Science.gov

Sample records for potential delivery agent

  1. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  2. Evaluation of boronated EGF as a potential delivery agent for BNCT of brain tumors

    SciTech Connect

    Yang, Weilian; Barth, R.F.; Adams, D.M.

    1996-12-31

    The epidermal growth factor receptor (EGFR) gene is often amplified in human glioblastomas, but, reflecting the cellular heterogeneity of these tumors, the frequency of amplification is variable. Since the number of EGFR has been considered as a potential target for the specific delivery of diagnostic and therapeutic agents to brain tumors. Initially, the focus was on using anti-EGFR monoclonal antibodies or their fragments, but within the past few years there has been increasing interest in using EGF based bioconjugates as targeting agents. Recently, we have described a method for the boronation of EGF and have characterized the resulting bioconjugates in vitro. In the present study, we have investigated the potential usefulness of boronated EGF as a delivery agent for neutron capture therapy in rats bearing intracerebral implants of the C6 glioma, which has been transfected with the gene encoding EGFR. Our results indicate that following intratumoral injection, boronated EGF selectivity targeted the transfected EGFR positive C6 glioma, and that the amount of delivered to the tumor exceeded by 3-4 orders of magnitude that which could be delivered by intravenous injection.

  3. Photoactive metal carbonyl complexes as potential agents for targeted CO delivery.

    PubMed

    Gonzales, Margarita A; Mascharak, Pradip K

    2014-04-01

    The surprising discovery of carbon monoxide (CO) as a signaling molecule in mammalian physiology has recently raised interest in this toxic gas among researchers in biochemical and pharmaceutical community. CO is endogenously produced mainly from catabolism of heme by the enzyme heme oxygenase (HO) and participates in a myriad of anti-inflammatory, anti-proliferative, and vasoregulatory pathways. In animal models, low doses of CO have exhibited beneficial effects in suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. The salutary effects of CO have naturally drawn attention of the pharmaceutical industry for its use as a cytoprotective agent. Safety-related concerns of the use of this noxious gas have prompted research in the area of syntheses of CO-releasing molecules (CORMs) and to date, several metal carbonyls (metal complexes of CO) have been employed as CORMs in promoting prolonged (and safe) delivery of low doses of CO to cellular targets. Because many carbonyl complexes release CO upon illumination, investigators have recently began to explore the possibility of "controlled CO delivery" through the use of light. During the past few years, a number of photoactive CORMs or "photoCORMs" have been synthesized that release CO upon illumination with UV or visible light. The utility of these photoCORMs in CO delivery has also been confirmed. Novel design principles for isolation of photoCORMs have started to appear in recent reports. Scrutiny of the literature reveals the emergence of a new exciting area of drug development in such efforts. The potential of photoCORMs as CO-donating pharmaceuticals along with a brief overview of the physiological roles of CO is presented in this review. PMID:24287103

  4. Balancing stealth and echogenic properties in an ultrasound contrast agent with drug delivery potential.

    PubMed

    Jablonowski, Lauren J; Alfego, David; Andorko, James I; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2016-10-01

    Contrast agents are currently being modified to combine diagnostic and therapeutic capabilities. For ultrasound (US) imaging with polymeric contrast agents, it is necessary to modify the shell to create "stealth" microbubbles but without these modifications sacrificing the agent's ability to interact with the focused US beam. We hypothesize that addition of the classic immune shielding molecule polyethylene glycol (PEG) to a polylactide (PLA) microbubble shell will affect the acoustic and physical properties of the resulting agents. In an effort to determine the best formulation to achieve a balance between stealth and acoustic activity, we compared two PEGylation techniques; addition of increasing amounts of PEG-PLA copolymer and employing incorporation of a PEG lipid (LipidPEG) into the shell. Loss of acoustic enhancement occurred in a dose-dependent manner for both types of PEGylated agents (loss of signal occurred at >5 wt% PEG-PLA and >1 wt% LipidPEG), while immune activation was also reduced in a dose-dependent manner for the PEG-PLA agents. This study shows that the balance between acoustic behavior and improved immune avoidance was scalable and successful to different degrees with both PEGylation methods, and was best achieved using for PEG-PLA at 5 wt% and for LipidPEG at 1 wt%. Studies are ongoing to evaluate the best method for the targeting and drug delivery capabilities of these agents for applications in cancer treatment. This study represents the basis for understanding the consequences of making modifications to the native polymeric shell. PMID:27388945

  5. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    SciTech Connect

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-11

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  6. Histamine, a vasoactive agent with vascular disrupting potential, improves tumour response by enhancing local drug delivery

    PubMed Central

    Brunstein, F; Rens, J; van Tiel, S T; Eggermont, A M M; ten Hagen, T L M

    2006-01-01

    Tumour necrosis factor (TNF)-based isolated limb perfusion (ILP) is an approved and registered treatment for sarcomas confined to the limbs in Europe since 1998, with limb salvage indexes of 76%. TNF improves drug distribution in solid tumours and secondarily destroys the tumour-associated vasculature (TAV). Here we explore the synergistic antitumour effect of another vasoactive agent, histamine (Hi), in doxorubicin (DXR)-based ILP and evaluate its antivascular effects on TAV. We used our well-established rat ILP model for in vivo studies looking at tumour response, drug distribution and effects on tumour vessels. In vitro studies explored drug interactions at cellular level on tumour cells (BN-175) and Human umbilical vein endothelial cells (HUVEC). There was a 17% partial response and a 50% arrest in tumour growth when Hi was combined to DXR, without important side effects, against 100% progressive disease with DXR alone and 29% arrest in tumour growth for Hi alone. Histology documented an increased DXR leakage in tumour tissue combined to a destruction of the TAV, when Hi was added to the ILP. In vitro no synergy between the drugs was observed. In conclusion, Hi is a vasoactive drug, targeting primarily the TAV and synergises with different chemotherapeutic agents. PMID:17106443

  7. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents.

    PubMed

    Zhigaltsev, Igor V; Tam, Ying K; Leung, Alex K K; Cullis, Pieter R

    2016-06-01

    Previous studies from this group have shown that limit size lipid-based systems - defined as the smallest achievable aggregates compatible with the packing properties of their molecular constituents - can be efficiently produced using rapid microfluidic mixing technique. In this work, it is shown that similar procedures can be employed for the production of homogeneously sized unilamellar vesicular systems of 30-40 nm size range. These vesicles can be remotely loaded with the protonable drug doxorubicin and exhibit adequate drug retention properties in vitro and in vivo. In particular, it is demonstrated that whereas sub-40 nm lipid nanoparticle (LNP) systems consisting entirely of long-chain saturated phosphatidylcholines cannot be produced, the presence of such lipids may have a beneficial effect on the retention properties of limit size systems consisting of mixed lipid components. Specifically, a 33-nm diameter doxorubicin-loaded LNP system composed of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC), 1,2-dipalmitoyl phosphatidylcholine (DPPC), cholesterol, and PEGylated lipid (DSPE-PEG2000) demonstrated adequate, stable drug retention in the circulation, with a half-life for drug release of ∼12 h. These results indicate that microfluidic mixing is the technique of choice for the production of bilayer LNP systems with sizes less than 50 nm that could lead to development of a novel class of ultra-small drug delivery vehicles. PMID:25856305

  8. Hydrogels for combination delivery of antineoplastic agents.

    PubMed

    Bouhadir, K H; Alsberg, E; Mooney, D J

    2001-10-01

    The systemic delivery of anticancer agents has been widely investigated during the past decade but localized delivery may offer a safer and more effective delivery approach. We have designed and synthesized a novel hydrogel to locally deliver antineoplastic agents, and demonstrate the different types of release that can be achieved from these hydrogels using three model drugs: methotrexate, doxorubicin, and mitoxantrone. Alginate was chemically modified into low molecular weight oligomers and cross-linked with a biodegradable spacer (adipic dihydrazide) to form biodegradable hydrogels. The model antineoplastic agents were loaded into the hydrogel via three different mechanisms. Methotrexate was incorporated within the pores of the hydrogel and was released by diffusion into the surrounding medium. Doxorubicin was covalently attached to the polymer backbone via a hydrolytically labile linker and was released following the chemical hydrolysis of the linker. Mitoxantrone was ionically complexed to the polymer and was released after the dissociation of this complex. These three release mechanisms could potentially be used to deliver a wide selection of antineoplastic agents, based on their chemical structure. This novel delivery system allows for the release of single or combinations of antineoplastic agents, and may find utility in localized antineoplastic agent delivery. PMID:11519782

  9. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  10. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of pore forming agents.

    PubMed

    Selvakumaran, Suguna; Muhamad, Ida Idayu; Abd Razak, Saiful Izwan

    2016-01-01

    Floating hydrogels were prepared from kappa carrageenan containing CaCO3 and NaHCO3 as pore forming agents. The effects of CaCO3 and NaHCO3 on hydrogel characterizations were investigated and compared. Amoxicillin trihydrate was used as a model drug. Characterizations of the hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). As pore forming agents concentration increases, the porosity (%) and floating properties increased. NaHCO3 incorporated hydrogels showed higher porosity with shorter floating lag time (FLT) than CaCO3. Hydrogel which contained CaCO3 exhibited better gel stability over the control and NaHCO3 containing gel. Incorporation of CaCO3 into kappa carrageenan hydrogel showed smoother surface gels compared to those produced with NaHCO3. CaCO3 also showed higher drug entrapment efficiency and sustained drug release profile than NaHCO3. The results of these studies showed that, CaCO3 is an effective pore forming agents in κC hydrogels preparation as compare to NaHCO3. Thus, CaCO3 can be an excellent pore forming agent for an effective floating drug delivery system. PMID:26453870

  11. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent.

    PubMed

    Ray Chowdhuri, Angshuman; Bhattacharya, Dipsikha; Sahu, Sumanta Kumar

    2016-02-21

    The development of a novel multifunctional porous nanoplatform for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging has been realised in the current work. Here we have developed a magnetic nanoscale metal organic frameworks (NMOF) for potential targeted drug delivery. These magnetic NMOFs were fabricated by incorporation of Fe3O4 nanoparticles into porous isoreticular metal organic frameworks (IRMOF-3). To achieve targeted drug delivery towards cancer cells specifically, folic acid was conjugated to the NMOF surface. Then, the fluorescent molecule rhodamine B isothiocyanate (RITC) was conjugated to the NMOFs for biological imaging applications. The synthesized magnetic NMOFs were fully characterised by FTIR, powder XRD, XPS, SQUID, TGA, TEM, FESEM, and DLS. The synthesized magnetic NMOFs were observed to be smaller than 100 nm and were found to be nontoxic towards human cervix adenocarcinoma (HeLa) and murine fibroblast (NIH3T3) cells according to cell viability assays. The cancer chemotherapy drug paclitaxel was conjugated to the magnetic NMOFs through hydrophobic interactions with a relatively high loading capacity. Moreover, these folic acid-conjugated magnetic NMOFs showed stronger T2-weighted MRI contrast towards the cancer cells, justifying their possible significance in imaging. PMID:26754449

  12. Salicylic acid derivatives as potential anti asthmatic agents using disease responsive drug delivery system for prophylactic therapy of allergic asthma.

    PubMed

    Raju, Kalidhindi Rama Satyanarayana; Ambhore, Nilesh S; Mulukutla, Shashank; Gupta, Saurabh; Murthy, Vishakantha; Kumar, M N Kiran; Madhunapantula, Subba Rao V; Kuppuswamy, Gowthamarajan; Elango, Kannan

    2016-02-01

    Asthma is a multi-factorial and complicated lung disorder of the immune system which has expanded to a wider ambit unveiling its etiology to be omnipresent at both ends of the spectrum involving basic pharmacology and in-depth immunology. As asthma occurs through triggered activation of various immune cells due to different stimuli, it poses a great challenge to uncover specific targets for therapeutic interventions. Recent pharmacotherapeutic approaches for asthma have been focused on molecular targeting of transcription factors and their signaling pathways; mainly nucleus factor kappa B (NFκB) and its associated pathways which orchestrate the synthesis of pro-inflammatory cytokines (IL-1β, TNF-α, GM-CSF), chemokines (RANTES, MIP-1a, eotaxin), adhesion molecules (ICAM-1, VCAM-1) and inflammatory enzymes (cyclooxygenase-2 and iNOS). 5-aminosalicylic acid (5-ASA) and sodium salicylate are known to suppress NFκB activation by inhibiting inhibitor of kappa B kinase (IKκB). In order to target the transcription factor, a suitable carrier system for delivering the drug to the intracellular space is essential. 5-ASA and sodium salicylate loaded liposomes incorporated into PEG-4-acrylate and CCRGGC microgels (a polymer formed by crosslinking of trypsin sensitive peptide and PEG-4-acrylate) could probably suit the needs for developing a disease responsive drug delivery system which will serve as a prophylactic therapy for asthmatic patients. PMID:26643666

  13. Glycosylated Nanoparticles as Efficient Antimicrobial Delivery Agents.

    PubMed

    Eissa, Ahmed M; Abdulkarim, Ali; Sharples, Gary J; Cameron, Neil R

    2016-08-01

    Synthetic polymer nanoparticles that can be tailored through multivalent ligand display on the surface, while at the same time allowing encapsulation of desired bioactive molecules, are especially useful in providing a versatile and robust platform in the design of specific delivery vehicles for various purposes. Glycosylated nanoparticles (glyco-NPs) of a poly(n-butyl acrylate) (pBA) core and poly(N-2-(β-d-glucosyloxy)ethyl acrylamide) (p(NβGlcEAM)) or poly(N-2-(β-D-galactosyloxy)ethyl acrylamide) (p(NβGalEAM)) corona were prepared via nanoprecipitation in aqueous solutions of preformed amphiphilic glycopolymers. Well-defined block copolymers of (poly(pentafluorophenyl acrylate) (pPFPA) and pBA were first prepared by RAFT polymerization followed by postpolymerization functionalization with aminoethyl glycosides to yield p(NβGlcEAM-b-BA) and p(NβGalEAM-b-BA), which were then used to form glyco-NPs (glucosylated and galactosylated NPs, Glc-NPs and Gal-NPs, respectively). The glyco-NPs were characterized by dynamic light scattering (DLS) and TEM. Encapsulation and release of ampicillin, leading to nanoparticles that we have termed "glyconanobiotics", were studied. The ampicillin-loaded glyco-NPs were found to induce aggregation of Staphylococcus aureus and Escherichia coli and resulted in antibacterial activity approaching that of ampicillin itself. This glyconanobiotics strategy represents a potential new approach for the delivery of antibiotics close to the surface of bacteria by promoting bacterial aggregation. Defined release in the proximity of the bacterial envelope may thus enhance antibacterial efficiency and potentially reduce the quantities of agent required for potency. PMID:27434596

  14. Theranostic agents for intracellular gene delivery with spatiotemporal imaging

    PubMed Central

    Knipe, Jennifer M.; Peters, Jonathan T.; Peppas, Nicholas A.

    2013-01-01

    Gene therapy is the modification of gene expression to treat a disease. However, efficient intracellular delivery and monitoring of gene therapeutic agents is an ongoing challenge. Use of theranostic agents with suitable targeted, controlled delivery and imaging modalities has the potential to greatly advance gene therapy. Inorganic nanoparticles including magnetic nanoparticles, gold nanoparticles, and quantum dots have been shown to be effective theranostic agents for the delivery and spatiotemporal tracking of oligonucleotides in vitro and even a few cases in vivo. Major concerns remain to be addressed including cytotoxicity, particularly of quantum dots; effective dosage of nanoparticles for optimal theranostic effect; development of real-time in vivo imaging; and further improvement of gene therapy efficacy. PMID:23606894

  15. Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery.

    PubMed

    Stumpp, O; Chen, B; Welch, A J

    2006-01-01

    We present a gentle mechanical method for the noninvasive transepidermal delivery of topically applied optical skin clearing agents. Optical skin clearing reduces light scattering in highly turbid skin with the aid of hyperosmotic chemicals such as glycerol, polyethylene glycol, and solutions of dextrose. Transepidermal delivery of such agents is believed to be most patient compliant and most likely to be used in a clinical environment. Optical skin clearing has the potential to expand the current limited use of laser light in medicine for diagnostic and therapeutic applications. Light scattering limits the penetration depth of collimated light into skin. In order to increase the diffusion of topically applied optical skin clearing agents into skin, we present a gentle mechanical delivery method involving glycerol and dextrose as optical skin clearing agents and fine 220-grit sandpaper to rub the clearing agent into the tissue. Gentle rubbing causes abrasion of the superficial skin layer including the stratum corneum, which otherwise prevents these optical skin clearing agents from freely diffusing into skin. Results indicate very fast optical skin clearing rates. In vivo hamster skin turned transparent within 2 min. The 1e light penetration depth increased by 36+/-3.75% for dextrose and 43+/-8.24% for glycerol. Optical skin clearing was reversed using phosphate buffered saline solution. Skin viability was observed 70 h post-treatment and showed scabbing and erythema on a few percent of the total optically cleared skin surface. PMID:16965146

  16. TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Moseke, Claus; Hage, Felix; Vorndran, Elke; Gbureck, Uwe

    2012-05-01

    Nanotube arrays on medical titanium surfaces were fabricated by two different anodization methods and their potential for storage and release of antimicrobial substances was evaluated. The treatment of the Ti surfaces in fluoride containing electrolytes on water as well as on polyethylene glycol basis led to the formation of TiO2 nanotubes with up to 6.54 μm length and average diameters of up to 160 nm. Drug release experiments with the model antibiotic vancomycin and with antibacterial silver ions showed that the increased surface area of the anodized samples enabled them to be loaded with up to 450% more active agent than the untreated Ti surfaces. Significant surface-dependent differences in the release kinetics of vancomycin were observed. In comparison to surfaces anodized in an aqueous electrolyte, the release of the antibiotic from surfaces anodized in an electrolyte based on ethylene glycol was significantly retarded, with a release of noticeable amounts over a period of more than 300 days. Loading of nanotube surfaces fabricated in aqueous electrolyte with silver ions revealed increased amounts of adsorbed silver by up to 230%, while the release kinetics showed significant differences in comparison to untreated Ti. It was concluded that nanotube arrays on favored medical implant materials have a high potential for loading with antimicrobial agents and also provide the possibility of tailored release kinetics by variation of anodization parameters.

  17. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  18. Nanoparticles as conjugated delivery agents for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  19. Nanochemistry of Protein-Based Delivery Agents

    PubMed Central

    Rajendran, Subin R. C. K.; Udenigwe, Chibuike C.; Yada, Rickey Y.

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior. PMID:27489854

  20. Nanochemistry of Protein-Based Delivery Agents.

    PubMed

    Rajendran, Subin R C K; Udenigwe, Chibuike C; Yada, Rickey Y

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior. PMID:27489854

  1. Transdermal delivery of therapeutic agents using dendrimers (US20140018435A1): a patent evaluation.

    PubMed

    Yang, Jiepin; Hu, Jingjing; He, Binwei; Cheng, Yiyun

    2015-01-01

    Transdermal drug delivery offers a number of advantages over systematic administrations such as oral administration and intravenous injection. However, most therapeutic agents are limited in transdermal delivery due to the presence of a stratum corneum barrier. A number of chemical penetration enhancers were used to facilitate the penetration of drugs with poor skin permeability across the barrier, but these enhancers are usually associated with safety concerns such as skin irritation and immune response. The current patent application by Hong et al. provides the potential use of surface-engineered dendrimers for transdermal delivery of therapeutic agents. It systemically demonstrates the effect of dendrimer generation, surface chemistry and hydrophobicity on the skin permeability of dendrimers. The most efficient dendrimer shows nearly 30% skin permeation when its surface was conjugated with endoxifen, a drug widely used for the treatment of breast cancers. The described technique provides an efficient and safe method for the delivery of therapeutic agents, especially chemopreventive compounds and anticancer drugs. PMID:26150049

  2. Delivery of gene silencing agents for breast cancer therapy

    PubMed Central

    2013-01-01

    The discovery of RNA interference has opened the door for the development of a new class of cancer therapeutics. Small inhibitory RNA oligos are being designed to specifically suppress expression of proteins that are traditionally considered nondruggable, and microRNAs are being evaluated to exert broad control of gene expression for inhibition of tumor growth. Since most naked molecules are not optimized for in vivo applications, the gene silencing agents need to be packaged into delivery vehicles in order to reach the target tissues as their destinations. Thus, the selection of the right delivery vehicles serves as a crucial step in the development of cancer therapeutics. The current review summarizes the status of gene silencing agents in breast cancer and recent development of candidate cancer drugs in clinical trials. Nanotechnology-based delivery vectors for the formulation and packaging of gene silencing agents are also described. PMID:23659575

  3. A Randomized Trial Comparing Skin Antiseptic Agents at Cesarean Delivery

    PubMed Central

    Tuuli, Methodius G.; Liu, Jingxia; Stout, Molly J.; Martin, Shannon; Cahill, Alison G.; Odibo, Anthony O.; Colditz, Graham A.; Macones, George A.

    2016-01-01

    BACKGROUND Preoperative skin antisepsis has the potential to decrease the risk of surgical-site infection. However, evidence is limited to guide the choice of antiseptic agent at cesarean delivery, which is the most common major surgical procedure among women in the United States. METHODS In this single-center, randomized, controlled trial, we evaluated whether the use of chlorhexidine–alcohol for preoperative skin antisepsis was superior to the use of iodine–alcohol for the prevention of surgical-site infection after cesarean delivery. We randomly assigned patients undergoing cesarean delivery to skin preparation with either chlorhexidine–alcohol or iodine–alcohol. The primary outcome was superficial or deep surgical-site infection within 30 days after cesarean delivery, on the basis of definitions from the Centers for Disease Control and Prevention. RESULTS From September 2011 through June 2015, a total of 1147 patients were enrolled; 572 patients were assigned to chlorhexidine–alcohol and 575 to iodine–alcohol. In an intention-to-treat analysis, surgical-site infection was diagnosed in 23 patients (4.0%) in the chlorhexidine–alcohol group and in 42 (7.3%) in the iodine–alcohol group (relative risk, 0.55; 95% confidence interval, 0.34 to 0.90; P = 0.02). The rate of superficial surgical-site infection was 3.0% in the chlorhexidine–alcohol group and 4.9% in the iodine–alcohol group (P = 0.10); the rate of deep infection was 1.0% and 2.4%, respectively (P = 0.07). The frequency of adverse skin reactions was similar in the two groups. CONCLUSIONS The use of chlorhexidine–alcohol for preoperative skin antisepsis resulted in a significantly lower risk of surgical-site infection after cesarean delivery than did the use of iodine–alcohol. (Funded by the National Institutes of Health and Washington University School of Medicine in St. Louis; ClinicalTrials.gov number, NCT01472549.) PMID:26844840

  4. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery

    NASA Astrophysics Data System (ADS)

    Pandey, Ambarish; Sarangi, Sasmit; Chien, Kelly; Sengupta, Poulomi; Papa, Anne-Laure; Basu, Sudipta; Sengupta, Shiladitya

    2014-11-01

    Tumor vasculature is critically dependent on platelet mediated hemostasis and disruption of the same can augment delivery of nano-formulation based chemotherapeutic agents which depend on enhanced permeability and retention for tumor penetration. Here, we evaluated the role of Clopidogrel, a well-known inhibitor of platelet aggregation, in potentiating the tumor cytotoxicity of cisplatin nano-formulation in a murine breast cancer model. In vivo studies in murine syngeneic 4T1 breast cancer model showed a significant greater penetration of macromolecular fluorescent nanoparticles after clopidogrel pretreatment. Compared to self-assembling cisplatin nanoparticles (SACNs), combination therapy with clopidogrel and SACN was associated with a 4 fold greater delivery of cisplatin to tumor tissue and a greater reduction in tumor growth as well as higher survival rate. Clopidogrel enhances therapeutic efficiency of novel cisplatin based nano-formulations agents by increasing tumor drug delivery and can be used as a potential targeting agent for novel nano-formulation based chemotherapeutics.

  5. Nanoparticles as conjugated delivery agents for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  6. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    SciTech Connect

    McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; Duncan, Morven J.; Wheatley, Paul S.; Warrender, Stewart J.; Dawson, Daniel; Ashbrook, Sharon E.; Gil, Barbara; Marszalek, Bartosz; Düren, Tina; Williams, Jennifer J.; Charrier, Cedric; Mercer, Derry K.; Teat, Simon J.; Morris, Russell E.

    2014-12-01

    The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  7. Introduction: Aerosol delivery of orally inhaled agents.

    PubMed

    Corcoran, Timothy E; Devadason, Sunalene G; Kuehl, Philip J

    2012-12-01

    Deposition scintigraphy methods have been used extensively to provide qualitative and quantitative data on aerosol drug deposition in the lungs. However, differences in methodology among the different centers performing these studies have limited the application of these techniques, especially in regulatory roles. As an introduction to the standardized techniques developed by the International Society for Aerosols in Medicine (ISAM) Regulatory Affairs Networking Group, we present potential advantages of the use of standard techniques for deposition scintigraphy. Specifically, we propose that standardized techniques would allow for better comparisons between labs and would facilitate multicenter studies. They would allow for improved methods of establishing equivalence and could be better utilized to establish dosing for new medications. They would allow for the performance of more accurate dose ranging or multidose studies and complement pharmacokinetic studies of new inhaled medications. Standardized techniques could help to establish the relationship between the deposition of drug in the lungs and clinical effect, and may also facilitate clinical measurements of deposited dose for medications with narrow therapeutic indices. In the sections that follow, we discuss the best techniques used to perform deposition scintigraphy through planar, single-photon emission computed tomography, and positron emission tomography modalities and propose a detailed set of standardized methods for each. These include methods for radiolabel validation, radiolabel accountability and mass balance, and imaging acquisition and analysis. PMID:23215846

  8. A Polymeric Bowl for Multi-Agent Delivery.

    PubMed

    Hyun, Dong Choon

    2015-08-01

    This paper describes a simple system for multi-agent delivery. The system consists of a biodegradable polymer particle with a hollow interior, together with a hole on its surface that can be completely or partially sealed via thermal annealing. A hydrophobic dye, Nile-red, entrapped within the shell of hollow particles presents a sustained release behavior while methylene blue, a hydrophilic model agent, encapsulated in the hollow interior shows a fast release manner. The release profiles of the probes can be further independently controlled by encapsulating methylene blue-loaded polymer nanoparticles, instead of free dye, in the hollow particle with a small hole on its surface. PMID:26033149

  9. Novel delivery systems for anti-allergic agents: allergic disease and innovative treatments.

    PubMed

    Lopes, Carla M; Coelho, Pedro B; Oliveira, Rita

    2015-01-01

    Anti-allergic agents are used to treat a great variety of diseases which usually involve an inflammation reaction. These compounds act by inhibiting the release and the effects of inflammatory mediators (e.g. histamine) in the target tissue. The purpose of anti-allergy therapy is to deliver the drug to its local of action in a therapeutic concentration, minimizing the undesired side effects. In order to solve some of the anti-allergic agents' physicochemical drawbacks and the limitations associated to conventional pharmaceutical formulations (e.g. poor solubility and absorption, skin permeation, stability), novel drug delivery systems, such as cyclodextrins, liposomes, micelles, microemulsions, nano and microparticles, have been developed. Depending on the allergic condition, several administration routes are used to deliver anti-allergic agents, each with its own disadvantages to overcome. In the literature, there are a vast number of papers concerning novel delivery systems for anti-allergic agents, making it difficult to evaluate the information and the promising outcomes. The aim of the present review article is to compile the recent (i.e. in the new millennium) improvements of novel drug delivery technology focusing on the achievement of anti-allergic therapeutic delivery. The potential intrinsic benefits of these systems will reflect an increased therapeutic adherence and better patients' life quality. A critical prospect of future clinical trial directions will also be discussed. PMID:25895551

  10. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    SciTech Connect

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K.

    2010-03-11

    Poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA{sub 50}GA{sub 50} is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  11. Novel drug delivery approaches on antiviral and antiretroviral agents

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Arora, Sandeep; Pawar, Pravin

    2012-01-01

    Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections. PMID:23057001

  12. Convection-Enhanced Delivery for Targeted Delivery of Antiglioma Agents: The Translational Experience

    PubMed Central

    Yun, Jonathan; Rothrock, Robert J.; Canoll, Peter; Bruce, Jeffrey N.

    2013-01-01

    Recent improvements in the understanding of glioblastoma (GBM) have allowed for increased ability to develop specific, targeted therapies. In parallel, however, there is a need for effective methods of delivery to circumvent the therapeutic obstacles presented by the blood-brain barrier and systemic side effects. The ideal delivery system should allow for adequate targeting of the tumor while minimizing systemic exposure, applicability across a wide range of potential therapies, and have existing safe and efficacious systems that allow for widespread application. Though many alternatives to systemic delivery have been developed, this paper will focus on our experience with convection-enhanced delivery (CED) and our focus on translating this technology from pre-clinical studies to the treatment of human GBM. PMID:23476784

  13. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.

    PubMed

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R

    2016-09-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website. PMID:26762467

  14. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells. PMID:27398437

  15. Heterocyclic chalcone analogues as potential anticancer agents.

    PubMed

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  16. NANOSCALE SELF-ASSEMBLY FOR DELIVERY OF THERAPEUTICS AND IMAGING AGENTS

    PubMed Central

    Chen, Mingnan; McDaniel, Jonathan R.; MacKay, J. Andrew; Chilkoti, Ashutosh

    2013-01-01

    Self-assemblies are complex structures spontaneously organized from simpler subcomponents, primarily through noncovalent interactions. These structures are being exploited as delivery vehicles of therapeutic and imaging agents. They have two unique advantages in comparison to other vehicles: 1) they are able to assume complex structures that are difficult to attain by chemical synthesis, and 2) the dissociation of self-assembled structures can be triggered by external stimuli, which can serve as a mechanism of payload release. In this review, we discuss two naturally occurring (proteins and viral capsids) and five engineered self-assemblies (vesicles, micelles, proteins, hydrogels, and inclusion complexes) that are under development for delivery of drugs and imaging agents. For each class of self-assembled supramolecular structures, we examine its structural and physicochemical properties, and potential applications within the context of assembly, loading, and payload release. PMID:24077873

  17. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin.

    PubMed

    Li, Le; Zhang, Lianbing; Knez, Mato

    2016-08-01

    Exosomes and ferritin: Two biomacromolecules from our human bodies both draw increasing interest for advanced drug delivery due to their endogenous origin and their morphology, the cage-like structures. They possess perfect naturally designed structures for loading and shielding of cargo. Their intrinsic biological functions enable a natural delivery of the load and specific targeting. More and more evidences point towards the evolution of a new era of drug delivery strategies with exosomes and ferritin, even for potential personalized therapy. This review focuses on the advantages as well as limits of exosomes and ferritin as endogenous carriers for cancer therapy. We compare their structure-specific cargo loading and their intrinsic cancer-related biological functions. Remaining challenges and promising perspectives for future development to use these two endogenous agents are discussed. PMID:27157249

  18. Nanotechnology for CNS delivery of bio-therapeutic agents.

    PubMed

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-08-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain. PMID:23894728

  19. Polymeric protective agents for nanoparticles in drug delivery and targeting.

    PubMed

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Bejenaru, Cornelia; Bejenaru, Ludovic Everard

    2016-08-30

    Surface modification/functionalization of nanoparticles (NPs) using polymeric protective agents is an issue of great importance and actuality for drug delivery and targeting. Improving the blood circulation half-life of surface-protected nanocarriers is closely related to the elimination of main biological barriers and limiting factors (protein absorption and opsonization), due to the phagocytic activity of reticuloendothelial system. For passive or active targeted delivery, in biomedical area, surface-functionalized NPs with tissue-recognition ligands were designed and optimized as a result of modern research techniques. Also, multi-functionalized nanostructures are characterized by enhanced bioavailability, efficacy, targeted localization, active cellular uptake, and low side effects. Surface-protected NPs are obtained from biocompatible, biodegradable and less toxic natural polymers (dextran, β-cyclodextrin, chitosan, hyaluronic acid, heparin, gelatin) or synthetic polymers, such as poly(lactic acid), poly(lactic-co-glycolic) acid, poly(ε-caprolactone) and poly(alkyl cyanoacrylates). PEGylation is one of the most important functionalization methods providing steric stabilization, long circulating and 'stealth' properties for both polymeric and inorganic-based nanosystems. In addition, for their antimicrobial, antiviral and antitumor effects, cutting-edge researches in the field of pharmaceutical nanobiotechnology highlighted the importance of noble metal (platinum, gold, silver) NPs decorated with biopolymers. PMID:26972379

  20. Nanotechnology for CNS Delivery of Bio-Therapeutic Agents

    PubMed Central

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-01-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain. PMID:23894728

  1. Nanoparticulate Delivery of Agents for Induced Elastogenesis in 3-Dimensional Collagenous Matrices

    PubMed Central

    Venkataraman, Lavanya; Sivaraman, Balakrishnan; Vaidya, Pratik; Ramamurthi, Anand

    2014-01-01

    The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms (AAAs). It is mediated by the chronic overexpression of matrix metalloproteases (MMPs) -2 and -9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting AAA growth. Our prior studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells (SMCs) and inhibition of MMPs, following exogenous delivery of elastogenic factors such as TGF-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional (2-D) culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in 2-D culture, we have developed poly(lactide-co-glycolide) nanoparticles for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic SMCs (HASMCs) within a three-dimensional (3-D) gels of type-I collagen gel, which closely evoke the arterial tissue microenvironment. DOX and TGF-β1 released from these NPs influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ∼20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled, and sustained delivery from NPs embedded within a 3-D scaffold is an efficient strategy for directed elastogenesis. PMID:24737693

  2. Effects of anesthetic agents on systemic critical O2 delivery.

    PubMed

    Van der Linden, P; Gilbart, E; Engelman, E; Schmartz, D; Vincent, J L

    1991-07-01

    The present study tested the hypothesis that anesthetic agents can alter tissue O2 extraction capabilities in a dog model of progressive hemorrhage. After administration of pentobarbital sodium (25 mg/kg iv) and endotracheal intubation, the dogs were paralyzed with pancuronium bromide, ventilated with room air, and splenectomized. A total of 60 dogs were randomized in 10 groups of 6 dogs each. The first group served as control (C). A second group (P) received a continuous infusion of pentobarbital (4 mg.kg-2.h-2), which was started immediately after the bolus dose. Three groups received enflurane (E), halothane (HL), or isoflurane (I) at the end-tidal concentration of 0.7 minimum alveolar concentration (MAC). The sixth group received halothane at the end-tidal concentration of 1 MAC (HH). Two groups received intravenous alfentanil at relatively low dose (AL) or high dose (AH). The last two groups received intravenous ketamine at either relatively low dose (KL) or high dose (KH). In each group, O2 delivery (Do2) was progressively reduced by hemorrhage. At each step, systemic Do2 and O2 consumption (VO2) were measured separately and the critical point was determined from a plot of Vo2 vs. Do2. The critical O2 extraction ratio (OER) in the control group was 65.0 +/- 7.8%. OER was lower in all anesthetized groups (P, 44.3 +/- 11.8%; E, 47.0 +/- 7.7%; HL, 45.7 +/- 11.2%; I, 44.3 +/- 7.1%; HH, 33.7 +/- 6.0%; AL, 56.5 +/- 9.6%; AH, 43.5 +/- 5.9%; KH, 57.7 +/- 7.1%), except in the KL group (78.3 +/- 10.0%). The effects of halothane and alfentanil on critical OER were dose dependent (P less than 0.05), whereas critical OER was significantly lower in the KH than in the KL group. Moreover, the effects of anesthetic agents on critical Do2 appeared related to their effects on systemic vascular resistance. Anesthetic agents therefore alter O2 extraction by their peripheral vascular effects. However, ketamine, with its unique sympathetic stimulant properties, had a lesser effect

  3. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents.

    PubMed

    Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2016-11-01

    Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. PMID:27524098

  4. Delivery of active agents from chewing gum for improved remineralization.

    PubMed

    Dodds, M W J; Chidichimo, D; Haas, M S

    2012-09-01

    Most surrogate measures of caries were developed to test products containing fluoride, typically at relatively high and closely controlled oral concentrations. However, since the primary mechanism for the remineralization of early enamel caries lesions by chewing gum is through stimulation of saliva, delivering Ca and Pi to the demineralized enamel lesion, established methods may lack the sensitivity to detect the additional benefit of an active agent without the strong remineralizing potential of fluoride. Issues related to the release of active agents from the gum matrix, dilution in the saliva, and limited oral retention time, along with taste, safety, regulatory, and cost concerns, impose further limitations. This paper reviews the efficacy of some active agents used in chewing gum for improved remineralization and includes results from in situ testing of calcium-containing gums, including calcium lactate, tetracalcium phosphate/dicalcium phosphate anhydrous, calcium citrate/encapsulated phosphate, and a calcium lactate/sodium phosphate blend. Despite promising in vitro data from these agents, they did not provide consistently superior results from in situ testing. There is a need to develop better predictive in vitro models for chewing gum, as well as improved sensitivity of in situ models to discriminate relatively small amounts of remineralization against a background of high biological variability. PMID:22899681

  5. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  6. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. PMID:26876916

  7. Smallpox: a potential agent of bioterrorism.

    PubMed

    Whitley, Richard J

    2003-01-01

    The events of 11 September 2001, in New York City, and subsequent identification of anthrax in the United States Postal System, have generated a new sense of awareness for the potential of biological terrorism, if not warfare. Among those agents identified by the Centers for Disease Control and Prevention as 'Class A Bioterrorist Threats', smallpox is among the most dangerous. The ease of transmission of this agent, the lack of immunity in the population at large to this agent, and rapidity of its spread, if released, all generate significant concern for its deployment. A vaccine directed against smallpox is available but it is also associated with significant adverse events-some of which are life-threatening. Further, no antiviral drug has proven efficacious for therapy of human disease, although one licensed drug, cidofovir, does have in vitro activity. Regardless, heightened awareness should lead to the development of a vaccine without significant adverse events and safe and efficacious antiviral drugs. The availability of a vaccine and antiviral drugs that are safe would significantly remove any major threat of smallpox deployment by a terrorist. PMID:12615298

  8. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control. PMID:23971813

  9. Potential of immunosuppressive agents in cerebral ischaemia

    PubMed Central

    Gupta, Yogendra Kumar; Chauhan, Anjali

    2011-01-01

    Ischaemic stroke is a disorder involving multiple mechanisms of injury progression including activation of glutamate receptors, release of proinflammatory cytokines, nitric oxide (NO), free oxygen radicals and proteases. Presently, recombinant tissue plasminogen activator (rtPA) is the only drug approved for the management of acute ischaemic stroke. This drug, however, is associated with limitations like narrow therapeutic window and increased risk of intracranial haemorrhage. A large number of therapeutic agents have been tested including N-methly-D-aspartate (NMDA) receptor antagonist, calcium channel blockers and antioxidants for management of stroke, but none has provided significant neuroprotection in clinical trials. Therefore, searching for other potentially effective drugs for ischaemic stroke management becomes important. Immunosuppressive agents with their wide array of mechanisms have potential as neuroprotectants. Corticosteroids, immunophilin ligands, mycophenolate mofetil and minocycline have shown protective effect on neurons by their direct actions or attenuating toxic effects of mediators of inflammation. This review focuses on the current status of corticosteroids, cyclosporine A, FK506, rapamycin, mycophenolate mofetil and minocycline in the experimental models of cerebral ischaemia. PMID:21321416

  10. Utilization of biodegradable polymeric materials as delivery agents in dermatology

    PubMed Central

    Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-01-01

    Biodegradable polymeric materials are ideal carrier systems for biomedical applications. Features like controlled and sustained delivery, improved drug pharmacokinetics, reduced side effects and safe degradation make the use of these materials very attractive in a lot of medical fields, with dermatology included. A number of studies have shown that particle-based formulations can improve the skin penetration of topically applied drugs. However, for a successful translation of these promising results into a clinical application, a more rational approach is needed to take into account the different properties of diseased skin and the fate of these polymeric materials after topical application. In fact, each pathological skin condition poses different challenges and the way diseased skin interacts with polymeric carriers might be markedly different to that of healthy skin. In most inflammatory skin conditions, the skin’s barrier is impaired and the local immune system is activated. A better understanding of such mechanisms has the potential to improve the efficacy of carrier-based dermatotherapy. Such knowledge would allow the informed choice of the type of polymeric carrier depending on the skin condition to be treated, the type of drug to be loaded, and the desired release kinetics. Furthermore, a better control of polymer degradation and release properties in accordance with the skin environment would improve the safety and the selectivity of drug release. This review aims at summarizing the current knowledge on how polymeric delivery systems interact with healthy and diseased skin, giving an overview of the challenges that different pathological skin conditions pose to the development of safer and more specific dermatotherapies. PMID:24470766

  11. Tocotrienol as a potential anticancer agent.

    PubMed

    Ling, Ming T; Luk, Sze U; Al-Ejeh, Fares; Khanna, Kum K

    2012-02-01

    Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy. PMID:22095072

  12. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review.

    PubMed

    Mujokoro, Basil; Adabi, Mohsen; Sadroddiny, Esmaeil; Adabi, Mahdi; Khosravani, Masood

    2016-12-01

    Glioblastoma is a malignant brain tumor and leads to death in most patients. Chemotherapy is a common method for brain cancer in clinics. However, the recent advancements in the chemotherapy of brain tumors have not been efficient enough. With the advancement of nanotechnology, the used drugs can enhance chemotherapy efficiency and increase the access to brain cancers. Combination of therapeutic agents has been recently attracted great attention for glioblastoma chemotherapy. One of the early benefits of combination therapies is the high potential to provide synergistic effects and decrease adverse side effects associated with high doses of single anticancer drugs. Therefore, brain tumor treatments with combination drugs can be considered as a crucial approach for avoiding tumor growth. This review investigates current progress in nano-mediated co-delivery of therapeutic agents with focus on glioblastoma chemotherapy prognosis. PMID:27612807

  13. [Q fever, a potential biowarfare agent].

    PubMed

    Bossi, Philippe; Guihot, Amélie; Bricaire, François

    2003-10-18

    SEVERAL POSSIBLE METHODS OF TRANSFUSION: Q fever is a zoonosis due to Coxiella burnetii. Its interest as a potential biowarfare agent is in its possible transmission by inhalation of sprayed particles. This form of transmission would probably be used: the inhalation of 1 to 10 bacteria could provoke the development of an infection in humans. Another possible method of transmission in the context of a terrorist act would be the intentional introduction of the bacteria into foodstuff. A DISABLING WEAPON: However, C. burnetii has never been used as a biological weapon. The probability that this germ could be used is very low: indeed, the incubation of Q fever is very long, and the majority of the infections is asymptomatic and mortality is low. In fact C. burnetii would more likely be used as a disabling weapon. PMID:14576588

  14. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents.

    PubMed

    Zhao, Jing; Feng, Si-Shen

    2015-07-01

    A major problem in cancer treatment is the multidrug resistance. siRNA inhibitors have great advantages to solve the problem, if the bottleneck of their delivery could be well addressed by the various nanocarriers. Moreover, co-delivery of siRNA together with the various anticancer agents in one nanocarrier may maximize their additive or synergistic effect. This review provides a comprehensive summary on the state-of-the-art of the nanocarriers, which may include prodrugs, micelles, liposomes, dendrimers, nanohydrogels, solid lipid nanoparticles, nanoparticles of biodegradable polymers and nucleic acid nanocarriers for delivery of siRNA and co-delivery of siRNA together with anticancer agents with focus on synthesis of the nanocarrier materials, design and characterization, in vitro and in vivo evaluation, and prospect and challenges of nanocarriers. PMID:26214357

  15. Plants' Metabolites as Potential Antiobesity Agents

    PubMed Central

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research. PMID:22666121

  16. Other potentially useful new injectable anesthetic agents.

    PubMed

    Ilkiw, J E

    1992-03-01

    Ultrashort barbiturates are not ideal injectable anesthetic agents, and new agents continue to be released as investigators pursue the goal of finding a more ideal agent. Of the new injectable agents discussed, propofol seems to be the most promising drug. Propofol should find a place in veterinary practice as an outpatient anesthetic agent because it has a rapid, smooth, and complete recovery even after repeated or continuous administration. Midazolam does not induce anesthesia in healthy, small animals and, as such, can only be used in combination with other injectable agents, such as ketamine or the thiobarbiturates. In our practice, Telazol has found a place in the anesthetic management of feral cats and aggressive dogs, where it is used for heavy sedation or to induce anesthesia. The role of flumazenil, as a reversal agent, in veterinary practice remains to be determined; however, the role in small domestic animals is unlikely to be significant. PMID:1585555

  17. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  18. Nigella sativa: A Potential Antiosteoporotic Agent

    PubMed Central

    Shuid, Ahmad Nazrun; Mohamed, Norazlina; Mohamed, Isa Naina; Othman, Faizah; Suhaimi, Farihah; Mohd Ramli, Elvy Suhana; Muhammad, Norliza; Soelaiman, Ima Nirwana

    2012-01-01

    Nigella sativa seeds (NS) has been used traditionally for various illnesses. The most abundant and active component of NS is thymoquinone (TQ). Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies. PMID:22973403

  19. Onychomycosis: Potential of Nail Lacquers in Transungual Delivery of Antifungals.

    PubMed

    Akhtar, Nida; Sharma, Hemlata; Pathak, Kamla

    2016-01-01

    Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed) that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis. PMID:27123362

  20. Onychomycosis: Potential of Nail Lacquers in Transungual Delivery of Antifungals

    PubMed Central

    Sharma, Hemlata; Pathak, Kamla

    2016-01-01

    Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed) that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis. PMID:27123362

  1. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers.

    PubMed

    Caldorera-Moore, Mary E; Liechty, William B; Peppas, Nicholas A

    2011-10-18

    For decades, researchers and medical professionals have aspired to develop mechanisms for noninvasive treatment and monitoring of pathological conditions within the human body. The emergence of nanotechnology has spawned new opportunities for novel drug delivery vehicles capable of concomitant detection, monitoring, and localized treatment of specific disease sites. In turn, researchers have endeavored to develop an imaging moiety that could be functionalized to seek out specific diseased conditions and could be monitored with conventional clinical imaging modalities. Such nanoscale detection systems have the potential to increase early detection of pathophysiological conditions because they can detect abnormal cells before they even develop into diseased tissue or tumors. Ideally, once the diseased cells are detected, clinicians would like to treat those cells simultaneously. This idea led to the concept of multifunctional carriers that could target, detect, and treat diseased cells. The term "theranostics" has been created to describe this promising area of research that focuses on the combination of diagnostic detection agents with therapeutic drug delivery carriers. Targeted theranostic nanocarriers offer an attractive improvement to disease treatment because of their ability to execute simultaneous functions at targeted diseased sites. Research efforts in the field of theranostics encompass a broad variety of drug delivery vehicles, imaging contrast agents, and targeting modalities for the development of an all-in-one, localized detection and treatment system. Nanotheranostic systems that utilize metallic or magnetic imaging nanoparticles can also be used as thermal therapeutic systems. This Account explores recent advances in the field of nanotheranostics and the various fundamental components of an effective theranostic carrier. PMID:21932809

  2. Anti-arthritic agents: progress and potential.

    PubMed

    Laev, Sergey S; Salakhutdinov, Nariman F

    2015-07-01

    Osteoarthritis and rheumatoid arthritis are the two most common types of arthritis. Cartilage breakdown is a key feature of both diseases which contributes to the pain and joint deformity experienced by patients. Therefore, anti-arthritis drugs are of great importance. The aim of this review is to present recent progress in studies of various agents against osteoarthritis and rheumatoid arthritis. The structures and activities of anti-arthritic agents, which used in medical practice or are in development, are presented and discussed. The effects and mechanisms of action of opioids, glucocorticoids, non-steroidal anti-inflammatory drugs, disease-modifying anti-rheumatic drugs, natural products derived from plants, nutraceuticals, and a number of new and perspective agents are considered. Various perspective targets for the treatment of osteoarthritis and rheumatoid arthritis are also discussed. Trials of good quality are needed to draw solid conclusions regarding efficacy of many of the studied agents. Unfortunately, to date, there is no pharmacologic agent proven to prevent the progression of both diseases, and there is an urgent need for further development of better anti-arthritic agents. PMID:26014481

  3. Responsive Theranostic Systems: Integration of Diagnostic Imaging Agents and Responsive Controlled Release Drug Delivery Carriers

    PubMed Central

    Caldorera-Moore, Mary E.; Liechty, William B.; Peppas, Nicholas A.

    2011-01-01

    CONSPECTUS The ability to non-invasively monitor and treat physiological conditions within the human body has been an aspiration of researchers and medical professionals for decades. The emergences of nanotechnology opened up new possibilities for effective vehicles that could accomplish non-invasive detection of diseases and localized treatment systems to be developed. In turn, extensive research efforts have been spent on the development of imaging moiety that could be used to seek out specific diseased conditions and can be monitored with convention clinical imaging modalities. Nanoscale detection agents like these have the potential to increase early detection of pathophysiological conditions because they have the capability to detect abnormal cells before they even develop into diseased tissue and/or tumors. Once the diseased cells are detected it would be constructive to just be able to treat them simultaneously. From here, the concept of multifunctional carriers that could target, detect, and treat diseased cells emerged. The term “theranostics” has been created to describe this promising area of research that focuses on the combination of diagnostic detection agents with therapeutic drug delivery carriers. Targeted theranostic nanocarriers offer an attractive improvement to disease treatment because of their ability to simultaneously diagnose, image, and treat at targeted diseased sites. Research efforts in the field of theranostics encompass a broad variety of drug delivery vehicles, detection agents, and targeting modalities for the development of an all-in-one, localized, diagnostic and treatment system. Nanotheranostic systems that utilize metallic or magnetic imaging nanoparticles have the added capability to be used as thermal therapeutic systems. This review aims to explore recent advancements in the field of nanotheranostics and the various fundamental components of an effective theranostic carrier. PMID:21932809

  4. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents

    PubMed Central

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-01-01

    Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ∼87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases. PMID:26621191

  5. Plasma sterilization of poly lactic acid ultrasound contrast agents: surface modification and implications for drug delivery.

    PubMed

    Eisenbrey, John R; Hsu, Jennifer; Wheatley, Margaret A

    2009-11-01

    Poly lactic acid (PLA) ultrasound contrast agents (CA) have been developed previously in our laboratory for ultrasound (US) imaging, as well as surface coated with doxorubicin to create a potential targeted platform of chemotherapeutic delivery using focused US. However, we have previously found it impossible to sterilize these agents while at the same time maintaining their acoustic properties, a task that would probably require fabrication within a clean facility. The purpose of this paper is to investigate the feasibility of using plasma to sterilize these CA while maintaining maximum echogenicity, a step that would greatly facilitate in vivo investigations. Effects of plasma exposure time (1, 3 and 6 min) and intensity (low-10 mA, 6.8 W; medium-15 mA, 10.5 W; and high-25 mA, 18 W) on the CAs' acoustic properties, surface morphology, zeta potential, capacity to carry chemotherapeutics and overall sterility are described. Both increases in plasma intensity and exposure time increased CA zeta potential and also significantly increased drug payload. High-intensity plasma exposure for 3 min was found to be an optimal sterilization protocol for maximal (100%) preservation of CA echogenicity. Plasma exposure resulted in sterile samples and maintained original CA enhancement of 20 dB and acoustic half-life over 75 min, while increasing CA zeta potential by 11 mV and doxorubicin loading efficiency by 10%. This study not only shows how a highly temperature- and pressure-sensitive agent can be sterilized using plasma, but also that surface modification can be used to increase surface binding of the drug. PMID:19766380

  6. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery.

    PubMed

    Wang, Yao; Gu, Hongchen

    2015-01-21

    Advances in nanotechnology and nanomedicine offer great opportunities for the development of nanoscaled theranostic platforms. Among various multifunctional nanocarriers, magnetic mesoporous silica nanocomposites (M-MSNs) attract prominent research interest for their outstanding properties and potential biomedical applications. This Research News article highlights recent progress in the design of core-shell-type M-MSNs for both diagnostic and therapeutic applications. First, an overview of synthetic strategies for three representative core-shell-type M-MSNs with different morphologies and structures is presented. Then, the diagnostic functions of M-MSNs is illustrated for magnetic resonance imaging (MRI) applications. Next, magnetic targeted delivery and stimuli-responsive release of drugs, and effective package of DNA/siRNA inside mesopores using M-MSNs as therapeutic agent carriers are discussed. The article concludes with some important challenges that need to be overcome for further practical applications of M-MSNs in nanomedicine. PMID:25238634

  7. Polymeric Microgels as Potential Drug Delivery Vesicles

    NASA Astrophysics Data System (ADS)

    McDonough, Ryan; Streletzky, Kiril; Bayachou, Mekki; Peiris, Pubudu

    2010-03-01

    The temperature dependent volume phase change of cross-linked amphiphilic molecules (microgels) suggests their use as drug delivery vesicles. Drug particles aggregate in the slightly hydrophobic microgel interior. They are stored in equilibrium until the critical temperature (Tv) is reached where the volume phase change limits available space, thus expelling the drugs. This loading property of hydroxypropylcellulose (HPC) microgels was tested using amperometric analytical techniques. Small molecules inside microgels do not approach the electrode surface, which decreases current signal. A room temperature (Troom) flow amperometric measurement comparing microgel/paracetamol solution with control paracetamol samples yielded about 20 percent concentration reduction in the microgel sample. Results from the steady-state electrochemical experiment confirm the 20 percent concentration drop in the microgel sample compared to the control sample at Troom. Using the steady-state experiment with a cyclic temperature ramp from Troom to beyond Tv showed that the paracetamol concentration change between the temperature extremes was greater for the microgels than for the controls. An evolving aspect of the study is the characterization of microgel shrinkage from in situ, temperature controlled liquid AFM images as compared to previously completed DLS characterization of the same microgel sample.

  8. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  9. Xenon fluorides show potential as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Chernick, C. L.; Shieh, T. C.; Yang, N. C.

    1967-01-01

    Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.

  10. Efficient mucosal delivery of optical contrast agents using imidazole-modified chitosan

    NASA Astrophysics Data System (ADS)

    Ghosn, Bilal; van de Ven, Anne L.; Tam, Justina; Gillenwater, Ann; Sokolov, Konstantin V.; Richards-Kortum, Rebecca; Roy, Krishnendu

    2010-01-01

    The clinical applicability of antibodies and plasmonic nanosensors as topically applied, molecule-specific optical diagnostic agents for noninvasive early detection of cancer and precancer is severely limited by our inability to efficiently deliver macromolecules and nanoparticles through mucosal tissues. We have developed an imidazole-functionalized conjugate of the polysaccharide chitosan (chitosan-IAA) to enhance topical delivery of contrast agents, ranging from small molecules and antibodies to gold nanoparticles up to 44 nm in average diameter. Contrast agent uptake and localization in freshly resected mucosal tissues was monitored using confocal microscopy. Chitosan-IAA was found to reversibly enhance mucosal permeability in a rapid, reproducible manner, facilitating transepithelial delivery of optical contrast agents. Permeation enhancement occurred through an active process, resulting in the delivery of contrast agents via a paracellular or a combined paracellular/transcellular route depending on size. Coadministration of epidermal growth factor receptor-targeted antibodies with chitosan-IAA facilitated specific labeling and discrimination between paired normal and malignant human oral biopsies. Together, these data suggest that chitosan-IAA is a promising topical permeation enhancer for mucosal delivery of optical contrast agents.

  11. Keratin sponge/hydrogel II, active agent delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  12. Delivery strategies and potential targets for siRNA in major cancer types.

    PubMed

    Lee, So Jin; Kim, Min Ju; Kwon, Ick Chan; Roberts, Thomas M

    2016-09-01

    Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types. PMID:27259398

  13. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment.

    PubMed

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-05-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  14. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment

    PubMed Central

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-01-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  15. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    PubMed Central

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  16. Advanced molecular design of biopolymers for transmucosal and intracellular delivery of chemotherapeutic agents and biological therapeutics.

    PubMed

    Liechty, William B; Caldorera-Moore, Mary; Phillips, Margaret A; Schoener, Cody; Peppas, Nicholas A

    2011-10-30

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious material selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability to respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  17. Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study.

    PubMed

    Park, Donghee; Ryu, Heungil; Kim, Han Sung; Kim, Young-Sun; Choi, Kyu-Sil; Park, Hyunjin; Seo, Jongbum

    2012-04-01

    Sonophoresis temporally increases skin permeability such that various medications can be delivered noninvasively. Previous sonophoresis studies have suggested that cavitation plays an important role in enhancing transdermal drug delivery (TDD). In this study, the feasibility of controlled cavitation using ultrasound contrast agents (UCAs) at high frequency was explored through in vivo experiments in a rat model. Two commercially available UCAs, SonoVue® and Definity®, were used at 2.47 MHz and 1.12 MHz, respectively. Fluorescein isothiocyanate (FITC)-dextran with 0.1% UCA was used as the drug to be delivered through the skin. Ultrasound with a 10 ms pulse and a 1% duty cycle at 1 MPa acoustic pressure for 30 min was applied in all sonication sessions. The efficacy of sonophoresis with UCAs was quantitatively analyzed using an optical imaging system that was used to count photons emitted from fluorescein. The results showed that the proposed sonophoresis method significantly improved drug penetration compared with the traditional sonophoresis method with 4 kD, 20 kD and 150 kD FITC-dextrans at 1.12 MHz, and with 4 kD and 20 kD FITC-dextrans at 2.47 MHz. Sonophoresis for TDD was performed more effectively with the aid of UCAs. Sonophoresis with UCAs has excellent potential for broad applications in drug delivery for diseases requiring the chronic administration of medications such as diabetes. PMID:22341597

  18. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  19. Molecular Diagnostic and Drug Delivery Agents based on Aptamer-Nanomaterial Conjugates

    PubMed Central

    Lee, Jung Heon; Yigit, Mehmet V.; Mazumdar, Debapriya; Lu, Yi

    2010-01-01

    Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents. PMID:20338204

  20. Bypassing the blood-brain barrier: delivery of therapeutic agents by macrophages

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Baek, Seung-Kuk; Kwon, Young Jik; Sun, Chung-Ho; Madsen, Steen J.

    2010-02-01

    Introduction: Failure to eradicate infiltrating glioma cells using conventional treatment regimens results in tumor recurrence and is responsible for the dismal prognosis of patients with glioblastoma multiforme (GBM). This is due to the fact that these migratory cells are protected by the blood-brain barrier (BBB) and the blood brain tumor barrier (BBTB) which prevents the delivery of most anti-cancer agents. We have evaluated the ability of monocytes/macrophages (Mo/Ma) to cross the BBB in rats. This will permit access of anti-cancer agents such as nanoparticles to effectively target the infiltrating tumor cells, and potentially improve the treatment effectiveness for malignant gliomas. Materials and Methods: The infiltration of Mo/Ma into brain tumor spheroids in vitro was determined using fluorescent stained Mo/Ma. Tumors were also established in the brains of inbred rats and ALA-PDT was given 18 days following tumor induction. The degredation of the BBTB and quantification of the number of infiltrating Mo/Ma was examined on histological sections from removed brains. Results & Conclusion: PDT was highly effective in locally opening the BBTB and inducing macrophage migration into the irradiated portions of brain tumors.

  1. Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation

    PubMed Central

    Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie

    2013-01-01

    Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542

  2. Nanopolymersomes as potential carriers for rifampicin pulmonary delivery.

    PubMed

    Moretton, Marcela A; Cagel, Maximiliano; Bernabeu, Ezequiel; Gonzalez, Lorena; Chiappetta, Diego A

    2015-12-01

    Tuberculosis (TB) has been stated as "the greatest killer worldwide due to a single infectious agent" behind the human immunodeficiency virus. Standard short-term treatment includes the oral administration of a combination of "first-line" drugs. However, poor-patient compliance and adherence to the long-term treatments represent one of the mayor drawbacks of the TB therapy. An alternative to the oral route is the pulmonary delivery of anti-TB drugs for local or systemic administration. Nanotechnology offers an attractive platform to develop novel inhalable/respirable nanocarriers. The present investigation was focused on the encapsulation of rifampicin (RIF) (a "first-line" anti-TB drug) within nanopolymersomes (nanoPS) employing di- and tri-block poly(ethylene glycol) (PEG)-poly(ɛ-caprolactone) (PCL) based copolymers as biomaterials. The derivatives presented a number-average molecular weight between 12.2 KDa and 30.1 KDa and a hydrophobic/hydrophilic balance between 0.56 and 0.99. The nanoPS were able to enhance the apparent RIF aqueous solubility (up to 4.62 mg/mL) where the hydrodynamic diameters of the drug-loaded systems (1% w/v) were ranged between 65.8 nm and 94 nm at day 0 as determined by dynamic light scattering (DLS). Then, RIF-loaded systems demonstrated as excellent colloidal stability in aqueous media over 14 days with a spherical morphology as determined by transmission electron microscopy (TEM). Furthermore, RIF-loaded nano-sized PS promoted drug accumulation in macrophages (RAW 264.7) versus a drug solution representing promising results for a potential TB inhaled therapy. PMID:26590894

  3. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems. PMID:20485835

  4. 77 FR 26772 - Prospective Grant of Exclusive License: Ocular Therapeutics Agent Delivery Devices and Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Ocular Therapeutics Agent Delivery Devices and Methods for Making and Using Such Devices AGENCY: National Institutes...

  5. 78 FR 77471 - Prospective Grant of Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent With a Surrogate Tracer for Treating Cancer and...

  6. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent. PMID:18066762

  7. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors

    PubMed Central

    Daldrup-Link, Heike E.; Mohanty, Suchismita; Ansari, Celina; Lenkov, Olga; Shaw, Aubie; Ito, Ken; Hong, Su Hyun; Hoffmann, Matthias; Pisani, Laura; Boudreau, Nancy; Gambhir, Sanjiv Sam; Coussens, Lisa M.

    2016-01-01

    Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies. PMID:27182558

  8. Conundrum and therapeutic potential of curcumin in drug delivery.

    PubMed

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2010-01-01

    Turmeric, the source of the polyphenolic active compound curcumin (diferuloylmethane), has been used extensively in traditional medicine since ancient times as a household remedy against various diseases, including hepatic disorders, cough, sinusitis, rheumatism, and biliary disorders. In the past few decades, a number of studies have been done on curcumin showing its potential role in treating inflammatory disorders, cardiovascular disease, cancer, AIDS, and neurological disorders. However, the main drawback associated with curcumin is its poor aqueous solubility and stability in gastrointestinal fluids, which leads to poor bioavailability. Multifarious novel drug-delivery approaches, including microemulsions, nanoemulsions, liposomes, solid lipid nanoparticles, microspheres, solid dispersion, polymeric nanoparticles, and self-microemulsifying drug-delivery systems have been used to enhance the bioavailability and tissue-targeting ability of curcumin. These attempts have revealed promising results for enhanced bioavailability and targeting to disease such as cancer, but more extensive research on tissue-targeting and stability-related issues is needed. Tissue targeting and enhanced bioavailability of curcumin using novel drug-delivery methods with minimum side effects will in the near future bring this promising natural product to the forefront of therapy for the treatment of human diseases such as cancer and cardiovascular ailments. We provide a detailed analysis of prominent research in the field of curcumin drug delivery with special emphasis on bioavailability-enhancement approaches and novel drug-delivery system approaches. PMID:20932240

  9. Development of a device for the delivery of agents to bone during distraction osteogenesis.

    PubMed

    Grayson, B H; Rowe, N M; Hollier, L H; Williams, J K; McCormick, S; Longaker, M T; McCarthy, J G

    2001-01-01

    Various agents have been theoretically and experimentally implicated as mediators of distraction osteogenesis (DO). The purpose of this study was to develop a vehicle for the potential delivery of these factors to the region of the distraction site in an attempt to manipulate this biologic process. Three adult mongrel dogs (12 months old) had oblique osteotomies performed bilaterally through the gonial regions. In group I, the external distracter was affixed to the right hemimandible of two dogs (n = 2 hemimandibles) with cannulated pins (external diameter = 1.5 mm; lumen diameter = 1.0 mm; length = 60 mm), whereas the distracter on the left was affixed with standard, noncannulated pins of the same dimensions. In group II, cannulated pins were used to affix the external distracter to both hemimandibles (n = 2 hemimandibles) of a dog. The devices were activated after a 5-day latency period and were lengthened at a rate of 1 mm/day for 20 days. During the distraction period, 0.1 ml/d of sterile india ink was injected into the cannulated pins, after which the sterile stylet was replaced. The activation protocol was followed by 28 days of fixation (consolidation period). The hemimandibles from group I underwent removal of soft tissues, acetone fixation, and gross examination/photography, whereas the hemimandibles from group II were prepared for histologic evaluation (whole mount, hematoxylin and eosin staining). All dogs survived to the end of the study and demonstrated successful DO without evidence of complications. Hemimandibles in group I displayed evidence of india ink on both the lingual and buccal cortex around the cannulated pin site, in the regenerate and on the neocortices of the distracted segment. Hemimandibles of group II showed histologic evidence of the india ink being deposited densely around the cannulated pin site and extending in a radial fashion around the pin site into the regenerate. This study demonstrates for the first time a vehicle device for

  10. Beer constituents as potential cancer chemopreventive agents.

    PubMed

    Gerhäuser, Clarissa

    2005-09-01

    Beer is a complex alcoholic beverage made from barley (malt), hop, water and yeast. Phenolic constituents of beer are derived from malt (70-80%) and hop (20-30%). Structural classes include simple phenols, benzoic- and cinnamic acid derivatives, coumarins, catechins, di-, tri- and oligomeric proanthocyanidins, (prenylated) chalcones and flavonoids as well as alpha- and iso-alpha-acids derived from hop. Compounds belonging to different structural classes have distinct profiles of biological activity in in vitro test systems, and in combination might lead to enhanced effects. Scientific evidence has accumulated over the past 10 years pointing to the cancer preventive potential of selected hop-derived beer constituents, i.e., prenylflavonoids including xanthohumol and isoxanthohumol, and hop bitter acids. Chemopreventive activities observed with these compounds relevant to inhibition of carcinogenesis at the initiation, promotion and progression phases, as well as results from in vivo studies on metabolism, bioavailability and efficacy are summarised in this review. PMID:15953717

  11. Fluorine-Containing Taxoid Anticancer Agents and Their Tumor-Targeted Drug Delivery.

    PubMed

    Seitz, Joshua; Vineberg, Jacob G; Zuniga, Edison S; Ojima, Iwao

    2013-08-01

    A long-standing problem of conventional chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Consequently, various "molecularly targeted cancer therapies" have been developed for use in specific cancers, including tumor-targeting drug delivery systems. In general, such a drug delivery system consists of a tumor recognition moiety and a cytotoxic "warhead" connected through a "smart" linker to form a conjugate. When a multi-functionalized nanomaterial is used as the vehicle, a "Trojan Horse" approach can be used for mass delivery of cytotoxic "warheads" to maximize the efficacy. Exploitation of the special properties of fluorine has proven successful in the development of new and effective biochemical tools as well as therapeutic agents. Fluorinated congeners can also serve as excellent probes for the investigation of biochemical mechanisms. (19)F-NMR can provide unique and powerful tools for mechanistic investigations in chemical biology. This account presents our recent progress, in perspective, on the molecular approaches to the design and development of novel tumor-targeted drug delivery systems for new generation chemotherapy by exploiting the unique nature of fluorine. PMID:23935213

  12. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery.

    PubMed

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  13. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    PubMed Central

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  14. Delivery of antifibroblast agents as adjuncts to filtration surgery. Part I--Periocular clearance of cobalt-57 bleomycin in experimental drug delivery: pilot study in the rabbit

    SciTech Connect

    Kay, J.S.; Litin, B.S.; Woolfenden, J.M.; Chvapil, M.; Herschler, J.

    1986-10-01

    Antitumor and antifibroblast agents show promise as adjuncts after glaucoma filtration surgery in reducing postoperative scarring and failure. We used nuclear imaging in rabbits to investigate periocular clearance of one such agent (/sup 57/Co-bleomycin). Sub-Tenon injection was compared to other delivery techniques. Our results showed that a collagen sponge and a silastic disc implant with a microhole prolonged drug delivery when compared to sub-Tenon injection alone or injection with a viscosity enhancing agent (0.5% sodium hyaluronate). We theorize that if an antifibroblast agent can be delivered in small and sustained amounts after filtration surgery, this may prolong bleb longevity and avoid unnecessary drug toxicity.

  15. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents

    PubMed Central

    Baumann, V; Winkler, J

    2015-01-01

    The discovery of microRNAs as important regulatory agents for gene expression has expanded the therapeutic opportunities for oligonucleotides. In contrast to siRNA, miRNA-targeted therapy is able to influence not only a single gene, but entire cellular pathways or processes. It is possible to supplement down regulated or non-functional miRNAs by synthetic oligonucleotides, as well as alleviating effects caused by overexpression of malignant miRNAs through artificial antagonists, either oligonucleotides or small molecules. Chemical oligonucleotide modifications together with an efficient delivery system seem to be mandatory for successful therapeutic application. While miRNA-based therapy benefits from the decades of research spent on other therapeutic oligonucleotides, there are some specific challenges associated with miRNA therapy, mainly caused by the short target sequence. The current status and recent progress of miRNA-targeted therapeutics is described and future challenges and potential applications in treatment of cancer and viral infections are discussed. PMID:25495987

  16. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes.

    PubMed

    Dubey, Vaibhav; Mishra, Dinesh; Dutta, Tathagata; Nahar, Manoj; Saraf, D K; Jain, N K

    2007-11-01

    The aim of the current investigation is to evaluate the transdermal potential of novel vesicular carrier, ethosomes, bearing methotrexate (MTX), an anti-psoriatic, anti-neoplastic, highly hydrosoluble agent having limited transdermal permeation. MTX loaded ethosomes were prepared, optimized and characterized for vesicular shape and surface morphology, vesicular size, entrapment efficiency, stability, in vitro human skin permeation and vesicle-skin interaction. The formulation (EE(9)) having 3% phospholipid content and 45% ethanol showing the greatest entrapment (68.71+/-1.4%) and optimal nanometric size range (143+/-16 nm) was selected for further transdermal permeation studies. Stability profile of prepared system assessed for 120 days revealed very low aggregation and growth in vesicular size (8.8+/-1.2%). MTX loaded ethosomal carriers also provided an enhanced transdermal flux of 57.2+/-4.34 microg/cm(2)/h and decreased lag time of 0.9 h across human cadaver skin. Skin permeation profile of the developed formulation further assessed by confocal laser scanning microscopy (CLSM) revealed an enhanced permeation of Rhodamine Red (RR) loaded formulations to the deeper layers of the skin (170 microm). Also, the formulation retained its penetration power after storage. Vesicle skin interaction study also highlighted the penetration enhancing effect of ethosomes with some visual penetration pathways and corneocytes swelling, a measure of retentive nature of formulation. Our results suggests that ethosomes are an efficient carrier for dermal and transdermal delivery of MTX. PMID:17884226

  17. Potentials of new nanocarriers for dermal and transdermal drug delivery.

    PubMed

    Neubert, Reinhard H H

    2011-01-01

    Nanocarriers (NCs) are colloidal systems having structures below a particle or droplet size of 500 nm. In the previous years, the focus for the application of NCs was primarily placed on the parenteral and oral application. However, NCs applied to the skin are in the center of attention and are expected to be increasingly applied as the skin offers a lot of advantages for the administration of such systems. For the use of NCs to the skin, one has to differentiate between the desired effects: the local effect within the skin (dermal drug delivery) or a systemic effect accompanied by the permeation through the skin (transdermal drug delivery). Both for dermal and transdermal drug delivery, the stratum corneum (SC), the main barrier of the skin, has to be overcome. SC is one of the tightest barriers of the human body. Therefore, it is the primary goal of new NC to overcome this protective and effective barrier. For that purpose, new NCs such as microemulsions, vesicular (liposomes) and nanoparticular NCs are developed and investigated. This article evaluates the potentials of these NCs for dermal and transdermal drug delivery. PMID:21111043

  18. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis). PMID:23432005

  19. Advances in drug delivery system for platinum agents based combination therapy

    PubMed Central

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-01-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy. PMID:26779373

  20. Gelucire-stabilized nanoparticles as a potential DNA delivery system.

    PubMed

    Oyewumi, Moses O; Wehrung, Daniel; Sadana, Prabodh

    2016-09-01

    Clinical viability of gene delivery systems has been greatly impacted by potential toxicity of the delivery systems. Recently, we reported the nanoparticle (NP) preparation process that employs biocompatible materials such as Gelucire® 44/14 and cetyl alcohol as matrix materials. In the current study, the NP preparation was modified for pDNA loading through: (i) inclusion of cationic lipids (DOTAP or DDAB) with NP matrix materials; or (ii) application of cationic surfactants (CTAB) to generate NPs with desired surface charges for pDNA complexation. Colloidal stability and efficiency of loading pGL3-DR4X2-luciferase plasmid DNA in NPs were verified by gel permeation chromatography. Compared to pDNA alone, all the NPs were effective in preserving pDNA from digestion by DNase. While pDNA loading using CTAB-NPs involved fewer steps compared to DOTAP-NPs and DDAB-NPs, CTAB-NPs were greatly impacted by elevated cytotoxicity level which could be ascribed to the concentrations of CTAB in NP formulations. In vitro transfection studies (in HepG2 cells) based on luciferase expression showed the ranking of cell transfection efficiency as DOTAP-NPs > DDAB-NPs > CTAB-NPs. The overall work provided an initial assessment of gelucire-stabilized NPs as a potential platform for gene delivery. PMID:25915179

  1. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  2. Potential and problems in ultrasound-responsive drug delivery systems.

    PubMed

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington's disease, thrombolysis, and disruption of the blood-brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  3. Recent Development of Copolymeric Delivery System for Anticancer Agents Based on Cyclodextrin Derivatives.

    PubMed

    Feng, Runliang; Deng, Peizong; Teng, Fangfang; Song, Zhimei

    2016-01-01

    Core-shell structured aggregates of amphiphilic block copolymer are hopefully drug delivery system because of their ability to encapsulate hydrophobic drugs, and their hydrophilic shell can prolong retention time of drugs in the blood circulation system. Cyclodextrin is a kind of hydrophilic polysaccharide containing multiple hydroxyl groups, providing an inner hole that can load small molecule through host-guest interaction. These hydroxyl groups or their derived functional ones are utilized in conjugation with polymeric chains to form block copolymers. These copolymers can not only encapsulate hydrophobic drugs, but also encapsulate hydrophilic drugs (like DNA, protein, etc) through hydrophobic, host-guest or electrostatic interactions, which strengthen interaction between drugs and materials compared with general copolymers, indicating that formed drug delivery systems are more stable. By introduction of target molecule, they also achieve selective delivery of drugs to specific tissues or organs. So, several researchers are stimulated to carry out many studies for the development of cyclodextrin copolymeric drug delivery systems in recent. In this review, we focus the cyclodextrin copolymers' application in the anticancer agents' delivery. PMID:26349814

  4. Aerosol delivery of antimicrobial agents during mechanical ventilation: current practice and perspectives.

    PubMed

    Michalopoulos, Argyris; Metaxas, Eugenios I; Falagas, Matthew E

    2011-03-01

    Critically ill patients, who develop ventilator-associated pneumonia during prolonged mechanical ventilation, often require antimicrobial agents administered through the endotracheal or the tracheotomy tube. The delivery of antibiotics via the respiratory tract has been established over the past years as an alternative route in order to deliver high concentrations of antimicrobial agents directly to the lungs and avoid systemic toxicity. Since the only formal indications for inhaled/aerosolized antimicrobial agents is for patients suffering from cystic fibrosis, consequently the majority of research and published studies concerns this group of patients. Newer devices and new antibiotic formulations are currently off-label used in ambulatory cystic fibrosis patients whereas similar data for the mechanically ventilated patients do not yet exist. PMID:21235473

  5. Casein/pectin nanocomplexes as potential oral delivery vehicles.

    PubMed

    Luo, Yangchao; Pan, Kang; Zhong, Qixin

    2015-01-01

    Delivery systems prepared with natural biopolymers are of particular interests for applications in food, pharmaceutics and biomedicine. In this study, nanocomplex particles of sodium caseinate (NaCas) and pectin were fabricated and investigated as potential oral delivery vehicles. Nanocomplexes were prepared with three mass ratios of NaCas/pectin by acidification using glucono-δ-lactone and thermal treatment. NaCas/pectin at 1:1 mass ratio resulted in dispersions with the lowest turbidity and the smallest and most uniform nanocomplexes. Thermal treatment at 85 °C for 30 min facilitated the formation of stable, compact, and spherical nanocomplexes. Heating not only greatly increased the yield of nanocomplexes but also significantly improved the encapsulation capability of rutin studied as a model compound. Pectin in nanocomplexes delayed the hydrolysis of NaCas by pepsin at gastric conditions and enabled the controlled release of most rutin in simulated intestinal conditions. The nanocomplexes based on food-sourced biopolymers have promising features for oral delivery of nutrients and medicines. PMID:25800678

  6. 1,2-Dialkyl-4-pyrazolidinethiols as potential antiradiation agents.

    PubMed

    Kornet, M J; Daniels, R

    1979-10-01

    The reaction between 3-chloropropylene sulfide and the 1,2-dialkylhydrazines was employed to prepare a series of 1,2-dialkyl-4-pyrazolidinethiols. Evidence is presented to support the structure proposed for the product. These mercaptoheterocycles are related to the beta-mercaptoethylamines and were prepared as potential radiation protective agents. No significant activity was observed. PMID:512875

  7. Tear lipocalin: potential for selective delivery of rifampin.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Gasimov, Elshad O; Yusifov, Taleh N; Dooley, Alek N; Glasgow, Ben J

    2004-03-01

    The potential of ligand binding proteins as drug carriers and delivery systems has recently sparked great interest. We investigated the potential of tear lipocalin (TL) to bind the antibiotic, rifampin, and the environmental conditions for controlled release. To determine if TL binds rifampin, gel filtration was used to isolate protein fractions of tears. Rifampin was detected by absorbance spectroscopy in the elution fractions containing TL. The bound complex of rifampin-TL generates optical activity at about 360 nm, indicating a unique conformation at the binding site. Rifampin has a higher affinity for TL (Kd=128 microM) than albumin. Rifampin is released from the TL calyx in acidic conditions and is displaced by palmitic acid. Autooxidation of free rifampin begins in minutes but is delayed by at least 3 h in the presence of TL. These properties are conducive to stabilization and delivery of rifampin to tubercles that are acidic and rich in fatty acids. These studies show the potential of TL as a carrier for rifampin with controlled release to a targeted environment. PMID:14990340

  8. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes.

    PubMed

    Dubey, Vaibhav; Mishra, Dinesh; Nahar, Manoj; Jain, Vikas; Jain, Narendra Kumar

    2010-08-01

    Indinavir, as a protease inhibitor with a short biological half life, variable pH-dependent oral absorption, and extensive first-pass metabolism, presents a challenge with respect to its oral administration. The current work aims to formulate and characterize indinavir-bearing ethanolic liposomes (ethosomes), and to investigate their enhanced transdermal delivery potential. The prepared ethanolic liposomes were characterized to be spherical, unilamellar structures having low polydispersity, nanometric size range, and improved entrapment efficiency over other delivery formulations. Permeation studies of indinavir across human cadaver skin resulted in enhanced transdermal flux from ethanolic liposomes that was significantly (P < 0.05) greater than that with ethanolic drug solution, conventional liposomes, or plain drug solution. Additionally, the ethanolic liposomes showed the shortest lag time for indinavir, thus presenting a suitable approach for transdermal delivery of this protease inhibitor. From the clinical editor: This study characterizes indinavir bearing ethanolic liposomes (ethosomes), and investigate their enhanced transdermal delivery potential, demonstrating a potentially a suitable approach for transdermal delivery of this protease inhibitor for HIV treatment, which typically has been associated with limited bioavailability via the oral route. PMID:20093197

  9. Delivery of imaging and therapeutic agents to tumor using pHLIP

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Dayanjali; Moshnikova, Anna; Rossi, Bethany; Engelman, Donald; Andreev, Oleg; Reshetnyak, Yana

    2012-02-01

    We are developing a novel technology for selective delivery of imaging probes and membrane-impermeable molecules to cancer cells. It is based on action of water-soluble membrane peptide, pHLIP^ (pH [Low] Insertion Peptide), which has ability to insert and fold in cellular membrane at slightly acidic environment, which is a characteristic for various pathological states including cancer. The insertion of the peptide is unidirectional: C-terminus moves inside the cell across membrane, while N-terminus flags outside. Thus pHLIP possess dual delivery capability. Imaging agents (fluorescent, PET, SPECT or MRI) could be attached to the N-terminus of the peptide to mark tumor mass and tumor margins with high precision. At the same time, therapeutic molecules attached to the C-inserting end, could be moved across membrane to reach cytoplasmic target. Among translocated molecules are synthetic cyclic peptides, gene regulation agent (peptide nucleic acid) and phalla- and amanita toxins with hydrophobicity tuned by attachment of fatty acids for optimum delivery. Currently we have family of pHLIP peptides for various applications. The work is supported by NIH grants CA133890 to OAA, DME, YRK.

  10. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole). PMID:27270393

  11. Magnetically Targeted Delivery of Therapeutic Agents to Injured Blood Vessels for Prevention of In-Stent Stenosis

    PubMed Central

    Fishbein, Ilia; Adamo, Richard F.; Forbes, Scott P.; Folchman-Wagner, Zoë; Alferiev, Ivan S.

    2012-01-01

    Magnetic guidance is a physical targeting strategy with the potential to improve the safety and efficacy of a variety of therapeutic agents — including small-molecule pharmaceuticals, proteins, gene vectors, and cells — by enabling their site-specific delivery. The application of magnetic targeting for in-stent restenosis can address the need for safer and more efficient treatment strategies. However, its translation to humans may not be possible without revising the traditional magnetic targeting scheme, which is limited by its inability to selectively guide therapeutic agents to deep localized targets. An alternative two-source strategy can be realized through the use of uniform, deep-penetrating magnetic fields in conjunction with vascular stents included as part of the magnetic setup and the platform for targeted delivery to injured arteries. Studies showing the feasibility of this novel targeting strategy in in-stent restenosis models and considerations in the design of carrier formulations for magnetically guided antirestenotic therapy are discussed in this review. PMID:22891107

  12. Cationic nanoemulsions as potential carriers for intracellular delivery.

    PubMed

    Khachane, P V; Jain, A S; Dhawan, V V; Joshi, G V; Date, A A; Mulherkar, R; Nagarsenker, M S

    2015-04-01

    Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740

  13. Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents in vivo

    PubMed Central

    Deu, Edgar; Chen, Ingrid T.; Lauterwasser, Erica M. W.; Valderramos, Juan; Li, Hao; Edgington, Laura E.; Renslo, Adam R.; Bogyo, Matthew

    2013-01-01

    The precise targeting of cytotoxic agents to specific cell types or cellular compartments is of significant interest in medicine, with particular relevance for infectious diseases and cancer. Here, we describe a method to exploit aberrant levels of mobile ferrous iron (FeII) for selective drug delivery in vivo. This approach makes use of a 1,2,4-trioxolane moiety, which serves as an FeII-sensitive “trigger,” making drug release contingent on FeII-promoted trioxolane fragmentation. We demonstrate in vivo validation of this approach with the Plasmodium berghei model of murine malaria. Malaria parasites produce high concentrations of mobile ferrous iron as a consequence of their catabolism of host hemoglobin in the infected erythrocyte. Using activity-based probes, we successfully demonstrate the FeII-dependent and parasite-selective delivery of a potent dipeptidyl aminopeptidase inhibitor. We find that delivery of the compound in its FeII-targeted form leads to more sustained target inhibition with greatly reduced off-target inhibition of mammalian cathepsins. This selective drug delivery translates into improved efficacy and tolerability. These findings demonstrate the utility of a purely chemical means to achieve selective drug targeting in vivo. This approach may find useful application in parasitic infections and more broadly in any disease state characterized by aberrant production of reactive ferrous iron. PMID:24145449

  14. Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents in vivo.

    PubMed

    Deu, Edgar; Chen, Ingrid T; Lauterwasser, Erica M W; Valderramos, Juan; Li, Hao; Edgington, Laura E; Renslo, Adam R; Bogyo, Matthew

    2013-11-01

    The precise targeting of cytotoxic agents to specific cell types or cellular compartments is of significant interest in medicine, with particular relevance for infectious diseases and cancer. Here, we describe a method to exploit aberrant levels of mobile ferrous iron (Fe(II)) for selective drug delivery in vivo. This approach makes use of a 1,2,4-trioxolane moiety, which serves as an Fe(II)-sensitive "trigger," making drug release contingent on Fe(II)-promoted trioxolane fragmentation. We demonstrate in vivo validation of this approach with the Plasmodium berghei model of murine malaria. Malaria parasites produce high concentrations of mobile ferrous iron as a consequence of their catabolism of host hemoglobin in the infected erythrocyte. Using activity-based probes, we successfully demonstrate the Fe(II)-dependent and parasite-selective delivery of a potent dipeptidyl aminopeptidase inhibitor. We find that delivery of the compound in its Fe(II)-targeted form leads to more sustained target inhibition with greatly reduced off-target inhibition of mammalian cathepsins. This selective drug delivery translates into improved efficacy and tolerability. These findings demonstrate the utility of a purely chemical means to achieve selective drug targeting in vivo. This approach may find useful application in parasitic infections and more broadly in any disease state characterized by aberrant production of reactive ferrous iron. PMID:24145449

  15. Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents.

    PubMed

    Yilmaz, Gorkem; Guler, Emine; Barlas, Firat Baris; Timur, Suna; Yagci, Yusuf

    2016-07-01

    Thioxanthone (TX) and its derivatives, which are widely used as photoinitiators in UV curing technology, hold promising research interest in biological applications. In particular, the use of TXs as anticancer agent has recently been manifested as an outstanding additional property of this class of molecules. Incorporation of TX molecules into specially designed polymers widens their practical use in such applications. In this study, two water-soluble, biocompatible, and stable polymers, namely poly(vinyl alcohol) and poly(ethylene glycol), possessing TX moieties at the side chains and chain ends, respectively, are prepared and used as anticancer and radiotherapy agents. The findings confirm that both polymers are potential candidates for therapeutic agents as they possess useful features including water-solubility, radiosensitizer effect, and anticancer activity in a polymeric scaffold. PMID:27168378

  16. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2009-01-01

    Alzheimer's disease (AD) is a devastating neuro-degenerative disorder characterized by the progressive and irreversible loss of memory followed by complete dementia. Despite the disease's high prevalence and great economic and social burden, an explicative etiology or viable cure is not available. Great effort has been made to better understand the disease's pathogenesis, and to develop more effective therapeutic agents. However, success is greatly hampered by the presence of the blood-brain barrier that limits a large number of potential therapeutics from entering the brain. Nanoparticle-mediated drug delivery is one of the few valuable tools for overcoming this impediment and its application as a potential AD treatment shows promise. In this review, the current studies on nanoparticle delivery of chelation agents as possible therapeutics for AD are discussed because several metals are found excessive in the AD brain and may play a role in the disease development. Specifically, a novel approach involving transport of iron chelation agents into and out of the brain by nanoparticles is highlighted. This approach may provide a safer and more effective means of simultaneously reducing several toxic metals in the AD brain. It may also provide insights into the mechanisms of AD pathophysiology, and prove useful in treating other iron-associated neurodegenerative diseases such as Friedreich's ataxia, Parkinson's disease, Huntington's disease and Hallervorden-Spatz Syndrome. It is important to note that the use of nanoparticle-mediated transport to facilitate toxicant excretion from diseased sites in the body may advance nanoparticle technology, which is currently focused on targeted drug delivery for disease prevention and treatment. The application of nanoparticle-mediated drug transport in the treatment of AD is at its very early stages of development and, therefore, more studies are warranted. PMID:19936278

  17. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma

    PubMed Central

    Shum, Ka-To; Zhou, Jiehua; Rossi, John J.

    2014-01-01

    Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed. PMID:25057429

  18. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  19. MRI-Monitored Intra-Shunt Local Agent Delivery of Motexafin Gadolinium: Towards Improving Long-Term Patency of TIPS

    PubMed Central

    Meng, Yanfeng; Zhang, Tong; Willis, Patrick; Le, Thomas; Soriano, Stephanie; Ray, Erik; Valji, Karim; Zhang, Guixiang; Yang, Xiaoming

    2013-01-01

    Background Transjugular intrahepatic portosystemic shunt (TIPS) has become an important and effective interventional procedure in treatment of the complications related to portal hypertension. Although the primary patency of TIPS has been greatly improved due to the clinical application of cover stent-grafts, the long-term patency is still suboptimal. This study was to investigate the feasibility of using magnetic resonance imaging (MRI)-monitored intra-shunt local agent delivery of motexafin gadolinium (MGd) into shunt-vein walls of TIPS. This new technique aimed to ultimately inhibit shuntstenosis of TIPS. Methodology Human umbilical vein smooth muscle cells (SMCs) were incubated with various concentrations of MGd, and then examed by confocal microscopy and T1-map MRI. In addition, the proliferation of MGd-treated cells was evaluated. For in vivo validation, seventeen pigs underwent TIPS. Before placement of the stent, an MGd/trypan-blue mixture was locally delivered, via a microporous balloon, into eleven shunt-hepatic vein walls under dynamic MRI monitoring, while trypan-blue only was locally delivered into six shunt-hepatic vein walls as serve as controls. T1-weighted MRI of the shunt-vein walls was achieved before- and at different time points after agent injections. Contrast-to-noise ratio (CNR) of the shunt-vein wall at each time-point was measured. Shunts were harvested for subsequent histology confirmation. Principal Findings In vitro studies confirmed the capability of SMCs in uptaking MGds in a concentration-dependent fashion, and demonstrated the suppression of cell proliferation by MGds as well. Dynamic MRI displayed MGd/blue penetration into the shunt-vein walls, showing significantly higher CNR of shunt-vein walls on post-delivery images than on pre-delivery images (49.5±9.4 vs 11.2±1.6, P<0.01), which was confirmed by histology. Conclusion Results of this study indicate that MRI-monitored intra-shunt local MGd delivery is feasible and MGd

  20. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents.

    PubMed

    Fattal, Elias; Tsapis, Nicolas; Phan, Guillaume

    2015-08-01

    The possibility of accidents in the nuclear industry or of nuclear terrorist attacks makes the development of new decontamination strategies crucial. Among radionuclides, actinides such as uranium and plutonium and their different isotopes are considered as the most dangerous contaminants, plutonium displaying mostly a radiological toxicity whereas uranium exhibits mainly a chemical toxicity. Contamination occurs through ingestion, skin or lung exposure with subsequent absorption and distribution of the radionuclides to different tissues where they induce damaging effects. Different chelating agents have been synthesized but their efficacy is limited by their low tissue specificity and high toxicity. For these reasons, several groups have developed smart delivery systems to increase the local concentration of the chelating agent or to improve its biodistribution. The aim of this review is to highlight these strategies. PMID:26144994

  1. Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas.

    PubMed

    Goodwin, C Rory; Xu, Risheng; Iyer, Rajiv; Sankey, Eric W; Liu, Ann; Abu-Bonsrah, Nancy; Sarabia-Estrada, Rachel; Frazier, James L; Sciubba, Daniel M; Jallo, George I

    2016-03-01

    Brainstem gliomas comprise 10-20% of all pediatric central nervous system (CNS) tumors and diffuse intrinsic pontine gliomas (DIPGs) account for the majority of these lesions. DIPG is a rapidly progressive disease with almost universally fatal outcomes and a median survival less than 12 months. Current standard-of-care treatment for DIPG includes radiation therapy, but its long-term survival effects are still under debate. Clinical trials investigating the efficacy of systemic administration of various therapeutic agents have been associated with disappointing outcomes. Recent efforts have focused on improvements in chemotherapeutic agents employed and in methods of localized and targeted drug delivery. This review provides an update on current preclinical and clinical studies investigating treatment options for brainstem gliomas. PMID:26849840

  2. Oral delivery and clearance of antiplaque agents from Triclosan-containing dentifrices.

    PubMed

    Creeth, J E; Abraham, P J; Barlow, J A; Cummins, D

    1993-08-01

    Oral delivery and clearance of Triclosan and zinc were studied following use of three commercially available Triclosan-containing toothpastes. One paste contained 0.3 per cent Triclosan and 2 per cent PVM-MA copolymer, one contained 0.3 per cent Triclosan and 5 per cent sodium pyrophosphate and the third contained 0.3 per cent Triclosan and 0.75 per cent zinc citrate trihydrate. Each gave similar total oral retention of Triclosan (37 per cent-46 per cent of the dose). However, clinically important product differences were observed in the salivary clearance of Triclosan and in Triclosan delivery to plaque. The Triclosan/zinc paste delivered more Triclosan to oral reservoirs (as measured by the area under the salivary clearance curve) than either the Triclosan/PVM-MA or the Triclosan/pyrophosphate paste (p < 0.001). The Triclosan/zinc paste produced higher Triclosan levels in plaque than the Triclosan/PVM-MA paste (109 micrograms/g versus 78 micrograms/g, p < 0.05). Zinc was effectively delivered to oral surfaces by the Triclosan/zinc paste, and was cleared more slowly than Triclosan (single-reservoir t1/2 = 50 min). After use of the Triclosan/zinc paste the zinc level in plaque was 153 micrograms/g, a seven-fold increase over the control. These results demonstrate that good delivery of Triclosan requires a highly optimised formulation. Furthermore, they suggest that the superior clinical effects of the Triclosan/zinc paste are due to a combination of superior delivery of Triclosan to oral sites of action together with effective delivery of a second, complementary antiplaque agent, zinc. PMID:8282421

  3. Bionanocomposites containing magnetic graphite as potential systems for drug delivery.

    PubMed

    Ribeiro, Lígia N M; Alcântara, Ana C S; Darder, Margarita; Aranda, Pilar; Herrmann, Paulo S P; Araújo-Moreira, Fernando M; García-Hernández, Mar; Ruiz-Hitzky, Eduardo

    2014-12-30

    New magnetic bio-hybrid matrices for potential application in drug delivery are developed from the assembly of the biopolymer alginate and magnetic graphite nanoparticles. Ibuprofen (IBU) intercalated in a Mg-Al layered double hydroxide (LDH) was chosen as a model drug delivery system (DDS) to be incorporated as third component of the magnetic bionanocomposite DDS. For comparative purposes DDS based on the incorporation of pure IBU in the magnetic bio-hybrid matrices were also studied. All the resulting magnetic bionanocomposites were processed as beads and films and characterized by different techniques with the aim to elucidate the role of the magnetic graphite on the systems, as well as that of the inorganic brucite-like layers in the drug-loaded LDH. In this way, the influence of both inorganic components on the mechanical properties, the water uptake ability, and the kinetics of the drug release from these magnetic systems were determined. In addition, the possibility of modulating the levels of IBU release by stimulating the bionanocomposites with an external magnetic field was also evaluated in in vitro assays. PMID:25455784

  4. Modified quaternary ammonium salts as potential antimalarial agents.

    PubMed

    Basilico, Nicoletta; Migotto, Mara; Ilboudo, Denise Patoinewende; Taramelli, Donatella; Stradi, Riccardo; Pini, Elena

    2015-08-01

    A series of new quaternary ammonium salts containing a polyconjugated moiety has been synthesized and characterized; their biological activity as potential antimalarial agents was investigated, as well. All compounds were screened against chloroquine resistant W-2 (CQ-R) and chloroquine sensitive, D-10 (CQ-S) strains of Plasmodium falciparum showing IC50 in the submicromolar range and low toxicity against human endothelial cells. PMID:26081764

  5. Testing the Efficacy of Pharmacological Agents in a Pericardial Target Delivery Model in the Swine.

    PubMed

    Iles, Tinen L; Howard, Brian; Howard, Stephen; Quallich, Stephen; Rolfes, Christopher; Richardson, Eric; Iaizzo, Hanna R; Iaizzo, Paul A

    2016-01-01

    To date, many pharmacological agents used to treat or prevent arrhythmias in open-heart cases create undesired systemic side effects. For example, antiarrhythmic drugs administered intravenously can produce drops in systemic pressure in the already compromised cardiac patient. While performing open-heart procedures, surgeons will often either create a small port or form a pericardial cradle to create suitable fields for operation. This access yields opportunities for target pharmacological delivery (antiarrhythmic or ischemic preconditioning agents) directly to the myocardial tissue without undesired side effects. We have developed a swine model for testing pharmacological agents for target delivery within the pericardial fluid. While fully anesthetized, each animal was instrumented with a Swan-Ganz catheter as well as left and right ventricle pressure catheters, and pacing leads were placed in the right atrial appendage and the right ventricle. A medial sternotomy was then performed and a pericardial access cradle was created; a plunge pacing lead was placed in the left atrial appendage and a bipolar pacing lead was placed in the left ventricle. Utilizing a programmer and a cardiac mapping system, the refractory period of the atrioventricular node (AVN), atria and ventricles was determined. In addition, atrial fibrillation (AF) induction was produced utilizing a Grass stimulator and time in AF was observed. These measurements were performed prior to treatment, as well as 30 min and 60 min after pericardial treatment. Additional time points were added for selected studies. The heart was then cardiopleged and reanimated in a four chamber working mode. Pressure measurements and function were recorded for 1 hr after reanimation. This treatment strategy model allowed us to observe the effects of pharmacological agents that may decrease the incidence of cardiac arrhythmias and/or ischemic damage, during and after open-heart surgery. PMID:27500319

  6. Amphiphilic Interpenetrating Networks for the Delivery of Hydrophobic, Low Molecular Weight Therapeutic Agents

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Fletcher, Grace K.; Peppas, Nicholas A.

    2011-01-01

    To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) were synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and poly(n-butyl acrylate) (PBA). The hydrophilic P(MAA-g-EG) networks are pH-responsive hydrogels capable of triggered release of an encapsulated therapeutic agent, such as a low molecular weight drug or a protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). PBA is a hydrophobic homopolymer that can affect the IPN swelling behavior, the therapeutic agent loading efficiencies in IPNs, and solute release profiles from IPNs. In dynamic swelling conditions, IPNs had greater swelling ratios than P(MAA-g-EG), but in equilibrium swelling conditions the IPN swelling ratio decreased with increasing PBA content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 21 – 44%. Release studies from neat P(MAA-g-EG) and the ensuing IPNs indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophilicity of the carriers used in these studies. PMID:22247592

  7. Pioglitazone hydrochloride: chemopreventive potential and development of site-specific drug delivery systems.

    PubMed

    Sinha, Vivek Ranjan; Sethi, Shilpa

    2015-05-01

    The aim of this study was to investigate the potential of pioglitazone hydrochloride as a promising anticancer agent and then to design and evaluate the colon-targeted delivery system. The role of pioglitazone hydrochloride as a promising anticancer agent was evaluated by in vitro cell line studies and in vivo 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. In order to deliver the drug at site of action, i.e. colon, drug embedded in matrices containing a release retarding polymer (HPMC K4M) and a polysaccharide (locust bean gum) were prepared. These matrix systems were further enteric coated with Eudragit®S100 to minimize the premature drug release in the upper segments of the GIT. In vitro dissolution studies were performed in absence and presence of rat caecal contents on selected batches and samples were analyzed using a validated RP-HPLC method. Hence, the studies led to the conclusion that successful site-specific delivery systems of pioglitazone hydrochloride were developed to improve its therapeutic efficacy in the management of colorectal cancer. PMID:24547712

  8. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity.

    PubMed

    Gupta, Deepa; Jain, D K

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

  9. Transdermal Drug Delivery Aided by an Ultrasound Contrast Agent: An In Vitro Experimental Study

    PubMed Central

    Park, Donghee; Yoon, Jinhee; Park, Jingam; Jung, Byungjo; Park, Hyunjin; Seo, Jongbum

    2010-01-01

    Sonophoresis temporarily increases skin permeability such that medicine can be delivered transdermally. Cavitation is believed to be the predominant mechanism in sonophoresis. In this study, an ultrasound contrast agent (UCA) strategy was adopted instead of low frequency ultrasound to assure that cavitation occurred, and the efficacy of sonophoresis with UCA was quantitatively analyzed by optical measurements. The target drug used in this study was 0.1 % Definity® in 70% glycerol, which was delivered into porcine skin samples. Glycerol was used because it is an optical clearing agent, and the efficiency of glycerol delivery could be analyzed with optical measurements. The applied acoustic pressure was approximately 600 kPa at 1 MHz ultrasound with a 10% duty cycle for 60 minutes. Experimental results indicated that the measured relative contrast (RC) after sonophoresis with UCA was approximately 80% higher than RC after sonophoresis without UCA. In addition, the variance of RC was also reduced by more than 50% with the addition of a UCA. The use of a UCA appeared to increase cavitation, demonstrating that the use of a UCA can be effective in transdermal drug delivery (TDD). PMID:20448793

  10. Local drug delivery agents as adjuncts to endodontic and periodontal therapy.

    PubMed

    Puri, K; Puri, N

    2013-01-01

    In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained/controlled drug release, high antimicrobial activity and low systemic side effects. The conventional method for the elimination of subgingival microbial infection includes mechanical debridement, irrigation with antimicrobial agents or surgical access. But, the effectiveness of conventional nonsurgical treatment is limited by lack of accessibility to bacteria in deeper periodontal pockets, and/or does not completely eliminate intracanal microorganisms. Surgical intervention may be beneficial but cannot be done in all cases, medically compromised cases and also in patients not willing to be subjected to surgical therapy. Development of local drug delivery systems provides an answer to all such difficulties. This comprehensive review tries to cover the detailed information about the latest advances in the various local drug delivery systems, their indications, contraindications and their advantages over systemic drug therapy. PMID:24868252

  11. Intracarotid Delivery of Drugs: The Potential and the Pitfalls

    PubMed Central

    Joshi, Shailendra; Meyers, Phillip M.; Ornstein, Eugene

    2014-01-01

    The major efforts to selectively deliver drugs to the brain in the last decade have relied on smart molecular techniques to penetrate the blood brain barrier while intraarterial drug delivery has drawn relatively little attention. In the last decade there have been rapid advances in endovascular techniques. Modern endovascular procedures can permit highly targeted drug delivery by intracarotid route. Intracarotid drug delivery can be the primary route of drug delivery or it could be used to facilitate the delivery of smart-neuropharmaceuticals. There have been few attempts to systematically understand the kinetics of intracarotid drugs. Anecdotal data suggests that intracarotid drug delivery is effective in the treatment of cerebral vasospasm, thromboembolic strokes, and neoplasms. Neuroanesthesiologists are frequently involved in the care of such high-risk patients. Therefore, it is necessary to understand the applications of intracarotid drug delivery and the unusual kinetics of intracarotid drugs. PMID:18719453

  12. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  13. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  14. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.

    PubMed

    Thoppil, Roslin J; Bishayee, Anupam

    2011-09-27

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called "isoprenoids") are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  15. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  16. Ultrasound Delivery of an Anti-Aβ Therapeutic Agent to the Brain in a Mouse Model of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Jordão, Jessica F.; Ayala-Grosso, Carlos A.; Chopra, Rajiv; McLaurin, JoAnne; Aubert, Isabelle; Hynynen, Kullervo

    2009-04-01

    Plaques composed of amyloid-beta (Aβ) peptides represent a pathological hallmark in the brain of patients with Alzheimer's disease. Aβ oligomers are considered cytotoxic and several therapeutic approaches focus on reducing Aβ load in the brain of Alzheimer's patients. The efficacy of most anti-Aβ agents is significantly limited because they do not cross the blood-brain-barrier. Innovative technologies capable of enhancing the permeability of the blood-brain barrier, thereby allowing entry of therapeutic agents into the brain, show great promise in circumventing this problem. The application of low-intensity focused ultrasound in the presence of an ultrasound contrast agent causes localized and transient permeability of the blood-brain barrier. We demonstrate the value of this technology for the delivery of anti-Aβ antibodies to the brain of TgCRND8 mice, a mouse model of Alzheimer's disease exhibiting Aβ plaques. BAM-10, an anti-Aβ antibody, was injected into the tail vein simultaneously with exposure to MRI-guided, low-intensity focused ultrasound (FUS) to one hemisphere of TgCNRD8 mice. Four hours after treatment, antibodies were detected at significant amounts only in the brain of mice receiving FUS in addition to BAM-10. This data provides a proof-of-concept that FUS allows anti-Aβ therapeutics to efficiently enter the brain and target Aβ plaques. Four days following a single treatment with BAM-10 and MRI-guided FUS, a significant decrease in the number of Aβ plaques on the side of the treated hemisphere was observed in TgCRND8 mice. In conclusion low-intensity, focused ultrasound is effective in delivering Aβ antibodies to the brain. This technology has the potential to enhance current anti-Aβ treatments by allowing increased exposure of amyloid plaques to treatment agents.

  17. 'Genipin' - the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview.

    PubMed

    Manickam, Balamurugan; Sreedharan, Rajesh; Elumalai, Manogaran

    2014-01-01

    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations. PMID:24041312

  18. Emerging Potential of Nanosuspension-Enabled Drug Delivery: An Overview.

    PubMed

    Silki; Sinha, Vivek Ranjan

    2015-01-01

    Poor aqueous solubility is one of the key concerns of the majority of new drug molecules. One of the important problems associated with such drugs is that they often lead to low bioavailability. Researchers have used various techniques, but little success has been achieved due to poor stability and industrial viability, including technique cost. Of the numerous techniques, nanosuspensions (NSs) have drawn interest in improving solubility. NSs are dispersions of nanosized drug particles stabilized with the aid of appropriate agents. Stabilizers for NSs are generally recognized as safe (GRAS) excipients that can be chosen from a number of surfactants and/or polymers to food proteins. The commonly used techniques for preparation of NSs including top-down and bottom-up methods, along with new fabrication techniques based on supercritical (SC) fluids, are reviewed. This review also includes preparatory techniques, characterization, potential applications, and recent advancements in the field of NSs. PMID:26559552

  19. Development and Optimization of a Doxorubicin Loaded Poly Lactic Acid Contrast Agent for Ultrasound Directed Drug Delivery

    PubMed Central

    Eisenbrey, J.R.; Burstein, O. Mualem; Kambhampati, R.; Forsberg, F.; Liu, J-B.; Wheatley, M.A.

    2010-01-01

    An echogenic, intravenous drug delivery platform is proposed in which an encapsulated chemotherapeutic can travel to a desired location and drug delivery can be triggered using external, focused ultrasound at the area of interest. Three methods of loading poly lactic acid (PLA) shelled ultrasound contrast agents (UCA) with doxorubicin are presented. Effects on encapsulation efficiency, in vitro enhancement, stability, particle size, morphology and release during UCA rupture are compared by loading method and drug concentration. An agent containing doxorubicin within the shell was selected as an ideal candidate for future hepatocellular carcinoma studies. The agent achieved a maximal drug load of 6.2 mg Dox/g PLA with an encapsulation efficiency of 20.5%, showed a smooth surface morphology and tight size distribution (poly dispersity index = 0.309) with a peak size of 1865 nm. Acoustically, the agent provided 19 dB of enhancement in vitro at a dosage of 10 µg/ml, with a half life of over 15 mins. In vivo, the agent provided ultrasound enhancement of 13.4 ± 1.6 dB within the ascending aorta of New Zealand rabbits at a dose of 0.15 ml/kg. While the drug-incorporated agent is thought to be well suited for future drug delivery experiments, this study has shown that agent properties can be tailored for specific applications based on choice of drug loading method. PMID:20060024

  20. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Delivery of Hydrophobic Therapeutic Agents

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Peppas, Nicholas A.

    2012-01-01

    To investigate the delivery of hydrophobic therapeutic agents, a new class of polymer carriers was synthesized. These carriers are composed of two components: (i) a pH-responsive hydrogel composed of methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and (ii) hydrophobic poly(methyl methacrylate) (PMMA) nanoparticles. Before the P(MAA-g-EG) hydrogel was crosslinked, PMMA nanoparticles were added to the solution and upon exposure to UV light they were photoencapsulated throughout the P(MAA-g-EG) hydrogel structure. The pH-responsive behavior of P(MAA-g-EG) is capable of triggered release of a loaded therapeutic agent, such as a low molecular weight drug or protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). The introduction of PMMA nanoparticles into the hydrogel structure affected the swelling behavior, therapeutic agent loading efficiency, and solute release profiles. In equilibrium swelling conditions the swelling ratio of nanoparticle-containing hydrogels decreased with increasing nanoparticle content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 38 – 51 % and increased with increasing hydrophobic content. Release studies from neat P(MAA-g-EG) and the ensuing P(MAA-g-EG) hydrogels containing nanoparticles indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophobicity of the carriers used in these studies. PMID:23087546

  1. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  2. Iron oxide nanoparticles as drug delivery agents in MIA PaCa-2 pancreatic cells

    NASA Astrophysics Data System (ADS)

    Perry, Christopher; Randriamahefa, Alexandrine; Lokko, Carl; Evans, Whitney; Watkins, Julian; Carrell, Holly; King, Natalie; Patel, Darayas

    2007-02-01

    Oleic acid (OA)-Pluronic-coated iron oxide nanoparticles were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Atomic Force Microscopy (AFM). FT-IR confirmed the bonding of oleic acid and Pluronic (surfactant) to the nanoparticles. AFM measurements on these nanoparticles indicated a root mean square (RMS) roughness, a measure of nanoparticle size of (50 +/- 20) nm. The efficiency of these functionalized nanoparticles was investigated by loading with 5-Fluorouracil (5-FU) in aqueous solution. AFM measurements were used to characterize modified iron oxide nanoparticles and pancreatic MIA PaCa-2 cells, including size distribution, stability and cellular uptake. Nanoparticles were added to MIA PaCa-2 cells and assayed for their cytotoxic effects after 24 and 48 hours. The outcome of this study demonstrated the effectiveness of oleic acid (OA)-Pluronic-coated iron oxide nanoparticles as a non-toxic drug delivery agent for pancreatic cancer.

  3. Influence of nanocarrier type and size on skin delivery of hydrophilic agents.

    PubMed

    Küchler, Sarah; Abdel-Mottaleb, Mona; Lamprecht, Alf; Radowski, Michal R; Haag, Rainer; Schäfer-Korting, Monika

    2009-07-30

    The nanoparticulate carrier systems solid lipid nanoparticles (SLN) and dendritic core-multishell (CMS) nanotransporters gained interest for the topical treatment of skin diseases as they facilitate the skin penetration of loaded lipophilic drugs. Here, we studied if these carrier systems are also suitable drug delivery systems for more hydrophilic agents using the dye rhodamin B as model compound. Furthermore, the influence of the particle size on the skin penetration was investigated. Loading rhodamin B onto SLN (250-340 nm) and CMS nanotransporters (20-30 nm), the dye amount increased significantly in viable epidermis and dermis as compared to a conventional cream. CMS nanotransporters were most efficient. Creating nanoparticles of 50-200 nm demonstrated only marginal size effect for the skin penetration. Therefore, the superiority of the CMS nanotransporters seems to be attributed to the character of the nanoparticles and not to its smaller size. PMID:19439166

  4. Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents.

    PubMed

    Oronsky, Bryan; Scicinski, Jan; Kim, Michelle M; Cabrales, Pedro; Salacz, Michael E; Carter, Corey A; Oronsky, Neil; Lybeck, Harry; Lybeck, Michelle; Larson, Christopher; Reid, Tony R; Oronsky, Arnold

    2016-01-01

    First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity. PMID:27384589

  5. Palmitoyl derivatives of interferon alpha: potential for cutaneous delivery.

    PubMed

    Foldvari, M; Attah-Poku, S; Hu, J; Li, Q; Hughes, H; Babiuk, L A; Kruger, S

    1998-10-01

    Palmitoyl derivatives of interferon alpha2b (p-IFNalpha) were prepared by covalent attachment of the fatty acid to lysine residues in the protein through a reaction with N-hydroxysuccinimide palmitate ester. The p-IFNalpha was characterized by capillary electrophoresis (CE), mass spectrometry (MS), SDS-PAGE, and antiviral assay. Flow-through diffusion cells and human breast skins were used to measure cutaneous and percutaneous absorption. Formation of p-IFNalpha derivatives was demonstrated by CE to be dependent on reaction time and reagent: protein ratio. Electrospray MS of the crude p-IFNalpha mixture indicated three populations of IFNalpha derivatives with 10, 11, and 12 palmitoyl substitutions. The addition of palmitoyl residues to IFNalpha under the conditions described reduced the antiviral specific activity by 50%. However, the cutaneous absorption of p-IFNalpha was about 5-6 times greater than the parent protein. The amount of p-IFNalpha and IFN alpha in whole skin after 24 h of treatment was 2.106 +/- 1.216 microg/cm2 and 0.407 +/- 0.108 microg/cm2, respectively. Approximately two times higher flux was detected for p-IFNalpha compared to the nonfatty acylated IFNalpha. The total amount of drug diffused in 24 h was also approximately two times higher for the p-IFNalpha. The results indicate a potential for using fatty acylated derivatives of IFN alpha for dermal and transdermal delivery. PMID:9758677

  6. Carbon nanotubes buckypapers for potential transdermal drug delivery.

    PubMed

    Schwengber, Alex; Prado, Héctor J; Zilli, Darío A; Bonelli, Pablo R; Cukierman, Ana L

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT-drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. PMID:26354234

  7. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    PubMed Central

    Li, Xiaoyu; Wu, Meiying; Pan, Limin; Shi, Jianlin

    2016-01-01

    To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4) and a chemotherapeutic drug (doxorubicin) and conjugate with targeting molecules (iRGD peptide) for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. PMID:26766908

  8. MAD (Multi-Agent-Delivery) Nanolayer: Delivering Multiple Therapeutics from Hierarchical Assembled Surface Coatings

    PubMed Central

    Kim, Byeong-Su; Smith, Renée C.; Poon, Zhiyong; Hammond, Paula T.

    2014-01-01

    We present the hydrolytically degradable polymeric multilayer films that can co-deliver multiple therapeutics of differing chemical characteristics (charged biomacromolecules and neutral hydrophobic small molecules) from a surface. This multi-agent-delivery (MAD) nanolayer system integrates the hydrolytically degradable poly(β-amino ester) as a structural component to control the degradation of the multilayers to release active therapeutic macromolecules, as well as hydrophobic drugs imbedded within amphiphilic block copolymer micellar carriers within layer-by-layer (LbL) films, which would otherwise be difficult to include within the multilayers. By varying the anionic therapeutic agents (heparin and dextran sulfate) within the multilayer, we examine how different structural components can be used to control the release kinetics of multiple therapeutics from MAD nanolayers. Controlled release profiles and the in vitro efficacy of the MAD nanolayers in suppressing the growth of human smooth muscle cell lines were evaluated. The dual delivery of a charged macromolecular heparin and a small hydrophobic drug, paclitaxel, is found to be synergistic and beneficial toward effective therapeutic activity. Furthermore, we compared the classical dipping method we employed here with an automated spray-LbL technique. Spray-LbL significantly facilitates film processing time while preserving the characteristic release profiles of the MAD nanolayers. With the highly versatile and tunable nature of LbL assembly, we anticipate that MAD nanolayers can provide a unique platform for delivering multiple therapeutics from macromolecular to small molecules with distinct release profiles for applications in biological and biomedical surface coatings. PMID:19630389

  9. Using ultrasound to steer ultrasound contrast agents: Implications for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2013-11-01

    Ultrasound can be used to manipulate ultrasound contrast agents (UCAs), micron-sized bubbles used in ultrasound imaging to increase image contrast. The Bjerknes force, resulting from the lagged response of the microbubbles to the oscillatory ultrasound pressure field, can be utilized to steer the microbubbles to a targeted area in the vasculature, with the microbubbles serving as drug delivery vectors and injectors. The response of microbubbles to ultrasound in a sheared flow has shown a complex coupling of ultrasound-induced volume oscillations with hydrodynamic forces: Saffman lift and the Bjerknes force. In this work, the relative influence of these two forces acting in the across-streamlines direction is determined as a function of the Reynolds and Womersley and the excitation to bubble natural frequency ratio. We use in-vitro experiments to study the behavior of microbubbles in physiologically-realistic pulsatile flows. Quantitative information about microbubble trajectories in physiological conditions is necessary to develop models in order to control ultrasound steering of bubble-based drug delivery vectors in the human vasculature.

  10. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme

    SciTech Connect

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Suresh Kumar, M. A.; Lee, Stephen; Peña, Louis A.; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2014-08-13

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 hours (h). However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little / no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. In conclusion, cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.

  11. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme

    DOE PAGESBeta

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Suresh Kumar, M. A.; Lee, Stephen; Peña, Louis A.; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2014-08-13

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 hours (h). However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251more » but showed little / no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. In conclusion, cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.« less

  12. Graphene Nanoribbons as a Drug Delivery Agent for Lucanthone Mediated Therapy of Glioblastoma Multiforme

    PubMed Central

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Kumar, M.A. Suresh; Lee, Stephen; Peña, Louis A.; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2014-01-01

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 hours (h). However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little / no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1. PMID:25131339

  13. Delivery of optical contrast agents using Triton-X100, part 1: reversible permeabilization of live cells for intracellular labeling

    NASA Astrophysics Data System (ADS)

    van de Ven, Anne L.; Adler-Storthz, Karen; Richards-Kortum, Rebecca

    2009-03-01

    Effective delivery of optical contrast agents into live cells remains a significant challenge. We sought to determine whether Triton-X100, a detergent commonly used for membrane isolation and protein purification, could be used to effectively and reversibly permeabilize live cells for delivery of targeted optical contrast agents. Although Triton-X100 is widely recognized as a good cell permeabilization agent, no systematic study has evaluated the efficiency, reproducibility, and reversibility of Triton-X100-mediated permeabilization in live mammalian cells. We report a series of studies to characterize macromolecule delivery in cells following Triton-X100 treatment. Using this approach, we demonstrate that molecules ranging from 1 to 150 kDa in molecular weight can be reproducibly delivered into live cells by controlling the moles of Triton-X100 relative to the number of cells to be treated. When Triton-X100 is administered at or near the minimum effective concentration, cell permeabilization is generally reversed within 24 h, and treated cells continue to proliferate and show metabolic activity during the restoration of membrane integrity. We conclude that Triton-X100 is a promising permeabilization agent for efficient and reproducible delivery of optical contrast agents into live mammalian cells.

  14. The potential of liposomes as dental drug delivery systems.

    PubMed

    Nguyen, Sanko; Hiorth, Marianne; Rykke, Morten; Smistad, Gro

    2011-01-01

    The potential of liposomes as a drug delivery system for use in the oral cavity has been investigated. Specifically targeting for the teeth, the in vitro adsorption of charged liposomal formulations to hydroxyapatite (HA), a common model substance for the dental enamel, has been conducted. The experiments were performed in human parotid saliva to simulate oral-like conditions. It was observed, however, that precipitation occurred in tubes containing DPPC/DPTAP or DPPC/DPPG-liposomes in parotid saliva with no HA present, indicating that constituents of parotid saliva reacted with the liposomes. The aggregation reactions of liposome-parotid saliva mixtures were examined by turbidimetry and by atomic force microscopy. Negatively charged DPPC/DPPS and DPPC/PI-liposomes were additionally included in these experiments. The initial turbidity of positive DPPC/DPTAP-liposomes in parotid saliva was very high, but decreased markedly after 30 min. AFM images showed large aggregates of micelle-like globules known to be present in saliva. The turbidity of the various negatively charged liposome and parotid saliva mixtures stayed relatively constant throughout the measuring time; however, their initial turbidities were different; mixtures with DPPC/DPPG-liposomes were the most turbid and DPPC/DPPA-liposomes the least. Pyrophosphate (PP) was added to the various liposome-parotid saliva mixtures to examine the effect of Ca(2+) on the interactions. The effect of PP treatment of the negatively charged liposome-parotid saliva mixtures was most pronounced with DPPC/DPPG-liposome mixtures where it caused a sudden drop in turbidity. For positive DPPC/DPTAP liposome and parotid saliva mixtures, the effect of PP was minimal. These experiments showed that saliva constituents may interact with liposomes. An appropriate liposomal drug delivery system intended for use in the oral cavity seems to be dependent on the liposomal formulation. Based on the present results, negatively charged DPPC

  15. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    PubMed Central

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  16. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery.

    PubMed

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles' shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  17. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    PubMed Central

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  18. Potential Anti-HIV Agents from Marine Resources: An Overview

    PubMed Central

    Vo, Thanh-Sang; Kim, Se-Kwon

    2010-01-01

    Human immunodeficiency virus (HIV) infection causes acquired immune deficiency syndrome (AIDS) and is a global public health issue. Anti-HIV therapy involving chemical drugs has improved the life quality of HIV/AIDS patients. However, emergence of HIV drug resistance, side effects and the necessity for long-term anti-HIV treatment are the main reasons for failure of anti-HIV therapy. Therefore, it is essential to isolate novel anti-HIV therapeutics from natural resources. Recently, a great deal of interest has been expressed regarding marine-derived anti-HIV agents such as phlorotannins, sulfated chitooligosaccharides, sulfated polysaccharides, lectins and bioactive peptides. This contribution presents an overview of anti-HIV therapeutics derived from marine resources and their potential application in HIV therapy. PMID:21339954

  19. Transdermal delivery of contraceptives.

    PubMed

    Friend, D R

    1990-01-01

    Contraceptive agents are administered to the body through a variety of routes. Research has recently been directed at examining the transdermal route for systemic delivery of contraceptive agents, including estrogens and progestins. The transdermal route has several potential advantages over the other routes of administration: (1) improved compliance, (2) once-weekly administration, (3) delivery is easily terminated, and (4) some side effects can be alleviated based on more constant delivery rates. This article reviews the permeability of skin toward contraceptive steroids and how skin permeability is evaluated. The metabolism of contraceptive steroids is also considered. Transdermal delivery systems used to deliver contraceptives are presented, followed by a detailed discussion of several delivery systems for specific contraceptive agents such as levonorgestrel and estradiol. The potential problem of skin irritation is presented as it relates to transdermal contraceptive delivery systems, all of which will be worn chronically. PMID:2272099

  20. Synthesis and biological evaluation of sialyl-oligonucleotide conjugates targeting leukocyte B trans-membranal receptor CD22 as delivery agents for nucleic acid drugs.

    PubMed

    St-Pierre, Gabrielle; Pal, Sudip; Østergaard, Michael E; Zhou, Tianyuan; Yu, Jinghua; Tanowitz, Michael; Seth, Punit P; Hanessian, Stephen

    2016-06-01

    Antisense oligonucleotides (ASOs) modified with ligands which target cell surface receptors have the potential to significantly improve potency in the target tissue. This has recently been demonstrated using triantennary N-acetyl d-galactosamine conjugated ASOs. CD22 is a cell surface receptor expressed exclusively on B cells thus presenting an attractive target for B cell specific delivery of drugs. Herein, we reported the synthesis of monovalent and trivalent ASO conjugates with biphenylcarbonyl (BPC) modified sialic acids and their study as ASO delivery agents into B cells. CD22 positive cells exhibited reduced potency when treated with ligand modified ASOs and mechanistic examination suggested reduced uptake into cells potentially as a result of sequestration of ASO by other cell-surface proteins. PMID:27117693

  1. Biologically erodable microspheres as potential oral drug delivery systems

    NASA Astrophysics Data System (ADS)

    Mathiowitz, Edith; Jacob, Jules S.; Jong, Yong S.; Carino, Gerardo P.; Chickering, Donald E.; Chaturvedi, Pravin; Santos, Camilla A.; Vijayaraghavan, Kavita; Montgomery, Sean; Bassett, Michael; Morrell, Craig

    1997-03-01

    Biologically adhesive delivery systems offer important advantages1-5 over conventional drug delivery systems6. Here we show that engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. Thus, once loaded with compounds of pharmacological interest, the microspheres could be developed as delivery systems to transfer biologically active molecules to the circulation. We show that these microspheres increase the absorption of three model substances of widely different molecular size: dicumarol, insulin and plasmid DNA.

  2. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    PubMed

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system. PMID:27017579

  3. [Active periodontitis as a potential risk factor of preferm delivery].

    PubMed

    Bilińska, Maria; Osmola, Krzysztof

    2014-05-01

    The influence of active periodontitis on the incidence of preterm delivery has been widely described in numerous scientific papers. Studies suggest that an implementation of a periodontal treatment during pregnancy is not only safe for both, the mother and the child, but it also has a beneficial effect on the pregnancy and embryo-fetal development, consequently reducing morbidity and mortality among premature infants. Therefore, mandatory dental examinations in pregnant women may facilitate early implementation of periodontal treatment and reduce the rates of preterm delivery PMID:25011221

  4. Development of a diagnostic polymersome system for potential imaging delivery.

    PubMed

    Huang, Wen-Chia; Chen, Yung-Chu; Hsu, Yuan-Hung; Hsieh, Wen-Yuan; Chiu, Hsin-Cheng

    2015-04-01

    In order to enhance visualization of soft tissues, a dual-imaging diagnostic polymersome system featured with highly hydrated multilamellar wall structure capable of simultaneously embedding a hydrophobic near-infrared fluorophore, Cy5.5, and a paramagnetic probe, gadolinium (Gd(III)) cations was developed. The polymersomes were obtained from the self-assembly of lipid-containing copolymer, poly(acrylic acid-co-distearin acrylate), in aqueous solution. The Cy5.5 and Gd(III) species were loaded into polymersomes via hydrophobic association (loading efficiency of Cy5.5 ca 74%) and electrostatic complexation (Gd(III) 83%), respectively. The Cy5.5/Gd(III)-loaded polymersomes (CGLPs) have shown excellent payload confinement, reduced dilution effect on assembly dissociation and decreased protein/salt-induced colloidal aggregation. Owing to the highly hydrated structure of vesicular membrane, the superior contrast enhancement of CGLPs in magnetic resonance (MR) imaging was obtained as a result of prolonged rotational correlation time of Gd(III) cations and fast water exchange from Gd(III) to bulk solution. The CGLPs exhibit a 15-fold higher longitudinal relaxivity value (ca 60 mM(-1) s(-1)) than that (4 mM(-1) s(-1)) of the commercial contrast agent, Magnevist, in phosphate buffered saline. The in vivo characterization demonstrates that CGLPs exhibit a signal-to-noise ratio in T1-weighted MR image contrast similar to that of Magnevist, yet with a Gd dose 5-fold lower. An excellent contrast in NIR imaging at tumor site was attained following the intravenous injection of GGLPs into Tramp-C1 tumor-bearing mice (C57BL/6). Along with their non-toxicity at the dose used, these results demonstrate the great potential of the CGLPs as an advanced diagnostic nanodevice. PMID:25731095

  5. Analysis of a Delivery Device Conversion for Insulin Aspart: Potential Clinical Impact in Veterans.

    PubMed

    Moorman Spangler, Caitlin M; Greck, Beth D; Killian, Jancy H

    2016-04-01

    In Brief Insulin therapies using a wide variety of delivery devices are available to accommodate individual patients' needs. In this study of veterans with diabetes, converting from insulin aspart delivered with vials and syringes to insulin aspart delivered via a pen device resulted in no significant change in A1C. Although insulin pen delivery devices offer benefits, providers should thoroughly consider all potential reasons for uncontrolled diabetes before modifying a patient's insulin delivery method. PMID:27092019

  6. A Physical Method to Enhance Transdermal Delivery of a Tissue Optical Clearing Agent: Combination of Microneedling and Sonophoresis

    PubMed Central

    Yoon, Jinhee; Park, Donghee; Son, Taeyoon; Seo, Jongbum; Nelson, J. Stuart; Jung, Byungjo

    2011-01-01

    Background and Objectives Various physical methods, such as microneedling, laser ablation, sonophoresis, and sandpaper, have been widely studied to enhance the transdermal delivery of tissue optical clearing (TOC) agents. A previous study demonstrated that the microneedling method could effectively enhance the permeability of a TOC agent through the skin barrier. Study Design/Materials and Methods In this study, we introduce a new physical combination method which utilizes both microneedling and sonophoresis to further enhance the transdermal delivery of a TOC agent, glycerol. Porcine skin samples were divided into a control group treated only with the microneedle roller and a test group treated with both the microneedle roller and sonophoresis. Glycerol was applied topically after microneedling. The optimal concentration and transdermal delivery efficacy of glycerol were quantitatively evaluated. Results A 70% glycerol solution was determined to be the optimal concentration for the combination method. The combination method resulted in approximately a 2.3-fold higher transdermal diffusion rate of glycerol when compared to the microneedling method alone. Conclusion The combination method and optimal glycerol concentration effectively enhanced transdermal delivery of glycerol by accelerating the diffusion rate through the skin barrier. PMID:20583247

  7. One-step fabrication of agent-loaded biodegradable microspheroids for drug delivery and imaging applications.

    PubMed

    Heslinga, Michael J; Willis, Gabriella M; Sobczynski, Daniel J; Thompson, Alex J; Eniola-Adefeso, Omolola

    2014-04-01

    Non-spherical particles may offer advantages over conventional spherical systems for drug delivery applications. This work describes the fabrication of agent-loaded poly(lactic-co-glycolic acid) (PLGA) spheroids via the emulsion solvent evaporation (ESE) method. The versatility of this technique for loading a variety of therapeutics is demonstrated via loading of paclitaxel, bovine serum albumin, and cadmium sulfide nanoparticles into PLGA spheroids. The encapsulation efficiency for spheroids fabricated via oil-in-water (O/W) emulsions is highest at low aqueous phase surfactant concentrations while the encapsulation efficiency for spheroids made via water-in-oil-in-water (W/O/W) is highest at high aqueous phase surfactant concentrations and basic aqueous phase pH values. Particle aspect ratio polydispersity can be minimized via the use of high aqueous phase PVA concentration and pH. The ESE technique is an attractive alternative to recently described methods for fabrication of non-spherical particles due to its simplicity in setup, high particle yield and adaptability to a variety of biodegradable polymers and therapeutics. PMID:24441181

  8. Progressive development in experimental models of transungual drug delivery of anti-fungal agents.

    PubMed

    Thatai, P; Tiwary, A K; Sapra, B

    2016-02-01

    Pre-clinical development comprises of different procedures that relate drug discovery in the laboratory for commencement of human clinical trials. Pre-clinical studies can be designed to recognize a lead candidate from a list to develop the procedure for scale-up, to choose the unsurpassed formulation, to determine the frequency, and duration of exposure; and eventually make the foundation of the anticipated clinical trial design. The foremost aim in the pharmaceutical research and industry is the claim of drug product quality throughout a drug's life cycle. The particulars of the pre-clinical development process for different candidates may vary; however, all have some common features. Typically in vitro, in vivo or ex vivo studies are elements of pre-clinical studies. Human pharmacokinetic in vivo studies are often supposed to serve as the 'gold standard' to assess product performance. On the other hand, when this general assumption is revisited, it appears that in vitro studies are occasionally better than in vivo studies in assessing dosage forms. The present review is compendious of different such models or approaches that can be used for designing and evaluation of formulations for nail delivery with special reference to anti-fungal agents. PMID:25919363

  9. Cationic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration.

    PubMed

    Kamalinia, Golnaz; Khodagholi, Fariba; Shaerzadeh, Fatemeh; Tavssolian, Faranak; Chaharband, Farkhondeh; Atyabi, Fatemeh; Sharifzadeh, Mohammad; Amini, Mohsen; Dinarvand, Rassoul

    2015-11-01

    The critical role of metal ions and in particular iron in oxidative stress and protein aggregation offers chelation therapy as a sensible pharmaceutical strategy in oxidative stress-induced neuronal damages. In this research, we conjugated an iron-chelating agent, deferasirox, to cationized human serum albumin molecules in order to develop a novel brain delivery system for the management of neurodegenerative disorders due to the significant role of oxidative stress-induced neuronal injury in such diseases. Cationized albumin is known to be able to transport to brain tissue via adsorptive-mediated transcytosis. The developed structures were molecularly characterized, and their conjugation ratio was determined. PC12 cell line was utilized to evaluate the neuroprotective features of these newly developed molecules in the presence of hydrogen peroxide neuronal damage and to identify the mechanisms behind the observed neuronal protection including apoptotic and autophagic pathways. Furthermore, a rat model of Alzheimer's disease was utilized to evaluate the impact of conjugated structures in vivo. Data analysis revealed that the conjugated species were able to hinder apoptotic cell death while enhancing autophagic process. The developed conjugated species were also able to attenuate amyloid beta-induced learning deficits when administered peripherally. PMID:25976552

  10. Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM?

    PubMed Central

    van Woensel, Matthias; Wauthoz, Nathalie; Rosière, Rémi; Amighi, Karim; Mathieu, Véronique; Lefranc, Florence; van Gool, Stefaan W.; de Vleeschouwer, Steven

    2013-01-01

    Despite recent advances in tumor imaging and chemoradiotherapy, the median overall survival of patients diagnosed with glioblastoma multiforme does not exceed 15 months. Infiltration of glioma cells into the brain parenchyma, and the blood-brain barrier are important hurdles to further increase the efficacy of classic therapeutic tools. Local administration methods of therapeutic agents, such as convection enhanced delivery and intracerebral injections, are often associated with adverse events. The intranasal pathway has been proposed as a non-invasive alternative route to deliver therapeutics to the brain. This route will bypass the blood-brain barrier and limit systemic side effects. Upon presentation at the nasal cavity, pharmacological agents reach the brain via the olfactory and trigeminal nerves. Recently, formulations have been developed to further enhance this nose-to-brain transport, mainly with the use of nanoparticles. In this review, the focus will be on formulations of pharmacological agents, which increase the nasal permeation of hydrophilic agents to the brain, improve delivery at a constant and slow release rate, protect therapeutics from degradation along the pathway, increase mucoadhesion, and facilitate overall nasal transport. A mounting body of evidence is accumulating that the underexplored intranasal delivery route might represent a major breakthrough to combat glioblastoma. PMID:24202332

  11. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  12. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  13. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  14. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  15. Fetal Globin Gene Inducers: Novel Agents & New Potential

    PubMed Central

    Perrine, Susan P.; Castaneda, Serguei A.; Chui, David H.; Faller, Douglas V.; Berenson, Ronald J.; Fucharoen, Suthat

    2013-01-01

    Inducing expression of endogenous fetal globin (γ-globin) gene expression to 60-70% of alpha globin synthesis produces β-thalassemia trait globin synthetic ratios and can reduce anemia to a mild level. Several classes of therapeutics have induced γ-globin expression in beta thalassemia patients and subsequently raised total hemoglobin levels, demonstrating proof-of-concept of the approach. Butyrate treatment eliminated transfusion requirements in formerly transfusion-dependent patients with treatment for as long as 7 years. However, prior generations were not readily applicable for widespread use. Currently, a novel oral dual-action therapeutic sodium 2,2-dimethylbutyrate is in clinical trials, an oral decitabine formulation is under development, and agents with complementary mechanisms of action can be applied in combined regimens. Identification of 3 major genetic trait loci which modulate clinical severity provides avenues for developing tailored regimens. These refinements offer renewed potential to apply fetal globin induction as a treatment approach in patient-friendly regimens that can be used world-wide. PMID:20712788

  16. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  17. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  18. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    PubMed Central

    Ita, Kevin

    2015-01-01

    Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use. PMID:26131647

  19. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. PMID:25460601

  20. N-succinyl chitosan as buccal penetration enhancer for delivery of herbal agents in treatment of oral mucositis.

    PubMed

    Dhawan, Neha; Kumar, Krishan; Kalia, A N; Arora, Saahil

    2014-01-01

    Oral mucositis is one of the major side effects of cancer chemotherapy (30-76%) and radiotherapy (over 50%). Current palliative treatments of oral mucositis include specialized agents like pelifermin, platelet derived factors etc. or oral hygienic agents which suffered from various drawbacks like systemic side effect, least effect owing to fast wash out of buccal mucosa, patient unfriendly delivery systems, and mere symptomatic relief. In this research work, N-succinyl chitosan gel delivery system of microemulsified eugenol, honey and sodium hyaluronate was prepared to explore their multiple and synergistic effects on various pathological factors of oral mucositis. N-succinyl chitosan was synthesized in our laboratory and loaded with microemulsified eugenol (10% v/v), honey (10% v/v) and sodium hyaluronate (0.2% w/v) to prepare orogel with optimum pH, spreadability, mucoadhesion strength, and viscosity. In vitro eugenol release from N-succinyl chitosan gel after 8 hours in PBS (pH-6.4) was found to be 87.45±0.14%, which was better in comparison to that released from chitosan gel. Ex vivo penetration studies using rat buccal mucosal tissue also suggested better J-efflux of eugenol through N-succinyl chitosan in comparison to chitosan gel with enhancement ratio (ER) of 1.71. The antimicrobial effect of N-succinyl chitosan based orogel against S. aureus and C. albicans efficacy was found to be statistically high in comparison to chitosan based orogel as well as marketed formulation of chlorhexidine (p<0.05). The N-succinyl chitosan orogel in 5-fluoro uracil induced oral mucositis animal (Wistar rats) model showed enhanced survival ratio, weight gain and high tissue regeneration activity than chitosan gel formulation within 15 days. The formulation was successful in elevating the survival and reducing the inflammation in the oral mucosa of animals compared to disease control (p<0.05) and hence suggesting the potential of N-succinyl chitosan orogel in the treatment of

  1. Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH-responsive drug delivery and magnetic resonance imaging contrast agents.

    PubMed

    Zhao, Guanghui; Wang, Jianzhi; Peng, Xiaomen; Li, Yanfeng; Yuan, Xuemei; Ma, Yingxia

    2014-02-01

    We report a facile fabrication of a host-metal-guest coordination-bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH-responsive drug-delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface-modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2-Zn(II)-DOX coordination architecture. The release of DOX can be achieved through the cleavage of coordination bonds that are sensitive to variations in external pH under weakly acidic conditions. The pH-responsive nature of the nanoparticles was confirmed by in vitro releases and cell assay tests. Furthermore, the relaxation efficiency of the nanoparticles as high-performance magnetic resonance imaging contrast agents was also investigated. Experimental results confirm that the synthesized mesostructured Fe3O4/chitosan is a smart nanovehicle for drug delivery owing to both its pH-responsive nature and relaxation efficiency. PMID:24259489

  2. Polycations-functionalized water-soluble gold nanoclusters: a potential platform for simultaneous enhanced gene delivery and cell imaging

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Li, Zhenhua; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2013-06-01

    Noble metal nanoclusters have emerged as a fascinating area of widespread interest in nanomaterials. Herein, we report the synthesis of the PEI-templated gold nanoclusters (PEI-AuNCs) as an efficient carrier for gene delivery. The PEI-AuNCs integrate the advantages of PEI and AuNCs: the presence of AuNCs can effectively decrease the cytotoxicity of PEI, making it possible to apply them in biological systems, while the cationic polymer layer PEI with positive charges is essential for enhanced gene transfection efficiency. In addition, with excellent photoluminescent properties, the AuNCs also endow our system with the versatility of fluorescent imaging, indicating a great potential as an ideal fluorescent probe to track the transfection behavior. Our studies provide strong evidence that the PEI-AuNCs can be utilized as efficient gene delivery agents.Noble metal nanoclusters have emerged as a fascinating area of widespread interest in nanomaterials. Herein, we report the synthesis of the PEI-templated gold nanoclusters (PEI-AuNCs) as an efficient carrier for gene delivery. The PEI-AuNCs integrate the advantages of PEI and AuNCs: the presence of AuNCs can effectively decrease the cytotoxicity of PEI, making it possible to apply them in biological systems, while the cationic polymer layer PEI with positive charges is essential for enhanced gene transfection efficiency. In addition, with excellent photoluminescent properties, the AuNCs also endow our system with the versatility of fluorescent imaging, indicating a great potential as an ideal fluorescent probe to track the transfection behavior. Our studies provide strong evidence that the PEI-AuNCs can be utilized as efficient gene delivery agents. Electronic supplementary information (ESI) available: Supporting figures. See DOI: 10.1039/c3nr01326j

  3. Buoyancy-generating agents for stomach-specific drug delivery: an overview with special emphasis on floating behavior.

    PubMed

    Ishak, Rania A H

    2015-01-01

    Gastric retentive drug delivery provides a promising technology exhibiting an extended gastric residence and a drug release independent of patient related variables. It is usually useful in improving local gastric treatment as well as overcoming drug-related problems .i.e. drugs having narrow absorption window, short half-life or low intestinal solubility. Buoyancy is considered one of the most promising approaches for gastro-retention of dosage forms. Floating drug delivery systems have a bulk density lower than gastric fluids and thus remain buoyant in the stomach causing an increase in gastric residence time. The buoyancy of these systems is attained by the aid of substances responsible to generate the low density. Various agents with different mechanisms were adopted either gas-generating agents, air entrapping swellable polymers, inherent low density substances, porous excipients, hollow/porous particles inducing preparation techniques or sublimating agents. Therefore, this review gives an exclusive descriptive classification of the different categories of these buoyancy-generating agents while representing the related research works. An overview is also conducted to describe relevant techniques assessing the floating behavior of such dosage forms either in vitro or in vivo. Finally, a collection representing FDA-approved floating pharmaceutical products is adopted with emphasis on the buoyancy-generating agent type used in each product. PMID:25877444

  4. Disulfiram attenuates osteoclast differentiation in vitro: a potential antiresorptive agent.

    PubMed

    Ying, Hua; Qin, An; Cheng, Tak S; Pavlos, Nathan J; Rea, Sarah; Dai, Kerong; Zheng, Ming H

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  5. Potential clinical application of interleukin-27 as an antitumor agent

    PubMed Central

    Yoshimoto, Takayuki; Chiba, Yukino; Furusawa, Jun-Ichi; Xu, Mingli; Tsunoda, Ren; Higuchi, Kaname; Mizoguchi, Izuru

    2015-01-01

    Cancer immunotherapies such as sipuleucel-T and ipilimumab are promising new treatments that harness the power of the immune system to fight cancer and achieve long-lasting remission. Interleukin (IL)-27, a member of the IL-12 heterodimeric cytokine family, has pleiotropic functions in the regulation of immune responses with both pro-inflammatory and anti-inflammatory properties. Evidence obtained using a variety of preclinical mouse models indicates that IL-27 possesses potent antitumor activity against various types of tumors through multiple mechanisms without apparent adverse effects. These mechanisms include those mediated not only by CD8+ T cells, natural killer cells and macrophages, but also by antibody-dependent cell-mediated cytotoxicity, antiangiogenesis, direct antiproliferative effects, inhibition of expression of cyclooxygenase-2 and prostaglandin E2, and suppression of epithelial–mesenchymal transition, depending on the characteristics of individual tumors. However, the endogenous role of IL-27 subunits and one of its receptor subunits, WSX-1, in the susceptibility to tumor development after transplantation of tumor cell lines or endogenously arising tumors seems to be more complicated. IL-27 functions as a double-edged sword: IL-27 increases IL-10 production and the expression of programmed death ligand 1 and T-cell immunoglobulin and mucin domain-3, and promotes the generation of regulatory T cells, and IL-27 receptor α singling enhances transformation; IL-27 may augment protumor effects as well. Here, we review both facets of IL-27, antitumor effects and protumor effects, and discuss the potential clinical application of IL-27 as an antitumor agent. PMID:26132605

  6. Disulfiram Attenuates Osteoclast Differentiation In Vitro: A Potential Antiresorptive Agent

    PubMed Central

    Cheng, Tak S.; Pavlos, Nathan J.; Rea, Sarah; Dai, Kerong; Zheng, Ming H.

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  7. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents

    PubMed Central

    Peppas, Nicholas A.; Carr, Daniel A

    2009-01-01

    The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist. Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists. PMID:20161384

  8. The Smart Drug Delivery System and Its Clinical Potential

    PubMed Central

    Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning

    2016-01-01

    With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781

  9. The Smart Drug Delivery System and Its Clinical Potential.

    PubMed

    Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning

    2016-01-01

    With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781

  10. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors.

    PubMed

    Li, Ling; He, Zhi-Yao; Wei, Xia-Wei; Gao, Guang-Ping; Wei, Yu-Quan

    2015-07-01

    CRISPR/Cas9 genome editing platforms are widely applied as powerful tools in basic research and potential therapeutics for genome regulation. The appropriate alternative of delivery system is critical if genome editing systems are to be effectively performed in the targeted cells or organisms. To date, the in vivo delivery of the Cas9 system remains challenging. Both physical methods and viral vectors are adopted in the delivery of the Cas9-based gene editing platform. However, physical methods are more applicable for in vitro delivery, while viral vectors are generally concerned with safety issues, limited packing capacities, and so on. With the robust development of nonviral drug delivery systems, lipid- or polymer-based nanocarriers might be potent vectors for the delivery of CRISPR/Cas9 systems. In this review, we look back at the delivery approaches that have been used for the delivery of the Cas9 system and outline the recent development of nonviral vectors that might be potential carriers for the genome editing platform in the future. The efforts in optimizing cationic nanocarriers with structural modification are described and promising nonviral vectors under clinical investigations are highlighted. PMID:26176432

  11. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease)

    PubMed Central

    Spuch, Carlos; Navarro, Carmen

    2011-01-01

    Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB). Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease. PMID:22203906

  12. Mouse model for efficacy testing of antituberculosis agents via intrapulmonary delivery.

    PubMed

    Gonzalez-Juarrero, Mercedes; Woolhiser, Lisa K; Brooks, Elizabeth; DeGroote, Mary Ann; Lenaerts, Anne J

    2012-07-01

    Here we describe an experimental murine model that allows for aerosolized antituberculosis drug efficacy testing. Intrapulmonary aerosol delivery of isoniazid, capreomycin, and amikacin to mice with pulmonary infection of Mycobacterium tuberculosis demonstrated efficacy in reducing pulmonary bacterial loads similar to that seen by standard drug delivery methods, even when lower concentrations of drugs and fewer doses were used in the aerosolized drug regimens. Interestingly, intrapulmonary delivery of isoniazid also reduced the bacterial load in the spleen. PMID:22547626

  13. Fibrin nanoconstructs: a novel processing method and their use as controlled delivery agents

    NASA Astrophysics Data System (ADS)

    Praveen, G.; Sreerekha, P. R.; Menon, Deepthy; Nair, Shantikumar V.; Prasad Chennazhi, Krishna

    2012-03-01

    Fibrin nanoconstructs (FNCs) were prepared through a modified water-in-oil emulsification-diffusion route without the use of any surfactants, resulting in a high yield synthesis of fibrin nanotubes (FNTs) and fibrin nanoparticles (FNPs). The fibrin nanoconstructs formed an aligned structure with self-assembled nanotubes with closed heads that eventually formed spherical nanoparticles of size ˜250 nm. The nanotubes were typically ˜700 nm long and 150-300 nm in diameter, with a wall thickness of ˜50 nm and pore diameter of about 150-250 nm. These constructs showed high stability against aggregation indicated by a zeta potential of -44 mV and an excellent temperature stability upto 200 °C. Furthermore, they were found to be enzymatically degradable, thereby precluding any long term toxicity effects. These unique fibrin nanostructures were analyzed for their ability to deliver tacrolimus, an immunosuppressive drug that is used widely to prevent the initial phase of tissue rejection during allogenic transplantation surgeries. Upon conjugation with tacrolimus, a drug encapsulation efficiency of 66% was achieved, with the in vitro release studies in PBS depicting a sustained and complete drug release over a period of one week at the physiological pH of 7.4. At a more acidic pH, the drug release was very slow, suggesting their potential for oral-intestinal drug administration as well. The in vivo drug absorption rates analyzed in Sprague Dawley rats further confirmed the sustained release pattern of tacrolimus for both oral and parenteral delivery routes. The novel fibrin nanoconstructs developed using a green chemistry approach thus proved to be excellent biodegradable nanocarriers for oral as well as parenteral administrations, with remarkable potential also for delivering specific growth factors in tissue engineering scaffolds.

  14. Francisella tularensis as a potential agent of bioterrorism?

    PubMed

    Maurin, Max

    2015-02-01

    Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen. PMID:25413334

  15. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    NASA Astrophysics Data System (ADS)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  16. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents.

    PubMed

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-21

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml(-1). The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic. PMID:25327566

  17. High-throughput assay for optimising microbial biological control agent production and delivery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  18. Protein delivery into live cells by incubation with an endosomolytic agent

    PubMed Central

    Erazo-Oliveras, Alfredo; Najjar, Kristina; Dayani, Laila; Wang, Ting-Yi; Johnson, Gregory A.; Pellois, Jean-Philippe

    2014-01-01

    We report on how a dimer of the cell-penetrating peptide TAT, dfTAT, penetrates live cells by escaping from endosomes with a particularly high efficiency. By mediating endosomal leakage, dfTAT also delivers proteins into cultured cells after a simple co-incubation procedure. Cytosolic delivery is achieved in most cells in a culture and only a relatively small amount of material remains trapped inside endosomes. Delivery does not require binding interactions between dfTAT and a protein, multiple molecules can be delivered at once, and delivery can be repeated. Remarkably, dfTAT-mediated delivery does not noticeably impact cell viability, proliferation, or gene expression. This new delivery strategy should be extremely useful for cell-based assays, cellular imaging applications, and the ex vivo manipulation of cells. PMID:24930129

  19. Chitosan/TPP Nanoparticles as a Gene Delivery Agent For Tumor Suppressant P53

    NASA Astrophysics Data System (ADS)

    Liu, Gaojun

    In the last decade, non-viral polymeric vectors have become more attractive than their viral counterparts due to their nontoxicity and good biocompatibility. However, one of the major drawbacks is the low transfection efficiency when compared to viruses. In this work, a naturally cationic polysaccharide, chitosan, was cross-linked with negatively charged tripolyphosphate (TPP) to synthesize chitosan/TPP nanoparticles (CNPs) for delivery of plasmid DNA (pDNA). Particle size and zeta potential were characterized for CNPs with chitosan-TPP mass ratios of 4:1 and 6:1 (w/w) using benchtop dynamic light scattering. And both potentiometric titration method and FTIR spectrometer were applied to measure the degree of deacetylation of chitosan. Release kinetics of a model protein (bovine serum albumin, BSA) showed a steady release that reached 7% after 6 days. Besides that, we also assessed the in vitro transfection efficiency of the CNP-pDNA system using fluorescence microscopy, as well as the effect of tumor suppressant p53. Later the release kinetics and encapsulation efficiency of plasmid DNA bound to the CNPs will be investigated. Additionally, we will try to improve the gene transfection efficiency in both MC3T3-E1 and osteosarcoma cells by applying Sonicator 740 therapeutic ultrasound. Key words: gene therapy, non-viral gene vector, chitosan/TPP nanoparticles, ionic gelation, p53.

  20. A foam formulation for the delivery of microbial biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common surfactants and foaming agents are toxic to most microorganisms. To identify suitable foaming agents for use with microbes, several classes of surfactants/foaming agents were screened for compatibility with blastospores of Paecilomyces fumosoroseus. The surfactants were assayed to determine...

  1. Occupational exposures to potentially hazardous agents in the petroleum industry.

    PubMed

    Runion, H E

    1988-01-01

    This chapter has been created to acquaint the reader with occupational exposures that are more common in, and somewhat unique to, the petroleum industry. Both highly toxic materials capable of causing acute illness or even death following short-term exposure, and chemical and physical agents that pose risk of chronic and irreversible damage to health during prolonged exposure are addressed. PMID:3043733

  2. Occupational exposures to potentially hazardous agents in the petroleum industry

    SciTech Connect

    Runion, H.E.

    1988-07-01

    This chapter has been created to acquaint the reader with occupational exposures that are more common in, and somewhat unique to, the petroleum industry. Both highly toxic materials capable of causing acute illness or even death following short-term exposure, and chemical and physical agents that pose risk of chronic and irreversible damage to health during prolonged exposure are addressed.

  3. Potential of magnetic nanoparticles for targeted drug delivery

    PubMed Central

    Yang, Hung-Wei; Hua, Mu-Yi; Liu, Hao-Li; Huang, Chiung-Yin; Wei, Kuo-Chen

    2012-01-01

    Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications. PMID:24198498

  4. Liposomes as a potential ocular delivery system of distamycin A.

    PubMed

    Chetoni, Patrizia; Monti, Daniela; Tampucci, Silvia; Matteoli, Barbara; Ceccherini-Nelli, Luca; Subissi, Alessando; Burgalassi, Susi

    2015-08-15

    Liposomes containing Distamycin A (DA) may be clinically useful in the treatment of ocular HSV infections, especially in acyclovir-resistant HSV keratitis. This study evaluated the in vitro and in vivo performance of a topical controlled release liposomal formulation containing DA (DA-Lipo) aimed at reducing the toxicity of the encapsulated active agent and improving drug uptake by ocular tissues. The bioavailability of DA in the tear fluid and the DA uptake into the cornea were increased after instillation of DA-Lipo in rabbits, reaching the DA corneal concentration corresponding to IC50 values against HSV without any sign of transcorneal permeation of drug. DA-Lipo was definitely less cytotoxic then plain DA in rabbit corneal epithelial cells. These results provide new insights into the correlation between the in vitro data and the drug kinetics following ocular applications of liposomal vesicles. PMID:26183332

  5. A novel dual-targeted ultrasound contrast agent provides improvement of gene delivery efficiency in vitro.

    PubMed

    Xu, Jinfeng; Zeng, Xinxin; Liu, Yingying; Luo, Hui; Wei, Zhanghong; Liu, Huiyu; Zhou, Yuli; Zheng, Hairong; Zhou, Jie; Tan, Guanghong; Yan, Fei

    2016-07-01

    Ultrasound-targeted microbubble destruction (UTMD) has become a novel gene/drug delivery method in cancer therapeutic application. However, the gene transfection efficiency mediated by UTMD is still unsatisfactory. Here, we introduced iRGD/CCR2 dual-targeted cationic microbubbles (MBiRGD/CCR2) which was modified with PEI-600 and coated with iRGD peptides and anti-CCR-2 antibodies. It showed that MBiRGD/CCR2 had a 25.83 ± 1.57 mV surface zeta potential and good stability. The experiments in vitro showed MBiRGD/CCR2 had higher binding efficiency with both bEnd.3 cells and MCF-7 cells than that of iRGD or CCR2 single-targeted cationic microbubbles (MBiRGD or MBCCR2) (P < 0.05 for both). Agarose gel electrophoresis assay showed that MBiRGD/CCR2 can effectively load pGPU6/GFP/Neo-shAKT2 plasmid DNA. Compared with the plain MBs (MBcontrol) or single-targeted cationic MBs including MBiRGD and MBCCR2 (P < 0.05 for all), the dual-targeted cationic MBiRGD/CCR2 groups had higher gene transfection efficiency under US exposure. It showed that the dual-targeted cationic MBiRGD/CCR2 has a potential value to be used as an ultrasound imaging probe for ultrasound image-guided tumor gene therapy. PMID:26733178

  6. Nanomaterials as Non-viral siRNA Delivery Agents for Cancer Therapy

    PubMed Central

    Singh, Sanjay

    2013-01-01

    Gene therapy has been recently shown as a promising tool for cancer treatment as nanotechnology-based safe and effective delivery methods are developed. Generally, genes are wrapped up in extremely tiny nanoparticles which could be taken up easily by cancer cells, not to their healthy neighboring cells. Several nanoparticle systems have been investigated primarily to address the problems involved in other methods of gene delivery and observed improved anticancer efficacy suggesting that nanomedicine provides novel opportunities to safely deliver genes, thus treat cancer. In this review, various nanoparticle types and related strategies, used in gene delivery for cancer treatment, have been discussed. PMID:23878788

  7. Potential of bovine herpesvirus 4 as a gene delivery vector.

    PubMed

    Donofrio, Gaetano; Cavirani, Sandro; Simone, Taddei; van Santen, Vicky L

    2002-03-01

    A cloning system was developed for construction of BHV-4 recombinants and recombinant virus BHV-4EGFPDeltaTK containing an enhanced green fluorescent protein (EGFP) gene was constructed. The host range of BHV-4EGFPDeltaTK was characterized in vitro. When cell lines from various species and tissues were infected, most of the non-bovine cell lines exhibited neither cytopathic effect (CPE) nor supported viral replication, but EGFP expression was clearly observed. Next, embryonic stem cells were infected and induced to either non-specific or neural differentiation to determine whether they could survive and differentiate after BHV-4EGFPDeltaTK infection. Embryonic stem cells were infected successfully, as indicated by EGFP expression prior to differentiation, and EGFP expression could be detected in many differentiated cells. No CPE was noted. Therefore, BHV-4EGFPDeltaTK infection caused neither cell death nor interfered with non-specific or neural differentiation of embryonic stem cells. Finally, to assess the capability of BHV-4EGFPDeltaTK to infect post-mitotic neurons, cultures from brains of 2-weeks old mice were infected. No death of neuronal cells due to infection was observed and EGFP expression persisted for at least 15 days. Several biological characteristics of BHV-4 demonstrated previously make it a good candidate for a gene delivery vector. These include: little or no pathogenicity, unlikely oncogenicity, ability to establish persistent infection, and capability of herpesviruses to accommodate large amounts of foreign genetic material. These findings add the ability to infect several cell types coming from different animal species, usually without CPE, lack of interference with differentiation, and ability to maintain transgene expression in both undifferentiated and differentiated cells. PMID:11849683

  8. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  9. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors.

    PubMed

    Abdellatif, Ahmed A H; Zayed, Gamal; El-Bakry, Asmaa; Zaky, Alaa; Saleem, Imran Y; Tawfeek, Hesham M

    2016-11-01

    Targeting of G-protein coupled receptors (GPCRs) like somatostatin-14 (SST-14) could have a potential interest in delivery of anti-cancer agents to tumor cells. Attachment of SST to different nano-carriers e.g. polymeric nanoparticles is limited due to the difficulty of interaction between SST itself and those nano-carriers. Furthermore, the instability problems associated with the final formulation. Attaching of SST to gold nanoparticles (AuNPs) using the positive and negative charge of SST and citrate-AuNPs could be considered a new technique to get stable non-aggregated AuNPs coated with SST. Different analyses techniques have been performed to proof the principle of coating between AuNPs and SST. Furthermore, cellular uptake studies on HCC-1806, HELA and U-87 cell lines has been investigated to show the ability of AuNPs coated SST to enter the cells via SST receptors. Dynamic light scattering (DLS) indicated a successful coating of SST on the MUA-AuNPs surface. Furthermore, all the performed analysis including DLS, SDS-PAGE and UV-VIS absorption spectra indicated a successful coating of AuNPs with SST. Cellular uptake studies on HCC-1806, HELA and U-87 cell lines showed that the number of AuNPs-SST per cell is signiflcantly higher compared to citrate-AuNPs when quantified using inductively coupled plasma spectroscopy. Moreover, the binding of AuNPs-SST to cells can be suppressed by addition of antagonist, indicating that the binding of AuNPs-SST to cells is due to receptor-specific binding. In conclusion, AuNPs could be attached to SST via adsorption to get stable AuNPs coated SST. This new formulation has a potential to target SST receptors localized in many normal and tumor cells. PMID:27032509

  10. Photosensitive liposomes as potential drug delivery vehicles for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher G.; Mitchell, A. C.; Chowdhary, R. K.

    1991-11-01

    Light-sensitive liposomes incorporating a photochromic phospholipid (Bis-Azo PC) have been developed which exhibit light-activated release of entrapped contents and intervesicular fusion. The trapping and light-induced release of inorganic ions, fluorescent market dyes, and the antitumor drug methotrexate have been demonstrated. These results are discussed together with some of the potential therapeutic applications of light-sensitive liposomes.

  11. Synthesis of alpha-methylenebeutyrolactams as potential antitumor agents.

    PubMed

    Kornet, M J

    1979-03-01

    A series of 1-aryl-3-methylene-2-pyrrolidinones was synthesized via a three-step reaction sequence. 1,4-Bis-[N-(3-methylene-2-oxopyrrolidino)]benzene, which can undergo alkylation at two sites, was also prepared. These compounds are related to the known antitumor agents alpha-methylenebutyrolactones. Attempts to prepare bis-alpha-methylenelactams, in which the heterocyclic rings are joined through their nitrogen atoms by an alkylene bridge, were unsuccessful. All of the alpha-methylenelactams were screened in B16 melanocarcinoma and P-388 lymphocytic leukemia tumor systems but failed to show significant activity. PMID:423127

  12. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  13. Monocarboxylate Transporter 1 Inhibitors as Potential Anticancer Agents

    PubMed Central

    2015-01-01

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure–activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth. PMID:26005533

  14. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction. PMID:26706547

  15. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy

    PubMed Central

    Zhang, Longjiang; Chen, Hongwei; Wang, Liya; Liu, Tian; Yeh, Julie; Lu, Guangming; Yang, Lily; Mao, Hui

    2010-01-01

    Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented. PMID:24198480

  16. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview

    NASA Astrophysics Data System (ADS)

    Kasiotis, Konstantinos; Tzanetou, Evangelia; Haroutounian, Serkos

    2014-09-01

    Angiogenesis is a mulit-step process by which new blood vessels are formed from preexisting vasculature. It is a key rate limiting factor in tumor growth since new blood vessels are necessary to increase tumor size. In this context it has been shown that anti-angiogenic factors can be used in cancer therapy. Among the plethora of heterocyclic compounds administered as anti-angiogenesis agents, pyrazoles constitute one of the bottlenecks of this category. Currently several pyrazole based compounds are administered or are in Phase II and III trials and new targets emerge. It is highly possible that the advent of the next two decades will lead to the discovery and use of additional pyrazoles whose anti-angiogenic profile will position them in the forefront of the battle of various malignancies. The present review is an attempt to focus on those pyrazoles that arise as anti-angiogenesis agents commenting both on the chemistry and bioactivity that these exhibit aiming to contribute to the perspectives that they hold for future research.

  17. Engineering Design and Molecular Dynamics of Mucoadhesive Drug Delivery Systems as Targeting Agents

    PubMed Central

    Serra, Laura; Doménech, Josep; Peppas, Nicholas

    2009-01-01

    The goal of this critical review is to provide a critical analysis of the chain dynamics responsible for the action of micro- and nanoparticles of mucoadhesive biomaterials. The objective of using bioadhesive controlled drug delivery devices is to prolong their residence at a specific site of delivery, thus enhancing the drug absorption process. These mucoadhesive devices can protect the drug during the absorption process in addition to protecting it on its route to the delivery site. The major emphasis of recent research on mucoadhesive biomaterials has been on the use of adhesion promoters, which would enhance the adhesion between synthetic polymers and mucus. The use of adhesion promoters such as linear or tethered polymer chains is a natural result of the diffusional characteristics of adhesion. Mucoadhesion depends largely on the structure of the synthetic polymer gels used in controlled release applications. PMID:18976706

  18. [Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents].

    PubMed

    Opletalová, V; Sedivý, D

    1999-11-01

    Chalcones and their heterocyclic analogues show various biological effects, e.g. anti-inflammatory, antitumour, antibacterial, antituberculous, antiviral, antiprotozoal, gastroprotective, and others. The present review discusses in greater detail the fungistatic and fungicide properties of these compounds and presents also their chemical structures. The mechanism of antifungal effects of chalcones and their analogues has not been investigated in greater detail. Due to the presence of a reactive ketovinyl moiety in the molecule the compounds of this type are able to react with the thiol groups of enzymes. It cannot be excluded that chalcones interfere with the normal function of the membranes of fungi and moulds. Further investigation of chemical, physical, and biological properties of chalcones and their analogues could lead to the elucidation of the mechanism of their action and finding of effective fungicidal and fungistatic agents in this group of organic substances. PMID:10748740

  19. Biomaterials-Potential nucleation agents in blood and possible implications.

    PubMed

    Rohnke, Marcus; Henss, Anja

    2016-01-01

    Blood, simulated body fluids, and many cell culture media are supersaturated solutions with respect to several calcium phosphates. Therefore biomaterials can act as nucleation agents and evoke heterogeneous nucleation of salts on the surface of immersed biomaterials. Depending on the field of application, this can be either beneficial or disadvantageous. Although nucleation from supersaturated solutions is an old and well-known scientific phenomenon it is not standard to test new developed materials with surface analytical methods for their ability to initiate nucleation in vitro. Therefore, this communication aims to review the mineralization effect and to emphasize the possible negative implications, especially to functionalized bone implants. Surface coatings with proteins, growth factors, and, etc., can become ineffective due to deposition of a dense calcium phosphate layer. In the case of drug loaded implants, drug release might be inhibited. PMID:27316221

  20. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  1. Sublingual Delivery of Frovatriptan: An Indication of Potential Alternative Route

    PubMed Central

    Verma, Surajpal; Prasad, Shyam Baboo

    2014-01-01

    Frovatriptan, a 5-HT1B and 5-HT1D receptor agonist, is used for the treatment of acute migraine attack. This molecule is classified into second line therapy because of its slow onset of action (peak response obtained after 4 hours of administration) and low bioavailability (25%). Moreover, its therapy is the most costly among all triptans. Attempt has been made in present work to suggest a way out to fasten its onset of action and to enhance its bioavailability. Prepared tablets were evaluated by physicochemical tests, in vitro permeation studies, ex vivo permeation studies, and histopathological studies. Suitable mathematical calculations were performed to calculate the minimum amount of bioavailability that could be enhanced. Tablets containing chitosan (5% w/w) were found to give optimum results. Prepared tablets can double the bioavailability of frovatriptan and can initiate its response within 10 minutes of its administration. Suggestive alternative has the potential to increase the efficacy of frovatriptan for treating acute migraine attack. PMID:27433492

  2. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes.

    PubMed

    Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Garcia-Fruitós, Elena

    2015-01-01

    Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases. PMID:26377321

  3. Fabrication of Highly Uniform Nanoparticles from Recombinant Silk-Elastinlike Protein Polymers for Therapeutic Agent Delivery

    PubMed Central

    Anumolu, Rajasekhar; Gustafson, Joshua A.; Magda, Jules J.; Cappello, Joseph; Ghandehari, Hamidreza; Pease, Leonard F.

    2011-01-01

    Here we generate silk-elastinlike protein (SELP) polymeric nanoparticles and demonstrate precise control over their dimensions using an electrospray differential mobility analyzer (ES-DMA). Electrospray produces droplets encompassing several polymer strands. Evaporation ensues, leading polymer strands to accumulate at the droplet interface forming a hollow nanoparticle. The resulting nanoparticle size distributions which govern particle yield, depend on buffer concentration to the −1/3 power, polymer concentration to the 1/3 power, and ratio of silk to elastin blocks. Three recombinantly tuned ratios of silk to elastin blocks, 8:16, 4:8, and 4:16, respectively named SELP-815K, SELP-47K, and SELP-415K, are employed with the latter ratio resulting in a thinner shell and larger diameter for the nanoparticles than the former. The DMA narrows the size distribution by electrostatically classifying the aerosolized nanoparticles. These highly uniform nanoparticles have variations of 1.2 nm and 1.4 nm for 24.0 nm and 36.0 nm particles, respectively. Transmission electron microscopy reveals the nanoparticles to be faceted, as a buckling instability releases compression energy arising from evaporation after the shell has formed by bending it. A thermodynamic equilibrium exists between compression and bending energies, where the facet length is 1/2 the particle diameter, in agreement with experiments. Rod-like particles also formed from polymer stabilized filaments when the viscous length exceeds the jet radius at higher solution viscosities. The unusual uniformity in composition and dimension indicates the potential of these nanoparticles to deliver bioactive and imaging agents. PMID:21696150

  4. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents.

    PubMed

    Huang, Tian-Yun; Sakar, Mahmut Selman; Mao, Angelo; Petruska, Andrew J; Qiu, Famin; Chen, Xue-Bo; Kennedy, Stephen; Mooney, David; Nelson, Bradley J

    2015-11-01

    Functional compound micromachines are fabricated by a design methodology using 3D direct laser writing and selective physical vapor deposition of magnetic materials. Microtransporters with a wirelessly controlled Archimedes screw pumping mechanism are engineered. Spatiotemporally controlled collection, transport, and delivery of micro particles, as well as magnetic nanohelices inside microfluidic channels are demonstrated. PMID:26415002

  5. Potential Role of Garcinol as an Anticancer Agent

    PubMed Central

    Saadat, Nadia; Gupta, Smiti V.

    2012-01-01

    Garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Although the fruit has been consumed traditionally over centuries, its biological activities, specifically its anticancer potential is a result of recent scientific investigations. The anticarcinogenic properties of garcinol appear to be moderated via its antioxidative, anti-inflammatory, antiangiogenic, and proapoptotic activities. In addition, garcinol displays effective epigenetic influence by inhibiting histone acetyltransferases (HAT 300) and by possible posttranscriptional modulation by mi RNA profiles involved in carcinogenesis. In vitro as well as some in vivo studies have shown the potential of this compound against several cancers types including breast, colon, pancreatic, and leukemia. Although this is a promising molecule in terms of its anticancer properties, investigations in relevant animal models, and subsequent human trials are warranted in order to fully appreciate and confirm its chemopreventative and/or therapeutic potential. PMID:22745638

  6. Modified polysaccharides as potential (19)F magnetic resonance contrast agents.

    PubMed

    Krawczyk, Tomasz; Minoshima, Masafumi; Sugihara, Fuminori; Kikuchi, Kazuya

    2016-06-16

    The introduction of 3-aminobenzotrifluoride into partially oxidized alginic acid, dextran, and polygalacturonic acid (10-100 kDa) by means of the imine formation and a subsequent reduction resulted in water-soluble materials containing 1-14% of fluorine. They showed a single or split (19)F NMR signal in a narrow range of -63 to -63.5 ppm. The observed T1 and T2 were approximately 1 and 0.2 s at 400 or 500 MHz instruments, respectively. The samples showed low toxicity and uptake toward the HeLa cells similar to native polysaccharides and were preferentially localized in lysosomes. A tail intravenous injection of 5 mg of modified dextran containing 1% of fluorine revealed that the probe was not trapped in liver, spleen or kidneys, but was quickly cleared with urine. The proposed materials can be used for imaging of the gastrointestinal tract or the genitourinary system and act as a material for more complex (19)F MRI agent synthesis. PMID:27148998

  7. Lycopene: a review of its potential as an anticancer agent.

    PubMed

    Bhuvaneswari, V; Nagini, S

    2005-11-01

    Dietary chemoprevention has emerged as a cost effective approach to control most prevalent chronic diseases including cancer. In particular, tomato and tomato products are recognised to confer a wide range of health benefits. Epidemiological studies have provided evidence that high consumption of tomatoes effectively lowers the risk of reactive oxygen species (ROS)-mediated diseases such as cardiovascular disease and cancer by improving the antioxidant capacity. Tomatoes are rich sources of lycopene, an antioxidant carotenoid reported to be a more stable and potent singlet oxygen quenching agent compared to other carotenoids. In addition to its antioxidant properties, lycopene shows an array of biological effects including cardioprotective, anti-inflammatory, antimutagenic and anticarcinogenic activities. The anticancer activity of lycopene has been demonstrated both in in vitro and in vivo tumour models. The mechanisms underlying the inhibitory effects of lycopene on carcinogenesis could involve ROS scavenging, upregulation of detoxification systems, interference with cell proliferation, induction of gap-junctional communication, inhibition of cell cycle progression and modulation of signal transduction pathways. This review outlines the sources, structure, absorption, metabolism, bioavailability and pharmacological properties of lycopene with special reference to its antioxidant and anticarcinogenic effects. PMID:16305484

  8. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts.

    PubMed

    Alaniz Zanon, M S; Chiotta, M L; Giaj-Merlera, G; Barros, G; Chulze, S

    2013-04-01

    Biocontrol by competitive exclusion has been developed as the most promising means of controlling aflatoxins in peanuts. A 2-year study was carried out to determine the efficacy of an Aspergillus flavus strain as biocontrol agent to reduce aflatoxin production in peanuts under field conditions in Argentina. The competitive strain used was a nontoxigenic A. flavus (AFCHG2) naturally occurring in peanut from Córdoba, Argentina. The inoculum was produced through solid-state fermentation on long grain rice and applied at rate of 50kg inoculum/ha. The incidence of the released strain within the A. flavus communities in soil and peanuts was determined using the shift in the ratio toxigenic:nontoxigenic and VCG analysis. During the 2009/2010 growing season, treatments produced significant reductions in the incidence of toxigenic isolates of A. flavus/Aspergillus parasiticus in soil and peanuts. However, no preharvest aflatoxin contamination was observed. In the 2010/2011 growing season, plants were exposed to late season drought conditions that were optimal for aflatoxin contamination. Significant reductions in aflatoxin levels averaging 71% were detected in treated plots with different inoculation treatments. The results suggest that using the strategy of competitive exclusion A. flavus AFCHG2 can be applied to reduce aflatoxin contamination in Argentinean peanuts. PMID:23454811

  9. Neem components as potential agents for cancer prevention and treatment.

    PubMed

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2014-08-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  10. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  11. Influence of potentially remineralizing agents on bleached enamel microhardness.

    PubMed

    Borges, Alessandra Bühler; Samezima, Leticia Yumi; Fonseca, Léila Pereira; Yui, Karen Cristina Kazue; Borges, Alexandre Luiz Souto; Torres, Carlos Rocha Gomes

    2009-01-01

    This study investigated the effect of the addition of calcium and fluoride into a 35% hydrogen peroxide gel on enamel surface and subsurface microhardness. Twenty extracted human third molars were sectioned to obtain enamel fragments and they were divided into four groups (n = 20) according to the bleaching treatment. Group 1 received no bleaching procedure (control). Group 2 was treated with a 35% hydrogen peroxide gel (Total Bleach), Groups 3 and 4 were bleached with Total Bleach modified by the addition of sodium fluoride and calcium chloride, respectively. The microhardness of the enamel surface was assessed using a Vickers microdurometer immediately after the bleaching treatment. The specimens were sectioned in the central portion, polished and evaluated to determine the microhardness of the enamel subsurface to a depth of 125 microm, with an interval of 25 microm between measures. There were significant differences among the groups. In terms of surface microhardness, the bleached group exhibited the lowest means, and the calcium-modified bleached group exhibited the highest means. Regarding subsurface microhardness, there were no significant differences among the groups for the depth and interaction factors. The bleached group exhibited the lowest means, and the calcium-modified bleached group presented the highest means. It was concluded that the bleaching treatment with 35% hydrogen peroxide significantly reduced the surface and subsurface microhardness of the enamel, and the addition of fluoride and calcium in the bleaching agent increased the microhardness means of the bleached enamel. PMID:19830975

  12. Thymol and eugenol derivatives as potential antileishmanial agents.

    PubMed

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E; de Andrade, Heitor Franco

    2014-11-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5-10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl-thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis. PMID:25281268

  13. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-01-01

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations. PMID:26197311

  14. ZETA-POTENTIAL OF CONCRETE IN PRESENCE OF CHELATING AGENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of concrete surfaces at Nuclear Power Plants (NPP) and reprocessing facilities by radionuclides/heavy metals is a significant and widespread problem throughout the world’s Nuclear Power Industries. The current study of the zeta-potentials (') of concrete particles in the presence of va...

  15. Alternative Delivery Systems: A Potential Partnership for Education and Public Broadcasting.

    ERIC Educational Resources Information Center

    Baltzer, Jan A.

    If educators and public broadcasters are to realize their potential for providing high quality educational and cultural material to the public, they must be aware of current and upcoming technologies and work in concert to achieve their goals. Several alternative delivery systems are currently available to help educators and broadcasters expand…

  16. Radioiodinated fenetylline (captagon): A new potential brain imaging agent

    SciTech Connect

    Biersack, H.J.; Klunenberg, H.; Breuel, H.P.; Reske, S.N.; Reichmann, K.; Winkler, C.

    1984-01-01

    Since about 2 years /sup 123/I-labeled iodamphetamines (IMP) and diamines (HIPDM) have been used for scintigraphic brain investigations. As another possibly useful brain imaging agent we studied radioiodine labeled Fenetylline which is metabolized into amphetamine. Thirty wistar rats were injected 5 ..mu..Ci /sup 125/I-IMP and 2 ..mu..Ci /sup 131/I-Fenetylline each simultaneously. The animals were sacrificed 5,10,15,30,60, and 120 min. p.i. The radioactivity content of tissue specimens (brain, cerebellum, liver, kidney, lung, myocardium, muscle) was measured in a well-counter (% dose/g tissue). In 2 dogs sequential cerebral scintigraphy was performed following the injection of 0.5 mCi /sup 131/I-Fenetylline. Three patients underwent brain SPECT after injection of 6.5 mCi /sup 123/I-Fenetylline. The results can be summarized as follows: after 5/10 min. p.i. Fenetylline-uptake in the brain of rats was 1.0/1.3% compared to 1.3/1.9% (IMP). A fast decrease of cerebral Fenetylline concentration was established after 30 (0.2%) and 60 (0.5%) min. The canine and human sequential scintigraphy revealed a rapid cerebral uptake (maximum after 2-10 min.) suggesting that Fenetylline is concentrated in the brain as a function of cerebral blood flow. From the first clinical findings it appears to be likely that the combined use of /sup 123/I labelled IMP and Fenetylline for SPECT may lead to a more differentiated evaluation of cerebral blood flow and metabolism.

  17. Handheld delivery system for modified boron-type fire extinguishment agent

    NASA Astrophysics Data System (ADS)

    Lee, Michael E.; Tapscott, Robert E.

    1993-11-01

    A handheld, portable extinguisher was developed for Boralon, a modified Boron-type Class D fire extinguishing agent. The development of this unit progressed through the design, prototype, and final product stages. Two prototypes were designed as valved, stored-pressure types using Boralon compatible materials in critical areas exposed to the agent. The units were tested at an operating pressure of 200 lbf/sq in and an agent capacity of 2 to 3 gallons to determine the optimum application rate, throw range and throw pattern. The most favorable unit was tested for reliability. The information obtained in the prototype testing was developed further into a final design. This design specified a stored-pressure type that was sealed with a frangible plug or splined rupture disk and was activated by depressing the handle and removing the seal. Further requirements of a fill ratio of 75 percent agent to 25 percent pressure head at 200 lbf/sq in and an agent fill capacity of at least 2 gallons were also specified. Two manufactured units were found that met the criteria. An extinguisher with a frangible plug seal was successfully tested against 30- and 50-pound magnesium fires. Both the frangible plug and splined rupture disk designs satisfy the final design requirements of the handheld Boralon extinguisher. Both types are recommended for use in the Draft Military Specification for this unit.

  18. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance

    PubMed Central

    Creixell, Mar; Peppas, Nicholas A.

    2015-01-01

    Summary There are two main mechanisms by which cells become multidrug resistant (MDR): by increasing drug efflux pumps on the cell membrane and by increasing anti-apoptotic pathways. The use of nanotechnology to develop nanodelivery systems has allowed researchers to overcome limitations of antineoplastic drugs by increasing the solubility of the drug and decreasing the toxicity to healthy tissues. By encapsulating drugs into nanoparticles that bypass the efflux pumps, drug efflux is reduced, hence increasing the intracellular concentration of the drug. siRNA has the ability to disrupt cellular pathways by knocking down genes, opening the door to down regulating anti-apoptotic pathways. The use of nanocarriers to deliver siRNA, prevents both renal clearance and RNase degradation by protecting siRNA chains, increasing their half life in blood. It has been suggested that co-delivering drugs and siRNA together in the same delivery system would be more effective in overcoming resistance of cancer cells than co-treatment of cancer cells with delivery systems carrying either siRNA or drugs. In this study we discuss the progress of nanoscale co-delivery systems in overcoming multidrug cancer resistance. PMID:26257819

  19. New water soluble pyrroloquinoline derivatives as new potential anticancer agents.

    PubMed

    Ferlin, Maria Grazia; Marzano, Christine; Dalla Via, Lisa; Chilin, Adriana; Zagotto, Giuseppe; Guiotto, Adriano; Moro, Stefano

    2005-08-01

    A new class of water soluble 3H-pyrrolo[3,2-f]quinoline derivatives has been synthesized and investigated as potential anticancer drugs. Water solubility profiles have been used to select the most promising derivatives. The novel compound 10, having two (2-diethylamino-ethyl) side chains linked through positions 3N and 9O, presents a suitable water solubility profile, and it was shown to exhibit cell growth inhibitory properties when tested against the in-house panel of cell lines, in particular those obtained from melanoma. PMID:15936202

  20. Potential Effects of Cannabidiol as a Wake-Promoting Agent

    PubMed Central

    Murillo-Rodríguez, Eric; Sarro-Ramírez, Andrea; Sánchez, Daniel; Mijangos-Moreno, Stephanie; Tejeda-Padrón, Alma; Poot-Aké, Alwin; Guzmán, Khalil; Pacheco-Pantoja, Elda; Arias-Carrión, Oscar

    2014-01-01

    Over the last decades, the scientific interest in chemistry and pharmacology of cannabinoids has increased. Most attention has focused on ∆9-tetrahydrocannabinol (∆9-THC) as it is the psychoactive constituent of Cannabis sativa (C. sativa). However, in previous years, the focus of interest in the second plant constituent with non-psychotropic properties, cannabidiol (CBD) has been enhanced. Recently, several groups have investigated the pharmacological properties of CBD with significant findings; furthermore, this compound has raised promising pharmacological properties as a wake-inducing drug. In the current review, we will provide experimental evidence regarding the potential role of CBD as a wake-inducing drug. PMID:24851090

  1. Poly(ethylene glycol)-polypeptide Copolymer Micelles for Therapeutic Agent Delivery.

    PubMed

    Cheng, Yilong

    2016-01-01

    Poly(ethylene glycol)-polypeptide (PEG-polypeptide) based polymeric micelles as therapeutic agent carriers have received considerable interest due to their advanced achievements in clinical trials. Polypeptides not only show well-defined secondary structure (alfa-helix and beta-sheet) and good biocompatibility, but can also be functionalized with various groups by direct N-carboxyanhydrides (NCAs) polymerization or further modification. Additionally, the ionizable side chains enable them to deliver diverse therapeutic agents, such as negative nucleic acid and positive doxorubicin. In this review, we firstly summarized the synthetic methods of amphiphilic copolymers PEG-polypeptide, and emphatically discussed recent progress on their applications as nanocarriers for therapeutic agents from following aspects: PEG-nonionic polypeptide copolymer micelles, PEG-anionic polypeptide micelles, and PEGcationic polypeptide micelles. PMID:26696015

  2. Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs

    PubMed Central

    Sun, Hongwu; Liu, Kaiyun; Liu, Wei; Wang, Wenxiu; Guo, Chunliang; Tang, Bin; Gu, Jiang; Zhang, Jinyong; Li, Haibo; Mao, Xuhu; Zou, Quanming; Zeng, Hao

    2012-01-01

    Background: The stability of protein drugs remains one of the key hurdles to their success in the market. The aim of the present study was to design a novel nanoemulsion drug-delivery system (NEDDS) that would encapsulate a standard-model protein drug – bovine serum albumin (BSA) – to improve drug stability. Methods: The BSA NEDDS was prepared using a phase-inversion method and pseudoternary phase diagrams. The following characteristics were studied: morphology, size, zeta potential, drug loading, and encapsulation efficiency. We also investigated the stability of the BSA NEDDS, bioactivity of BSA encapsulated within the NEDDS, the integrity of the primary, secondary, and tertiary structures, and specificity. Results: The BSA NEDDS consisted of Cremophor EL-35, propylene glycol, isopropyl myristate, and normal saline. The average particle diameter of the BSA NEDDS was about 21.8 nm, and the system showed a high encapsulation efficiency (>90%) and an adequate drug-loading capacity (45 mg/mL). The thermodynamic stability of the system was investigated at different temperatures and pH levels and in room-temperature conditions for 180 days. BSA NEDDS showed good structural integrity and specificity for the primary, secondary, and tertiary structures, and good bioactivity of the loaded BSA. Conclusions: BSA NEDDS showed the properties of a good nanoemulsion-delivery system. NEDDS can greatly enhance the stability of the protein drug BSA while maintaining high levels of drug bioactivity, good specificity, and integrity of the primary, secondary, and tertiary protein structures. These findings indicate that the nanoemulsion is a potential formulation for oral administration of protein drugs. PMID:23118537

  3. KETAMINE: A POTENTIAL RAPID-ACTING ANTISUICIDAL AGENT?

    PubMed

    Wilkinson, Samuel T; Sanacora, Gerard

    2016-08-01

    Ketamine has attracted widespread attention as a potential rapid-acting antidepressant. There is also considerable interest in its use for the rapid treatment of patients deemed at risk for suicide. Here, we review the available evidence (open-label and randomized controlled trials) that examine the effects of ketamine on suicidal ideation (SI). Overall, data suggest that ketamine has a rapid albeit transient effect in reducing SI, though some studies had mixed results at different time points or using different assessments. Weaknesses to the existing literature include the small sample sizes of the studies, the exclusion of patients with significant SI at baseline from many of the studies, and the potential functional unblinding when participants are randomized to saline as placebo. The evidence supporting the clinical use of ketamine for SI is very preliminary. Although ketamine appears to a promising therapeutic option in a context where there is a great unmet need (i.e., patients at imminent risk of suicide), further controlled trials are needed to allow for meaningful clinical recommendations. PMID:27082101

  4. New inhibitors of glycogen phosphorylase as potential antidiabetic agents.

    PubMed

    Somsák, L; Czifrák, K; Tóth, M; Bokor, E; Chrysina, E D; Alexacou, K-M; Hayes, J M; Tiraidis, C; Lazoura, E; Leonidas, D D; Zographos, S E; Oikonomakos, N G

    2008-01-01

    The protein glycogen phosphorylase has been linked to type 2 diabetes, indicating the importance of this target to human health. Hence, the search for potent and selective inhibitors of this enzyme, which may lead to antihyperglycaemic drugs, has received particular attention. Glycogen phosphorylase is a typical allosteric protein with five different ligand binding sites, thus offering multiple opportunities for modulation of enzyme activity. The present survey is focused on recent new molecules, potential inhibitors of the enzyme. The biological activity can be modified by these molecules through direct binding, allosteric effects or other structural changes. Progress in our understanding of the mechanism of action of these inhibitors has been made by the determination of high-resolution enzyme inhibitor structures (both muscle and liver). The knowledge of the three-dimensional structures of protein-ligand complexes allows analysis of how the ligands interact with the target and has the potential to facilitate structure-based drug design. In this review, the synthesis, structure determination and computational studies of the most recent inhibitors of glycogen phosphorylase at the different binding sites are presented and analyzed. PMID:19075645

  5. Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents.

    PubMed

    Cassady, J M; Baird, W M; Chang, C J

    1990-01-01

    Recent advances in the chemistry of novel bioactive natural products are reported. This research is directed to the exploration of plants with confirmed activity in bioassays designed to detect potential cancer chemotherapeutic and chemopreventive agents. Structural work and chemical studies are reported for several cytotoxic agents from the plants Annona densicoma, Annona reticulata, Claopodium crispifolium, Polytrichum obioense, and Psorospermum febrifugum. Studies are also reported based on development of a mammalian cell culture benzo[a]pyrene metabolism assay for the detection of potential anticarcinogenic agents from natural products. In this study a number of isoflavonoids and flavonoids with antimutagenic activity have been discovered. PMID:2189947

  6. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  7. Nutraceuticals as potential therapeutic agents for colon cancer: a review.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-06-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  8. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  9. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

    PubMed Central

    Jia, Min; Nie, Yan; Cao, Da-Peng; Xue, Yun-Yun; Wang, Jie-Si; Zhao, Lu; Rahman, Khalid; Zhang, Qiao-Yan; Qin, Lu-Ping

    2012-01-01

    Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease. PMID:23365596

  10. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947