LMW) LH receptor (LH-R) agonist. Org 43553 was tested in vitro and in vivo in pre-clinical pharmacological models to demonstrate efficacy and oral availability. Org 43553 is a potent stimulator of the human LH-R in vitro (EC(50) 3.7 nM). In primary mouse Leydig cells, Org 43553 stimulated testosterone production. Pharmacokinetic analyses showed high oral bioavailability in rats (79%) and dogs (44%) with a shorter half-life compared with hCG (3.4 versus 5.6 h in the rat). Ovulation induction by Org 43553 was demonstrated in immature mice as well as in cyclic rats after single-dose oral administration (50 mg/kg). The ovulated oocytes were of good quality as demonstrated by successful fertilization and implantation of normal embryos. In male rats, testosterone production was substantially induced after oral administration. Org 43553 is the first LMW LH-R mimetic with demonstrated in vivo efficacy upon oral administration and could therefore replace subcutaneously administered hCG. The elimination half-life of Org 43553 is substantially shorter than hCG, which could potentially represent a clinical benefit in reducing the risk of ovarian hyperstimulation syndrome (OHSS).

  20. Iminopyrimidinones: A novel pharmacophore for the development of orally active renin inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKittrick, Brian A.; Caldwell, John P.; Bara, Thomas

    2015-04-01

    The development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.

  1. 3,4-Dihydro-2H-benzoxazinones are 5-HT(1A) receptor antagonists with potent 5-HT reuptake inhibitory activity.

    PubMed

    Atkinson, Peter J; Bromidge, Steven M; Duxon, Mark S; Gaster, Laramie M; Hadley, Michael S; Hammond, Beverley; Johnson, Christopher N; Middlemiss, Derek N; North, Stephanie E; Price, Gary W; Rami, Harshad K; Riley, Graham J; Scott, Claire M; Shaw, Tracey E; Starr, Kathryn R; Stemp, Geoffrey; Thewlis, Kevin M; Thomas, David R; Thompson, Mervyn; Vong, Antonio K K; Watson, Jeannette M

    2005-02-01

    Starting from a high throughput screening hit, a series of 3,4-dihydro-2H-benzoxazinones has been identified with both high affinity for the 5-HT(1A) receptor and potent 5-HT reuptake inhibitory activity. The 5-(2-methyl)quinolinyloxy derivative combined high 5-HT(1A/1B/1D) receptor affinities with low intrinsic activity and potent inhibition of the 5-HT reuptake site (pK(i)8.2). This compound also had good oral bioavailability and brain penetration in the rat.

  2. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

    PubMed

    Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W

    2018-05-31

    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.

  3. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration.

    PubMed

    Heathcote, Dean A; Patel, Hetal; Kroll, Sebastian H B; Hazel, Pascale; Periyasamy, Manikandan; Alikian, Mary; Kanneganti, Seshu K; Jogalekar, Ashutosh S; Scheiper, Bodo; Barbazanges, Marion; Blum, Andreas; Brackow, Jan; Siwicka, Alekasandra; Pace, Robert D M; Fuchter, Matthew J; Snyder, James P; Liotta, Dennis C; Freemont, Paul S; Aboagye, Eric O; Coombes, R Charles; Barrett, Anthony G M; Ali, Simak

    2010-12-23

    Cyclin-dependent protein kinases (CDKs) are central to the appropriate regulation of cell proliferation, apoptosis, and gene expression. Abnormalities in CDK activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. Here, we report the identification of a pyrazolo[1,5-a]pyrimidine derived compound, 4k (BS-194), as a selective and potent CDK inhibitor, which inhibits CDK2, CDK1, CDK5, CDK7, and CDK9 (IC₅₀= 3, 30, 30, 250, and 90 nmol/L, respectively). Cell-based studies showed inhibition of the phosphorylation of CDK substrates, Rb and the RNA polymerase II C-terminal domain, down-regulation of cyclins A, E, and D1, and cell cycle block in the S and G₂/M phases. Consistent with these findings, 4k demonstrated potent antiproliferative activity in 60 cancer cell lines tested (mean GI₅₀= 280 nmol/L). Pharmacokinetic studies showed that 4k is orally bioavailable, with an elimination half-life of 178 min following oral dosing in mice. When administered at a concentration of 25 mg/kg orally, 4k inhibited human tumor xenografts and suppressed CDK substrate phosphorylation. These findings identify 4k as a novel, potent CDK selective inhibitor with potential for oral delivery in cancer patients.

  4. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    PubMed Central

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  5. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens.

    PubMed

    Caiaffa, Karina Sampaio; Massunari, Loiane; Danelon, Marcelle; Abuna, Gabriel Flores; Bedran, Telma Blanca Lombardo; Santos-Filho, Norival Alves; Spolidorio, Denise Madalena Palomari; Vizoto, Natalia Leal; Cilli, Eduardo Maffud; Duque, Cristiane

    2017-11-01

    This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3-1C V and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml -1 , respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.

  6. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    NASA Astrophysics Data System (ADS)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  7. 4-substituted cyclohexyl sulfones as potent, orally active gamma-secretase inhibitors.

    PubMed

    Churcher, Ian; Beher, Dirk; Best, Jonathan D; Castro, José L; Clarke, Earl E; Gentry, Amy; Harrison, Timothy; Hitzel, Laure; Kay, Euan; Kerrad, Sonia; Lewis, Huw D; Morentin-Gutierrez, Pablo; Mortishire-Smith, Russell; Oakley, Paul J; Reilly, Michael; Shaw, Duncan E; Shearman, Mark S; Teall, Martin R; Williams, Susie; Wrigley, Jonathan D J

    2006-01-15

    The protease gamma-secretase plays a pivotal role in the synthesis of pathogenic amyloid-beta in Alzheimer's disease (AD). Here, we report a further extension to a series of cyclohexyl sulfone-based gamma-secretase inhibitors which has allowed the preparation of highly potent compounds which also demonstrate robust Abeta(40) lowering in vivo (e.g., compound 32, MED 1mg/kg p.o. in APP-YAC mice).

  8. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase.

    PubMed

    Sumi, H; Hamada, H; Nakanishi, K; Hiratani, H

    1990-01-01

    The existence of a potent fibrinolytic enzyme (nattokinase, NK) in the traditional fermented food called 'natto', was reported by us previously. It was confirmed that oral administration of NK (or natto) produced a mild and frequent enhancement of the fibrinolytic activity in the plasma, as indicated by the fibrinolytic parameters, and the production of tissue plasminogen activator. NK capsules were also administered orally to dogs with experimentally induced thrombosis, and lysis of the thrombi was observed by angiography. The results obtained suggest that NK represents a possible drug for use not only in the treatment of embolism but also in the prevention of the disease, since NK has a proven safety and can be massproduced.

  9. Relationship between Chemical Structure and Antimicrobial Activities of Isothiocyanates from Cruciferous Vegetables against Oral Pathogens.

    PubMed

    Ko, Mi-Ok; Kim, Mi-Bo; Lim, Sang-Bin

    2016-12-28

    We evaluated the potentials of 10 isothiocyanates (ITCs) from cruciferous vegetables and radish root hydrolysate for inhibiting the growth of oral pathogens, with an emphasis on assessing any structure-function relationship. Structural differences in ITCs impacted their antimicrobial activities against oral pathogens differently. The indolyl ITC (indol-3-carbinol) was the most potent inhibitor of the growth of oral pathogens, followed by aromatic ITCs (benzyl ITC (BITC) and phenylethyl ITC (PEITC)) and aliphatic ITCs (erucin, iberin, and sulforaphene). Sulforaphene, which is similar in structure, but has one double bond, showed higher antimicrobial activity than sulforaphane. Erucin, which has a thiol group, showed higher antimicrobial activity than sulforaphane, which has a sulfinyl group. BITC and iberin with a short chain exhibited higher antimicrobial potential than PEITC and sulforaphane with a longer chain, respectively. ITCs have strong antimicrobial activities and may be useful in the prevention and management of dental caries.

  10. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9 H -pyrimido[4,5- b ]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yujun; Bai, Longchuan; Liu, Liu

    We have designed and synthesized 9H-pyrimido[4,5-b]indole-containing compounds to obtain potent and orally bioavailable BET inhibitors. By incorporation of an indole or a quinoline moiety to the 9H-pyrimido[4,5-b]indole core, we identified a series of small molecules showing high binding affinities to BET proteins and low nanomolar potencies in inhibition of cell growth in acute leukemia cell lines. One such compound, 4-(6-methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (31) has excellent microsomal stability and good oral pharmacokinetics in rats and mice. Orally administered, 31 achieves significant antitumor activity in the MV4;11 leukemia and MDA-MB-231 triple-negative breast cancer xenograft models in mice. Determination of the cocrystal structure of 31more » with BRD4 BD2 provides a structural basis for its high binding affinity to BET proteins. Testing its binding affinities against other bromodomain-containing proteins shows that 31 is a highly selective inhibitor of BET proteins. Our data show that 31 is a potent, selective, and orally active BET inhibitor.« less

  11. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    PubMed

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  12. Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts.

    PubMed

    Kachhadia, Virendra; Rajagopal, Sridharan; Ponpandian, Thanasekaran; Vignesh, Radhakrishnan; Anandhan, Karnambaram; Prabhu, Daivasigamani; Rajendran, Praveen; Nidhyanandan, Saranya; Roy, Anshu Mittal; Ahamed, Fakrudeen Ali; Surendran, Narayanan; Rajagopal, Sriram; Narayanan, Shridhar; Gopalan, Balasubramanian

    2016-01-27

    Herein we report the synthesis and activity of a novel class of HDAC inhibitors based on 2, 3-diphenyl acrylic acid derivatives. The compounds in this series have shown to be potent HDAC inhibitors possessing significant antiproliferative activity. Further compounds in this series were subjected to metabolic stability in human liver microsomes (HLM), mouse liver microsomes (MLM), and exhibits promising stability in both. These efforts culminated with the identification of a developmental candidate (5a), which displayed desirable PK/PD relationships, significant efficacy in the xenograft models and attractive ADME profiles. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealedmore » the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.« less

  14. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

    PubMed Central

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos

    2005-01-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 μM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS. PMID:16251317

  15. Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo.

    PubMed

    Plonka, P M; Handjiski, B; Michalczyk, D; Popik, M; Paus, R

    2006-07-01

    C57BL/6 a/a mice have been widely used to study melanogenesis, including in electron paramagnetic resonance (EPR) studies. Zinc cations modulate melanogenesis, but the net effect of Zn2+ in vivo is unclear, as the reported effects of Zn2+ on melanogenesis are ambiguous: zinc inhibits tyrosinase and glutathione reductase in vitro, but also enhances the activity of dopachrome tautomerase (tyrosinase-related protein-2) and has agonistic effects on melanocortin receptor signalling. To determine in a C57BL/6 a/a murine pilot study whether excess zinc ions inhibit, enhance or in any other way alter hair follicle melanogenesis in vivo, and to test the usefulness of EPR for this study. ZnSO(4).7H2O was continuously administered orally to C57BL/6 a/a mice during spontaneous and depilation-induced hair follicle cycling (20 mg mL-1; in drinking water; mean+/-SD daily dose 1.2+/-0.53 mL), and hair pigmentation was examined macroscopically, by routine histology and by EPR. Oral zinc cations induced a bright brown lightening of new hair shafts produced during anagen, but without inducing an EPR-detectable switch from eumelanogenesis to phaeomelanogenesis. The total content of melanin in the skin and hair shafts during the subsequent telogen phase, i.e. after completion of a full hair cycle, was significantly reduced in Zn-treated mice (P=0.0005). Compared with controls, melanin granules in precortical hair matrix keratinocytes, hair bulb melanocytes and hair shafts of zinc-treated animals were reduced and poorly pigmented. Over the course of several hair cycles, lasting hair shaft depigmentation was seen during long-term exposure to high-dose oral Zn2+. High-dose oral Zn2+ is a potent downregulator of eumelanin content in murine hair shafts in vivo. The C57BL/6 mouse model offers an excellent tool for further dissecting the as yet unclear underlying molecular basis of this phenomenon, while EPR technology is well suited for the rapid, qualitative and quantitative monitoring of

  16. Potent and Orally Bioavailable GPR142 Agonists as Novel Insulin Secretagogues for the Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    GPR142 is a G protein-coupled receptor that is predominantly expressed in pancreatic β-cells. GPR142 agonists stimulate insulin secretion in the presence of high glucose concentration, so that they could be novel insulin secretagogues with reduced or no risk of hypoglycemia. We report here the optimization of HTS hit compound 1 toward a proof of concept compound 33, which showed potent glucose lowering effects during an oral glucose tolerance test in mice and monkeys. PMID:24900747

  17. Discovery of 4-((3'R,4'S,5'R)-6″-Chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2″-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3″-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development.

    PubMed

    Aguilar, Angelo; Lu, Jianfeng; Liu, Liu; Du, Ding; Bernard, Denzil; McEachern, Donna; Przybranowski, Sally; Li, Xiaoqin; Luo, Ruijuan; Wen, Bo; Sun, Duxin; Wang, Hengbang; Wen, Jianfeng; Wang, Guangfeng; Zhai, Yifan; Guo, Ming; Yang, Dajun; Wang, Shaomeng

    2017-04-13

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure-activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (K i < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment.

  18. Imidazoquinoxaline Src-family kinase p56Lck inhibitors: SAR, QSAR, and the discovery of (S)-N-(2-chloro-6-methylphenyl)-2-(3-methyl-1-piperazinyl)imidazo- [1,5-a]pyrido[3,2-e]pyrazin-6-amine (BMS-279700) as a potent and orally active inhibitor with excellent in vivo antiinflammatory activity.

    PubMed

    Chen, Ping; Doweyko, Arthur M; Norris, Derek; Gu, Henry H; Spergel, Steven H; Das, Jagabundhu; Moquin, Robert V; Lin, James; Wityak, John; Iwanowicz, Edwin J; McIntyre, Kim W; Shuster, David J; Behnia, Kamelia; Chong, Saeho; de Fex, Henry; Pang, Suhong; Pitt, Sydney; Shen, Ding Ren; Thrall, Sara; Stanley, Paul; Kocy, Octavian R; Witmer, Mark R; Kanner, Steven B; Schieven, Gary L; Barrish, Joel C

    2004-08-26

    A series of novel anilino 5-azaimidazoquinoxaline analogues possessing potent in vitro activity against p56Lck and T cell proliferation have been discovered. Subsequent SAR studies led to the identification of compound 4 (BMS-279700) as an orally active lead candidate that blocks the production of proinflammatory cytokines (IL-2 and TNFalpha) in vivo. In addition, an expanded set of imidazoquinoxalines provided several descriptive QSAR models highlighting the influence of significant steric and electronic features. The H-bonding (Met319) contribution to observed binding affinities within a tightly congeneric series was found to be significant.

  19. Trifluorothymidine exhibits potent antitumor activity via the induction of DNA double-strand breaks.

    PubMed

    Suzuki, Norihiko; Nakagawa, Fumio; Nukatsuka, Mamoru; Fukushima, Masakazu

    2011-05-01

    TAS-102 is an oral anticancer drug composed of trifluorothymidine (TFT) and TPI (an inhibitor of thymidine phosphorylase that strongly inhibits the biodegradation of TFT). Similar to 5-fluorouracil (5FU) and 5-fluoro-2'-deoxyuridine (FdUrd), TFT also inhibits thymidylate synthase (TS), a rate-limiting enzyme of DNA biosynthesis, and is incorporated into DNA. TFT exhibits an anticancer effect on colorectal cancer cells that have acquired 5FU and/or FdUrd resistance as a result of the overexpression of TS. Therefore, we examined the mode of action of TFT-induced DNA damage after its incorporation into DNA. When HeLa cells were treated with TFT, the number of ring-open aldehyde forms at apurinic/apyrimidinic sites increased in a dose-dependent manner, although we previously reported that no detectable excisions of TFT paired to adenine were observed using uracil DNA glycosylases, thymine DNA glycosylase or methyl-CpG binding domain 4 and HeLa whole cell extracts. To investigate the functional mechanism of TFT-induced DNA damage, we measured the phosphorylation of ATR, ATM, BRCA2, chk1 and chk2 in nuclear extracts of HeLa cells after 0, 24, 48 or 72 h of exposure to an IC(50) concentration of TFT, FdUrd or 5FU using Western blot analysis or an enzyme-linked immunosorbent assay (ELISA). Unlike FdUrd and 5FU, TFT resulted in an earlier phosphorylation of ATR and chk1 proteins after only 24 h of exposure, while phosphorylated ATM, BRCA2 and chk2 proteins were detected after more than 48 h of exposure to TFT. These results suggest that TFT causes single-strand breaks followed by double-strand breaks in the DNA of TFT-treated cells. TFT (as TAS-102) showed a more potent antitumor activity than oral 5FU on CO-3 colon cancer xenografts in mice, and such antitumor potency was supported by the increased number of double-strand breaks occurring after single-strand breaks in the DNA of the TFT-treated tumors. These results suggest that TFT causes single-strand breaks after its

  20. Novel orally active growth hormone secretagogues.

    PubMed

    Hansen, T K; Ankersen, M; Hansen, B S; Raun, K; Nielsen, K K; Lau, J; Peschke, B; Lundt, B F; Thøgersen, H; Johansen, N L; Madsen, K; Andersen, P H

    1998-09-10

    A novel class of growth hormone-releasing compounds with a molecular weight in the range from 500 to 650 has been discovered. The aim of this study was to obtain growth hormone secretagogues with oral bioavailability. By a rational approach we were able to reduce the size of the lead compound ipamorelin (4) and simultaneously to reduce hydrogen-bonding potential by incorporation of backbone isosters while retaining in vivo potency in swine. A rat pituitary assay was used for screening of all compounds and to evaluate which compounds should be tested further for in vivo potency in swine and oral bioavailability, fpo, in dogs. Most of the tested compounds had fpo in the range of 10-55%. In vivo potency in swine after iv dosing is reported, and ED50 was found to be 30 nmol/kg of body weight for the most potent compound.

  1. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships.

    PubMed

    Starr, Charles G; Maderdrut, Jerome L; He, Jing; Coy, David H; Wimley, William C

    2018-06-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.; Wang, L.; Beconi, M.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  3. Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2.

    PubMed

    Zou, Li-Wei; Li, Yao-Guang; Wang, Ping; Zhou, Kun; Hou, Jie; Jin, Qiang; Hao, Da-Cheng; Ge, Guang-Bo; Yang, Ling

    2016-04-13

    Human carboxylesterase 2 (hCE2), one of the major carboxylesterases in the human intestine and various tumour tissues, plays important roles in the oral bioavailability and treatment outcomes of ester- or amide-containing drugs or prodrugs, such as anticancer agents CPT-11 (irinotecan) and LY2334737 (gemcitabine). In this study, 18β-glycyrrhetinic acid (GA), the most abundant pentacyclic triterpenoid from natural source, was selected as a reference compound for the development of potent and specific inhibitors against hCE2. Simple semi-synthetic modulation on GA was performed to obtain a series of GA derivatives. Structure-activity relationship analysis brought novel insights into the structure modification of GA. Converting the 11-oxo-12-ene of GA to 12-diene moiety, and C-3 hydroxyl and C-30 carboxyl group to 3-O-β-carboxypropionyl and ethyl ester respectively, led to a significant enhancement of the inhibitory effect on hCE2 and the selectivity over hCE1. These exciting findings inspired us to design and synthesize the more potent compound 15 (IC50 0.02 μM) as a novel and highly selective inhibitor against hCE2, which was 3463-fold more potent than the parent compound GA and demonstrated excellent selectivity (>1000-fold over hCE1). The molecular docking study of compound 15 and the active site of hCE1 and hCE2 demonstrated that the potent and selective inhibition of compound 15 toward hCE2 could partially be attributed to its relatively stronger interactions with hCE2 than with hCE1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Review of the spectrum and potency of orally administered cephalosporins and amoxicillin/clavulanate.

    PubMed

    Sader, Helio S; Jacobs, Michael R; Fritsche, Thomas R

    2007-03-01

    The antimicrobial spectrum and in vitro potency of the most frequently prescribed orally administered cephalosporins (cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, cephalexin) and amoxicillin/clavulanate are reviewed. These beta-lactam agents have been widely used in the outpatient arena for the treatment of community-acquired respiratory tract and other mild-to-moderate infections. The data presented here were obtained from critical review articles on each of these compounds. Cephalexin and cefaclor were among the least potent and had the narrowest antimicrobial spectrums against the pathogens evaluated. In contrast, cefdinir, cefpodoxime, cefprozil, and cefuroxime were highly active against penicillin-susceptible Streptococcus pneumoniae and retained some activity against penicillin-intermediate strains, whereas amoxicillin/clavulanate was the most active against S. pneumoniae, including most penicillin nonsusceptible strains. Amoxicillin/clavulanate and cefdinir were the most potent compounds against methicillin (oxacillin)-susceptible Staphylococcus aureus, whereas cefpodoxime was the most potent compound against Haemophilus influenzae. Amoxicillin/clavulanate, cefdinir, and cefpodoxime were also active against Moraxella catarrhalis, including beta-lactamase-producing strains. In summary, orally administered "3rd-generation" or extended spectrum cephalosporins exhibited more balanced spectrums of activity against the principal bacterial pathogens responsible for outpatient respiratory tract and other infections when compared with other widely used oral cephalosporins of earlier generations or amoxicillin alone.

  5. Discovery of potent and selective CDK8 inhibitors through FBDD approach.

    PubMed

    Han, Xingchun; Jiang, Min; Zhou, Chengang; Zhou, Zheng; Xu, Zhiheng; Wang, Lisha; Mayweg, Alexander V; Niu, Rui; Jin, Tai-Guang; Yang, Song

    2017-09-15

    A fragment library screen was carried out to identify starting points for novel CDK8 inhibitors. Optimization of a fragment hit guided by co-crystal structures led to identification of a novel series of potent CDK8 inhibitors which are highly ligand efficient, kinase selective and cellular active. Compound 16 was progressed to a mouse pharmacokinetic study and showed good oral bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide.

    PubMed

    Dupont, Aline; Kaconis, Yani; Yang, Ines; Albers, Thorben; Woltemate, Sabrina; Heinbockel, Lena; Andersson, Mats; Suerbaum, Sebastian; Brandenburg, Klaus; Hornef, Mathias W

    2015-02-01

    Antimicrobial peptides (AMP) provide protection from infection by pathogenic microorganisms and restrict bacterial growth at epithelial surfaces to maintain mucosal homeostasis. In addition, they exert a significant anti-inflammatory activity. Here we analysed the anatomical distribution and biological activity of an orally administered AMP in the context of bacterial infection and host-microbial homeostasis. The anatomical distribution as well as antibacterial and anti-inflammatory activity of the endogenous AMP cryptdin 2 and the synthetic peptide Pep19-2.5 at the enteric mucosal surface were analysed by immunostaining, functional viability and stimulation assays, an oral Salmonella enterica subsp. enterica sv. Typhimurium (S. Typhimurium) model and comparative microbiota analysis. Endogenous cryptdin 2 was found attached to bacteria of the enteric microbiota within the intestinal mucus layer. Similarly, the synthetic peptide Pep19-2.5 attached rapidly to bacterial cells, exhibited a marked affinity for the intestinal mucus layer in vivo, altered the structural organisation of endotoxin in a mucus matrix and demonstrated potent anti-inflammatory and antibacterial activity. Oral Pep19-2.5 administration induced significant changes in the composition of the enteric microbiota as determined by high-throughput 16S rDNA sequencing. This may have contributed to the only transient improvement of the clinical symptoms after oral infection with S. Typhimurium. Our findings demonstrate the anti-inflammatory activity and mucus affinity of the synthetic AMP Pep19-2.5 and characterise the influence on microbiota composition and enteropathogen infection after oral administration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.

    2008-06-30

    A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds withmore » subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.« less

  8. Trifluorothymidine exhibits potent antitumor activity via the induction of DNA double-strand breaks

    PubMed Central

    SUZUKI, NORIHIKO; NAKAGAWA, FUMIO; NUKATSUKA, MAMORU; FUKUSHIMA, MASAKAZU

    2011-01-01

    TAS-102 is an oral anticancer drug composed of trifluorothymidine (TFT) and TPI (an inhibitor of thymidine phosphorylase that strongly inhibits the biodegradation of TFT). Similar to 5-fluorouracil (5FU) and 5-fluoro-2′-deoxyuridine (FdUrd), TFT also inhibits thymidylate synthase (TS), a rate-limiting enzyme of DNA biosynthesis, and is incorporated into DNA. TFT exhibits an anticancer effect on colorectal cancer cells that have acquired 5FU and/or FdUrd resistance as a result of the overexpression of TS. Therefore, we examined the mode of action of TFT-induced DNA damage after its incorporation into DNA. When HeLa cells were treated with TFT, the number of ring-open aldehyde forms at apurinic/apyrimidinic sites increased in a dose-dependent manner, although we previously reported that no detectable excisions of TFT paired to adenine were observed using uracil DNA glycosylases, thymine DNA glycosylase or methyl-CpG binding domain 4 and HeLa whole cell extracts. To investigate the functional mechanism of TFT-induced DNA damage, we measured the phosphorylation of ATR, ATM, BRCA2, chk1 and chk2 in nuclear extracts of HeLa cells after 0, 24, 48 or 72 h of exposure to an IC50 concentration of TFT, FdUrd or 5FU using Western blot analysis or an enzyme-linked immunosorbent assay (ELISA). Unlike FdUrd and 5FU, TFT resulted in an earlier phosphorylation of ATR and chk1 proteins after only 24 h of exposure, while phosphorylated ATM, BRCA2 and chk2 proteins were detected after more than 48 h of exposure to TFT. These results suggest that TFT causes single-strand breaks followed by double-strand breaks in the DNA of TFT-treated cells. TFT (as TAS-102) showed a more potent antitumor activity than oral 5FU on CO-3 colon cancer xenografts in mice, and such antitumor potency was supported by the increased number of double-strand breaks occurring after single-strand breaks in the DNA of the TFT-treated tumors. These results suggest that TFT causes single-strand breaks after its

  9. Activity and safety of the antiestrogen EM-800, the orally active precursor of acolbifene, in tamoxifen-resistant breast cancer.

    PubMed

    Labrie, Fernand; Champagne, Pierre; Labrie, Claude; Roy, Jean; Laverdière, Jacques; Provencher, Louise; Potvin, Martin; Drolet, Yvan; Pollak, Michael; Panasci, Lawrence; L'Espérance, Bernard; Dufresne, Jean; Latreille, Jean; Robert, Jean; Samson, Benoît; Jolivet, Jacques; Yelle, Louise; Cusan, Lionel; Diamond, Pierre; Candas, Bernard

    2004-03-01

    To determine the efficacy and safety of EM-800 (SCH-57050), the precursor of acolbifene, a new, highly potent, orally active, pure antiestrogen in the mammary gland and endometrium, for the treatment of tamoxifen-resistant breast cancer. Forty-three post menopausal/ovariectomized women with breast cancer who had received tamoxifen, either for metastatic disease or as adjuvant to surgery for > or = 1 year, and had relapsed were treated in a prospective, multicenter, phase II study with EM-800 (20 mg/d [n = 21] or 40 mg/d [n = 22] orally). Results Thirty-seven patients had estrogen receptor (ER)-positive tumors (>10 fmol/mg; mean, 146 fmol/mg cytosolic protein), three patients had ER-negative/progesterone receptor-positive tumors, and three patients had undetermined ER status. The objective response rate to EM-800 was 12%, with one complete response and four partial responses. Ten patients (23%) had stable disease for > or = 3 months, and 7 patients (16%) had stable disease for > or = 6 months. With a median follow-up of 29 months, median duration of response was 8 months (range, 7 to 71+ months). Treatment with EM-800 was well tolerated. No significant adverse events related to the study drug were observed clinically or biochemically. EM-800 produced responses in a significant proportion of patients with tamoxifen-resistant breast cancer, thus showing that this highly potent, selective estrogen receptor modulator, which lacks estrogenic activity in the mammary gland and endometrium, has incomplete cross-resistance with tamoxifen, thus suggesting additional benefits in the treatment of breast cancer.

  10. Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy

    PubMed Central

    Faisal, Amir; Mak, Grace W Y; Gurden, Mark D; Xavier, Cristina P R; Anderhub, Simon J; Innocenti, Paolo; Westwood, Isaac M; Naud, Sébastien; Hayes, Angela; Box, Gary; Valenti, Melanie R; De Haven Brandon, Alexis K; O'Fee, Lisa; Schmitt, Jessica; Woodward, Hannah L; Burke, Rosemary; vanMontfort, Rob L M; Blagg, Julian; Raynaud, Florence I; Eccles, Suzanne A; Hoelder, Swen; Linardopoulos, Spiros

    2017-01-01

    Background: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. Methods: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. Results: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. Conclusions: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850. PMID:28334731

  11. Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy.

    PubMed

    Faisal, Amir; Mak, Grace W Y; Gurden, Mark D; Xavier, Cristina P R; Anderhub, Simon J; Innocenti, Paolo; Westwood, Isaac M; Naud, Sébastien; Hayes, Angela; Box, Gary; Valenti, Melanie R; De Haven Brandon, Alexis K; O'Fee, Lisa; Schmitt, Jessica; Woodward, Hannah L; Burke, Rosemary; vanMontfort, Rob L M; Blagg, Julian; Raynaud, Florence I; Eccles, Suzanne A; Hoelder, Swen; Linardopoulos, Spiros

    2017-04-25

    The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850.

  12. Discovery of 4-((3′R,4′S,5′R)-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development

    PubMed Central

    2017-01-01

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure–activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (Ki < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment. PMID:28339198

  13. 6-Gingerol Mediates its Anti Tumor Activities in Human Oral and Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest.

    PubMed

    Kapoor, Vaishali; Aggarwal, Sadhna; Das, Satya N

    2016-04-01

    6-Gingerol, a potent nutraceutical, has been shown to have antitumor activity in different tumors, although its mechanism of action is not well understood. In this study, we evaluated antitumor activities of 6-gingerol on human oral (SCC4, KB) and cervical cancer (HeLa) cell lines with or without wortmannin, rapamycin, and cisplatin. Tumor cell proliferation was observed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium, inner salt assay, cell cycle analysis by propidium iodide labeling and flow cytometry, apoptosis by Annexin-V binding assay, and caspase activity by chemiluminescence assay. 6-Gingerol showed dose-dependent cytotoxicity in all three cell lines. Combinations of 6-gingerol with wortmannin and cisplatin showed additive effects, while with rapamycin, it showed 50% cytotoxicity that was equivalent to IC50 of 6-gingerol alone. Treatment with 6-gingerol resulted in G2-phase arrest in KB and HeLa cells and S-phase arrest in SCC4 cells. 6-Gingerol, wortmannin, and rapamycin treatment showed almost two-fold higher expression of caspase 3 in all cell lines. The results imply that 6-gingerol either alone or in combination with PI-3 K inhibitor and cisplatin may provide better therapeutic effects in oral and cervical carcinoma. Thus, 6-gingerol appears to be a safe and potent chemotherapeutic/chemopreventive compound acting through cell cycle arrest and induction of apoptosis in human oral and cervical tumor cells. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist

    PubMed Central

    Li, Ying; Zheng, Xuemin; Yi, Xiulin; Liu, Changxiao; Kong, Dexin; Zhang, Jianning; Gong, Min

    2017-01-01

    The physiologic properties of glucagon-like peptide 1 (GLP-1) make it a potent candidate drug target in the treatment of type 2 diabetes mellitus (T2DM). GLP-1 is capable of regulating the blood glucose level by insulin secretion after administration of oral glucose. The advantages of GLP-1 for the avoidance of hypoglycemia and the control of body weight are attractive despite its poor stability. The clinical efficacies of long-acting GLP-1 derivatives strongly support discovery pursuits aimed at identifying and developing orally active, small-molecule GLP-1 receptor (GLP-1R) agonists. The purpose of this study was to identify and characterize a novel oral agonist of GLP-1R (i.e., myricetin). The insulinotropic characterization of myricetin was performed in isolated islets and in Wistar rats. Long-term oral administration of myricetin demonstrated glucoregulatory activity. The data in this study suggest that myricetin might be a potential drug candidate for the treatment of T2DM as a GLP-1R agonist. Further structural modifications on myricetin might improve its pharmacology and pharmacokinetics.—Li, Y., Zheng, X., Yi, X., Liu, C., Kong, D., Zhang, J., Gong, M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. PMID:28270518

  15. Potent and Selective Amidopyrazole Inhibitors of IRAK4 That Are Efficacious in a Rodent Model of Inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, William T.; Tan, Zheng; Ho, Ginny

    IRAK4 is a critical upstream kinase in the IL-1R/TLR signaling pathway. Inhibition of IRAK4 is hypothesized to be beneficial in the treatment of autoimmune related disorders. A screening campaign identified a pyrazole class of IRAK4 inhibitors that were determined by X-ray crystallography to exhibit an unusual binding mode. SAR efforts focused on the identification of a potent and selective inhibitor with good aqueous solubility and rodent pharmacokinetics. Pyrazole C-3 piperidines were well tolerated, with N-sulfonyl analogues generally having good rodent oral exposure but poor solubility. N-Alkyl piperidines exhibited excellent solubility and reduced exposure. Pyrazoles possessing N-1 pyridine and fluorophenyl substituentsmore » were among the most active. Piperazine 32 was a potent enzyme inhibitor with good cellular activity. Compound 32 reduced the in vivo production of proinflammatory cytokines and was orally efficacious in a mouse antibody induced arthritis disease model of inflammation.« less

  16. Discovery of orally active hepatoselective glucokinase activators for treatment of Type II Diabetes Mellitus.

    PubMed

    Xu, Jiayi; Lin, Songnian; Myers, Robert W; Trujillo, Maria E; Pachanski, Michele J; Malkani, Sunita; Chen, Hsuan-Shen; Chen, Zhesheng; Campbell, Brian; Eiermann, George J; Elowe, Nadine; Farrer, Brian T; Feng, Wen; Fu, Qinghong; Kats-Kagan, Roman; Kavana, Michael; McMasters, Daniel R; Mitra, Kaushik; Tong, Xinchun; Xu, Libo; Zhang, Fengqi; Zhang, Rui; Addona, George H; Berger, Joel P; Zhang, Bei; Parmee, Emma R

    2017-05-01

    Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic β-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia. Copyright © 2016. Published by Elsevier Ltd.

  17. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.

    PubMed

    Krishnan, Navasona; Konidaris, Konstantis F; Gasser, Gilles; Tonks, Nicholas K

    2018-02-02

    The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    PubMed

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammirati, Mark J.; Andrews, Kim M.; Boyer, David D.

    2010-10-01

    A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC{sub 50} = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.

  20. Lipophilization of somatostatin analog RC-160 with long chain fatty acid improves its anti-proliferative activity on human oral carcinoma cells in vitro.

    PubMed

    Dasgupta, P; Singh, A T; Mukherjee, R

    2000-03-01

    Oral cancer which comprises about 40% of total cancers in India, has one of the lowest relative survival rates of all cancers. Epidermal growth factor (EGF) has been known to play a role in the proliferation/malignant transformation of oral neoplasms. Since, the somatostatin analog RC-160 is reported to be a potent inhibitor of EGF stimulated cell proliferation, its anti-proliferative activity in the human oral carcinoma cell line KB was investigated, in this study. RC-160 was found to potently inhibit EGF-induced proliferation in KB cells in vitro, suggesting a therapeutic potential of the same in oral carcinoma. However, the therapeutic potential of RC-160 is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid individually were coupled to RC-160. The lipophilized derivatives of RC-160 were synthesized, purified and characterized. The anti-proliferative activity of lipophilized derivatives of RC-160 on KB cells was evaluated in vitro. Myristoyl-RC-160 (0.75 nM) inhibited the growth of KB cells at a 10-fold lower concentration relative to RC-160 (8.8 nM) and at a 100-fold lower concentration relative to butanoyl-RC-160 (0.83 microM) (p<0.001). The affinity of RC-160 towards somatostatin receptors remains unaltered by lipophilization. The signaling pathways underlying the antineoplastic activity of these lipopeptides are similar to RC-160, and do not involve the stimulation of a protein tyrosine phosphatase or a serine threonine phosphatase 1A and 2A. The anti-proliferative activity of the lipopeptides was found to be mediated by somatostatin receptors and correlates with the inhibition of protein tyrosine kinase activity and decrease in intracellular cAMP levels. Myristoyl-RC-160 displayed significantly greater resistance towards trypsin and serum degradation than RC-160 (p<0.01). These findings demonstrate that RC-160 can inhibit the growth of oral cancer cells in vitro. Lipophilization of RC-160

  1. Improved anticoagulant effect of fucosylated chondroitin sulfate orally administered as gastro-resistant tablets.

    PubMed

    Fonseca, Roberto J C; Sucupira, Isabela D; Oliveira, Stephan Nicollas M C G; Santos, Gustavo R C; Mourão, Paulo A S

    2017-04-03

    Fucosylated chondroitin sulfate (FucCS) is a potent anticoagulant polysaccharide extracted from sea cucumber. Its anticoagulant activity is attributed to the presence of unique branches of sulfated fucose. Although this glycosaminoglycan exerts an antithrombotic effect following oral administration, high doses are necessary to achieve the maximum effect. The diminished activity of FucCS following oral administration is likely due to its degradation in the gastrointestinal tract and its limited ability to cross the intestinal cell membranes. The latter aspect is particularly difficult to overcome. However, gastro-resistant tablet formulation may help limit the degradation of FucCS in the gastrointestinal tract. In the present work, we found that the oral administration of FucCS as gastro-resistant tablets produces a more potent and prolonged anticoagulant effect compared with its administration as an aqueous solution, with no significant changes in the bleeding tendency or arterial blood pressure. Experiments using animal models of arterial thrombosis initiated by endothelial injury demonstrated that FucCS delivered as gastro-protective tablets produced a potent antithrombotic effect, whereas its aqueous solution was ineffective. However, there was no significant difference between the effects of FucCS delivered as gastro-resistant tablets or as aqueous solution in a venous thrombosis model, likely due to the high dose of thromboplastin used. New oral anticoagulants tested in these experimental models for comparison showed significantly increased bleeding tendencies. Our study provides a framework for developing effective oral anticoagulants based on sulfated polysaccharides from marine organisms. The present results suggest that FucCS is a promising oral anticoagulant.

  2. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  3. Discovery of Tetrahydropyrazolopyridine as Sphingosine 1-Phosphate Receptor 3 (S1P3)-Sparing S1P1 Agonists Active at Low Oral Doses.

    PubMed

    Demont, Emmanuel H; Bailey, James M; Bit, Rino A; Brown, Jack A; Campbell, Colin A; Deeks, Nigel; Dowell, Simon J; Eldred, Colin; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Hirst, David J; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Renaux, Jessica F; Seal, Gail A L; Smethurst, Chris A; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason

    2016-02-11

    FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines.

  4. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  5. Pharmacological characterization of hydrolysis-resistant analogs of oleoylethanolamide with potent anorexiant properties.

    PubMed

    Astarita, Giuseppe; Di Giacomo, Barbara; Gaetani, Silvana; Oveisi, Fariba; Compton, Timothy R; Rivara, Silvia; Tarzia, Giorgio; Mor, Marco; Piomelli, Daniele

    2006-08-01

    Oleoylethanolamide (OEA) is an endogenous lipid mediator that reduces food intake, promotes lipolysis, and decreases body weight gain in rodents by activating peroxisome proliferator-activated receptor-alpha (PPAR-alpha). The biological effects of OEA are terminated by two intracellular lipid hydrolase enzymes, fatty-acid amide hydrolase and N-acylethanolamine-hydrolyzing acid amidase. In the present study, we describe OEA analogs that resist enzymatic hydrolysis, activate PPAR-alpha with high potency in vitro, and persistently reduce feeding when administered in vivo either parenterally or orally. The most potent of these compounds, (Z)-(R)-9-octadecenamide,N-(2-hydroxyethyl,1-methyl) (KDS-5104), stimulates transcriptional activity of PPAR-alpha with a half-maximal effective concentration (EC50) of 100 +/- 21 nM (n = 11). Parenteral administration of KDS-5104 in rats produces persistent dose-dependent prolongation of feeding latency and postmeal interval (half-maximal effective dose, ED50 = 2.4 +/- 1.8 mg kg(-1) i.p.; n = 18), as well as increased and protracted tissue exposure compared with OEA. Oral administration of the compound also results in a significant tissue exposure and reduction of food intake in free-feeding rats. These results suggest that the endogenous high-affinity PPAR-alpha agonist OEA may provide a scaffold for the discovery of novel orally active PPAR-alpha ligands.

  6. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity.

    PubMed

    Yamamoto, K; Uchida, S; Kitano, K; Fukuhara, N; Okumura-Kitajima, L; Gunji, E; Kozakai, A; Tomoike, H; Kojima, N; Asami, J; Toyoda, H; Arai, M; Takahashi, T; Takahashi, K

    2011-09-01

    The renal sodium-glucose cotransporter 2 (SGLT2) plays an important role in the reuptake of filtered glucose in the proximal tubule and therefore may be an attractive target for the treatment of diabetes mellitus. This study characterizes the pharmacological profile of TS-071 ((1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol hydrate), a novel SGLT2 inhibitor in vitro and in vivo. Inhibition of glucose uptake by TS-071 was studied in CHO-K1 cells stably expressing either human SGLT1 or SGLT2. Single oral dosing studies were performed in rats, mice and dogs to assess the abilities of TS-071 to increase urinary glucose excretion and to lower plasma glucose levels. TS-071 inhibited SGLT2 activity in a concentration-dependent manner and was a potent and highly selective inhibitor of SGLT2. Orally administered TS-071 increased urinary glucose excretion in Zucker fatty rats and beagle dogs at doses of 0.3 and 0.03 mg·kg(-1) respectively. TS-071 improved glucose tolerance in Zucker fatty rats without stimulating insulin secretion and reduced hyperglycaemia in streptozotocin (STZ)-induced diabetic rats and db/db mice at a dose of 0.3 mg·kg(-1). These data indicate that TS-071 is a potent and selective SGLT2 inhibitor that improves glucose levels in rodent models of type 1 and 2 diabetes and may be useful for the treatment for diabetes mellitus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Synthesis and structure-activity relationship of dicationic diaryl ethers as novel potent anti-MRSA and anti-VRE agents.

    PubMed

    Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman

    2009-08-15

    A series of dicationic diaryl ethers have been synthesized and evaluated for in vitro antibacterial activities, including drug resistant bacterial strains. Most of these compounds have shown potent antibacterial activities. Several compounds, such as piperidinyl and thiomorpholinyl compounds 9e and 9l, improved the antimicrobial selectivity and kept potent anti-MRSA and anti-VRE activity. The most potent bis-indole diphenyl ether 19 exhibited anti-MRSA MIC value of 0.06 microg/mL and enhanced antimicrobial selectivity.

  8. Peptide fragments of a beta-defensin derivative with potent bactericidal activity.

    PubMed

    Reynolds, Natalie L; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R

    2010-05-01

    Beta-defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine beta-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this beta-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide.

  9. In vitro evaluation of tigemonam, a novel oral monobactam.

    PubMed Central

    Tanaka, S K; Summerill, R A; Minassian, B F; Bush, K; Visnic, D A; Bonner, D P; Sykes, R B

    1987-01-01

    Tigemonam, a novel, orally administered monobactam, exhibited potent and specific activity in vitro against members of the family Enterobacteriaceae, Haemophilus influenzae, and Neisseria gonorrhoeae. Its activity was variable to poor against gram-positive bacteria, Acinetobacter spp., Pseudomonas aeruginosa, and anaerobes. Within its spectrum of activity, tigemonam was far superior to oral antibiotics currently available, including amoxicillin-clavulanic acid, cefaclor, and trimethoprim-sulfamethoxazole. In addition, tigemonam was superior to cefuroxime, which is under development as an oral pro-drug, and more active than cefixime against several genera of the Enterobacteriaceae. The activity of tigemonam against the enteric bacteria, Haemophilus species, and Neisseria species was, in general, comparable to that of the quinolone norfloxacin. The excellent activity of tigemonam against beta-lactamase-producing bacteria reflected its marked stability to hydrolysis by isolated enzymes. The expanded spectrum of activity against gram-negative bacteria observed with tigemonam thus extends oral beta-lactam coverage to include members of the Enterobacteriaceae that are intrinsically or enzymatically resistant to broad-spectrum penicillins and cephalosporins. PMID:3105448

  10. Potent Activity of Ponatinib (AP24534) in Models of FLT3-Driven Acute Myeloid Leukemia and Other Hematologic Malignancies

    PubMed Central

    Gozgit, Joseph M.; Wong, Matthew J.; Wardwell, Scott; Tyner, Jeffrey W.; Loriaux, Marc M.; Mohemmad, Qurish K.; Narasimhan, Narayana I.; Shakespeare, William C.; Wang, Frank; Druker, Brian J.; Clackson, Tim; Rivera, Victor M.

    2011-01-01

    Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD+/+) but not RS4;11 (FLT3-ITD−/−) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD–driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα. PMID:21482694

  11. JB-9322, a new selective histamine H2-receptor antagonist with potent gastric mucosal protective properties.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; Román, L S

    1995-05-01

    1. JB-9322 is a selective histamine H2-receptor antagonist with gastric antisecretory activity and mucosal protective properties. 2. The affinity of JB-9322 for the guinea-pig atria histamine H2-receptor was approximately 2 times greater than that of ranitidine. 3. In vivo, the ID50 value for the inhibition of gastric acid secretion in pylorus-ligated rats was 5.28 mg kg-1 intraperitoneally. JB-9322 also dose-dependently inhibited gastric juice volume and pepsin secretion. In gastric lumen-perfused rats, intravenous injection of JB-9322 dose-dependently reduced histamine-, pentagastrin- and carbachol-stimulated gastric acid secretion. 4. JB-9322 showed antiulcer activity against aspirin and indomethacin-induced gastric lesions and was more potent than ranitidine. 5. JB-9322 effectively inhibited macroscopic gastric haemorrhagic lesions induced by ethanol. Intraperitoneal injection was effective in preventing the lesions as well as oral treatment. The oral ID50 value for these lesions was 1.33 mg kg-1. By contrast, ranitidine (50 mg kg-1) failed to reduce these lesions. In addition, the protective effect of JB-9322 was independent of prostaglandin synthesis. 6. These results indicate that JB-9322 is a new antiulcer drug that exerts a potent cytoprotective effect in addition to its gastric antisecretory activity.

  12. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  13. Novel indole sulfides as potent HIV-1 NNRTIs.

    PubMed

    Brigg, Siobhan; Pribut, Nicole; Basson, Adriaan E; Avgenikos, Moscos; Venter, Reinhardt; Blackie, Margaret A; van Otterlo, Willem A L; Pelly, Stephen C

    2016-03-15

    In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori

    Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway bymore » partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.« less

  15. A new protoberberine alkaloid from Meconopsis simplicifolia (D. Don) Walpers with potent antimalarial activity against a multidrug resistant Plasmodium falciparum strain.

    PubMed

    Wangchuk, Phurpa; Phurpa, Wangchuk; Keller, Paul A; Pyne, Stephen G; Lie, Wilford; Willis, Anthony C; Rattanajak, Roonglawan; Kamchonwongpaisan, Sumalee

    2013-12-12

    The aerial components of Meconopsis simplicifolia (D. Don) Walpers are indicated in Bhutanese traditional medicine for treating malaria, coughs and colds, and the infections of the liver, lung and blood. This study is to validate the ethnopharmacological uses of this plant and also identify potent antimalarial drug leads through bioassays of its crude extracts and phytochemical constituents. Meconopsis simplicifolia (D. Don) Walpers was collected from Bhutan and its crude MeOH extract was subjected to acid-base fractionation. Through repeated extractions, separations and spectroscopic analysis, the alkaloids obtained were identified and tested for their antimalarial and cytotoxicity activities. Phytochemical studies resulted in the isolation of one new protoberberine type alkaloid which we named as simplicifolianine and five known alkaloids: protopine, norsanguinarine, dihydrosanguinarine, 6-methoxydihydrosanguinarine and oxysanguinarine. Among the five of the alkaloids tested, simplicifolianine showed the most potent antiplasmodial activities against the Plasmodium falciparum strains, TM4/8.2 (chloroquine-antifolate sensitive strain) and K1CB1 (multidrug resistant strain) with IC50 values of 0.78 μg/mL and 1.29 μg/mL, respectively. The compounds tested did not show any significant cytotoxicity activities against human oral carcinoma KB cells and normal Vero cells of African kidney epithelial cells. This study validated the traditional uses of the plant for the treatment of malaria and identified a new alkaloid, simplicifolianine as a potential antimalarial drug lead. © 2013 Published by Elsevier Ireland Ltd.

  16. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  17. Synthesis and potent in vitro activity of novel 1H-benzimidazoles as anti-MRSA agents.

    PubMed

    Karataş, Hacer; Alp, Mehmet; Yildiz, Sulhiye; Göker, Hakan

    2012-08-01

    A new class of 1H-benzimidazolecarboxamidines was synthesized and evaluated for in vitro antibacterial and antifungal activities, including drug-resistant bacterial strains. The most potent compound (32) has the same ratio of anti-MRSA activity as Vancomycin (minimal inhibitory concentrations value 0.78 μg/mL). The mechanism of action for 1H-benzimidazolecarboxamidine appears to be different from existing antibacterial agents. These compounds have potential for development as a new class of potent anti-MRSA agent. © 2012 John Wiley & Sons A/S.

  18. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941.

    PubMed

    Raynaud, Florence I; Eccles, Suzanne A; Patel, Sonal; Alix, Sonia; Box, Gary; Chuckowree, Irina; Folkes, Adrian; Gowan, Sharon; De Haven Brandon, Alexis; Di Stefano, Francesca; Hayes, Angela; Henley, Alan T; Lensun, Letitia; Pergl-Wilson, Giles; Robson, Anthony; Saghir, Nahid; Zhyvoloup, Alexander; McDonald, Edward; Sheldrake, Peter; Shuttleworth, Stephen; Valenti, Melanie; Wan, Nan Chi; Clarke, Paul A; Workman, Paul

    2009-07-01

    The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110alpha with IC(50) < or = 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% antiproliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials.

  19. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941

    PubMed Central

    Raynaud, Florence I.; Eccles, Suzanne A.; Patel, Sonal; Alix, Sonia; Box, Gary; Chuckowree, Irina; Folkes, Adrian; Gowan, Sharon; De Haven Brandon, Alexis; Di Stefano, Francesca; Hayes, Angela; Henley, Alan T.; Lensun, Letitia; Pergl-Wilson, Giles; Robson, Anthony; Saghir, Nahid; Zhyvoloup, Alexander; McDonald, Edward; Sheldrake, Peter; Shuttleworth, Stephen; Valenti, Melanie; Wan, Nan Chi; Clarke, Paul A.; Workman, Paul

    2009-01-01

    The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110α with IC50 ≤ 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% anti-proliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials. PMID:19584227

  20. Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity

    PubMed Central

    Reynolds, Natalie L.; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R.

    2010-01-01

    β-Defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1CV has bactericidal activity similar to that of its parent peptide (murine β-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1CV is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this β-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide. PMID:20176896

  1. Benzil, a potent activator of microsomal epoxide hydrolase in vitro.

    PubMed

    Seidegård, J; DePierre, J W

    1980-12-01

    Benzil was found to be a very potent activator of microsomal epoxide hydrolase activity (measured with styrene oxide as substrate) in vitro. The activating effect was uncompetitive and benzil causes approximately ninefold increases in both the apparent V and the apparent Km of the enzyme(s). The half-maximal effect on activity was obtained as a 0.3 mM concentration of benzil. The activating effect obtained with benzil was found to be very specific, since a variety of structurally related compounds had little or no effect on microsomal epoxide hydrolase activity. In order to obtain indications for the existence of more than one microsomal epoxide hydrolase the effect of benzil on this activity from rats induced with phenobarbital, 3-methylcholanthrene, 2-acetylaminofluorene, trans-stilbene oxide, and benzil was tested. The differences observed were minor.

  2. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens.

    PubMed

    Botelho, M A; Nogueira, N A P; Bastos, G M; Fonseca, S G C; Lemos, T L G; Matos, F J A; Montenegro, D; Heukelbach, J; Rao, V S; Brito, G A C

    2007-03-01

    Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  3. A targeted IL-15 fusion protein with potent anti-tumor activity

    PubMed Central

    Chen, Siqi; Huang, Qiang; Liu, Jiayu; Xing, Jieyu; Zhang, Ning; Liu, Yawei; Wang, Zhong; Li, Qing

    2015-01-01

    IL-15 has been actively investigated for its potential in tumor immunotherapy. To enhance the anti-tumor activity of IL-15, the novel PFC-1 construct was designed, which comprises the following 3 parts: (1) IL-15Rα fused with IL-15 to enhance IL-15 activity, (2) an Fc fragment to increase protein half-life, and (3) an integrin-targeting RGD peptide to enhance tumor targeting. PFC-1 showed tumor cell targeting without compromising IL-15 activity. PFC-1 also had potent anti-tumor activities in xenograft models, suggesting the potential application of this multi-functional fusion protein in tumor therapy. PMID:26176990

  4. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models.

    PubMed

    Kusumoto, Keiji; Igata, Hideki; Ojima, Mami; Tsuboi, Ayako; Imanishi, Mitsuaki; Yamaguchi, Fuminari; Sakamoto, Hiroki; Kuroita, Takanobu; Kawaguchi, Naohiro; Nishigaki, Nobuhiro; Nagaya, Hideaki

    2011-11-01

    The pharmacological profile of a novel angiotensin II type 1 receptor blocker, azilsartan medoxomil, was compared with that of the potent angiotensin II receptor blocker olmesartan medoxomil. Azilsartan, the active metabolite of azilsartan medoxomil, inhibited the binding of [(125)I]-Sar(1)-I1e(8)-angiotensin II to angiotensin II type 1 receptors. Azilsartan medoxomil inhibited angiotensin II-induced pressor responses in rats, and its inhibitory effects lasted 24h after oral administration. The inhibitory effects of olmesartan medoxomil disappeared within 24h. ID(50) values were 0.12 and 0.55 mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In conscious spontaneously hypertensive rats (SHRs), oral administration of 0.1-1mg/kg azilsartan medoxomil significantly reduced blood pressure at all doses even 24h after dosing. Oral administration of 0.1-3mg/kg olmesartan medoxomil also reduced blood pressure; however, only the two highest doses significantly reduced blood pressure 24h after dosing. ED(25) values were 0.41 and 1.3mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In renal hypertensive dogs, oral administration of 0.1-1mg/kg azilsartan medoxomil reduced blood pressure more potently and persistently than that of 0.3-3mg/kg olmesartan medoxomil. In a 2-week study in SHRs, azilsartan medoxomil showed more stable antihypertensive effects than olmesartan medoxomil and improved the glucose infusion rate, an indicator of insulin sensitivity, more potently (≥ 10 times) than olmesartan medoxomil. Azilsartan medoxomil also exerted more potent antiproteinuric effects than olmesartan medoxomil in Wistar fatty rats. These results suggest that azilsartan medoxomil is a potent angiotensin II receptor blocker that has an attractive pharmacological profile as an antihypertensive agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    PubMed

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  6. Dietary flavonoids modulate CYP2C to improve drug oral bioavailability and their qualitative/quantitative structure-activity relationship.

    PubMed

    Wang, Hong-Jaan; Pao, Li-Heng; Hsiong, Cheng-Huei; Shih, Tung-Yuan; Lee, Meei-Shyuan; Hu, Oliver Yoa-Pu

    2014-03-01

    This study aims to improve the drug oral bioavailability by co-administration with flavonoid inhibitors of the CYP2C isozyme and to establish qualitative and quantitative (QSAR) structure-activity relationships (SAR) between flavonoids and CYP2C. A total of 40 naturally occurring flavonoids were screened in vitro for CYP2C inhibition. Enzyme activity was determined by measuring conversion of tolbutamide to 4-hydroxytolbutamide by rat liver microsomes. The percent inhibition and IC50 of each flavonoid were calculated and used to develop SAR and QSAR. The most effective flavonoid was orally co-administered in vivo with a cholesterol-reducing drug, fluvastatin, which is normally metabolized by CYP2C. The most potent CYP2C inhibitor identified in vitro was tamarixetin (IC50 = 1.4 μM). This flavonoid enhanced the oral bioavailability of fluvastatin in vivo, producing a >2-fold increase in the area under the concentration-time curve and in the peak plasma concentration. SAR analysis indicated that the presence of a 2,3-double bond in the C ring, hydroxylation at positions 5, 6, and 7, and glycosylation had important effects on flavonoid-CYP2C interactions. These findings should prove useful for predicting the inhibition of CYP2C activity by other untested flavonoid-like compounds. In the present study, tamarixetin significantly inhibited CYP2C activity in vitro and in vivo. Thus, the use of tamarixetin could improve the therapeutic efficacy of drugs with low bioavailability.

  7. [Effects of inhibitory activity on mycelial growth of Candida albicans and therapy for murine oral candidiasis by the combined use of terpinen-4-ol and a middle-chain fatty acid, capric acid].

    PubMed

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae; Takahashi, Miki; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The combined effect of terpinen-4-ol, the main component of tea tree oil, and capric acid against mycelial growth of Candida albicans and murine oral candidiasis was evaluated in vitro and in vivo. Mycelial growth of C. albicans was estimated by the Cristal violet method. Combination of these compounds revealed a potent synergistic inhibition of growth. Therapeutic efficacy of the combination was evaluated microbiologically in murine oral candidiasis, and its application of the compounds clearly demonstrated therapeutic activity. Based on these results, the combined agent of terpinen-4-ol and capric acid was discussed as a possible candidate for oral candidiasis therapy.

  8. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    PubMed

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway.

    PubMed

    Morimitsu, Yasujiro; Nakagawa, Yoko; Hayashi, Kazuhiro; Fujii, Hiroyuki; Kumagai, Takeshi; Nakamura, Yoshimasa; Osawa, Toshihiko; Horio, Fumihiko; Itoh, Ken; Iida, Katsuyuki; Yamamoto, Masayuki; Uchida, Koji

    2002-02-01

    Exposure of cells to a wide variety of chemoprotective compounds confers resistance to a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of the protective phase II detoxification enzymes, such as glutathione S-transferase (GST). We have recently developed a cell culture system, using rat liver epithelial RL 34 cells, that potently responds to the phenolic antioxidants resulting in the induction of GST activity (Kawamoto, Y., Nakamura, Y., Naito, Y., Torii, Y., Kumagai, T., Osawa, T., Ohigashi, H., Satoh, K., Imagawa, M., and Uchida, K. (2000) J. Biol. Chem. 275, 11291-11299.) In the present study, we investigated the phase II-inducing potency of an isothiocyanate compound in vitro and in vivo and examined a possible induction mechanism. Based on an extensive screening of vegetable extracts for GST inducer activity in RL34 cells, we found Japanese horseradish, wasabi (Wasabia japonica, syn. Eutrema wasabi), as the richest source and identified 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analogue of sulforaphane (4-methylsulfinylbutyl isothiocyanate) isolated from broccoli, as the major GST inducer in wasabi. 6-HITC potently induced both class alpha GSTA1 and class pi GSTP1 isozymes in RL34 cells. In animal experiments, we found that 6-MSHI was rapidly absorbed into the body and induced hepatic phase II detoxification enzymes more potently than sulforaphane. The observations that (i) 6-HITC activated the antioxidant response element (ARE), (ii) 6-HITC induced nuclear localization of the transcription factor Nrf2 that binds to ARE, and (iii) the induction of phase II enzyme genes by 6-HITC was completely abrogated in the nrf2-deficient mice, suggest that 6-HITC is a potential activator of the Nrf2/ARE-dependent detoxification pathway.

  10. Discovery of a potent and orally available acyl-CoA: cholesterol acyltransferase inhibitor as an anti-atherosclerotic agent: (4-phenylcoumarin)acetanilide derivatives.

    PubMed

    Ogino, Masaki; Fukui, Seiji; Nakada, Yoshihisa; Tokunoh, Ryosuke; Itokawa, Shigekazu; Kakoi, Yuichi; Nishimura, Satoshi; Sanada, Tsukasa; Fuse, Hiromitsu; Kubo, Kazuki; Wada, Takeo; Marui, Shogo

    2011-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes cholesterol esterification. ACAT inhibitors are expected to be potent therapeutic agents for the treatment of atherosclerosis. A series of potent ACAT inhibitors based on an (4-phenylcoumarin)acetanilide scaffold was identified. Evaluation of the structure-activity relationships of a substituent on this scaffold, with an emphasis on improving the pharmacokinetic profile led to the discovery of 2-[7-chloro-4-(3-chlorophenyl)-6-methyl-2-oxo-2H-chromen-3-yl]-N-[4-chloro-2-(trifluoromethyl)phenyl]acetamide (23), which exhibited potent ACAT inhibitory activity (IC50=12 nM) and good pharmacokinetic profile in mice. Compound 23 also showed regressive effects on atherosclerotic plaques in apolipoprotein (apo)E knock out (KO) mice at a dose of 0.3 mg/kg per os (p.o.).

  11. Synthesis, evaluation, and metabolism of novel [6]-shogaol derivatives as potent Nrf2 activators.

    PubMed

    Zhu, Yingdong; Wang, Pei; Zhao, Yantao; Yang, Chun; Clark, Anderson; Leung, TinChung; Chen, Xiaoxin; Sang, Shengmin

    2016-06-01

    Oxidative stress is a central component of many chronic diseases. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 p45-related factor 2 (Nrf2) system is a major regulatory pathway of cytoprotective genes against oxidative and electrophilic stress. Activation of the Nrf2 pathway plays crucial roles in the chemopreventive effects of various inducers. In this study, we developed a novel class of potent Nrf2 activators derived from ginger compound, [6]-shogaol (6S), using the Tg[glutathione S-transferase pi 1 (gstp1):green fluorescent protein (GFP)] transgenic zebrafish model. Investigation of structure-activity relationships of 6S derivatives indicates that the combination of an α,β-unsaturated carbonyl entity and a catechol moiety in one compound enhances the Tg(gstp1:GFP) fluorescence signal in zebrafish embryos. Chemical reaction and in vivo metabolism studies of the four most potent 6S derivatives showed that both α,β-unsaturated carbonyl entity and catechol moiety act as major active groups for conjugation with the sulfhydryl groups of the cysteine residues. In addition, we further demonstrated that 6S derivatives increased the expression of Nrf2 downstream target, heme oxygenase-1, in both a dose- and time-dependent manner. These results suggest that α,β-unsaturated carbonyl entity and catechol moiety of 6S derivatives may react with the cysteine residues of Keap1, disrupting the Keap1-Nrf2 complex, thereby liberating and activating Nrf2. Our findings of natural product-derived Nrf2 activators lead to design options of potent Nrf2 activators for further optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Orally active growth hormone secretagogues: state of the art and clinical perspectives.

    PubMed

    Ghigo, E; Arvat, E; Camanni, F

    1998-04-01

    Growth hormone secretagogues (GHS) are synthetic, non-natural peptidyl and nonpeptidyl molecules with potent stimulatory effect on somatotrope secretion. They have no structural homology with growth hormone-releasing hormone (GHRH) and act via a specific receptor, which has now been cloned and is present at both the pituitary and hypothalamic level. This evidence strongly suggests the existence of a still unknown natural GHS-like ligand. Several data favour the hypothesis that GHS could counteract somatostatinergic activity at both the pituitary and hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that they act via an unknown hypothalamic factor remains open. GH-releasing peptide-6 (GHRP-6) is the first hexapeptide studied extensively in humans. More recently, peptidyl superanalogues GHRP-1, GHRP-2 and hexarelin, and nonpeptidyl mimetics, such as the spiroindoline derivative MK-677, have been synthesized and their effects have been studied in humans. The GH-releasing activity of GHS is marked, dose related and reproducible after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHS is partially desensitized but prolonged, intermittent oral administration increases insulin-like growth factor I (IGF-I) levels. The GH-releasing effect of GHS undergoes age-related variations; it increases from birth to puberty, remains similar in adulthood and decreases with ageing. The effect of GHS on GH release is synergistic with that of GHRH, while it is only partially refractory to inhibitory influences, which nearly abolish the effect of GHRH. GHS maintain their GH-releasing activity in some somatotrope hypersecretory states such as acromegaly, anorexia nervosa, hyperthyroidism and critical illness. The GH response to GHS has been reported clear although reduced in GH deficiency, obesity and hypothyroidism, while it is strongly reduced in patients with pituitary stalk disconnection or Cushing

  13. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant.

    PubMed

    Huang, Wei-Sheng; Metcalf, Chester A; Sundaramoorthi, Raji; Wang, Yihan; Zou, Dong; Thomas, R Mathew; Zhu, Xiaotian; Cai, Lisi; Wen, David; Liu, Shuangying; Romero, Jan; Qi, Jiwei; Chen, Ingrid; Banda, Geetha; Lentini, Scott P; Das, Sasmita; Xu, Qihong; Keats, Jeff; Wang, Frank; Wardwell, Scott; Ning, Yaoyu; Snodgrass, Joseph T; Broudy, Marc I; Russian, Karin; Zhou, Tianjun; Commodore, Lois; Narasimhan, Narayana I; Mohemmad, Qurish K; Iuliucci, John; Rivera, Victor M; Dalgarno, David C; Sawyer, Tomi K; Clackson, Tim; Shakespeare, William C

    2010-06-24

    In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.

  14. METHYLATION INACTIVATES PENTAVALENT ARSENIC SPECIES BUT ACTIVATES TRIVALENT ARSENIC SPECIES TO POTENT GENOTOXICANTS

    EPA Science Inventory

    Methylation Inactivates Pentavalent Arsenic Species but Activates Trivalent Arsenic Species to Potent Genotoxicants

    The sensitivity ofhumans to arsenic-induced cancer is thought to be related in part to the limited ability of humans to detoxify arsenic. Recently, methyl- ...

  15. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay

    USDA-ARS?s Scientific Manuscript database

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bact...

  16. Discovery of chiral dihydropyridopyrimidinones as potent, selective and orally bioavailable inhibitors of AKT.

    PubMed

    Parthasarathy, Saravanan; Henry, Kenneth; Pei, Huaxing; Clayton, Josh; Rempala, Mark; Johns, Deidre; De Frutos, Oscar; Garcia, Pablo; Mateos, Carlos; Pleite, Sehila; Wang, Yong; Stout, Stephanie; Condon, Bradley; Ashok, Sheela; Lu, Zhohai; Ehlhardt, William; Raub, Tom; Lai, Mei; Geeganage, Sandaruwan; Burkholder, Timothy P

    2018-06-01

    During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK 2 . A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  18. Classroom Activities: Oral Proficiency in Action.

    ERIC Educational Resources Information Center

    Hahn, Sidney; Michaelis, Joyce

    It is important to introduce and facilitate oral activities in the second language classroom with enthusiasm in a climate of mutual support and cooperation. Students should understand that mistakes are inevitable but not fatal, and that each attempt will build greater ease and confidence in using the language for communication. Oral proficiency…

  19. Optimized S-Trityl-l-cysteine-Based Inhibitors of Kinesin Spindle Protein with Potent in Vivo Antitumor Activity in Lung Cancer Xenograft Models

    PubMed Central

    2013-01-01

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-l-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (Kiapp < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies. PMID:23394180

  20. Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate.

    PubMed Central

    Lazarowski, E. R.; Watt, W. C.; Stutts, M. J.; Boucher, R. C.; Harden, T. K.

    1995-01-01

    1. The human P2U-purinoceptor was stably expressed in 1321N1 human astrocytoma cells and the pharmacological selectivity of the expressed receptor was studied by measurement of inositol lipid hydrolysis. 2. High basal levels of inositol phosphates occurred in P2U-purinoceptor-expressing cells. This phenomenon was shown to be due to release of large amounts of ATP from 1321N1 cells, and could be circumvented by adoption of an assay protocol that did not involve medium changes. 3. UTP, ATP and ATP gamma S were full and potent agonists for activation of phospholipase C with EC50 values of 140 nM, 230 nM, and 1.72 microM, respectively. 5BrUTP, 2C1ATP and 8BrATP were also full agonists although less potent than their natural congeners. Little or no effect was observed with the selective P2Y-, P2X-, and P2T-purinoceptor agonists, 2MeSATP, alpha,beta-MeATP, and 2MeSADP, respectively. 4. Diadenosine tetraphosphate, Ap4A, was a surprisingly potent agonist at the expressed P2U-purinoceptor with an EC50 (720 nM) in the range of the most potent P2U-purinoceptor agonists. Ap4A may be a physiologically important activator of P2U-purinoceptors. PMID:8564228

  1. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach.

    PubMed

    Nara, Hiroshi; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni

    2014-11-13

    Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.

  2. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo.

    PubMed

    Zhai, Lei; Sun, Nan; Han, Zhe; Jin, Hai-chao; Zhang, Bo

    Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 4-aminoquinolone piperidine amides: noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity.

    PubMed

    Naik, Maruti; Humnabadkar, Vaishali; Tantry, Subramanyam J; Panda, Manoranjan; Narayan, Ashwini; Guptha, Supreeth; Panduga, Vijender; Manjrekar, Praveena; Jena, Lalit Kumar; Koushik, Krishna; Shanbhag, Gajanan; Jatheendranath, Sandesh; Manjunatha, M R; Gorai, Gopinath; Bathula, Chandramohan; Rudrapatna, Suresh; Achar, Vijayashree; Sharma, Sreevalli; Ambady, Anisha; Hegde, Naina; Mahadevaswamy, Jyothi; Kaur, Parvinder; Sambandamurthy, Vasan K; Awasthy, Disha; Narayan, Chandan; Ravishankar, Sudha; Madhavapeddi, Prashanti; Reddy, Jitendar; Prabhakar, Kr; Saralaya, Ramanatha; Chatterji, Monalisa; Whiteaker, James; McLaughlin, Bob; Chiarelli, Laurent R; Riccardi, Giovanna; Pasca, Maria Rosalia; Binda, Claudia; Neres, João; Dhar, Neeraj; Signorino-Gelo, François; McKinney, John D; Ramachandran, Vasanthi; Shandil, Radha; Tommasi, Ruben; Iyer, Pravin S; Narayanan, Shridhar; Hosagrahara, Vinayak; Kavanagh, Stefan; Dinesh, Neela; Ghorpade, Sandeep R

    2014-06-26

    4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.

  4. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  5. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions.

    PubMed

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-09-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  6. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity

    PubMed Central

    Cortes, Leonel A.; Castro, Lorena; Pesce, Bárbara; Maya, Juan D.; Ferreira, Jorge; Castro-Castillo, Vicente; Parra, Eduardo; Jara, José A.; López-Muñoz, Rodrigo

    2015-01-01

    Chagas disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP+) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP+-C8, TPP+-C10, TPP+-C11, and TPP+-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP+-C10 and TPP+-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 μM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 μM). At 1 μM, TPP+-C10 and TPP+-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 μM, TPP+-C10 and TPP+-C12 significantly decreased the number of intracellular amastigotes (TPP+-C10: 24.3%, TPP+-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite’s DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP+-C10 and TPP+-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 μM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 μM. Taken together, these results indicate that the TPP+-C10 and TPP+-C12 derivatives of gallic acid are

  7. Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    PubMed Central

    Dubreuil, Patrice; Letard, Sébastien; Ciufolini, Marco; Gros, Laurent; Humbert, Martine; Castéran, Nathalie; Borge, Laurence; Hajem, Bérengère; Lermet, Anne; Sippl, Wolfgang; Voisset, Edwige; Arock, Michel; Auclair, Christian; Leventhal, Phillip S.; Mansfield, Colin D.; Moussy, Alain; Hermine, Olivier

    2009-01-01

    Background The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity. PMID:19789626

  8. Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-alpha converting enzyme (TACE): discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1' substituents.

    PubMed

    Lu, Zhonghui; Ott, Gregory R; Anand, Rajan; Liu, Rui-Qin; Covington, Maryanne B; Vaddi, Krishna; Qian, Mingxin; Newton, Robert C; Christ, David D; Trzaskos, James; Duan, James J-W

    2008-03-15

    Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.

  9. Metronomic chemotherapy using orally active carboplatin/deoxycholate complex to maintain drug concentration within a tolerable range for effective cancer management.

    PubMed

    Mahmud, Foyez; Chung, Seung Woo; Alam, Farzana; Choi, Jeong Uk; Kim, Seong Who; Kim, In-San; Kim, Sang Yoon; Lee, Dong Soo; Byun, Youngro

    2017-03-10

    Metronomic chemotherapy has translated into favorable toxicity profile and capable of delaying tumor progression. Despite its promise, conventional injectable chemotherapeutics are not meaningful to use as metronomic due to the necessity of frequent administration for personalized therapy in long-term cancer treatments. This study aims to exploit the benefits of the oral application of carboplatin as metronomic therapy for non-small cell lung cancer (NSCLC). We developed an orally active carboplatin by physical complexation with a deoxycholic acid (DOCA). The X-ray diffraction (XRD) patterns showed the disappearance of crystalline peaks from carboplatin by forming the complex with DOCA. In vivo pharmacokinetic (PK) study confirmed the oral absorption of carboplatin/DOCA complex. The oral bioavailability of carboplatin/DOCA complex and native carboplatin were calculated as 24.33% and 1.16%, respectively, when a single 50mg/kg oral dose was administered. Further findings of oral bioavailability during a low-dose daily administration of the complex (10mg/kg) for 3weeks were showed 19.17% at day-0, 30.27% at day-7, 26.77% at day-14, and 22.48% at day-21, demonstrating its potential for metronomic chemotherapy. The dose dependent antitumor effects of oral carboplatin were evaluated in SCC7 and A549 tumor xenograft mice. It was found that the oral carboplatin complex exhibited potent anti-tumor activity at 10mg/kg (74.09% vs. control, P<0.01) and 20mg/kg dose (86.22% vs. control, P<0.01) in A549 tumor. The number of TUNEL positive cells in the tumor sections was also significantly increased during oral therapy (3.95% in control, whereas 21.37% and 32.39% in 10mg/kg and 20mg/kg dose, respectively; P<0.001). The enhanced anti-tumor efficacy of oral metronomic therapy was attributed with its antiangiogenic mechanism where new blood vessel formation was notably decreased. Finally, the safety of oral complex was confirmed by three weeks toxicity studies; there were no

  10. Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.

    PubMed

    Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo

    2016-10-13

    We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.

  11. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens

    PubMed Central

    Behroozian, Shekooh; Svensson, Sarah L.

    2016-01-01

    ABSTRACT The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. PMID:26814180

  12. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.

    PubMed

    Mitchell, Daniel E; Clarkson, Guy; Fox, David J; Vipond, Rebecca A; Scott, Peter; Gibson, Matthew I

    2017-07-26

    Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.

  13. Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brone, Bert; Peeters, Pieter J.; Marrannes, Roger

    2008-09-01

    The TRPA1 channel is activated by a number of pungent chemicals, such as allylisothiocyanate, present in mustard oil and thiosulfinates present in garlic. Most of the known activating compounds contain reactive, electrophilic chemical groups, reacting with cysteine residues in the active site of the TRPA1 channel. This covalent modification results in activation of the channel and has been shown to be reversible for several ligands. Commonly used tear gasses CN, CR and CS are also pungent chemicals, and in this study we show that they are extremely potent and selective activators of the human TRPA1 receptor. To our knowledge, thesemore » are the most potent TRPA1 agonists known to date. The identification of the molecular target for these tear gasses may open up possibilities to alleviate the effects of tear gasses via treatment with TRPA1 antagonists. In addition these results may contribute to the basic knowledge of the TRPA1 channel that is gaining importance as a pharmacological target.« less

  14. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599

  15. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine.

    PubMed

    Alviano, Wagner S; Alviano, Daniela S; Diniz, Cláudio G; Antoniolli, Angelo R; Alviano, Celuta S; Farias, Luiz M; Carvalho, Maria Auxiliadora R; Souza, Margareth M G; Bolognese, Ana Maria

    2008-06-01

    oral diseases, considering their potent antioxidant activity and low toxicity.

  16. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    PubMed

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.

  17. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer

    PubMed Central

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049

  18. Synthesis of novel di- and tricationic carbapenems with potent anti-MRSA activity.

    PubMed

    Maruyama, Takahisa; Yamamoto, Yasuo; Kano, Yuko; Kurazono, Mizuyo; Shitara, Eiki; Iwamatsu, Katsuyoshi; Atsumi, Kunio

    2009-01-15

    A new series of 1beta-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and their activities against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. First, a benzyl moiety was introduced at the C-6 position of imidazo[5,1-b]thiazole attached to the carbapenem. These benzylated molecules showed potent anti-MRSA activity, but poor water solubility. In order to overcome this drawback, we designed and synthesized di- and tricationic carbapenems and finally discovered a novel carbapenem (15i), which exhibited excellent anti-MRSA activity and good water solubility.

  19. Characterization of the biological activity of a potent small molecule Hec1 inhibitor TAI-1

    PubMed Central

    2014-01-01

    Background Hec1 (NDC80) is an integral part of the kinetochore and is overexpressed in a variety of human cancers, making it an attractive molecular target for the design of novel anticancer therapeutics. A highly potent first-in-class compound targeting Hec1, TAI-1, was identified and is characterized in this study to determine its potential as an anticancer agent for clinical utility. Methods The in vitro potency, cancer cell specificity, synergy activity, and markers for response of TAI-1 were evaluated with cell lines. Mechanism of action was confirmed with western blotting and immunofluorescent staining. The in vivo potency of TAI-1 was evaluated in three xenograft models in mice. Preliminary toxicity was evaluated in mice. Specificity to the target was tested with a kinase panel. Cardiac safety was evaluated with hERG assay. Clinical correlation was performed with human gene database. Results TAI-1 showed strong potency across a broad spectrum of tumor cells. TAI-1 disrupted Hec1-Nek2 protein interaction, led to Nek2 degradation, induced significant chromosomal misalignment in metaphase, and induced apoptotic cell death. TAI-1 was effective orally in in vivo animal models of triple negative breast cancer, colon cancer and liver cancer. Preliminary toxicity shows no effect on the body weights, organ weights, and blood indices at efficacious doses. TAI-1 shows high specificity to cancer cells and to target and had no effect on the cardiac channel hERG. TAI-1 is synergistic with doxorubicin, topotecan and paclitaxel in leukemia, breast and liver cancer cells. Sensitivity to TAI-1 was associated with the status of RB and P53 gene. Knockdown of RB and P53 in cancer cells increased sensitivity to TAI-1. Hec1-overexpressing molecular subtypes of human lung cancer were identified. Conclusions The excellent potency, safety and synergistic profiles of this potent first-in-class Hec1-targeted small molecule TAI-1 show its potential for clinically utility in anti

  20. Discovery of Aryl Aminoquinazoline Pyridones as Potent, Selective, and Orally Efficacious Inhibitors of Receptor Tyrosine Kinase c-Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Essa; Tasker, Andrew; White, Ryan D.

    2008-12-09

    Inhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.

  1. A pilot study on seborrheic dermatitis using pramiconazole as a potent oral anti-Malassezia agent.

    PubMed

    Piérard, Gérald E; Ausma, Jannie; Henry, Frédérique; Vroome, Valérie; Wouters, Luc; Borgers, Marcel; Cauwenbergh, Geert; Piérard-Franchimont, Claudine

    2007-01-01

    Seborrheic dermatitis is considered to be a Malassezia-driven disease. Little objective information is available so far from biometrological quantitative assessments of this skin condition. Pramiconazole is a novel triazole with potent in vitro antifungal activity, especially against Malassezia spp. To study the sequential effects of pramiconazole on Malassezia, inflammation and epidermal changes. This study was performed in 2 groups of subjects suffering from seborrheic dermatitis. The first group (n = 17) remained untreated and was used as control. Clinical, mycological and biometrological assessments were performed at inclusion and during the following 2 weeks. The second group of subjects (n = 10) received a single 200-mg oral dose of pramiconazole at inclusion. Clinical, mycological and biometrological evaluations were performed before and during 1 month following the single antifungal intake. For both parts of the study, several parameters were assessed including yeast density, desquamation, erythema, itching and sebum excretion. In the control group, no significant changes were observed in any of the parameters during the observation period. The findings were markedly different in the pramiconazole-treated subjects. The yeast density was significantly improved on days 3, 7 and 28. Desquamation, erythema, itching, and the global clinical evaluation as assessed by the patients and investigators became significantly improved on days 7 and 28. A trend in decrease of scaliness was noted. No effect on sebum excretion was evidenced. In conclusion, a single 200-mg dose of pramiconazole exhibitsin vivo efficacy in controlling some important clinical aspects of seborrheic dermatitis. Following a reduction in the number of yeasts on day 3, a decrease in the severity of clinical signs and symptoms occurred from day 7 onwards. Sebum excretion appeared uninvolved in the clearing process of seborrheic dermatitis. A single 200-mg dose of pramiconazole appears to abate

  2. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Poulsen, Christopher; Mehalick, Leslie A.; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 µM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propridium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2 to 10.0 µM long-chain bases and GML were not cytotoxic; 40.0 to 80.0 µM long-chain bases, but not GML, were cytotoxic; and 80.0 µM long-chain bases induced cellular damage and death in less than 20 minutes. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26005054

  3. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Poulsen, Christopher; Mehalick, Leslie A; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-08-19

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propidium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases, but not GML, were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  5. CEP-26401 (irdabisant), a potent and selective histamine H₃ receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities.

    PubMed

    Raddatz, Rita; Hudkins, Robert L; Mathiasen, Joanne R; Gruner, John A; Flood, Dorothy G; Aimone, Lisa D; Le, Siyuan; Schaffhauser, Hervé; Duzic, Emir; Gasior, Maciej; Bozyczko-Coyne, Donna; Marino, Michael J; Ator, Mark A; Bacon, Edward R; Mallamo, John P; Williams, Michael

    2012-01-01

    CEP-26401 [irdabisant; 6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl] is a novel, potent histamine H₃ receptor (H₃R) antagonist/inverse agonist with drug-like properties. High affinity of CEP-26401 for H₃R was demonstrated in radioligand binding displacement assays in rat brain membranes (K(i) = 2.7 ± 0.3 nM) and recombinant rat and human H₃R-expressing systems (K(i) = 7.2 ± 0.4 and 2.0 ± 1.0 nM, respectively). CEP-26401 displayed potent antagonist and inverse agonist activities in [³⁵S]guanosine 5'-O-(γ-thio)triphosphate binding assays. After oral dosing of CEP-26401, occupancy of H₃R was estimated by the inhibition of ex vivo binding in rat cortical slices (OCC₅₀ = 0.1 ± 0.003 mg/kg), and antagonism of the H₃R agonist R-α-methylhistamine- induced drinking response in the rat dipsogenia model was demonstrated in a similar dose range (ED₅₀ = 0.06 mg/kg). CEP-26401 improved performance in the rat social recognition model of short-term memory at doses of 0.01 to 0.1 mg/kg p.o. and was wake-promoting at 3 to 30 mg/kg p.o. In DBA/2NCrl mice, CEP-26401 at 10 and 30 mg/kg i.p. increased prepulse inhibition (PPI), whereas the antipsychotic risperidone was effective at 0.3 and 1 mg/kg i.p. Coadministration of CEP-26401 and risperidone at subefficacious doses (3 and 0.1 mg/kg i.p., respectively) increased PPI. These results demonstrate potent behavioral effects of CEP-26401 in rodent models and suggest that this novel H₃R antagonist may have therapeutic utility in the treatment of cognitive and attentional disorders. CEP-26401 may also have therapeutic utility in treating schizophrenia or as adjunctive therapy to approved antipsychotics.

  6. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    PubMed

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  7. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistantmore » mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.« less

  8. Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning

    PubMed Central

    Khaliulin, Igor; Parker, Joanna E.; Halestrap, Andrew P.

    2010-01-01

    Aims Temperature preconditioning (TP) provides very powerful protection against ischaemia/reperfusion. Understanding the signalling pathways involved may enable the development of effective pharmacological cardioprotection. We investigated the interrelationship between activation of protein kinase A (PKA) and protein kinase C (PKC) in the signalling mechanisms of TP and developed a potent pharmacological intervention based on this mechanism. Methods and results Isolated rat hearts were subjected to TP, 30 min global ischaemia, and 60 min reperfusion. Other control and TP hearts were perfused with either sotalol (β-adrenergic blocker) or H-89 (PKA inhibitor). Some hearts were pre-treated with either isoproterenol (β-adrenergic agonist) or adenosine (PKC activator) that were given alone, simultaneously, or sequentially. Pre-treatment with isoproterenol, adenosine, and the consecutive isoproterenol/adenosine treatment was also combined with the PKC inhibitor chelerythrine. Cardioprotection was evaluated by haemodynamic function recovery, lactate dehydrogenase release, measurement of mitochondrial permeability transition pore opening, and protein carbonylation during reperfusion. Cyclic AMP and PKA activity were increased in TP hearts. H-89 and sotalol blocked the cardioprotective effect of TP and TP-induced PKC activation. Isoproterenol, adenosine, and the consecutive treatment increased PKC activity during pre-ischaemia. Isoproterenol significantly reduced myocardial glycogen content. Isoproterenol and adenosine, alone or simultaneously, protected hearts but the consecutive treatment gave the highest protection. Cardioprotective effects of adenosine were completely blocked by chelerythrine but those of the consecutive treatment only attenuated. Conclusion The signal transduction pathway of TP involves PKA activation that precedes PKC activation. Pharmacologically induced consecutive PKA/PKC activation mimics TP and induces extremely potent cardioprotection. PMID

  9. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  10. A-C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions.

    PubMed

    Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S

    2018-06-14

    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.

  11. A New Class of Antibody-Drug Conjugates with Potent DNA Alkylating Activity.

    PubMed

    Miller, Michael L; Fishkin, Nathan E; Li, Wei; Whiteman, Kathleen R; Kovtun, Yelena; Reid, Emily E; Archer, Katie E; Maloney, Erin K; Audette, Charlene A; Mayo, Michele F; Wilhelm, Alan; Modafferi, Holly A; Singh, Rajeeva; Pinkas, Jan; Goldmacher, Victor; Lambert, John M; Chari, Ravi V J

    2016-08-01

    The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells.

    PubMed

    Zhang, Yaling; Chen, Li; Xu, Hongjiang; Li, Xiabing; Zhao, Lijun; Wang, Wei; Li, Baolin; Zhang, Xiquan

    2018-03-10

    A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC 50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC 50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents.

    PubMed

    Nakajima, Tadashi; Matsugi, Takeshi; Goto, Wakana; Kageyama, Masaaki; Mori, Nobuaki; Matsumura, Yasushi; Hara, Hideaki

    2003-12-01

    To find new prostanoid FP-receptor agonists possessing potent ocular-hypotensive effects with minimal side effects, we evaluated the agonistic activities of newly synthesized prostaglandin F(2alpha) derivatives for the prostanoid FP-receptor both in vitro and in vivo. The iris constrictions induced by the derivatives and their effects on melanin content were examined using cat isolated iris sphincters and cultured B16 melanoma cells, respectively. The effects of derivative ester forms on miosis and intraocular pressure (IOP) were evaluated in cats and cynomolgus monkeys, respectively. Of these derivatives, 6 out of 12 compounds were more potent iris constrictors, with EC(50) values of 0.6 to 9.4 nM, than a carboxylic acid of latanoprost (EC(50)=13.6 nM). A carboxylic acid of latanoprost (100 microM) significantly increased the melanin content of cultured B16 melanoma cells, but some 15,15-difluoro derivatives, such as AFP-157 and AFP-172, did not. Topically applied AFP-168, AFP-169 and AFP-175 (isopropyl ester, methyl ester and ethyl ester forms, respectively, of AFP-172) induced miosis in cats more potently than latanoprost. AFP-168 (0.0005%) reduced IOP to the same extent as 0.005% latanoprost (for at least 8 h). These findings indicate that 15,15-difluoroprostaglandin F(2alpha) derivatives, especially AFP-168, have more potent prostanoid FP-receptor agonistic activities than latanoprost. Hence, AFP-168 may be worthy of further evaluation as an ocular-hypotensive agent.

  14. Indolyl aryl sulfones (IASs): development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants.

    PubMed

    Silvestri, Romano; Artico, Marino

    2005-01-01

    Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.

  15. Oral health activities of early head start teachers directed toward children and parents.

    PubMed

    Kranz, Ashley M; Rozier, R Gary; Zeldin, Leslie P; Preisser, John S

    2011-01-01

    This cross-sectional study examined Early Head Start (EHS) teachers' oral health program activities and their association with teacher and program characteristics. Self-completed questionnaires were distributed to the staff in all EHS programs in North Carolina. Variables for dental health activities for parents (four items) and children (four items) were constructed as the sum of responses to a 0-4 Likert-type scale (never to very frequently). Ordinary least squares regression models examined the association between teachers' oral health program activities and modifiable teacher (oral health knowledge, values, self-efficacy, dental health training, perceived barriers to dental activities) and program (director and health coordinator knowledge and perceived barriers to dental activities) characteristics. Teachers in the parent (n=260) and child (n=231) analyses were a subset of the 485 staff respondents (98 percent response rate). Teachers engaged in child oral health activities (range = 0-16; mean = 9.0) more frequently than parent activities (range = 0-16; mean = 6.9). Teachers' oral health values, perceived oral health self-efficacy, dental training, and director and health coordinator knowledge were positively associated with oral health activities (P < 0.05). Perceived barriers were negatively associated with child activities (P < 0.05). The level of oral health activity in EHS programs is less than optimal. Several characteristics of EHS staff were identified that can be targeted with education interventions. Evidence for effectiveness of EHS interventions needs to be strengthened, but results of this survey provide encouraging findings about the potential effects of teacher training on their oral health practices.

  16. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .

    PubMed

    Folkes, Adrian J; Ahmadi, Khatereh; Alderton, Wendy K; Alix, Sonia; Baker, Stewart J; Box, Gary; Chuckowree, Irina S; Clarke, Paul A; Depledge, Paul; Eccles, Suzanne A; Friedman, Lori S; Hayes, Angela; Hancox, Timothy C; Kugendradas, Arumugam; Lensun, Letitia; Moore, Pauline; Olivero, Alan G; Pang, Jodie; Patel, Sonal; Pergl-Wilson, Giles H; Raynaud, Florence I; Robson, Anthony; Saghir, Nahid; Salphati, Laurent; Sohal, Sukhjit; Ultsch, Mark H; Valenti, Melanie; Wallweber, Heidi J A; Wan, Nan Chi; Wiesmann, Christian; Workman, Paul; Zhyvoloup, Alexander; Zvelebil, Marketa J; Shuttleworth, Stephen J

    2008-09-25

    Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.

  17. Oral Hygiene. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  18. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    PubMed

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Synthesis and SAR studies of potent imidazopyridine anticoccidial agents.

    PubMed

    Liang, Gui-Bai; Qian, Xiaoxia; Feng, Dennis; Fisher, Michael; Brown, Christine M; Gurnett, Anne; Leavitt, Penny Sue; Liberator, Paul A; Misura, Andrew S; Tamas, Tamas; Schmatz, Dennis M; Wyvratt, Matthew; Biftu, Tesfaye

    2007-07-01

    Diaryl imidazo[1,2-a]pyridine derivatives, such as 6a and 7i, have been synthesized and found to be potent inhibitors of parasite PKG activity. The most potent compounds are the 7-isopropylaminomethyl analog 6a and 2-isopropylamino analog 7i. These compounds are also fully active in in vivo assay as anticoccidial agents at 25 ppm in feed.

  20. Reorienting the Fab Domains of Trastuzumab Results in Potent HER2 Activators

    PubMed Central

    Scheer, Justin M.; Sandoval, Wendy; Elliott, J. Michael; Shao, Lily; Luis, Elizabeth; Lewin-Koh, Sock-Cheng; Schaefer, Gabriele; Vandlen, Richard

    2012-01-01

    The structure of the Fab region of antibodies is critical to their function. By introducing single cysteine substitutions into various positions of the heavy and light chains of the Fab region of trastuzumab, a potent antagonist of HER2, and using thiol chemistry to link the different Fabs together, we produced a variety of monospecific F(ab′)2-like molecules with activities spanning from activation to inhibition of breast tumor cell growth. These isomers (or bis-Fabs) of trastuzumab, with varying relative spatial arrangements between the Fv-regions, were able to either promote or inhibit cell-signaling activities through the PI3K/AKT and MAPK pathways. A quantitative phosphorylation mapping of HER2 indicated that the agonistic isomers produced a distinct phosphorylation pattern associated with activation. This study suggests that antibody geometric isomers, found both in nature and during synthetic antibody development, can have profoundly different biological activities independent of their affinities for their target molecules. PMID:23284778

  1. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    PubMed

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  2. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    PubMed Central

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994

  3. Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced?

    PubMed

    Rohrer, Nadine; Widmer, Andreas F; Waltimo, Tuomas; Kulik, Eva M; Weiger, Roland; Filipuzzi-Jenny, Elisabeth; Walter, Clemens

    2010-07-01

    Use of oral antiseptics decreases the bacterial load in the oral cavity. To compare the antimicrobial activity of 3 novel oral antiseptics with that of chlorhexidine, which is considered the "gold standard" of oral hygiene. Comparative in vitro study. Four common oral microorganisms (Streptococcus sanguinis, Streptococcus mutans, Candida albicans, and Fusobacterium nucleatum) were tested under standard conditions and at different concentrations, by use of a broth dilution assay and an agar diffusion assay and by calculating the log10 reduction factor (RF). The antimicrobial activity of each antiseptic was assessed by counting the difference in bacterial densities (ie, the log10 number of colony-forming units of bacteria) before and after the disinfection process. The oral antiseptics containing octenidine (with an RF in the range of 7.1-8.24 CFU/mL) and polyhexamethylene biguanide (with an RF in the range of 7.1-8.24 CFU/mL) demonstrated antimicrobial activity comparable to that of chlorhexidine (with an RF in the range of 1.03-8.24 CFU/mL), whereas the mouth rinse containing Citroxx (Citroxx Biosciences; with an RF in the range of 0.22-1.36 CFU/mL) showed significantly weaker antimicrobial efficacy. Overall, octenidine and polyhexamethylene biguanide were more active at lower concentrations.conclusion. Oral antiseptics containing the antimicrobial agent octenidine or polyhexamethylene biguanide may be considered as potent alternatives to chlorhexidine-based preparations.

  4. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.

    PubMed

    Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun

    2018-04-25

    Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  6. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor.

    PubMed

    Rinaldi-Carmona, M; Barth, F; Millan, J; Derocq, J M; Casellas, P; Congy, C; Oustric, D; Sarran, M; Bouaboula, M; Calandra, B; Portier, M; Shire, D; Brelière, J C; Le Fur, G L

    1998-02-01

    Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.

  7. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01more » modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.« less

  8. Synthesis and preliminary biological evaluation of potent and selective 2-(3-alkoxy-1-azetidinyl) quinolines as novel PDE10A inhibitors with improved solubility.

    PubMed

    Rzasa, Robert M; Frohn, Michael J; Andrews, Kristin L; Chmait, Samer; Chen, Ning; Clarine, Jeffrey G; Davis, Carl; Eastwood, Heather A; Horne, Daniel B; Hu, Essa; Jones, Adrie D; Kaller, Matthew R; Kunz, Roxanne K; Miller, Silke; Monenschein, Holger; Nguyen, Thomas; Pickrell, Alexander J; Porter, Amy; Reichelt, Andreas; Zhao, Xiaoning; Treanor, James J S; Allen, Jennifer R

    2014-12-01

    We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.

  9. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    PubMed

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthesis and SAR of 1-acetanilide-4-aminopyrazole-substituted quinazolines: selective inhibitors of Aurora B kinase with potent anti-tumor activity.

    PubMed

    Foote, Kevin M; Mortlock, Andrew A; Heron, Nicola M; Jung, Frédéric H; Hill, George B; Pasquet, Georges; Brady, Madeleine C; Green, Stephen; Heaton, Simon P; Kearney, Sarah; Keen, Nicholas J; Odedra, Rajesh; Wedge, Stephen R; Wilkinson, Robert W

    2008-03-15

    A new class of 1-acetanilide-4-aminopyrazole-substituted quinazoline Aurora kinase inhibitors has been discovered possessing highly potent cellular activity. Continuous infusion into athymic mice bearing SW620 tumors of the soluble phosphate derivative 2 led to dose-proportional exposure of the des-phosphate compound 8 with a high-unbound fraction. The combination of potent cell activity and high free-drug exposure led to pharmacodynamic changes in the tumor at low doses, indicative of Aurora B-kinase inhibition and a reduction in tumor volume.

  11. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity.

    PubMed

    Dai, Tianjiao; Wang, Changping; Wang, Yuqing; Xu, Wei; Hu, Jingjing; Cheng, Yiyun

    2018-05-02

    Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.

  12. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    PubMed

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  13. [Anti-Candida activity of aroma candy and its protective activity against murine oral candidiasis].

    PubMed

    Hayama, Kazumi; Takahashi, Miki; Suzuki, Motofumi; Ezawa, Kunio; Yamazaki, Masatoshi; Matsukawa, Taiji; Kishi, Akinobu; Sato, Nobuya; Abe, Shigeru

    2015-01-01

    A daily eatable candy that has possible protective activity against oral candidiasis was experimentally produced. The candy was made from reduced-maltose as main constituent and from several natural products, such as oligonol (depolymerized polyphenols derived from lychee), cinnamon (cassia), citral, and capric acid, which are known to have anti-Candida activity in vitro and in vivo. The candy effectively inhibited the mycelial growth of C. albicans, even when it was diluted 1,000 times with culture media. We assessed the protective activity of the candy against murine candidiasis. When 50μl of candy dissolved and diluted 4 times with water was administered 3 times into the oral cavity of Candida infected mice, the score of lesions on the Candida-infected tongues improved on day 2. These findings suggest that this candy has potential as food that provides protective activity against oral candidiasis.

  14. Changes in respiratory activity induced by mastication during oral breathing in humans.

    PubMed

    Daimon, Shigeru; Yamaguchi, Kazunori

    2014-06-01

    We examined the effect of oral breathing on respiratory movements, including the number of respirations and the movement of the thoracic wall at rest and while chewing gum. Forty normal nose breathers were selected by detecting expiratory airflow from the mouth using a CO2 sensor. Chest measurements were recorded using a Piezo respiratory belt transducer, and electromyographic (EMG) activity of the masseter and trapezius muscles were recorded at rest and while chewing gum during nasal or oral breathing. Oral breathing was introduced by completely occluding the nostrils with a nose clip. During oral breathing, the respiration rate was significantly lower while chewing gum than while at rest (P < 0.05). While chewing gum, the respiration rate was significantly lower during oral breathing than during nasal breathing (P < 0.05). During oral breathing, thoracic movement was significantly higher while chewing gum than while at rest (P < 0.05). Thoracic movement was significantly greater during oral breathing than during nasal breathing (P < 0.05). The trapezius muscle exhibited significant EMG activity when chewing gum during oral breathing. The activity of the trapezius muscle coincided with increased movement of the thoracic wall. Chewing food while breathing through the mouth interferes with and decreases the respiratory cycle and promotes unusual respiratory movement of the thoracic wall, which is directed by the activity of accessory muscles of respiration. Copyright © 2014 the American Physiological Society.

  15. Trifluoroacetylated tyrosine-rich D-tetrapeptides have potent antioxidant activity.

    PubMed

    Sandomenico, Annamaria; Severino, Valeria; Apone, Fabio; De Lucia, Adriana; Caporale, Andrea; Doti, Nunzianna; Russo, Anna; Russo, Rosita; Rega, Camilla; Del Giacco, Tiziana; Falcigno, Lucia; Ruvo, Menotti; Chambery, Angela

    2017-03-01

    The term "oxidative stress" indicates a set of chemical reactions unleashed by a disparate number of events inducing DNA damage, lipid peroxidation, protein modification and other effects, which are responsible of altering the physiological status of cells or tissues. Excessive Reactive Oxygen Species (ROS) levels may accelerate ageing of tissues or induce damage of biomolecules thus promoting cell death or proliferation in dependence of cell status and of targeted molecules. In this context, new antioxidants preventing such effects may have a relevant role as modulators of cell homeostasis and as therapeutic agents. Following an approach of peptide libraries synthesis and screening by an ORAC FL assay, we have isolated potent anti-oxidant compounds with well-defined structures. Most effective peptides are N-terminally trifluoroacetylated (CF 3 ) and have the sequence tyr-tyr-his-pro or tyr-tyr-pro-his. Slight changes in the sequence or removal of the CF 3 group strongly reduced antioxidant ability, suggesting an active role of both the fluorine atoms and of peptide structure. We have determined the NMR solution structures of the active peptides and found a common structural motif that could underpin the radical scavenging activity. The peptides protect keratinocytes from exogenous oxidation, thereby from potential external damaging cues, suggesting their use as skin ageing protectant and as cell surviving agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. In vitro Increased Respiratory Activity of Selected Oral Bacteria May Explain Competitive and Collaborative Interactions in the Oral Microbiome

    PubMed Central

    Hernandez-Sanabria, Emma; Slomka, Vera; Herrero, Esteban R.; Kerckhof, Frederiek-Maarten; Zaidel, Lynette; Teughels, Wim; Boon, Nico

    2017-01-01

    Understanding the driving forces behind the shifts in the ecological balance of the oral microbiota will become essential for the future management and treatment of periodontitis. As the use of competitive approaches for modulating bacterial outgrowth is unexplored in the oral ecosystem, our study aimed to investigate both the associations among groups of functional compounds and the impact of individual substrates on selected members of the oral microbiome. We employed the Phenotype Microarray high-throughput technology to analyse the microbial cellular phenotypes of 15 oral bacteria. Multivariate statistical analysis was used to detect respiratory activity triggers and to assess similar metabolic activities. Carbon and nitrogen were relevant for the respiration of health-associated bacteria, explaining competitive interactions when grown in biofilms. Carbon, nitrogen, and peptides tended to decrease the respiratory activity of all pathobionts, but not significantly. None of the evaluated compounds significantly increased activity of pathobionts at both 24 and 48 h. Additionally, metabolite requirements of pathobionts were dissimilar, suggesting that collective modulation of their respiratory activity may be challenging. Flow cytometry indicated that the metabolic activity detected in the Biolog plates may not be a direct result of the number of bacterial cells. In addition, damage to the cell membrane may not influence overall respiratory activity. Our methodology confirmed previously reported competitive and collaborative interactions among bacterial groups, which could be used either as marker of health status or as targets for modulation of the oral environment. PMID:28638806

  17. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch

    2014-01-01

    Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35–90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of

  18. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs.

    PubMed

    Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch

    2014-01-01

    Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography-mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C.tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35-90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of

  19. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs.

    PubMed

    Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch

    2014-01-01

    Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. The chemical profile of LGEO as determined by gas chromatography-mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35-90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. RESULTS of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of fungal infections and skin inflammation that

  20. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats.

    PubMed

    Yamamura, Y; Nakamura, S; Itoh, S; Hirano, T; Onogawa, T; Yamashita, T; Yamada, Y; Tsujimae, K; Aoyama, M; Kotosai, K; Ogawa, H; Yamashita, H; Kondo, K; Tominaga, M; Tsujimoto, G; Mori, T

    1998-12-01

    The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.

  1. DDD-028: a potent potential non-opioid, non-cannabinoid analgesic for neuropathic and inflammatory pain.

    PubMed

    Rajagopalan, Parthasarathi; Tracey, Heather; Chen, Zhoumou; Bandyopadhyaya, Acintya; Veeraraghavan, Sridhar; Rajagopalan, Desikan R; Salvemini, Daniela; McPhee, Ian; Viswanadha, Srikant; Rajagopalan, Raghavan

    2014-07-15

    DDD-028 (4), a novel pentacyclic pyridoindolobenzazepine derivative was evaluated in vitro for receptor binding affinity and in vivo for analgesic activity using rodent models of neuropathic and inflammatory pain. DDD-028 does not bind to opioid, cannabinoid, dopamine, or histamine receptors. DDD-028 is very active even at the low oral dose of 1-5 mg/kg in both neuropathic, (spinal nerve ligation and chronic constriction injury) and inflammatory (Complete Freund's Adjuvant Induced) models of pain. DDD-028 appears to be about 6-fold more potent than pregabalin and indomethacin. Visual observation of all the animals used in these studies indicated that DDD-028 is well tolerated without any sedation. Thus, DDD-028 seems to be a promising candidate for the treatment of neuropathic and inflammatory pain without the possible side effects or abuse potential associated with opioid or cannabinoid activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma.

    PubMed

    Lin, Chongxiang; Tu, Chengwei; Ma, Yike; Ye, Pengcheng; Shao, Xia; Yang, Zhaoan; Fang, Yiming

    2017-10-01

    Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Diphenyldifluoroketone (EF24) is a curcumin analog that has been demonstrated to improve anticancer activity; however, its therapeutic potential and mechanisms in oral cancer remain unknown. In the present study, the effect of EF24 on apoptosis induction and its potential underlying mechanism in the CAL‑27 human OSCC cell line was investigated. To achieve this, various concentrations of cisplatin or EF24 were administrated to CAL‑27 cells for 24 h, and cell viability, apoptotic DNA fragmentation, and cleaved caspase 3 and 9 levels were evaluated. To investigate the potential underlying mechanism, the levels of mitogen‑activated protein kinase kinase 1 (MEK1) and extracellular signal‑regulated kinase (ERK), two key proteins in the mitogen‑activated protein kinase/ERK signaling pathway, were additionally examined. The results indicated that EF24 and cisplatin treatment decreased cell viability. EF24 treatment increased the levels of activated caspase 3 and 9, and decreased the phosphorylated forms of MEK1 and ERK. Sequential treatments of EF24 and 12‑phorbol‑13‑myristate acetate, a MAPK/ERK activator, resulted in a significant increase of activated MEK1 and ERK, and reversed cell viability. These results suggested that EF24 has potent anti‑tumor activity in OSCC via deactivation of the MAPK/ERK signaling pathway. Further analyses using animal models are required to confirm these findings in vivo.

  3. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity.

    PubMed

    Yilmazer-Musa, Meltem; Griffith, Anneke M; Michels, Alexander J; Schneider, Erik; Frei, Balz

    2012-09-12

    This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.

  4. Water fraction of edible medicinal fern Stenochlaena palustris is a potent α-glucosidase inhibitor with concurrent antioxidant activity.

    PubMed

    Chai, Tsun-Thai; Kwek, Meng-Tee; Ong, Hean-Chooi; Wong, Fai-Chu

    2015-11-01

    This study aimed to isolate a potent antiglucosidase and antioxidant fraction from Stenochlaena palustris. Extraction was performed with hexane, chloroform, ethyl acetate, methanol, and water. Antiglucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays found methanol extract (ME) to be the most active. Water fraction (WF) of ME was a stronger α-glucosidase inhibitor (EC50 2.9 μg/mL) than quercetin, with weak antiamylase activity. WF was a competitive α-glucosidase inhibitor. DPPH scavenging activity of WF (EC50 7.7 μg/mL) was weaker than quercetin. WF (EC50 364 μg/mL) was a stronger hydrogen peroxide scavenger than gallic acid (EC50 838 μg/mL) and was equally strong as quercetin in scavenging superoxide. WF possessed moderate copper chelating activity. WF was enriched in total phenolics (TP) and hydroxycinnamic acids (THC). TP correlated with antioxidant activity (R(2) > 0.76). Only THC correlated with antiglucosidase activity (R(2) = 0.86). Overall, WF demonstrated concurrent, potent antiglucosidase and antioxidant activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Novel orally active selective progesterone receptor modulator CP8947 inhibits leiomyoma cell proliferation without adversely affecting endometrium or myometrium

    PubMed Central

    Catherino, William H.; Malik, Minnie; Driggers, Paul; Chappel, Scott; Segars, James; Davis, Joseph

    2012-01-01

    Context Uterine leiomyomas are highly prevalent and often symptomatic. Current medical therapies are limited. A novel, potent, selective, orally active therapy is needed. Objective and Methods To determine the progesterone receptor (PR) specificity and activation, endometrial response, and impact on proliferation and extracellular matrix (ECM) production of the novel non-steroidal selective progesterone receptor modulators (SPRMs) CP8863 and CP8947 in human immortalized leiomyoma and patient-matched myometrial cells. Receptor binding in vitro was assessed using LNCaP, Ishikawa, T-47D, and HeLa cell extracts for AR, ER-α, PR, and GR, respectively. Progestational activity assessed by alkaline phosphatase assay in T47D cells and ER-α expression in human leiomyoma and myometrial cells. In vivo progestational activity assayed by the McPhail assay. Proliferation and gene expression studies (q RT-PCR and western blot) were performed in immortalized leiomyoma and myometrial cells. Results Both CP8863 and CP8947 is highly selective for PR but not for ER-α, AR, and GR. Both induced alkaline phosphatase comparably to progesterone, while CP8947 induced ER-α in leiomyoma cells but not myometrial cells. CP8947 was progestational in rabbit endometrium. Nanomolar CP8947 treatment inhibited human leiomyoma but not myometrial cell proliferation. The decreased proliferation correlated with increased TRAIL and caspase -7, suggesting induction of apoptosis in leiomyoma cells. ECM components were decreased in leiomyoma cells, including COL1A1 and COL7A1 at nanomolar concentrations. Conclusions CP8947 was a potent novel non-steroidal SPRM that was selective for PR, showed progestational activity in endometrium, inhibited leiomyoma cell proliferation (potentially via induction of apoptosis), and decreased ECM component production, without disrupting myometrial cell proliferation. PMID:20493256

  6. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase.

    PubMed

    Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Thomas, Mathew; Wang, Yihan; Zhou, Tianjun; Romero, Jan; Kohlmann, Anna; Li, Feng; Qi, Jiwei; Cai, Lisi; Dwight, Timothy A; Xu, Yongjin; Xu, Rongsong; Dodd, Rory; Toms, Angela; Parillon, Lois; Lu, Xiaohui; Anjum, Rana; Zhang, Sen; Wang, Frank; Keats, Jeffrey; Wardwell, Scott D; Ning, Yaoyu; Xu, Qihong; Moran, Lauren E; Mohemmad, Qurish K; Jang, Hyun Gyung; Clackson, Tim; Narasimhan, Narayana I; Rivera, Victor M; Zhu, Xiaotian; Dalgarno, David; Shakespeare, William C

    2016-05-26

    In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

  7. Covalent Dimer Species of β-Defensin Defr1 Display Potent Antimicrobial Activity against Multidrug-Resistant Bacterial Pathogens▿

    PubMed Central

    Taylor, Karen; McCullough, Bryan; Clarke, David J.; Langley, Ross J.; Pechenick, Tali; Hill, Adrian; Campopiano, Dominic J.; Barran, Perdita E.; Dorin, Julia R.; Govan, John R. W.

    2007-01-01

    Beta defensins comprise a family of cationic, cysteine-rich antimicrobial peptides, predominantly expressed at epithelial surfaces. Previously we identified a unique five-cysteine defensin-related peptide (Defr1) that, when synthesized, is a mixture of dimeric isoforms and exhibits potent antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Here we report that Defr1 displays antimicrobial activity against an extended panel of multidrug-resistant nosocomial pathogens for which antimicrobial treatment is limited or nonexistent. Defr1 fractions were collected by high-pressure liquid chromatography and analyzed by gel electrophoresis and mass spectrometry. Antimicrobial activity was initially investigated with the type strain Pseudomonas aeruginosa PAO1. All fractions tested displayed equivalent, potent antimicrobial activity levels comparable with that of the unfractionated Defr1. However, use of an oxidized, monomeric six-cysteine analogue (Defr1 Y5C), or of reduced Defr1, gave diminished antimicrobial activity. These results suggest that the covalent dimer structure of Defr1 is crucial to antimicrobial activity; this hypothesis was confirmed by investigation of a synthetic one-cysteine variant (Defr1-1cys). This gave an activity profile similar to that of synthetic Defr1 but only in an oxidized, dimeric form. Thus, we have shown that covalent, dimeric molecules based on the Defr1 β-defensin sequence demonstrate antimicrobial activity even in the absence of the canonical cysteine motif. PMID:17353239

  8. New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists.

    PubMed

    Yea, Christopher M; Allan, Christine E; Ashworth, Doreen M; Barnett, James; Baxter, Andy J; Broadbridge, Janice D; Franklin, Richard J; Hampton, Sally L; Hudson, Peter; Horton, John A; Jenkins, Paul D; Penson, Andy M; Pitt, Gary R W; Rivière, Pierre; Robson, Peter A; Rooker, David P; Semple, Graeme; Sheppard, Andy; Haigh, Robert M; Roe, Michael B

    2008-12-25

    Vasopressin (AVP) is a hormone that stimulates an increase in water permeability through activation of V2 receptors in the kidney. The analogue of AVP, desmopressin, has proven an effective drug for diseases where a reduction of urine output is desired. However, its peptidic nature limits its bioavailability. We report herein the discovery of potent, nonpeptidic, benzylurea derived agonists of the vasopressin V2 receptor. We describe substitutions on the benzyl group to give improvements in potency and subsequent modifications to the urea end group to provide improvements in solubility and increased oral efficacy in a rat model of diuresis. The lead compound 20e (VA106483) is reported for the first time and has been selected for clinical development.

  9. Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities.

    PubMed

    Witschel, Matthias C; Rottmann, Matthias; Schwab, Anatol; Leartsakulpanich, Ubolsree; Chitnumsub, Penchit; Seet, Michael; Tonazzi, Sandro; Schwertz, Geoffrey; Stelzer, Frank; Mietzner, Thomas; McNamara, Case; Thater, Frank; Freymond, Céline; Jaruwat, Aritsara; Pinthong, Chatchadaporn; Riangrungroj, Pinpunya; Oufir, Mouhssin; Hamburger, Matthias; Mäser, Pascal; Sanz-Alonso, Laura M; Charman, Susan; Wittlin, Sergio; Yuthavong, Yongyuth; Chaiyen, Pimchai; Diederich, François

    2015-04-09

    Several of the enzymes related to the folate cycle are well-known for their role as clinically validated antimalarial targets. Nevertheless for serine hydroxymethyltransferase (SHMT), one of the key enzymes of this cycle, efficient inhibitors have not been described so far. On the basis of plant SHMT inhibitors from an herbicide optimization program, highly potent inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) SHMT with a pyrazolopyran core structure were identified. Cocrystal structures of potent inhibitors with PvSHMT were solved at 2.6 Å resolution. These ligands showed activity (IC50/EC50 values) in the nanomolar range against purified PfSHMT, blood-stage Pf, and liver-stage P. berghei (Pb) cells and a high selectivity when assayed against mammalian cell lines. Pharmacokinetic limitations are the most plausible explanation for lack of significant activity of the inhibitors in the in vivo Pb mouse malaria model.

  10. Discovery of 3-{5-[(6-Amino-1H-pyrazolo[3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965): A Potent, Orally Bioavailable HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor with Improved Potency against Key Mutant Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Thomas J.; Sisko, John T.; Tynebor, Robert M.

    2009-07-10

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrummore » antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.« less

  11. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.

    PubMed

    Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad

    2016-01-01

    Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.

  12. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  14. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.

    PubMed

    Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying

    2009-07-23

    A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.

  15. Withaferin A, a natural compound with anti-tumor activity, is a potent inhibitor of transcription factor C/EBPβ.

    PubMed

    Falkenberg, Kim D; Jakobs, Anke; Matern, Julian C; Dörner, Wolfgang; Uttarkar, Sagar; Trentmann, Amke; Steinmann, Simone; Coulibaly, Anna; Schomburg, Caroline; Mootz, Henning D; Schmidt, Thomas J; Klempnauer, Karl-Heinz

    2017-07-01

    Recent work has shown that deregulation of the transcription factor Myb contributes to the development of leukemia and several other human cancers, making Myb and its cooperation partners attractive targets for drug development. By employing a myeloid Myb-reporter cell line we have identified Withaferin A (WFA), a natural compound that exhibits anti-tumor activities, as an inhibitor of Myb-dependent transcription. Analysis of the inhibitory mechanism of WFA showed that WFA is a significantly more potent inhibitor of C/EBPβ, a transcription factor cooperating with Myb in myeloid cells, than of Myb itself. We show that WFA covalently modifies specific cysteine residues of C/EBPβ, resulting in the disruption of the interaction of C/EBPβ with the co-activator p300. Our work identifies C/EBPβ as a novel direct target of WFA and highlights the role of p300 as a crucial co-activator of C/EBPβ. The finding that WFA is a potent inhibitor of C/EBPβ suggests that inhibition of C/EBPβ might contribute to the biological activities of WFA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: synthesis and SAR of novel analogs of MBX 1066 and MBX 1090

    PubMed Central

    Williams, John D.; Nguyen, Son T.; Gu, Shen; Ding, Xiaoyuan; Butler, Michelle M.; Tashjian, Tommy F.; Opperman, Timothy J.; Panchal, Rekha G.; Bavari, Sina; Peet, Norton P.; Moir, Donald T.; Bowlin, Terry L.

    2013-01-01

    The prevalence of drug-resistant bacteria in the clinic has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We have previously described a set of bisamidine antibiotics that contains a core composed of two indoles and a central linker. The first compounds of the series, MBX 1066 and MBX 1090, have potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. We have conducted a systematic exploration of the amidine functionalities, the central linker, and substituents at the indole 3-position to determine the factors involved in potent antibacterial activity. Some of the newly synthesized compounds have even more potent and broad-spectrum activity than MBX 1066 and MBX 1090. PMID:24239389

  17. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Comparing the efficacy of hyper-pure chlorine-dioxide with other oral antiseptics on oral pathogen microorganisms and biofilm in vitro.

    PubMed

    Herczegh, Anna; Gyurkovics, Milán; Agababyan, Hayk; Ghidán, Agoston; Lohinai, Zsolt

    2013-09-01

    This study examines the antibacterial properties of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX), Listerine®, and high purity chlorine dioxide (Solumium, ClO2) on selected common oral pathogen microorganisms and on dental biofilm in vitro. Antimicrobial activity of oral antiseptics was compared to the gold standard phenol. We investigated Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Veillonella alcalescens, Eikenella corrodens, Actinobacillus actinomycetemcomitans and Candida albicans as some important representatives of the oral pathogens. Furthermore, we collected dental plaque from the upper first molars of healthy young students. Massive biofilm was formed in vitro and its reduction was measured after treating it with mouthrinses: CHX, Listerine® or hyper pure ClO2. Their biofilm disrupting effect was measured after dissolving the crystal violet stain from biofilm by photometer. The results have showed that hyper pure ClO2 solution is more effective than other currently used disinfectants in case of aerobic bacteria and Candida yeast. In case of anaerobes its efficiency is similar to CHX solution. The biofilm dissolving effect of hyper pure ClO2 is significantly stronger compared to CHX and Listerine® after 5 min treatment. In conclusion, hyper pure ClO2 has a potent disinfectant efficacy on oral pathogenic microorganisms and a powerful biofilm dissolving effect compared to the current antiseptics, therefore high purity ClO2 may be a new promising preventive and therapeutic adjuvant in home oral care and in dental or oral surgery practice.

  19. 4-Bicyclic heteroaryl-piperidine derivatives as potent, orally bioavailable Stearoyl-CoA desaturase-1 (SCD1) inhibitors. Part 1: urea-based analogs.

    PubMed

    Yang, Shyh-Ming; Tang, Yuting; Zhang, Rui; Lu, Huajun; Kuo, Gee-Hong; Gaul, Michael D; Li, Yaxin; Ho, George; Conway, James G; Liang, Yin; Lenhard, James M; Demarest, Keith T; Murray, William V

    2013-12-15

    A new series of urea-based, 4-bicyclic heteroaryl-piperidine derivatives as potent SCD1 inhibitors is described. The structure-activity relationships focused on bicyclic heteroarenes and aminothiazole-urea portions are discussed. A trend of dose-dependent decrease in body weight gain in diet-induced obese (DIO) mice is also demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Highly potent growth hormone secretagogues: hybrids of NN703 and ipamorelin.

    PubMed

    Hansen, T K; Ankersen, M; Raun, K; Hansen, B S

    2001-07-23

    A series of NN703 analogues with lysine mimetics combined with naphthyl- or biphenylalanine in the core has been prepared and tested in vitro in a rat pituitary cell based assay and subsequently in vivo in pigs in a single dose at 50 nmol/kg. Re-introduction of certain pharmacophores in the C-terminal of NN703, which were originally removed during optimisation for oral bioavailability, led to unexpectedly potent compounds in vitro as well as in vivo.

  1. [Proteinase activity in Candida albicans strains isolated from the oral cavity of immunocompromised patients, with oral candidiasis and in healthy subjects].

    PubMed

    Hernández-Solís, Sandra E; Rueda-Gordillo, Florencio; Rojas-Herrera, Rafael A

    2014-01-01

    Candida albicans has a variety of virulence factors, including secreted aspartyl proteases, which are determinant factors in the pathogenesis of this yeast in immunocompromised patients. Proteinase activity was identified in C. albicans strains isolated from the oral cavity of immunocompromised patients with cancer, diabetes and HIV+, with oral candidiasis and in healthy subjects. Two hundred and fifty C. albicans strains were analyzed, distributed in 5 different groups: patients with cancer, diabetes, HIV+, with oral candidiasis and healthy subjects. Proteolytic activity was identified in 46% of the strains from cancer patients, 54% from HIV+ patients, 60% from diabetics, 70% from oral candidiasis patients, and 42% from healthy subjects. Activity was higher in strains from immunocompromised and oral candidiasis patients than in healthy subjects. Differences were observed between the candidiasis-healthy, candidiasis-HIV+, and diabetic-healthy groups. No differences were observed between the oral candidiasis, diabetes and cancer patients, between the diabetes and HIV+ patients, or between the cancer patients, HIV+ patients and healthy subjects. The present results suggest that although secreted aspartyl proteases are important in the pathogenesis of C. albicans, their activity depends on host conditions. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Potent antiplatelet activity of sesamol in an in vitro and in vivo model: pivotal roles of cyclic AMP and p38 mitogen-activated protein kinase.

    PubMed

    Chang, Chao C; Lu, Wan J; Chiang, Cheng W; Jayakumar, Thanasekaran; Ong, Eng T; Hsiao, George; Fong, Tsorng H; Chou, Duen S; Sheu, Joen R

    2010-12-01

    Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5-5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca(2+)](i) mobilization, thromboxane A(2) (TxA(2)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH(●)) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA(2) cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Qing; Tebben, Andrew; Dyckman, Alaric J.

    Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling amore » BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.« less

  4. Antiparasitic Activities of Novel, Orally Available Fumagillin Analogs

    PubMed Central

    Centrella, Paolo A.; Contonio, Brooke D.; Morgan, Barry A.; O’Donovan, Gary; Paradise, Christopher L.; Skinner, Steven R.; Sluboski, Barbara; Svendsen, Jennifer L.; White, Kerry F.; Debnath, Anjan; Gut, Jiri; Wilson, Nathan; McKerrow, James H.; DeRisi, Joseph L.; Rosenthal, Philip J.; Chiang, Peter K.

    2009-01-01

    Fumagillin, an irreversible inhibitor of MetAP2, has been shown to potently inhibit growth of malaria parasites in vitro. Here, we demonstrate activity of fumagillin analogs with an improved pharmacokinetic profile against malaria parasites, trypanosomes, and amoebas. A subset of the compounds showed efficacy in a murine malaria model. The observed SAR forms a basis for further optimization of fumagillin based inhibitors against parasitic targets by inhibition of MetAP2. PMID:19648008

  5. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells - in vitro studies

    NASA Astrophysics Data System (ADS)

    Hayakumo, Sae; Arakawa, Shinichi; Takahashi, Masayoshi; Kondo, Keiko; Mano, Yoshihiro; Izumi, Yuichi

    2014-10-01

    The aims of the present study were to evaluate the bactericidal activity of a new antiseptic agent, ozone nano-bubble water (NBW3), against periodontopathogenic bacteria and to assess the cytotoxicity of NBW3 against human oral cells. The bactericidal activities of NBW3 against representative periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were evaluated using in vitro time-kill assays. The cytotoxicity of NBW3 was evaluated using three-dimensional human buccal and gingival tissue models. The numbers of colony forming units (CFUs)/mL of P. gingivalis and A. actinomycetemcomitans exposed to NBW3 dropped to below the lower limit of detection (<10 CFUs mL-1) after only 0.5 min of exposure. There were only minor decreases in the viability of oral tissue cells after 24 h of exposure to NBW3. These results suggest that NBW3 possesses potent bactericidal activity against representative periodontopathogenic bacteria and is not cytotoxic to cells of human oral tissues. The use of NBW3 as an adjunct to periodontal therapy would be promising.

  6. Oral contraceptives and neuroactive steroids.

    PubMed

    Rapkin, Andrea J; Biggio, Giovanni; Concas, Alessandra

    2006-08-01

    A deregulation in the peripheral and brain concentrations of neuroactive steroids has been found in certain pathological conditions characterized by emotional or affective disturbances, including major depression and anxiety disorders. In this article we summarize data pertaining to the modulatory effects of oral contraceptive treatment on neuroactive steroids in women and rats. Given that the neuroactive steroids concentrations are reduced by oral contraceptives, together with the evidence that a subset of women taking oral contraceptives experience negative mood symptoms, we propose the use of this pharmacological treatment as a putative model to study the role of neuroactive steroids in the etiopathology of mood disorders. Moreover, since neuroactive steroids are potent modulators of GABA(A) receptor function and plasticity, the treatment with oral contraceptives might also represent a useful experimental model to further investigate the physiological role of these steroids in the modulation of GABAergic transmission.

  7. In Vitro Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate

    PubMed Central

    Stepan, George; Tian, Yang; Miller, Michael D.

    2015-01-01

    Tenofovir alafenamide (TAF) is an investigational oral prodrug of the HIV-1 nucleotide reverse transcriptase inhibitor tenofovir (TFV). Tenofovir disoproxil fumarate (TDF) is another TFV prodrug, widely used for the treatment of HIV-1 infection. TAF is converted mostly intracellularly to TFV and, in comparison to TDF, achieves higher tenofovir diphosphate (TFV-DP) levels in peripheral blood mononuclear cells. As a result, TAF has demonstrated potent anti-HIV-1 activity at lower doses than TDF in monotherapy studies. Here, the in vitro virology profile of TAF was evaluated and compared to that of TDF. TAF displayed potent antiviral activity against all HIV-1 groups/subtypes, as well as HIV-2. TAF exhibited minimal changes in the drug concentration needed to inhibit 50% of viral spread (EC50) upon removal of the prodrug, similar to TDF, demonstrating intracellular antiviral persistence. While TAF and TDF exhibited comparable potencies in the absence of serum pretreatment, TAF maintained activity in the presence of human serum, whereas TDF activity was significantly reduced. This result demonstrates TAF's improved plasma stability over TDF, which is driven by the different metabolic pathways of the two prodrugs and is key to TAF's improved in vivo antiviral activity. The activity of TAF is specific for HIV, as TAF lacked activity against a large panel of human viruses, with the exception of herpes simplex virus 2, where weak TAF antiviral activity was observed, as previously observed with TFV. Finally, in vitro combination studies with antiretroviral drugs from different classes showed additive to synergistic interactions with TAF, consistent with ongoing clinical studies with TAF in fixed-dose combinations with multiple other antiretroviral drugs for the treatment of HIV. PMID:26149992

  8. Candida albicans triggers interleukin-6 and interleukin-8 responses by oral fibroblasts in vitro.

    PubMed

    Dongari-Bagtzoglou, A; Wen, K; Lamster, I B

    1999-12-01

    Oral candidiasis is the most frequent opportunistic infection associated with an immunocompromised host. Production of proinflammatory cytokines, such as interleukin-6 (IL-6) and IL-8, by host cells in response to Candida albicans can be expected to have a major impact in the activation of immune effector cells against the invading microorganism. Using a human cell--C. albicans coculture model system, we determined that this microorganism can trigger secretion of these potent chemoattractant and proinflammatory cytokines by oral mucosal fibroblasts. This response varied depending on the infecting strain and required fungal viability, germination of yeast into hyphae and mannose-mediated direct contact between the host cell and Candida. The secretion of proinflammatory cytokines by oral mucosal fibroblasts in response to C. albicans suggests that these cells have the potential to enhance the host defense against this organism in vivo. This may have important implications in controlling fungal overgrowth in the oral cavity.

  9. 2-Arylbenzofurans from Artocarpus lakoocha and methyl ether analogs with potent cholinesterase inhibitory activity.

    PubMed

    Namdaung, Umalee; Athipornchai, Anan; Khammee, Thongchai; Kuno, Mayuso; Suksamrarn, Sunit

    2018-01-01

    In vitro screening for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the Artocarpus lakoocha root-bark extracts revealed interesting results. Bioassay-guided fractionation resulted in the isolation of two new (1 and 2) and six known 2-arylbenzofurans 3-8, along with one stilbenoid 9 and one flavonoid 10. The structures of the isolated compounds were elucidated by UV, IR, 1D- and 2D-NMR and MS spectroscopic data analysis. Compounds 4, 6 and 7 exhibited more potent AChE inhibitory activity (IC 50  = 0.87-1.10 μM) than the reference drug, galantamine. Compounds 4, 8 and 9 displayed greater BChE inhibition than the standard drug. The preferential inhibition of BChE over AChE indicated that 4 also showed a promising dual AChE and BChE inhibitor. The synthetic mono-methylated analogs 4a-c and 6a-b were found to be good BChE inhibitors with IC 50 values ranging between 0.31 and 1.11 μM. Based on the docking studies, compounds 4 and 6 are well-fitted in the catalytic triad of AChE. Compounds 4 and 6 showed different binding orientations on BChE, and the most potent BChE inhibitor 4 occupied dual binding to both CAS and PAS more efficiently. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    PubMed

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Anti-inflammatory, analgesic and antipyretic activities of loxoprofen sodium given intramuscularly in animals.

    PubMed

    Hyun, J E; Li, D W; Lee, E B; Jeong, C S

    2001-12-01

    The evaluation of the anti-inflammatory, analgesic and antipyretic activities of loxoprofen sodium given in intramuscular route was investigated as compared to oral application in rats and mice. The intramuscular ED50 values of loxoprofen sodium in carrageenan edema and vascular permeability tests are 1.15 and 7.8 mg/kg, respectively, which represent more potent than in case of oral application. Its therapeutic effects in adjuvant arthritis were shown at 6 mg/kg i.m. and 3mg/kg p.o. Analgesic effect was shown to be more potent as given intramuscularly. Similar potency of antipyretic effects was shown in both administration routes. Considerably weak gastric damages were observed in intramuscular application.

  12. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis

    PubMed Central

    2011-01-01

    Introduction Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. Methods Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. Results Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. Conclusions This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression. PMID:21510883

  13. Substituted 4-carboxymethylpyroglutamic acid diamides as potent and selective inhibitors of fibroblast activation protein.

    PubMed

    Tsai, Ting-Yueh; Yeh, Teng-Kuang; Chen, Xin; Hsu, Tsu; Jao, Yu-Chen; Huang, Chih-Hsiang; Song, Jen-Shin; Huang, Yu-Chen; Chien, Chia-Hui; Chiu, Jing-Huai; Yen, Shih-Chieh; Tang, Hung-Kuan; Chao, Yu-Sheng; Jiaang, Weir-Torn

    2010-09-23

    Fibroblast activation protein (FAP) belongs to the prolyl peptidase family. FAP inhibition is expected to become a new antitumor target. Most known FAP inhibitors often resemble the dipeptide cleavage products, with a boroproline at the P1 site; however, these inhibitors also inhibit DPP-IV, DPP-II, DPP8, and DPP9. Potent and selective FAP inhibitor is needed in evaluating that FAP as a therapeutic target. Therefore, it is important to develop selective FAP inhibitors for the use of target validation. To achieve this, optimization of the nonselective DPP-IV inhibitor 8 led to the discovery of a new class of substituted 4-carboxymethylpyroglutamic acid diamides as FAP inhibitors. SAR studies resulted in a number of FAP inhibitors having IC(50) of <100 nM with excellent selectivity over DPP-IV, DPP-II, DPP8, and DPP9 (IC(50) > 100 μM). Compounds 18a, 18b, and 19 are the only known potent and selective FAP inhibitors, which prompts us to further study the physiological role of FAP.

  14. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    PubMed

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  15. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens.

    PubMed

    Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T

    2017-02-06

    The acronymously named "ESKAPE" pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to "eskape" antibiotic treatment. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.

  16. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid

    PubMed Central

    Haj, Christeene G.; Sumariwalla, Percy F.; Hanuš, Lumír; Kogan, Natalya M.; Yektin, Zhana; Feldmann, Mark

    2015-01-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ9-tetrahydrocannabinol (Δ9-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ9-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ9-THC–like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ9-THC–like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases. PMID:26272937

  17. Discovery of 2-[4-{{2-(2S,5R)-2-cyano-5-ethynyl-1-pyrrolidinyl]-2-oxoethyl]amino]- 4-methyl-1-piperidinyl]-4-pyridinecarboxylic acid (ABT-279): a very potent, selective, effective, and well-tolerated inhibitor of dipeptidyl peptidase-IV, useful for the treatment of diabetes.

    PubMed

    Madar, David J; Kopecka, Hana; Pireh, Daisy; Yong, Hong; Pei, Zhonghua; Li, Xiaofeng; Wiedeman, Paul E; Djuric, Stevan W; Von Geldern, Thomas W; Fickes, Michael G; Bhagavatula, Lakshmi; McDermott, Todd; Wittenberger, Steven; Richards, Steven J; Longenecker, Kenton L; Stewart, Kent D; Lubben, Thomas H; Ballaron, Stephen J; Stashko, Michael A; Long, Michelle A; Wells, Heidi; Zinker, Bradley A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Polakowski, James; Segreti, Jason; Reinhart, Glenn A; Fryer, Ryan M; Sham, Hing L; Trevillyan, James M

    2006-10-19

    Dipeptidyl peptidase-IV (DPP-IV) inhibitors are poised to be the next major drug class for the treatment of type 2 diabetes. Structure-activity studies of substitutions at the C5 position of the 2-cyanopyrrolidide warhead led to the discovery of potent inhibitors of DPP-IV that lack activity against DPP8 and DPP9. Further modification led to an extremely potent (Ki(DPP)(-)(IV) = 1.0 nM) and selective (Ki(DPP8) > 30 microM; Ki(DPP9) > 30 microM) clinical candidate, ABT-279, that is orally available, efficacious, and remarkably safe in preclinical safety studies.

  18. Alleviating CYP and hERG liabilities by structure optimization of dihydrofuran-fused tricyclic benzo[d]imidazole series - Potent, selective and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-2.

    PubMed

    Muthukaman, Nagarajan; Deshmukh, Sanjay; Tambe, Macchindra; Pisal, Dnyandeo; Tondlekar, Shital; Shaikh, Mahamadhanif; Sarode, Neelam; Kattige, Vidya G; Sawant, Pooja; Pisat, Monali; Karande, Vikas; Honnegowda, Srinivasa; Kulkarni, Abhay; Behera, Dayanidhi; Jadhav, Satyawan B; Sangana, Ramchandra R; Gudi, Girish S; Khairatkar-Joshi, Neelima; Gharat, Laxmikant A

    2018-04-15

    In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160-950 nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases. Most of the tested analogs demonstrated required metabolic stability in liver microsomes, low hERG and CYP liability. Oral pharmacokinetics and bioavailability of lead compounds 21j, 21m and 21p are discussed in multiple species like rat, guinea pig, dog, and cynomolgus monkey. Besides, these compounds revealed low to moderate activity against human pregnane X receptor (hPXR). The selected lead 21j further demonstrated in vivo efficacy in acute hyperalgesia (ED 50 : 39.6 mg/kg) and MIA-induced osteoarthritic pain models (ED 50 : 106 mg/kg). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Potent anti-cervical cancer activity: synergistic effects of Thai medicinal plants in recipe N040 selected from the MANOSROI III database.

    PubMed

    Kitdamrongtham, Worapong; Manosroi, Aranya; Akazawa, Hiroyuki; Gidado, Abubakar; Stienrut, Pramote; Manosroi, Worapaka; Lohcharoenkal, Warangkana; Akihisa, Toshihiro; Manosroi, Jiradej

    2013-08-26

    its methanolic extract and ascorbic acid, respectively. Poor metal chelating activity (MC50>500 µg/ml) was observed in methanolic extract and all fractions. The highest phenolic and flavonoid contents were observed in the methanolic extract. Brazilin, the known compound isolated from the EtOAc fraction exhibited potent anti-proliferative activity with the IC50 of 0.28 µg/ml which was higher than its methanolic extract and EtOAc fraction of 119.50 and 63.61 folds, respectively, but only 0.39 fold of the recipe extract N040. The tumor size of the HeLa cell xenograft nude mice treated with the recipe N040 at the dose of 44.50mg/kg body weight per day was significantly smaller (p<0.05) than that of the control with the relative tumor weight inhibition of 57.23% which was 0.65 fold of cisplatin. In the subchronic toxicity study, N040 given orally at the dose of 1000 mg/kg body weight per day for 90 days showed no alteration in body weight gain, hematology [except the increase mean corpuscular hemoglobin (MCH) in the treated male rats] and clinical blood chemistry (except the increase blood glucose in the treated male rats) both in female and male rats. Only minor lesions of the organs including lung, liver, kidney and small intestine were observed in both sexes. This study has demonstrated the synergistic effect of the plants composed in the recipe which resulted in the potent anti-cancer activity and confirmed the traditionally use of the recipe N040. In addition, this study has also suggested the compound brazilin isolated from Caesalpinia sappan for its high potential to be further investigated as a novel anti-cervical cancer drug. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor

    PubMed Central

    Bendell, Johanna C; Javle, Milind; Bekaii-Saab, Tanios S; Finn, Richard S; Wainberg, Zev A; Laheru, Daniel A; Weekes, Colin D; Tan, Benjamin R; Khan, Gazala N; Zalupski, Mark M; Infante, Jeffrey R; Jones, Suzanne; Papadopoulos, Kyriakos P; Tolcher, Anthony W; Chavira, Renae E; Christy-Bittel, Janna L; Barrett, Emma; Patnaik, Amita

    2017-01-01

    Background: Binimetinib (MEK162; ARRY-438162) is a potent and selective oral MEK 1/2 inhibitor. This phase 1 study determined the maximum tolerated dose (MTD), safety, pharmacokinetic and pharmacodynamic profiles, and preliminary anti-tumour activity of binimetinib in patients with advanced solid tumours, with expansion cohorts of patients with biliary cancer or KRAS- or BRAF-mutant colorectal cancer. Methods: Binimetinib was administered twice daily. Expansion cohorts were enroled after MTD determination following a 3+3 dose-escalation design. Pharmacokinetic properties were determined from plasma samples. Tumour samples were assessed for mutations in RAS, RAF, and other relevant genes. Pharmacodynamic properties were evaluated in serum and skin punch biopsy samples. Results: Ninety-three patients received binimetinib (dose-escalation phase, 19; expansion, 74). The MTD was 60 mg twice daily, with dose-limiting adverse events (AEs) of dermatitis acneiform and chorioretinopathy. The dose for expansion patients was subsequently decreased to 45 mg twice daily because of the frequency of treatment-related ocular toxicity at the MTD. Common AEs across all dose levels included rash (81%), nausea (56%), vomiting (52%), diarrhoea (51%), peripheral oedema (46%), and fatigue (43%); most were grade 1/2. Dose-proportional increases in binimetinib exposure were observed and target inhibition was demonstrated in serum and skin punch biopsy samples. Three patients with biliary cancer had objective responses (one complete and two partial). Conclusions: Binimetinib demonstrated a manageable safety profile, target inhibition, and dose-proportional exposure. The 45 mg twice daily dose was identified as the recommended phase 2 dose. The three objective responses in biliary cancer patients are encouraging and support further evaluation in this population. PMID:28152546

  1. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  2. Pharmacokinetics of oral neratinib during co-administration of ketoconazole in healthy subjects.

    PubMed

    Abbas, Richat; Hug, Bruce A; Leister, Cathie; Burns, Jaime; Sonnichsen, Daryl

    2011-04-01

    The primary objective was to evaluate the pharmacokinetics of a single dose of neratinib, a potent, low-molecular-weight, orally administered, irreversible pan-ErbB (ErbB-1, -2, -4) receptor tyrosine kinase inhibitor, during co-administration with ketoconazole, a potent CYP3A4 inhibitor. This was an open-label, randomized, two-period, crossover study. Fasting healthy adults received a single oral dose of neratinib 240 mg alone and with multiple oral doses of ketoconazole 400 mg. Blood samples were collected up to 72 h after each neratinib dose. Plasma concentration data were analyzed using a noncompartmental method. The least square geometric mean ratios [90% confidence interval (CI)] of C(max) (neratinib+ketoconazole): C(max) (neratinib alone), and AUC(neratinib+ketoconazole): AUC(neratinib alone) were assessed. Twenty-four subjects were enrolled. Compared with neratinib administered alone, co-administration of ketoconazole increased neratinib C(max) by 3.2-fold (90% CI: 2.4, 4.3) and AUC by 4.8-fold (3.6, 6.5). Median t(max) was 6.0 h with both regimens. Ketoconazole decreased mean apparent oral clearance of neratinib from 346 lh(-1) to 87.1 lh(-1) and increased mean elimination half-life from 11.7 h to 18.0 h. The incidence of adverse events was comparable between the two regimens (50% neratinib alone, 65% co-administration with ketoconazole). Co-administration of neratinib with ketoconazole, a potent CYP3A inhibitor, increased neratinib C(max) by 3.2-fold and AUC by 4.8-fold compared with administration of neratinib alone. These results indicate that neratinib is a substrate of CYP3A and is susceptible to interaction with potent CYP3A inhibitors and, thus, dose adjustments may be needed if neratinib is administered with such compounds. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  3. Pharmacokinetics of oral neratinib during co-administration of ketoconazole in healthy subjects

    PubMed Central

    Abbas, Richat; Hug, Bruce A; Leister, Cathie; Burns, Jaime; Sonnichsen, Daryl

    2011-01-01

    AIM The primary objective was to evaluate the pharmacokinetics of a single dose of neratinib, a potent, low-molecular-weight, orally administered, irreversible pan-ErbB (ErbB-1, -2, -4) receptor tyrosine kinase inhibitor, during co-administration with ketoconazole, a potent CYP3A4 inhibitor. METHODS This was an open-label, randomized, two-period, crossover study. Fasting healthy adults received a single oral dose of neratinib 240 mg alone and with multiple oral doses of ketoconazole 400 mg. Blood samples were collected up to 72 h after each neratinib dose. Plasma concentration data were analyzed using a noncompartmental method. The least square geometric mean ratios [90% confidence interval (CI)] of Cmax(neratinib+ketoconazole) : Cmax(neratinib alone), and AUC(neratinib+ketoconazole) : AUC(neratinib alone) were assessed. RESULTS Twenty-four subjects were enrolled. Compared with neratinib administered alone, co-administration of ketoconazole increased neratinib Cmax by 3.2-fold (90% CI: 2.4, 4.3) and AUC by 4.8-fold (3.6, 6.5). Median tmax was 6.0 h with both regimens. Ketoconazole decreased mean apparent oral clearance of neratinib from 346 l h−1 to 87.1 l h−1 and increased mean elimination half-life from 11.7 h to 18.0 h. The incidence of adverse events was comparable between the two regimens (50% neratinib alone, 65% co-administration with ketoconazole). CONCLUSION Co-administration of neratinib with ketoconazole, a potent CYP3A inhibitor, increased neratinib Cmax by 3.2-fold and AUC by 4.8-fold compared with administration of neratinib alone. These results indicate that neratinib is a substrate of CYP3A and is susceptible to interaction with potent CYP3A inhibitors and, thus, dose adjustments may be needed if neratinib is administered with such compounds. PMID:21395644

  4. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study.

    PubMed

    Bekker, Pirow; Dairaghi, Daniel; Seitz, Lisa; Leleti, Manmohan; Wang, Yu; Ertl, Linda; Baumgart, Trageen; Shugarts, Sarah; Lohr, Lisa; Dang, Ton; Miao, Shichang; Zeng, Yibin; Fan, Pingchen; Zhang, Penglie; Johnson, Daniel; Powers, Jay; Jaen, Juan; Charo, Israel; Schall, Thomas J

    2016-01-01

    The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.

  5. Design, synthesis, and in vivo SAR of a novel series of pyrazolines as potent selective androgen receptor modulators.

    PubMed

    Zhang, Xuqing; Li, Xiaojie; Allan, George F; Sbriscia, Tifanie; Linton, Olivia; Lundeen, Scott G; Sui, Zhihua

    2007-08-09

    A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity. The (S)-isomer of 7c exhibits more potent AR agonist activity than the corresponding (R)-isomer. (S)-7c exhibited an overall partial androgenic effect but full anabolic effect via oral administration in castrated rats. It demonstrated a noticeable antiandrogenic effect on prostate in intact rats with endogenous testosterone. Thus, (S)-7c is a tissue-selective nonsteroidal androgen receptor modulator with agonist activity on muscle and mixed agonist and antagonist activity on prostate.

  6. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism*

    PubMed Central

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-01-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  7. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.

    PubMed

    Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry

    2017-05-26

    A multivalent phosphorus dendrimer 1G 3 and its corresponding Cu-complex, 1G 3 -Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G 3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    PubMed

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  9. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    PubMed

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  10. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A potent, covalent inhibitor of orotidine 5'-monophosphate decarboxylase with antimalarial activity.

    PubMed

    Bello, Angelica M; Poduch, Ewa; Fujihashi, Masahiro; Amani, Merhnaz; Li, Yan; Crandall, Ian; Hui, Raymond; Lee, Ping I; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P

    2007-03-08

    Orotidine 5'-monophosphate decarboxylase (ODCase) has evolved to catalyze the decarboxylation of orotidine 5'-monophosphate without any covalent intermediates. Active site residues in ODCase are involved in an extensive hydrogen-bonding network. We discovered that 6-iodouridine 5'-monophosphate (6-iodo-UMP) irreversibly inhibits the catalytic activities of ODCases from Methanobacterium thermoautotrophicum and Plasmodium falciparum. Mass spectral analysis of the enzyme-inhibitor complex confirms covalent attachment of the inhibitor to ODCase accompanied by the loss of two protons and the iodo moiety. The X-ray crystal structure (1.6 A resolution) of the complex of the inhibitor and ODCase clearly shows the covalent bond formation with the active site Lys-72 [corrected] residue. 6-Iodo-UMP inhibits ODCase in a time- and concentration-dependent fashion. 6-Iodouridine, the nucleoside form of 6-iodo-UMP, exhibited potent antiplasmodial activity, with IC50s of 4.4 +/- 1.3 microM and 6.2 +/- 0.7 microM against P. falciparum ItG and 3D7 isolates, respectively. 6-Iodouridine 5'-monophosphate is a novel covalent inhibitor of ODCase, and its nucleoside analogue paves the way to a new class of inhibitors against malaria.

  12. Miltefosine: oral treatment of leishmaniasis.

    PubMed

    Soto, Jaime; Soto, Paula

    2006-04-01

    The well-known problems of classic treatment of the leishmaniases with pentavalent antimony (reduced efficacy), difficulties of administration and increasing frequency and severity of adverse events have stimulated the search for new drugs to treat these diseases. Other injectable, oral and topical drugs have not been consistently effective, especially in the modern World. Beginning in 1998, Indian researchers conducted several trials with hexadecylphosphocholine (miltefosine) in patients with visceral leishmaniasis, and in 1999, clinical studies were initiated in Colombia for cutaneous disease. More than 2500 patients have been treated, including patients with diffuse cutaneous leishmaniasis, mucosal disease and patients coinfected with HIV. Cure rates between 91 and 100% were reached with a dose of 2.5 mg/kg/day for 28 days, with no difference between treatment-naive and relapsing patients. Mild gastrointestinal events were present in 35-60% of patients and 10-20% had mild transaminase and creatinine elevations. Miltefosine has potent leishmanicidal activity as a consequence of its interference in parasite metabolic pathways and the induction of apoptosis. Miltefosine is the first effective and safe oral agent with the potential to treat all major clinical presentations of leishmaniasis.

  13. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle.

    PubMed

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki

    2009-07-01

    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  14. Choosing the Right Oral Contraceptive Pill for Teens.

    PubMed

    Powell, Anne

    2017-04-01

    Oral contraceptive pills (OCPs) continue to be the most commonly used form of prescription contraceptives used by adolescents in the United States. With proper use, oral contraceptives provide safe and effective birth control. Broad categories of OCPs include progestin-only pills (POPs) and combined oral contraceptive pills (COCs). Certain types of progestins have more potent antiandrogenic properties and are more effective in treating acne, hirsutism, and polycystic ovary syndrome. This article reviews types of OCPs, discusses risks and benefits of OCPs, and provides guidance for how to choose the most beneficial and appropriate OCP for individual adolescent patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evaluation of an educational activity in the oral health of students.

    PubMed

    Barros, Vj de A; Costa, S M; Zanin, L; Flório, F M

    2017-02-01

    To investigate the influence of educational activity in the school environment based on prescriptive and subjective oral health indicators. Cross-sectional, comparative study involving students between 9 and 12 years of age, from schools that have educational activities and those that do not, designated schools A and B. The oral health indicators used were the Simplified Oral Hygiene Index (OHI-S) and the Community Periodontal Index (CPITN). Knowledge and attitudes with regard to oral health were evaluated using a structured questionnaire. A total of 289 schoolchildren took part, 50.5% from school A and 49.5% from school B, in the town of Montes Claros, in the Brazilian state of Minas Gerais. In school A, the schoolchildren's OHI-S was satisfactory for 9.6%, normal for 78.8% and deficient for 11.6%, while in school B, the respective percentages were 3.5%, 17.5% and 79% (chi-squared, P < 0.001). The students in school A showed better CPITN results, namely lack of bleeding for 61.6%, the presence of bleeding for 29.5% and presence of tartar for 8.9%, while in school B, the respective results were 25.2%, 45.5% and 29.4% (chi-squared, P < 0.001). Students in school A achieved more correct answers in questions that evaluated knowledge of oral health. The account of daily use of dental floss in school A was 21.7% and in B, 3.6% (chi-squared, P < 0.001). It is believed that educational activity in the school environment had a positive effect on oral health conditions, the consolidation of knowledge and incorporation of oral hygiene habits. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Extensive screening for herbal extracts with potent antioxidant properties

    PubMed Central

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O2•−) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O2•− was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O2•−. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical (•OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H2O2 induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge •OH. Furthermore, the scavenging activities against O2•− and •OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant. The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917

  17. Uracil-ftorafur: an oral fluoropyrimidine active in colorectal cancer.

    PubMed

    Sulkes, A; Benner, S E; Canetta, R M

    1998-10-01

    This review describes the early clinical development of uracil-ftorafur (UFT), an oral fluoropyrimidine, designed in 1978 by adding uracil to ftorafur. The review focuses on the treatment of colorectal cancer and summarizes the Japanese experience and the phase I and II trials performed in the United States and Europe. Clinical trials of UFT published in the Western world have included 581 patients with colorectal cancer. UFT has been administered in these trials as a single agent or biomodulated by leucovorin (LV). UFT was administered daily in split doses for periods that ranged from 14 to 28 days. The activity of oral UFT in large-bowel cancer when administered with oral LV (approximately 50 mg/dose) has resulted in objective response rates of approximately 40%. Response rates of approximately 25% (range, 17% to 39%) were reported when UFT was administered as a single agent or with lower doses of LV. The highest dose-intensities of UFT are achieved with 28-day schedules of administration. The maximum-tolerated dose (MTD) of UFT with this schedule, when administered concomitantly with oral LV 150 mg daily, is 300 mg/m2 daily. The dose-limiting toxicity (DLT) of UFT has generally been diarrhea. Other commonly described toxicities include nausea and vomiting, fatigue, and stomatitis. Myelosuppression occurs infrequently. Typically, hand-foot syndrome and neurologic toxicity are lacking. UFT is a fluoropyrimidine active in colorectal cancer. The oral route of administration and improved safety profile represent important advantages over both conventional and infusional fluorouracil (5-FU) regimens.

  18. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens

    PubMed Central

    Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T.

    2017-01-01

    The acronymously named “ESKAPE” pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to “eskape” antibiotic treatment12. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment. PMID:28165020

  19. Adenosine A2A receptor agonists with potent antiplatelet activity.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Caballero, Julio; Palomo, Iván; Hinz, Sonja; El-Tayeb, Ali; Müller, Christa E

    2018-05-01

    Selected adenosine A 2A receptor agonists (PSB-15826, PSB-12404, and PSB-16301) have been evaluated as new antiplatelet agents. In addition, radioligand-binding studies and receptor-docking experiments were performed in order to explain their differential biological effects on a molecular level. Among the tested adenosine derivatives, PSB-15826 was the most potent compound to inhibit platelet aggregation (EC 50 0.32 ± 0.05 µmol/L) and platelet P-selectin cell-surface localization (EC 50 0.062 ± 0.2 µmol/L), and to increase intraplatelets cAMP levels (EC 50 0.24 ± 0.01 µmol/L). The compound was more active than CGS21680 (EC 50 0.97±0.07 µmol/L) and equipotent to NECA (EC 50 0.31 ± 0.05 µmol/L) in platelet aggregation induced by ADP. In contrast to the results from cAMP assays, K i values determined in radioligand-binding studies were not predictive of the A 2A agonists' antiplatelet activity. Docking studies revealed the key molecular determinants of this new family of adenosine A 2A receptor agonists: differences in activities are related to π-stacking interactions between the ligands and the residue His264 in the extracellular loop of the adenosine A 2A receptor which may result in increased residence times. In conclusion, these results provide an improved understanding of the requirements of antiplatelet adenosine A 2A receptor agonists.

  20. Antimalarial Pyrido[1,2-a]benzimidazoles: Lead Optimization, Parasite Life Cycle Stage Profile, Mechanistic Evaluation, Killing Kinetics, and in Vivo Oral Efficacy in a Mouse Model.

    PubMed

    Singh, Kawaljit; Okombo, John; Brunschwig, Christel; Ndubi, Ferdinand; Barnard, Linley; Wilkinson, Chad; Njogu, Peter M; Njoroge, Mathew; Laing, Lizahn; Machado, Marta; Prudêncio, Miguel; Reader, Janette; Botha, Mariette; Nondaba, Sindisiwe; Birkholtz, Lyn-Marie; Lauterbach, Sonja; Churchyard, Alisje; Coetzer, Theresa L; Burrows, Jeremy N; Yeates, Clive; Denti, Paolo; Wiesner, Lubbe; Egan, Timothy J; Wittlin, Sergio; Chibale, Kelly

    2017-02-23

    Further structure-activity relationship (SAR) studies on the recently identified pyrido[1,2-a]benzimidazole (PBI) antimalarials have led to the identification of potent, metabolically stable compounds with improved in vivo oral efficacy in the P. berghei mouse model and additional activity against parasite liver and gametocyte stages, making them potential candidates for preclinical development. Inhibition of hemozoin formation possibly contributes to the mechanism of action.

  1. Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci.

    PubMed

    Mohammad, Haroon; Younis, Waleed; Chen, Lu; Peters, Christine E; Pogliano, Joe; Pogliano, Kit; Cooper, Bruce; Zhang, Jianan; Mayhoub, Abdelrahman; Oldfield, Eric; Cushman, Mark; Seleem, Mohamed N

    2017-03-23

    The emergence of antibiotic-resistant bacterial species, such as vancomycin-resistant enterococci (VRE), necessitates the development of new antimicrobials. Here, we investigate the spectrum of antibacterial activity of three phenylthiazole-substituted aminoguanidines. These compounds possess potent activity against VRE, inhibiting growth of clinical isolates at concentrations as low as 0.5 μg/mL. The compounds exerted a rapid bactericidal effect, targeting cell wall synthesis. Transposon mutagenesis suggested three possible targets: YubA, YubB (undecaprenyl diphosphate phosphatase (UPPP)), and YubD. Both UPPP as well as undecaprenyl diphosphate synthase were inhibited by compound 1. YubA and YubD are annotated as transporters and may also be targets because 1 collapsed the proton motive force in membrane vesicles. Using Caenorhabditis elegans, we demonstrate that two compounds (1, 3, at 20 μg/mL) retain potent activity in vivo, significantly reducing the burden of VRE in infected worms. Taken altogether, the results indicate that compounds 1 and 3 warrant further investigation as novel antibacterial agents against drug-resistant enterococci.

  2. The novel oral glucan synthase inhibitor SCY-078 shows in vitro activity against sessile and planktonic Candida spp.

    PubMed

    Marcos-Zambrano, Laura Judith; Gómez-Perosanz, Marta; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2017-07-01

    We studied the antifungal activity of SCY-078 (an orally bioavailable 1,3-β -d- glucan synthesis inhibitor), micafungin and fluconazole against the planktonic and sessile forms of 178 Candida and non- Candida isolates causing fungaemia in patients recently admitted to a large European hospital. The in vitro activity of SCY-078, micafungin and fluconazole against the planktonic form of the isolates was assessed using EUCAST EDef 7.3 and CLSI M27-A3. Antibiofilm activity was assessed using the XTT reduction assay. SCY-078 and micafungin showed potent in vitro activity against Candida and non- Candida isolates. The in vitro activity of both drugs was similar, but SYC-078 displayed significantly lower MIC values than micafungin against Candida parapsilosis and non- Candida isolates, whereas micafungin displayed significantly lower MIC values for the remaining species ( P  <0.001). In contrast, SCY-078 and micafungin showed essentially the same activity against the biofilms with the exception of Candida glabrata , in which the micafungin sessile MIC values were significantly lower ( P  <0.001). These observations were confirmed by assessing biofilm structure by scanning electron microscopy after antifungal treatment. Our study showed that the high in vitro activity of SCY-078 against invasive Candida isolates in both sessile and planktonic forms is comparable to that of micafungin. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Enzymatic Activity of Candida spp. from Oral Cavity and Urine in Children with Nephrotic Syndrome.

    PubMed

    Olczak-Kowalczyk, Dorota; Roszkowska-Blaim, Maria; Dąbkowska, Maria; Swoboda-Kopeć, Ewa; Gozdowski, Dariusz; Mizerska-Wasiak, Małgorzata; Demkow, Urszula; Pańczyk-Tomaszewska, Małgorzata

    2017-01-01

    Oral colonization with Candida spp. is not synonymous with a systemic active infection. The aim of the study was to evaluate enzymatic activity of Candida strains isolated from the oral cavity in patients with nephrotic syndrome (NS) and to compare it with the activity determined in urine. We studied 32 children with NS and 26 control healthy children. Children with NS were treated with glucocorticosteroids, cyclosporin A, mycophenolate mofetil or azathioprine. In all children, API-ZYM enzymatic tests were performed to evaluate hydrolytic enzymes of Candida isolated from the oral cavity and in urine. Candida spp. were isolated from the oral cavity in 11 patients with NS (34.4%), all receiving immunosuppressive treatment. All strains produced valine arylamidase, 9 alpha-glucosidase (E16), and 9 N-acetyl-beta-glucosaminidase (E18). A positive correlation between the presence of Candida in the oral cavity and E16 and E18 enzymatic activity in both oral cavity and urine was found. A dose of cyclosporin A had an effect on the enzymatic activity (p < 0.05). We conclude that immunosuppressive treatment of NS in children may predispose to systemic Candida invasion. The results of this study suggest that oral candida infection should be monitored in children with nephrotic syndrome, particularly those treated with immunosuppressive agents.

  4. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study

    PubMed Central

    Bekker, Pirow; Dairaghi, Daniel; Seitz, Lisa; Leleti, Manmohan; Wang, Yu; Ertl, Linda; Baumgart, Trageen; Shugarts, Sarah; Lohr, Lisa; Dang, Ton; Miao, Shichang; Zeng, Yibin; Fan, Pingchen; Zhang, Penglie; Johnson, Daniel; Powers, Jay; Jaen, Juan; Charo, Israel; Schall, Thomas J.

    2016-01-01

    The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773. PMID:27768695

  5. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

    PubMed

    Elkamhawy, Ahmed; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Kim, Hyeon Young; Heo, Jin-Chul; Park, Woo-Kyu; Lee, Chong-Ock; Yang, Heekyoung; Kim, Kang Ho; Nam, Do-Hyun; Seol, Ho Jun; Cho, Heeyeong; Roh, Eun Joo

    2015-10-20

    Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Orally active-targeted drug delivery systems for proteins and peptides.

    PubMed

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  7. Structure-activity relationship investigation for benzonaphthyridinone derivatives as novel potent Bruton's tyrosine kinase (BTK) irreversible inhibitors.

    PubMed

    Wang, Beilei; Deng, Yuanxin; Chen, Yongfei; Yu, Kailin; Wang, Aoli; Liang, Qianmao; Wang, Wei; Chen, Cheng; Wu, Hong; Hu, Chen; Miao, Weili; Hur, Wooyoung; Wang, Wenchao; Hu, Zhenquan; Weisberg, Ellen L; Wang, Jinhua; Ren, Tao; Wang, Yinsheng; Gray, Nathanael S; Liu, Qingsong; Liu, Jing

    2017-09-08

    Through a structure-based drug design approach, a tricyclic benzonaphthyridinone pharmacophore was used as a starting point for carrying out detailed medicinal structure-activity relationhip (SAR) studies geared toward characterization of a panel of proposed BTK inhibitors, including 6 (QL-X-138), 7 (BMX-IN-1) and 8 (QL47). These studies led to the discovery of the novel potent irreversible BTK inhibitor, compound 18 (CHMFL-BTK-11). Kinetic analysis of compound 18 revealed an irreversible binding efficacy (k inact /K i ) of 0.01 μM -1 s -1 . Compound 18 potently inhibited BTK kinase Y223 auto-phosphorylation (EC 50  < 100 nM), arrested cell cycle in G0/G1 phase, and induced apoptosis in Ramos, MOLM13 and Pfeiffer cells. We believe these features would make 18 a good pharmacological tool for studying BTK-related pathologies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration.

    PubMed

    Ding, Yu-Shin; Gatley, S John; Thanos, Panayotis K; Shea, Colleen; Garza, Victor; Xu, Youwen; Carter, Pauline; King, Payton; Warner, Don; Taintor, Nicholas B; Park, Daniel J; Pyatt, Bea; Fowler, Joanna S; Volkow, Nora D

    2004-09-01

    Methylphenidate (MP) (Ritalin) is widely used for the treatment of attention deficit hyperactivity disorder (ADHD). It is a chiral drug, marketed as the racemic mixture of d- and l-threo enantiomers. Our previous studies (PET and microdialysis) in humans, baboons, and rats confirm the notion that pharmacological specificity of MP resides predominantly in the d-isomer. A recent report that intraperitoneally (i.p.) administered l-threo-MP displayed potent, dose-dependent inhibition of cocaine- or apomorphine-induced locomotion in rats, raises the question of whether l-threo-MP has a similar effect when given orally. It has been speculated that l-threo-MP is poorly absorbed in humans when it is given orally because of rapid presystemic metabolism. To investigate whether l-threo-MP or its metabolites can be delivered to the brain when it is given orally, and whether l-threo-MP is pharmacologically active. PET and MicroPET studies were carried out in baboons and rats using orally delivered C-11-labeled d- and l-threo-MP ([methyl-(11)C]d-threo-MP and [methyl-(11)C]l-threo-MP). In addition, we assessed the effects of i.p. l-threo-MP on spontaneous and cocaine-stimulated locomotor activity in mice. There was a higher global uptake of carbon-11 in both baboon and rat brain for oral [(11)C]l-threo-MP than for oral [(11)C]d-threo-MP. Analysis of the chemical form of radioactivity in rat brain after [(11)C]d-threo-MP indicated mainly unchanged tracer, whereas with [(11)C]l-threo-MP, it was mainly a labeled metabolite. The possibility that this labeled metabolite might be [(11)C]methanol or [(11)C]CO(2), derived from demethylation, was excluded by ex vivo studies in rats. When l-threo-MP was given i.p. to mice at a dose of 3 mg/kg, it neither stimulated locomotor activity nor inhibited the increased locomotor activity due to cocaine administration. These results suggest that, in animal models, l-threo-MP or its metabolite(s) is (are) absorbed from the gastrointestinal tract and

  9. Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity.

    PubMed

    Qiu, Jiedong; Hauske, Sibylle J; Zhang, Shiqi; Rodriguez-Niño, Angelica; Albrecht, Thomas; Pastene, Diego O; van den Born, Jacob; van Goor, Harry; Ruf, Sven; Kohlmann, Markus; Teufel, Michael; Krämer, Bernhard K; Hammes, Hans-Peter; Peters, Verena; Yard, Benito A; Kannt, Aimo

    2018-06-20

    Carnosinase 1 (CN1) has been postulated to be a susceptibility factor for developing diabetic nephropathy (DN). Although its major substrate, carnosine, is beneficial in rodent models of DN, translation of these findings to humans has been hampered by high CN1 activity in human serum resulting in rapid degradation of carnosine. To overcome this hurdle, we screened a protease-directed small-molecule library for inhibitors of human recombinant CN1. We identified SAN9812 as a potent and highly selective inhibitor of CN1 activity with a K i of 11 nM. It also inhibited CN1 activity in human serum and serum of transgenic mice-overexpressing human CN1. Subcutaneous administration of 30 mg/kg SAN9812 led to a sustained reduction in circulating CN1 activity in human CN1 transgenic (TG) mice. Simultaneous administration of carnosine and SAN9812 increased carnosine levels in plasma and kidney by up to 100-fold compared to treatment-naïve CN1-overexpressing mice. To our knowledge, this is the first study reporting on a potent and selective CN1 inhibitor with in vivo activity. SAN9812, also called carnostatine, may be used to increase renal carnosine concentration as a potential therapeutic modality for renal diseases linked to glycoxidative conditions.

  10. Small dense HDLs display potent vasorelaxing activity, reflecting their elevated content of sphingosine-1-phosphate.

    PubMed

    Perségol, Laurence; Darabi, Maryam; Dauteuille, Carolane; Lhomme, Marie; Chantepie, Sandrine; Rye, Kerry-Anne; Therond, Patrice; Chapman, M John; Salvayre, Robert; Nègre-Salvayre, Anne; Lesnik, Philippe; Monier, Serge; Kontush, Anatol

    2018-01-01

    The functional heterogeneity of HDL is attributed to its diverse bioactive components. We evaluated whether the vasodilatory effects of HDL differed across HDL subpopulations, reflecting their distinct molecular composition. The capacity of five major HDL subfractions to counteract the inhibitory effects of oxidized LDL on acetylcholine-induced vasodilation was tested in a rabbit aortic rings model. NO production, an essential pathway in endothelium-dependent vasorelaxation, was studied in simian vacuolating virus 40-transformed murine endothelial cells (SVECs). Small dense HDL3 subfractions displayed potent vasorelaxing activity (up to +31% vs. baseline, P < 0.05); in contrast, large light HDL2 did not induce aortic-ring relaxation when compared on a total protein basis. HDL3 particles were enriched with sphingosine-1-phosphate (S1P) (up to 3-fold vs. HDL2), with the highest content in HDL3b and -3c that concomitantly revealed the strongest vasorelaxing properties. NO generation was enhanced by HDL3c in SVECs (1.5-fold, P < 0.01), a phenomenon that was blocked by the S1P receptor antagonist, VPC 23019. S1P-enriched reconstituted HDL (rHDL) was a 1.8-fold ( P < 0.01) more potent vasorelaxant than control rHDL in aortic rings. Small dense HDL3 particles displayed potent protective effects against oxidative stress-associated endothelium dysfunction, potentially reflecting their elevated content of S1P that might facilitate interaction with S1P receptors and ensuing NO generation. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1).

    PubMed

    Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K

    2003-03-01

    Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.

  12. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid.

    PubMed

    Haj, Christeene G; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M; Yektin, Zhana; Mechoulam, Raphael; Feldmann, Mark; Gallily, Ruth

    2015-10-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ(9)-tetrahydrocannabinol (Δ(9)-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ(9)-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ(9)-THC-like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ(9)-THC-like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Cell-based medicinal chemistry optimization of high-throughput screening (HTS) hits for orally active antimalarials. Part 1: challenges in potency and absorption, distribution, metabolism, excretion/pharmacokinetics (ADME/PK).

    PubMed

    Chatterjee, Arnab K

    2013-10-24

    Malaria represents a significant health issue, and novel and effective drugs are needed to address parasite resistance that has emerged to the current drug arsenal. Antimalarial drug discovery has historically benefited from a whole-cell (phenotypic) screening approach to identify lead molecules. This approach has been utilized by several groups to optimize weakly active antimalarial pharmacophores, such as the quinolone scaffold, to yield potent and highly efficacious compounds that are now poised to enter clinical trials. More recently, GNF/Novartis, GSK, and others have employed the same approach in high-throughput screening (HTS) of large compound libraries to find novel scaffolds that have also been optimized to clinical candidates by GNF/Novartis. This perspective outlines some of the inherent challenges in cell-based medicinal chemistry optimization, including optimization of oral exposure and hERG activity.

  14. Hydrolysis of an orally active platelet inhibitory prostanoid amide in the plasma of several species.

    PubMed

    Honohan, T; Fitzpatrick, F A; Booth, D G; McGrath, J P; Morton, D R; Nishizawa, E

    1980-01-01

    The prostanoid 3-oxa-4,5,6-trinor-3,7-inter-m-phenylene-PGE1-amide (OI-PGE1-amide) has a prolonged duration of oral platelet aggregation inhibitory activity when compared to the parent free acid (OI-PGE1) in the rat. When incubated in rat plasma at 1 microgram/ml for 30 seconds prior to addition of ADP, OI-PGE1-amide inhibits in vitro rat platelet aggregation approximately 50%. OI-PGE1 inhibits at 1 ng/ml. Inhibition of platelet aggregation by plasma incubated with OI-PGE1-amide (1 microgram/ml) increases with time and the rate of this increase differs with species. Incubation of OI-PGE1 in plasma does not result in an increase of platelet inhibitory activity with time. The increase of platelet inhibitory activity was assumed to indicate hydrolysis of OI-PGE1-amide to the more active OI-PGE1. A compound, different from OI-PGE1-amide, was isolated by an ion exchange/silica gel separation sequence from an incubation of OI-PGE1-amide in rat plasma. It had potent platelet aggregation inhibitory activity. This material was shown to be OI-PGE1 by thin-layer chromatography, gas chromatography and mass spectral analysis. Studies with [3H]-OI-PGE1-amide confirmed the formation of OI-PGE1 in plasma incubations. Amide hydrolytic activity was significantly different between species, the rank order being: rat greater than guine pig greater than monkey = human greater than dog. This relationship corresponded with that determined by measuring the increase in platelet inhibitory activity with time in plasma incubations of OI-PGE1-amide reported above. Present data indicate that (a) OI-PGE1-amide is hydrolyzed to the parent acid by plasma enzymes of several species and (b) hydrolytic activity of plasma varies widely between species.

  15. Discovery of an Acrylic Acid Based Tetrahydroisoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Heather E.; Abrams, Tinya; Kirby, Christina A.

    Tetrahydroisoquinoline 40 has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ 40 and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ 40 in a MCF-7 human breast cancer xenograft model.

  16. MIV-150 and zinc acetate combination provides potent and broad activity against HIV-1.

    PubMed

    Mizenina, Olga; Hsu, Mayla; Jean-Pierre, Ninochka; Aravantinou, Meropi; Levendosky, Keith; Paglini, Gabriela; Zydowsky, Thomas M; Robbiani, Melissa; Fernández-Romero, José A

    2017-12-01

    We previously showed that the combination of the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 with zinc acetate (ZA) formulated in a carrageenan (CG; MZC) gel provided macaques significant protection against vaginal simian-human immunodeficiency virus-RT (SHIV-RT) challenge, better than either MIV-150/CG or ZA/CG. The MZC gel was shown to be safe in a phase 1 clinical trial. Herein, we used in vitro approaches to study the antiviral properties of ZA and the MIV-150/ZA combination, compared to other NNRTIs. Like other NNRTIs, MIV-150 has EC 50 values in the subnanomolar to nanomolar range against wild type and NNRTI or RT-resistant HIVs. While less potent than NNRTIs, ZA was shown to be active in primary cells against laboratory-adapted and primary HIV-1 isolates and HIV-1 isolates/clones with NNRTI and RT resistance mutations, with EC 50 values between 20 and 110 μM. The MIV-150/ZA combination had a potent and broad antiviral activity in primary cells. In vitro resistance selection studies revealed that previously described NNRTI-resistant mutations were selected by MIV-150. ZA-resistant virus retained susceptibility to MIV-150 (and other RTIs) and MIV-150-selected virus remained sensitive to ZA. Notably, resistant virus was not selected when cultured in the presence of both ZA and MIV-150. This underscores the potency and breadth of the MIV-150/ZA combination, supporting preclinical macaque studies and the advancement of MZC microbicides into clinical testing.

  17. A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo.

    PubMed

    Henry, E C; Bemis, J C; Henry, O; Kende, A S; Gasiewicz, T A

    2006-06-01

    The aryl hydrocarbon receptor (AhR) is best known as a mediator of toxicity of a diverse family of xenobiotic chemicals such as dioxins and PCBs. However, many naturally occurring compounds also activate AhR. One such compound, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), was isolated from tissue and found to be potent in preliminary tests [J. Song, M. Clagett-Dame, R.E. Peterson, M.E. Hahn, W.M. Westler, R.R. Sicinski, H.F. DeLuca, Proc. Natl. Acad. Sci. USA 99 (2002) 14694-14699]. We have synthesized ITE and [(3)H]ITE and further evaluated its AhR activity in several in vitro and in vivo assays in comparison with the toxic ligand, TCDD. AhR in Hepa1c1c7 cell cytosol bound [(3)H]ITE with high affinity and the AhR.ITE complex formed in vitro bound dioxin response element (DRE) oligonucleotide as potently as TCDD.AhR. In cells treated with ITE, nuclear translocation of AhR, and induction of CYP1A1 protein and of a DRE-dependent luciferase reporter gene were observed. ITE administered to pregnant DRE-LacZ transgenic mice activated fetal AhR, observed as X-gal staining in the same sites as in TCDD-treated mice. However, unlike TCDD, ITE did not induce cleft palate or hydronephrosis. TCDD but not ITE induced thymic atrophy in young adult mice, but both ITE and TCDD caused similar loss of cells and alterations of cell profiles in cultured fetal thymi. These data demonstrate that ITE is a potent AhR agonist in cell extracts, cultured cells, and intact animals, but does not cause the toxicity associated with the more stable xenobiotic ligand, TCDD.

  18. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors.

    PubMed

    Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen

    2014-01-15

    Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    PubMed

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  1. Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate.

    PubMed

    Song, Yu'ning; Lin, Xiaoqian; Kang, Dongwei; Li, Xiao; Zhan, Peng; Liu, Xinyong; Zhang, Qingzhu

    2014-07-23

    Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation via the interactions with CDK/Cyclin complexes. Overexpression of CDC25 proteins is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, inhibiting CDC25 activity in cancer treatment appears a good therapeutic strategy. In this article, refinement of the initial hit XDW-1 by synthesis and screening of a focused compound library led to the identification of a novel set of imidazopyridine derivatives as potent CDC25 inhibitors. Among them, the most potent molecule was CHEQ-2, which could efficiently inhibit the activities of CDC25A/B enzymes as well as the proliferation of various different types of cancer cell lines in vitro assay. Moreover, CHEQ-2 triggered S-phase cell cycle arrest in MCF-7, HepG2 and HT-29 cell lines, accompanied by generation of ROS, mitochondrial dysfunction and apoptosis. Besides, oral administration of CHEQ-2 (10 mg/kg) significantly inhibited xenografted human liver tumor growth in nude mice, while demonstrated extremely low toxicity (LD50 > 2000 mg/kg). These findings make CHEQ-2 a good starting point for further investigation and structure modification. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Potentized Mercuric chloride and Mercuric iodide enhance alpha-amylase activity in vitro.

    PubMed

    Sukul, N C; De, A; Sukul, A; Sinhababu, S P

    2002-10-01

    Mercuric chloride 30c and Mercuric iodide 30c were prepared by successive dilution in 30 steps of 1:100 followed by sonication at 20KHz for 30s at each step. Both were prepared in two media: 90% ethanol and distilled water. Three preparations of Mercuric chloride 30 in water were used: 12-month old, 1-month old and 4-day old. The controls for the water and ethanol-water preparations were pure water 30c and 90% ethanol 30c, respectively. For the three water preparations there were three matched controls of water 30c of the same ages. Each potentized substance or its control was mixed with distilled water 1:100 before testing. Hydrolysis of starch by alpha-amylase was measured by the standard procedure after incubation for 15 min at 27 degrees C. Mercuric chloride 30c and Mercuric iodide 30c in both water and aqueous ethanol media, enhanced enzyme activity significantly, compared to their respective controls. Mercuric chloride 30c, prepared in water 12 months previously, produced no significant change in the enzyme activity compared to its control. We hypothesize that the structure of the active molecule imprinted on water polymers during the process of dynamization. The specifically structured water interacts with the active sites of alpha-amylase, modifying its activity. Ethanol molecules have large non-polar part stabilizing the water structure and thus retaining activity for a longer time.

  3. The Oral Health Needs of Wisconsin Farmers and the Need for Patient Activation: A Pilot Study.

    PubMed

    Schroeder, Kelly; Gurenlian, JoAnn; Portillo, Karen

    2017-01-01

    This study aimed to determine the level of oral health need of Wisconsin farmers based on sociodemographic variables, perceived oral health, and actual oral health, and to evaluate the effectiveness of a dental hygiene patient activation intervention. Oral health screenings were administered by calibrated dental hygienists to 60 Wisconsin farmers attending the 2016 Wisconsin Farm Technology Days. Study participants self-administered the Oral Health Inventory Profile-14 survey and participated in an Adult Basic Screening Survey. Validity and reliability of both instruments have been established in previous studies. A follow-up phone call for Wisconsin farmers with a moderate- to high-risk oral health condition determined study participants followed the dental hygiene recommendations signified if study participants followed the dental hygiene recommendations and if patient activation had been achieved. Study participants represented Wisconsin farmers (N = 60; n = 32 men, n = 28 women) with an average age range between 50 and 60 years old. The Oral Health Impact Profile-14 survey results indicated that this group of Wisconsin farmers did not perceive themselves to have an oral health problem. The Adult Basic Screening Survey results also indicated that the majority of study participants did not currently have active oral disease. There were 32% (n = 19) who qualified for follow-up phone call, with 15% (n = 3) seeking oral health care based on the dental hygiene recommendation. Significant associations between sociodemographic variables and actual oral health were not found, and the null hypotheses were not rejected. Findings suggest that this group of Wisconsin farmers is receiving regular oral health care and patient activation despite literature suggesting that farmers and rural individuals might face unique barriers to health and oral health care.

  4. Isolation of an Orally Active Insecticidal Toxin from the Venom of an Australian Tarantula

    PubMed Central

    Hardy, Margaret C.; Daly, Norelle L.; Mobli, Mehdi; Morales, Rodrigo A. V.; King, Glenn F.

    2013-01-01

    Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that spider-venom peptides are not orally active and are therefore unlikely to be useful insecticides. Contrary to this dogma, we show that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for per os toxicity. Using this approach, we isolated a 34-residue orally active insecticidal peptide (OAIP-1) from venom of the Australian tarantula Selenotypus plumipes. The oral LD50 for OAIP-1 in the agronomically important cotton bollworm Helicoverpa armigera was 104.2±0.6 pmol/g, which is the highest per os activity reported to date for an insecticidal venom peptide. OAIP-1 is equipotent with synthetic pyrethroids and it acts synergistically with neonicotinoid insecticides. The three-dimensional structure of OAIP-1 determined using NMR spectroscopy revealed that the three disulfide bonds form an inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably contributes to its oral activity. OAIP-1 is likely to be synergized by the gut-lytic activity of the Bacillus thuringiensis Cry toxin (Bt) expressed in insect-resistant transgenic crops, and consequently it might be a good candidate for trait stacking with Bt. PMID:24039872

  5. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects

    PubMed Central

    Pei, Yanping; Liu, Huan; Yang, Yi; Yang, Yanwei

    2018-01-01

    N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine. PMID:29849877

  6. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity.

    PubMed

    Uitdehaag, Joost C M; de Man, Jos; Willemsen-Seegers, Nicole; Prinsen, Martine B W; Libouban, Marion A A; Sterrenburg, Jan Gerard; de Wit, Joeri J P; de Vetter, Judith R F; de Roos, Jeroen A D M; Buijsman, Rogier C; Zaman, Guido J R

    2017-07-07

    The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Yanik, Susan C.; Baker, Amelia H.; Mann, Koren K.; Schlezinger, Jennifer J.

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10–20nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology. PMID:21622945

  8. The preclinical biology of a new potent and selective progestin: trimegestone.

    PubMed

    Winneker, Richard C; Bitran, Daniel; Zhang, Zhiming

    2003-11-01

    Trimegestone (TMG) is a 19-norpregnane progestin being developed, in combination with an estrogen, for the treatment of postmenopausal symptoms. TMG binds to the human progesterone receptor with an affinity greater than medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG). In contrast, TMG binds with low affinity to the androgen, glucocorticoid and mineralocorticoid receptor and has no measurable affinity for the estrogen receptor. Compared to other progestins, TMG demonstrates an improved separation of its PR affinity from its affinity to other classical steroid hormone receptors. In vivo, TMG has potent progestin activity. For example, TMG produces glandular differentiation of the uterine endometrium in rabbits and is about 30 and 60 times more potent than MPA and NET, respectively. In the rat, TMG maintains pregnancy, induces deciduoma formation, inhibits ovulation and has uterine anti-estrogenic activity. With respect to these endpoints, TMG appears to be more potent and selective on uterine epithelial responses than other classical progestin responses. In vivo, TMG does not have significant androgenic, glucocorticoid, anti-glucocorticoid or mineralocorticoid activity but does have anti-mineralocorticoid activity and modest anti-androgenic effects. This overall profile is qualitatively similar to progesterone. When TMG is administered chronically, it antagonizes the effect of estradiol on the uterus but does not antagonize the beneficial bone sparing activity of estradiol. In rat studies evaluating CNS GABAA receptor modulatory activity, TMG is less active on this likely undesirable endpoint than progesterone and norethindrone acetate, which may translate into fewer mood-related side effects. The results indicate that TMG is a potent and selective progestin with a preclinical profile well suited for hormone replacement therapy.

  9. Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists.

    PubMed

    Kim, Changhoon; Ann, Jihyae; Lee, Sunho; Sun, Wei; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Christoph, Thomas; Lee, Jeewoo

    2018-05-23

    A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.

    PubMed

    Nadal, Xavier; Del Río, Carmen; Casano, Salvatore; Palomares, Belén; Ferreiro-Vera, Carlos; Navarrete, Carmen; Sánchez-Carnerero, Carolina; Cantarero, Irene; Bellido, Maria Luz; Meyer, Stefan; Morello, Gaetano; Appendino, Giovanni; Muñoz, Eduardo

    2017-12-01

    Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ 9 -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ 9 -tetahydrocannabinol acid (Δ 9 -THCA) is largely unknown, despite its occurrence in different Cannabis preparations. Here we have assessed possible neuroprotective actions of Δ 9 -THCA through modulation of PPARγ pathways. The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ 9 -THCA on mitochondrial biogenesis and PPARγ coactivator 1-α expression was investigated in Neuro-2a (N2a) cells. The neuroprotective effect was analysed in STHdh Q111/Q111 cells expressing a mutated form of the huntingtin protein and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). The in vivo neuroprotective activity of Δ 9 -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NPA). Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ 9 -THCA increased mitochondrial mass in neuroblastoma N2a cells and prevented cytotoxicity induced by serum deprivation in STHdh Q111/Q111 cells and by mutHtt-q94 in N2a cells. Δ 9 -THCA, through a PPARγ-dependent pathway, was neuroprotective in mice treated with 3-NPA, improving motor deficits and preventing striatal degeneration. In addition, Δ 9 -THCA attenuated microgliosis, astrogliosis and up-regulation of proinflammatory markers induced by 3-NPA. Δ 9 -THCA shows potent neuroprotective activity, which is worth considering for the treatment of Huntington's disease and possibly other neurodegenerative and neuroinflammatory diseases. © 2017 The British Pharmacological Society.

  11. T Cell Epitope Mimicry between Sjögren’s Syndrome Antigen A (SSA)/Ro60 and Oral, Gut, Skin and Vaginal Bacteria.

    PubMed Central

    Szymula, Agnieszka; Rosenthal, Jacob; Szczerba, Barbara M; Bagavant, Harini; Fu, Shu Man; Deshmukh, Umesh S.

    2014-01-01

    This study was undertaken to test the hypothesis that Sjogren’s syndrome Antigen A (SSA)/Ro60-reactive T cells are activated by peptides originating from oral and gut bacteria. T cell hybridomas generated from HLA-DR3 transgenic mice recognized 3 regions on Ro60, with core epitopes mapped to amino acids 228-238, 246-256 and 371-381. BLAST analysis identified several mimicry peptides, originating from human oral, intestinal, skin and vaginal bacteria, as well as environmental bacteria. Amongst these, a peptide from the von Willebrand factor type A domain protein (vWFA) from the oral microbe Capnocytphaga ochracea was the most potent activator. Further, Ro60-reactive T cells were activated by recombinant vWFA protein and whole E. coli expressing this protein. These results demonstrate that peptides derived from normal human microbiota can activate Ro60-reactive T cells. Thus, immune responses to commensal microbiota and opportunistic pathogens should be explored as potential triggers for initiating autoimmunity in SLE and Sjögren’s syndrome. PMID:24576620

  12. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    PubMed

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  13. Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils.

    PubMed

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-22

    Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761). In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb) containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.

  14. Prevalence of oral candidiasis in HIV/AIDS children in highly active antiretroviral therapy era. A literature analysis.

    PubMed

    Gaitán-Cepeda, Luis Alberto; Sánchez-Vargas, Octavio; Castillo, Nydia

    2015-08-01

    SummaryHighly active antiretroviral therapy has decreased the morbidity and mortality related to HIV infection, including oral opportunistic infections. This paper offers an analysis of the scientific literature on the epidemiological aspects of oral candidiasis in HIV-positive children in the combination antiretroviral therapy era. An electronic databases search was made covering the highly active antiretroviral therapy era (1998 onwards). The terms used were oral lesions, oral candidiasis and their combination with highly active antiretroviral therapy and HIV/AIDS children. The following data were collected from each paper: year and country in which the investigation was conducted, antiretroviral treatment, oral candidiasis prevalence and diagnostic parameters (clinical or microbiological). Prevalence of oral candidiasis varied from 2.9% in American HIV-positive children undergoing highly active antiretroviral therapy to 88% in Chilean HIV-positive children without antiretroviral therapy. With respect to geographical location and antiretroviral treatment, higher oral candidiasis prevalence in HIV-positive children on combination antiretroviral therapy/antiretroviral therapy was reported in African children (79.1%) followed by 45.9% reported in Hindu children. In HIV-positive Chilean children on no antiretroviral therapy, high oral candidiasis prevalence was reported (88%) followed by Nigerian children (80%). Oral candidiasis is still frequent in HIV-positive children in the highly active antiretroviral therapy era irrespective of geographical location, race and use of antiretroviral therapy. © The Author(s) 2014.

  15. Indolyl Azaspiroketal Mannich Bases Are Potent Antimycobacterial Agents with Selective Membrane Permeabilizing Effects and in Vivo Activity.

    PubMed

    Nyantakyi, Samuel Agyei; Li, Ming; Gopal, Pooja; Zimmerman, Matthew; Dartois, Véronique; Gengenbacher, Martin; Dick, Thomas; Go, Mei-Lin

    2018-06-25

    The inclusion of an azaspiroketal Mannich base in the membrane targeting antitubercular 6-methoxy-1- n-octyl-1 H-indole scaffold resulted in analogs with improved selectivity and submicromolar activity against Mycobacterium tuberculosis H37Rv. The potency enhancing properties of the spiro-fused ring motif was affirmed by SAR and validated in a mouse model of tuberculosis. As expected for membrane inserting agents, the indolyl azaspiroketal Mannich bases perturbed phospholipid vesicles, permeabilized bacterial cells, and induced the mycobacterial cell envelope stress reporter promoter p iniBAC. Surprisingly, their membrane disruptive effects did not appear to be associated with bacterial membrane depolarization. This profile was not uniquely associated with azaspiroketal Mannich bases but was characteristic of indolyl Mannich bases as a class. Whereas resistant mycobacteria could not be isolated for a less potent indolyl Mannich base, the more potent azaspiroketal analog displayed low spontaneous resistance mutation frequency of 10 -8 /CFU. This may indicate involvement of an additional envelope-related target in its mechanism of action.

  16. Structure-Based Design of Potent Bcl-2/Bcl-xL Inhibitors with Strong in Vivo Antitumor Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haibin; Aguilar, Angelo; Chen, Jianfang

    Bcl-2 and Bcl-xL are key apoptosis regulators and attractive cancer therapeutic targets. We have designed and optimized a class of small-molecule inhibitors of Bcl-2 and Bcl-xL containing a 4,5-diphenyl-1H-pyrrole-3-carboxylic acid core structure. A 1.4 {angstrom} resolution crystal structure of a lead compound, 12, complexed with Bcl-xL has provided a basis for our optimization. The most potent compounds, 14 and 15, bind to Bcl-2 and Bcl-xL with subnanomolar K{sub i} values and are potent antagonists of Bcl-2 and Bcl-xL in functional assays. Compounds 14 and 15 inhibit cell growth with low nanomolar IC{sub 50} values in multiple small-cell lung cancer cellmore » lines and induce robust apoptosis in cancer cells at concentrations as low as 10 nM. Compound 14 also achieves strong antitumor activity in an animal model of human cancer.« less

  17. Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity.

    PubMed

    Regueiro-Ren, Alicia; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J; Chen, Jie; Venables, Brian L; Zhu, Juliang; Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Terry, Brian; Samanta, Himadri; Zhang, Sharon; Li, Zhufang; Beno, Brett R; Huang, Xiaohua S; Rahematpura, Sandhya; Parker, Dawn D; Haskell, Roy; Jenkins, Susan; Santone, Kenneth S; Cockett, Mark I; Krystal, Mark; Meanwell, Nicholas A; Hanumegowda, Umesh; Dicker, Ira B

    2016-06-09

    HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

  18. Synthesis, biological evaluation and structure-activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity.

    PubMed

    Chen, Yilin; Cass, Shelley L; Kutty, Samuel K; Yee, Eugene M H; Chan, Daniel S H; Gardner, Christopher R; Vittorio, Orazio; Pasquier, Eddy; Black, David StC; Kumar, Naresh

    2015-11-15

    Phenoxodiol, an analogue of the isoflavone natural product daidzein, is a potent anti-cancer agent that has been investigated for the treatment of hormone dependent cancers. This molecular scaffold was reacted with different primary amines and secondary amines under different Mannich conditions to yield either benzoxazine or aminomethyl substituted analogues. These processes enabled the generation of a diverse range of analogues that were required for structure-activity relationship (SAR) studies. The resulting Mannich bases exhibited prominent anti-proliferative effects against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. Further cytotoxicity studies against MRC-5 normal lung fibroblast cells showed that the isoflavene analogues were selective towards cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Design of a potent antibiotic peptide based on the active region of human defensin 5.

    PubMed

    Wang, Cheng; Shen, Mingqiang; Gohain, Neelakshi; Tolbert, William D; Chen, Fang; Zhang, Naixin; Yang, Ke; Wang, Aiping; Su, Yongping; Cheng, Tianmin; Zhao, Jinghong; Pazgier, Marzena; Wang, Junping

    2015-04-09

    Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.

  20. Anti-cancer activity of bromelain nanoparticles by oral administration.

    PubMed

    Bhatnagar, Priyanka; Patnaik, Soma; Srivastava, Amit K; Mudiam, Mohan K R; Shukla, Yogeshwer; Panda, Amulya K; Pant, Aditya B; Kumar, Pradeep; Gupta, Kailash C

    2014-12-01

    Oral administration of anti-cancer drugs is an effective alternative to improve their efficacy and reduce undesired toxicity. Bromelain (BL) is known as an effective anti-cancer phyto-therapeutic agent, however, its activity is reduced upon oral administration. In addressing the issue, BL was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) to formulate nanoparticles (NPs). Further, the NPs were coated with Eudragit L30D polymer to introduce stability against the gastric acidic conditions. The resultant coated NPs were characterized for BL entrapment, proteolytic activity and mean particle size. The stability and release pattern of NPs were evaluated under simulated gastrointestinal tract (GIT) pH conditions. Cytotoxicity studies carried out in human cell lines of diverse origin have shown significant dose advantage (-7-10 folds) with NPs in reducing the IC50 values compared with free BL. The cellular uptake of NPs in MCF-7, HeLa and Caco-2 cells monolayer was significantly enhanced several folds as compared to free BL. Altered expression of marker proteins associated with apoptosis and cell death (P53, P21, Bcl2, Bax) also confirmed the enhanced anti-carcinogenic potential of formulated NPs. Oral administration of NPs reduced the tumor burden of Ehrlich ascites carcinoma (EAC) in Swiss albino mice and also increased their life-span (160.0 ± 5.8%) when compared with free BL (24 ± 3.2%). The generation of reactive oxygen species, induction of apoptosis and impaired mitochondrial membrane potential in EAC cells treated with NPs confirmed the suitability of Eudragit coated BL-NPs as a promising candidate for oral chemotherapy.

  1. Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities.

    PubMed

    Ghobadian, Roshanak; Mahdavi, Mohammad; Nadri, Hamid; Moradi, Alireza; Edraki, Najmeh; Akbarzadeh, Tahmineh; Sharifzadeh, Mohammad; Bukhari, Syed Nasir Abbas; Amini, Mohsen

    2018-05-23

    Butyrylcholinesterase (BuChE) inhibitors have become interesting target for treatment of Alzheimer's disease (AD). A series of dual binding site BuChE inhibitors were designed and synthesized based on 2,3,4,9-tetrahydro-1H-carbazole attached benzyl pyridine moieties. In-vitro assay revealed that all of the designed compounds were selective and potent BuChE inhibitors. The most potent BuChE inhibitor was compound 6i (IC 50  = 0.088 ± 0.0009 μM) with the mixed-type inhibition. Docking study revealed that 6i is a dual binding site BuChE inhibitor. Also, Pharmacokinetic properties for 6i were accurate to Lipinski's rule. In addition, compound 6i demonstrated neuroprotective and β-secretase (BACE1) inhibition activities. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100 μM and 10 μM respectively. Generally, the results are presented as new potent selective BuChE inhibitors with a therapeutic potential for the treatment of AD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.

  3. Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine.

    PubMed

    Mangal, Sharad; Pawar, Dilip; Agrawal, Udita; Jain, Arvind K; Vyas, Suresh P

    2014-02-01

    The aim of present study was to evaluate the potential of mucoadhesive alginate-coated chitosan microparticles (A-CHMp) for oral vaccine against anthrax. The zeta potential of A-CHMp was -29.7 mV, and alginate coating could prevent the burst release of antigen in simulated gastric fluid. The results indicated that A-CHMp was mucoadhesive in nature and transported it to the peyer's patch upon oral delivery. The immunization studies indicated that A-CHMp resulted in the induction of potent systemic and mucosal immune responses, whereas alum-adjuvanted rPA could induce only systemic immune response. Thus, A-CHMp represents a promising acid carrier adjuvant for oral immunization against anthrax.

  4. Role of micronucleus in oral exfoliative cytology

    PubMed Central

    Shashikala, R.; Indira, A. P.; Manjunath, G. S.; rao, K. Arathi; Akshatha, B. K.

    2015-01-01

    In the last few years, the interest for oral cytology as a diagnostic and prognostic methodology, for monitoring patients in oral potentially malignant disorders and oral cancer has re-emerged substantially. In 1983, buccal mucosal micronuclei assay was first proposed to evaluate genetic instability. There are biomarkers that predict if a potentially malignant disorder is likely to develop into an aggressive tumor. These genotoxic and carcinogenic chemicals have been reported to be potent clastogenic and mutagenic agents which are thought to be responsible for the induction of chromatid/chromosomal aberrations resulting in the production of micronuclei. Various studies have concluded that the gradual increase in micronucleus (MN) counts from normal oral mucosa to potentially malignant disorders to oral carcinoma suggested a link of this biomarker with neoplastic progression. MN scoring can be used as a biomarker to identify different preneoplastic conditions much earlier than the manifestations of clinical features and might specifically be exploited in the screening of high-risk population for a specific cancer. Hence, it can be used as a screening prognostic and educational tool in community centers of oral cancer. PMID:26538888

  5. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  6. Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes.

    PubMed

    Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; Mignogna, Michele D; McCullough, Michael; Porter, Stephen

    2016-10-01

    Chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10 are dysregulated in oral inflammatory conditions, and it is not known if these chemokines target microorganisms that form oral biofilm. The aim of this study was to investigate the antimicrobial activity of CXCL9 and CXCL10 on oral microflora and their expression profiles in oral keratinocytes following exposure to inflammatory and infectious stimuli. Streptococcus sanguinis was used as a model and Escherichia coli as a positive control. The antimicrobial effect of CXCL9/CXCL10 was tested using a radial diffusion assay. mRNA transcripts were isolated from lipopolysaccharide (LPS)-treated and untreated (control) oral keratinocyte cell lines at 2-, 4-, 6-, and 8-h time-points of culture. The CXCL9/10 expression profile in the presence or absence of interferon-γ (IFN-γ) was assessed using semiquantitative PCR. Although both chemokines demonstrated antimicrobial activity, CXCL9 was the most effective chemokine against both S. sanguinis and E coli. mRNA for CXCL10 was expressed in control cells and its production was enhanced at all time-points following stimulation with LPS. Conversely, CXCL9 mRNA was not expressed in control or LPS-stimulated cells. Finally, stimulation with IFN-γ enhanced basal expression of both CXCL9 and CXCL10 in oral keratinocytes. Chemokines derived from oral epithelium, particularly CXCL9, demonstrate antimicrobial properties. Bacterial and inflammatory-stimulated up-regulation of CXCL9/10 could represent a key element in oral bacterial colonization homeostasis and host-defense mechanisms. © 2016 Eur J Oral Sci.

  7. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  8. Potent HGF/c-Met axis inhibitors from Eucalyptus globulus: the coupling of phloroglucinol and sesquiterpenoid is essential for the activity.

    PubMed

    Yang, Sheng-Ping; Zhang, Xiao-Wei; Ai, Jing; Gan, Li-She; Xu, Jin-Biao; Wang, Ying; Su, Zu-Shang; Wang, Lu; Ding, Jian; Geng, Mei-Yu; Yue, Jian-Min

    2012-09-27

    Eucalyptin A (1), together with two known compounds 2 and 3 exhibiting potent inhibition on HGF/c-Met axis, was discovered from the fruits of Eucalyptus globulus. 1 possessed an unprecedented carbon framework of phloroglucinol-coupled sesquiterpenoid, and its structure was elucidated by spectroscopic method and ECD calculation. A brief structure-activity relationship discussion indicated that the coupling of a phloroglucinol and a sesquiterpenoid is essential for the activity.

  9. A Novel Immunomodulatory Hemocyanin from the Limpet Fissurella latimarginata Promotes Potent Anti-Tumor Activity in Melanoma

    PubMed Central

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C.; Manubens, Augusto; De Ioannes, Alfredo E.; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy. PMID

  10. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    PubMed

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  11. Evaluation of the specificity and effectiveness of selected oral hygiene actives in salivary biofilm microcosms.

    PubMed

    Ledder, Ruth G; Sreenivasan, Prem K; DeVizio, William; McBain, Andrew J

    2010-12-01

    The microbiological effects of biocidal products used for the enhancement of oral hygiene relate to the active compound(s) as well as other formulation components. Here, we test the specificities of selected actives in the absence of multiple excipients. Salivary ecosystems were maintained in tissue culture plate-based hydroxyapatite disc models (HDMs) and modified drip-flow biofilm reactors (MDFRs). Test compounds stannous fluoride (SF), SDS, triclosan (TCS), zinc lactate (ZL) and ZL with SF in combination (ZLSF) were delivered to the HDMs once and four times daily for 6 days to MDFRs. Plaques were characterized by differential viable counting and PCR-denaturing gradient gel electrophoresis (DGGE). TCS and SDS were the most effective compounds against HDM plaques, significantly reducing total viable counts (P<0.05), whilst SF, ZL and ZLSF were comparatively ineffective. TCS exhibited specificity for streptococci (P<0.01) and Gram-negative anaerobes (P<0.01) following a single dosing and also on repeated dosing in MDFRs. In contrast to single exposures, multiple dosing with ZLSF also significantly reduced all bacterial groups, whilst SF and ZL caused significant but transient reductions. According to PCR-DGGE analyses, significant (P<0.05) reductions in eubacterial diversity occurred following 6 day dosing with both TCS and ZLSF. Concordance of MDFR eubacterial profiles with salivary inocula ranged between 58 and 97%. TCS and ZL(SF) exhibited similar specificities to those reported for formulations. TCS was the most potent antibacterial, after single and multiple dosage regimens.

  12. The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis

    PubMed Central

    Patterson, Stephen; Wyllie, Susan; Norval, Suzanne; Stojanovski, Laste; Simeons, Frederick RC; Auer, Jennifer L; Osuna-Cabello, Maria; Read, Kevin D; Fairlamb, Alan H

    2016-01-01

    There is an urgent requirement for safe, oral and cost-effective drugs for the treatment of visceral leishmaniasis (VL). We report that delamanid (OPC-67683), an approved drug for multi-drug resistant tuberculosis, is a potent inhibitor of Leishmania donovani both in vitro and in vivo. Twice-daily oral dosing of delamanid at 30 mg kg-1 for 5 days resulted in sterile cures in a mouse model of VL. Treatment with lower doses revealed a U-shaped (hormetic) dose-response curve with greater parasite suppression at 1 mg kg-1 than at 3 mg kg-1 (5 or 10 day dosing). Dosing delamanid for 10 days confirmed the hormetic dose-response and improved the efficacy at all doses investigated. Mechanistic studies reveal that delamanid is rapidly metabolised by parasites via an enzyme, distinct from the nitroreductase that activates fexinidazole. Delamanid has the potential to be repurposed as a much-needed oral therapy for VL. DOI: http://dx.doi.org/10.7554/eLife.09744.001 PMID:27215734

  13. Analgesic and anti-inflammatory effects of A-286501, a novel orally active adenosine kinase inhibitor.

    PubMed

    Jarvis, Michael F; Yu, Haixia; McGaraughty, Steve; Wismer, Carol T; Mikusa, Joe; Zhu, Chang; Chu, Katharine; Kohlhaas, Kathy; Cowart, Marlon; Lee, Chih Hung; Stewart, Andrew O; Cox, Bryan F; Polakowski, James; Kowaluk, Elizabeth A

    2002-03-01

    Adenosine (ADO) is an inhibitory neuromodulator that can increase nociceptive thresholds in response to noxious stimulation. Inhibition of the ADO-metabolizing enzyme, adenosine kinase (AK) increases extracellular ADO concentrations at sites of tissue trauma and AK inhibitors may have therapeutic potential as analgesic and anti-inflammatory agents. N7-((1'R,2'S,3'R,4'S)-2',3'-dihydroxy-4'-amino-cyclopentyl)-4-amino-5-bromo-pyrrolo[2,3-a]pyrimidine (A-286501) is a novel and potent (IC50=0.47 nM) carbocyclic nucleoside AK inhibitor that has no significant activity (IC50 >100 microM) at other sites of ADO interaction (A1, A2A, A3 receptors, ADO transporter, and ADO deaminase) or other (IC50 value >10 microM) neurotransmitter and peptide receptors, ion channel proteins, neurotransmitter reuptake sites and enzymes, including cyclooxygenases-1 and -2. A-286501 showed equivalent potency to inhibit AK from several mammalian species and kinetic studies revealed that A-286501 was a reversible and competitive inhibitor with respect to ADO and non-competitive with respect to MgATP2-. A-286501 was orally effective to reduce nociception in animal models of acute (thermal), inflammatory (formalin and carrageenan), and neuropathic (L5/L6 nerve ligation and streptozotocin-induced diabetic) pain. A-286501 was particularly potent (ED50=1 micromol/kg, p.o.) to reduce carrageenan-induced inflammatory thermal hyperalgesia as compared to its analgesic actions in other pain models (acute and neuropathic) and its ability to alter hemodynamic function and motor performance. A-286501 was also effective to reduce carrageenan-induced paw edema and myeloperoxidase activity, a measure of neutrophil influx (ED50=10 micromol/kg, p.o.), in the injured paw. The anti-nociceptive effects of A-286501 in the L5/L6 nerve injury model of neuropathic pain (ED50=20 micromol/kg, p.o.) were not blocked by the opioid antagonist naloxone, but were blocked by the ADO receptor antagonist, theophylline. Following

  14. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities.

    PubMed

    Verlinden, Bianca K; Niemand, Jandeli; Snyman, Janette; Sharma, Shiv K; Beattie, Ross J; Woster, Patrick M; Birkholtz, Lyn-Marie

    2011-10-13

    A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.

  15. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; Longenecker, Kenton; von Geldern, Thomas W; Wiedeman, Paul E; Lubben, Thomas H; Zinker, Bradley A; Stewart, Kent; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Long, Michelle; Wells, Heidi; Kempf-Grote, Anita J; Madar, David J; McDermott, Todd S; Bhagavatula, Lakshmi; Fickes, Michael G; Pireh, Daisy; Solomon, Larry R; Lake, Marc R; Edalji, Rohinton; Fry, Elizabeth H; Sham, Hing L; Trevillyan, James M

    2006-06-15

    A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.

  16. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.

    PubMed

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc

    2017-02-17

    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells

    PubMed Central

    Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.

    2001-01-01

    Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by

  18. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    USGS Publications Warehouse

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  19. Green tea and its major polyphenol EGCG increase the activity of oral peroxidases.

    PubMed

    Narotzki, Baruch; Levy, Yishai; Aizenbud, Dror; Reznick, Abraham Z

    2013-01-01

    Oral peroxidases (OPO) consist mainly of salivary peroxidase and myeloperoxidase and are involved in oral defense mechanisms. Salivary peroxidase is synthesized and secreted by salivary glands, whereas myeloperoxidase is found in polymorphonuclear leukocytes, which migrate into the oral cavity at gingival crevices. Green tea is the world's second most popular drink after water. Polyphenols are the most biologically active group of tea components. The purpose of our study was to elucidate the interaction between green tea & EGCG (Epigallocatechin 3-gallate), its main polyphenol and OPO. In previous studies we have shown that elderly trained people who drink green tea for 3 months, have a higher level of OPO activity compared to non-drinkers. Thus, we decided to extend our project in order to understand the above observations by studying the interaction of green tea and OPO both in vitro and in vivo. Addition of green tea and black tea infusions (50 μl/ml) and EGCG (50 μM) to saliva, resulted in a sharp rise of OPO activity +280% (p = 0.009), 54% (p = 0.04) and 42% (p = 0.009), respectively. The elevation of OPO activity due to addition of green tea and EGCG was in a dose dependent manner: r = 0.91 (p = 0.001) and r = 0.637 (p = 0.019), respectively. Also, following green tea infusion mouth rinsing, a rise of OPO activity was observed: +268% (p = 0.159). These results may be of great clinical importance, as tea consumer's oral epithelium may have better protection against the deleterious effects of hydroxyl radicals, produced by not removed hydrogen peroxides in the presence of metal ions. Higher OPO activity upon green tea drinking may provide an extra protection against oxidative stress in the oral cavity.

  20. Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid.

    PubMed

    Kimura, Yuki; Mori, Daisuke; Imada, Toshihiro; Izuta, Yusuke; Shibuya, Michiko; Sakaguchi, Hisayo; Oonishi, Erina; Okada, Naoko; Matsumoto, Kenji; Tsubota, Kazuo

    2017-04-05

    Sea buckthorn ( Hippophae rhamnoides ) -derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil) restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1), a fatty acid present in sea buckthorn pulp oil, preserved tear secretion and suppressed inflammatory cytokines in the lacrimal gland to the same extent as that by pulp oil. These results suggest that an oral intake of sea buckthorn pulp oil has a potency to preserve tear secretion capacity in the dry eye state and palmitoleate, its main constituent fatty acid, is an active component of the oil. This effect may enable a potent diet-based treatment for the prevention of dry eye.

  1. Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid

    PubMed Central

    Nakamura, Shigeru; Kimura, Yuki; Mori, Daisuke; Imada, Toshihiro; Izuta, Yusuke; Shibuya, Michiko; Sakaguchi, Hisayo; Oonishi, Erina; Okada, Naoko; Matsumoto, Kenji; Tsubota, Kazuo

    2017-01-01

    Sea buckthorn (Hippophae rhamnoides)–derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil) restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1), a fatty acid present in sea buckthorn pulp oil, preserved tear secretion and suppressed inflammatory cytokines in the lacrimal gland to the same extent as that by pulp oil. These results suggest that an oral intake of sea buckthorn pulp oil has a potency to preserve tear secretion capacity in the dry eye state and palmitoleate, its main constituent fatty acid, is an active component of the oil. This effect may enable a potent diet-based treatment for the prevention of dry eye. PMID:28379171

  2. Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria.

    PubMed

    Seneviratne, Chamida J; Wong, Ricky W K; Hägg, Urban; Chen, Yong; Herath, Thanuja D K; Samaranayake, P Lakshman; Kao, Richard

    2011-07-01

    Prunus mume is a common fruit in Asia, which has been used in traditional Chinese medicine. In this study, we focused on the antimicrobial properties of Prunus mume extract against oral pathogens related to dental caries and periodontal diseases. A total of 15 oral pathogens including Streptococcus mutans, S. sobrinus, S. mitis, S. sanguinis, Lactobacillus acidophilus, P. gingivalis, Aggregatibacter actinomycetemcomitans, and Candida species were included in the study. Initially, agar diffusion assay was performed to screen the antimicrobial activities of Prunus mume extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for sensitive species. Effect of Prunus mume extract on human oral keratinocytes (HOK) viability was also tested. In the agar diffusion assay, drug suspension of 2 g/mL was able to inhibit all the bacterial species tested, but not the fungal species. MIC and MBC range of Prunus mume extract against the oral bacteria was 0.15625-0.0003 g/mL and P. gingivalis being the most susceptible species. Prune extract did not cause any detrimental effect on HOK. Prunus mume extract may be a potential candidate for developing an oral antimicrobial agent to control or prevent dental diseases associated with oral pathogenic bacteria. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.

  3. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  4. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.

    PubMed

    Liu, Yishuang; Zhou, Shuang; Deng, Qi; Li, Xinghua; Meng, Jianzhou; Guan, Yan; Li, Chuanyou; Xiao, Chunling

    2016-03-01

    Screen and identify novel inhibitors of isocitrate lyase (ICL) as potent antitubercular agents against Mycobacterium tuberculosis and determine their inhibitory characteristics, antitubercular activities and mechanisms of action. Recombinant ICL of M. tuberculosis was expressed and purified, which was used for high-throughput screening (HTS) and the following experiments. A total of 71,765 compounds were screened to identify ICL inhibitors which were then evaluated for their roles as potent antitubercular agents. To determine the inhibitory characteristics of the agents against latent M. tuberculosis in persistent infections, a macrophage model (mouse J774A.1 cell) infected with Mycobacterium marinum BAA-535 strain was built and assessed. The potent antitubercular agents were identified using the macrophage model. Then, the inhibitory intensity and mode of the agents that exhibit on ICL protein of M. tuberculosis were analyzed, and the interaction mechanisms were preliminarily clarified according to the parameters of enzyme kinetics, circular dichroism experiments, fluorescence quenching assay, and molecular docking. The previously established ICL inhibitor screening model was evaluated to be suitable for HTS assay. Of the 71,765 compounds, 13 of them were identified to inhibit ICL effectively and stably. IMBI-3 demonstrated the most significant inhibitory activity with IC50 of 30.9 μmol/L. Its minimum inhibitory concentration (MIC) for M. tuberculosis, including extensively drug-resistant tuberculosis (XDR-TB) and multidrug-resistant tuberculosis (MDR-TB), were determined in the range of 0.25-1 μg/mL. When IMBI-3 is used in combination with isoniazid, the colony-forming units (CFU) counting of latent M. tuberculosis in J774A.1 macrophage cells decreased significantly as IMBI-3 concentration increased. The inhibition mode of IMBI-3 on ICL was probably competitive inhibition with an inhibition constant (Ki) of approximate 1.85 μmol/L. The interaction between IMBI

  5. Discovery of trans-4-[1-[[2,5-Dichloro-4-(1-methyl-3-indolylcarboxamido)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid: an orally active, selective very late antigen-4 antagonist.

    PubMed

    Muro, Fumihito; Iimura, Shin; Sugimoto, Yuuichi; Yoneda, Yoshiyuki; Chiba, Jun; Watanabe, Toshiyuki; Setoguchi, Masaki; Iigou, Yutaka; Matsumoto, Keiko; Satoh, Atsushi; Takayama, Gensuke; Taira, Tomoe; Yokoyama, Mika; Takashi, Tohru; Nakayama, Atsushi; Machinaga, Nobuo

    2009-12-24

    We have focused on optimization of the inadequate pharmacokinetic profile of trans-4-substituted cyclohexanecarboxylic acid 5, which is commonly observed in many small molecule very late antigen-4 (VLA-4) antagonists. We modified the lipophilic moiety in 5 and found that reducing the polar surface area of this moiety results in improvement of the PK profile. Consequently, our efforts have led to the discovery of trans-4-[1-[[2,5-dichloro-4-(1-methyl-3-indolylcarboxamido)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid (14e) with potent activity (IC(50) = 5.4 nM) and significantly improved bioavailability in rats, dogs, and monkeys (100%, 91%, 68%), which demonstrated excellent oral efficacy in murine and guinea pig models of asthma. Based on its overall profile, compound 14e was progressed into clinical trails. In a single ascending-dose phase I clinical study, compound 14e exhibited favorable oral exposure as expected and had no serious adverse events.

  6. Human Oral Mucosa and Gingiva

    PubMed Central

    Zhang, Q.Z.; Nguyen, A.L.; Yu, W.H.; Le, A.D.

    2012-01-01

    Mesenchymal stem cells (MSCs) represent a heterogeneous population of progenitor cells with self-renewal and multipotent differentiation potential. Aside from their regenerative role, extensive in vitro and in vivo studies have demonstrated that MSCs are capable of potent immunomodulatory effects on a variety of innate and adaptive immune cells. In this article, we will review recent experimental studies on the characterization of a unique population of MSCs derived from human oral mucosa and gingiva, especially their immunomodulatory and anti-inflammatory functions and their application in the treatment of several in vivo models of inflammatory diseases. The ease of isolation, accessible tissue source, and rapid ex vivo expansion, with maintenance of stable stem-cell-like phenotypes, render oral mucosa- and gingiva-derived MSCs a promising alternative cell source for MSC-based therapies. PMID:22988012

  7. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  8. Discovery of Potent VEGFR-2 Inhibitors based on Furopyrimidine and Thienopyrimidne Scaffolds as Cancer Targeting Agents

    NASA Astrophysics Data System (ADS)

    Aziz, Marwa A.; Serya, Rabah A. T.; Lasheen, Deena S.; Abdel-Aziz, Amal Kamal; Esmat, Ahmed; Mansour, Ahmed M.; Singab, Abdel Nasser B.; Abouzid, Khaled A. M.

    2016-04-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. In this study, a series of novel furo[2,3-d]pyrimidine and thieno[2,3-d]pyrimidine based-derivatives were designed and synthesized as VEGFR-2 inhibitors, in accordance to the structure activity relationship (SAR) studies of known type II VEGFR-2 inhibitors. The synthesized compounds were evaluated for their ability to in vitro inhibit VEGFR-2 kinase enzyme. Seven compounds (15b, 16c, 16e, 21a, 21b, 21c and 21e) demonstrated highly potent dose-related VEGFR-2 inhibition with IC50 values in nanomolar range, of which the thieno[2,3-d]pyrimidine based-derivatives (21b, 21c and 21e) exhibited IC50 values of 33.4, 47.0 and 21 nM respectively. Moreover, furo[2,3-d]pyrimidine-based derivative (15b) showed the strongest inhibition of human umbilical vein endothelial cells (HUVEC) proliferation with 99.5% inhibition at 10 μM concentration. Consistent with our in vitro findings, compounds (21b and 21e) orally administered at 5 and 10 mg/kg/day for 8 consecutive days demonstrated potent anticancer activity in Erhlich ascites carcinoma (EAC) solid tumor murine model. Such compounds blunted angiogenesis in EAC as evidenced by reduced percent microvessel via decreasing VEGFR-2 phosphorylation with subsequent induction of apoptotic machinery. Furthermore, Miles vascular permeability assay confirmed their antiangiogenic effects in vivo. Intriguingly, such compounds showed no obvious toxicity.

  9. Structural analysis of proanthocyanidins isolated from fruit stone of Chinese hawthorn with potent antityrosinase and antioxidant activity.

    PubMed

    Chai, Wei-Ming; Chen, Chih-Min; Gao, Yu-Sen; Feng, Hui-Ling; Ding, Yu-Mei; Shi, Yan; Zhou, Han-Tao; Chen, Qing-Xi

    2014-01-08

    Proanthocyanidins were isolated from fruit stone of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). Their structures were analyzed and elucidated by methods of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). The results demonstrated that these compounds are complicated mixtures of homo- and heteropolymers consisting of procyanidin/procyanidin gallate and prodelphinidin. They possessed structural heterogeneity in monomer units, polymer length, and interflavan linkage (A-type and B-type). Their antityrosinase and antioxidant activity were then investigated. The results revealed that they can inhibit tyrosinase activities, including the monophenolase activity and the diphenolase activity. In addition, proanthocyanidins possessed potent antioxidant activity. Our studies revealed that proanthocyanidins isolated from fruit stone of Chinese hawthorn may be applied in food, agriculture, pharmaceutical, and cosmetic industries.

  10. Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: relevance to angiogenesis.

    PubMed

    Moyle, Christina W A; Cerezo, Ana B; Winterbone, Mark S; Hollands, Wendy J; Alexeev, Yuri; Needs, Paul W; Kroon, Paul A

    2015-03-01

    Excessive concentrations of vascular endothelial growth factor (VEGF) drive angiogenesis and cause complications such as increased growth of tumours and atherosclerotic plaques. The aim of this study was to determine the molecular mechanism underlying the potent inhibition of VEGF signalling by polyphenols. We show that the polyphenols epigallocatechin gallate from green tea and procyanidin oligomers from apples potently inhibit VEGF-induced VEGF receptor-2 (VEGFR-2) signalling in human umbilical vein endothelial cells by directly interacting with VEGF. The polyphenol-induced inhibition of VEGF-induced VEGFR-2 activation occurred at nanomolar polyphenol concentrations and followed bi-phasic inhibition kinetics. VEGF activity could not be recovered by dialysing VEGF-polyphenol complexes. Exposure of VEGF to epigallocatechin gallate or procyanidin oligomers strongly inhibited subsequent binding of VEGF to human umbilical vein endothelial cells expressing VEGFR-2. Remarkably, even though VEGFR-2 signalling was completely inhibited at 1 μM concentrations of polyphenols, endothelial nitric oxide synthase was shown to still be activated via the PI3K/Akt signalling pathway which is downstream of VEGFR-2. These data demonstrate for the first time that VEGF is a key molecular target for specific polyphenols found in tea, apples and cocoa which potently inhibit VEGF signalling and angiogenesis at physiological concentrations. These data provide a plausible mechanism which links bioactive compounds in food with their beneficial effects. © 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Design of novel potent antihyperlipidemic agents with antioxidant/anti-inflammatory properties: exploiting phenothiazine's strong antioxidant activity.

    PubMed

    Matralis, Alexios N; Kourounakis, Angeliki P

    2014-03-27

    Because atherosclerosis is an inflammatory process involving a series of pathological events such as dyslipidemia, oxidative stress, and blood clotting mechanisms, we hereby report the synthesis and evaluation of novel compounds in which antioxidant, anti-inflammatory, and squalene synthase (SQS) inhibitory/hypolipidemic activities are combined in simple molecules through design. The coupling of two different pharmacophores afforded compounds 1-12, whose biological profile was markedly improved compared to those of parent lead structures (i.e., the hypolipidemic 2-hydroxy-2-aryl-(benzo)oxa(or thia)zine and the antioxidant phenothiazine). Most derivatives strongly inhibited in vitro microsomal lipid and LDL peroxidation, exhibiting potent free-radical scavenging activity. They further significantly inhibited SQS activity and showed remarkable antidyslipidemic activity in vivo in animal models of acute and high-fat-induced hyperlipidemia. Finally, several compounds showed anti-inflammatory activity in vitro, inhibiting cycloxygenase (COX-1/2) activity. The multimodal properties of the new compounds and especially their combined antioxidant/SQS/COX inhibitory activity render them interesting lead compounds for further evaluation against atherosclerosis.

  13. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  14. Decursin and decursinol inhibit VEGF-induced angiogenesis by blocking the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinase.

    PubMed

    Son, Seung Hwa; Kim, Mi-Jeong; Chung, Won-Yoon; Son, Ju-Ah; Kim, Yeong Shik; Kim, Young-Choong; Kang, Sam Sik; Lee, Sang-Kook; Park, Kwang-Kyun

    2009-07-18

    The root of Angelica gigas Nakai contains two major coumarins, which have been previously identified as decursin and decursinol. Decursin has been demonstrated to exhibit potent anti-cancer activity both in vitro and in vivo. In this study, we found that decursin and decursinol at non-cytotoxic doses inhibited the VEGF-induced proliferation, migration, and capillary-tube formation of HUVECs. Moreover, decursin and decursinol suppressed microvessel formation on chorioallantoic membranes in fertilized eggs and into mouse Matrigel plugs. The oral administration of decursin and decursinol also reduced VEGF-induced angiogenesis in Matrigel. Furthermore, decursin and decursinol reduced the phosphorylation of ERK and JNK, but not p38 MAPK, in VEGF-stimulated HUVECs. Taken together, our results reveal that decursin and decursinol inhibit VEGF-induced angiogenesis by reducing the activation of ERK and JNK in HUVECs, and possess potent in vivo anti-angiogenic activity, coupled with the advantage of oral dosing. Thus, these compounds may have the potential for the treatment of cancers dependent on VEGF-induced vascularization.

  15. Small molecule R1498 as a well-tolerated and orally active kinase inhibitor for hepatocellular carcinoma and gastric cancer treatment via targeting angiogenesis and mitosis pathways.

    PubMed

    Zhang, Chao; Wu, Xihan; Zhang, Meifang; Zhu, Liangcheng; Zhao, Rong; Xu, Danqing; Lin, Zhaohu; Liang, Chungen; Chen, Taiping; Chen, Li; Ren, Yi; Zhang, Joe; Qin, Ning; Zhang, Xiongwen

    2013-01-01

    Protein kinases play important roles in tumor development and progression. Lots of kinase inhibitors have entered into market and show promising clinical benefits. Here we report the discovery of a novel small molecule, well-tolerated, orally active kinase inhibitor, R1498, majorly targeting both angiogenic and mitotic pathways for the treatment of hepatocellular carcinoma (HCC) and gastric cancer (GC). A series of biochemical and cell-based assays indicated that the target kinase cluster of R1498 included Aurora kinases and VEGFR2 et al. R1498 showed moderate in vitro growth inhibition on a panel of tumor cells with IC50 of micromole range. The in vivo anti-tumor efficacy of R1498 was evaluated on a panel of GC and HCC xenografts in a parallel comparison with another multikinase inhibitor sorafenib. R1498 demonstrated superior efficacy and toxicity profile over sorafenib in all test models with >80% tumor growth inhibition and tumor regression in some xenogratfts. The therapeutic potential of R1498 was also highlighted by its efficacy on three human GC primary tumor derived xenograft models with 10-30% tumor regression rate. R1498 was shown to actively inhibit the Aurora A activity in vivo, and decrease the vascularization in tumors. Furthermore, R1498 presented good in vivo exposure and therapeutic window in the pharmacokinetic and dose range finding studies. Theses evidences indicate that R1498 is a potent, well-tolerated, orally active multitarget kinase inhibitor with a unique antiangiogenic and antiproliferative profile, and provide strong confidence for further development for HCC and GC therapy.

  16. Small Molecule R1498 as a Well-Tolerated and Orally Active Kinase Inhibitor for Hepatocellular Carcinoma and Gastric Cancer Treatment via Targeting Angiogenesis and Mitosis Pathways

    PubMed Central

    Zhang, Chao; Wu, Xihan; Zhang, Meifang; Zhu, Liangcheng; Zhao, Rong; Xu, Danqing; Lin, Zhaohu; Liang, Chungen; Chen, Taiping; Chen, Li; Ren, Yi; Zhang, Joe; Qin, Ning; Zhang, Xiongwen

    2013-01-01

    Protein kinases play important roles in tumor development and progression. Lots of kinase inhibitors have entered into market and show promising clinical benefits. Here we report the discovery of a novel small molecule, well-tolerated, orally active kinase inhibitor, R1498, majorly targeting both angiogenic and mitotic pathways for the treatment of hepatocellular carcinoma (HCC) and gastric cancer (GC). A series of biochemical and cell-based assays indicated that the target kinase cluster of R1498 included Aurora kinases and VEGFR2 et al. R1498 showed moderate in vitro growth inhibition on a panel of tumor cells with IC50 of micromole range. The in vivo anti-tumor efficacy of R1498 was evaluated on a panel of GC and HCC xenografts in a parallel comparison with another multikinase inhibitor sorafenib. R1498 demonstrated superior efficacy and toxicity profile over sorafenib in all test models with >80% tumor growth inhibition and tumor regression in some xenogratfts. The therapeutic potential of R1498 was also highlighted by its efficacy on three human GC primary tumor derived xenograft models with 10–30% tumor regression rate. R1498 was shown to actively inhibit the Aurora A activity in vivo, and decrease the vascularization in tumors. Furthermore, R1498 presented good in vivo exposure and therapeutic window in the pharmacokinetic and dose range finding studies. Theses evidences indicate that R1498 is a potent, well-tolerated, orally active multitarget kinase inhibitor with a unique antiangiogenic and antiproliferative profile, and provide strong confidence for further development for HCC and GC therapy. PMID:23755206

  17. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy

    PubMed Central

    Chen, Haijun; Yang, Zhengduo; Ding, Chunyong; Chu, Lili; Zhang, Yusong; Terry, Kristin; Liu, Huiling; Shen, Qiang; Zhou, Jia

    2013-01-01

    Fragment-based drug design (FBDD) is a promising approach for the generation of lead molecules with enhanced activity and especially drug-like properties against therapeutic targets. Herein, we report the fragment-based drug design, systematic chemical synthesis and pharmacological evaluation of novel scaffolds as potent anticancer agents by utilizing six privileged fragments from known STAT3 inhibitors. Several new molecules such as compounds 5, 12, and 19 that may act as advanced chemical leads have been identified. The most potent compound 5 (HJC0123) has demonstrated to inhibit STAT3 promoter activity, downregulate phosphorylation of STAT3, increase the expression of cleaved caspase-3, inhibit cell cycle progression and promote apoptosis in breast and pancreatic cancer cells with low micromolar to nanomolar IC50 values. Furthermore, compound 5 significantly suppressed estrogen receptor (ER)-negative breast cancer MDA-MB-231 xenograft tumor growth in vivo (p.o.), indicating its great potential as an efficacious and orally bioavailable drug candidate for human cancer therapy. PMID:23416191

  18. AFPep: an anti-breast cancer peptide that is orally active.

    PubMed

    Bennett, James A; DeFreest, Lori; Anaka, Ikenna; Saadati, Hamid; Balulad, Sujata; Jacobson, Herbert I; Andersen, Thomas T

    2006-07-01

    We have synthesized a cyclic nonapeptide (AFPep) that is effective, after being administered by parenteral routes, for the treatment or the prevention of breast cancer. To test the hypothesis that AFPep remains safe and efficacious after oral administration, three different whole-animal bioassays were utilized, and the mechanism by which AFPep functions was investigated. Using a human breast cancer xenograft model in mice for therapeutic activity, a carcinogen-induced breast cancer model in rats for prevention efficacy, and a mouse uterus growth inhibition model of anti-estrogenic activity, AFPep was administered by oral gavage (p.o.) and its effects compared to those following intraperitoneal (i.p.) and subcutaneous (s.c.) administration. Toxicity studies evaluated body weights and organ weights in mice and rats receiving AFPep. Preliminary mechanistic studies were carried out in T47D human breast cancer cells growing in culture and evaluated the effect of AFPep on estrogen-stimulated cell growth, phosphorylation of the estrogen receptor (ER), and on level of ER-related kinases. Orally administered AFPep stopped the growth of human tumor xenografts in mice, decreased the incidence and multiplicity of breast cancers in carcinogen-exposed rats, and inhibited the estrogen-stimulated growth of mouse uteri. In each of these systems, orally administered AFPep produced an effect similar to that obtained for AFPep administered by either i.p or s.c. routes. In rodents, no evidence of toxicity was seen for the peptide, even at very high doses. In culture, AFPep inhibited the estrogen-stimulated growth, but not the basal growth, of T47D cells, and it inhibited the estrogen-stimulated phosphorylation of Serine 118 in the ER of these cells, which was not explainable by early changes in ER-related kinases. Chronic oral administration of AFPep appears to be safe and effective for the treatment or prevention of breast cancer in animal models.

  19. FV-100: the most potent and selective anti-varicella zoster virus agent reported to date.

    PubMed

    Migliore, Marco

    2010-01-05

    Bicyclic aryl furano pyrimidines represent the most potent anti-varicella zoster virus (VZV) agents reported to date. Lead compounds have 50% effective concentration (EC(50)) values in vitro that are in the subnanomolar range and selectivity index values that exceed 1 million. They have an absolute requirement for VZV thymidine kinase and most likely act as their phosphate forms. Some structural modification (such as aryl substitution in the base moiety) is tolerated, whereas little sugar modification is acceptable. The Cf1743 compound has proved to be significantly more potent than all reference anti-VZV compounds, as measured either by inhibition of infectious virus particles and/or viral DNA production; however, the high lipophilicity and very low water solubility of this compound gives poor oral bioavailability (<14%). Use of the modified cyclodextrin captisol and the synthesis of the 5'-monophosphate prodrug of Cf1743 has significantly improved water solubility, but does not give any enhancement in oral bioavailability. By contrast, the synthesis of the ether series does not give any further improvement in terms of solubility. The most promising prodrug to emerge to date is the hydrochloric salt of the 5'-valyl-ester, designated as FV-100. Its uptake into cells has been studied using fluorescent microscopy and biological assays, which have indicated that the compound is efficiently taken up by the cells after a short period of incubation.

  20. Endotoxin-associated protein: a potent stimulus for human granulocytopoietic activity which may be accessory cell independent.

    PubMed Central

    Bjornson, B H; Agura, E; Harvey, J M; Johns, M; Andrews, R G; McCabe, W R

    1988-01-01

    Proteins coextracted with endotoxin, termed endotoxin-associated protein (EAP), have been shown to exert interleukin 1-like activities. The present studies demonstrate that EAP also exerts potent granulopoietic colony-stimulating activity (CSA) on human peripheral blood and bone marrow progenitor cells, comparable to that seen with various types of conditioned media. The CSA observed with EAP appeared to be heat (100 degrees C, 30 min) and trypsin resistant and partially pronase resistant. Similar resistance was observed with the porin proteins of the outer membrane of gram-negative bacteria, and similar CSA activity was observed with a purified porin preparation of Neisseria gonorrhoeae. The CSA of EAP could be demonstrated in human peripheral blood and bone marrow leukocytes rigorously depleted of monocytes, T lymphocytes, and B lymphocytes by treatment with specific monoclonal antibodies and complement. PMID:2836311

  1. Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity.

    PubMed

    Ke, Hangjun; Morrisey, Joanne M; Qu, Shiwei; Chantarasriwong, Oraphin; Mather, Michael W; Theodorakis, Emmanuel A; Vaidya, Akhil B

    2017-01-01

    Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents. Copyright © 2016 American Society for Microbiology.

  2. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, new imidazoles with potent activity against Candida albicans and dermatophytes. Synthesis, structure-activity relationship, and molecular modeling studies.

    PubMed

    La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano

    2008-07-10

    New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC

  3. The Analgesic Activity of Bestatin as a Potent APN Inhibitor

    PubMed Central

    Jia, Mei-Rong; Wei, Tao; Xu, Wen-Fang

    2010-01-01

    Bestatin, a small molecular weight dipeptide, is a potent inhibitor of various aminopeptidases as well as LTA4 hydrolase. Various physiological functions of Bestatin have been identified, viz.: (1) an immunomodifier for enhancing the proliferation of normal human bone marrow granulocyte–macrophage progenitor cells to form CFU-GM colonies; Bestatin exerts a direct stimulating effect on lymphocytes via its fixation on the cell surface and an indirect effect on monocytes via aminopeptidase B inhibition of tuftsin catabolism; (2) an immunorestorator and curative or preventive agent for spontaneous tumor; Bestatin alone or its combination with chemicals can prolongate the disease-free interval and survival period in adult acute or chronic leukemia, therefore, it was primarily marketed in 1987 in Japan as an anticancer drug and servers as the only marketed inhibitor of Aminopeptidase N (APN/CD13) to cure leukemia to date; (3) a pan-hematopoietic stimulator and restorator; Bestatin promotes granulocytopoiesis and thrombocytopoiesis in vitro and restores them in myelo-hypoplastic men; (4) an inhibitor of several natural opioid peptides. Based on the knowledge that APN can cleave several bioactive neuropeptides such as Met-enkaphalins, Leu-enkaphalins, β-Endorphin, and so on, the anti-aminopeptidase action of Bestatin also allows it to protect endopeptides against their catabolism, exhibiting analgesic activity. Although many scientific studies and great accomplishments have been achieved in this field, a large amount of problems are unsolved. This article reviews the promising results obtained for future development of the analgesic activity of Bestatin that can be of vital interest in a number of severe and chronic pain syndromes. PMID:20631848

  4. A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis.

    PubMed

    Li, Ning; Feng, Lin; Han, Hui-Qiong; Yuan, Jing; Qi, Xue-Kang; Lian, Yi-Fan; Kuang, Bo-Hua; Zhang, Yu-Chen; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Yao, You-Yuan; Xu, Miao; He, Gui-Ping; Zhao, Bing-Chun; Gao, Ling; Feng, Qi-Sheng; Chen, Li-Zhen; Yang, Lu; Yang, Dajun; Zeng, Yi-Xin

    2016-10-10

    Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model.

    PubMed

    Nishimoto, Tetsuya; Mlakar, Logan; Takihara, Takahisa; Feghali-Bostwick, Carol

    2015-10-01

    Pulmonary fibrosis causes high morbidity and mortality in affected individuals. Recently, we showed that parenteral or intratracheal administration of a peptide derived from endostatin, called E4, prevents and ameliorates fibrosis using different models of dermal and pulmonary disease. No marketed orally delivered peptide drugs are currently available for progressive pulmonary fibrosis; however oral delivery of drugs is the preferred route for treating most chronic diseases. Thus, we investigated whether oral administration of E4 peptide exerted anti-fibrotic activity in a murine pulmonary fibrosis model. Bleomycin (1.2mU/g body weight) was intratracheally administrated to male 6-8-week-old C57BL/6J mice. E4 peptide (20, 10, 5, and 1 μg/mouse) or scrambled control peptide (20 μg/mouse) was orally administered on the same day as bleomycin. In some experiments, E4 peptide (10 and 5 μg/mouse) was orally administered three times on days 0, 3, and 6 post-bleomycin treatment. Lungs were harvested on day 21 for histological analysis and hydroxyproline assay. Histological analysis and hydroxyproline assay revealed that bleomycin successfully induced pulmonary fibrosis, and that 20 μg of oral E4 peptide ameliorated the fibrosis. The lower doses of E4 peptide (10, 5, and 1 μg) were insufficient to exert anti-fibrotic activity when given as a single dose. Multiple doses of E4 peptide efficiently exerted anti-fibrotic activity even at lower doses. E4 peptide shows oral bioavailability and exerts anti-fibrotic activity in a bleomycin-induced pulmonary fibrosis model. We suggest that E4 peptide is a novel oral drug for fibroproliferative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model

    PubMed Central

    Nishimoto, Tetsuya; Mlakar, Logan; Takihara, Takahisa; Feghali-Bostwick, Carol

    2016-01-01

    Objective Pulmonary fibrosis causes high morbidity and mortality in affected individuals. Recently, we showed that parenteral or intratracheal administration of a peptide derived from endostatin, called E4, prevents and ameliorates fibrosis using different models of dermal and pulmonary disease. No marketed orally delivered peptide drugs are currently available for progressive pulmonary fibrosis; however oral delivery of drugs is the preferred route for treating most chronic diseases. Thus, we investigated whether oral administration of E4 peptide exerted anti-fibrotic activity in a murine pulmonary fibrosis model. Methods Bleomycin (1.2mU/g body weight) was intratracheally administrated to male 6–8-week-old C57BL/6J mice. E4 peptide (20, 10, 5, and 1 μg/mouse) or scrambled control peptide (20 μg/mouse) were orally administered on the same day as bleomycin. In some experiments, E4 peptide (10 and 5 μg/mouse) was orally administered three times on days 0, 3, and 6 post-bleomycin treatment. Lungs were harvested on day 21 for histological analysis and hydroxyproline assay. Results Histological analysis and hydroxyproline assay revealed that bleomycin successfully induced pulmonary fibrosis, and that 20μg of oral E4 peptide ameliorated the fibrosis. The lower doses of E4 peptide (10, 5, and 1 μg) were insufficient to exert anti-fibrotic activity when given as a single dose. Multiple doses of E4 peptide efficiently exerted anti-fibrotic activity even at lower doses. Conclusion E4 peptide shows oral bioavailability and exerts anti-fibrotic activity in a bleomycin-induced pulmonary fibrosis model. We suggest that E4 peptide is a novel oral drug for fibroproliferative disorders. PMID:26315492

  7. Antibiofilm and Anti-Inflammatory Activities of Houttuynia cordata Decoction for Oral Care

    PubMed Central

    Sekita, Yasuko; Hirao, Kouji; Amoh, Takashi; Hirota, Katsuhiko; Fujii, Hideki; Matsuo, Takashi; Miyake, Yoichiro; Kashiwada, Yoshiki

    2017-01-01

    Dental biofilms that form in the oral cavity play a critical role in the pathogenesis of several infectious oral diseases, including dental caries, periodontal disease, and oral candidiasis. Houttuynia cordata (HC, Saururaceae) is a widely used traditional medicine, for both internal and external application. A decoction of dried HC leaves (dHC) has long been consumed as a health-promoting herbal tea in Japan. We have recently reported that a water solution of HC poultice ethanol extract (wHCP) exerts antimicrobial and antibiofilm effects against several important oral pathogens. It also exhibits anti-inflammatory effects on human keratinocytes. In our current study, we examined the effects of dHC on infectious oral pathogens and inflammation. Our results demonstrated that dHC exerts moderate antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) and other oral microorganisms. dHC also exhibited antibiofilm effects against MRSA, Fusobacterium nucleatum (involved in dental plaque formation), and Candida albicans and inhibitory effects on interleukin-8, CCL20, IP-10, and GROα productions by human oral keratinocytes stimulated by Porphyromonas gingivalis lipopolysaccharide (a cause of periodontal disease), without cytotoxic effects. This suggests that dHC exhibits multiple activities in microorganisms and host cells. dHC can be easily prepared and may be effective in preventing infectious oral diseases. PMID:29234378

  8. Antibiofilm and Anti-Inflammatory Activities of Houttuynia cordata Decoction for Oral Care.

    PubMed

    Sekita, Yasuko; Murakami, Keiji; Yumoto, Hiromichi; Hirao, Kouji; Amoh, Takashi; Fujiwara, Natsumi; Hirota, Katsuhiko; Fujii, Hideki; Matsuo, Takashi; Miyake, Yoichiro; Kashiwada, Yoshiki

    2017-01-01

    Dental biofilms that form in the oral cavity play a critical role in the pathogenesis of several infectious oral diseases, including dental caries, periodontal disease, and oral candidiasis. Houttuynia cordata (HC, Saururaceae) is a widely used traditional medicine, for both internal and external application. A decoction of dried HC leaves (dHC) has long been consumed as a health-promoting herbal tea in Japan. We have recently reported that a water solution of HC poultice ethanol extract (wHCP) exerts antimicrobial and antibiofilm effects against several important oral pathogens. It also exhibits anti-inflammatory effects on human keratinocytes. In our current study, we examined the effects of dHC on infectious oral pathogens and inflammation. Our results demonstrated that dHC exerts moderate antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) and other oral microorganisms. dHC also exhibited antibiofilm effects against MRSA, Fusobacterium nucleatum (involved in dental plaque formation), and Candida albicans and inhibitory effects on interleukin-8, CCL20, IP-10, and GRO α productions by human oral keratinocytes stimulated by Porphyromonas gingivalis lipopolysaccharide (a cause of periodontal disease), without cytotoxic effects. This suggests that dHC exhibits multiple activities in microorganisms and host cells. dHC can be easily prepared and may be effective in preventing infectious oral diseases.

  9. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent.

    PubMed

    Jin, Cheng Hua; Krishnaiah, Maddeboina; Sreenu, Domalapally; Subrahmanyam, Vura B; Rao, Kota S; Lee, Hwa Jeong; Park, So-Jung; Park, Hyun-Ju; Lee, Kiho; Sheen, Yhun Yhong; Kim, Dae-Kee

    2014-05-22

    A series of 2-substituted-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)imidazoles was synthesized and evaluated to optimize a prototype inhibitor of TGF-β type I receptor kinase (ALK5), 6. Combination of replacement of a quinoxalin-6-yl moiety of 6 with a [1,2,4]triazolo[1,5-a]pyridin-6-yl moiety, insertion of a methyleneamino linker, and a o-F substituent in the phenyl ring markedly increased ALK5 inhibitory activity, kinase selectivity, and oral bioavailability. The 12b (EW-7197) inhibited ALK5 with IC50 value of 0.013 μM in a kinase assay and with IC50 values of 0.0165 and 0.0121 μM in HaCaT (3TP-luc) stable cells and 4T1 (3TP-luc) stable cells, respectively, in a luciferase assay. Selectivity profiling of 12b using a panel of 320 protein kinases revealed that it is a highly selective ALK5/ALK4 inhibitor. Pharmacokinetic study with 12b·HCl in rats showed an oral bioavailability of 51% with high systemic exposure (AUC) of 1426 ng × h/mL and maximum plasma concentration (Cmax) of 1620 ng/mL. Rational optimization of 6 has led to the identification of a highly potent, selective, and orally bioavailable ALK5 inhibitor 12b.

  10. Buccal swab, a minimally invasive method for the screening of oral cancer in active smokers

    NASA Astrophysics Data System (ADS)

    Suyatmi; Subiyantoro, P.; Indrakila, S.

    2018-05-01

    Smoking is the main risk factor for developing oral cancer. The previous study showed that there was a strong correlation between the length of smoking with the risk to develop oral cancer. Early detection of epithelial changes of oral mucosa will be a good prevention of the incidence of oral cancer among active smokers. This study evaluated the potential use of buccal swab for the screening of early signs of malignancy in active smokers. This study involved 80 participants including those who were smokers and non smokers. The buccal swab was conducted using sterile cytobrush. An epithelial smear was made from the buccal swab and stained with Papanicolaou’s technique. An cytomorphometric analysis was conducted by comparing the ratio of nuclear cell to cytoplasmic diameter (ND/CD) between the two groups. The mean of ND observed in this study were 8.963µ for active smokers and 7.991µ for non smokers groups. While the mean of CD were 58.249µ and 63.473µ for active smoker and non-smoker respectively. The mean of ND/CD ratio were 0.156 for active smokers and 0.129 for non smokers groups. This study detected a significant difference on the ND/CD ratio among active smokers vs non smokers (p<0.0001 95% CI = -0.040 – -0.014). In conclusion buccal swab could be a routine procedure to obtain sample for identification of changes in cells morphology to screen an early development of oral cancer.

  11. DSR-98776, a novel selective mGlu5 receptor negative allosteric modulator with potent antidepressant and antimanic activity.

    PubMed

    Kato, Taro; Takata, Makoto; Kitaichi, Maiko; Kassai, Momoe; Inoue, Mitsuhiro; Ishikawa, Chihiro; Hirose, Wataru; Yoshida, Kozo; Shimizu, Isao

    2015-06-15

    Modulation of monoaminergic systems has been the main stream of treatment for patients with mood disorders. However, recent evidence suggests that the glutamatergic system plays an important role in the pathophysiology of these disorders. This study pharmacologically characterized a structurally novel metabotropic glutamate 5 (mGlu5) receptor negative allosteric modulator, DSR-98776, and evaluated its effect on rodent models of depression and mania. First, DSR-98776 in vitro profile was assessed using intracellular calcium and radioligand binding assays. This compound showed dose-dependent inhibitory activity for mGlu5 receptors by binding to the same allosteric site as 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a known mGlu5 inhibitor. The in vivo therapeutic benefits of DSR-98776 were evaluated in common rodent models of depression and mania. In the rat forced swimming test, DSR-98776 (1-3mg/kg) significantly reduced rats immobility time after treatment for 7 consecutive days, while paroxetine (3 and 10mg/kg) required administration for 2 consecutive weeks to reduce rats immobility time. In the mouse forced swimming test, acute administration of DSR-98776 (10-30 mg/kg) significantly reduced immobility time. This effect was not influenced by 4-chloro-DL-phenylalanine methyl ester hydrochloride-induced 5-HT depletion. Finally, DSR-98776 (30 mg/kg) significantly decreased methamphetamine/chlordiazepoxide-induced hyperactivity in mice, which reflects this compound antimanic-like effect. These results indicate that DSR-98776 acts as an orally potent antidepressant and antimanic in rodent models and can be a promising therapeutic option for the treatment of a broad range of mood disorders with depressive and manic states. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Overview of the Oral HIV/AIDS Research Alliance Program

    PubMed Central

    Shiboski, C.H.; Webster-Cyriaque, J.Y.; Ghannoum, M.; Greenspan, J.S.; Dittmer, D.

    2011-01-01

    The Oral HIV/AIDS Research Alliance is part of the AIDS Clinical Trials Group, the largest HIV clinical trial organization in the world, and it is funded by the National Institute of Dental and Craniofacial Research, in collaboration with the National Institute of Allergy and Infectious Diseases. The alliance’s main objective is to investigate the oral complications associated with HIV/AIDS as the epidemic is evolving—in particular, the effects of potent antiretrovirals on the development of oral mucosal lesions and associated fungal and viral pathogens. Furthermore, oral fluids are being explored for their potential monitoring and diagnostic role with respect to HIV disease and coinfections. This article presents an overview of the alliance, its scientific agenda, and an outline of the novel interventional and noninterventional clinical studies ongoing and developing within the AIDS Clinical Trials Group infrastructure in the United States and internationally. PMID:21441477

  13. Overview of the oral HIV/AIDS Research Alliance Program.

    PubMed

    Shiboski, C H; Webster-Cyriaque, J Y; Ghannoum, M; Greenspan, J S; Dittmer, D

    2011-04-01

    The Oral HIV/AIDS Research Alliance is part of the AIDS Clinical Trials Group, the largest HIV clinical trial organization in the world, and it is funded by the National Institute of Dental and Craniofacial Research, in collaboration with the National Institute of Allergy and Infectious Diseases. The alliance's main objective is to investigate the oral complications associated with HIV/AIDS as the epidemic is evolving-in particular, the effects of potent antiretrovirals on the development of oral mucosal lesions and associated fungal and viral pathogens. Furthermore, oral fluids are being explored for their potential monitoring and diagnostic role with respect to HIV disease and coinfections. This article presents an overview of the alliance, its scientific agenda, and an outline of the novel interventional and noninterventional clinical studies ongoing and developing within the AIDS Clinical Trials Group infrastructure in the United States and internationally.

  14. Prime-Boost Immunization of Rabbits with HIV-1 gp120 Elicits Potent Neutralization Activity against a Primary Viral Isolate

    PubMed Central

    Narayan, Kristin M.; Agrawal, Nitish; Du, Sean X.; Muranaka, Janelle E.; Bauer, Katherine; Leaman, Daniel P.; Phung, Pham; Limoli, Kay; Chen, Helen; Boenig, Rebecca I.; Wrin, Terri; Zwick, Michael B.; Whalen, Robert G.

    2013-01-01

    Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env) using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼103 to 104 serum dilution) against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env) or other type-specific responses (targeting V1, V2, or V3 variable regions). The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth. PMID:23326351

  15. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug.

    PubMed

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M; Frick, David N; Bolognesi, Martino; Milani, Mario

    2012-08-01

    Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.

  16. Oral and transdermal DL-methylphenidate-ethanol interactions in C57BL/6J mice: potentiation of locomotor activity with oral delivery.

    PubMed

    Bell, Guinevere H; Griffin, William C; Patrick, Kennerly S

    2011-12-01

    Many abusers of dl-methylphenidate co-abuse ethanol. The present animal study examined behavioral effects of oral or transdermal DL-methylphenidate in combination with a high, depressive dose of ethanol to model co-abuse. Locomotor activity of C57BL/6J mice was recorded for 3 h following dosing with either oral DL-methylphenidate (7.5 mg/kg) or transdermal DL-methylphenidate (Daytrana®;1/4 of a 12.5 cm(2) patch; mean dose 7.5 mg/kg), with or without oral ethanol (3 g/kg). Brains were enantiospecifically analyzed for the isomers of methylphenidate and the transesterification metabolite ethylphenidate. An otherwise depressive dose of ethanol significantly potentiated oral DL-methylphenidate induced increases in total distance traveled for the first 100 min (p<0.05). Transdermal DL-methylphenidate increased total distance traveled after a latency of 80 min, though this effect was not potentiated by concomitant ethanol. Mean 3 h brain D-methylphenidate concentrations were significantly elevated by ethanol in both the oral (65% increase) and transdermal (88% increase) groups. The corresponding L-ethylphenidate concentrations were 10 ng/g and 130 ng/g. Stimulant induced motor activity in rodents may correlate with abuse liability. Potentiation of DL-methylphenidate motor effects by concomitant ethanol carries implications regarding increased abuse potential of DL-methylphenidate when combined with ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor.

    PubMed

    Pisani, Leonardo; Muncipinto, Giovanni; Miscioscia, Teresa Fabiola; Nicolotti, Orazio; Leonetti, Francesco; Catto, Marco; Caccia, Carla; Salvati, Patricia; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passeleu, Celine; Carotti, Angelo

    2009-11-12

    In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.

  18. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  19. Vaginal concentrations of lactic acid potently inactivate HIV

    PubMed Central

    Aldunate, Muriel; Tyssen, David; Johnson, Adam; Zakir, Tasnim; Sonza, Secondo; Moench, Thomas; Cone, Richard; Tachedjian, Gilda

    2013-01-01

    Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV. PMID:23657804

  20. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine productionmore » was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.« less

  1. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens

    PubMed Central

    Fyfe, Corey; O’Brien, William; Hackel, Meredith; Minyard, Mary Beth; Waites, Ken B.; Dubois, Jacques; Murphy, Timothy M.; Slee, Andrew M.; Weiss, William J.; Sutcliffe, Joyce A.

    2017-01-01

    ABSTRACT TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising

  2. Identification of a Potent Tryptophan-based TRPM8 Antagonist With in vivo Analgesic Activity.

    PubMed

    Bertamino, Alessia; Iraci, Nunzio; Ostacolo, Carmine; Ambrosino, Paolo; Musella, Simona; Di Sarno, Veronica; Ciaglia, Tania; Pepe, Giacomo; Sala, Marina; Soldovieri, Maria Virginia; Mosca, Ilaria; Gonzalez-Rodriguez, Sara; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; Novellino, Ettore; Taglialatela, Maurizio; Campiglia, Pietro; Gomez-Monterrey, Isabel M

    2018-06-25

    TRPM8 has been implicated in nociception and pain and is currently regarded as an attractive target for the pharmacological treatment of neuropathic pain syndromes. A series of analogues of N,N'-dibenzyl tryptamine 1, a potent TRPM8 antagonist, were prepared and screened using a fluorescence-based in vitro assay based on menthol-evoked calcium influx in TRPM8 stably-transfected HEK293 cells. The tryptophan derivative 14 was identified as a potent (IC 50 0.2±0.2 nM) and selective TRPM8 antagonist. In vivo, 14 showed significant target coverage in both an icilin-induced WDS (at 1-30 mg/kg s.c.) and oxaliplatin-induced cold allodynia (at 0.1-1 μg s.c.) mice models. Molecular modeling studies identified the putative binding mode of these antagonists, suggesting that they could influence an interaction network between the S1-4 transmembrane segments and the TRP domains of the channel subunits. The tryptophan moiety provides a new pharmacophoric scaffold for the design of highly potent modulators of TRPM8-mediated pain.

  3. Antimicrobial Activity of Seven Essential Oils From Iranian Aromatic Plants Against Common Causes of Oral Infections

    PubMed Central

    Zomorodian, Kamiar; Ghadiri, Pooria; Saharkhiz, Mohammad Jamal; Moein, Mohammad Reza; Mehriar, Peiman; Bahrani, Farideh; Golzar, Tahereh; Pakshir, Keyvan; Fani, Mohammad Mehdi

    2015-01-01

    Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens. PMID:25793100

  4. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae.

    PubMed

    Kunthalert, Duangkamol; Baothong, Sudarat; Khetkam, Pichit; Chokchaisiri, Suwadee; Suksamrarn, Apichart

    2014-10-01

    Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm-forming strains of NTHi. Of the test chalcones, 3-hydroxychalcone (chalcone 8) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50 ) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8, which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong-biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non-antimicrobial. In terms of structure-activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3-hydroxychalcone (chalcone 8) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm-associated infections. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Discovery of novel 4-anilinoquinazoline derivatives as potent inhibitors of epidermal growth factor receptor with antitumor activity.

    PubMed

    Xu, Yun-Yun; Li, Si-Ning; Yu, Gao-Jian; Hu, Qing-Hua; Li, Huan-Qiu

    2013-10-01

    Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR-TK inhibitory activity. Especially, N(6)-((5-bromothiophen-2-yl)methyl)-N(4)-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50=3.11μM for Hep G2, IC50=0.82μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Knowledge, perceived skills and activities of nursing staff to support oral home care among older domiciliary care clients.

    PubMed

    Salmi, Riikka; Tolvanen, Mimmi; Suhonen, Riitta; Lahti, Satu; Närhi, Timo

    2018-04-25

    Increasing number of older adults lives in their own homes, but needs help in many daily routines. Domiciliary care nursing staff (DCNS) is often needed to support oral home care. However, information of nursing staff's knowledge, skills and activity in this task is sparse. The study aimed to assess DCNS knowledge, perceived skills and activities to support oral home care of older domiciliary care clients. The study was conducted among DCNS in one of the largest cities in Finland. All DCNS members (n = 465) received a questionnaire with 14 multiple choice and open questions regarding the perceived skills, knowledge and activities of oral health guidance of older domiciliary care clients. In total, 115 (25%) DCNS members returned the questionnaires. Frequencies, percentages, means and standard deviations were used to describe the samples and study variables. DCNS was categorised according to age and working years for group comparisons, which were assessed with chi-squared test. Knowledge concerning oral health was mostly on a high level. Around 50% of DCNS considered their knowledge regarding dental prosthesis hygiene as sufficient. Of the DCNS, 67% informed that they had received education on oral health care. However, over 50% of the DCNS had a need for further education in issues related to oral home care. DCNS were active in supporting most oral and prosthesis hygiene means, yet less in guidance concerning toothbrushing. Activity to support cleaning the interdental spaces was the weakest, in which only 12% of the respondents considered having average or excellent skills. Younger DCNS had better knowledge on oral home care due to recent education, but older staff members were more skilful in performing oral hygiene measures. There is a need for structured instructions and training on oral home care for DCNS. Oral home care should be taken into account more often and regularly. © 2018 Nordic College of Caring Science.

  7. Nigella sativa and its active constituent thymoquinone in oral health

    PubMed Central

    AlAttas, Safia A.; Zahran, Fat’heya M.; Turkistany, Shereen A.

    2016-01-01

    In this review, we summarized published reports that investigated the role of Nigella sativa (NS) and its active constituent, thymoquinone (TQ) in oral health and disease management. The literature studies were preliminary and scanty, but the results revealed that black seed plants have a potential therapeutic effect for oral and dental diseases. Such results are encouraging for the incorporation of these plants in dental therapeutics and hygiene products. However, further detailed preclinical and clinical studies at the cellular and molecular levels are required to investigate the mechanisms of action of NS and its constituents, particularly TQ. PMID:26905343

  8. Pharmacological and Toxicological Properties of the Potent Oral γ-Secretase Modulator BPN-15606.

    PubMed

    Wagner, Steven L; Rynearson, Kevin D; Duddy, Steven K; Zhang, Can; Nguyen, Phuong D; Becker, Ann; Vo, Uyen; Masliah, Deborah; Monte, Louise; Klee, Justin B; Echmalian, Corinne M; Xia, Weiming; Quinti, Luisa; Johnson, Graham; Lin, Jiunn H; Kim, Doo Y; Mobley, William C; Rissman, Robert A; Tanzi, Rudolph E

    2017-07-01

    Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid- β peptide (A β ), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the A β 42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred t γ -secretase modulatoro as γ -secretase modulators that inhibited the production of the A β 42 peptide and to a lesser degree the A β 40 peptide while concomitantly increasing the production of the carboxyl-truncated A β 38 and A β 37 peptides. These modulators potently lower A β 42 levels without inhibiting the γ -secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ -secretase modulator (GSM), ( S )- N -(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1 H -imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower A β 42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce A β neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble A β 42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials. Copyright © 2017 by The Author(s).

  9. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    PubMed

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model.

  10. Activation of the TREM-1 pathway in human monocytes by periodontal pathogens and oral commensal bacteria.

    PubMed

    Varanat, M; Haase, E M; Kay, J G; Scannapieco, F A

    2017-08-01

    Periodontitis is a highly prevalent disease caused in part by an aberrant host response to the oral multi-species biofilm. A balance between the oral bacteria and host immunity is essential for oral health. Imbalances in the oral microbiome lead to an uncontrolled host inflammatory response and subsequent periodontal disease (i.e. gingivitis and periodontitis). TREM-1 is a signaling receptor present on myeloid cells capable of acting synergistically with other pattern recognition receptors leading to amplification of inflammatory responses. The aim of this study was to investigate the activation of the TREM-1 pathway in the human monocyte-like cell line THP-1 exposed to both oral pathogens and commensals. The relative expression of the genes encoding TREM-1 and its adapter protein DAP12 were determined by quantitative real-time polymerase chain reaction. The surface expression of TREM-1 was determined by flow cytometry. Soluble TREM-1 and cytokines were measured by enzyme-linked immunosorbent assay. The results demonstrate that both commensal and pathogenic oral bacteria activate the TREM-1 pathway, resulting in a proinflammatory TREM-1 activity-dependent increase in proinflammatory cytokine production. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.

    PubMed

    Pantaroto, Heloisa N; Ricomini-Filho, Antonio P; Bertolini, Martinna M; Dias da Silva, José Humberto; Azevedo Neto, Nilton F; Sukotjo, Cortino; Rangel, Elidiane C; Barão, Valentim A R

    2018-07-01

    Titanium dioxide (TiO 2 ) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO 2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO 2 phases present different photocatalytic and antibacterial activities. Three crystalline TiO 2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO 2 (anatase); (3) M-TiO 2 (mixture of anatase and rutile); (4) R-TiO 2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. All TiO 2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p<0.05). A-TiO 2 and M-TiO 2 films presented superior photocatalytic activity than R-TiO 2 (p<0.05). M-TiO 2 revealed the greatest antibacterial activity followed by A-TiO 2 (≈99.9% and 99% of bacterial reduction, respectively) (p<0.001 vs. control). R-TiO 2 had no antibacterial activity (p>0.05 vs. control). This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO 2 in oral biofilm-associated disease. Anatase and mixture-TiO 2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components. Copyright © 2018 The Academy of Dental Materials. All rights reserved.

  12. Discovery of ((4R,5S)-5-amino-4-(2,4,5- trifluorophenyl)cyclohex-1-enyl)-(3- (trifluoromethyl)-5,6-dihydro- [1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanone (ABT-341), a highly potent, selective, orally efficacious, and safe dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; von Geldern, Thomas W; Madar, David J; Longenecker, Kenton; Yong, Hong; Lubben, Thomas H; Stewart, Kent D; Zinker, Bradley A; Backes, Bradley J; Judd, Andrew S; Mulhern, Mathew; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Reinhart, Glenn A; Fryer, Ryan M; Preusser, Lee C; Kempf-Grote, Anita J; Sham, Hing L; Trevillyan, James M

    2006-11-02

    Dipeptidyl peptidase IV (DPP4) deactivates glucose-regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition has become a useful therapy for type 2 diabetes. Optimization of the high-throughput screening lead 6 led to the discovery of 25 (ABT-341), a highly potent, selective, and orally bioavailable DPP4 inhibitor. When dosed orally, 25 dose-dependently reduced glucose excursion in ZDF rats. Amide 25 is safe in a battery of in vitro and in vivo tests and may represent a new therapeutic agent for the treatment of type 2 diabetes.

  13. Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors.

    PubMed

    Vontzalidou, Argyro; Zoidis, Grigoris; Chaita, Eliza; Makropoulou, Maria; Aligiannis, Nektarios; Lambrinidis, George; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros

    2012-09-01

    The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells.

    PubMed

    Nam, Woong; Tak, Jungae; Ryu, Ju-Kyoung; Jung, Mankil; Yook, Jong-In; Kim, Hyung-Jun; Cha, In-Ho

    2007-04-01

    Artemisinin is of special biological interest because of its outstanding antimalarial activity. Recently, it was reported that artemisinin has antitumor activity. Its derivatives, artesunate, arteether, and artemeter, also have antitumor activity against melanoma, breast, ovarian, prostate, CNS, and renal cancer cell lines. Recently, monomer, dimer, and trimer derivatives were synthesized from deoxoartemisinin, and the dimers and the trimers were found to have much more potent antitumor activity than the monomers. We evaluated the antitumor activity of artemisinin and its various derivatives (dihydroartemisinin, dihydroartemisinin 12-benzoate, 12-(2'-hydroxyethyl) deoxoartemisinin, 12-(2'-ethylthio) deoxoartemisinin dimer, deoxoartemisinin trimer) in comparison with paclitaxel (Taxol), 5-fluorouracil (5-FU), cisplatin in vitro. In this study, the deoxoartemisinin trimer had the most potent antitumor effect (IC(50) = 6.0 microM), even better than paclitaxel (IC(50) = 13.1 microM), on oral cancer cell line (YD-10B). In addition, it induced apoptosis through a caspase-3-dependent mechanism. The deoxoartemisinin trimer was found to have greater antitumor effect on tumor cells than other commonly used chemotherapeutic drugs, such as 5-FU, cisplatin, and paclitaxel. Furthermore, the ability of artemisinin and its derivatives to induce apoptosis highlights their potential as chemotherapeutic agents, for many anticancer drugs achieve their antitumor effects by inducing apoptosis in tumor cells. (c) 2006 Wiley Periodicals, Inc.

  15. In vitro and in vivo anti-cancer activity of silymarin on oral cancer.

    PubMed

    Won, Dong-Hoon; Kim, Lee-Han; Jang, Boonsil; Yang, In-Hyoung; Kwon, Hye-Jeong; Jin, Bohwan; Oh, Seung Hyun; Kang, Ju-Hee; Hong, Seong-Doo; Shin, Ji-Ae; Cho, Sung-Dae

    2018-05-01

    Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.

  16. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    PubMed

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  17. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  18. A new series of potent benzodiazepine gamma-secretase inhibitors.

    PubMed

    Churcher, Ian; Ashton, Kate; Butcher, John W; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Owens, Andrew P; Teall, Martin R; Williams, Susie; Wrigley, Jonathan D J

    2003-01-20

    A new series of benzodiazepine-containing gamma-secretase inhibitors with potential use in the treatment of Alzheimer's disease is disclosed. Structure-activity relationships of the pendant hydrocinnamate side-chain which led to the preparation of highly potent inhibitors are described.

  19. Design and Optimization of Renin Inhibitors: Orally Bioavailable Alkyl Amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tice, C.; Xu, Z; Yuan, J

    2009-01-01

    Structure-based drug design led to the identification of a novel class of potent, low MW alkylamine renin inhibitors. Oral administration of lead compound 21l, with MW of 508 and IC{sub 50} of 0.47 nM, caused a sustained reduction in mean arterial blood pressure in a double transgenic rat model of hypertension.

  20. Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor.

    PubMed

    Chen, Chen; Wu, Dongpei; Guo, Zhiqiang; Xie, Qiu; Reinhart, Greg J; Madan, Ajay; Wen, Jenny; Chen, Takung; Huang, Charles Q; Chen, Mi; Chen, Yongsheng; Tucci, Fabio C; Rowbottom, Martin; Pontillo, Joseph; Zhu, Yun-Fei; Wade, Warren; Saunders, John; Bozigian, Haig; Struthers, R Scott

    2008-12-11

    The discovery of novel uracil phenylethylamines bearing a butyric acid as potent human gonadotropin-releasing hormone receptor (hGnRH-R) antagonists is described. A major focus of this optimization was to improve the CYP3A4 inhibition liability of these uracils while maintaining their GnRH-R potency. R-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyric acid sodium salt, 10b (elagolix), was identified as a potent and selective hGnRH-R antagonist. Oral administration of 10b suppressed luteinizing hormone in castrated macaques. These efforts led to the identification of 10b as a clinical compound for the treatment of endometriosis.

  1. Novel depsides as potential anti-inflammatory agents with potent inhibitory activity against Escherichia coli-induced interleukin-8 production.

    PubMed

    Lv, Peng-Cheng; Xiong, Jing; Chen, Jin; Wang, Kai-Rui; Mao, Wen-Jun; Zhu, Hai-Liang

    2010-08-01

    Sixteen novel depsides were synthesized for the first time. Their chemical structures were clearly determined by (1)H NMR, ESI mass spectra, and elemental analyses. All the compounds were assayed for antibacterial activities against three Gram-positive bacterial strains (Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, and Streptococcus faecalis ATCC 9790) and three Gram-negative bacterial strains (Escherichia coli ATCC 35218, Pseudomonas aeruginosa ATCC 13525, and Enterobacter cloacae ATCC 13047) by the MTT method. Compound 2-(2-methoxy-2-oxoethyl)phenyl 5-bromonicotinate (5) exhibited significant antibacterial activities against E. coli ATCC 35218 with an MIC of 0.78 microg/mL, which was superior to the positive control kanamycin B. In addition, compound 5 showed potent inhibitory activity against E. coli-induced interleukin-8 production.

  2. Langerhans Cells and Their Role in Oral Mucosal Diseases

    PubMed Central

    Upadhyay, Juhi; Upadhyay, Ram B; Agrawal, Pankaj; Jaitley, Shweta; Shekhar, Rhitu

    2013-01-01

    Dendritic cells are arguably the most potent antigen-presenting cells and may be the only cells capable of initiating the adaptive immune response. The epithelial residents of dendritic cells are Langerhans cells, which serve as the “sentinels” of the mucosa, altering the immune system not only to pathogen entry but also of tolerance to self antigen and commensal microbes. Oral mucosal Langerhans cells are capable of engaging and internalizing a wide variety of pathogens and have been found responsive to nickel in patients with nickel allergies, oral Candida species, oral lichen planus, lichenoid drug eruptions, graft versus host diseases, periodontal diseases median rhomboid glossitis, human immunodeficiency virus infection, hairy leukoplakia of the tongue, and oral squamous cell carcinoma. Review focuses on the role of antigen-presenting cells in particular Langerhans cells to better understand the mechanisms underlying immune responses. In this review, comprehensive detail about mucosal diseases has been compiled using the PubMed database and through textbooks. PMID:24251267

  3. Oral health care activities performed by caregivers for institutionalized elderly in Barcelona-Spain

    PubMed Central

    Cornejo-Ovalle, Marco; Costa-de-Lima, Kenio; Pérez, Glória; Borrell, Carme; Casals-Peidro, Elías

    2013-01-01

    Objectives: To describe the frequency of brushing teeth and cleaning of dentures, performed by caregivers, for institutionalized elderly people. Methods: A cross-sectional study in a sample of 196 caregivers of 31 health centers in Barcelona. The dependent variables were frequency of dental brushing and frequency of cleaning of dentures of the elderly by caregivers. The independent variables were characteristics of caregivers and institutions. We performed bivariate and multivariate descriptive analyses. Robust Poisson regression models were fitted to determine factors associated with the dependent variables and to assess the strength of the association. Results: 83% of caregivers were women, 79% worked on more than one shift, 42% worked only out of necessity, 92% were trained to care for elderly persons, 67% were trained in oral hygiene care for the elderly, and 73% recognized the existence of institutional protocols on oral health among residents. The variables explaining the lower frequency of brushing teeth by caregivers for the elderly, adjusted for the workload, were: no training in the care of elderly persons (PRa 1.7 CI95%: 1.6-1.8), not fully agreeing with the importance of oral health care of the elderly (PRa 2.5 CI95%: 1.5-4.1) and not knowing of the existence of oral health protocols (PRa 1.8 CI95%: 1.2-2.6). The variables that explain the lower frequency of cleaning dentures, adjusted for the workload, were lack of training in elderly care (PRa 1.7 CI95%: 1.3-1.9) and not knowing of the existence of protocols (PRa 3.7 CI95%: 1.6-8.7). Conclusion: The majority of caregivers perform activities of oral health care for the elderly at least once per day. The frequency of this care depends mainly on whether caregivers are trained to perform these activities, the importance given to oral health, the workload of caregivers and the existence of institutional protocols on oral health of institutionalized elderly persons. Key words:Institutionalized elderly

  4. Ortho Group Activation of a Bromopyrrole Ester in Suzuki-Miyaura Cross-Coupling Reactions: Application to the Synthesis of New Microtubule Depolymerizing Agents with Potent Cytotoxic Activities

    PubMed Central

    Gupton, John T.; Yeudall, Scott; Telang, Nakul; Hoerrner, Megan; Huff, Ellis; Crawford, Evan; Lounsbury, Katie; Kimmel, Michael; Curry, William; Harrison, Andrew; Juekun, Wen; Shimozono, Alex; Ortolani, Joe; Lescalleet, Kristin; Patteson, Jon; Moore-Stoll, Veronica; Rohena, Cristina C.; Mooberry, Susan L.; Obaidullah, Ahmad J.; Kellogg, Glen E.; Sikorski, James A.

    2017-01-01

    New microtubule depolymerizing agents with potent cytotoxic activities have been prepared with a 5-cyano or 5-oximino group attached to a pyrrole core. The utilization of ortho activation of a bromopyrrole ester to facilitate successful Suzuki-Miyaura cross-coupling reactions was a key aspect of the synthetic methodology. This strategy allows for control of regiochemistry with the attachment of four completely different groups at the 2, 3, 4 and 5 positions of the pyrrole scaffold. Biological evaluations and molecular modeling studies are reported for these examples. PMID:28433513

  5. Discovery of 5-(arenethynyl) hetero-monocyclic derivatives as potent inhibitors of BCR-ABL including the T315I gatekeeper mutant.

    PubMed

    Thomas, Mathew; Huang, Wei-Sheng; Wen, David; Zhu, Xiaotian; Wang, Yihan; Metcalf, Chester A; Liu, Shuangying; Chen, Ingrid; Romero, Jan; Zou, Dong; Sundaramoorthi, Raji; Li, Feng; Qi, Jiwei; Cai, Lisi; Zhou, Tianjun; Commodore, Lois; Xu, Qihong; Keats, Jeff; Wang, Frank; Wardwell, Scott; Ning, Yaoyu; Snodgrass, Joseph T; Broudy, Marc I; Russian, Karin; Iuliucci, John; Rivera, Victor M; Sawyer, Tomi K; Dalgarno, David C; Clackson, Tim; Shakespeare, William C

    2011-06-15

    Ponatinib (AP24534) was previously identified as a pan-BCR-ABL inhibitor that potently inhibits the T315I gatekeeper mutant, and has advanced into clinical development for the treatment of refractory or resistant CML. In this study, we explored a novel series of five and six membered monocycles as alternate hinge-binding templates to replace the 6,5-fused imidazopyridazine core of ponatinib. Like ponatinib, these monocycles are tethered to pendant toluanilides via an ethynyl linker. Several compounds in this series displayed excellent in vitro potency against both native BCR-ABL and the T315I mutant. Notably, a subset of inhibitors exhibited desirable PK and were orally active in a mouse model of T315I-driven CML. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug

    PubMed Central

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M.; Frick, David N.; Bolognesi, Martino; Milani, Mario

    2012-01-01

    Objectives Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Methods Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Results Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. Conclusions The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV. PMID:22535622

  7. Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice.

    PubMed

    Itoh, Kimihisa; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Matsuda, Hideaki

    2009-10-01

    Oral administration of a 50% ethanolic extract (CH-ext) obtained from unripe Citrus hassaku fruits collected in July exhibited a potent dose-dependent inhibition of IgE (immunoglobulin E)-mediated triphasic cutaneous reaction at 1 h [immediate phase response (IPR)], 24 h [late phase response (LPR)] and 8 days [very late phase response (vLPR)] after dinitrofluorobenzene challenge in mice. Naringin, a major flavanone glycoside component of CH-ext, showed a potent dose-dependent inhibition against IPR, LPR and vLPR. Neohesperidin, another major glycoside component of CH-ext, showed an inhibition against vLPR. The effect of CH-ext on type IV allergic reaction was examined by determining inhibitory activity against ear swelling in mice by using the picryl chloride-induced contact dermatitis (PC-CD) model. Oral administration (p.o.) of CH-ext and subcutaneous administration (s.c.) of prednisolone inhibited ear swelling during the induction phase of PC-CD. The inhibitory activities of combinations of CH-ext (p.o.) and prednisolone (s.c.) against PC-CD in mice were more potent than those of CH-ext alone and prednisolone alone, without enhancing the adverse effects. Other combinations of prednisolone (s.c.) and flavanone glycoside (p.o.) components of CH-ext, i.e. naringin and neohesperidin, exerted similar synergistic effects.

  8. Pharmacokinetics and brain distribution of tetrahydropalmatine and tetrahydroberberine after oral administration of DA-9701, a new botanical gastroprokinetic agent, in rats.

    PubMed

    Jung, Ji Won; Kwon, Yong Sam; Jeong, Jin Seok; Son, Miwon; Kang, Hee Eun

    2015-01-01

    DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.

  9. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials.

    PubMed

    Conroy, Trent; Guo, Jin T; Elias, Nabiha; Cergol, Katie M; Gut, Jiri; Legac, Jennifer; Khatoon, Lubna; Liu, Yang; McGowan, Sheena; Rosenthal, Philip J; Hunt, Nicholas H; Payne, Richard J

    2014-12-26

    Analogues of the natural product gallinamide A were prepared to elucidate novel inhibitors of the falcipain cysteine proteases. Analogues exhibited potent inhibition of falcipain-2 (FP-2) and falcipain-3 (FP-3) and of the development of Plasmodium falciparum in vitro. Several compounds were equipotent to chloroquine as inhibitors of the 3D7 strain of P. falciparum and maintained potent activity against the chloroquine-resistant Dd2 parasite. These compounds serve as promising leads for the development of novel antimalarial agents.

  10. Synthesis and biological activity evaluation of cytidine-5'-deoxy-5-fluoro-N-[(alkoxy/aryloxy)] carbonyl-cyclic 2',3'-carbonates.

    PubMed

    Jhansi Rani, V; Raghavendra, A; Kishore, P; Nanda Kumar, Y; Hema Kumar, K; Jagadeeswarareddy, K

    2012-08-01

    Capecitabine, an oral prodrug of 5-FU was developed to improve the tumor selectivity and tolerability. To enhance the efficacy of capacitabine, a series of 5'-deoxy-5-fluorocytidine derivatives 5a-e were synthesized. In the present study, we investigated antitumor activity of 5'-deoxy-5-fluorocytidine derivatives both in vivo and in vitro methods. Title compounds were non-mutagenic to Salmonella typhimurium tester strain in Ames test. Compounds 5d and 5e are potent to inhibit the proliferation of NCI-69, PZ-HPV-7, MCF-7 and HeLa cells in MTT assay. In particular, 5d and 5e showed potent antitumor activities against L1210 leukemia cell line. Collectively, these findings suggest that 5d and 5e are more potent anti-cancer compounds than capecitabine. Published by Elsevier Masson SAS.

  11. Synthesis and in vitro activity of dicationic indolyl diphenyl ethers as novel potent antibiotic agents against drug-resistant bacteria.

    PubMed

    Chen, Xiaofang; Hu, Xinxin; Wu, Yanbin; Liu, Yonghua; Bian, Cong; Nie, Tongying; You, Xuefu; Hu, Laixing

    2017-02-15

    A series of 4,4'-bis-[2-(6-N-substituted-amidino)indolyl] diphenyl ether have been synthesized and tested for their in vitro antibacterial activity including a range of Gram-positive and Gram-negative pathogens and cytotoxicity. Most of these compounds have mainly shown anti-Gram positive bacteria activities especially against drug resistant bacterial strains MRSA, MRSE and VRE. The anti-MRSA and anti-MRSE activities of compound 7a and 7j were more potent than that of the lead compound 2, levofloxacin and vancomycin. Interestingly, 7j had greatly improved anti negative bacterial activity, especially for the producing NDM-1 Klebsiella pneumonia strain and less toxic than that of the lead compound 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice.

    PubMed

    Rossin, Raffaella; Versteegen, Ron M; Wu, Jeremy; Khasanov, Alisher; Wessels, Hans J; Steenbergen, Erik J; Ten Hoeve, Wolter; Janssen, Henk M; van Onzen, Arthur H A M; Hudson, Peter J; Robillard, Marc S

    2018-05-04

    Current antibody-drug conjugates (ADCs) target internalising receptors on cancer cells leading to intracellular drug release. Typically, only a subset of patients with solid tumours has sufficient expression of such a receptor, while there are suitable non-internalising receptors and stroma targets. Here, we demonstrate potent therapy in murine tumour models using a non-internalising ADC that releases its drugs upon a click reaction with a chemical activator, which is administered in a second step. This was enabled by the development of a diabody-based ADC with a high tumour uptake and very low retention in healthy tissues, allowing systemic administration of the activator 2 days later, leading to efficient and selective activation throughout the tumour. In contrast, the analogous ADC comprising the protease-cleavable linker used in the FDA approved ADC Adcetris is not effective in these tumour models. This first-in-class ADC holds promise for a broader applicability of ADCs across patient populations.

  13. Potent apoptosis-inducing activity of erypoegin K, an isoflavone isolated from Erythrina poeppigiana, against human leukemia HL-60 cells.

    PubMed

    Hikita, Kiyomi; Hattori, Natsuki; Takeda, Aya; Yamakage, Yuko; Shibata, Rina; Yamada, Saori; Kato, Kuniki; Murata, Tomiyasu; Tanaka, Hitoshi; Kaneda, Norio

    2018-01-01

    Erypoegin K is an isoflavone isolated from the stem bark of Erythrina poeppigiana. It contains a furan group at the A-ring of the core isoflavone structure and can inhibit the activity of glyoxalase I, an enzyme that catalyzes the detoxification of methylglyoxal (MG), a by-product of glycolysis. In the present study, we found that erypoegin K has a potent cytotoxic effect on human leukemia HL-60 cells. Its cytotoxic effect was much stronger than that of a known glyoxalase I inhibitor S-p-bromobenzylglutathione cyclopentyl diester. Conversely, erypoegin K demonstrated weak cytotoxicity toward normal human peripheral lymphocytes. The treatment of HL-60 cells with erypoegin K significantly induced caspase-3 activity, whereas the pretreatment of the cells with caspase-3 inhibitor suppressed erypoegin K-induced cell death. Furthermore, nuclear condensation and apoptotic genome DNA fragmentation were observed in erypoegin K-treated HL-60 cells. These results indicated that the observed cell death was mediated by apoptosis. In addition, the toxic compound MG was highly accumulated in the culture medium of erypoegin K-treated HL-60 cells, suggesting that cell apoptosis was triggered by extracellular MG. The present study showed that erypoegin K has a potent apoptosis-inducing effect on cancerous cell lines, such as HL-60.

  14. Oral progestin induces rapid, reversible suppression of ovarian activity in the cat

    PubMed Central

    Stewart, R.A.; Pelican, K.M.; Brown, J.L.; Wildt, D.E.; Ottinger, M.A.; Howard, J.G.

    2010-01-01

    The influence of oral progestin (altrenogest; ALT) on cat ovarian activity was studied using non-invasive fecal steroid monitoring. Queens were assigned to various ALT dosages: 1) 0 mg/kg (control; n = 5 cats); 2) 0.044 mg/kg (LOW; n = 5); 3) 0.088 mg/kg (MID; n = 6); or 4) 0.352 mg/kg (HIGH; n = 6). Fecal estrogen and progestagen concentrations were quantified using enzyme immunoassays for 60 days before, 38 days during and 60 days after ALT treatment. Initiation of follicular activity was suppressed in all cats during progestin treatment, whereas controls continued to cycle normally. Females (n = 6) with elevated fecal estrogens at treatment onset completed a normal follicular phase before returning to baseline and remained suppressed until treatment withdrawal. All cats receiving oral progestin reinitiated follicular activity after treatment, although MID cats experienced the most synchronized return (within 10-16 days). Mean baseline fecal estrogens and progestagens were higher (P < 0.05) after treatment in HIGH, but not LOW or MID cats compared to pre-treatment values. Results demonstrate that: 1) oral progestin rapidly suppresses initiation of follicular activity in the cat, but does not influence a follicular phase that exists before treatment initiation; and 2) queens return to normal follicular activity after progestin withdrawal. This study provides foundational information for research aimed at using progestin priming to improve ovarian response in felids scheduled for ovulation induction and assisted breeding. PMID:20051246

  15. Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors

    PubMed Central

    Jordan, Jamie L.; Darr, David D.; Roberts, Patrick J.; Tavares, Francis X.; Strum, Jay C.

    2017-01-01

    Inhibition of the p16INK4a/cyclin D/CDK4/6/RB pathway is an effective therapeutic strategy for the treatment of estrogen receptor positive (ER+) breast cancer. Although efficacious, current treatment regimens require a dosing holiday due to severe neutropenia potentially leading to an increased risk of infections, as well as tumor regrowth and emergence of drug resistance. Therefore, a next generation CDK4/6 inhibitor that can inhibit proliferation of CDK4/6-dependent tumors while minimizing neutropenia could reduce both the need for treatment holidays and the risk of inducing drug resistance. Here, we describe the preclinical characterization and development of G1T38; a novel, potent, selective, and orally bioavailable CDK4/6 inhibitor. In vitro, G1T38 decreased RB1 (RB) phosphorylation, caused a precise G1 arrest, and inhibited cell proliferation in a variety of CDK4/6-dependent tumorigenic cell lines including breast, melanoma, leukemia, and lymphoma cells. In vivo, G1T38 treatment led to equivalent or improved tumor efficacy compared to the first-in-class CDK4/6 inhibitor, palbociclib, in an ER+ breast cancer xenograft model. Furthermore, G1T38 accumulated in mouse xenograft tumors but not plasma, resulting in less inhibition of mouse myeloid progenitors than after palbociclib treatment. In larger mammals, this difference in pharmacokinetics allowed for 28 day continuous dosing of G1T38 in beagle dogs without producing severe neutropenia. These data demonstrate G1T38 has unique pharmacokinetic and pharmacodynamic properties, which result in high efficacy against CDK4/6 dependent tumors while minimizing the undesirable on-target bone marrow activity, thus potentially allowing G1T38 to be used as a continuous, daily oral antineoplastic agent. PMID:28418845

  16. Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity.

    PubMed

    Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu

    2017-09-01

    In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.

  17. Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity

    PubMed Central

    Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi

    2017-01-01

    ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. PMID:28630199

  18. Age-related alteration of expression and function of TLRs and NK activity in oral candidiasis.

    PubMed

    Oouchi, M; Hasebe, A; Hata, H; Segawa, T; Yamazaki, Y; Yoshida, Y; Kitagawa, Y; Shibata, K-I

    2015-07-01

    Roles of aging or immune responses mediated by Toll-like receptors and natural killer cell in the onset or progression of human candidiasis remain unclear. This study was designed to elucidate the roles using peripheral blood mononuclear cells from healthy donors and patients with oral candidiasis. Subjects tested were healthy volunteers and patients who visited Dental Clinical Division of Hokkaido University Hospital. The patients with oral candidiasis included 39 individuals (25-89 years of age) with major complaints on pain in oral mucosa and/or dysgeusia. Healthy volunteers include students (25-35 years of age) and teaching staffs (50-65 years of age) of Hokkaido University Graduate School of Dental Medicine. Functions of Toll-like receptors 2 and 4 were downregulated significantly and the natural killer activity was slightly, but not significantly downregulated in aged healthy volunteers compared with healthy young volunteers. Functions of Toll-like receptors 2 and 4 and the natural killer activity were significantly downregulated in patients with oral candidiasis compared with healthy volunteers. Downregulation of functions of Toll-like receptors 2 and 4 as well as natural killer activity is suggested to be associated with the onset or progression of oral candidiasis in human. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3 H -imidazo[4,5- b ]pyridin-2-yl)pyridin-2-amine (ARQ 092): An Orally Bioavailable, Selective, and Potent Allosteric AKT Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapierre, Jean-Marc; Eathiraj, Sudharshan; Vensel, David

    The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40. Compound 21a also served as a potent inhibitor of the AKT1-E17K mutant protein and inhibited tumormore » growth in a human xenograft mouse model of endometrial adenocarcinoma.« less

  20. Lactobacillus salivarius REN inhibits rat oral cancer induced by 4-nitroquioline 1-oxide.

    PubMed

    Zhang, Ming; Wang, Fang; Jiang, Lu; Liu, Ruihai; Zhang, Lian; Lei, Xingen; Li, Jiyou; Jiang, Jingli; Guo, Huiyuan; Fang, Bing; Zhao, Liang; Ren, Fazheng

    2013-07-01

    Despite significant advances in cancer therapy, cancer-related mobility and mortality are still rising. Alternative strategies such as cancer prevention thus become essential. Probiotics represent an emerging option for cancer prevention, but studies are limited to colon cancers. The efficiency of probiotics in the prevention of other cancers and the correlative mechanism remains to be explored. A novel probiotics Lactobacillus salivarius REN (L. salivarius REN) was isolated from centenarians at Bama of China, which showed highly potent antigenotoxicity in an initial assay. 4-nitroquioline 1-oxide (4NQO)-induced oral cancer model was introduced to study the anticancer activity of L. salivarius REN in vivo. The results indicated that oral administration of probiotic L. salivarius REN or its secretions could effectively suppress 4NQO-induced oral carcinogenesis in the initial and postinitial stage, and the inhibition was in a dose-dependent manner. A significant decrease of neoplasm incidence (65%-0%) was detected in rats fed with the high dose of L. salivarius REN [5 × 10(10) CFU/kg body weight (bw)/d]. In vivo evidences indicated that the probiotics inhibited 4NQO-induced oral cancer by protecting DNA against oxidative damage and downregulating COX-2 expression. L. salivarius REN treatment significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and induced apoptosis in a dose-dependent manner. Our findings suggest that probiotics may act as potential agents for oral cancer prevention. This is the first report showing the inhibitory effect of the probiotics on oral carcinogenesis. ©2013 AACR.

  1. Novel tetracyclic benzo[b]carbazolones as highly potent and orally bioavailable ALK inhibitors: design, synthesis, and structure-activity relationship study.

    PubMed

    Jiang, Xiaolong; Zhou, Ji; Ai, Jing; Song, Zilan; Peng, Xia; Xing, Li; Xi, Yong; Guo, Junfeng; Yao, Qizheng; Ding, Jian; Geng, Meiyu; Zhang, Ao

    2015-11-13

    Four series of tetracyclic benzo[b]carbazolone compounds possessing more rotatable bonds and higher molecular flexibility were designed by either inserting a linker within the C8-side chain or by opening the middle ketone ring on the basis of compound 5 (Alectinib, CH5424802). Compound 15b was identified showing nearly identical high potency against both wild-type and the gatekeeper mutant ALK kinase (3.4 vs 3.9 nM). This compound has favorable PK profile with an oral bioavailability of 67.1% in rats. Moreover, compound 15b showed significant growth inhibition against ALK driven cancer cells and KARPAS-299 xenograft model. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. A novel dioxygenation product of arachidonic acid possesses potent chemotactic activity for human polymorphonuclear leukocytes.

    PubMed

    Shak, S; Perez, H D; Goldstein, I M

    1983-12-25

    We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.

  3. Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens.

    PubMed

    Behroozian, Shekooh; Svensson, Sarah L; Davies, Julian

    2016-01-26

    The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. More than 50 years of misuse and overuse of antibiotics has led to a plague of antibiotic resistance that threatens to reduce the efficacy of antimicrobial agents available for the treatment of infections due to resistant organisms. The main threat is nosocomial infections in which certain pathogens, notably the ESKAPE organisms, are essentially untreatable and contribute to increasing mortality and morbidity in surgical wards. The pipeline of novel antimicrobials in the pharmaceutical industry is essentially empty. Thus, there is a great need to seek for new sources for the treatment of recalcitrant infectious diseases. We describe experiments that demonstrate the efficacy of a "natural" medicine, Kisameet clay, against all of the ESKAPE strains. We suggest that this material is worthy of clinical investigation for the treatment of infections due to multidrug-resistant organisms. Copyright © 2016 Behroozian et al.

  4. A novel formulation of veggies with potent liver detoxifying activity.

    PubMed

    Jain, Mohit M; Kumari, Nirmala; Rai, Geeta

    2015-01-01

    LXR (encoded by NR1H2 and 3) and FXR (known as bile acid receptor) encoded by NR1H4 (nuclear receptor subfamily 1, group H and member 4) are nuclear receptors in humans and are important regulators of bile acid production, cholesterol, fatty acid and glucose homeostasis hence responsible for liver detoxification. Several strategies for drug design with numerous ligands for this target have failed owing to the inability of the ligand to access the target/receptor or their early metabolisation. In this work, we have evaluated FXR and LXR structure bound with agonist and compared the binding energy affinity of active ligands present in live green-real veggies with reference drugs (ligands) present in the market. A high throughput screening combined with molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions, log P values and percentage of human oral absorption value led to the identification of two compounds present in live green-real veggies with strong potential for liver detoxification.

  5. Oral health conditions affect functional and social activities of terminally-ill cancer patients

    PubMed Central

    Fischer, D.J.; Epstein, J.B.; Yao, Y.; Wilkie, D.J.

    2013-01-01

    Purpose Oral conditions are established complications in terminally-ill cancer patients. Yet despite significant morbidity, the characteristics and impact of oral conditions in these patients are poorly documented. The study objective was to characterize oral conditions in terminally-ill cancer patients to determine the presence, severity, and the functional and social impact of these oral conditions. Methods This was an observational clinical study including terminally-ill cancer patients (2.5–3 week life expectancy). Data were obtained via the Oral Problems Scale (OPS) that measures the presence of subjective xerostomia, orofacial pain, taste change, and the functional/social impact of oral conditions and a demographic questionnaire. A standardized oral examination was used to assess objective salivary hypofunction, fungal infection, mucosal erythema, and ulceration. Regression analysis and t test investigated the associations between measures. Results Of 104 participants, most were ≥50 years of age, female, and high-school educated; 45% were African American, 43% Caucasian, and 37% married. Oral conditions frequencies were: salivary hypofunction (98%), mucosal erythema (50%), ulceration (20%), fungal infection (36%), and other oral problems (46%). Xerostomia, taste change, and orofacial pain all had significant functional impact; p<.001, p=.042 and p<.001, respectively. Orofacial pain also had a significant social impact (p<.001). Patients with oral ulcerations had significantly more orofacial pain with a social impact than patients without ulcers (p=.003). Erythema was significantly associated with fungal infection and with mucosal ulceration (p<.001). Conclusions Oral conditions significantly affect functional and social activities in terminally-ill cancer patients. Identification and management of oral conditions in these patients should therefore be an important clinical consideration. PMID:24232310

  6. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  7. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    PubMed Central

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  8. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    PubMed

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  9. HYPOXIA-ACTIVATED PRO-DRUG TH-302 EXHIBITS POTENT TUMOUR SUPPRESSIVE ACTIVITY AND COOPERATES WITH CHEMOTHERAPY AGAINST OSTEOSARCOMA

    PubMed Central

    Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J.; Findlay, David M.; Zannettino, Andrew CW.; Evdokiou, Andreas

    2015-01-01

    Tumour hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumour hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumours. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. PMID:25444931

  10. Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with chemotherapy against osteosarcoma.

    PubMed

    Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J; Findlay, David M; Zannettino, Andrew C W; Evdokiou, Andreas

    2015-02-01

    Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumor hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumors. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Release of motilin by oral and intravenous nutrients in man.

    PubMed Central

    Christofides, N D; Bloom, S R; Besterman, H S; Adrian, T E; Ghatei, M A

    1979-01-01

    Motilin is a hormonal peptide found in the duodenum and jejunum which potently influences gastrointestinal tract motility. Its role in human physiology is not yet established. After a standard hospital lunch the plasma concentration of motilin showed a small, transient, but significant rise in 28 healthy subjects. Individual food components either stimulated (oral fat) or suppressed release (oral glucose). Plasma motilin levels were, in addition, altered to an equal extent by intravenous nutrients, with glucose and amino acids suppressing release, and intravenous fat causing a significant rise in plasma concentration. These results demonstrate a consistent response to food stimuli, whether oral or intravenous. The release mechanism appears to be complicated and after a balanced meal, containing food components which both stimulate and suppress release, there is only a small net change. PMID:428820

  12. Induction of apoptosis by grape seed extract (Vitis vinifera) in oral squamous cell carcinoma.

    PubMed

    Aghbali, Amirala; Hosseini, Sepideh Vosough; Delazar, Abbas; Gharavi, Nader Kalbasi; Shahneh, Fatemeh Zare; Orangi, Mona; Bandehagh, Ali; Baradaran, Behzad

    2013-08-01

    Development of novel therapeutic modalities is crucial for the treatment of oral squamous cell carcinoma (OSCC). Recent scientific studies have been focused on herbal medicines as potent anti-cancer drug candidates. This study is the first to investigate the cytotoxic effects and the mechanism of cell death induced by grape seed extract (GSE) in oral squamous cell carcinoma (KB cells). MTT (3-(4,5-dimetylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) and trypan blue assays were performed in KB cells as well as human umbilical vein endothelial cells (HUVEC) were used to analyze the cytotoxic activity of GSE. Furthermore, the apoptosis-inducing action of the extract was determined by TUNEL, DNA fragmentation and cell death analysis. Statistical significance was determined by analysis of variance (ANOVA), followed by Duncan's test at a significance level of P≤0.05. The results showed apoptotic potential of GSE, confirmed by significant inhibition of cell growth and viability in a dose- and time- dependent manner without inducing damage to non-cancerous cell line HUVEC. The results of this study suggest that this plant contains potential bioactive compound(s) for the treatment of oral squamous cell carcinoma.

  13. Enhancement of Oral Tolerance Induction in DO11.10 Mice by Lactobacillus gasseri OLL2809 via Increase of Effector Regulatory T Cells.

    PubMed

    Aoki-Yoshida, Ayako; Yamada, Kiyoshi; Hachimura, Satoshi; Sashihara, Toshihiro; Ikegami, Shuji; Shimizu, Makoto; Totsuka, Mamoru

    2016-01-01

    Food allergy is a serious problem for infants and young children. Induction of antigen-specific oral tolerance is one therapeutic strategy. Enhancement of oral tolerance induction by diet is a promising strategy to prevent food allergy in infants. Thus, in this study, we evaluate the effect of probiotic Lactobacillus gasseri OLL2809 (LG2809) on oral tolerance induction in a mouse model. The degree of oral tolerance induction was evaluated by measuring the proliferation and level of IL-2 production of splenic CD4+ T cells from DO11.10 mice fed ovalbumin (OVA) alone or OVA with LG2809. Oral administration of LG2809 significantly decreased the rate of proliferation and IL-2 production by CD4+ T cells from OVA-fed mice. LG2809 increased a ratio of CD4+ T-cell population, producing high levels of IL-10 and having strong suppressive activity. Moreover, LG2809 increased a ratio of plasmacytoid dendritic cells (pDCs) among the lamina propria (LP) in small intestine. When used as antigen presenting cells to naïve CD4+ T cells from DO11.10 mice, LP cells from BALB/c mice fed LG2809 induced higher IL-10 production and stronger suppressive activity than those from non-treated mice. These results suggest that oral administration of LG2809 increases the population of pDCs in the LP, resulting in the enhancement of oral tolerance induction by increasing the ratio of effector regulatory T cells. LG2809 could, therefore, act as a potent immunomodulator to prevent food allergies by promoting oral tolerance.

  14. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    PubMed

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity.

    PubMed

    Subramaniam, Dharmalingam; May, Randal; Sureban, Sripathi M; Lee, Katherine B; George, Robert; Kuppusamy, Periannan; Ramanujam, Rama P; Hideg, Kalman; Dieckgraefe, Brian K; Houchen, Courtney W; Anant, Shrikant

    2008-03-15

    Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was reported to inhibit proliferation of a variety of cancer cells in vitro. However, the efficacy and in vivo mechanism of action of EF24 in gastrointestinal cancer cells have not been investigated. Here, we assessed the in vivo therapeutic effects of EF24 on colon cancer cells. Using hexosaminidase assay, we determined that EF24 inhibits proliferation of HCT-116 and HT-29 colon and AGS gastric adenocarcinoma cells but not of mouse embryo fibroblasts. Furthermore, the cancer cells showed increased levels of activated caspase-3 and increased Bax to Bcl-2 and Bax to Bcl-xL ratios, suggesting that the cells were undergoing apoptosis. At the same time, cell cycle analysis showed that there was an increased number of cells in the G(2)-M phase. To determine the effects of EF24 in vivo, HCT-116 colon cancer xenografts were established in nude mice and EF24 was given i.p. EF24 significantly suppressed the growth of colon cancer tumor xenografts. Immunostaining for CD31 showed that there was a lower number of microvessels in the EF24-treated animals coupled with decreased cyclooxygenase-2, interleukin-8, and vascular endothelial growth factor mRNA and protein expression. Western blot analyses also showed decreased AKT and extracellular signal-regulated kinase activation in the tumors. Taken together, these data suggest that the novel curcumin-related compound EF24 is a potent antitumor agent that induces caspase-mediated apoptosis during mitosis and has significant therapeutic potential for gastrointestinal cancers.

  16. One-pot, multicomponent synthesis of 2,3-disubstituted quinazolin-ones with potent and selective activity against Toxoplasma gondii.

    PubMed

    Brown, Carla E; Kong, Tiffany; Bordón, Claudia; Yolken, Robert; Jones-Brando, Lorraine; McNulty, James

    2018-05-15

    The discovery of two quinazolinones with selective, single-digit micromolar activity (IC 50  = 6-7 µM) against the tachyzoites of the apicomplexan parasite Toxoplasma gondii is reported. These potent and selective third generation derivatives contain a benzyloxybenzyl substituent at C2 and a bulky aliphatic moiety at N3. Here we show that these quinazolinones inhibit T. gondii tachyzoite replication in an established infection, but do not significantly affect host cell invasion by the tachyzoites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Discovery of novel Ponatinib analogues for reducing KDR activity as potent FGFRs inhibitors.

    PubMed

    Liu, Yang; Peng, Xia; Guan, Xiaocong; Lu, Dong; Xi, Yong; Jin, Shiyu; Chen, Hui; Zeng, Limin; Ai, Jing; Geng, Meiyu; Hu, Youhong

    2017-01-27

    FGF receptors (FGFRs) are tyrosine kinases that are overexpressed in diverse tumors by genetic alterations such as gene amplifications, somatic mutations and translocations. Owing to this characteristic, FGFRs are attractive targets for cancer treatment. It has been demonstrated that most multi-targeted, ATP competitive tyrosine kinase inhibitors are active against FGFRs as well as other kinases. The design of new and more selective inhibitors of FGFRs, which might be reduced off-target and side effects, is a difficult yet significant challenge. The results of the current investigation, show that novel Ponatinib analogues are highly active as FGFR inhibitors and that they possess reduced kinase insert domain receptor (KDR) activities. Observations made in a structure and activity relationship (SAR) investigation led to the development of a promising, orally available lead compound 4, which displays a 50-100 fold in vitro selectivity for inhibition of FGFR1-3 over KDR. In addition, biological evaluation of compound 4 showed that it displays significant antitumor activities in FGFR1-amplificated H1581 and FGFR2-amplificated SNU-16 xenograft models. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Enhancement of oscillatory activity in the endopiriform nucleus of rats raised under abnormal oral conditions.

    PubMed

    Yoshimura, Hiroshi; Hasumoto-Honjo, Miho; Sugai, Tokio; Segami, Natsuki; Kato, Nobuo

    2014-02-21

    Endopiriform nucleus (EPN) is located deep to the piriform cortex, and has neural connections with not only neighboring sensory areas but also subcortical areas where emotional and nociceptive information is processed. Well-balanced oral condition might play an important role in stability of brain activities. When the oral condition is impaired, several areas in the brain might be affected. In the present study, we investigated whether abnormal conditions of oral region influence neural activities in the EPN. Orthodontic appliance that generates continuous force and chronic pain-related stress was fixed to maxillary incisors of rats, and raised. Field potential recordings were made from the EPN of brain slices. We previously reported that the EPN has an ability to generate membrane potential oscillation. In the present study, we have applied the same methods to assess activities of neuron clusters in the EPN. In the case of normal rats, stable field potential oscillations were induced in the EPN by application of low-frequency electrical stimulation under the medium with caffeine. In the case of rats with the orthodontic appliance, stable field potential oscillations were also induced, but both duration of oscillatory activities and wavelet number were increased. The enhanced oscillations were depressed by blockade of NMDA receptors. Thus, impairment of oral health under application of continuous orthodontic force and chronic pain-related stress enhanced neural activities in the EPN, in which up-regulation of NMDA receptors may be concerned. These findings suggest that the EPN might be involved in information processing with regard to abnormal conditions of oral region. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    PubMed

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  20. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are highly potent oral poisons produced by Clostridium botulinum. BoNTs are secreted along with several auxiliary proteins forming progenitor toxin complexes (PTC). Here, we report the structure of a ~760 kDa 14-subunit PTC using a combination of X-ray crystallography a...

  1. A potent anti-HB-EGF monoclonal antibody inhibits cancer cell proliferation and multiple angiogenic activities of HB-EGF.

    PubMed

    Sato, Shuji; Drake, Andrew W; Tsuji, Isamu; Fan, Jinhong

    2012-01-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family and has a variety of physiological and pathological functions. Modulation of HB-EGF activity might have a therapeutic potential in the oncology area. We explored the therapeutic possibilities by characterizing the in vitro biological activity of anti-HB-EGF monoclonal antibody Y-142. EGF receptor (EGFR) ligand and species specificities of Y-142 were tested. Neutralizing activities of Y-142 against HB-EGF were evaluated in EGFR and ERBB4 signaling. Biological activities of Y-142 were assessed in cancer cell proliferation and angiogenesis assays and compared with the anti-EGFR antibody cetuximab, the HB-EGF inhibitor CRM197, and the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab. The binding epitope was determined with alanine scanning. Y-142 recognized HB-EGF as well as the EGFR ligand amphiregulin, and bound specifically to human HB-EGF, but not to rodent HB-EGF. In addition, Y-142 neutralized HB-EGF-induced phosphorylation of EGFR and ERBB4, and blocked their downstream ERK1/2 and AKT signaling. We also found that Y-142 inhibited HB-EGF-induced cancer cell proliferation, endothelial cell proliferation, tube formation, and VEGF production more effectively than cetuximab and CRM197 and that Y-142 was superior to bevacizumab in the inhibition of HB-EGF-induced tube formation. Six amino acids in the EGF-like domain were identified as the Y-142 binding epitope. Among the six amino acids, the combination of F115 and Y123 determined the amphiregulin cross-reactivity and that F115 accounted for the species selectivity. Furthermore, it was suggested that the potent neutralizing activity of Y-142 was derived from its recognition of R142 and Y123 and its high affinity to HB-EGF. Y-142 has a potent HB-EGF neutralizing activity that modulates multiple biological activities of HB-EGF including cancer cell proliferation and angiogenic

  2. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms.

    PubMed

    Bauer, Julia; Siala, Wafi; Tulkens, Paul M; Van Bambeke, Françoise

    2013-06-01

    Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections.

  3. A Combined Pharmacodynamic Quantitative and Qualitative Model Reveals the Potent Activity of Daptomycin and Delafloxacin against Staphylococcus aureus Biofilms

    PubMed Central

    Bauer, Julia; Siala, Wafi; Tulkens, Paul M.

    2013-01-01

    Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections. PMID:23571532

  4. Potent anti-proliferative effects against oral and cervical cancers of Thai medicinal plants selected from the Thai/Lanna medicinal plant recipe database "MANOSROI III".

    PubMed

    Manosroi, Aranya; Akazawa, Hiroyuki; Pattamapun, Kassara; Kitdamrongtham, Worapong; Akihisa, Toshihiro; Manosroi, Worapaka; Manosroi, Jiradej

    2015-07-01

    Thai/Lanna medicinal plant recipes have been used for the treatment of several diseases including oral and cervical cancers. To investigate anti-proliferative activity on human cervical (HeLa) and oral (KB) cancer cell lines of medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III". Twenty-three methanolic plant crude extracts were tested for phytochemicals and anti-proliferative activity on HeLa and KB cell lines for 24 h by the sulforhodamine B (SRB) assay at the doses of 1 × 10(1)-1 × 10(-6 )mg/ml. The nine extracts with the concentrations giving 50% growth inhibition (GI50) lower than 100 µg/ml were further semi-purified by liquid/liquid partition in order to evaluate and enhance the anti-proliferative potency. All extracts contained steroids/triterpenoids, but not xanthones. The methanolic extracts of Gloriosa superba L. (Colchinaceae) root and Albizia chinensis (Osbeck) Merr. (Leguminosae-Mimosoideae) wood gave the highest anti-proliferative activity on HeLa and KB cell lines with the GI50 values of 0.91 (6.0- and 0.31-fold of cisplatin and doxorubicin) and 0.16 µg/ml (28.78- and 82.29-fold of cisplatin and doxorubicin), respectively. Hexane and methanol-water fractions of G. superba exhibited the highest anti-proliferative activity on HeLa and KB cell lines with the GI50 values of 0.15 (37- and 1.9-fold of cisplatin and doxorubicin) and 0.058 µg/ml (77.45- and 221.46-fold of cisplatin and doxorubicin), respectively. This study has demonstrated the potential of plants selected from MANOSROI III database especially G. superba and A. chinensis for further development as anti-oral and cervical cancer agents.

  5. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens

    PubMed Central

    Zoumpopoulou, Georgia; Pepelassi, Eudoxie; Papaioannou, William; Georgalaki, Marina; Maragkoudakis, Petros A.; Tarantilis, Petros A.; Polissiou, Moschos; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2013-01-01

    In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials. PMID:23443163

  6. Oral health status, salivary factors and microbial analysis in patients with active gastro-oesophageal reflux disease.

    PubMed

    Filipi, Kristina; Halackova, Zdenka; Filipi, Vladimir

    2011-08-01

    To present a complex oral health status including salivary factors, microbial analysis and periodontal and hygiene indices in patients with active gastro-oesophageal reflux disease (GORD). Return of stomach contents is quite common in cases of gastro-oesophageal reflux. Pathological acid movement from the stomach into the oesophagus and oral cavity may lead to a development of dental erosion. Long-lasting untreated GORD may damage hard dental and periodontal tissues and alter the oral microbial environment. The quality and amount of the saliva play an important role in hard and soft oral tissues changes. Fifty patients with diagnosed GORD using 24-hour pH manometry underwent dental examination; 24 patients had active GORD and had been waiting for surgical therapy. In this patient group oral health status and salivary analysis were evaluated. Indicated low salivary flow rates and buffering capacity with a low caries risk but a high risk for dental erosion progression. © 2011 FDI World Dental Federation.

  7. The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus.

    PubMed

    Flisiak, Robert; Horban, Andrzej; Gallay, Philippe; Bobardt, Michael; Selvarajah, Suganya; Wiercinska-Drapalo, Alicja; Siwak, Ewa; Cielniak, Iwona; Higersberger, Jozef; Kierkus, Jarek; Aeschlimann, Christian; Grosgurin, Pierre; Nicolas-Métral, Valérie; Dumont, Jean-Maurice; Porchet, Hervé; Crabbé, Raf; Scalfaro, Pietro

    2008-03-01

    Debio-025 is an oral cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus activity in vitro. Its effect on viral load as well as its influence on intracellular Cyp levels was investigated in a randomized, double-blind, placebo-controlled study. Mean hepatitis C viral load decreased significantly by 3.6 log(10) after a 14-day oral treatment with 1200 mg twice daily (P < 0.0001) with an effect against the 3 genotypes (1, 3, and 4) represented in the study. In addition, the absence of viral rebound during treatment indicates that Debio-025 has a high barrier for the selection of resistance. In Debio-025-treated patients, cyclophilin B (CypB) levels in peripheral blood mononuclear cells decreased from 67 +/- 6 (standard error) ng/mg protein (baseline) to 5 +/- 1 ng/mg protein at day 15 (P < 0.01). Debio-025 induced a strong drop in CypB levels, coinciding with the decrease in hepatitis C viral load. These are the first preliminary human data supporting the hypothesis that CypB may play an important role in hepatitis C virus replication and that Cyp inhibition is a valid target for the development of anti-hepatitis C drugs.

  8. Evaluation of effects of an oral contraceptive containing ethinylestradiol combined with drospirenone on adrenal steroidogenesis in hyperandrogenic women with polycystic ovary syndrome.

    PubMed

    De Leo, Vincenzo; Morgante, Giuseppe; Piomboni, Paola; Musacchio, Maria Concetta; Petraglia, Felice; Cianci, Antonio

    2007-07-01

    To investigate whether the administration of an oral contraceptive containing the new antiandrogenic drospirenone is associated with reduced adrenal androgen synthesis in hyperandrogenic women with diagnosis of polycystic ovary syndrome. Drospirenone, an analogue of spironolactone and aldosterone antagonist, is a novel progestin under clinical development that is similar to the natural hormone progesterone, combining potent progestogenic with antimineralocorticoid and antiandrogenic activities. Prospective study. Healthy volunteers in University Department of Obstetrics and Gynecology. Fifteen women ages 18 to 28 years with the diagnosis of polycystic ovary syndrome. Three months of contraceptive use (30 mcg ethinylestradiol, 3 mg drospirenone). An adrenocorticotropic hormone test was performed before and after the study. Adrenal production of cortisol was unchanged after therapy with oral contraceptives. An interesting observation was reduced basal concentrations of androgens such as androstenedione, dehydroepiandrosterone sulfate, testosterone, and free testosterone during therapy. The ratios of the areas of substrates to products before and after oral contraceptive administration were compared for differences in 17alpha-hydroxylase (17-hydroxyprogesterone/progesterone) and 17,20-lyase (androstenedione/17-hydroxyprogesterone); activities were significantly reduced, indicating a reduction in the activities of these enzymes. The present results show for the first time that oral contraceptives containing drospirenone affect adrenal steroidogenesis by reducing synthesis and release of androgens in response to adrenocorticotropic hormone, leaving adrenal production of cortisol unchanged.

  9. Alcoholic Fractions F5 and F6 from Withania somnifera Leaves Show a Potent Antileishmanial and Immunomodulatory Activities to Control Experimental Visceral Leishmaniasis

    PubMed Central

    Chandrasekaran, Sambamurthy; Veronica, Jalaja; Sundar, Shyam; Maurya, Radheshyam

    2017-01-01

    Visceral leishmaniasis (VL) causes fatal life-threatening disease, if left untreated. The current drugs have various limitations; hence, natural products from medicinal plants are being focused in search of new drugs to treat leishmaniasis. The aim of the present study was to evaluate the antileishmanial and immunomodulatory activities of F5 and F6 alcoholic fractions from Withania somnifera leaves and purified withaferin-A in Leishmania donovani-infected peritoneal macrophages and BALB/c mice. We observed that F5 (15 µg/mL), F6 (10 µg/mL), and withaferin-A (1.5 µM) reduce amastigote count in peritoneal macrophages and induce reactive oxygen species and significant decrease in IL-10 mRNA expression compared to control upon treatment. Subsequently, in vivo study mice were treated with F5 (25 and 50 mg/kg b.wt.), F6 (25 and 50 mg/kg b.wt.) orally, and withaferin-A (2 mg/kg b.wt.) intraperitoneally for 10 consecutive days and a drastic reduction in parasite burden in both spleen and liver were observed. The treatment resulted in the reduction in IL-10, IL-4, and TGF-β mRNA expression and a significant increase in IFN-γ/IL-10 expression ratio in the treated group compared to control. The humoral response of these alcoholic fractions and withaferin-A shows increased IgG2a levels when compared with IgG1 in treated mice. Taken together, our result concludes that withanolides in alcoholic fractions demonstrate a potent antileishmanial and immunomodulatory activities in experimental VL. PMID:28553635

  10. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens

    PubMed Central

    2018-01-01

    ABSTRACT Background: Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective: We investigated the applicability of three Lactobacillus strains (L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains (L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus. Results: Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus. In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions: These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus. PMID:29868163

  11. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens.

    PubMed

    Jeong, Dana; Kim, Dong-Hyeon; Song, Kwang-Young; Seo, Kun-Ho

    2018-01-01

    Background : Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective : We investigated the applicability of three Lactobacillus strains ( L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains ( L. plantarum ATCC 10,012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus . Results : Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus . In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions : These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus .

  12. Novel curcumin analogue UBS109 potently stimulates osteoblastogenesis and suppresses osteoclastogenesis: involvement in Smad activation and NF-κB inhibition.

    PubMed

    Yamaguchi, Masayoshi; Moore, Terry W; Sun, Aiming; Snyder, James P; Shoji, Mamoru

    2012-08-01

    Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss is induced due to decreased osteoblastic bone formation and increased osteoclastic bone resorption with various pathologic states. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Pharmacologic and functional food factors may play a role in the prevention of bone loss with aging. This study was undertaken to determine the effect of curcumin analogues (curcumin, EF31, ECMN909, and UBS109), which were newly synthesized, on osteoblastogenesis and osteoclastogenesis in vitro. Among these compounds, UBS109 had a unique stimulatory effect on osteoblastic differentiation and mineralization. UBS109 stimulated both basal and bone morphogenic protein-2 (BMP2)-increased Smad-luciferase activity, the Smad signaling of which is related to osteoblastogenesis. Such an effect was not seen with other compounds. Moreover, UBS109 potently suppressed tumor necrosis factor-α (TNF-α)-increased osteoblastic nuclear factor kappa B (NF-κB)-luciferase activity. In addition, EF31, ECMN909, and UBS109 had a suppressive effect on osteoclastogenesis as compared with that of curcumin. ECMN909 and UBS109 potently inhibited the receptor activator of NF-κB (RANK) ligand (RANKL)-increased preosteoclastic NF-κB-luciferase activity, in which NF-κB signaling plays a pivotal role in osteoclastogenesis. In the present study, curcumin analogue UBS109 was found to have a stimulating effect on osteoblastogenesis and a suppressive effect on osteoclastogenesis in vitro, suggesting an anabolic effect of the compound on bone mass.

  13. R-268712, an orally active transforming growth factor-β type I receptor inhibitor, prevents glomerular sclerosis in a Thy1 nephritis model.

    PubMed

    Terashima, Hideki; Kato, Mikio; Ebisawa, Masayuki; Kobayashi, Hideki; Suzuki, Kanae; Nezu, Yoshikazu; Sada, Toshio

    2014-07-05

    R-268712 is a novel and specific inhibitor of activin receptor-like kinase 5 (ALK5), a transforming growth factor β (TGF-β) type I receptor. Evaluation of in vitro inhibition indicated that R-268712 is a potent and selective inhibitor of ALK5 with an IC50 of 2.5nM, an approximately 5000-fold more selectivity for ALK5 than p38 mitogen-activated protein kinase (MAPK). Oral administration of R-268712 at doses of 1, 3 and 10mg/kg also inhibited the development of renal fibrosis in a dose-dependent manner in a unilateral ureteral obstruction (UUO) model. Additionally, we evaluated the efficacy of R-268712 in a heminephrectomized anti-Thy1 glomerulonephritis model at doses of 0.3 and 1mg/kg. R-268712 reduced proteinuria and glomerulosclerosis significantly with improvement of renal function. Collectively, these results suggested that R-268712 and other ALK5 inhibitors could suppress glomerulonephritis as well as glomerulosclerosis by an inhibitory mechanism that involves suppression of TGF-β signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identification of an imidazopyridine scaffold to generate potent and selective TYK2 inhibitors that demonstrate activity in an in vivo psoriasis model.

    PubMed

    Liang, Jun; Van Abbema, Anne; Balazs, Mercedesz; Barrett, Kathy; Berezhkovsky, Leo; Blair, Wade S; Chang, Christine; Delarosa, Donnie; DeVoss, Jason; Driscoll, Jim; Eigenbrot, Charles; Goodacre, Simon; Ghilardi, Nico; MacLeod, Calum; Johnson, Adam; Bir Kohli, Pawan; Lai, Yingjie; Lin, Zhonghua; Mantik, Priscilla; Menghrajani, Kapil; Nguyen, Hieu; Peng, Ivan; Sambrone, Amy; Shia, Steven; Smith, Jan; Sohn, Sue; Tsui, Vickie; Ultsch, Mark; Williams, Karen; Wu, Lawren C; Yang, Wenqian; Zhang, Birong; Magnuson, Steven

    2017-09-15

    Herein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model. In this efficacy model, the IL-17 decrease was accompanied by a reduction of ear thickness indicating the potential of TYK2 inhibition as a therapeutic approach for psoriasis patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Discovery and structure-activity relationships of (2-(arylthio)benzylideneamino)guanidines as a novel series of potent apoptosis inducers.

    PubMed

    Zhang, Han-Zhong; Crogan-Grundy, Candace; May, Chris; Drewe, John; Tseng, Ben; Cai, Sui Xiong

    2009-04-01

    1-(2-(2,5-Dimethoxyphenylthio)benzylidene)semicarbazide (2a) was discovered as a potent apoptosis inducer through our cell based HTS assay. SAR study led to the discovery of a more aqueous soluble analog (2-(2,5-dimethoxyphenylthio)-6-methoxybenzylideneamino)guanidine (5e) with EC(50) value of 60 nM in the caspase activation assay and GI(50) value of 62 nM in the growth inhibition assay in T47D cells. Compound 5e was found to be an inhibitor of tubulin polymerization and efficacious in a MX-1 breast tumor model.

  16. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    PubMed

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  17. Design of potent substrate-analogue inhibitors of canine renin

    NASA Technical Reports Server (NTRS)

    Hui, K. Y.; Siragy, H. M.; Haber, E.

    1992-01-01

    Through a systematic study of structure-activity relationships, we designed potent renin inhibitors for use in dog models. In assays against dog plasma renin at neutral pH, we found that, as in previous studies of rat renin inhibitors, the structure at the P2 position appears to be important for potency. The substitution of Val for His at this position increases potency by one order of magnitude. At the P3 position, potency appears to depend on a hydrophobic side chain that does not necessarily have to be aromatic. Our results also support the approach of optimizing potency in a renin inhibitor by introducing a moiety that promotes aqueous solubility (an amino group) at the C-terminus of the substrate analogue. In the design of potent dog plasma renin inhibitors, the influence of the transition-state residue 4(S)-amino-3(S)-hydroxy-5-cyclohexylpentanoic acid (ACHPA)-commonly used as a substitute for the scissile-bond dipeptide to boost potency-is not obvious, and appears to be sequence dependent. The canine renin inhibitor Ac-paF-Pro-Phe-Val-statine-Leu-Phe-paF-NH2 (compound 15; IC50 of 1.7 nM against dog plasma renin at pH 7.4; statine, 4(S)-amino-3(S)-hydroxy-6-methylheptanoic acid; paF, para-aminophenylalanine) had a potent hypotensive effect when infused intravenously into conscious, sodium-depleted, normotensive dogs. Also, compound 15 concurrently inhibited plasma renin activity and had a profound diuretic effect.

  18. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains.

    PubMed

    Uc-Cachón, Andrés Humberto; Borges-Argáez, Rocío; Said-Fernández, Salvador; Vargas-Villarreal, Javier; González-Salazar, Francisco; Méndez-González, Martha; Cáceres-Farfán, Mirbella; Molina-Salinas, Gloria María

    2014-02-01

    The recent emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) Mycobacterium tuberculosis (MTB) strains have further complicated the control of tuberculosis (TB). There is an urgent need of new molecules candidates to be developed as novel, active, and less toxic anti-tuberculosis (anti-TB) drugs. Medicinal plants have been an excellent source of leads for the development of drugs, particularly as anti-infective agents. In previous studies, the non-polar extract of Diospyros anisandra showed potent anti-TB activity, and three monomeric and five dimeric naphthoquinones have been obtained. In this study, we performed bioguided chemical fractionation and the isolation of eight naphthoquinones from D. anisandra and their evaluation of anti-TB and cytotoxic activities against mammalian cells. The n-hexane crude extract from the stem bark of the plant was obtained by maceration and liquid-liquid fractionation. The isolation of naphthoquinones was carried out by chromatographic methods and identified by gas chromatography and mass spectroscopy data analysis. Anti-TB activity was evaluated against two strains of MTB (H37Rv) susceptible to all five first-line anti-TB drugs and a clinical isolate that is resistant to these medications (pan-resistant, CIBIN 99) by measuring the minimal inhibitory concentration (MIC). Cytotoxicity of naphthoquinones was estimated against two mammalian cells, Vero line and primary cultures of human peripheral blood mononuclear (PBMC) cells, and their selectivity index (SI) was determined. Plumbagin and its dimers maritinone and 3,3'-biplumbagin showed the strongest activity against both MTB strains (MIC = 1.56-3.33 μg/mL). The bioactivity of maritinone and 3,3'-biplumbagin were 32 times more potent than rifampicin against the pan-resistant strain, and both dimers showed to be non-toxic against PBMC and Vero cells. The SI of maritinone and 3,3'-biplumbagin on Vero cells was 74.34 and 194

  19. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum.

    PubMed

    Tomás-Cortázar, Julen; Plaza-Vinuesa, Laura; de Las Rivas, Blanca; Lavín, José Luis; Barriales, Diego; Abecia, Leticia; Mancheño, José Miguel; Aransay, Ana M; Muñoz, Rosario; Anguita, Juan; Rodríguez, Héctor

    2018-02-26

    Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanB Fnp ). TanB Fnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanB Fnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanB Fnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanB Fnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanB Fnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanB Fnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.

  20. Oral treatment with complement factor C5a receptor (CD88) antagonists inhibits experimental periodontitis in rats.

    PubMed

    Breivik, T; Gundersen, Y; Gjermo, P; Taylor, S M; Woodruff, T M; Opstad, P K

    2011-12-01

    The complement activation product 5a (C5a) is a potent mediator of the innate immune response to infection, and may thus also importantly determine the development of periodontitis. The present study was designed to explore the effect of several novel, potent and orally active C5a receptor (CD88) antagonists (C5aRAs) on the development of ligature-induced periodontitis in an animal model. Three different cyclic peptide C5aRAs, termed PMX205, PMX218 and PMX273, were investigated. Four groups of Wistar rats (n = 10 in each group) were used. Starting 3 d before induction of experimental periodontitis, rats either received one of the C5aRas (1-2 mg/kg) in the drinking water or received drinking water only. Periodontitis was assessed when the ligatures had been in place for 14 d. Compared with control rats, PMX205- and PMX218-treated rats had significantly reduced periodontal bone loss. The findings suggest that complement activation, and particularly C5a generation, may play a significant role in the development and progression of periodontitis. Blockade of the major C5a receptor, CD88, with specific inhibitors such as PMX205, may offer novel treatment options for periodontitis. © 2011 John Wiley & Sons A/S.

  1. Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer.

    PubMed

    Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2017-02-28

    Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (< 0.3 fold of the control) was associated with invasiveness of oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.

  2. Synthesis and structure-activity relationships of novel lincomycin derivatives. Part 4: synthesis of novel lincomycin analogs modified at the 6- and 7-positions and their potent antibacterial activities.

    PubMed

    Wakiyama, Yoshinari; Kumura, Ko; Umemura, Eijiro; Ueda, Kazutaka; Watanabe, Takashi; Yamada, Keiko; Okutomi, Takafumi; Ajito, Keiichi

    2017-07-01

    To modify lincomycin (LCM) at the C-6 and the C-7 positions, we firstly prepared various substituted proline intermediates (7, 11-15 and 17). These proline intermediates were coupled with methyl 1-thio-α-lincosamide and tetrakis-O-trimethylsilylation followed by selective deprotection of the TMS group at the 7-position gave a wide variety of key intermediates (23-27, 47 and 50). Then, we synthesized a variety of novel LCM analogs modified at the 7-position in application of the Mitsunobu reaction, an S N 2 reaction, and a Pd-catalyzed cross-coupling reaction. Compounds 34 and 35 (1'-NH derivatives) exhibited enhanced antibacterial activities against resistant pathogens with erm gene compared with the corresponding 1'-N-methyl derivatives (3 and 37). On the basis of reported SAR, we modified the 4'-position of LCM derivatives possessing a 5-(2-nitrophenyl)-1,3,4-thiadiazol-2-yl group at the C-7 position. Compound 56 showed significantly potent antibacterial activities against S. pneumoniae and S. pyogenes with erm gene, and its activities against S. pneumoniae with erm gene were improved compared with those of 34 and 57. Although we synthesized novel analogs by transformation of a C-7 substituent focusing on the 1'-demethyl framework to prepare very potent analogs 73 and 75, it was impossible to generate novel derivatives exhibiting stronger antibacterial activities against S. pneumoniae with erm gene compared with 56.

  3. Novel triterpenoids isolated from raisins exert potent antiproliferative activities by targeting mitochondrial and Ras/Raf/ERK signaling in human breast cancer cells.

    PubMed

    Liu, Juan; Wang, Yihai; Liu, Rui Hai; He, Xiangjiu

    2016-07-13

    Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking and brewing. Bioactivity-guided fractionation of raisins was used to determine the chemical identity of bioactive constituents. Seven triterpenoids, including three novel triterpenoids, were isolated and identified. The novel triterpenoids were elucidated to be 3β,13β-dihydroxy-12,13-dihydrooleanolic acid (1), 3β,12β,13β-trihydroxy-12,13-dihydrooleanolic acid (2, TOA), and 3β,13β-dihydroxy-12,13-dihydroursolic acid (7), respectively. TOA showed the highest antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 3.60 ± 0.55 μM. Compounds 1, 3 and 7 also exhibited potent antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 7.10 ± 0.65, 10.22 ± 0.90 and 8.91 ± 1.12 μM. Compounds 1 and 2 also exhibited potent antioxidant activities. Moreover, the detailed cytotoxic mechanisms of TOA were investigated by targeting the mitochondrial and protein tyrosine kinase signaling (Ras/Raf/ERK). The results strongly demonstrated that the novel triterpenoids isolated from raisins could be promising candidates for therapy of breast cancer.

  4. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    PubMed

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  5. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  6. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma*

    PubMed Central

    Johnson, Jeff J.; Miller, Daniel L.; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R.; Stack, M. Sharon

    2016-01-01

    Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors. PMID:26839311

  7. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma.

    PubMed

    Johnson, Jeff J; Miller, Daniel L; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R; Stack, M Sharon

    2016-03-25

    Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Oral health care activities performed by caregivers for institutionalized elderly in Barcelona-Spain.

    PubMed

    Cornejo-Ovalle, Marco; Costa-de-Lima, Kenio; Pérez, Glória; Borrell, Carme; Casals-Peidro, Elías

    2013-07-01

    To describe the frequency of brushing teeth and cleaning of dentures, performed by caregivers, for institutionalized elderly people. A cross-sectional study in a sample of 196 caregivers of 31 health centers in Barcelona. The dependent variables were frequency of dental brushing and frequency of cleaning of dentures of the elderly by caregivers. The independent variables were characteristics of caregivers and institutions. We performed bivariate and multivariate descriptive analyses. Robust Poisson regression models were fitted to determine factors associated with the dependent variables and to assess the strength of the association. 83% of caregivers were women, 79% worked on more than one shift, 42% worked only out of necessity, 92% were trained to care for elderly persons, 67% were trained in oral hygiene care for the elderly, and 73% recognized the existence of institutional protocols on oral health among residents. The variables explaining the lower frequency of brushing teeth by caregivers for the elderly, adjusted for the workload, were: no training in the care of elderly persons (PRa 1.7 CI95%: 1.6-1.8), not fully agreeing with the importance of oral health care of the elderly (PRa 2.5 CI95%: 1.5-4.1) and not knowing of the existence of oral health protocols (PRa 1.8 CI95% 1.2-2.6). The variables that explain the lower frequency of cleaning dentures, adjusted for the workload, were lack of training in elderly care (PRa 1.7 CI95%: 1.3-1.9) and not knowing of the existence of protocols (PRa 3.7 CI95%: 1.6-8.7). The majority of caregivers perform activities of oral health care for the elderly at least once per day. The frequency of this care depends mainly on whether caregivers are trained to perform these activities, the importance given to oral health, the workload of caregivers and the existence of institutional protocols on oral health of institutionalized elderly persons.

  9. Guinea pig complement potently measures vibriocidal activity of human antibodies in response to cholera vaccines.

    PubMed

    Kim, Kyoung Whun; Jeong, Soyoung; Ahn, Ki Bum; Yang, Jae Seung; Yun, Cheol-Heui; Han, Seung Hyun

    2017-12-01

    The vibriocidal assay using guinea pig complement is widely used for the evaluation of immune responses to cholera vaccines in human clinical trials. However, it is unclear why guinea pig complement has been used over human complement in the measurement of vibriocidal activity of human sera and there have not been comparison studies for the use of guinea pig complement over those from other species. Therefore, we comparatively investigated the effects of complements derived from human, guinea pig, rabbit, and sheep on vibriocidal activity. Complements from guinea pig, rabbit, and human showed concentration-dependent vibriocidal activity in the presence of quality control serum antibodies. Of these complements, guinea pig complement was the most sensitive and effective over a wide concentration range. When the vibriocidal activity of complements was measured in the absence of serum antibodies, human, sheep, and guinea pig complements showed vibriocidal activity up to 40-fold, 20-fold, and 1-fold dilution, respectively. For human pre- and post-vaccination sera, the most potent vibriocidal activity was observed when guinea pig complement was used. In addition, the highest fold-increases between pre- and post- vaccinated sera were obtained with guinea pig complement. Furthermore, human complement contained a higher amount of V. cholerae- and its lipopolysaccharide-specific antibodies than guinea pig complement. Collectively, these results suggest that guinea pig complements are suitable for vibriocidal assays due to their high sensitivity and effectiveness to human sera.

  10. Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability.

    PubMed

    Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu

    2013-10-01

    Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.

    PubMed

    Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L

    2001-02-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.

  12. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation

    PubMed Central

    Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.

    2001-01-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613

  13. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro.

  14. Identification of pyrrolo[2,3-d]pyrimidines as potent HCK and FLT3-ITD dual inhibitors.

    PubMed

    Koda, Yasuko; Kikuzato, Ko; Mikuni, Junko; Tanaka, Akiko; Yuki, Hitomi; Honma, Teruki; Tomabechi, Yuri; Kukimoto-Niino, Mutsuko; Shirouzu, Mikako; Shirai, Fumiyuki; Koyama, Hiroo

    2017-11-15

    A series of novel pyrrolo[2,3-d]pyrimidines were synthesized by introducing 15 different amino acids to 7-cyclohexyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine. Compounds with potent activities against HCK and FLT3-ITD were evaluated in viability studies with acute myeloid leukemia cell line MV4-11. Our structure activity relationship analyses lead to the identification of compound 31, which exhibited potent HCK and FLT3-ITD inhibition and activity against the MV4-11 cell line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Potent Adjuvant Activity of Cationic Liposome-DNA Complexes for Genital Herpes Vaccines▿

    PubMed Central

    Bernstein, David I.; Cardin, Rhonda D.; Bravo, Fernando J.; Strasser, Jane E.; Farley, Nicholas; Chalk, Claudia; Lay, Marla; Fairman, Jeff

    2009-01-01

    Development of a herpes simplex virus (HSV) vaccine is a priority because these infections are common. It appears that potent adjuvants will be required to augment the immune response to subunit HSV vaccines. Therefore, we evaluated cationic liposome-DNA complexes (CLDC) as an adjuvant in a mouse model of genital herpes. Using a whole-virus vaccine (HVAC), we showed that the addition of CLDC improved antibody responses compared to vaccine alone. Most important, CLDC increased survival, reduced symptoms, and decreased vaginal virus replication compared to vaccine alone or vaccine administered with monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) following intravaginal challenge of mice. When CLDC was added to an HSV gD2 vaccine, it increased the amount of gamma interferon that was produced from splenocytes stimulated with gD2 compared to the amount produced with gD2 alone or with MPL-alum. The addition of CLDC to the gD2 vaccine also improved the outcome following vaginal HSV type 2 challenge compared to vaccine alone and was equivalent to vaccination with an MPL-alum adjuvant. CLDC appears to be a potent adjuvant for HSV vaccines and should be evaluated further. PMID:19279167

  16. Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors.

    PubMed

    Feng, Song; Hong, Di; Wang, Baoxia; Zheng, Xiufang; Miao, Kun; Wang, Lisha; Yun, Hongying; Gao, Lu; Zhao, Shuhai; Shen, Hong C

    2015-03-12

    A series of imidazolepyridine derivatives were designed and synthesized according to the established docking studies. The imidazopyridine derivatives were found to have good potency and physical-chemical properties. Several highly potent compounds such as 8ji, 8jl, and 8jm were identified with single nanomolar activities. The most potent compound 8jm showed an IC50 of 3 nM, lower microsome clearance and no CYP inhibition. The profile of 8jm appeared to be superior to BMS433771, and supported further optimization.

  17. Discovery of Imidazopyridine Derivatives as Highly Potent Respiratory Syncytial Virus Fusion Inhibitors

    PubMed Central

    2015-01-01

    A series of imidazolepyridine derivatives were designed and synthesized according to the established docking studies. The imidazopyridine derivatives were found to have good potency and physical-chemical properties. Several highly potent compounds such as 8ji, 8jl, and 8jm were identified with single nanomolar activities. The most potent compound 8jm showed an IC50 of 3 nM, lower microsome clearance and no CYP inhibition. The profile of 8jm appeared to be superior to BMS433771, and supported further optimization. PMID:25941547

  18. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    PubMed

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-08

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use.

    PubMed

    Petersen, Nicole; Cahill, Larry

    2015-09-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to emotional stimuli in women using oral contraceptives, and compared their amygdala reactivity with that of naturally cycling women. Here, we show that women who use oral contraceptive pills have significantly decreased bilateral amygdala reactivity in response to negatively valenced, emotionally arousing stimuli compared with naturally cycling women. We suggest that by modulating amygdala reactivity, oral contraceptive pills may influence behaviors that have previously been shown to be amygdala dependent-in particular, emotional memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. Bacterial flagellin—a potent immunomodulatory agent

    PubMed Central

    Hajam, Irshad A; Dar, Pervaiz A; Shahnawaz, Imam; Jaume, Juan Carlos; Lee, John Hwa

    2017-01-01

    Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. PMID:28860663

  2. Hibiscus vitifolius (Linn.) root extracts shows potent protective action against anti-tubercular drug induced hepatotoxicity.

    PubMed

    Samuel, Anbu Jeba Sunilson John; Mohan, Syam; Chellappan, Dinesh Kumar; Kalusalingam, Anandarajagopal; Ariamuthu, Saraswathi

    2012-05-07

    The roots of Hibiscus vitifolius Linn. (Malvaceae) is used for the treatment of jaundice in the folklore system of medicine in India. This study is an attempt to evaluate the hepatoprotective activity of the roots of Hibiscus vitifolius against anti-tubercular drug induced hepatotoxicity. Hepatotoxicity was induced in albino rats of either sex by oral administration of a combination of three anti-tubercular drugs. Petroleum ether, chloroform, methanol and aqueous extracts of roots of Hibiscus vitifolius (400mg/kg/day) were evaluated for their possible hepatoprotective potential. All the extracts were found to be safe up to a dose of 2000mg/kg. Among the four extracts studied, oral administration of methanol extract of Hibiscus vitifolius at 400mg/kg showed significant difference in all the parameters when compared to control. There was a significant (P<0.001) reduction in the levels of serum aspartate amino transaminase, alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, total and direct bilirubin, where as an increase was found in the levels of total cholesterol, total protein and albumin. Liver homogenate studies showed a significant increase in the levels of total protein, phospholipids and glycogen, and a reduction in the levels of total lipids, triglycerides, and cholesterol against control animals. In the tissue anti-oxidant studies, we found a significant increase in the levels of catalase and superoxide dismutase, whereas there was marked reduction in the levels of thiobarbituric acid reactive substances, as compared to control. Histology of liver sections of the animals treated with the extracts showed significant reduction of necrosis and fatty formation when compared with control specimens. These findings suggest that the root extracts of Hibiscus vitifolius have potent hepatoprotective activity, thereby justifying its ethnopharmacological claim. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. 21 CFR 310.534 - Drug products containing active ingredients offered over-the-counter (OTC) for human use as oral...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... offered over-the-counter (OTC) for human use as oral wound healing agents. 310.534 Section 310.534 Food... active ingredients offered over-the-counter (OTC) for human use as oral wound healing agents. (a... aqueous solution have been present in oral mucosal injury drug products for use as oral wound healing...

  4. 21 CFR 310.534 - Drug products containing active ingredients offered over-the-counter (OTC) for human use as oral...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... offered over-the-counter (OTC) for human use as oral wound healing agents. 310.534 Section 310.534 Food... active ingredients offered over-the-counter (OTC) for human use as oral wound healing agents. (a... aqueous solution have been present in oral mucosal injury drug products for use as oral wound healing...

  5. 21 CFR 310.534 - Drug products containing active ingredients offered over-the-counter (OTC) for human use as oral...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... offered over-the-counter (OTC) for human use as oral wound healing agents. 310.534 Section 310.534 Food... active ingredients offered over-the-counter (OTC) for human use as oral wound healing agents. (a... aqueous solution have been present in oral mucosal injury drug products for use as oral wound healing...

  6. 21 CFR 310.534 - Drug products containing active ingredients offered over-the-counter (OTC) for human use as oral...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... offered over-the-counter (OTC) for human use as oral wound healing agents. 310.534 Section 310.534 Food... active ingredients offered over-the-counter (OTC) for human use as oral wound healing agents. (a... aqueous solution have been present in oral mucosal injury drug products for use as oral wound healing...

  7. 21 CFR 310.534 - Drug products containing active ingredients offered over-the-counter (OTC) for human use as oral...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... offered over-the-counter (OTC) for human use as oral wound healing agents. 310.534 Section 310.534 Food... active ingredients offered over-the-counter (OTC) for human use as oral wound healing agents. (a... aqueous solution have been present in oral mucosal injury drug products for use as oral wound healing...

  8. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity

    PubMed Central

    Khan, Md. Abdul Hye; Liu, Jing; Kumar, Ganesh; Skapek, Stephen X.; Falck, John R.; Imig, John D.

    2013-01-01

    Nephrotoxicity severely limits the use of the anticancer drug cisplatin. Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress contribute to cisplatin-induced nephrotoxicity. We developed novel orally active epoxyeicosatrienoic acid (EET) analogs and investigated their prophylactic effect in cisplatin-induced nephrotoxicity in rats. Cisplatin-induced nephrotoxicity was manifested by increases in blood urea nitrogen, plasma creatinine, urinary N-acetyl-β-(d)-glucosaminidase activity, kidney injury molecule 1, and histopathology. EET analogs (10 mg/kg/d) attenuated cisplatin-induced nephrotoxicity by reducing these renal injury markers by 40–80% along with a 50–70% reduction in renal tubular cast formation. This attenuated renal injury is associated with reduced oxidative stress, inflammation, and ER stress evident from reduction in related biomarkers and in the renal expression of genes involved in these pathways. Moreover, we demonstrated that the attenuated nephrotoxicity correlated with decreased apoptosis that is associated with 50–90% reduction in Bcl-2 protein family mediated proapoptotic signaling, reduced renal caspase-12 expression, and a 50% reduction in renal caspase-3 activity. We further demonstrated in vitro that the protective activity of EET analogs does not compromise the anticancer effects of cisplatin. Collectively, our data provide evidence that EET analogs attenuate cisplatin-induced nephrotoxicity by reducing oxidative stress, inflammation, ER stress, and apoptosis without affecting the chemotherapeutic effects of cisplatin.—Khan, Md. A. H., Liu, J., Kumar, G., Skapek, S. X., Falck, J. R., Imig, J. D. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. PMID:23603837

  9. Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway.

    PubMed

    Thress, Kenneth; Macintyre, Terry; Wang, Haiyun; Whitston, Dave; Liu, Zhong-Ying; Hoffmann, Ethan; Wang, Tao; Brown, Jeffrey L; Webster, Kevin; Omer, Charles; Zage, Peter E; Zeng, Lizhi; Zweidler-McKay, Patrick A

    2009-07-01

    Tropomyosin-related kinases (TrkA, TrkB, and TrkC) are receptor tyrosine kinases that, along with their ligands, the neurotrophins, are involved in neuronal cell growth, development, and survival. The Trk-neurotrophin pathway may also play a role in tumorigenesis through oncogenic fusions, mutations, and autocrine signaling, prompting the development of novel Trk inhibitors as agents for cancer therapy. This report describes the identification of AZ-23, a novel, potent, and selective Trk kinase inhibitor. In vitro studies with AZ-23 showed improved selectivity over previous compounds and inhibition of Trk kinase activity in cells at low nanomolar concentrations. AZ-23 showed in vivo TrkA kinase inhibition and efficacy in mice following oral administration in a TrkA-driven allograft model and significant tumor growth inhibition in a Trk-expressing xenograft model of neuroblastoma. AZ-23 represents a potent and selective Trk kinase inhibitor from a novel series with the potential for use as a treatment for cancer.

  10. Structure-activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase

    PubMed Central

    Bourne, Christina R.; Wakeham, Nancy; Nammalwar, Baskar; Tseitin, Vladimir; Bourne, Philip C.; Barrow, Esther W.; Mylvaganam, Shankari; Ramnarayan, Kal; Bunce, Richard A.; Berlin, K. Darrell; Barrow, William W.

    2012-01-01

    Background Bacterial resistance to antibiotic therapies is increasing and new treatment options are badly needed. There is an overlap between these resistant bacteria and organisms classified as likely bioterror weapons. For example, Bacillus anthracis is innately resistant to the anti-folate trimethoprim due to sequence changes found in the dihydrofolate reductase enzyme. Development of new inhibitors provides an opportunity to enhance the current arsenal of anti-folate antibiotics while also expanding the coverage of the anti-folate class. Methods We have characterized inhibitors of Bacillus anthracis dihydrofolate reductase by measuring the Ki and MIC values and calculating the energetics of binding. This series contains a core diaminopyrimidine ring, a central dimethoxybenzyl ring, and a dihydrophthalazine moiety. We have altered the chemical groups extended from a chiral center on the dihydropyridazine ring of the phthalazine moiety. The interactions for the most potent compounds were visualized by X-ray structure determination. Results We find that the potency of individual enantiomers is divergent with clear preference for the S-enantiomer, while maintaining a high conservation of contacts within the binding site. The preference for enantiomers seems to be predicated largely by differential interactions with protein residues Leu29, Gln30 and Arg53. Conclusions These studies have clarified the activity of modifications and of individual enantiomers, and highlighted the role of the less-active R-enantiomer in effectively diluting the more active S-enantiomer in racemic solutions. This directly contributes to the development of new antimicrobials, combating trimethoprim resistance, and treatment options for potential bioterrorism agents. PMID:22999981

  11. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.

    PubMed

    Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin

    2016-01-01

    Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.

  12. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. An Enterotoxin-Like Binary Protein from Pseudomonas protegens with Potent Nematicidal Activity.

    PubMed

    Wei, Jun-Zhi; Siehl, Daniel L; Hou, Zhenglin; Rosen, Barbara; Oral, Jarred; Taylor, Christopher G; Wu, Gusui

    2017-10-01

    Soil microbes are a major food source for free-living soil nematodes. It is known that certain soil bacteria have evolved systems to combat predation. We identified the nematode-antagonistic Pseudomonas protegens strain 15G2 from screening of microbes. Through protein purification we identified a binary protein, designated Pp-ANP, which is responsible for the nematicidal activity. This binary protein inhibits Caenorhabditis elegans growth and development by arresting larvae at the L1 stage and killing older-staged worms. The two subunits, Pp-ANP1a and Pp-ANP2a, are active when reconstituted from separate expression in Escherichia coli The binary toxin also shows strong nematicidal activity against three other free-living nematodes ( Pristionchus pacificus , Panagrellus redivivus , and Acrobeloides sp.), but we did not find any activity against insects and fungi under test conditions, indicating specificity for nematodes. Pp-ANP1a has no significant identity to any known proteins, while Pp-ANP2a shows ∼30% identity to E. coli heat-labile enterotoxin (LT) subunit A and cholera toxin (CT) subunit A. Protein modeling indicates that Pp-ANP2a is structurally similar to CT/LT and likely acts as an ADP-ribosyltransferase. Despite the similarity, Pp-ANP shows several characteristics distinct from CT/LT toxins. Our results indicate that Pp-ANP is a new enterotoxin-like binary toxin with potent and specific activity to nematodes. The potency and specificity of Pp-ANP suggest applications in controlling parasitic nematodes and open an avenue for further research on its mechanism of action and role in bacterium-nematode interaction. IMPORTANCE This study reports the discovery of a new enterotoxin-like binary protein, Pp-ANP, from a Pseudomonas protegens strain. Pp-ANP shows strong nematicidal activity against Caenorhabditis elegans larvae and older-staged worms. It also shows strong activity on other free-living nematodes ( Pristionchus pacificus , Panagrellus redivivus , and

  14. Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum.

    PubMed

    Colín-Lozano, Blanca; León-Rivera, Ismael; Chan-Bacab, Manuel Jesús; Ortega-Morales, Benjamín Otto; Moo-Puc, Rosa; López-Guerrero, Vanessa; Hernández-Núñez, Emanuel; Argüello-Garcia, Raúl; Scior, Thomas; Barbosa-Cabrera, Elizabeth; Navarrete-Vázquez, Gabriel

    2017-08-01

    We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 1-5 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC 50 values ranging from the low micromolar to nanomolar order. Compounds 1-5 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC 50 of 0.145μM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709μg/kg (3.53nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 1-5 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells

    PubMed Central

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe

    2014-01-01

    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-3395–270, IL-33107–270, and IL-33109–270, were 30-fold more potent than full-length human IL-331–270 for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33–dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66–111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33–mediated responses in allergic asthma and other inflammatory diseases. PMID:25313073

  16. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase)

    PubMed Central

    Miyadera, Hiroko; Shiomi, Kazuro; Ui, Hideaki; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Miyoshi, Hideto; Osanai, Arihiro; Kita, Kiyoshi; Ōmura, Satoshi

    2003-01-01

    Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the role of these enzymes in physiological processes. However, unlike complexes I, III, and IV (cytochrome c oxidase), there are few potent and specific inhibitors of complex II (succinate-ubiquinone reductase) that have been described. In this article, we report that atpenins potently and specifically inhibit the succinate-ubiquinone reductase activity of mitochondrial complex II. Therefore, atpenins may be useful tools for clarifying the biochemical and structural properties of complex II, as well as for determining its physiological roles in mammalian tissues. PMID:12515859

  17. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity.

    PubMed

    Merghni, Abderrahmen; Ben Nejma, Mouna; Hentati, Hajer; Mahjoub, Aouni; Mastouri, Maha

    2014-08-01

    Staphylococcus aureus is one of prominent bacterial pathogen that occurs in oral region. In this study, 21 strains of S. aureus isolated from the oral cavity of Tunisian patients were investigated for slime production using Congo red agar method (CRA) and adherence assay. Biofilm formation of oral isolates on orthodontic biomaterials (Bis-GMA and PMMA) was also evaluated by MTT reduction assay. In addition, the production of hydrolytic enzymes by S. aureus strains was analyzed and the presence of protease, lipase and β-hemolysin genes (sspA, sspB, geh, hlb) was achieved by polymerase chain reaction (PCR). Qualitative biofilm production tested on CRA revealed that 91% of strains were slime producers. The result of OD570 showed that five strains isolated from the oral cavity were highly biofilm positive. The metabolic activity of S. aureus biofilm formed on Bis-GMA and PMMA did not differ between tested strains. The atomic force micrographs demonstrated that biofilm formed by S. aureus strains was organized in typical cocci cells attached to each other through production of exopolymeric substances. The production of hydrolytic enzymes showed that all S. aureus strains were protease positive. Lipase (77%) and beta hemolytic (59%) activities were also detected. Among the tested strains, 17 were positive for sspA, sspB and hlb genes. While only ten S. aureus strains harbor the geh gene (48%). These data highlight the importance of evaluation of biofilm formation and exoenzyme production in oral S. aureus isolates to investigate the role of this pathogen and its impact in oral pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  19. Oral Colostrum Macrophage-activating Factor for Serious Infection and Chronic Fatigue Syndrome: Three Case Reports.

    PubMed

    Inui, Toshio; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Sakamoto, Norihiro; Mette, Martin

    2015-08-01

    Gc protein-derived macrophage-activating factor (GcMAF) immunotherapy has been steadily advancing over the last two decades. Oral colostrum macrophage-activating factor (MAF) produced from bovine colostrum has shown high macrophage phagocytic activity. GcMAF-based immunotherapy has a wide application for use in treating many diseases via macrophage activation or for use as supportive therapy. Three case studies demonstrate that oral colostrum MAF can be used for serious infection and chronic fatigue syndrome (CFS) without adverse effects. We demonstrate that colostrum MAF shows promising clinical results in patients with infectious diseases and for symptoms of fatigue, which is common in many chronic diseases. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. O-(Triazolyl)methyl carbamates as a novel and potent class of FAAH inhibitors

    PubMed Central

    Colombano, Giampiero; Albani, Clara; Ottonello, Giuliana; Ribeiro, Alison; Scarpelli, Rita; Tarozzo, Glauco; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele; Bandiera, Tiziano

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed. O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, we synthesized a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives exploiting the copper-catalyzed [3 + 2] cycloaddition reaction between azides and alkynes (click chemistry). We explored structure-activity relationships within this new class of compounds and identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. PMID:25338703

  1. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    PubMed

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Learning Activities and Discourses in Mathematics Teachers' Synchronous Oral Communication Online

    ERIC Educational Resources Information Center

    Erixon, Eva-Lena

    2016-01-01

    There is increasing interest in the provision of online professional development (OPD) for teachers. This case study contributes to the field of research on professional development in the context of activities and discourses relating to mathematics teachers' synchronous oral communication online. The purpose of this article is to explore the…

  3. Click Chemistry-based Discovery of [3-Hydroxy-5-(1H-1,2,3-triazol-4-yl)picolinoyl]glycines as Orally Active Hypoxia Inducing Factor Prolyl Hydroxylase Inhibitors with Favorable Safety Profiles for the Treatment of Anemia.

    PubMed

    Wu, Yue; Jiang, Zhensheng; Li, Zhihong; Gu, Jing; You, Qi-Dong; Zhang, Xiaojin

    2018-06-01

    As a gene associated with anemia, the erythropoiesis gene is physiologically expressed under hypoxia regulated by hypoxia-inducing factor-α (HIF-α). Thus, stabilizing HIF-α is a potent strategy to stimulate the expression and secretion of erythropoiesis. In this study we applied click chemistry to the discovery of HIF prolyl hydroxylase 2 (HIF-PHD2) inhibitors for the first time and a series of triazole compounds showed preferable inhibitory activity in fluorescence polarization assay. Of particular note was the orally active HIF-PHD inhibitor 15i (IC50 = 62.23 nM), which was almost ten times more active than the phase III drug FG-4592 (IC50 = 591.4 nM). Furthermore, it can upregulate the hemoglobin of cisplatin induced anemia mice (120 g/L) to normal levels (160 g/L) with no apparent toxicity observed in vivo. These results confirm that triazole compound 15i is a promising candidate for the treatment of renal anemia.

  4. Discovery of PF-04620110, a Potent, Selective, and Orally Bioavailable Inhibitor of DGAT-1

    PubMed Central

    2011-01-01

    Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final committed step in the biosynthesis of triglycerides. DGAT-1 knockout mice have been shown to be resistant to diet-induced obesity and have increased insulin sensitivity. Thus, inhibition of DGAT-1 may represent an attractive target for the treatment of obesity or type II diabetes. Herein, we report the discovery and characterization of a potent and selective DGAT-1 inhibitor PF-04620110 (3). Compound 3 inhibits DGAT-1 with an IC50 of 19 nM and shows high selectivity versus a broad panel of off-target pharmacologic end points. In vivo DGAT-1 inhibition has been demonstrated through reduction of plasma triglyceride levels in rodents at doses of ≥0.1 mg/kg following a lipid challenge. On the basis of this pharmacologic and pharmacokinetic profile, compound 3 has been advanced to human clinical studies. PMID:24900321

  5. Discovery of PF-04620110, a Potent, Selective, and Orally Bioavailable Inhibitor of DGAT-1.

    PubMed

    Dow, Robert L; Li, Jian-Cheng; Pence, Michael P; Gibbs, E Michael; LaPerle, Jennifer L; Litchfield, John; Piotrowski, David W; Munchhof, Michael J; Manion, Tara B; Zavadoski, William J; Walker, Gregory S; McPherson, R Kirk; Tapley, Susan; Sugarman, Eliot; Guzman-Perez, Angel; DaSilva-Jardine, Paul

    2011-05-12

    Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final committed step in the biosynthesis of triglycerides. DGAT-1 knockout mice have been shown to be resistant to diet-induced obesity and have increased insulin sensitivity. Thus, inhibition of DGAT-1 may represent an attractive target for the treatment of obesity or type II diabetes. Herein, we report the discovery and characterization of a potent and selective DGAT-1 inhibitor PF-04620110 (3). Compound 3 inhibits DGAT-1 with an IC50 of 19 nM and shows high selectivity versus a broad panel of off-target pharmacologic end points. In vivo DGAT-1 inhibition has been demonstrated through reduction of plasma triglyceride levels in rodents at doses of ≥0.1 mg/kg following a lipid challenge. On the basis of this pharmacologic and pharmacokinetic profile, compound 3 has been advanced to human clinical studies.

  6. Forging a potent vaccine adjuvant: CpG ODN/cationic peptide nanorings.

    PubMed

    Gungor, Bilgi; Yagci, Fuat Cem; Gursel, Ihsan; Gursel, Mayda

    Type I interferon inducers may potentially be engineered to function as antiviral and anticancer agents, or alternatively, vaccine adjuvants, all of which may have clinical applications. We recently described a simple strategy to convert a Toll-like receptor 9 (TLR9) agonist devoid of interferon α (IFNα) stimulating activity into a robust Type I interferon inducer with potent vaccine adjuvant activity.

  7. Factors influencing the impact of oral health on the daily activities of adolescents, adults and older adults

    PubMed Central

    Bulgareli, Jaqueline Vilela; de Faria, Eduardo Tanajura; Cortellazzi, Karine Laura; Guerra, Luciane Miranda; Meneghim, Marcelo de Castro; Ambrosano, Glaucia Maria Bovi; Frias, Antonio Carlos; Pereira, Antonio Carlos

    2018-01-01

    ABSTRACT OBJECTIVE: Analyze if clinical, sociodemographic and access to dental services variables influence the impact of oral health on the daily activities of adolescents, adults and older adults. METHODS: A cross-sectional study with secondary data from the State Oral Health Survey (SB São Paulo 2015) conducted in 163 cities of São Paulo. A total of 17,560 individuals from three age groups: 15–19-year-old (n = 5,558), 35–44-year-old (n = 6,051), and older people of 65 years or more (n = 5,951) participated in the survey. The selection was made by probabilistic sample by conglomerates in two stages. The endpoint variable was the impact of oral health on daily activities, evaluated by the Oral Impacts on Daily Performances questionnaire, containing questions about eating, talking, oral hygiene, relaxation, sports practice, smile, study or work, social contact, and sleep. Oral Impacts on Daily Performances was dichotomized with and without impact. The independent variables were sociodemographic, clinical and access variables, divided into three blocks. A hierarchical multiple logistic regression analysis was performed considering the complex sampling plan of clusters. Each observation received a specific weight, depending on the location that resulted in weighted frequencies and adjusted for the design effect. RESULTS: The presence of oral health impact was observed in 27.9% of the individuals. In block 1, female gender and black/brown ethnic group had a greater chance of impact of oral health on quality of life, as well as the adults and the older adults in relation to adolescents. In block 2, family income up to R$1,500 was associated with the presence of impact. In block 3, individuals who reported toothache, used the public service and sought dental treatment had a greater chance of impact. CONCLUSIONS: Sociodemographic, clinical and access to health services variables influence the impact of oral health on the daily activities of adolescents, adults and

  8. [Factors influencing activity of oral anticoagulants. Interactions with drugs and food].

    PubMed

    Sawicka-Powierza, Jolanta; Rogowska-Szadkowska, Dorota; Ołtarzewska, Alicja Małgorzata; Chlabicz, Sławomir

    2008-05-01

    Oral anticoagulants (OAC) are commonly used as a life-long therapy in prevention of systemic embolism in patients with atrial fibrillation, valvular heart disease and prosthetic hart valves and in the primary and secondary prevention of venous thromboembolism. They are also used for the prevention of thromboembolic events in patients with acute myocardial infarction and with angina pectoris, in patients with biological hart valves and after some types of orthopaedics surgery. The International Normalized Ratio (INR) is used to evaluate the efficacy of anti-coagulant therapy. The risk of thromboembolic and haemorrhagic complications increases when the INR is out of the therapeutic range. The aim of this study was to present information about the factors influencing activity of oral anticoagulants and interactions between oral anticoagulants and drugs or food. The effect of oral anticoagulants is influenced by genetic and environmental factors such as: medicines, food, diseases and pre-existing conditions. A common mutation in the gene coding for the cytochrome P450 (CYP2C9), with one or more combinations of its polymorphisms, is responsible for the reduced warfarin requirements or for the resistance to warfarin. A mutation in the factor IX is responsible for the risk of bleeding during OAC therapy without excessive prolongation of the prothrombin time (PT). Drugs, herbs and multivitamin supplements can alter the absorption, pharmacokinetics or pharmakodynamics of OAC. Nonsteroid anti-inflammatory drugs and paracetamol in combination with OAC seem to be the most dangerous because they are available without prescription and are used without medical consultation. Patients on OAC therapy are sensitive to changing dietary intake of vitamin K, which is supplied from phylloquinones in plants or from vitamin K-containing medicines. The effect of OAC can be influenced by other existing factors like: fever, diarrhoea, alcohol abuse or physical hyperactivity. Some malignancies

  9. Structure-Guided Discovery of Novel, Potent, and Orally Bioavailable Inhibitors of Lipoprotein-Associated Phospholipase A2.

    PubMed

    Liu, Qiufeng; Huang, Fubao; Yuan, Xiaojing; Wang, Kai; Zou, Yi; Shen, Jianhua; Xu, Yechun

    2017-12-28

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a promising therapeutic target for atherosclerosis, Alzheimer's disease, and diabetic macular edema. Here we report the identification of novel sulfonamide scaffold Lp-PLA2 inhibitors derived from a relatively weak fragment. Similarity searching on this fragment followed by molecular docking leads to the discovery of a micromolar inhibitor with a 300-fold potency improvement. Subsequently, by the application of a structure-guided design strategy, a successful hit-to-lead optimization was achieved and a number of Lp-PLA2 inhibitors with single-digit nanomolar potency were obtained. After preliminary evaluation of the properties of drug-likeness in vitro and in vivo, compound 37 stands out from this congeneric series of inhibitors for good inhibitory activity and favorable oral bioavailability in male Sprague-Dawley rats, providing a quality candidate for further development. The present study thus clearly demonstrates the power and advantage of integrally employing fragment screening, crystal structures determination, virtual screening, and medicinal chemistry in an efficient lead discovery project, providing a good example for structure-based drug design.

  10. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    PubMed

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo.

  11. Association of Psychosocial Conditions, Oral Health, and Dietary Variety with Intellectual Activity in Older Community-Dwelling Japanese Adults.

    PubMed

    Tomioka, Kimiko; Okamoto, Nozomi; Kurumatani, Norio; Hosoi, Hiroshi

    2015-01-01

    This study examined the factors related to intellectual activity in community-dwelling elderly persons. Self-administered questionnaires mailed to all people aged ≥65 years in a dormitory suburb in Japan (n = 15,210). The response rate was 72.2%. Analytical subjects (n = 8,910) were those who lived independently and completely answered questions about independent and dependent variables and covariates. Independent variables included psychosocial conditions (i.e., social activities, hobbies, and a sense that life is worth living (ikigai)), oral health (i.e., dental health behaviors and oral function evaluated by chewing difficulties, swallowing difficulties, and oral dryness), and dietary variety measured using the dietary variety score (DVS). A dependent variable was intellectual activity measured using the Tokyo Metropolitan Institute of Gerontology Index of Competence. Covariates included age, gender, family structure, pensions, body mass index, alcohol, smoking, medical history, self-rated health, medications, cognitive function, depression, and falling. Logistic regression was used to estimate the odds ratio (OR) for poor intellectual activity. Poor intellectual activity was reported by 28.9% of the study population. After adjustment for covariates and independent variables, poor intellectual activity was significantly associated with nonparticipation in social activities (OR = 1.90, 95%CI = 1.61-2.24), having neither hobbies nor ikigai (3.13, 2.55-3.84), having neither regular dental visits nor daily brushing (1.70, 1.35-2.14), the poorest oral function (1.61, 1.31-1.98), and the lowest DVS quartile (1.96, 1.70-2.26). These results indicate that psychosocial conditions, oral health, and dietary variety are independently associated with intellectual activity in elderly persons. The factors identified in this study may be used in community health programs for maintaining the intellectual activity ability of the elderly.

  12. Association of Psychosocial Conditions, Oral Health, and Dietary Variety with Intellectual Activity in Older Community-Dwelling Japanese Adults

    PubMed Central

    Tomioka, Kimiko; Okamoto, Nozomi; Kurumatani, Norio; Hosoi, Hiroshi

    2015-01-01

    Background This study examined the factors related to intellectual activity in community-dwelling elderly persons. Methods Self-administered questionnaires mailed to all people aged ≥65 years in a dormitory suburb in Japan (n = 15,210). The response rate was 72.2%. Analytical subjects (n = 8,910) were those who lived independently and completely answered questions about independent and dependent variables and covariates. Independent variables included psychosocial conditions (i.e., social activities, hobbies, and a sense that life is worth living (ikigai)), oral health (i.e., dental health behaviors and oral function evaluated by chewing difficulties, swallowing difficulties, and oral dryness), and dietary variety measured using the dietary variety score (DVS). A dependent variable was intellectual activity measured using the Tokyo Metropolitan Institute of Gerontology Index of Competence. Covariates included age, gender, family structure, pensions, body mass index, alcohol, smoking, medical history, self-rated health, medications, cognitive function, depression, and falling. Logistic regression was used to estimate the odds ratio (OR) for poor intellectual activity. Results Poor intellectual activity was reported by 28.9% of the study population. After adjustment for covariates and independent variables, poor intellectual activity was significantly associated with nonparticipation in social activities (OR = 1.90, 95%CI = 1.61–2.24), having neither hobbies nor ikigai (3.13, 2.55–3.84), having neither regular dental visits nor daily brushing (1.70, 1.35–2.14), the poorest oral function (1.61, 1.31–1.98), and the lowest DVS quartile (1.96, 1.70–2.26). Conclusion These results indicate that psychosocial conditions, oral health, and dietary variety are independently associated with intellectual activity in elderly persons. The factors identified in this study may be used in community health programs for maintaining the intellectual activity ability of the

  13. Histamine release inhibitory activity of Piper nigrum leaf.

    PubMed

    Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki

    2008-10-01

    Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.

  14. Extracellular Ca(2+)-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells.

    PubMed

    Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto

    2015-08-15

    Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Pharmacokinetics of intravenous and oral amitriptyline and its active metabolite nortriptyline in Greyhound dogs.

    PubMed

    Norkus, Christopher; Rankin, David; KuKanich, Butch

    2015-11-01

    To evaluate the pharmacokinetics of amitriptyline and its active metabolite nortriptyline after intravenous (IV) and oral amitriptyline administration in healthy dogs. Prospective randomized experiment. Five healthy Greyhound dogs (three males and two females) aged 2-4 years and weighing 32.5-39.7 kg. After jugular vein catheterization, dogs were administered a single oral or IV dose of amitriptyline (4 mg kg(-1)). Blood samples were collected at predetermined time points from baseline (0 hours) to 32 hours after administration and plasma concentrations of amitriptyline and nortriptyline were measured by liquid chromatography triple quadrupole mass spectrometry. Non-compartmental pharmacokinetic analyses were performed. Orally administered amitriptyline was well tolerated, but adverse effects were noted after IV administration. The mean maximum plasma concentration (CMAX) of amitriptyline was 27.4 ng mL(-1) at 1 hour and its mean terminal half-life was 4.33 hours following oral amitriptyline. Bioavailability of oral amitriptyline was 6%. The mean CMAX of nortriptyline was 14.4 ng mL(-1) at 2.05 hours and its mean terminal half-life was 6.20 hours following oral amitriptyline. Amitriptyline at 4 mg kg(-1) administered orally produced low amitriptyline and nortriptyline plasma concentrations. This brings into question whether the currently recommended oral dose of amitriptyline (1-4 mg kg(-1)) is appropriate in dogs. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  16. Elementary EFL Students' Practice of Peer Assessment of Oral Classroom Activities

    ERIC Educational Resources Information Center

    Hung, Yu-ju; Chen, Shu-cheng; Samuelson, Beth Lewis

    2016-01-01

    Role-play is an oral classroom activity that has been promoted to provide young learners with opportunities to practice English in meaningful contexts. To familiarize elementary students with this group task, to encourage them to pay attention to their peers' performances, and to replace traditional paper-and-pencil modes of evaluating speaking…

  17. In vitro inhibitory activity of probiotic products against oral Candida species.

    PubMed

    Zhao, C; Lv, X; Fu, J; He, C; Hua, H; Yan, Z

    2016-07-01

    To evaluate the inhibitory activity of probiotics against oral Candida species. Four commercial probiotic products were screened. Bacillus subtilis R0179 was found to have a significant antifungal effect. Bacillus subtilis-Candida interactions were evaluated using disc diffusion tests, confocal laser scanning microscopy, scanning electron microscopy and interaction with engineered human oral mucosa tissue. Bacillus subtilis exhibited clear zones of inhibition for Candida albicans and Candida parapsilosis but not for Candida krusei. A remarkable reduction in the number of Candida cells and abundant Candida cell death were visualized with confocal laser scanning microscopy. Shrinkage and deformation of Candida cells was observed using scanning electron microscopy. Culture of C. albicans on engineered human oral mucosa tissues resulted in the presence of a large number of yeast cells on the tissue surface and the development of large-scale tissue damage. However, comparatively fewer Candida cells were observed on B. subtilis-treated tissues. We also use ultra performance liquid chromatography/time of flight mass spectrometry (UPLC/TOF MS) to explore the preliminary antifungal mechanism of B. subtilis R0179 and to detect that whether it can secrete an antifungal agent, Iturin A. Bacillus subtilis R0179 exhibits a significant inhibitory effect on the growth of Candida species. Bacillus subtilis has the potential to be used in the prevention or treatment of oral candidiasis. © 2016 The Society for Applied Microbiology.

  18. Discovery and evaluation of a series of 3-acylindole imidazopyridine platelet-activating factor antagonists.

    PubMed

    Curtin, M L; Davidsen, S K; Heyman, H R; Garland, R B; Sheppard, G S; Florjancic, A S; Xu, L; Carrera, G M; Steinman, D H; Trautmann, J A; Albert, D H; Magoc, T J; Tapang, P; Rhein, D A; Conway, R G; Luo, G; Denissen, J F; Marsh, K C; Morgan, D W; Summers, J B

    1998-01-01

    Studies conducted with the goal of discovering a second-generation platelet-activating factor (PAF) antagonist have identified a novel class of potent and orally active antagonists which have high aqueous solubility and long duration of action in animal models. The compounds arose from the combination of the lipophilic indole portion of Abbott's first-generation PAF antagonist ABT-299 (2) with the methylimidazopyridine heterocycle moiety of British Biotechnology's BB-882 (1) and possess the positive attributes of both of these clinical candidates. Structure-activity relationship (SAR) studies indicated that modification of the indole and benzoyl spacer of lead compound 7b gave analogues that were more potent, longer-lived, and bioavailable and resulted in the identification of 1-(N, N-dimethylcarbamoyl)-4-ethynyl-3-[3-fluoro-4-[(1H-2-methylimidazo[4,5-c] pyrid-1-yl)methyl]benzoyl]indole hydrochloride (ABT-491, 22 m.HCl) which has been evaluated extensively and is currently in clinical development.

  19. AT13148, a first-in-class multi-AGC kinase inhibitor, potently inhibits gastric cancer cells both in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Yu; Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008; Niu, Jianhua

    The AGC kinase family is important cell proliferation and survival. Dysregulation of this family contributes to gastric cancer progression. Here, we evaluated the potential activity of AT13148, a first-in-class multi-AGC kinase inhibitor, against gastric cancer cells. Our results showed that AT13148 exerted potent cytotoxic and anti-proliferative activities against a panel human gastric cancer cell lines (HGC-27, AGS, SNU-601, N87 and MKN-28), possibly via inducing cancer cell apoptotic death. Apoptosis inhibition by the Caspase blockers dramatically attenuated AT13148-caused cytotoxicity against gastric cancer cells. Intriguingly, same AT13148 treatment was not cytotoxic/pro-apoptotic to the non-cancerous human gastric epithelial GEC-1 cells. At the signaling level,more » AT13148 treatment in gastric cancer cells dramatically suppressed activation of multiple AGC kinases, including Akt (at p-Thr-308), p70S6 kinase (p70S6K), glycogen synthase kinase 3β (GSK-3β) and p90 ribosomal S6 kinase (RSK). Our in vivo studies demonstrated that daily oral gavage of AT13148 at well-tolerated doses significantly inhibited HGC27 xenograft tumor growth in nude mice. AGC activity was also dramatically decreased in AT13148-administrated HGC27 tumors. Therefore, targeting AGC kinases by AT13148 demonstrates superior anti-gastric cancer activity both in vitro and in vivo. The preclinical results of this study support the progression of this molecule into future evaluation as a valuable anti-gastric cancer candidate. - Highlights: • AT13148 is cytotoxic and anti-proliferative to human gastric cancer cells. • AT13148 induces gastric cancer cell apoptotic death, inhibited by Caspase inhibitors. • AT13148 inactivates multiple AGC kinases in human gastric cancer cells. • AT13148 oral administration suppresses HGC27 xenograft growth in nude mice. • AT13148 oral administration inhibits multiple AGC kinases in HGC27 xenograft tumors.« less

  20. Sulfoximines as potent RORγ inverse agonists.

    PubMed

    Ouvry, Gilles; Bihl, Franck; Bouix-Peter, Claire; Christin, Olivier; Defoin-Platel, Claire; Deret, Sophie; Feret, Christophe; Froude, David; Hacini-Rachinel, Feriel; Harris, Craig S; Hervouet, Catherine; Lafitte, Guillaume; Luzy, Anne-Pascale; Musicki, Branislav; Orfila, Danielle; Parnet, Veronique; Pascau, Coralie; Pascau, Jonathan; Pierre, Romain; Raffin, Catherine; Rossio, Patricia; Spiesse, Delphine; Taquet, Nathalie; Thoreau, Etienne; Vatinel, Rodolphe; Vial, Emmanuel; Hennequin, Laurent F

    2018-05-01

    Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom.

    PubMed Central

    Eldefrawi, A T; Eldefrawi, M E; Konno, K; Mansour, N A; Nakanishi, K; Oltz, E; Usherwood, P N

    1988-01-01

    A low molecular weight toxin isolated from the venom of the digger wasp Philanthus triangulum, first noted by T. Piek, is a potent antagonist of transmission at quisqualate-sensitive glutamate synapses of locust leg muscle. This philanthotoxin 433 (PTX-433) has been purified, chemically characterized, and subsequently synthesized along with two closely related analogues. It has a butyryl/tyrosyl/spermine sequence and a molecular weight of 435. Its two analogues, PTX-343 and PTX-334 (the numerals denoting the number of methylenes between the amino groups of the spermine moiety), are also active on the glutamate synapse of the locust leg muscle; PTX-334 was more potent and PTX-343 was less potent than the natural toxin. Such chemicals are useful for studying, labeling, and purifying glutamate receptors and may become models for an additional class of therapeutic drugs and possibly insecticides. Images PMID:2838850

  2. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer.

    PubMed

    Mason, Jacqueline M; Wei, Xin; Fletcher, Graham C; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R; Mak, Tak W

    2017-03-21

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 K i = 0.09 ± 0.02 nM; cellular Mps1 EC 50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors.

  3. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer

    PubMed Central

    Mason, Jacqueline M.; Wei, Xin; Fletcher, Graham C.; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R.; Mak, Tak W.

    2017-01-01

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors. PMID:28270606

  4. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.

    PubMed

    Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V

    2018-01-01

    The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  5. Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea.

    PubMed

    Sun, Shi; Canning, Corene B; Bhargava, Kanika; Sun, Xiuxiu; Zhu, Wenjun; Zhou, Ninghui; Zhang, Yifan; Zhou, Kequan

    2015-01-01

    Three polybrominated diphenyl ethers, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1) and 2-(2',4'-dibromophenoxy)-3,4,5-tribromophenol (2) were isolated from the marine sponge Dysidea granulosa; and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol (3) from Dysidea spp. They exhibited potent and broad spectrum in vitro antibacterial activity, especially against methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Escherichia coli O157:H7, and Salmonella. Minimal inhibitory concentration (MIC) was evaluated against 12 clinical and standard strains of Gram positive and negative bacteria. The observed MIC range was 0.1-4.0mg/L against all the Gram positive bacteria and 0.1-16.0mg/L against Gram negative bacteria. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol showed stronger broad spectrum antibacterial activity than other two compounds. 2-(2',4″-Dibromophenoxy)-3,5-dibromophenol and 2-(2',4'-dibromophenoxy)-4,6-dibromophenol are thermo-stable. The results suggest that 2-(2',4'-dibromophenoxy)-3,5-dibromophenol could be used as a potential lead molecule for anti-MRSA, anti-E. coli O157:H7, and anti-Salmonella for drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Stereoselective synthesis of an active metabolite of the potent PI3 kinase inhibitor PKI-179.

    PubMed

    Chen, Zecheng; Venkatesan, Aranapakam M; Dos Santos, Osvaldo; Delos Santos, Efren; Dehnhardt, Christoph M; Ayral-Kaloustian, Semiramis; Ashcroft, Joseph; McDonald, Leonard A; Mansour, Tarek S

    2010-03-05

    The synthesis and stereochemical determination of 1-(4-(4-((1R,5R,6R)-6-hydroxy-3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-morpholino-1,3,5-triazin-2-yl)phenyl)-3-(pyridin-4-yl)urea (2), an active metabolite of the potent PI3 kinase inhibitor PKI-179 (1), is described. Stereospecific hydroboration of the double bond of 2,5-dihydro-1H-pyrrole 8 gave the 2,3-trans alcohol 9 exclusively. The configuration of the 3-hydroxyl group in 9 was inverted by an oxidation and stereoselective reduction sequence to give the corresponding 2,3-cis isomer 23. Both exo (21) and endo (27) isomers of the metabolite 2 were prepared via a practical synthetic route from 9 and 23, respectively, and the stereochemistry of 2 was determined to be endo. The endo isomer (27) was separated into two enantiomers 28 and 29 by chiral HPLC. Compound 2 was found to be enantiomerically pure and identical to the enantiomer 28. The absolute stereochemistry of the enantiomer 28 was determined by Mosher's method, thus establishing the stereochemistry of the active metabolite 2.

  7. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities

    PubMed Central

    Ahmed-Belkacem, Abdelhakim; Colliandre, Lionel; Ahnou, Nazim; Nevers, Quentin; Gelin, Muriel; Bessin, Yannick; Brillet, Rozenn; Cala, Olivier; Douguet, Dominique; Bourguet, William; Krimm, Isabelle; Pawlotsky, Jean-Michel; Guichou, Jean- François

    2016-01-01

    Cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug–drug interactions, unclear antiviral spectrum and manufacturing issues. Here we use a fragment-based drug discovery approach using nucleic magnetic resonance, X-ray crystallography and structure-based compound optimization to generate a new family of non-peptidic, small-molecule cyclophilin inhibitors with potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis C virus, human immunodeficiency virus and coronaviruses. This family of compounds has the potential for broad-spectrum, high-barrier-to-resistance treatment of viral infections. PMID:27652979

  8. Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin.

    PubMed

    Metcalf, Brian; Chuang, Chihyuan; Dufu, Kobina; Patel, Mira P; Silva-Garcia, Abel; Johnson, Carl; Lu, Qing; Partridge, James R; Patskovska, Larysa; Patskovsky, Yury; Almo, Steven C; Jacobson, Matthew P; Hua, Lan; Xu, Qing; Gwaltney, Stephen L; Yee, Calvin; Harris, Jason; Morgan, Bradley P; James, Joyce; Xu, Donghong; Hutchaleelaha, Athiwat; Paulvannan, Kumar; Oksenberg, Donna; Li, Zhe

    2017-03-09

    We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 ( 36 ), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 ( 36 ) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).

  9. Discovery and structure-activity relationships of piperidinone- and piperidine-constrained phenethylamines as novel, potent, and selective dipeptidyl peptidase IV inhibitors.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; von Geldern, Thomas W; Longenecker, Kenton; Pireh, Daisy; Stewart, Kent D; Backes, Bradley J; Lai, Chunqiu; Lubben, Thomas H; Ballaron, Stephen J; Beno, David W A; Kempf-Grote, Anita J; Sham, Hing L; Trevillyan, James M

    2007-04-19

    Dipeptidyl peptidase IV (DPP4) inhibitors are emerging as a new class of therapeutic agents for the treatment of type 2 diabetes. They exert their beneficial effects by increasing the levels of active glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are two important incretins for glucose homeostasis. Starting from a high-throughput screening hit, we were able to identify a series of piperidinone- and piperidine-constrained phenethylamines as novel DPP4 inhibitors. Optimized compounds are potent, selective, and have good pharmacokinetic profiles.

  10. The Effectiveness of the Dramatic Activities in the Development of the Oral Performance Skills of Prep Students in English

    ERIC Educational Resources Information Center

    Zayed, Jihan El-Sayed Ahmed

    2003-01-01

    The goal of this study was to determine the effect of using some dramatic activities on developing the oral performance skills of second year prep school students in English. The dramatic activities included storytelling, story-acting, pantomime, puppetry, role-playing, reader's theater and choral reading. The oral performance skills were…

  11. Effects of several pyrethroids on hepatic cytochrome P450 activities in rats.

    PubMed

    Abdou, Rania; Sasaki, Kazuaki; Khalil, Waleed; Shah, Syed; Murasawa, Youhei; Shimoda, Minoru

    2010-04-01

    Four commonly used pyrethroids (permethrin, bifenthrin, ethofenprox, and fenpropathrin) were orally administered to Sprague-Dawley rats for 5 days to study their effects on the liver cytochrome P450 (CYP) activities. Also Michaelis-Menten kinetics of the metabolic reactions catalyzed by liver CYPs were examined after adding these pyrethroids to the assay system to investigate their possible inhibitory effects on liver CYPs activities. These reactions included ethoxyresorufin O-deethylation, tolbutamide hydroxylation, bufuralol 1'-hydroxylation, and midazolam 4-hydroxylation, for CYP1A, 2C, 2D, and 3A activities, respectively. Results showed that oral administration of bifenthrin and ethofenprox highly induced CYP1A. The most potent inhibitors for CYP1A were fenpropathrin and cis-permethrin with K(i) values of 3.71 & 3.87 microM, respectively. CYP2D was slightly inhibited by both of fenpropathrin and cis-permethrin (K(i) values were 307.32 & 632.23 microM, respectively). On the other hand, none of CYP2C or 3A was inhibited by the tested pyrethroids. Since CYP1A may relate to biotransformation of many chemicals to reactive metabolites, bifenthrin and ethofenprox may potentiate mutagenicity of the chemicals through their inducing effects on CYP 1A. As permethrin and fenpropathrin were potent inhibitor for CYP1A, they may result in substantial accumulation of some chemicals. The resultant accumulation may lead to fatal toxicities in some case.

  12. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    PubMed Central

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  13. Potent activity of the HIV-1 maturation inhibitor bevirimat in SCID-hu Thy/Liv mice.

    PubMed

    Stoddart, Cheryl A; Joshi, Pheroze; Sloan, Barbara; Bare, Jennifer C; Smith, Philip C; Allaway, Graham P; Wild, Carl T; Martin, David E

    2007-11-28

    The HIV-1 maturation inhibitor, 3-O-(3',3'-dimethylsuccinyl) betulinic acid (bevirimat, PA-457) is a promising drug candidate with 10 nM in vitro antiviral activity against multiple wild-type (WT) and drug-resistant HIV-1 isolates. Bevirimat has a novel mechanism of action, specifically inhibiting cleavage of spacer peptide 1 (SP1) from the C-terminus of capsid which results in defective core condensation. Oral administration of bevirimat to HIV-1-infected SCID-hu Thy/Liv mice reduced viral RNA by >2 log(10) and protected immature and mature T cells from virus-mediated depletion. This activity was observed at plasma concentrations that are achievable in humans after oral dosing, and bevirimat was active up to 3 days after inoculation with both WT HIV-1 and an AZT-resistant HIV-1 clinical isolate. Consistent with its mechanism of action, bevirimat caused a dose-dependent inhibition of capsid-SP1 cleavage in HIV-1-infected human thymocytes obtained from these mice. HIV-1 NL4-3 with an alanine-to-valine substitution at the N-terminus of SP1 (SP1/A1V), which is resistant to bevirimat in vitro, was also resistant to bevirimat treatment in the mice, and SP1/AIV had replication and thymocyte kinetics similar to that of WT NL4-3 with no evidence of fitness impairment in in vivo competition assays. Interestingly, protease inhibitor-resistant HIV-1 with impaired capsid-SP1 cleavage was hypersensitive to bevirimat in vitro with a 50% inhibitory concentration 140 times lower than for WT HIV-1. These results support further clinical development of this first-in-class maturation inhibitor and confirm the usefulness of the SCID-hu Thy/Liv model for evaluation of in vivo antiretroviral efficacy, drug resistance, and viral fitness.

  14. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yang-Chang; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Sureshbabu, Munisamy

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changesmore » in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.« less

  15. Methamphetamine abuse and oral health: a pilot study of "meth mouth".

    PubMed

    Ravenel, Michele C; Salinas, Carlos F; Marlow, Nicole M; Slate, Elizabeth H; Evans, Zachary P; Miller, Peter M

    2012-03-01

    Abuse of methamphetamine (meth), a potent central nervous system stimulant, has been associated with significant dental disease. Current descriptions of "meth mouth" are limited in their scope and fail to illuminate the potential pathogenic mechanisms of meth for oral disease. The purpose of this pilot study was to characterize the oral health of subjects with a history of meth abuse as compared to nonabusing control subjects. A total of 28 meth abusers and 16 control subjects were enrolled. Interviews and surveys regarding meth abuse, dental history, oral hygiene, and diet were collected. A comprehensive oral cavity examination including salivary characterization was completed. We observed significantly higher rates of decayed surfaces, missing teeth, tooth wear, plaque, and calculus among meth abusers. No significant difference in salivary flow rates were noted, yet results showed significant trends for lower pH and decreased buffering capacity. These findings suggest that salivary quality may play a more important role in meth mouth than previously considered. Salivary analysis may be useful when managing a dental patient with history of methamphetamine abuse.

  16. New Pyrazolopyrimidine Inhibitors of Protein Kinase D as Potent Anticancer Agents for Prostate Cancer Cells

    PubMed Central

    Tandon, Manuj; Johnson, James; Li, Zhihong; Xu, Shuping; Wipf, Peter; Wang, Qiming Jane

    2013-01-01

    The emergence of protein kinase D (PKD) as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1). 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1M659G for dissecting PKD-specific functions and signaling pathways in various biological systems. PMID:24086585

  17. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors.

    PubMed

    Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing

    2013-07-15

    Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Discovery of potent and selective rhodanine type IKKβ inhibitors by hit-to-lead strategy.

    PubMed

    Song, Hyeseung; Lee, Yun Suk; Roh, Eun Joo; Seo, Jae Hong; Oh, Kwang-Seok; Lee, Byung Ho; Han, Hogyu; Shin, Kye Jung

    2012-09-01

    Regulation of NF-κB activation through the inhibition of IKKβ has been identified as a promising target for the treatment of inflammatory and autoimmune disease such as rheumatoid arthritis. In order to develop novel IKKβ inhibitors, we performed high throughput screening toward around 8000 library compounds, and identified a hit compound containing rhodanine moiety. We modified the structure of hit compound to obtain potent and selective IKKβ inhibitors. Throughout hit-to-lead studies, we have discovered optimized compounds which possess blocking effect toward NF-κB activation and TNFα production in cell as well as inhibition activity against IKKβ. Among them, compound 3q showed the potent inhibitory activity against IKKβ, and excellent selectivity over other kinases such as p38α, p38β, JNK1, JNK2, and JNK3 as well as IKKα. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A pacifier-activated music player with mother's voice improves oral feeding in preterm infants.

    PubMed

    Chorna, Olena D; Slaughter, James C; Wang, Lulu; Stark, Ann R; Maitre, Nathalie L

    2014-03-01

    We conducted a randomized trial to test the hypothesis that mother's voice played through a pacifier-activated music player (PAM) during nonnutritive sucking would improve the development of sucking ability and promote more effective oral feeding in preterm infants. Preterm infants between 34 0/7 and 35 6/7 weeks' postmenstrual age, including those with brain injury, who were taking at least half their feedings enterally and less than half orally, were randomly assigned to receive 5 daily 15-minute sessions of either PAM with mother's recorded voice or no PAM, along with routine nonnutritive sucking and maternal care in both groups. Assignment was masked to the clinical team. Ninety-four infants (46 and 48 in the PAM intervention and control groups, respectively) completed the study. The intervention group had significantly increased oral feeding rate (2.0 vs. 0.9 mL/min, P < .001), oral volume intake (91.1 vs. 48.1 mL/kg/d, P = .001), oral feeds/day (6.5 vs. 4.0, P < .001), and faster time-to-full oral feedings (31 vs. 38 d, P = .04) compared with controls. Weight gain and cortisol levels during the 5-day protocol were not different between groups. Average hospital stays were 20% shorter in the PAM group, but the difference was not significant (P = .07). A PAM using mother's voice improves oral feeding skills in preterm infants without adverse effects on hormonal stress or growth.

  20. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  1. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents.

    PubMed

    Huang, Li-Rong; Hao, Xiao-Jiang; Li, Qi-Ji; Wang, Dao-Ping; Zhang, Jian-Xin; Luo, Heng; Yang, Xiao-Sheng

    2016-04-22

    The oleanane-type triterpene 18β-glycyrrhetinic acid (1) was modified chemically through the introduction of a trihydroxylated A ring and an ester moiety at C-20 to enhance its antibacterial activity. Compounds 22, 23, 25, 28, 29, 31, and 32 showed more potent inhibitory activity against Streptomyces scabies than the positive control, streptomycin. Additionally, the inhibitory activity of the most potent compound, 29, against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was greater than that of the positive controls. The antibacterial mode of action of the active derivatives involved the regulation of the expression of genes associated with peptidoglycans, the respiratory metabolism, and the inherent virulence factors found in bacteria, as determined through a quantitative real-time reverse transcriptase PCR assay.

  2. Interferon-γ regulates the function of mesenchymal stem cells from oral lichen planus via indoleamine 2,3-dioxygenase activity.

    PubMed

    Zhang, Zhihui; Han, Ying; Song, Jiangyuan; Luo, Ruxi; Jin, Xin; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Ren, Yan-Fang; Liu, Hongwei

    2015-01-01

    Little is known about mesenchymal stem cells (MSCs) in normal or inflammatory oral mucosal tissues, such as in oral lichen planus (OLP). Our objectives were to identify, isolate, and characterize MSCs from normal human oral mucosa and OLP lesions, and to evaluate indoleamine 2,3 dioxygenase (IDO) activity in mediating immunomodulation of MSCs from these tissues. Expressions of MSCs-related markers were examined in isolated cells by flow cytometry. Self-renewal and multilineage differentiations were studied to characterize these MSCs. Interferon-γ (IFN-γ), IDO, and STRO-1 were assessed by immunofluorescence. MSCs from oral mucosa and OLP or IFN-γ-pretreated MSCs were co-cultured with allogeneic mixed lymphocyte reaction assays (MLR). Proliferation and apoptosis of MLR or MSCs were detected by CCK8 and the annexin V-FITC apoptosis detection kit, respectively. IDO expression and activity were measured by real-time PCR, Western blotting, and high-performance liquid chromatography. Isolated cells from oral mucosa and OLP expressed MSC-related markers STRO-1, CD105, and CD90 but were absent for hematopoietic stem cell markers CD34. Besides, they all showed self-renewal and multilineage differentiation capacities. MSCs in OLP presented STRO-1/IDO+ phenotype by immunofluorescence. MSCs and IFN-γ-pretreated MSCs could inhibit lymphocyte proliferation via IDO activity, but not via cell apoptosis. Long-term IFN-γ could also inhibit MSC proliferation via IDO activity. Mesenchymal stem cells can be isolated from human oral mucosa and OLP tissues. Besides self-renewal and multilineage differentiation properties, these cells may participate in immunomodulation mediated by IFN-γ via IDO activity in human OLP. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Sebum-suppressing activity of the nonpolar arotinoid Ro 15-0778 in rodents.

    PubMed

    Boris, A; Hurley, J; Wong, C Q; Comai, K; Shapiro, S

    1988-01-01

    Retinoids are known to modulate sebaceous gland activity in humans and animals. The nonpolar arotinoid Ro 15-0778 [(E)-1,2,3,4-tetrahydro-1,1,4,4-tetramethyl-6-(1-methyl-2-phenylethen yl) naphthalene] does not contain a polar end group and is devoid of the classical retinoid side effects of hypervitaminosis A. The favorable toxicological profile stimulated the evaluation of this arotinoid in animal models of sebum production. In castrated, testosterone-stimulated male rats, Ro 15-0778 is 50 times more potent than 13-cis-retinoic acid in inhibiting the production and subsequent secretion of sebum. The oral ED50 value of Ro 15-0778 is 30 micrograms/kg, while an oral dose of 0.5 mg/kg inhibited sebum secretion nearly 100%. In testosterone-stimulated female rats, Ro 15-0778 inhibits sebum secretion significantly with an oral ED50 of 140 micrograms/kg and an s.c. ED50 of 75 micrograms/kg. Ro 15-0778 was also evaluated for its ability to prevent testosterone induction of the immature hamster flank organ. The topical ED50 is 0.53 mg/kg and the oral ED50 is 38 mg/kg. This arotinoid is similarly active in mature male hamsters without testosterone treatment. In addition, the retinoid is active topically and orally in reducing the size of the gerbil abdominal sebaceous gland. The compound exhibits no antiandrogenic activity when tested in ventral prostrate and seminal vesicle assays in rats. Additionally, the compound does not have estrogenic activity when tested in the rat uterine weight assay. High doses of Ro 15-0778 in humans did not demonstrate significant sebum-suppressing activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. CDB-4124 and its putative monodemethylated metabolite, CDB-4453, are potent antiprogestins with reduced antiglucocorticoid activity: in vitro comparison to mifepristone and CDB-2914.

    PubMed

    Attardi, Barbara J; Burgenson, Janet; Hild, Sheri A; Reel, Jerry R; Blye, Richard P

    2002-02-25

    To obtain selective antiprogestins, we have examined the in vitro antiprogestational/antiglucocorticoid properties of two novel compounds, CDB-4124 and the putative monodemethylated metabolite, CDB-4453, in transcription and receptor binding assays and compared them to CDB-2914 and mifepristone. All four antiprogestins bound with high affinity to rabbit uterine progestin receptors (PR) and recombinant human PR-A and PR-B (rhPR-A, rhPR-B) and were potent inhibitors of R5020-induced transactivation of the PRE2-tk-luciferase (PRE2-tk-LUC) reporter plasmid and endogenous alkaline phosphatase production in T47D-CO human breast cancer cells. None of these compounds exhibited agonist activity in these cells. Induction of luciferase activity was potentiated about five-fold by 8-Br-cAMP under basal conditions and to the same extent in the presence of the PR antagonists. Mifepristone bound to rabbit thymic glucocorticoid receptors (GR) with approximately twice the avidity of the CDB antiprogestins. Inhibition of GR-mediated transcription of PRE2-tk-LUC was assessed in HepG2 human hepatoblastoma cells. Mifepristone exhibited greater antiglucocorticoid activity than CDB-2914, 4124, and 4453, about 12-, 22-, and 185-fold, respectively. Thus, while there was a good correlation between binding to PR and functional activity of these antiprogestins, GR binding was not predictive of their glucocorticoid antagonist activity. In agreement with our in vivo results, CDB-4124 and CDB-4453, as well as CDB-2914, are potent antiprogestins in vitro, but show considerably less antiglucocorticoid activity than mifepristone.

  5. Qualitative analysis of the impact of Oral Potentially Malignant Disorders on daily life activities.

    PubMed

    Tadakamadla, Jyothi; Kumar, Santhosh; Lalloo, Ratilal; Johnson, Newell W

    2017-01-01

    To evaluate the impact of Oral Potentially Malignant Disorders (OPMD) on daily life activities. Patients diagnosed with Oral Leukoplakia, Oral submucous fibrosis and Oral Lichen Planus attending the Oral Medicine clinic of Panineeya Institute of Dental Sciences & Research Centre, Hyderabad, India were invited to participate. Eighteen interviews and three focus groups were conducted in a non-clinical setting. Voice recordings were transcribed and translated from Telugu to English. Data coding was performed using the NVivo software. Sample size for this qualitative study comprised 32 patients. Four main themes emerged: (1) difficulties with diagnosis and knowledge about the condition, (2) physical impairment and functional limitations, (3) psychological and social wellbeing and (4) effects of treatment on daily life. In a majority of the patients, most of the interview time was spent discussing physical impairment and functional limitations. Patients also reported their mouth condition having a debilitating effect on their psychological well-being and social interactions. 'Physical impairment and functional limitations' was the most important theme for many of the patients. However, the impacts of OPMD also extended beyond physical impairment and functional limitations to aspects of daily living, notably psychological and social wellbeing.

  6. Didymin: an orally active citrus flavonoid for targeting neuroblastoma

    PubMed Central

    Singhal, Sharad S.; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-01-01

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma. PMID:28187004

  7. Didymin: an orally active citrus flavonoid for targeting neuroblastoma.

    PubMed

    Singhal, Sharad S; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-04-25

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma.

  8. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects.

    PubMed

    Allen, Joshua E; Krigsfeld, Gabriel; Mayes, Patrick A; Patel, Luv; Dicker, David T; Patel, Akshal S; Dolloff, Nathan G; Messaris, Evangelos; Scata, Kimberly A; Wang, Wenge; Zhou, Jun-Ying; Wu, Gen Sheng; El-Deiry, Wafik S

    2013-02-06

    Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an antitumor protein that is in clinical trials as a potential anticancer therapy but suffers from drug properties that may limit efficacy such as short serum half-life, stability, cost, and biodistribution, particularly with respect to the brain. To overcome such limitations, we identified TRAIL-inducing compound 10 (TIC10), a potent, orally active, and stable small molecule that transcriptionally induces TRAIL in a p53-independent manner and crosses the blood-brain barrier. TIC10 induces a sustained up-regulation of TRAIL in tumors and normal cells that may contribute to the demonstrable antitumor activity of TIC10. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor suppressor TRAIL.

  9. Oral-Fluid Thiol-Detection Test Identifies Underlying Active Periodontal Disease Not Detected by the Visual Awake Examination.

    PubMed

    Queck, Katherine E; Chapman, Angela; Herzog, Leslie J; Shell-Martin, Tamara; Burgess-Cassler, Anthony; McClure, George David

    Periodontal disease in dogs is highly prevalent but can only be accurately diagnosed by performing an anesthetized oral examination with periodontal probing and dental radiography. In this study, 114 dogs had a visual awake examination of the oral cavity and were administered an oral-fluid thiol-detection test prior to undergoing a a full-mouth anesthetized oral examination and digital dental radiographs. The results show the visual awake examination underestimated the presence and severity of active periodontal disease. The thiol-detection test was superior to the visual awake examination at detecting the presence and severity of active periodontal disease and was an indicator of progression toward alveolar bone loss. The thiol-detection test detected active periodontal disease at early stages of development, before any visual cues were present, indicating the need for intervention to prevent periodontal bone loss. Early detection is important because without intervention, dogs with gingivitis (active periodontal disease) progress to irreversible periodontal bone loss (stage 2+). As suggested in the current AAHA guidelines, a thiol-detection test administered in conjunction with the visual awake examination during routine wellness examinations facilitates veterinarian-client communication and mitigates under-diagnosis of periodontal disease and underutilization of dental services. The thiol-detection test can be used to monitor the periodontal health status of the conscious patient during follow-up examinations based on disease severity.

  10. Activation of Toll-like receptor-9 promotes cellular migration via up-regulating MMP-2 expression in oral squamous cell carcinoma.

    PubMed

    Ruan, Min; Zhang, Zun; Li, Siyi; Yan, Min; Liu, Shengwen; Yang, Wenjun; Wang, Lizheng; Zhang, Chenping

    2014-01-01

    Activation of Toll like receptors (TLRs) signaling has been implicated in promoting malignant cell invasion and metastatic potential. Previously we demonstrated that increased TLR-9 expression predicted poor survival in oral cancer patients. The objective of this study is to further investigate the roles and potential molecular mechanisms of TLR-9 signaling in human oral cancer cell invasion. Cell migration, invasion and protein expression were detected by wound healing assay, Transwell chambers model and western blot. The secretion and activity levels of metalloproteinases-2/9 were quantified by ELISA and Gelatin zymography. EMSA and ChIP assays were employed to detect the activity of AP-1signal pathway. TLR-9 siRNA transfection was used to regulate the expression and activity of TLR-9 in oral cancer cell line HB cells. The results of both wound healing assay and in vitro Transwell assay revealed that activation of TLR-9 induced dose- and time- dependent migration and invasion of HB cells. An increased expression, secretion and activity of MMP-2 were observed upon the treatment of CpG-ODN. The TLR-9 signaling-mediated MMP-2 expression appeared to be a consequence of AP-1 activation, because that their DNA binding activity was enhanced by CpG-ODN treatment. All these influences were efficiently repressed by the knockdown of TLR-9 through siRNA or pretreatment of an AP-1 inhibitor. Activation of TLR-9 signaling could promote human oral cancer HB cells invasion with the induction of MMP-2 presentation by attenuating AP-1 binding activity, suggesting a novel anti-metastatic application for TLR-9 targeted therapy in oral cancer in the future.

  11. Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks.

    PubMed

    Erwan, Edi; Chowdhury, Vishwajit Sur; Nagasawa, Mao; Goda, Ryosei; Otsuka, Tsuyoshi; Yasuo, Shinobu; Furuse, Mitsuhiro

    2014-07-25

    L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks. Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period. Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines. These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Pharmacokinetics, dose proportionality and permeability of S002-333 and its enantiomers, a potent antithrombotic agent, in rabbits.

    PubMed

    Saxena, Amrita; Valicherla, Guru R; Joshi, Pankaj; Saxena, Rohit; Cheruvu, Srikanth H; Bhunia, Shome S; Jain, Girish K; Siddiqui, Hefazat H; Saxena, Anil K; Gayen, Jiaur R

    2015-01-01

    1. S002-333 [(2-(4'-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-pyrido (3,4-b) indole-3-carboxylic acid amide)] is a novel and potent antithrombotic active agent. The present work investigates the pharmacokinetics, bioavailability, dose proportionality and permeability of the racemate, S002-333 in male New Zealand White (NZW) rabbits. 2. Rabbits were administered single intravenous (i.v.) (2 mg/kg) and three oral doses of 10, 20 and 40 mg/kg of S002-333, respectively, at different occasions to evaluate dose proportionality. Serial blood samples were collected and analyzed by a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Since S002-333 is a racemate consisting of S004-1032 (R) and S007-1558 (S), same samples were analyzed using a chiralcel column so as to evaluate the respective enantiomers. 3. The peak plasma concentration, after oral administration, occurred at ∼10 h post-dose. The clearance (CL) and volume of distribution (Vd) after i.v. dose were found to be 3.05 ± 0.09 l/h/kg and 6.73 ± 1.16 l/kg, respectively. The absolute oral bioavailability of S002-333 was 16.32%, whereas it was 6.62 and 5.90% for R- and S-enantiomers, respectively. The absolute bioavailability of 10, 20 and 40 mg/kg doses were found to be 27.91, 14.39 and 16.91%, respectively. The PAMPA (parallel artificial membrane permeability assay) assay shows that S002-333 has a low-passive permeability at gastric and intestinal environment. 4. In conclusion, S002-333 has low-passive permeability, low CL and large Vd. The R-enantiomer has a "slightly" greater bioavailability than the S-enantiomer.

  13. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Garcia, C; Lacour, C; Guiraudou, P; Christophe, B; Villanova, G; Nisato, D; Maffrand, J P; Le Fur, G

    1993-07-01

    SR 49059, a new potent and selective orally active, nonpeptide vasopressin (AVP) antagonist has been characterized in several in vitro and in vivo models. SR 49059 showed high affinity for V1a receptors from rat liver (Ki = 1.6 +/- 0.2) and human platelets, adrenals, and myometrium (Ki ranging from 1.1 to 6.3 nM). The previously described nonpeptide V1 antagonist, OPC-21268, was almost inactive in human tissues at concentrations up to 100 microM. SR 49059 exhibited much lower affinity (two orders of magnitude or more) for AVP V2 (bovine and human), V1b (human), and oxytocin (rat and human) receptors and had no measurable affinity for a great number of other receptors. In vitro, AVP-induced contraction of rat caudal artery was competitively antagonized by SR 49059 (pA2 = 9.42). Furthermore, SR 49059 inhibited AVP-induced human platelet aggregation with an IC50 value of 3.7 +/- 0.4 nM, while OPC-21268 was inactive up to 20 microM. In vivo, SR 49059 inhibited the pressor response to exogenous AVP in pithed rats (intravenous) and in conscious normotensive rats (intravenous and per os) with a long duration of action (> 8 h at 10 mg/kg p.o). In all the biological assays used, SR 49059 was devoid of any intrinsic agonistic activity. Thus, SR 49059 is the most potent and selective nonpeptide AVP V1a antagonist described so far, with marked affinity, selectivity, and efficacy toward both animal and human receptors. With this original profile, SR 49059 constitutes a powerful tool for exploring the therapeutical usefulness of a selective V1a antagonist.

  14. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei

    PubMed Central

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa

    2015-01-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca2+, and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527

  15. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    PubMed

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies

    PubMed Central

    Hu, Wei-Gang; Yin, Junfei; Chau, Damon; Hu, Charles Chen; Lillico, Dustin; Yu, Justin; Negrych, Laurel M.; Cherwonogrodzky, John W.

    2013-01-01

    Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs) were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB) with high affinity (K D values from 2.55 to 36.27 nM). RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA) from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p.) administration of D9, at a dose of 5 μg, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes. PMID:23484120

  17. Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest

    PubMed Central

    Kim, Jun-Hee; Han Kwon, Ki; Jung, Ji-Youn; Han, Hye-Suk; Hyun Shim, Jung; Oh, SeJun; Choi, Kyeong-Hee; Choi, Eun-Sun; Shin, Ji-Ae; Leem, Dae-Ho; Soh, Yunjo; Cho, Nam-Pyo; Cho, Sung-Dae

    2010-01-01

    Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 µM of SFN for 12 h caused a cell cycle arrest in the G2/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma. PMID:20104266

  18. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo.

    PubMed

    Vendetti, Frank P; Lau, Alan; Schamus, Sandra; Conrads, Thomas P; O'Connor, Mark J; Bakkenist, Christopher J

    2015-12-29

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.

  19. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    PubMed Central

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  20. Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration.

    PubMed

    Lee, Dayong; Vandrey, Ryan; Milman, Garry; Bergamaschi, Mateus; Mendu, Damodara R; Murray, Jeannie A; Barnes, Allan J; Huestis, Marilyn A

    2013-09-01

    Oral fluid (OF) is a valuable biological alternative for clinical and forensic drug testing. Evaluating OF to plasma (OF/P) cannabinoid ratios provides important pharmacokinetic data on the disposition of drug and factors influencing partition between matrices. Eleven chronic cannabis smokers resided on a closed research unit for 51 days. There were four 5-day sessions of 0, 30, 60, and 120 mg oral ∆(9)-tetrahydrocannabinol (THC)/day followed by a five-puff smoked cannabis challenge on Day 5. Each session was separated by 9 days ad libitum cannabis smoking. OF and plasma specimens were analyzed for THC and metabolites. During ad libitum smoking, OF/P THC ratios were high (median, 6.1; range, 0.2-348.5) within 1 h after last smoking, decreasing to 0.1-20.7 (median, 2.1) by 13.0-17.1 h. OF/P THC ratios also decreased during 5-days oral THC dosing, and after the smoked cannabis challenge, median OF/P THC ratios decreased from 1.4 to 5.5 (0.04-245.6) at 0.25 h to 0.12 to 0.17 (0.04-5.1) at 10.5 h post-smoking. In other studies, longer exposure to more potent cannabis smoke and oromucosal cannabis spray was associated with increased OF/P THC peak ratios. Median OF/P 11-nor-9-carboxy-THC (THCCOOH) ratios were 0.3-2.5 (range, 0.1-14.7) ng/μg, much more consistent in various dosing conditions over time. OF/P THC, but not THCCOOH, ratios were significantly influenced by oral cavity contamination after smoking or oromucosal spray of cannabinoid products, followed by time-dependent decreases. Establishing relationships between OF and plasma cannabinoid concentrations is essential for making inferences of impairment or other clinical outcomes from OF concentrations.