NASA Astrophysics Data System (ADS)
Pavel, V.; Raubenheimer, B.; Elgar, S.; Ralston, D. K.
2010-12-01
On the Skagit Bay tidal flats, the stratification resulting from the buoyancy input of the Skagit River is modulated by tides with a 4 m range. Here, field observations and Finite Volume Coastal Ocean Model (FVCOM) simulations are used to evaluate the terms in the equation governing the temporal evolution of the stratification-induced potential energy anomaly (?) (Burchard and Hofmeister, Estuar. Coast. Shelf Sci., 77(4), 2008). Profiles of water density (range of 1000 to 1028 kg/m3) and velocity (up to 0.6 m/s) were measured at locations separated by roughly 600 m over a 4 by 4 km region of the flats (0.5 to 2.5 m mean water depth) for 56 days from early July (river discharge of 570 m3s-1) until late August 2009 (discharge of 140 m3s-1). The FVCOM grid of Skagit Bay and surrounding basins is forced with surface winds from a regional wind model, observed river discharge, and water level based on tidal harmonics and observed low-frequency variability. The model bathymetry incorporates numerous data sources including acoustic and LIDAR surveys performed during summer 2009. Temporal changes in ? may result from tidal straining (an effect of sheared flows and horizontally varying water density) of the depth-averaged and vertically-dependent densities, along- and across-flat advection, vertical advection, surface and bottom buoyancy fluxes, mixing, changes in water depth, and turbulent transport. FVCOM simulations suggest that the horizontal and vertical resolutions of the observations are sufficient to examine the relative importance of the terms in the equation for ?. Preliminary results suggest that temporal changes in ? primarily are owing to cross-flat tidal straining of the depth-averaged density, cross-flat advection, changing water depth, and mixing. However, model results suggest that the relative importance of the terms depends on proximity to the main river channel, river discharge, and tidal range (e.g., spring versus neap tides). Funded by ONR, NSF, and NSSEFF.
Waterlike thermodynamic anomalies in a repulsive-shoulder potential system
NASA Astrophysics Data System (ADS)
Gribova, N. V.; Fomin, Yu. D.; Frenkel, Daan; Ryzhov, V. N.
2009-05-01
We report a computer-simulation study of the equilibrium phase diagram of a three-dimensional system of particles with a repulsive-shoulder potential. The phase diagram was obtained using free-energy calculations. At low temperatures, we observe a number of distinct crystal phases. We show that at certain values of the potential parameters the system exhibits the waterlike thermodynamic anomalies: a density anomaly and a diffusion anomaly. The anomalies disappear with increasing the repulsive step width: more precisely, their locations move to the region where the crystalline phase is stable.
Scalar potential model of the Pioneer Anomaly
Hodge, J C
2006-01-01
The unexplained sunward acceleration $a_\\mathrm{P}$ of the Pioneer 10 (P10) and the Pioneer 11 (P11) spacecraft remains a mystery. A scalar potential model (SPM) that derived from considerations of galaxy clusters, of redshift, and of H{\\scriptsize{I}} rotation curves of spiral galaxies is applied to the Pioneer Anomaly. Matter is posited to warp the scalar potential $\\rho$ field. The gradient of the $\\rho$ field produces a force on matter and light. The changing $\\rho$ along the light path causes the Pioneer Anomaly. The SPM is consistent with the general value of $a_\\mathrm{P}$, with the annual periodicity, with the differing $a_\\mathrm{P}$ between the spacecraft, with the slowly declining $a_\\mathrm{P}$, with the low value of $a_\\mathrm{P}$ immediately before the P11's Saturn encounter, with the high uncertainty in the value of $a_\\mathrm{P}$ obtained during and after the P11's Saturn encounter, and with the cosmological connection suggested by $a_\\mathrm{P} \\approx cH_\\mathrm{o}$. The effect of the $\\rho$...
Revisiting Gravitational Anomalies and a Potential Solution
P. A. Murad
2009-01-01
Gravitational anomalies require investigation and resolution to understand the space environment if man is to travel beyond trans-lunar or trans-Mars region. This paper will provide a framework for further and more detailed evaluations. These anomalies include, a slight change in the sun's gravitational attraction observed by two Pioneer probes based upon trajectory deviations detected after being in flight for over
Revisiting Gravitational Anomalies and a Potential Solution
P. A. Murad
2009-01-01
Gravitational anomalies require investigation and resolution to understand the space environment if man is to travel beyond trans-lunar or trans-Mars region. This paper will provide a framework for further and more detailed evaluations. These anomalies include, a slight change in the sun’s gravitational attraction observed by two Pioneer probes based upon trajectory deviations detected after being in flight for over
Thermodynamic, dynamic, and structural anomalies for shoulderlike potentials
NASA Astrophysics Data System (ADS)
Barraz, Ney M.; Salcedo, Evy; Barbosa, Marcia C.
2009-09-01
Using molecular dynamic simulations we study a family of continuous core-softened potentials consisting of a hard core, a shoulder at closest distances, and an attractive well at further distance. The repulsive shoulder and the well distances represent two length scales. We show that if the first scale, the shoulder, is repulsive or has a small well, the potential has a region in the pressure-temperature phase diagram with density, diffusion, and structural anomalies. However, if the closest scale becomes a deep well, the regions in the pressure-temperature phase diagram where the three anomalies are present shrink and disappear. This result helps in defining two length scales potentials that exhibit anomalies.
Zero-point energies and the multiplicative anomaly
J. J. McKenzie-Smith; D. J. Toms
2000-05-22
For the case of a relativistic scalar field at finite temperature with a chemical potential, we calculate an exact expression for the one-loop effective action using the full fourth order determinant and zeta-function regularisation. We find that it agrees with the exact expression for the factored operator and thus there appears to be no mulitplicative anomaly. The appearance of the anomaly for the fourth order operator in the high temperature limit is explained and we show that the multiplicative anomaly can be calculated as the difference between two zeta-regularised zero-point energies. This difference is a result of using a charge operator in the Hamiltonian which has not been normal ordered.
Spectral action, Weyl anomaly and the Higgs-Dilaton potential
A. A. Andrianov; M. A. Kurkov; Fedele Lizzi
2011-06-16
We show how the bosonic spectral action emerges from the fermionic action by the renormalization group flow in the presence of a dilaton and the Weyl anomaly. The induced action comes out to be basically the Chamseddine-Connes spectral action introduced in the context of noncommutative geometry. The entire spectral action describes gauge and Higgs fields coupled with gravity. We then consider the effective potential and show, that it has the desired features of a broken and an unbroken phase, with the roll down.
Organized convection ahead of a potential vorticity anomaly
NASA Astrophysics Data System (ADS)
Vaughan, Geraint; Antonescu, Bogdan; Schultz, David; Dearden, Chris
2015-04-01
We present a case study of a convective band that intensified ahead of an upper level trough on September 16 2011, distinguishing the role of the upper-level potential vorticity anomaly from that of low-level forcing. The event occurred during an Intensive Observing Period of two field campaigns, providing the study with detailed measurements from the UK's FAAM research aircraft together with intensive ground-based observations. The WRF model, initialized with ECMWF analyses, was able to simulate the observed structure of the band very well, allowing its development to be analyzed in detail. The band intensified as the result of the merger of two convergence lines which originated in a frontal structure over the Atlantic the previous day, with its morphology influenced by two upper-level features: the remnants of a tropopause fold which capped convection over the south of the band, and a reduction in upper tropospheric static stability over the north of the band which enabled the convection to reach the tropopause. The cause of the band was therefore the low-level forcing (lift) which was manifest as a sharp line of veering wind below 2 km. Accurate forecasting of events such as this require such small-scale boundary-layer features to be accurately captured in the model analyses.
LAAS Study of Slow-Moving Ionosphere Anomalies and Their Potential Impacts
Stanford University
LAAS Study of Slow-Moving Ionosphere Anomalies and Their Potential Impacts Ming Luo, Sam Pullen by several severe ionosphere storms that have occurred in recent years, research has been done to studying. In previous work [1-5], it was found that such ionosphere anomalies can threaten LAAS users under extreme
Zero-point energies and the multiplicative anomaly
J. J. McKenzie-Smith; D. J. Toms
2000-01-01
For the case of a relativistic scalar field at finite temperature with a chemical potential, we calculate an exact expression for the one-loop effective action using the full fourth order determinant and zeta-function regularisation. We find that it agrees with the exact expression for the factored operator and thus there appears to be no mulitplicative anomaly. The appearance of the
Duputel, Zacharie
Transient self-potential anomalies associated with recent lava flows at Piton de la Fournaise-potential streaming potential thermoelectric potential lava flow Piton de la Fournaise Self-potential signals describe transient self-potential anomalies observed over recent (lava flows at Piton de la
Structure order, local potentials, and physical anomalies of water ice
Chang Q Sun
2014-07-11
Hydrogen-bond forms a pair of asymmetric, coupled, H-bridged oscillators with ultra-short-range interactions and memory. hydrogen bond cooperative relaxation and the associated binding electron entrapment and nonbonding electron polarization discriminate water and ice from other usual materials in the physical anomalies. As a strongly correlated fluctuating system, water prefers the statistically mean of tetrahedrally-coordinated structure with a supersolid skin that is elastic, polarized, ice like, hydrophobic, with 3/4 density.
Moist Potential Vorticity Anomaly with Heat and Mass Forcings in Torrential Rain Systems
NASA Astrophysics Data System (ADS)
Gao, Shou-Ting; Lei, Ting; Zhou, Yu-Shu
2002-06-01
The moist potential vorticity (MPV) equation is derived from complete atmospheric dynamic equations with both heat and mass forcings, with which the impermeability theorem of the ``MPV substance'' is proven. It is clarified that both heat and mass forcings induced by the intensive precipitation in torrential rain systems can lead to the MPV anomaly. The MPV substance anomaly is a dynamical tracer for tracking a torrential rain system.
Insights on the Cuprate High Energy Anomaly Observed in ARPES
Moritz, Brian
2011-08-16
Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.
EVAREST - Evaluation of geological models by joint interpretation of potential field anomalies
NASA Astrophysics Data System (ADS)
Skiba, Peter; Gabriel, Gerald; Krawczyk, CharLotte M.
2014-05-01
Structural geological models are often based on the integration of different geophysical datasets. During the last years an increasing interest in the potential field methods, i.e. gravimetry and magnetic, can be observed, even though data acquisition can cause considerable costs and logistic effort. Therefore, the specific advantages and disadvantages of the different methods were analyzed. In a case study, which was conducted in cooperation with RWE Dea and which is located in northern Germany, it was studied to which level of detail gravity and magnetic anomalies can be interpreted jointly by 3D forward modelling. Special attention was paid to the individual residuals, i.e. those parts of the gravity and magnetic anomalies which could not be interpreted satisfactorily by the joint structural / physical model. In a subsequent stage of the workflow this information was analyzed individually for each dataset to improve the geological interpretation and to identify and localize the sources of the anomalies in more detail. For the discussed study several potential field datasets of different resolution were available, which were first analyzed by means of field transformation. While the gravity anomalies are mainly related to the occurrence of salt structures, the magnetic anomalies seem to be controlled by deep structures, most probably by the magnetic basement. Some local magnetic anomalies with amplitudes of less than 10 nT can be related to the rim synclines of the salt structures as well as to buried Pleistocene subglacial valleys. 3D forward models, constrained by existing structural information and rock physical data, have shown that, e.g., a common fitting of both anomaly fields is not possible if homogenous densities and magnetizations are assigned to the different lithological units and while considering the geometry of the source bodies to be the same for both potential field anomalies. To explain the magnetic anomalies a more detailed differentiation of the source bodies in terms of thin layers is required, while for the interpretation of the gravity anomalies vertical density gradients must be considered for specific lithologies. Furthermore, from the magnetic anomalies ideas about the maximum depth of source bodies can be derived.
Automatic anomaly detection in high energy collider data
Simon de Visscher; Michel Herquet
2011-04-13
We address the problem of automatic anomaly detection in high energy collider data. Our approach is based on the random generation of analytic expressions for kinematical variables, which can then be evolved following a genetic programming procedure to enhance their discriminating power. We apply this approach to three concrete scenarios to demonstrate its possible usefulness, both as a detailed check of reference Monte-Carlo simulations and as a model independent tool for the detection of New Physics signatures.
The trace anomaly and dynamical vacuum energy in cosmology
Mottola, Emil [Los Alamos National Laboratory
2010-01-01
The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.
Effect of attractive interactions on the water-like anomalies of a core-softened model potential
Pant, Shashank [Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur-741252 (India)] [Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur-741252 (India); Gera, Tarun [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi, 110016 (India)] [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi, 110016 (India); Choudhury, Niharendu, E-mail: nihcho@barc.gov.in, E-mail: niharc2002@yahoo.com [Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai-400 085 (India)] [Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai-400 085 (India)
2013-12-28
It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Cruz, Jaime Y.
1986-01-01
Two potential coefficient fields that are complete to degree and order 360 have been computed. One field (OSU86E) excludes geophysically predicted anomalies while the other (OSU86F) includes such anomalies. These fields were computed using a set of 30' mean gravity anomalies derived from satellite altimetry in the ocean areas and from land measurements in North America, Europe, Australia, Japan and a few other areas. Where no 30' data existed, 1 deg x 1 deg mean anomaly estimates were used if available. No rigorous combination of satellite and terrestrial data was carried out. Instead advantage was taken of the adjusted anomalies and potential coefficients from a rigorous combination of the GEML2' potential coefficient set and 1 deg x 1 deg mean gravity anomalies. The two new fields were computed using a quadrature procedure with de-smoothing factors. The spectra of the new fields agree well with the spectra of the fields with 1 deg x 1 deg data out to degree 180. Above degree 180 the new fields have more power. The fields have been tested through comparison of Doppler station geoid undulations with undulations from various geopotential models. The agreement between the two types of undulations is approximately + or - 1.6 m. The use of a 360 field over a 180 field does not significantly improve the comparison. Instead it allows the comparison to be done at some stations where high frequency effects are important. In addition maps made in areas of high frequency information (such as trench areas) clearly reveal the signal in the new fields from degree 181 to 360.
H. L. McKague; E. Kansa; P. W. Kasameyer
1992-01-01
Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress
NASA Technical Reports Server (NTRS)
1973-01-01
The potential of solar energy as a national resource is discussed. Research and development programs for the development of eleven concepts are described to show the proposed funding for each year over a fifteen year period. The estimated energy contributions by period for each of the solar concepts are analyzed. The estimated impact of the solar concepts to the year 2020 are tabulated.
Mathieu Darnet; Alexis Maineult; Guy Marquis
2004-01-01
Stimulated fluid flow in geothermal reservoirs can produce surface Self-Potential (SP) anomalies of several mV. A commonly accepted interpretation involves the activation of electrokinetic processes. However we can not rule out electrochemical or electrothermal processes generated by the differences in chemical composition and temperature between the in-situ and injected fluids. We analyzed the relative contribution of electrokinetic, electrochemical and electrothermal
Hazard potential ranking of hazardous waste landfill sites and risk of congenital anomalies
Vrijheid, M; Dolk, H; Armstrong, B; Boschi, G; Busby, A; Jorgensen, T; Pointer, P
2002-01-01
Background: A 33% increase in the risk of congenital anomalies has been found among residents near hazardous waste landfill sites in a European collaborative study (EUROHAZCON). Aims: To develop and evaluate an expert panel scoring method of the hazard potential of EUROHAZCON landfill sites, and to investigate whether sites classified as posing a greater potential hazard are those with a greater risk of congenital anomaly among nearby residents relative to more distant residents. Methods: A total of 1270 cases of congenital anomaly and 2308 non-malformed control births were selected in 14 study areas around 20 landfill sites. An expert panel of four landfill specialists scored each site in three categories—overall, water, and air hazard—based on readily available, documented data on site characteristics. Tertiles of the average ranking scores defined low, medium, and high hazard sites. Calculation of odds ratios was based on distance of residence from the sites, comparing a 0–3 km "proximate" with a 3–7 km "distant" zone. Results: Agreement between experts measured by intraclass correlation coefficients was 0.50, 0.44, and 0.20 for overall, water, and air hazard before a consensus meeting and 0.60, 0.56, and 0.53 respectively after this meeting. There was no evidence for a trend of increasing odds ratios with increasing overall hazard or air hazard. For non-chromosomal anomalies, odds ratios by water hazard category showed an increasing trend of borderline statistical significance (p = 0.06) from 0.79 in the low hazard category, 1.43 in the medium, to 1.60 in the high water hazard category. Conclusions: There is little evidence for a relation between risk of congenital anomaly in proximate relative to distant zones and hazard potential of landfill sites as classified by the expert panel, but without external validation of the hazard potential scoring method interpretation is difficult. Potential misclassification of sites may have reduced our ability to detect any true dose–response effect. PMID:12409536
Biomass Energy Crops: Massachusetts' Potential
Schweik, Charles M.
Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues
Alaska's renewable energy potential.
Not Available
2009-02-01
This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.
NASA Astrophysics Data System (ADS)
Gao, Shouting; Zhou, Yushu; Cui, Xiaopeng; Dai, Guoping
2004-12-01
The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1° × 1° data. The MPV tendency equation with the cloud-induced mass forcing is derived, and applied to the torrential rain event over the Changjiang River-Huaihe River Valleys during 26 30 June 1999. The result shows that positive anomalies are located mainly between 850 hPa and 500 hPa, while the maximum MPV, maximum positive tendency of the MPV, and maximum surface rainfall are nearly collocated. The cloud-induced mass forcing contributes to the positive tendency of the moist potential vorticity anomaly. The results indicate that the MPV may be used to track the propagation of rain systems for operational applications.
Busack, Hans-Juergen
2007-01-01
All anomalous velocity increases until now observed during the Earth flybys of the spacecrafts Galileo, NEAR, Rosetta, Cassini and Messenger have been correctly calculated by computer simulation using an asymmetric potential term in addition to the Newtonian potential. The specific characteristic of this term is the lack of coupling to the rotation of the Earth or to the direction of other gravitational sources such as the Sun or Moon. Instead, the asymmetry is oriented in the direction of the Earth's motion within an assumed unique reference frame. With this assumption, the simulation results of the Earth flybys Galileo1, NEAR, Rosetta1 and Cassini hit the observed nominal values, while for the flybys Galileo2 and Messenger, which for different reasons are measured with uncertain anomaly values, the simulated anomalies are within plausible ranges. Furthermore, the shape of the simulated anomaly curve is in qualitative agreement with the measured Doppler residuals immediately following the perigee of the firs...
Physics 321 Energy Conservation Potential Energy in
Hart, Gus
Physics 321 Hour 7 Energy Conservation Potential Energy in One Dimension WorkEnergy Theorem all Ts, Us. T+U = E = E0. Gives v(y). Conservation of Energy II A sphere rolls without slipping down T and U. 2) Write equations of constraint among variables. #12;Conservation of Energy III (b) A sphere
El-Sayed Mohamed Abdelrahman; Khalid Soliman; Khalid Sayed Essa; Eid Ragab Abo-Ezz; Tarek Mohamed El-Araby
2009-01-01
This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of
Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems
Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Melin, Alexander M [ORNL; Czejdo, Bogdan [ORNL
2013-01-01
The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.
Potential For Energy Conservation
Kumar, A.
1981-01-01
The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...
Lee Osterhout; Phillip J. Holcomb
1993-01-01
Event-related brain potentials (ERPs) were recorded from 13 scalp electrodes while subjects listened to sentences containing syntactic ambiguities. Words that were inconsistent with the “preferred” sentence structure elicited a positive-going wave (the P600 effect), similar to that elicited by such words during reading (Osterhout & Holcomb, 1992). These results suggest that (1) ERPs recorded during the comprehension of spoken sentences
LHC Physics Potential versus Energy
Quigg, Chris; /Fermilab
2009-08-01
Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.
Dependence of the 0.7 anomaly on the curvature of the potential barrier in quantum wires
NASA Astrophysics Data System (ADS)
Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Hamilton, A. R.; Kelly, M. J.; Smith, C. G.
2015-06-01
Ninety-eight one-dimensional channels defined using split gates fabricated on a GaAs/AlGaAs heterostructure are measured during one cooldown at 1.4 K. The devices are arranged in an array on a single chip and are individually addressed using a multiplexing technique. The anomalous conductance feature known as the "0.7 structure" is studied using statistical techniques. The ensemble of data shows that the 0.7 anomaly becomes more pronounced and occurs at lower values as the curvature of the potential barrier in the transport direction decreases. This corresponds to an increase in the effective length of the device. The 0.7 anomaly is not strongly influenced by other properties of the conductance related to density. The curvature of the potential barrier appears to be the primary factor governing the shape of the 0.7 structure at a given T and B .
NASA Astrophysics Data System (ADS)
DeSanto, J. B.; Blankenship, D. D.; Young, D. A.; Lavier, L. L.; Choi, E.
2012-12-01
The Amundsen Sea Embayment of the West Antarctic ice sheet (WAIS) is currently one of the most rapidly changing sectors of a continental ice sheet. As a marine ice sheet, the WAIS is in a potentially unstable configuration. In addition to known active volcanoes such as Mt. Takahe and Mt. Murphy, subglacial volcanic activity has been identified using ice layer drawdown anomalies. Drawdown anomalies are features identifiable by a characteristic radar signature and represent significant loss of basal ice. We identify several features with the geometry of drawdown anomalies in the Thwaites Glacier along an ice stream tributary near Mt. Takahe. By modeling the flow of ice along the ice stream, we assess the hypothesis that these drawdown anomalies are a coherent feature caused by basal melt that is consistent with subglacial volcanic activity. The melt rate is then used to determine the spatial and temporal variations of geothermal heat flux in the region. We discuss these variations in the context of their geologic, morphologic and glaciologic setting and their implications for local volcanism and its impact on ice flow.
NASA Technical Reports Server (NTRS)
Jekeli, C.
1979-01-01
Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.
Wind Energy: Progress and Potential
KAMIL KAYGUSUZ
2004-01-01
This article reviews the progress made by wind energy in the last 10 years, and discusses the potential of this technology. During the last decade of the 20th century, grid-connected wind capacity worldwide has doubled approximately every three years. Due to the fast market development, wind turbine technology has experienced an important evolution over time. Some of the countries with
Fermi energy and dispersion anomalies in a bad metal
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel
2014-03-01
The transport measurements in strongly correlated metals often reveal a vanishing Fermi liquid temperature. It is unexpectedly smaller than the effective Fermi energy indicated by spectroscopic measurements. We attribute this dichotomy to the strong temperature dependence and asymmetry in quasiparticle renormalization near Fermi surface. The quasiparticles hold as well-defined excitations up to much higher energy than the Fermi liquid scale implied by transport. Furthermore, the asymmetry leads to incoherent spectral weight only for quasiparticles near Fermi surface, thus the discontinuity in dispersion rises as a natural consequence. This work was supported by NSF Grants No. DMR- 0906943 and No. DMR-0746395.
NASA Astrophysics Data System (ADS)
Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed
2009-06-01
This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative anomalies obtained from self-potential (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP anomalies has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP anomalies over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.
Physics 321 Energy Conservation Potential Energy in
Hart, Gus
2 = = = + = = This is a useful relation but we'll go one step further: = = |2 1 = = · Positive no explicit time dependence, we can define a potential energy. Otherwise, we can not. In general = Vector Calculus in Mathematica vec_calc_ex.nb #12;
Y. Jack Ng; D. -S. Lee; M. C. Oh; H. van Dam
2000-10-24
A threshold anomaly refers to a theoretically expected energy threshold that is not observed experimentally. Here we offer an explanation of the threshold anomalies encountered in the ultra-high energy cosmic ray events and the TeV-gamma ray events, by arguing that energy-momentum uncertainties due to quantum gravity, too small to be detected in low-energy regime, can affect particle kinematics so as to raise or even eliminate the energy thresholds. A possible modification of the energy-momentum dispersion relation, giving rise to time-of-flight differences between photons of different energies from gamma ray bursts, is also discussed.
SST Anomalies + Wind Anomalies
NSDL National Science Digital Library
Greg Shirah
2003-02-03
Sea surface temperature (SST) anomalies and sea surface wind anomalies show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).
Temperature-resolution anomalies in the reconstruction of time dynamics from energy-loss experiments
NASA Astrophysics Data System (ADS)
Kogar, Anshul; Vig, Sean; Gan, Yu; Abbamonte, Peter
2014-06-01
Inelastic scattering techniques provide a powerful approach to studying electron and nuclear dynamics, via reconstruction of a propagator that quantifies the time evolution of a system. There is now growing interest in applying such methods to very low energy excitations, such as lattice vibrations, but in this limit the cross section is no longer proportional to a propagator. Significant deviations occur due to the finite temperature Bose statistics of the excitations. Here we consider this issue in the context of high-resolution electron energy-loss experiments on the copper-oxide superconductor Bi2Sr2CaCu2O8. We find that simple division of a Bose factor yields an accurate propagator on energy scales greater than the resolution width. However, at low energy scales, the effects of resolution and finite temperature conspire to create anomalies in the dynamics at long times. We compare two practical ways for dealing with such anomalies, and discuss the range of validity of the technique in light of this comparison.
On the potential of extratropical SST anomalies for improving climate predictions
NASA Astrophysics Data System (ADS)
Kumar, Arun; Wang, Hui
2015-05-01
Skill for initialized decadal predictions for atmospheric and terrestrial variability is posited to reside in successful prediction of sea surface temperatures (SSTs) associated with the low-frequency modes of coupled ocean-atmosphere variability, for example, Pacific Decadal Oscillation (PDO) or Atlantic Multi-decadal Oscillation (AMO). So far, assessments of the skill of atmospheric and terrestrial variability in decadal predictions, however, have not been encouraging. Similarly, in the context of seasonal climate variability, teleconnections between SSTs associated with PDO and AMO and terrestrial climate have also been noted, but the same SST information used in predictive mode has failed to demonstrate convincing gains in skill. Are these results an artifact of model biases, or more a consequence of some fundamental property of coupled evolution of ocean-atmosphere system in extratropical latitudes, and the manner in which extratropical SST anomalies modulate (or constrain) atmospheric variability? Based on revisiting an analysis of a simple model that replicates the essential characteristics of coupled ocean-atmosphere interaction in extratropical latitudes, it is demonstrated that lack of additional skill in predicting atmospheric and terrestrial variability is more a consequence of fundamental characteristics of coupled evolution of ocean-atmosphere system. The results based on simple models are also substantiated following an analysis of a set of seasonal hindcasts with a fully coupled model.
Wind energy and assessment of wind energy potential in Turkey
2012-01-01
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various
Renewable Energy Potential for Brownfield Redevelopment Strategies
Renewable Energy Potential for Brownfield Redevelopment Strategies Renewable energy resources are available throughout the United States.The National Renewable Energy Laboratory (NREL) performs analysis to identify high-potential sites for renewable energy technologies and can help determine those technologies
NASA Astrophysics Data System (ADS)
Biswas, A.; Sharma, S. P.
2012-12-01
Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the best result without any ambiguity and smaller uncertainty. Keywords: SP anomaly, inclined sheet, 2D structure, forward problems, VFSA Optimization,
Potential of geothermal energy in China
Sung, Peter On
2010-01-01
This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...
Sailhac, Pascal
1 Estimating aquifer hydraulic properties from the inversion of surface 2 Streaming Potential (SP with the geometry of the water table. It follows that 11 SP measurements can be used to estimate aquifer hydraulic and found that we 14 are able to estimate the hydraulic conductivity and the depth 15 and the thickness
Analysis of potential field anomalies in Pasinler-Horasan basin, Eastern Turkey
Kenan Gelisli; Nafiz Maden
This study was carried out in the Pasinler-Horasan basin (Eastern Turkey), where sedimentary rocks of the Neotectonic period (from Eocene up to present day) outcrop and exhibit considerable oil and coal potential. This basin extends approximately in the E-W direction, is surrounded by the Pontides to the north and the Bitlis Mountains to the south and its basement is of
Energy dependence of nucleon-nucleon potentials
Sinya Aoki; Janos Balog; Tetsuo Hatsuda; Noriyoshi Ishii; Keiko Murano; Hidekatsu Nemura; Peter Weisz
2008-12-03
We investigate the energy dependence of potentials defined through the Bethe-Salpeter wave functions. We analytically evaluate such a potential in the Ising field theory in 2 dimensions and show that its energy dependence is weak at low energy. We then numerically calculate the nucleon-nucleon potential at non-zero energy using quenched QCD with anti-periodic boundary condition. In this case we also observe that the potentials are almost identical at $E\\simeq 0$ and $E\\simeq 50$ MeV, where $E$ is the center of mass kinetic energy.
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.
2015-04-01
We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.
Biomass energy potential in Turkey
K. Kaygusuz; M. F. Türker
2002-01-01
Biomass energy includes fuelwood, agricultural residues, animal wastes, charcoal and other fuels derived from biological sources. It currently accounts for about 14% of world energy consumption. Biomass is the main source of energy for many developed and developing countries. In Turkey energy wood is available in the form of forest chips, fuelwood, wood waste, wood pellets, and it is also
Geothermal Energy: Tapping the Potential
ERIC Educational Resources Information Center
Johnson, Bill
2008-01-01
Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…
Giancarlo Franzese; Departament de Fisica Fonamental; Facultat de Fisica
2007-01-01
Soft-core attractive potentials can give rise to a phase diagram with three fluid phases at different densities (gas, low-density liquid and high-density liquid), separated by first order phase transition lines ending in critical points. Experiments show a phase diagram with these features for phosphorous and triphenyl phosphite. Liquid–liquid phase transition could be relevant for water, silica, liquid metals, colloids and
Seasonal Coral Skeletal 87Sr/86Sr Anomaly As A New Potential Proxy Of Tracing Water Masses
NASA Astrophysics Data System (ADS)
Liu, Y.; Gallet, S.; Chiang, H.; Lin, I.; Chang, C.; Chen, Y.; Shen, C.
2008-12-01
Coral skeletal 87Sr/86Sr anomaly is proposed to be as a potential proxy of distinguishing water masses, especially in the coastal regime. A seasonal 87Sr/86Sr record for 1992-2002 from a living coral Porites head, collected in Nanwan Bay, southernmost Taiwan (21°55'N, 12°47'E), is presented, which is done by using multi-collector inductively coupled mass spectrometry with standard bracketing methods. 87Sr/86Sr ratio ranges from 0.709172-0.709180 in winters and 0.709171- 0.709203 in summers. Two features, a seasonal change of 4-40 ppm and interannual summer differences of 40-50 ppm, are discovered. By checking corresponding Sr/Ca and ?18O values, the possibility of thermal effect and fresh water income can be both ruled out. Two possible controlling factors therefore are supposed to explain above annual Sr isotope fluctuation: horizontal mixing of different water masses, and perpendicular water column flow. It suggests that the 87Sr/86Sr ratio recorded in coral skeleton may serve as a new potential proxy to decipher different water end members for further understanding modern and past ocean circulations.
Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna
2014-01-01
Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter ? is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484
Transportation Energy Futures Series: Potential for Energy Efficiency...
National Renewable Energy Laboratory (NREL)
energy-intensity improvement potential in the aviation sector, as derived from this literature search. Table 3.1. Summary of Aviation Energy-Intensity Improvement Potential...
Potential Energy Total electric potential energy, U, of a system of
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
due to q1 is Bring q2 in from infinity. From definition of potential energy or Charges of like sign, WPotential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy
Potential Energy Total electric potential energy, U, of a system of
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
is Bring q2 in from infinity. From definition of potential energy or Charges of like sign, W * and UPotential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy
Savings energy through electricity: The technological potential
Gellings, C.W.; Yau, T.S. [Electric Power Research Institute, Palo Alto, CA (United States)
1991-12-31
This article explores probably energy savings and the corresponding reductions in carbon dioxide by the year 2000. In addition, energy savings in a longer time are examined. For the longer time frame it would be possible to achieve further energy savings through increased electrification and additional electric energy efficiency improvements. Both the maximum technical potential for efficiency savings and then the role of electrification and potential technological advancements are examined. Topics include the following: efficiency improvements attributable to regulatory mandates and natural market mechanisms; efficiency improvements attributable to utility demand side management programs; maximum technical potential efficiency improvements; electrification, the forgotten path to energy savings.
Potential Water and Energy Savings from Showerheads
Biermayer, Peter J.
2005-09-28
This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize potential water and energy saving scenarios regarding showerheads, six scenarios were analyzed for their potential water and energy savings and the associated dollar savings to the consumer.
Renewable Energy Potentials in Saudi Arabia
S. A. M. Said; I. M. El-Amin; A. M. Al-Shehri
This paper addresses the current status and the future potentials of renewable energy applications in the Kingdom of Saudi Arabia. The power in the earth's wind and in the solar radiation, which reaches the earth, is sufficient to make significant as well as strategic contributions to the Kingdom energy supply. Applications of solar energy in Saudi Arabia have been growing
Geothermal Energy Potential in Western United States
ERIC Educational Resources Information Center
Pryde, Philip R.
1977-01-01
Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)
Unlocking potential for energy reduction.
O'Leary, John
2013-05-01
In the latest of our series of articles designed to provide healthcare engineers with sound technical guidance on equipment or technology-related topics, John O'Leary, key account manager at Trend Controls (who in April's HEJ discussed the benefits of natural ventilation in healthcare settings), explains the functions of a building energy management system (BEMS), and the vital that role such equipment can play in helping healthcare estates teams reduce carbon emissions and save money, as well as ensuring the most comfortable environment for patients, staff, and visitors. PMID:23763085
Effective Potential Energy Expression for Membrane Transport
Robert W. Finkel
2007-02-11
All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.
Energy saving potential of various roof technologies
Ray, Stephen D. (Stephen Douglas)
2010-01-01
Unconventional roof technologies such as cool roofs and green roofs have been shown to reduce building heating and cooling load. Although previous studies suggest potential for energy savings through such technologies, ...
Field Theory Model of the Flyby Anomaly
R. A. Lewis
2009-01-01
Precision tracking of spacecraft on interplanetary missions has turned up several anomalous deviations from predictions of general relativity. The Flyby Anomaly, wherein spacecraft gain or lose energy in an earth-centric frame after an encounter with earth, is clearly associated with the rotation of the earth. The possibility that the missing ingredient is a new type of potential field surrounding the
Potential of energy production from conserved forages
Technology Transfer Automated Retrieval System (TEKTRAN)
Forages have a potential role in meeting the demand for energy. Perennial forages are attractive for various reasons. One, both the monetary and energy cost of planting is spread over many years. Two, we already have the equipment for harvesting, storing and transporting this source of biomass. Thre...
Potential for energy conservation in apartment buildings
C. A Balaras; K Droutsa; A. A Argiriou; D. N Asimakopoulos
2000-01-01
The potential for energy conservation in apartment buildings is investigated following the epiqr methodology and software. Several scenarios are evaluated for various apartment buildings located in three climatic zones of Hellas. The proposed retrofit actions concentrate on space heating and cooling, domestic hot water production and lighting. Energy savings for the corresponding actions in each building are accounted for in
Excitation energy map of high-energy dispersion anomalies in cuprates
NASA Astrophysics Data System (ADS)
Inosov, D. S.; Schuster, R.; Kordyuk, A. A.; Fink, J.; Borisenko, S. V.; Zabolotnyy, V. B.; Evtushinsky, D. V.; Knupfer, M.; Büchner, B.; Follath, R.; Berger, H.
2008-06-01
The anomalous high-energy dispersion of the conductance band in the high- Tc superconductor Bi(Pb)2Sr2CaCu2O8+? (Pb-Bi2212) has been extensively mapped by angle-resolved photoemission spectroscopy as a function of excitation energy in the range from 34 to 116 eV. Two distinctive types of dispersion behavior are observed around 0.6 eV binding energy, which alternate as a function of photon energy. The continuous transitions observed between the two kinds of behavior near 50, 70, and 90 eV photon energies allow one to exclude the possibility that they originate from the interplay between the bonding and antibonding bands. The effects of three-dimensionality can also be excluded as a possible origin of the excitation energy dependence, as the large period of the alterations is inconsistent with the lattice constant in this material. We therefore confirm that the strong photon energy dependence of the high-energy dispersion in cuprates originates mainly from the photoemission matrix element that suppresses the photocurrent in the center of the Brillouin zone.
Hydrodynamics with Triangle Anomalies
Dam T. Son; Piotr Surowka
2009-07-13
We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserve current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new kinetic coefficients can be expressed, in a unique fashion, through the anomalies coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy ion collisions.
Hydrodynamics with Triangle Anomalies
Son, Dam T. [Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550 (United States); Surowka, Piotr [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)
2009-11-06
We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserved current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential. The new kinetic coefficients can be expressed, in a unique fashion, through the anomaly coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy-ion collisions.
Quantum potential energy as concealed motion
Peter Holland
2014-11-13
It is known that the Schroedinger equation may be derived from a hydrodynamic model in which the Lagrangian position coordinates of a continuum of particles represent the quantum state. Using Routh\\s method of ignorable coordinates it is shown that the quantum potential energy of particle interaction that represents quantum effects in this model may be regarded as the kinetic energy of additional concealed freedoms. The method brings an alternative perspective to Planck\\s constant, which plays the role of a hidden variable, and to the canonical quantization procedure, since what is termed kinetic energy in quantum mechanics may be regarded literally as energy due to motion.
Potential energy function for the hydroperoxyl radical
Lemon, W.J.; Hase, W.L.
1987-03-12
A switching function formalism is used to derive an analytic potential energy surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the potential energy surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.
Storing unsteady energy, like photovoltaically generated electric energy, as potential energy
Nadja Kutz
2012-02-13
A proposal to store unsteady energy in potential energy via lifting masses with a rough quantitative overview. Some applications and methods to harvest the potential energy are also given. A focus is put on photovoltaically generated energy.
Prospects for constraining the dark energy potential
NASA Astrophysics Data System (ADS)
Fernandez-Martinez, Enrique; Verde, Licia
2008-08-01
We generalize to non-flat geometries the formalism of Simon et al (2005 Phys. Rev. D 71 123001 [astro-ph/0412269]) to reconstruct the dark energy potential. This formalism makes use of quantities similar to the horizon-flow parameters in inflation, can, in principle, be made non-parametric and is general enough to be applied outside the simple, single-scalar-field quintessence. Since currently available and forthcoming data do not allow a non-parametric and exact reconstruction of the potential, we consider a general parametric description in terms of Chebyshev polynomials. We then consider present and future measurements of H(z), baryon acoustic oscillation (BAO) surveys and supernovae type 1A surveys, and investigate their constraints on the dark energy potential. We find that relaxing the flatness assumption increases the errors in the reconstructed dark energy evolution but does not open up significant degeneracies, provided that a modest prior is imposed on the geometry. Direct measurements of H(z), such as those provided by BAO surveys, are crucially important for constraining the evolution of the dark energy potential and the dark energy equation of state, especially for non-trivial deviations from the standard ?CDM (CDM: cold dark matter) model.
Prospects in Constraining the Dark Energy Potential
Enrique Fernandez-Martinez; Licia Verde
2008-08-14
We generalize to non-flat geometries the formalism of Simon et al. (2005) to reconstruct the dark energy potential. This formalism makes use of quantities similar to the Horizon-flow parameters in inflation, can, in principle, be made non-parametric and is general enough to be applied outside the simple, single scalar field quintessence. Since presently available and forthcoming data do not allow a non-parametric and exact reconstruction of the potential, we consider a general parametric description in term of Chebyshev polynomials. We then consider present and future measurements of H(z), Baryon Acoustic Oscillations surveys and Supernovae type 1A surveys, and investigate their constraints on the dark energy potential. We find that, relaxing the flatness assumption increases the errors on the reconstructed dark energy evolution but does not open up significant degeneracies, provided that a modest prior on geometry is imposed. Direct measurements of H(z), such as those provided by BAO surveys, are crucially important to constrain the evolution of the dark energy potential and the dark energy equation of state, especially for non-trivial deviations from the standard LambdaCDM model.
Energy conservation in Kenya: progress, potentials, problems
Schipper, L.; Hollander, J.M.; Milukas, M.; Alcamo, J.; Meyers, S.; Noll, S.
1981-09-01
A study was carried out of the flows of commercial energy in the economy of Kenya. Indications were sought of the extent to which energy conservation, (i.e., increase in efficiency of energy use) has reduced the ratio of energy inputs to economic outputs, in the post-1973 years. An assessment was made of the potential for energy conservation to reduce the growth of Kenyan energy use in the future and of significant barriers to increasing energy efficiency. Consideration was given to the role of government policy and of international assistance in fostering energy conservation in Kenya and other developing countries. The study was performed by analyzing available energy data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial energy use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, energy production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, energy production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.
Energy Potential of Municipal Solid Wastes
Deniz Dolgen; Hasan Sarptas; Necdet Alpaslan; Orhan Kucukgul
2005-01-01
In this article, energy recovery from municipal solid wastes is examined. The fuel characteristics of solid waste components as well as the landfill gas (LFG) yield are reviewed. The energy potential of solid wastes of Izmir (third biggest city of Turkey) is then estimated. The heating value is calculated at about 3,500–5,500 kJ\\/kg, particularly in urban places, whereas it is
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.
2004-01-01
Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.
Biomass resource potential using energy crops
Wright, L.L.; Cushman, J.H.; Martin, S.A.
1993-09-01
Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.
Komoike, Yuta; Matsuoka, Masato; Kosaki, Kenjiro
2013-06-01
While methimazole (MMI) is widely used in the therapy for hyperthyroidism, several groups have reported that maternal exposure to MMI results in a variety of congenital anomalies, including choanal and esophageal atresia, iridic and retinal coloboma, and delayed neurodevelopment. Thus, adverse effects of maternal exposure to MMI on fetal development have long been suggested; however, direct evidence for the teratogenicity of MMI has not been presented. Therefore, we studied the effects of MMI on early development by using zebrafish as a model organism. The fertilized eggs of zebrafish were collected immediately after spawning and grown in egg culture water containing MMI at various concentrations. External observation of the embryos revealed that exposure to high concentrations of MMI resulted in loss of pigmentation, hypoplastic hindbrain, turbid tissue in the forebrain, swelling of the notochord, and curly trunk. Furthermore, these effects occurred in a dose-dependent manner. Precise observation of the serial cross-sections of MMI-exposed embryos elucidated delayed development and hypoplasia of the whole brain and spinal cord, narrowing of the pharynx and esophagus, severe disruption of the retina, and aberrant structure of the notochord. These neuronal, pharyngeal, esophageal, and retinal anomalous morphologies have a direct analogy to the congenital anomalies observed in children exposed to MMI in utero. Here, we show the teratogenic effects of MMI on the development of zebrafish and provide the first experimental evidence for the connection between exposure to MMI and human MMI embryopathy. PMID:23630110
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1994-01-01
Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).
Energy saving potential of office equipment power management
Kaoru Kawamoto; Yoshiyuki Shimoda; Minoru Mizuno
2004-01-01
While many studies have estimated the energy saving potential of office equipment power management, there is no recent study about the energy saving potential of shortening the power management delay time. In this paper, we estimated the energy saving potential of the complete saturation of power management, and also the additional energy saving potential of shortening the power management delay
Prospects in Constraining the Dark Energy Potential
Fernandez-Martinez, Enrique
2008-01-01
We generalize to non-flat geometries the formalism of Simon et al. (2005) to reconstruct the dark energy potential. This formalism makes use of quantities similar to the Horizon-flow parameters in inflation, can, in principle, be made non-parametric and is general enough to be applied outside the simple, single scalar field quintessence. Since presently available and forthcoming data do not allow a non-parametric and exact reconstruction of the potential, we consider a general parametric description in term of Chebyshev polynomials. We then consider present and future measurements of H(z), Baryon Acoustic Oscillations surveys and Supernovae type 1A surveys, and investigate their constraints on the dark energy potential. We find that, relaxing the flatness assumption increases the errors on the reconstructed dark energy evolution but does not open up significant degeneracies, provided that a modest prior on geometry is imposed. Direct measurements of H(z), such as those provided by BAO surveys, are crucially i...
The Wind Energy Potential of Iceland
NASA Astrophysics Data System (ADS)
Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik
2014-05-01
While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road infrastructure and the power grid, as well as due to the harsh winter climate. However, even in easily accessible regions, wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. Based on these results, 14 test sites were selected for more detailed analyses using the Wind Atlas Analysis and Application Program (WAsP). These calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plant, making wind energy a viable additional option.
Water: Thermodynamic and Dynamic Anomalies
Barbosa, Marcia C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)
2009-04-19
While the majority of fluids contract upon cooling, water expands when cooled below T = 4 deg. C at atmospheric pressure. This effect is called density anomaly. Besides the density anomaly, there are more than 60 other anomalies known for water. Diffusivity is one of them. For normal liquids the diffusion coefficient decreases under compression. However, experimental results have shown that for water at temperatures below approximately 10 deg. C, the diffusion coefficient increases under compression and has a maximum. The temperature of maximum density line, inside which the density anomaly occurs, and the line of maximum in diffusivity are located in the same region of the pressure-temperature phase diagram of water. We show how simulations for water also show thermodynamic and dynamic anomalies. These anomalies are then demonstrated to be related to two length scales effective potential.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Levin, Eugene
1993-01-01
A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.
Theoretical studies of potential energy surfaces.
Harding, L. B. (Chemical Sciences and Engineering Division)
2008-01-01
The goal of this program is to calculate accurate potential energy surfaces for both reactive and nonreactive systems. To do this the electronic Schroedinger equation must be solved. Our approach starts with multiconfiguration self-consistent field (MCSCF) reference wave functions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Dynamical electron correlation effects are included via multireference, singles and doubles configuration interaction (MRCI) calculations. With this approach, we are able to provide chemically useful predictions of the energetics for many systems. A second aspect of this program is the development of techniques to fit multi-dimensional potential surfaces to convenient, global, analytic functions that can then be used in dynamics calculations.
Determining Equilibrium Structures and Potential Energy Functions for
Le Roy, Robert J.
Chapter 6 Determining Equilibrium Structures and Potential Energy Functions for Diatomic Molecules also to determine accurate potential energy functions spanning the whole potential energy well. The traditional way of doing this involves first determining the v-dependence of the vibrational level energies Gv
Cosmic microwave background anomalies from imperfect dark energy. Confrontation with the data
NASA Astrophysics Data System (ADS)
Axelsson, Magnus; Hansen, Frode; Koivisto, Tomi; Mota, David F.
2014-04-01
We test anisotropic dark energy models with the 7-year WMAP temperature observation data. In the presence of imperfect sources, large-scale gradients or anisotropies in the dark energy mean that the CMB sky will be distorted anisotropically on its way to us by the ISW effect. The signal covariance matrix then becomes non-diagonal for small multipoles, but at ? ? 20 the anisotropy is negligible for any reasonably probable values of the already constrained dark energy fluid parameters. As a consequence, only possible large-scale anisotropies are studied in this paper. We parametrize possible violations of rotational invariance in the late universe by the magnitude of a post-Friedmannian deviation from isotropy and its scale dependence, where the deviation from isotropy is modeled through a mismatch between the ? and ? potentials that arise due to anisotropic stresses caused by some (unknown) mechanism. In this sense, our model is general. In this paper we explore the possibility that the stresses are caused by an imperfect dark energy component in the form of a vector field aligned with some axis. This way we may obtain hints of the possible imperfect nature of dark energy and the large-angle anomalous features in the CMB. A robust statistical analysis, subjected to various tests and consistency checks, is performed to compare the predicted correlations with those obtained from the satellite-measured CMB full sky maps. The preferred axis points toward (l,b) = (168°, -31°) and the amplitude of the anisotropy is ?0 = (0.51 ± 0.94) (1? deviation quoted). The best fit model has a steep blue anisotropic spectrum (nde = 3.1 ± 1.5). In light of recent studies, the model provides an interesting extension of the standard model of cosmology, since it is able to account for the apparent deficit in large-scale power in the spectrum through a physically motivated late time ISW effect. Further studies of this class of models are justified by the results of the analysis, which suggest that it cannot be ruled out at present.
Metabolic energy cost of action potential velocity.
Crotty, Patrick; Sangrey, Thomas; Levy, William B
2006-09-01
The action potential of the unmyelinated nerve is metabolically expensive. Using the energetic cost per unit length for the biophysically modeled action potential of the squid giant axon, we analyze this cost and identify one possible optimization. The energetic cost arising from an action potential is divided into three separate components: 1) the depolarization of the rising phase; 2) the hyperpolarization of the falling phase; and 3) the largest component, the overlapping of positive and negative currents, which has no electrical effect. Using both the Hodgkin-Huxley (HH) model and an improved version of the HH model (HHSFL), we investigate the variation of these three components as a function of easily evolvable parameters, axon diameter and ion channel densities. Assuming conduction velocity is well designed for each organism, the energy component associated with the rising phase attains a minimum near the biological values of the diameter and channel densities. This optimization is explained by the membrane capacitance per unit length. The functional capacitance is the sum of the intrinsic membrane capacitance and the gating capacitance associated with the sodium channel, and this capacitance minimizes at nearly the same values of diameter and channel density. Because capacitance is temperature independent and because this result is independent of the assumed velocity, the result generalizes to unmyelinated mammalian axons. That is, channel density is arguably an evolved property that goes hand-in-hand with the evolutionary stability of the sodium channel. PMID:16554507
Energy potential of leafy spurge (Euphorbia esula)
Maxwell, B.D.; Wiatr, S.M.; Fay, P.K.
1985-01-01
Leafy spurge (Euphorbia esula) is a noxious, perennial weed that infests pastures, range land and waste areas in the northern Great Plains. The objective of this study was to determine the productive potential of this species when grown under optimum agronomic conditions. Plants were fertilized and irrigated. Oil, hydrocarbon, total protein, and dry-weight production were measured on 3 harvest dates. Calorimetric analyses were performed to determine the potential of leafy spurge as a fuel crop. The hydrocarbon content of 12 strains of leafy spurge was determined to measure genetic variability for this trait. The addition of fertilizer doubled dry-weight production but did not affect percent oil or hydrocarbon content. Oil and hydrocarbon production averaged 6.8 and 0.6% on a plant dry-weight basis. Maximum production of plant biomass, protein, and hydrocarbon was obtained from a mid-July harvest. Oil content increased later in the growing season. The total protein content of leafy spurge averaged 12%. Whole-plant biomass had a caloric value of 4407 cal/g while the oils contained 10,019 cal/g. Leafy spurge hay can produce 4 times more energy per year than wheat straw; therefore, the immediate potential of leafy spurge whole-plant biomass as a locally grown fuel crop for home-heating purposes is suggested.
Carl Bowin
1983-01-01
To help decipher the distribution of the principal mass anomalies within the earth, an analysis is made of the earth's potential field by simultaneously considering both gravity and geoid anomalies. Ancillary knowledge about the earth from astronomical, angular momentum, seismological, and plate tectonic studies aids in deciding between deep or broad shallow?mass anomalies as the causative source of certain potential
Energy potential of sugarcane and sweet sorghum
Elawad, S.H.; Gascho, G.J.; Shih, S.F.
1980-01-01
The potential of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as C/sub 4/ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US energy consumption. Biomass production could be substantially increased by including tops and leaves, adopting narrow row spacing and improving cultural practices. This presents challenges for cultivating, harvesting, and hauling the biomass to processing centers. Large plants and heavy capital investment are essential for energy production. Ethanol and ammonia are the most promising candidates of a biomass program. If sugarcane were to be used for biomass production, breeding programs should be directed for more fermentable sugars and fiber. Energy research on sweet sorghum should be done with syrup varieties. Sweet sorghum needs to be incorporated with other crops because of its short growing season. The disposal of stillage from an extensive ethanol industry may pose environmental problems.
Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi,H.; Lee, D.-H.; Lanzara A.
2006-12-19
A universal high energy anomaly in the single particlespectral function is reported in three different families of hightemperature superconductors by using angle-resolved photoemissionspectroscopy. As we follow the dispersing peak of the spectral functionfrom the Fermi energy to the valence band complex, we find dispersionanomalies marked by two distinctive high energy scales, E_1 approx 0.38eV and E_2 approx 0.8 eV. E_1 marks the energy above which the dispersionsplits into two branches. One is a continuation of the near parabolicdispersion, albeit with reduced spectral weight, and reaches the bottomof the band at the Gamma point at approx 0.5 eV. The other is given by apeak in the momentum space, nearly independent of energy between E_1 andE_2. Above E_2, a band-like dispersion re-emerges. We conjecture thatthese two energies mark the disintegration of the low energyquasiparticles into a spinon and holon branch in the high T_c cuprates.
Induced Seismicity Potential of Energy Technologies
NASA Astrophysics Data System (ADS)
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
ERIC Educational Resources Information Center
PENROSE, L.S.; SMITH, G.F.
BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…
Bohm's quantum potential as an internal energy
NASA Astrophysics Data System (ADS)
Dennis, Glen; de Gosson, Maurice A.; Hiley, Basil J.
2015-06-01
We pursue our discussion of Fermi's surface initiated by Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system, giving further insight into its role in stationary states. This implies that the 'particle' referred to in Bohm's theory is not a classical point-like object but rather has an extended structure in phase space which can be linked to the notion of a symplectic capacity, a topological feature of the underlying symplectic geometry. This structure provides us with a new, physically motivated derivation of Schrödinger's equation provided we interpret Gleason's theorem as a derivation of the Born rule from fundamental assumptions about quantum probabilities.
Certification and the potential energy landscape.
Mehta, Dhagash; Hauenstein, Jonathan D; Wales, David J
2014-06-14
Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's ?-theory can be used to certify numerically obtained stationary points of a potential energy landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed. PMID:24929381
Formal definition of POTENTIAL ENERGY (valid for conservative forces only)
page - 16 Formal definition of POTENTIAL ENERGY (valid for conservative forces only) Given one type of conservative force F UB - UA= - = - Definition of 'Potential energy difference" conserv #12;page - 17 the definition of the "potential energy difference UB - UA " as equal to negative value of the work W done
M. Farhoudi
2005-11-03
We seek an analogy of the mathematical form of the alternative form of Einstein's field equations for Lovelock's field equations. We find that the price for this analogy is to accept the existence of the trace anomaly of the energy-momentum tensor even in classical treatments. As an example, we take this analogy to any generic second order Lagrangian and exactly derive the trace anomaly relation suggested by Duff. This indicates that an intrinsic reason for the existence of such a relation should perhaps be, classically, somehow related to the covariance of the form of Einstein's equations.
Astrometric solar system anomalies
Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY
2009-01-01
There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1988-01-01
The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.
Anomalies in low-energy Gamma-Ray Burst spectra with the Fermi Gamma-Ray Burst Monitor
Tierney, Dave; Preece, Robert D; Fitzpatrick, Gerard; Foley, Suzanne; Guiriec, Sylvain; Bissaldi, Elisabetta; Briggs, Michael S; Burgess, J Michael; Connaughton, Valerie; Goldstein, Adam; Greiner, Jochen; Gruber, David; Kouveliotou, Chryssa; McGlynn, Sinead; Paciesas, William S; Pelassa, Veronique; von Kienlin, Andreas
2013-01-01
A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the \\textit{Fermi} era. We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the \\textit{Fermi} Gamma-Ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2$\\times10^{-5}$ erg / cm$^{2}$ (10 - 1000 keV). An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the ...
Estimating the Potential Impact of Renewable Energy on the Caribbean
Kammen, Daniel M.
Estimating the Potential Impact of Renewable Energy on the Caribbean Job Sector Rebekah Shirley renewable energy projects within the Caribbean region. We present a model scenario where together energy
Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study
NASA Astrophysics Data System (ADS)
Liu, Li-Li; Wu, Xiao-Zhi; Wang, Rui; Li, Wei-Guo; Liu, Qing
2015-07-01
Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energy-based criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104361 and 11304403) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. CQDXWL2014003 and CDJZR14328801).
The potential energy surface of isomerising disilyne.
Law, Mark M; Fraser-Smith, Jonathan T; Perotto, Carlo U
2012-04-17
A (semi-)global, analytical potential energy surface is reported for the ground electronic state of the isomerising disilyne molecule, Si(2)H(2). The surface reproduces well ab initio energies calculated at the CCSD(T) level with a cc-pV(Q+d)Z basis set for over 50?000 symmetrically unique molecular geometries. Of these ab initio points, 33?000 were used in a least-squares fit to determine the parameters of the analytical surface and the remainder to provide an independent test/validation set. The fitted surface includes: the four known isomeric forms of disilyne, dibridged, monobridged, disilavinylidene and trans-bent; the three most important transition states and four other critical points. The surface reproduces accurately existing experimental spectroscopic data for the dibridged and monobridged isomers and predictions are made for the disilavinylidene and trans-bent forms. The surface has the correct symmetry properties with respect to permutation of like atoms and is suitable for detailed dynamics studies of the isomerising Si(2)H(2) system. Also reported is a systematic investigation of the critical points using the CCSD(T) and MRCI methods and basis sets up to 6-zeta quality: the effects of core-correlation, augmentation with diffuse functions and tight-d functions have been studied. The basis sets include the correlation consistent core-valence, cc-pCV(n+d)Z, basis sets recently developed by Yockel and Wilson [Theor. Chem. Acc., 2008, 120, 119]. Very good agreement is obtained between the theoretical and experimental equilibrium geometries, rotational constants and three available vibration frequencies for the dibridged isomer and for the rotational constants of the monobridged isomer. Multireference character, as measured by the T(1) diagnostic, is found to vary significantly across the 12 critical points investigated. PMID:22511004
Renewable energy costs, potentials, barriers: Conceptual issues
Aviel Verbruggen; Manfred Fischedick; William Moomaw; Tony Weir; Alain Nadaï; Lars J. Nilsson; John Nyboer; Jayant Sathaye
2010-01-01
Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and
Kohn anomalies in graphene nanoribbons
Dresselhaus, Mildred
The quantum corrections to the energies of the ? point optical phonon modes (Kohn anomalies) in graphene nanoribbons (NRs) are investigated. We show theoretically that the longitudinal optical (LO) modes undergo a Kohn ...
More anomalies from fractional branes
M. Bertolini; P. Di Vecchia; M. Frau; A. Lerda; R. Marotta
2002-01-01
In this Letter we show how the anomalies of both pure and matter coupled N=1,2 supersymmetric gauge theories describing the low energy dynamics of fractional branes on orbifolds can be derived from supergravity.
An Efficient Cache-Based Access Anomaly Detection Scheme
Sang Lyul Min; Jong-Deok Choi
1991-01-01
One of the important issues in parallel program debugging is an efficient detection ofaccess anomalies caused by uncoordinated access to shared variables. On-the-fly detection of access anomalies has the major advantage that it reports only actual anomalies during execution while static analysis methods report all the potential anomalies, many of which cannot actually materialize during execution. It also has the
Gravitational Anomalies in the Solar System?
Lorenzo Iorio
2015-03-16
Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: a) Possible anomalous advances of planetary perihelia; b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab); c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon; d) The so-called Faint Young Sun Paradox; e) The secular decrease of the mass parameter of the Sun; f) The Flyby Anomaly; g) The Pioneer Anomaly; and h) The anomalous secular increase of the astronomical unit
Potential contribution of the wastewater sector to energy supply.
Heubeck, S; de Vos, R M; Craggs, R
2011-01-01
The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. with a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand). PMID:21866779
Transportation Energy Use and Conservation Potential
ERIC Educational Resources Information Center
Hirst, Eric
1973-01-01
Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2015-02-01
A new mathematical model for evaluation of the third-order (disturbing) gravitational tensor is formulated in this article. Firstly, we construct corresponding differential operators for the components of the third-order (disturbing) gravitational tensor in a spherical local north-oriented frame. We show that the differential operators may efficiently be decomposed into an azimuthal and an isotropic part. The differential operators are even more simplified for a certain class of isotropic kernels. Secondly, the differential operators are applied to the well-known integrals of Newton, Abel-Poisson, Pizzetti and Hotine. In this way, 40 new integral formulas are derived. The new integral formulas allow for evaluation of the components of the third-order (disturbing) gravitational tensor from density distribution, disturbing gravitational potential, gravity anomalies and gravity disturbances. Thirdly, we investigate the behaviour of the corresponding integral kernels in the spatial domain. The new mathematical formulas extend the theoretical apparatus of geodesy, i.e. the well-known Meissl scheme, and reveal important properties of the third-order gravitational tensor. They may be exploited in geophysical studies, continuation of gravitational field quantities and analysing the gradiometric-geodynamic boundary value problem.
by nonadditive effects which make it impossible to sufficiently accurately represent the energy of water as a sumPolarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface Robert Bukowski,1 Krzysztof Szalewicz,1,a Gerrit C. Groenenboom,2 and Ad van der
Sharp, J.M. Jr.
1993-09-01
Specific project objectives are to: determine whether or not the observed thermal anomalies in the Gulf of Mexico sedimentary basin can be accounted for by heat conduction only; determine whether or not the present-day groundwater flow system is amenable with the heat advection hypothesis; and determine fluid and heat flux histories that are consistent with the observed data. In support of these objectives, we have collected over 25,000 data points, reflecting pressures and temperatures at depths of up to 16,000 feet in the Texas portion of the Gulf of Mexico basin. These data have been collated into a computerized data base system. In addition, we have begun collection of thermophysical data. This research provides fundamental knowledge and understanding to the geosciences and contributes to the sciences and technology base required for current and future energy technologies. Quantifying the evolution of the hydrodynamic and thermal regimes in sedimentary basins is important for predicting timing of hydrocarbon maturation and migration. The evolving subsurface temperature and hydrodynamic system also have a first-order control on sediment diagenesis, brine evolution, and the formation of ore deposits.
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1986-01-01
Crustal anomaly detection with MAGSAT data is frustrated by the inherent resolving power of the data and by contamination from the external and core fields. The quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within the proposed resolution and crustal amplitude capabilities of the MAGSAT fields. To test this hypothesis, the north African hotspots associated with Ahaggar, Tibestia and Darfur have been modeled as magnetic induction anomalies due solely to shallower depth to the Curie isotherm surface beneath these features. The MAGSAT data were reduced by subtracting the external and core fields to isolate the scalar and vertical component crustal signals. The predicted model magnetic signal arising from the surface topography of the uplift and the Curie isotherm surface was calculated at MAGSAT altitudes by the Fourier transform technique modified to allow for variable magnetization. In summary it is suggested that the region beneath Ahaggar is associated with a strong thermal anomaly and the predicted anomaly best fits the associated MAGSAT anomaly if the African plate is moving in a northeasterly direction.
Field Theory Model of the Flyby Anomaly
Lewis, R. A
2009-03-16
Precision tracking of spacecraft on interplanetary missions has turned up several anomalous deviations from predictions of general relativity. The Flyby Anomaly, wherein spacecraft gain or lose energy in an earth-centric frame after an encounter with earth, is clearly associated with the rotation of the earth. The possibility that the missing ingredient is a new type of potential field surrounding the earth is assessed in this write-up. A scalar field with the kinetic energy distribution of the earth as a source is evaluated numerically, with an amplitude parameter adjusted to match the data of Anderson et al.(2008). The new field can be interpreted as a coupling between kinetic energies of objects, a field analogous to fluid mechanics, or a field coupled to acceleration. The potential field violates various aspects of standard physics, such as energy non-conservation.
Field Theory Model of the Flyby Anomaly
NASA Astrophysics Data System (ADS)
Lewis, R. A.
2009-03-01
Precision tracking of spacecraft on interplanetary missions has turned up several anomalous deviations from predictions of general relativity. The Flyby Anomaly, wherein spacecraft gain or lose energy in an earth-centric frame after an encounter with earth, is clearly associated with the rotation of the earth. The possibility that the missing ingredient is a new type of potential field surrounding the earth is assessed in this write-up. A scalar field with the kinetic energy distribution of the earth as a source is evaluated numerically, with an amplitude parameter adjusted to match the data of Anderson et al. (2008). The new field can be interpreted as a coupling between kinetic energies of objects, a field analogous to fluid mechanics, or a field coupled to acceleration. The potential field violates various aspects of standard physics, such as energy non-conservation.
Momentum potential theory of energy flux carried by momentum fluctuations
P. E. Doak
1989-01-01
The momentum potential theory of time-stationary fluctuating flows is briefly reviewed and then extended to include energy flux carried by momentum fluctuations. It is shown that the mean (time-averaged) energy flux can be expressed as a linear superposition of mean, turbulent, acoustic and thermal components. A mean energy flux balance relating turbulent, acoustic and thermal energy fluxes only is obtained.
HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS
PARSA,Z.
2000-04-07
In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.
Energy efficiency of California buildings: technical potential and progress
1983-01-01
Estimates of the technical potential for improved energy efficiency in US buildings range up to 50% of current or projected consumption; this is comparable to estimated potential in French buildings. Several conservation varying estimates of savings, but generally less than 50%. Targets for achievable conservation in California, used in forecasting future energy demand and planning conservation programs, are even lower.
Saturation wind power potential and its implications for wind energy
Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 to determine the maximum theo- retical wind power potential on Earth, based on the concept of "saturation". The saturation wind power potential (SWPP) is the maximum wind power that can be extracted upon increasing
Hydrogen - Potential key to tomorrow's energy utility
R. M. Lundberg
1978-01-01
There are premium uses for fuels in the electric utility for which hydrogen seems appropriate. The cost of electrolytic conversion is marginal, but suitable for some utilities. The costs of storage may be the major obstacle to commercial scale development. There are adequate incentives and potentially a very large market to interest all utilities in the production of hydrogen for
Potential energy savings on the MIT campus
Amanti, Steven Thomas
2006-01-01
The MIT community and the City of Cambridge embarked on initiatives to reduce energy consumption and Greenhouse Gas emissions in accordance with the Kyoto Protocol which calls for a 20 % reduction in 1990 levels of GHG ...
Energy potential of leafy spurge ( Euphorbia esula )
B. D. Maxwell; S. M. Wiatr; P. K. Fay
1985-01-01
Leafy spurge (Euphorbia esula) is a noxious, perennial weed that infests pastures, rangeland and waste areas in the northern Great Plains. The objective\\u000a of this study was to determine the productive potential of this species when grown under optimum agronomic conditions. Plants\\u000a were fertilized and irrigated. Oil, hydrocarbon, total protein, and dry-weight production were measured on 3 harvest dates.\\u000a Calorimetric
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
NASA Astrophysics Data System (ADS)
Cirelli, Marco; Cline, James M.
2010-07-01
Multistate dark matter (DM) models with small mass splittings and couplings to light hidden sector bosons have been proposed as an explanation for the PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal over a wide range of DM density profiles, in the framework of concrete models with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes with standard model hypercharge. The gauge coupling is bounded from below by the DM relic density, and the Sommerfeld enhancement factor is explicitly computable for given values of the DM and gauge boson masses M, ? and the (largest) dark matter mass splitting ?M12. Sommerfeld enhancement is stronger at the galactic center than near the Sun because of the radial dependence of the DM velocity profile, which strengthens the inverse Compton (IC) gamma ray constraints relative to usual assumptions. We find that the PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model predictions, and with CMB and Fermi gamma ray constraints, for M?800GeV, ??200MeV, and a dark matter profile with noncuspy Einasto parameters ??0.20, rs˜30kpc. We also find that the annihilating DM must provide only a subdominant (?0.4) component of the total DM mass density, since otherwise the boost factor due to Sommerfeld enhancement is too large.
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
Marco Cirelli; James M. Cline
2010-05-22
Multistate dark matter (DM) models with small mass splittings and couplings to light hidden sector bosons have been proposed as an explanation for the PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal over a wide range of DM density profiles, in the framework of concrete models with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes with standard model hypercharge. The gauge coupling is bounded from below by the DM relic density, and the Sommerfeld enhancement factor is explicitly computable for given values of the DM and gauge boson masses M, mu and the (largest) dark matter mass splitting delta M_{12}. Sommerfeld enhancement is stronger at the galactic center than near the Sun because of the radial dependence of the DM velocity profile, which strengthens the inverse Compton (IC) gamma ray constraints relative to usual assumptions. We find that the PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model predictions, and with CMB and Fermi gamma ray constraints, for M ~ 800 GeV, mu ~ 200 MeV, and a dark matter profile with noncuspy Einasto parameters alpha > 0.20, r_s ~ 30 kpc. We also find that the annihilating DM must provide only a subdominant (component of the total DM mass density, since otherwise the boost factor due to Sommerfeld enhancement is too large.
Potential production of energy cane for fuel in the Caribbean
Samuels, G.
1984-12-01
Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.
Hydrogen energy - Its potential promises and problems
G. D. Sauter
1976-01-01
The prospects for developing the use of hydrogen as a secondary fuel are discussed. Topics considered include: progress in improving thermochemical and electrolytic production of hydrogen, transportation of hydrogen in pipelines, differences in the combustion of hydrogen and natural gas, environmental and safety concerns (leaks through gas-tight fittings, low ignition energy), and the capital outlay required for widespread use of
Comparing energy levels in isotropic and anisotropic potentials
Alexander Pikovski
2015-06-28
Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states.
Periodic Discrete Energy for Long-Range Potentials
D. P. Hardin; E. B. Saff; Brian Simanek
2014-12-11
We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.
Periodic discrete energy for long-range potentials
NASA Astrophysics Data System (ADS)
Hardin, D. P.; Saff, E. B.; Simanek, B.
2014-12-01
We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.
Fission Potential Energy Surfaces in Ten-Dimensional Deformation Space
NASA Astrophysics Data System (ADS)
Pashkevich, V.; Pyatkov, Y.; Unzhakova, A.
Various fission processes are described in terms of high-dimensional potential energy surface in the frame of the Strutinsky shell correction method for actinide region. The complete deformation space is necessary to study the potential energy minima responsible for the cluster radioactivity, cold fission and cold multi-fragmentation valleys. The nuclear shape families for the different fission configurations are obtained without any specific change of the parameters. The coordinate system based on the Cassini ovaloids makes it possible to increase the number of independent deformation parameters without divergence. The higher orders of the deformation are shown to play an important role in the description of the potential energy surface structure.
NASA Astrophysics Data System (ADS)
Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C.; van der Avoird, Ad
2008-03-01
A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations.
Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C; van der Avoird, Ad
2008-03-01
A six-dimensional interaction potential for the water dimer has been fitted to ab initio interaction energies computed at 2510 dimer configurations. These energies were obtained by combining the supermolecular second-order energies extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The energies have been fitted using an analytic form with the induction component represented by a polarizable term, making the potential directly transferable to clusters and the bulk phase. Geometries and energies of stationary points on the potential surface agree well with the results of high-level ab initio geometry optimizations. PMID:18331099
Anomaly Detection for Cybersecurity of the Substations
Chee-Wooi Ten; Junho Hong; Chen-Ching Liu
2011-01-01
Cybersecurity of the substations in a power system is a major issue as the substations become increasingly dependent on computer and communication networks. This paper is concerned with anomaly detection in the computer network environment of a substation. An anomaly inference algorithm is proposed for early detection of cyber-intrusions at the substations. The potential sce- nario of simultaneous intrusions launched
New approach to calculating the potential energy of colliding nuclei
NASA Astrophysics Data System (ADS)
Kurmanov, R. S.; Kosenko, G. I.
2014-12-01
The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.
New approach to calculating the potential energy of colliding nuclei
Kurmanov, R. S., E-mail: kurmanovrs@mail.ru [Omsk State Transport University (Russian Federation); Kosenko, G. I., E-mail: kosenkophys@gmail.com [Omsk Tank Engineering Institute (Russian Federation)
2014-12-15
The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.
Axial anomaly of QED in a strong magnetic field and noncommutative anomaly
N. Sadooghi; A. Jafari Salim
2006-10-07
The Adler-Bell-Jackiw (ABJ) anomaly of a 3+1 dimensional QED is calculated in the presence of a strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a dimensional reduction from D=4 to D=2 dimensions occurs in the longitudinal sector of the low energy effective field theory. In the chiral limit, the resulting anomaly is therefore comparable with the axial anomaly of a two dimensional massless Schwinger model. It is further shown that the U(1) axial anomaly of QED in a strong magnetic field is closely related to the ``nonplanar'' axial anomaly of a conventional noncommutative QED.
Energy Savings Potential of Process Control Valve Replacement
Holzenthal, L. Jr.
1994-01-01
address other possible solutions for partial energy cost recovery. Since the theoretic potential savings is not always the practical case, a set of guidelines for the application ofthis data is proposed that would allow the user to more easily locate...
Energy Savings Potential of Process Control Valve Replacement
Holzenthal, L. Jr.
A review of current design methods for industrial process control systems that utilize modulated control valves as their final element is presented. The infornUltion that is available is then used to find the theoretic potential for energy savings...
Fusion at deep subbarrier energies: potential inversion revisited
K. Hagino; N. Rowley
2008-11-15
For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the $^{16}$O +$^{144}$Sm and $^{16}$O +$^{208}$Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.
Fusion at deep subbarrier energies: potential inversion revisited
Hagino, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Rowley, N. [Institut Pluridisciplinaire Hubert Curien (UMR 7178: CNRS/ULP), 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France)
2009-03-04
For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.
Energy savings potential from energy-conserving irrigation systems
Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.
1982-11-01
This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.
Nuclear momentum distribution and potential energy surface in hexagonal ice
Lin Lin; Joseph Morrone; Roberto Car; Michele Parrinello
2011-01-01
The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3
ISHM Anomaly Lexicon for Rocket Test
NASA Technical Reports Server (NTRS)
Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.
2007-01-01
Integrated Systems Health Management (ISHM) is a comprehensive capability. An ISHM system must detect anomalies, identify causes of such anomalies, predict future anomalies, help identify consequences of anomalies for example, suggested mitigation steps. The system should also provide users with appropriate navigation tools to facilitate the flow of information into and out of the ISHM system. Central to the ability of the ISHM to detect anomalies is a clearly defined catalog of anomalies. Further, this lexicon of anomalies must be organized in ways that make it accessible to a suite of tools used to manage the data, information and knowledge (DIaK) associated with a system. In particular, it is critical to ensure that there is optimal mapping between target anomalies and the algorithms associated with their detection. During the early development of our ISHM architecture and approach, it became clear that a lexicon of anomalies would be important to the development of critical anomaly detection algorithms. In our work in the rocket engine test environment at John C. Stennis Space Center, we have access to a repository of discrepancy reports (DRs) that are generated in response to squawks identified during post-test data analysis. The DR is the tool used to document anomalies and the methods used to resolve the issue. These DRs have been generated for many different tests and for all test stands. The result is that they represent a comprehensive summary of the anomalies associated with rocket engine testing. Fig. 1 illustrates some of the data that can be extracted from a DR. Such information includes affected transducer channels, narrative description of the observed anomaly, and the steps used to correct the problem. The primary goal of the anomaly lexicon development efforts we have undertaken is to create a lexicon that could be used in support of an associated health assessment database system (HADS) co-development effort. There are a number of significant byproducts of the anomaly lexicon compilation effort. For example, (1) Allows determination of the frequency distribution of anomalies to help identify those with the potential for high return on investment if included in automated detection as part of an ISHM system, (2) Availability of a regular lexicon could provide the base anomaly name choices to help maintain consistency in the DR collection process, and (3) Although developed for the rocket engine test environment, most of the anomalies are not specific to rocket testing, and thus can be reused in other applications.
Kappa distribution in the presence of a potential energy
NASA Astrophysics Data System (ADS)
Livadiotis, George
2015-02-01
The present paper develops the theory and formulations of the kappa distributions that describe particle systems characterized by a nonzero potential energy. As yet, kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. With the results provided here, it is straightforward to use the developed kappa distributions to describe any particle population of space plasmas subject to a nonnegligible potential energy. Starting from the kappa distribution of the Hamiltonian function, we develop the distributions that describe either the complete phase space or the marginal spaces of positions and velocities. The study shows, among others: (a) The kappa distributions of velocities that describe space plasmas can be vastly different from the standard formulation of the kappa distribution, because of the presence of a potential energy; the correct formulation should be given by the marginal kappa distribution of velocities by integrating the distribution of the Hamiltonian over the potential energy. (b) The long-standing problem of the divergence of the Boltzmannian exponential distribution for bounded radial potentials is solved using kappa distributions of negative kappa index. (c) Anisotropic distributions of velocities can exist in the presence of a velocity-dependent potential. (d) A variety of applications, including derivations/verifications of the following: (i) the Jeans', the most frequent, and the maximum radii in spherical/linear gravitational potentials; (ii) the Virial theorem for power law potentials; (iii) the generalized barometric formula, (iv) the plasma density profiles in Saturnian magnetosphere, and (v) the average electron magnetic moment in Earth's magnetotail.
Investigating energy-saving potentials in the cloud.
Lee, Da-Sheng
2014-01-01
Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405
Framework for State-Level Renewable Energy Market Potential Studies
Kreycik, C.; Vimmerstedt, L.; Doris, E.
2010-01-01
State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.
Communication: Separable potential energy surfaces from multiplicative artificial neural networks
NASA Astrophysics Data System (ADS)
Koch, Werner; Zhang, Dong H.
2014-07-01
We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.
Communication: separable potential energy surfaces from multiplicative artificial neural networks.
Koch, Werner; Zhang, Dong H
2014-07-14
We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed. PMID:25027992
Communication: Separable potential energy surfaces from multiplicative artificial neural networks
Koch, Werner, E-mail: wkoch@thethirdrock.net; Zhang, Dong H. [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian (China)
2014-07-14
We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.
Nonrelativistic scale anomaly, and composite operators with complex scaling dimensions
NASA Astrophysics Data System (ADS)
Moroz, Sergej
2011-05-01
It is demonstrated that a nonrelativistic quantum scale anomaly manifests itself in the appearance of composite operators with complex scaling dimensions. In particular, we study nonrelativistic quantum mechanics with an inverse square potential and consider a composite s-wave operator O=??. We analytically compute the scaling dimension of this operator and determine the propagator <0|TOO†|0>. The operator O represents an infinite tower of bound states with a geometric energy spectrum. Operators with higher angular momenta are briefly discussed.
Using peat for energy: Potential environmental restraints. Overview
R. M. Reed; L. D. Voorhees; P. J. Mulholland
1981-01-01
Serious consideration is being given to using peat as an energy resource in Minnesota, North Carolina, Florida, and some New England States. Potential environmental constraints for using peat as an energy resource are associated with disruption of important regional wetland ecosystems. Mining peatlands may significantly modify ground and surface water hydrology, degrade water quality in downstream receiving systems, contribute to
Overview - using peat for energy: potential environmental constraints
R. M. Reed; L. D. Voorhees; P. J. Mulholland
1981-01-01
Serious consideration is being given to using peat as an energy resource in Minnesota, North Carolina, Florida, and some New England States. Potential environmental constraints for using peat as an energy resource are associated with disruption of important regional wetland ecosystems. Mining peatlands may significantly modify ground and surface water hydrology, degrade water quality in downstream receiving systems, contribute to
Potential for energy conservation: St. Louis Case Study
M. D. Levine; J. P. Whittier
1979-01-01
The method of approach to study energy conservation potential in St. Louis is described. It is observed that the key features of St. Louis are: uncertainty of population and economic projections; growth of suburban areas and decline of the inner city during the past two decades; inner city has numerous social\\/economic problems; inadequate (economically suboptimal) levels of energy conservation in
Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.
2009-01-01
The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.
Potential production of energy cane for fuel in the Caribbean
Samuels, G.
1984-08-01
Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.
Renewable energy potential in Bulgaria - Some computer simulations results
NASA Astrophysics Data System (ADS)
Ganev, K.; Jordanov, G.; Gadzhev, G.; Miloshev, N.; Syrakov, D.; Prodanova, M.
2014-11-01
The paper presents a work, which aims at numerical study of the wind and solar energy potential of the country. The wind/solar energy fields simulations were performed applying the 5th generation PSU/NCAR Meso-Meteorological Model MM5 for years 2000-2007 with a spatial resolution of 3 km over Bulgaria. The computer simulated data base is large and rather comprehensive. In this sense it can be considered as statistically significant ensemble. This allows statistical treatment in order various wind and solar energy potential evaluations to be retrieved from the data base. Some evaluations of the country wind and solar energy potential, based on the simulation output are demonstrated in the paper.
On the nuclear interaction. Potential, binding energy and fusion reaction
I. Casinos
2008-05-22
The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.
Prediction of Dyke Propagation using the Minimum Potential Energy Principle
NASA Astrophysics Data System (ADS)
Heimisson, Elías; Hooper, Andrew; Sigmundsson, Freysteinn
2015-04-01
An important aspect of eruption forecasting is the prediction and monitoring of dyke propagation. Eruptions occur where dykes propagate to the surface, with lava flows causing a major threat. When such eruption occur under ice, as is common in Iceland, they become explosive and often cause hazardous and destructive floods. Dykes have also been known to trigger explosive eruption when hot basaltic magma comes in contact with more developed volatile saturated magma. Such explosive eruptions pose a danger to both lives and property. At divergent plate boundaries new crust is formed primarily by dyke injections. These injections usually grow laterally away from a central volcano. Lateral growth of a dyke is expected to follow the minimum potential energy principle. Assuming a closed system, a dyke will tend to be emplaced such that it minimizes the total potential energy, ?T, given by: ?T = ?s + ?g (1) where ?s is the strain potential and ?g the gravitational energy potential. Assuming that the elastic medium behaves linearly the strain potential can be calculated by numerically integrating the strain energy density over a large volume. If the dyke is assumed to be propagating at a constant depth with respect to sea level the gravitational potential energy can be turned into a two dimensional integral. We do this by integrating the predicted vertical displacements multiplied by the local topographic load above a reference surface and the acceleration of gravity. We approximate strain and stress due to plate movements and then consider strain changes induced by the dyke formation. Opening of a dyke is energetically favourable when it releases strain energy built up at a divergent plate boundary, but once deviatoric stress in the crust adjacent to a segment is released it becomes favourable to propagate laterally. Dyke formation is associated with uplift on their flanks; the lower the topographic load over the flanks, the less energy it costs. For any given location on a volcano, the strike of a new dyke segment will influence the strain and gravitational potential energy change in a different way. This type of model was applied to the more than 45 km long dyke formed in the Bárðarbunga volcanic system in Iceland in a rifting event in August 2014. Large observed changes in strike can be explained mostly by interplay of gravitational effects of topography and plate boundary strain. The model minimizing the total potential energy explains this propagation path. Our results suggest that by applying the total minimum potential energy principle we can forecast dyke propagation.
Optimizing potential energy functions for maximal intrinsic hyperpolarizability
Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Watkins, David S. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Mathematics, Washington State University, Pullman, Washington 99164-3113 (United States)
2007-11-15
We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.
The metabolic energy cost of action potential velocity
NASA Astrophysics Data System (ADS)
Crotty, Patrick; Sangrey, Thomas; Levy, William
2006-03-01
Voltage changes in neurons and other active cells are caused by the passage of ions across the cell membrane. These ionic currents depend on the transmembrane ion concentration gradients, which in unmyelinated axons are maintained during rest and restored after electrical activity by an ATPase sodium-potassium exchanger in the membrane. The amount of ATP consumed by this exchanger can be taken as the metabolic energy cost of any electrical activity in the axon. We use this measure, along with biophysical models of voltage-gated sodium and potassium ion channels, to quantify the energy cost of action potentials propagating in squid giant axons. We find that the energy of an action potential can be naturally divided into three separate components associated with different aspects of the action potential. We calculate these energy components as functions of the ion channel densities and axon diameters and find that the component associated with the rising phase and velocity of the action potential achieves a minimum near the biological values of these parameters. This result, which is robust with respect to other parameters such as temperature, suggests that evolution has optimized the axon for the energy of the action potential wavefront.
Split kinetic energy method for quantum systems with competing potentials
Mineo, H.; Chao, Sheng D., E-mail: sdchao@spring.iam.ntu.edu.tw
2012-09-15
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.
SST Anomalies + Wind Anomalies (with dates)
NSDL National Science Digital Library
Greg Shirah
2003-02-03
Sea surface temperature (SST) anomalies and sea surface wind anomalies show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).
Anomalies, Becchi-Rouet-Stora cohomology, and effective theories
NASA Astrophysics Data System (ADS)
Dixon, J. A.
1991-08-01
A survey is made of the known Becchi-Rouet-Stora (BRS) cohomology and potential anomalies in 'nonrenormalizable' effective gauge theories with and without supersymmetry. The probable existence of higher-dimension Abelian anomalies is mentioned. Supersymmetric theories have complicated BRS cohomology, but at least for N = 1 and D = 4 it appears that this does not give rise to corresponding anomalies so long as the gauge anomalies are eliminated.
Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs
Webber, Carrie A.; Brown, Richard E.
1998-06-19
In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)
Astrometric Solar-System Anomalies
John D. Anderson
2009-01-01
There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5
Astrometric solar-system anomalies
John D. Anderson; Michael Martin Nieto
2010-01-01
There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It
Potential energy production from algae on marginal land in China.
Zhang, Qingtao; Ma, Jiong; Qiu, Guoyu; Li, Li; Geng, Shu; Hasi, E; Li, Cheng; Wang, Guangyi; Li, Xiaoyan
2012-04-01
This study is aimed to systematically estimate marginal land resources with different grades (total area; land with certain eco-environmental-economic feasibility; centralized reserve land) in China, and evaluate potential energy production from microalgae on marginal lands in the long-, mid- and near-term, based on a model. The annual potential energy production from algae in total marginal land of China (APEMC) was estimated to 4.19 billion standard coal equivalent (tce), far more than total annual energy consumption equivalent in China (TECCE) in 2007. For microalgae with 35% lipid content, the APEMC in the mid-term would be 37.6-65.8% of the TECCE in 2007. The corresponding annual CO(2) emission mitigation by replacement of fossil fuels by algal bioenergy would be 4.27-7.44 billiont. Although Southwest China provides the highest potential algae production in the long-term, Northwest China provides the highest value in the near-term. PMID:21945161
Saturation wind power potential and its implications for wind energy.
Jacobson, Mark Z; Archer, Cristina L
2012-09-25
Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353
Saturation wind power potential and its implications for wind energy
Jacobson, Mark Z.; Archer, Cristina L.
2012-01-01
Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353
Simple simulation for electron energy levels in geometrical potential wells
Pengpan, Teparksorn
2008-01-01
An octopus program is demonstrated to generate electron energy levels in three-dimensional geometrical potential wells. The wells are modeled to have shapes similar to cone, pyramid and truncated-pyramid. To simulate the electron energy levels in quantum mechanical scheme like the ones in parabolic band approximation scheme, the program is run initially to find a suitable electron mass fraction that can produce ground-state energies in the wells as close to those in quantum dots as possible and further to simulate excited-state energies. The programs also produce wavefunctions for exploring and determining their degeneracies and vibrational normal modes.
Astrometric solar-system anomalies
NASA Astrophysics Data System (ADS)
Anderson, John D.; Nieto, Michael Martin
2010-01-01
There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is reportedly increasing by about 15 cm yr-1. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists, including us, are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is prudent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
Astrometric Solar-System Anomalies
John D. Anderson; Michael Martin Nieto
2009-08-06
There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr$^{-1}$. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is prudent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
Split Kinetic Energy Method for Quantum Systems with Competing Potentials
H. Mineo; Sheng D. Chao
2012-06-11
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into "unperturbed" and "perturbed" terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double delta-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems.
Split kinetic energy method for quantum systems with competing potentials
NASA Astrophysics Data System (ADS)
Mineo, H.; Chao, Sheng D.
2012-09-01
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into "unperturbed" and "perturbed" terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double ?-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems.
Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex
2013-08-15
The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2. PMID:23199237
Wayside energy storage for recuperation of potential energy from freight trains
Lawson, L.J.; Koper, J.; Cook, L.M.
1981-01-01
The subject of this paper, involves the potential for use of a wayside energy storage system to recapture part of the braking energy normally dissipated on long descending grades by freight trains employing dynamic braking. 4 refs.
Assessment of wind energy potential in Gaza Strip
Juma Yousuf Alaydi
2011-01-01
The analysis of collected wind data at two sites in the Gaza Strip, namely, Gaza City and Gaza International Airport in Rafah\\u000a city, is presented. The two sites are candidates for remote area wind energy applications. The purpose of this paper is to\\u000a present the results of the assessment of wind energy potential in the Gaza Strip in order to
Reference pressure changes and available potential energy in isobaric coordinates
NASA Technical Reports Server (NTRS)
Robertson, F. R.
1985-01-01
A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.
Macroscopic effects of the quantum trace anomaly
Mottola, Emil; Vaulin, Ruslan [Theoretical Division, T-8 Los Alamos National Laboratory M.S. B285 Los Alamos, New Mexico 87545 (United States); Department of Physics Florida Atlantic University 777 Glades Road, Boca Raton, Florida 33431 (United States)
2006-09-15
The low energy effective action of gravity in any even dimension generally acquires nonlocal terms associated with the trace anomaly, generated by the quantum fluctuations of massless fields. The local auxiliary field description of this effective action in four dimensions requires two additional scalar fields, not contained in classical general relativity, which remain relevant at macroscopic distance scales. The auxiliary scalar fields depend upon boundary conditions for their complete specification, and therefore carry global information about the geometry and macroscopic quantum state of the gravitational field. The scalar potentials also provide coordinate invariant order parameters describing the conformal behavior and divergences of the stress tensor on event horizons. We compute the stress tensor due to the anomaly in terms of its auxiliary scalar potentials in a number of concrete examples, including the Rindler wedge, the Schwarzschild geometry, and de Sitter spacetime. In all of these cases, a small number of classical order parameters completely determine the divergent behaviors allowed on the horizon, and yield qualitatively correct global approximations to the renormalized expectation value of the quantum stress tensor.
Analysis of spacecraft anomalies
NASA Technical Reports Server (NTRS)
Bloomquist, C. E.; Graham, W. C.
1976-01-01
The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.
NASA Astrophysics Data System (ADS)
Riofrio, L.
2012-12-01
Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;
Potential Energy Functions for Transition Metals and Their Aluminides
NASA Astrophysics Data System (ADS)
Zou, Jun
Transition metal aluminides have a wide range of potential uses in applications requiring high strength and light weight. Obtaining accurate potential energy functions is the first step in trying to understand the structural and defect properties of these materials. Using the simple Anderson model and ab-initio results as inputs, we are able to derive strong medium- and long-ranged interactions among the transition metal atoms in aluminides. Treating the pseudopotentials as a perturbation, we obtain a complete set of pair potentials for any pair of atoms in the aluminides. These potentials agree well with experiments on the structure of liquid aluminides, predict the correct chemical trends in structural stability, and in most cases reproduce the large structural energy differences that have been demonstrated by ab-initio calculations. The calculated results on the structural energies agree fairly well with the experimental phase diagram and the existing ab-initio results. On the basis of these potentials, we propose an explanation for quasicrystal formation in the aluminides. Four-body angular forces recently developed by Carlsson are used in the molecular dynamics simulation of liquid W to examine the effect of angular forces on the structure and thermodynamic properties of the liquid. We do not find any significant effect of the angular forces as compared with radial interatomic forces. However, the angular forces are much more accurate overall in treating the thermodynamic properties.
NASA Astrophysics Data System (ADS)
Arav, Igal; Chapman, Shira; Oz, Yaron
2015-02-01
We analyse scale anomalies in Lifshitz field theories, formulated as the relative cohomology of the scaling operator with respect to foliation preserving diffeomorphisms. We construct a detailed framework that enables us to calculate the anomalies for any number of spatial dimensions, and for any value of the dynamical exponent. We derive selection rules, and establish the anomaly structure in diverse universal sectors. We present the complete cohomologies for various examples in one, two and three space dimensions for several values of the dynamical exponent. Our calculations indicate that all the Lifshitz scale anomalies are trivial descents, called B-type in the terminology of conformal anomalies. However, not all the trivial descents are cohomologically non-trivial. We compare the conformal anomalies to Lifshitz scale anomalies with a dynamical exponent equal to one.
Anomaly detection using topology
NASA Astrophysics Data System (ADS)
Basener, Bill; Ientilucci, Emmett J.; Messinger, David W.
2007-04-01
In this paper we present a new topology-based algorithm for anomaly detection in dimensionally large datasets. The motivating application is hyperspectral imaging where the dataset can be a collection of ~ 10 6 points in R k, representing the reflected (or radiometric) spectra of electromagnetic radiation. The algorithm begins by building a graph whose edges connect close pairs of points. The background points are the points in the largest components of this graph and all other points are designated as anomalies. The anomalies are ranked according to their distance to the background. The algorithm is termed Topological Anomaly Detection (TAD). The algorithm is tested on hyperspectral imagery collected with the HYDICE sensor which contains targets of known reflectance and spatial location. Anomaly maps are created and compared to results from the common anomaly detection algorithm RX. We show that the TAD algorithm performs better than RX by achieving greater separation of the anomalies from the background for this dataset.
A new method for gravity anomaly distortion correction
NASA Astrophysics Data System (ADS)
Zhao, Liye; Li, Hongsheng
2008-12-01
Using gravity anomaly covariance function based on second-order Gaussian Markov gravity anomaly potential model, the state equation of gravity anomaly signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of cascade Kalman filter is proposed and applied to the correction of gravity anomaly distortion. In the signal processing procedure, inverse Kalman filter is used to restore the gravity anomaly signal and high frequent noises firstly, then a adaptive Kalman filter - which uses the gravity anomaly state equation as system equation - is set to estimate the actual gravity anomaly data. Emulations and experiments indicate that both the cascade Kalman filter method and the single inverse Kalman filter method are effective in alleviating the distortion of the gravity anomaly signal, but the performance of the cascade Kalman filter method is better than that of single inverse Kalman filter method.
Computing Molecular Potential Energy Surface with DIET Emmanuel Jeannot
Jeannot, Emmanuel
Computing Molecular Potential Energy Surface with DIET Emmanuel Jeannot LORIA Universit´e Henri tackled this problem using several up-to-date computer science technology such as grid-computing middleware, molecular databases, script interfacing, etc. An example on the optimization of semiem- pirical
Potential energy curves for the Zn 2 dimer
E. Czuchaj; F. Rebentrost; H. Stoll; H. Preuss
1996-01-01
MRCI(SD) calculations have been performed for the adiabatic potential curves and dipole transition moments of diatomic zinc. Only the four valence electrons of the system are treated explicitly, whereas the atomic cores are replaced by the energy-adjusted pseudopotentials. The spin-orbit coupling has not been considered.
Estimation of wind energy potential using different probability density functions
Tian Pau Chang
2011-01-01
In addition to the probability density function (pdf) derived with maximum entropy principle (MEP), several kinds of mixture probability functions have already been applied to estimate wind energy potential in scientific literature, such as the bimodal Weibull function (WW) and truncated Normal Weibull function (NW). In this paper, two other mixture functions are proposed for the first time to wind
Framework for State-Level Renewable Energy Market Potential Studies
Claire Kreycik; Laura Vimmerstedt; Elizabeth Doris
2010-01-01
State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable
The Potential for Wind Energy in Atlantic Canada
Hughes, Larry
Canada 1 The Potential for Wind Energy in Atlantic Canada Abstract Canadians are among the highest per of a software tool that permits the modelling of wind turbines and wind farms, the paper shows that wind from three sources: Environment Canada (wind data for Atlantic Canada) Test Station for Windmills
Unified Technical Concepts. Module 7: Potential and Kinetic Energy.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…
Evaluation of exchange-correlation energy, potential, and stress
L. C. Balbás; José Luís Martins; José M. Soler
2001-01-01
We describe a method for calculating the exchange and correlation (XC) contributions to the total energy, effective potential, and stress tensor in the generalized gradient approximation. We avoid using the analytical expressions for the functional derivatives of Exc[rho], which depend on discontinuous second-order derivatives of the electron density rho. Instead, we first approximate Exc by its integral in a real
Low energy chiral two pion exchange potential with statistical uncertainties
R. Navarro Perez; J. E. Amaro; E. Ruiz Arriola
2015-05-12
We present a new phenomenological Nucleon-Nucleon chiral potential fitted to 925 pp and 1743 np scattering data selected from the Granada-2013 NN-database up to a laboratory energy of $125$ MeV with 20 short distance parameters and three chiral constants $c_1$, $c_3$ and $c_4$ with $\\chi^2/\
LHC Physics Potential vs. Energy: Considerations for the 2011 Run
Quigg, Chris; /Fermilab /CERN
2011-02-01
Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quantify the advantage of increasing the beam energy from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.
Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions
NASA Astrophysics Data System (ADS)
Karatayev, Marat; Marazza, Diego; Contin, Andrea
2015-04-01
The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.
Breakup Threshold Anomaly: New Manifestation of the Dispersion Relation
M. S. Hussein; P. R. S. Gomes; J. Lubian; L. C. Chamon
2007-04-23
It is pointed out that the usual threshold anomaly, found operative in the energy behavior of the imaginary and real parts of the optical potential representing the elastic scattering of tightly bound nuclei at near- and below-barrier energies, suffers a drastic qualitative change in the case of the elastic scattering of weakly bound nuclei. Owing to the strong coupling to the breakup channel even at sub-barrier energies, the imaginary potential strength seems to increase as the energy is lowered down to below the natural, barrier, threshold, accompanied by a decrease in the real potential strength. This feature is consistent with the dispersion relation. The system $^{6}$Li + $^{208}$Pb is analyzed to illustrate this new phenomenon.
Understanding Potential Climate Variability Impacts on the Offshore Energy Industry
NASA Astrophysics Data System (ADS)
Stear, J.
2014-12-01
Climate variability may have important implications for the offshore energy industry. Scenarios of increased storm activity and changes in sea level could require the retrofit of existing offshore platforms and coastal infrastructure, the decommissioning of facilities for which upgrade or relocation is not economically viable, and the development of new methods and equipment which are removed from or less sensitive to environmental loads. Over the past years the energy industry has been actively involved in collaborative research efforts with government and academia to identify the potential changes in the offshore operating environment, and corresponding risk implications. This presentation will review several of these efforts, and for several of the hypothetical climate variation scenarios, review the potential impacts on and possible mitigations for offshore and coastal energy infrastructure and operations.
Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential
NASA Astrophysics Data System (ADS)
Bilgin, Ö.
2012-04-01
Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.
Heterobarrier for converting hot-phonon energy to electric potential
NASA Astrophysics Data System (ADS)
Shin, Seungha; Melnick, Corey; Kaviany, Massoud
2013-02-01
We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.
N2(+) bound quartet and sextet state potential energy curves
NASA Technical Reports Server (NTRS)
Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.
1985-01-01
The N2(+) potential energies have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated potential energy curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed energies near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.
Global Potential of Energy Efficiency Standards and Labeling Programs
McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane
2008-06-15
This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.
Energy gap in graphene nanoribbons with structured external electric potentials
NASA Astrophysics Data System (ADS)
Apel, W.; Pal, G.; Schweitzer, L.
2011-03-01
The electronic properties of graphene zigzag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width w, terminated by Dirichlet boundary conditions in the transverse direction. We show that a structured external potential that acts within the edge regions of the ribbon can induce a spectral gap and thus switch the nanoribbon from metallic to insulating behavior. The basic mechanism of this effect is the selective influence of the external potentials on the spinorial wave functions that are topological in nature and localized along the boundary of the graphene nanoribbon. Within this single-particle description, the maximal obtainable energy gap is Emax???vF/w, i.e., ?0.12 eV for w=15 nm. The stability of the spectral gap against edge disorder and the effect of disorder on the two-terminal conductance is studied numerically within a tight-binding lattice model. We find that the energy gap persists as long as the applied external effective potential is larger than ?0.55×W, where W is a measure of the disorder strength. We argue that there is a transport gap due to localization effects even in the absence of a spectral gap.
Evaluation of global onshore wind energy potential and generation costs.
Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon
2012-07-17
In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929
U.S. Building-Sector Energy Efficiency Potential
Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter
2008-09-30
This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).
A global potential energy surface for ArH2
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.
1992-01-01
We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.
NVU dynamics. III. Simulating molecules at constant potential energy
NASA Astrophysics Data System (ADS)
Ingebrigtsen, Trond S.; Dyre, Jeppe C.
2012-12-01
This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011), 10.1063/1.3623585; T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104102 (2011), 10.1063/1.3623586], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nosé-Hoover NVT dynamics. Since Nosé-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems.
NVU dynamics. III. Simulating molecules at constant potential energy.
Ingebrigtsen, Trond S; Dyre, Jeppe C
2012-12-28
This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011); T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, ibid. 135, 104102 (2011)], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nosé-Hoover NVT dynamics. Since Nose?-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems. PMID:23277922
Wei Cai; Jian Yang; Huang Wang; Jiao Huang
2012-01-01
The purpose of this study is to investigate the energy consumption characteristics of government office buildings in Beijing. Four office buildings were chosen to analyze the energy consumption features and annual energy consumption trends. Energy efficiency potential of government office buildings were analyzed from the six perspectives. The results show that the air conditioning energy consumption was 25.9 kwh\\/m2·a, accounted
S. S. Duhan; M. Singh; R. Kharab; H. C. Sharma
2011-01-01
The Coulomb dipole induced dynamic polarization potentials for 6He + 209Bi and 11Li + 208Pb systems within the framework of Feshbach’s formalism with a motive to ascertain the presence or absence of threshold anomaly\\u000a have been studied. As a result of this study, the threshold anomaly has been found to be present for both systems. It has\\u000a also been found
Search for dark energy potentials in quintessence theory
Muromachi, Yusuke; Okada, Daiki; Hara, Tetsuya; Itoh, Yutaka
2015-01-01
The time evolution of the equation of state $w$ for quintessence models with a scalar field as dark energy is studied up to the third derivative ($d^3w/da^3$) with respect to scale factor $a$, in order to predict the future observations and specify the scalar potential parameters with the observables. The third derivative of $w$ for general potential $V$ was derived and applied to several types of potential. They are the inverse power-law ($V=M^{4+\\alpha}/Q^{\\alpha}$), exponential ($V=M^4\\exp{(\\beta M/Q)}$), mixed ( $V=M^{4+\\gamma}\\exp{(\\beta M/Q)}/Q^{\\gamma}$), cosine ($V=M^4(\\cos (Q/f)+1)$) and the Gaussian types ($V=M^4\\exp(-Q^2/\\sigma^2)$), which are prototypical potentials for the freezing and thawing models. If the parameter number for a potential form is $ n$, it is necessary to find at least for $n+2$ independent observations to identify the potential form and the evolution of scalar field ($Q$ and $ \\dot{Q} $). Such observations would be the values of $ \\Omega_Q, w, dw/da. \\cdots $, and $ dw^n/da^n$....
Radioactive anomaly discrimination from spectral ratios
Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements
2013-08-20
A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.
Parallel unconstrained minimization of potential energy in LAMMPS
Plantenga, T.
1997-10-13
This report describes a new minimization capability added to LAMMPS V4.0. Minimization of potential energy is used to find molecular conformations that are close to structures found in nature. The new minimization algorithm uses LAMMPS subroutines for calculating energy and force vectors, and follows the LAMMPS partitioning scheme for distributing large data objects on multiprocessor machines. Since gradient-based algorithms cannot tolerate nonsmoothness, a new Coulomb style that smoothly cuts off to zero at a finite distance is provided. This report explains the minimization algorithm and its parallel implementation within LAMMPS. Guidelines are given for invoking the algorithm and interpreting results.
Using peat for energy: Potential environmental restraints. Overview
NASA Astrophysics Data System (ADS)
Reed, R. M.; Voorhees, L. D.; Mulholland, P. J.
Serious consideration is being given to using peat as an energy resource in Minnesota, North Carolina, Florida, and some New England States. Potential environmental constraints for using peat as an energy resource are associated with disruption of important regional wetland ecosystems. Mining peatlands may significantly modify ground and surface water hydrology, degrade water quality in downstream receiving systems, contribute to the deterioration of local air quality, disrupt or eliminate plant and animal populations having specialized requirements and limited distributions, and destroy unique wetland ecosystems representing important scientific and educational resources. Careful selection of peatlands to be developed and application of appropriate mitigation and monitoring programs will be necessary to offset these impacts.
Quintom dark energy models with nearly flat potentials
Setare, M. R.; Saridakis, E. N. [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of); Department of Physics, University of Athens, GR-15771 Athens (Greece)
2009-02-15
We examine quintom dark energy models, produced by the combined consideration of a canonical and a phantom field, with nearly flat potentials and dark energy equation-of-state parameter w{sub DE} close to -1. We find that all such models converge to a single expression for w{sub DE}(z), depending only on the initial field values and their derivatives. We show that this quintom paradigm allows for a description of the transition through -1 in the near cosmological past. In addition, we provide the necessary conditions for the determination of the direction of the -1 crossing.
Role of the Clean Energy Potential for Energy Savings and Air Pollution Control in Turkey
KAM?L KAYGUSUZ; HULUS? KARGI ABDULLAH KAYGUSUZ; A. Kaygusuz
1996-01-01
This article begins with a brief review of the technical potential, the regional distribution, and the air pollution effects of all fossil energy sources as well as of all clean and renewable energy sources that could be used in Turkey. Air pollution levels due to fossil fuel consumption are examined. In this context, the role of clean energy sources is
An energy-saving oil drilling rig for recovering potential energy and decreasing motor power
Lujun Zhang
2011-01-01
An energy-saving oil drilling rig is researched. A large accumulator is adopted in this rig to store the energy of the motor during the auxiliary time of lifting the drill stem and the potential energy of the drill stem when lowered. The equipped power of this rig decreases remarkably compared with the conventional drilling rig, and this rig can also
Nuclear momentum distribution and potential energy surface in hexagonal ice
NASA Astrophysics Data System (ADS)
Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele
2011-03-01
The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.
Estimation of wind energy potential using finite mixture distribution models
Sinan Akpinar; Ebru Kavak Akpinar
2009-01-01
In this paper has been investigated an analysis of wind characteristics of four stations (Elazig, Elazig-Maden, Elazig-Keban, and Elazig-Agin) over a period of 8 years (1998–2005). The probabilistic distributions of wind speed are a critical piece of information needed in the assessment of wind energy potential, and have been conventionally described by various empirical correlations. Among the empirical correlations, there
MCSCF potential energy surface for photodissociation of formaldehyde
NASA Technical Reports Server (NTRS)
Jaffe, R. L.; Morokuma, K.
1976-01-01
The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.
Vibration–Translational Energy Transfer According to the Morse Potential
Samuel L. Thompson
1968-01-01
A quantum-mechanical analysis of molecular vibration–translational motion energy transfer is obtained using the Morse potential, a one-dimensional model, and the method of distorted waves. All wavefunctions and transition matrix elements are obtained in closed form. In the limit of high temperatures, the results are identical to the Landau–Teller expression. At low temperatures, resonances are found to result from the attractive
Evaluation of exchange-correlation energy, potential, and stress
L. Balbás; Jose Luis Martins; Jose M. Soler
2001-01-01
We describe a method for calculating the exchange and correlation (XC)\\u000acontributions to the total energy, effective potential, and stress tensor in\\u000athe generalized gradient approximation. We avoid using the analytical\\u000aexpressions for the functional derivatives of E_xc*rho, which depend on\\u000adiscontinuous second-order derivatives of the electron density rho. Instead, we\\u000afirst approximate E_xc by its integral in a real
Evaluation of Global Onshore Wind Energy Potential and Generation Costs
Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.
2012-06-20
In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.
Potential for luminosity improvement for low-energy RHIC operation
Fedotov A. V.
2012-05-20
At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.
NASA Astrophysics Data System (ADS)
Rienks, E. D. L.; ?rrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.
2014-09-01
We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.
Astrometric Solar-System Anomalies
Sergei Klioner; P. Kenneth Seidelmann
2009-01-01
There are at least four unexplained anomalies connected with astrometric\\u000adata. Perhaps the most disturbing is the fact that when a spacecraft on a flyby\\u000atrajectory approaches the Earth within 2000 km or less, it often experiences a\\u000achange in total orbital energy per unit mass. Next, a secular change in the\\u000aastronomical unit AU is definitely a concern. It
Data Network Equipment Energy Use and Savings Potential in Buildings
Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.
2010-06-09
Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.
Design of a Protein Potential Energy Landscape by Parameter Optimization
Julian Lee; Seung-Yeon Kim; Jooyoung Lee
2003-09-29
We propose an automated protocol for designing the energy landscape of a protein energy function by optimizing its parameters. The parameters are optimized so that not only the global minimum energy conformation becomes native-like, but also the conformations distinct from the native structure have higher energies than those close to the native one. We successfully apply our protocol to the parameter optimization of the UNRES potential energy, using the training set of betanova, 1fsd, the 36-residue subdomain of chicken villin headpiece (PDB ID 1vii), and the 10-55 residue fragment of staphylococcal protein A (PDB ID 1bdd). The new protocol of the parameter optimization shows better performance than earlier methods where only the difference between the lowest energies of native-like and non-native conformations was adjusted without considering various degrees of native-likeness of the conformations. We also perform jackknife tests on other proteins not included in the training set and obtain promising results. The results suggest that the parameters we obtained using the training set of the four proteins are transferable to other proteins to some extent.
Assessment of Tidal Stream Energy Potential for the United States
NASA Astrophysics Data System (ADS)
Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.
2010-12-01
Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well, which is frequently an order of magnitude larger. The numerical model provides the time series on a sufficiently high enough spatial resolution to utilize both the currents and mean water level (MWL) to compute the total energy flux entering estuary. The time variation of the available power for a few different estuaries will be evaluated and compared to estimates based on constant flow properties.
[Vascular anomalies: information documents].
Philandrianos, C; Degardin, N; Casanova, D; Bardot, J; Petit, P; Bartoli, J-M; Magalon, G
2011-06-01
Vascular anomalies are a complex pathological group. They are composed of hemangiomas and other vascular tumors and congenital vascular malformations: venous, lymphatic, arteriovenous and capillary malformations. The management of these anomalies is difficult and must involve an interdisciplinary approach. To help patients to understand their pathology, we have made some information documents. PMID:20598795
Ospina, J F
2001-01-01
Two forms of anomalies for chiral spinors living on submanifolds of the spacetime are obtained from the integrality theorem for immersions. The first form of the chiral anomaly is the usual for chiral spinors living on D-brane and O-plane intersections, the second form is exotic.
Juan Ospina
2001-08-15
Two forms of anomalies for chiral spinors living on submanifolds of the spacetime are obtained from the integrality theorem for immersions. The first form of the chiral anomaly is the usual for chiral spinors living on D-brane and O-plane intersections, the second form is exotic.
Potential environmental effects of energy conservation measures in northwest industries
Baechler, M C; Gygi, K F; Hendrickson, P L
1992-01-01
The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.
't Hooft Anomaly Matching for Discrete Symmetries
Csaba Csaki; Hitoshi Murayama
1998-05-12
We show how to extend the 't Hooft anomaly matching conditions to discrete symmetries. We check these discrete anomaly matching conditions on several proposed low-energy spectra of certain strongly interacting gauge theories. The excluded examples include the proposed chirally symmetric vacuum of pure N=1 supersymmetric Yang-Mills theories, certain non-supersymmetric confining theories and some self-dual N=1 supersymmetric theories based on exceptional groups.
Intermolecular potential energy surface and thermophysical properties of ethylene oxide
NASA Astrophysics Data System (ADS)
Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard
2014-10-01
A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.
Potential for energy conservation in the cement industry
Garrett-Price, B.A.
1985-02-01
This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.
Tunnel catch from potential wells and energy detection
M. V. Karasev; E. V. Vybornyi
2014-11-17
We consider the one-dimensional Schr\\"{o}dinger operator in the semiclassical regime assuming that its double-well potential is the sum of a finite "physically given" well and a square shape probing well whose width or depth can be varied (tuned). We study the dynamics of initial state localized in the physical well. It is shown that if the probing well is not too close to the physical one and if its parameters are specially tuned, then the {\\it tunnel catch effect} appears, i.e. the initial state starts tunneling oscillations between the physical and probing wells. The asymptotic formula for the probability of finding the state in the probing well is obtained. We show that the observation of the tunnel catch effect can be used to determine the energy level of the initial state, and we obtain the corresponding asymptotic formula for the initial state energy. We also calculate the leading term of the tunneling splitting of energy levels in this double well potential.
Gravitational potential energy of the earth - A spherical harmonic approach
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1979-01-01
A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.
Takada, Shoji
Reaction dynamics of D+ H, + DH + H: Effects of potential energy surface topography and usefulness possibleand enables us to investigate the effects of potential energy surface (PES) topographyon the reaction are reported for the D + H, -, DH + H reaction on the basisof the exact quantum mechanicalcalculation for J = 0
The torsional potential energy function of N2O4
NASA Astrophysics Data System (ADS)
Koput, J.; Seibert, J. W. G.; Winnewisser, B. P.
1993-03-01
The infrared spectrum of dinitrogen tetroxide, N2O4, has been measured in the region 200?650 cm-1 at different resolutions and temperatures. Analysis of the sequence of weak bands near 540 cm-1 involving a combination of the v6 (NO2 rocking) and v4 (torsion) modes has been performed. As a result, the shape of the potential energy function governing internal rotation about the NN bond has been determined. In the ground vibrational state, the height of the barrier at the staggered conformation is determined to be 1900 ± 200 cm-1.
Taboo search by successive confinement: Surveying a potential energy surface
NASA Astrophysics Data System (ADS)
Chekmarev, Sergei F.
2001-09-01
A taboo search for minima on a potential energy surface (PES) is performed by means of confinement molecular dynamics: the molecular dynamics trajectory of the system is successively confined to various basins on the PES that have not been sampled yet. The approach is illustrated for a 13-atom Lennard-Jones cluster. It is shown that the taboo search radically accelerates the process of surveying the PES, with the probability of finding a new minimum defined by a propagating Fermi-like distribution.
Potential of building-scale alternative energy to alleviate risk from the future price of energy
David Bristow; Christopher A. Kennedy
2010-01-01
The energy used for building operations, the associated greenhouse gas emissions, and the uncertainties in future price of natural gas and electricity can be a cause of concern for building owners and policy makers. In this work we explore the potential of building-scale alternative energy technologies to reduce demand and emissions while also shielding building owners from the risks associated
The potential effect of end-users on energy conservation in office buildings
Seppo Junnila
2007-01-01
Purpose – The purpose of the study is to estimate the potential of end-user effect on energy conservation in office buildings. The study quantifies the energy conservation potential and estimates the current level of energy management in four banking organisations in the Nordic countries. Design\\/methodology\\/approach – The multiple case study employs quantitative scenario analysis for estimating the energy conservation potential
Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials
Hassaneen, Kh.S.A., E-mail: khs_94@yahoo.com [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Abo-Elsebaa, H.M.; Sultan, E.A. [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Mansour, H.M.M. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)
2011-03-15
Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.
Axial anomaly of QED in a strong magnetic field and noncommutative anomaly
Sadooghi, N. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Physics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Jafari Salim, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of)
2006-10-15
The Adler-Bell-Jackiw (ABJ) anomaly of a 3+1 dimensional QED is calculated in the presence of a strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a dimensional reduction from D=4 to D=2 dimensions occurs in the longitudinal sector of the low energy effective field theory. In the chiral limit, the resulting anomaly is therefore comparable with the axial anomaly of a two-dimensional massless Schwinger model. It is further shown that the U{sub A}(1) anomaly of QED in a strong magnetic field is closely related to the nonplanar axial anomaly of a conventional noncommutative U(1) gauge theory.
Energy aspects and potential energy savings of the new DASI process for milk sterilization
Frey, B.C. (Univ. of Maryland, College Park); Stewart, L.E.; Chandarana, D.; Wolfson, R.P.
1981-01-01
An experimental study was conducted to determine the difference in total processing energy required by the DASI ultra-high temperature (UHT) system and a conventional high temperature short time (HTST) fluid milk system. Data available in the literature were used to develop an energy use profile for the current US fluid milk system from processor to consumer. The energy data measured and the profile developed were used to estimate the potential energy savings resulting from the introduction of sterile milk in the US fluid milk market. Savings of energy resulting from the introduction of sterile milk were estimated to be 12 million barrels of oil annually.
Computer simulations of glasses: the potential energy landscape.
Raza, Zamaan; Alling, Björn; Abrikosov, Igor A
2015-07-29
We review the current state of research on glasses, discussing the theoretical background and computational models employed to describe them. This article focuses on the use of the potential energy landscape (PEL) paradigm to account for the phenomenology of glassy systems, and the way in which it can be applied in simulations and the interpretation of their results. This article provides a broad overview of the rich phenomenology of glasses, followed by a summary of the theoretical frameworks developed to describe this phenomonology. We discuss the background of the PEL in detail, the onerous task of how to generate computer models of glasses, various methods of analysing numerical simulations, and the literature on the most commonly used model systems. Finally, we tackle the problem of how to distinguish a good glass former from a good crystal former from an analysis of the PEL. In summarising the state of the potential energy landscape picture, we develop the foundations for new theoretical methods that allow the ab initio prediction of the glass-forming ability of new materials by analysis of the PEL. PMID:26139691
An Ab Initio Based Potential Energy Surface for Water
NASA Technical Reports Server (NTRS)
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces.
Munteanu, Cristian R; Henriksen, Christian; Felker, Peter M; Fernández, Berta
2013-05-01
Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double augmented (Ne and Ar complexes) correlation-consistent polarized valence triple-? basis sets extended with a set of 3s3p2d1f1g midbond functions. These basis sets were selected after systematic basis set studies carried out at geometries close to those of the surface minima. The He-, Ne-, and Ar-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm(-1) at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials were further used in the evaluation of rovibrational states and the rotational constants of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised. PMID:23617631
The potential for effluent trading in the energy industries.
Veil, J. A.; Environmental Assessment
1998-01-01
In January 1996, the US Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades: point source/point source, point source/nonpoint source, pretreatment, intraplant and nonpoint source/nonpoint source. This paper evaluates the feasibility of implementing these types of effluent trading for facilities in the oil and gas, electric power and coal industries. This paper finds that the potential for effluent trading in these industries is limited because trades would generally need to involve toxic pollutants, which can only be traded under a narrow range of circumstances. However, good potential exists for other types of water-related trades that do not directly involve effluents (e.g. wetlands mitigation banking and voluntary environmental projects). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.
Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard
2001-03-16
We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.
J. Martin Laming; Jeremy J. Drake
1999-01-01
Lines from different elements in the Extreme-Ultraviolet Explorer spectra of the corona of the intermediate-activity star xi Bootis A have been analyzed. Assuming that a photospheric composition for the plasma is responsible for the observed coronal emission, emission measures derived from lines of elements with low first ionization potentials (FIPs) are systematically higher than emission measures derived from lines formed
Calculating Potential Energy Curves with Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Powell, Andrew D.; Dawes, Richard
2014-06-01
Quantum Monte Carlo (QMC) is a computational technique that can be applied to the electronic Schrödinger equation for molecules. QMC methods such as Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) have demonstrated the capability of capturing large fractions of the correlation energy, thus suggesting their possible use for high-accuracy quantum chemistry calculations. QMC methods scale particularly well with respect to parallelization making them an attractive consideration in anticipation of next-generation computing architectures which will involve massive parallelization with millions of cores. Due to the statistical nature of the approach, in contrast to standard quantum chemistry methods, uncertainties (error-bars) are associated with each calculated energy. This study focuses on the cost, feasibility and practical application of calculating potential energy curves for small molecules with QMC methods. Trial wave functions were constructed with the multi-configurational self-consistent field (MCSCF) method from GAMESS-US.[1] The CASINO Monte Carlo quantum chemistry package [2] was used for all of the DMC calculations. An overview of our progress in this direction will be given. References: M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). R. J. Needs et al. J. Phys.: Condensed Matter 22, 023201 (2010).
G. Schubert; J. D. Anderson; R. A. Jacobson; E. L. Lau; W. B. Moore; J. Palguta
2004-01-01
Analysis of radio Doppler data from the Galileo spacecraft's flybys of Ganymede has detected the existence of mass anomalies on Ganymede that plausibly lie near the interface between the ice and silicate shells and near the surface.
Jose A. de Diego; Darío Núñez
2008-01-01
Analysis of the radio-metric data from Pioneer 10 and 11 spacecrafts has\\u000aindicated the presence of an unmodeled acceleration starting at 20 AU, which\\u000ahas become known as the Pioneer anomaly. The nature of this acceleration is\\u000auncertain. In this paper we give a description of the effect and review some\\u000arelevant mechanisms proposed to explain the observed anomaly. We
Astrometric Solar-System Anomalies
Anderson, John D
2009-01-01
There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr$^{-1}$. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction ...
Relation between quark-antiquark potential and quark-antiquark free energy in hadronic matter
Zhen-Yu Shen; Xiao-Ming Xu
2014-06-19
We study the relation between the quark-antiquark potential and the quark-antiquark free energy in hadronic matter. While a temperature is over the critical temperature, the potential of a heavy quark and a heavy antiquark almost equals the free energy, otherwise the quark-antiquark potential is substantially larger than the quark-antiquark free energy. While a temperature is below the critical temperature, the quark-antiquark free energy can be taken as the quark-antiquark potential.
Astrometric Solar-System Anomalies
NASA Astrophysics Data System (ADS)
Anderson, John D.
2009-05-01
There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four anomalies have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.
Advanced Potential Energy Surfaces for Condensed Phase Simulation
NASA Astrophysics Data System (ADS)
Demerdash, Omar; Yap, Eng-Hui; Head-Gordon, Teresa
2014-04-01
Computational modeling at the atomistic and mesoscopic levels has undergone dramatic development in the past 10 years to meet the challenge of adequately accounting for the many-body nature of intermolecular interactions. At the heart of this challenge is the ability to identify the strengths and specific limitations of pairwise-additive interactions, to improve classical models to explicitly account for many-body effects, and consequently to enhance their ability to describe a wider range of reference data and build confidence in their predictive capacity. However, the corresponding computational cost of these advanced classical models increases significantly enough that statistical convergence of condensed phase observables becomes more difficult to achieve. Here we review a hierarchy of potential energy surface models used in molecular simulations for systems with many degrees of freedom that best meet the trade-off between accuracy and computational speed in order to define a sweet spot for a given scientific problem of interest.
Advanced potential energy surfaces for condensed phase simulation.
Demerdash, Omar; Yap, Eng-Hui; Head-Gordon, Teresa
2014-01-01
Computational modeling at the atomistic and mesoscopic levels has undergone dramatic development in the past 10 years to meet the challenge of adequately accounting for the many-body nature of intermolecular interactions. At the heart of this challenge is the ability to identify the strengths and specific limitations of pairwise-additive interactions, to improve classical models to explicitly account for many-body effects, and consequently to enhance their ability to describe a wider range of reference data and build confidence in their predictive capacity. However, the corresponding computational cost of these advanced classical models increases significantly enough that statistical convergence of condensed phase observables becomes more difficult to achieve. Here we review a hierarchy of potential energy surface models used in molecular simulations for systems with many degrees of freedom that best meet the trade-off between accuracy and computational speed in order to define a sweet spot for a given scientific problem of interest. PMID:24328448
Osmosis, colligative properties, entropy, free energy and the chemical potential
Peter Hugo Nelson
2014-09-13
A diffusive model of osmosis is presented that explains currently available experimental data. It makes predictions that distinguish it from the traditional convective flow model of osmosis, some of which have already been confirmed experimentally and others have yet to be tested. It also provides a simple kinetic explanation of Raoult's law and the colligative properties of dilute aqueous solutions. The diffusive model explains that when a water molecule jumps from low to high osmolarity at equilibrium, the free energy change is zero because the work done pressurizing the water molecule is balanced by the entropy of mixing. It also explains that equal chemical potentials are required for particle exchange equilibrium in analogy with the familiar requirement of equal temperatures at thermal equilibrium.
Under consideration for publication in J. Fluid Mech. 1 Available potential energy density for a
Tailleux, Remi
with Lorenz (1955) APE, viz., APELorenz = V (pe - pe r) dV = PE - PE r, (1.1) where PE is the total potential energy of the actual state, while PE r is the total potential energy of the reference state of minimum potential energy that can be obtained from an adiabatic re-arrangement of mass (pe and pe r
A General Method for Conserving Energy and Potential Enstrophy in Shallow-Water Models
Salmon, Rick
A General Method for Conserving Energy and Potential Enstrophy in Shallow-Water Models RICK SALMON numerical models that conserve analogs of the energy and potential enstrophy; one need only discretize, in the inviscid limit, conserve energy and an arbitrary ad- ditional invariant related to the potential vorticity
A Review of Vascular Anomalies: Genetics and Common Syndromes
Killion, Elizabeth; Mohan, Kriti; Lee, Edward I.
2014-01-01
Vascular tumors and malformations are unique in that affected cells exhibit disrupted angiogenesis. The current treatment options often yield suboptimal results. New insight into the genetics and molecular basis of vascular anomalies may pave the way for potential development of targeted therapy. The authors review the genetic and molecular basis of vascular anomalies and common associated syndromes. PMID:25045331
The Pioneer anomaly in the context of the braneworld scenario
O. Bertolami; J. Páramos
2004-06-04
We examine the Pioneer anomaly - a reported anomalous acceleration affecting the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a braneworld scenario. We show that effects due to the radion field cannot account for the anomaly, but that a scalar field with an appropriate potential is able to explain the phenomena. Implications and features of our solution are analyzed.
W. Y. So; T. Udagawa; S. W. Hong; B. T. Kim
2008-01-15
Simultaneous $\\chi^{2}$ analyses are performed for elastic scattering and fusion cross section data for the $^{12}$C+$^{208}$Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the $\\chi^{2}$ analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as $\\alpha$-particle and $^{16}$O.
Spectroscopic constants and potential energy curves of tungsten carbide
Balasubramanian, K. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)] [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)
2000-05-01
Spectroscopic constants (R{sub e},{omega}{sub e},T{sub e},{mu}{sub e}) and potential energy curves for 40 low-lying electronic states of the diatomic tungsten carbide (WC) were obtained using the complete active space multiconfiguration self-consistent field followed by the multireference singles+doubles configuration interaction and full first- and second-order configuration interaction calculations that included up to 6.4 mil configurations. Spin-orbit effects were included through the enhanced relativistic configuration interaction method described here for 28 electronic states of WC lying below {approx}20 000 cm-1. The spin-orbit splitting of the ground state of WC was found to be very large (4394 cm-1). The ground and excited electronic states of the W atom were also computed and were found to be in good agreement with the experimental data. The nature of bonding was analyzed through the composition of orbitals, leading configurations, Mulliken populations, and dipole moments. The dissociation energy of WC was computed including spin-orbit and electron correlation effects. The recent photoelectron spectra of WC{sup -} were assigned on the basis of our computed results. (c) 2000 American Institute of Physics.
Energy conservation potential of the US Department of Energy interim commercial building standards
Hadley, D.L.; Halverson, M.A.
1993-12-01
This report describes a project conducted to demonstrate the whole-building energy conservation potential achievable from full implementation of the US Department of Energy (DOE) Interim Energy Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of energy performance standards for commercial buildings were established by the Energy Conservation Standards for New Buildings Act of 1976, as amended, Public Law (PL) 94-385, 42 USC 6831 et seq., hereinafter referred to as the Act. In accordance with the Act, DOE was to establish performance standards for both federal and private sector buildings ``to achieve the maximum practicable improvements in energy efficiency and use of non-depletable resources for all new buildings``.
L. Farkas
1982-01-01
Based on the recently proposed Vosko-Wilk-Nusair interpolation formulae for the correlation energy density of the spin-polarized homogeneous electron liquid, a new parametrized form for the correlation potential for the self-consistent local-spin-density calculations of atoms, molecules and solids is proposed. The total energies and first ionization potentials for a few light atoms are calculated. The influence of the improved spin-polarization dependence
The GSI Time Anomaly: Facts and Fiction
Carlo Giunti
2009-05-28
The claims that the GSI time anomaly is due to the mixing of neutrinos in the final state of the observed electron-capture decays of hydrogen-like heavy ions are refuted with the help of an analogy with a double-slit experiment. It is a consequence of causality. It is shown that the GSI time anomaly may be caused by quantum beats due to the existence of two coherent energy levels of the decaying ion with an extremely small energy splitting (about $6\\times10^{-16} \\text{eV}$) and relative probabilities having a ratio of about 1/99.
The GSI Time Anomaly:. Facts and Fiction
NASA Astrophysics Data System (ADS)
Giunti, Carlo
2011-10-01
The claims that the GSI time anomaly is due to the mixing of neutrinos in the final state of the observed electron-capture decays of hydrogen-like heavy ions are refuted with the help of an analogy with a double-slit experiment. It is a consequence of causality. It is shown that the GSI time anomaly may be caused by quantum beats due to the existence of two coherent energy levels of the decaying ion with an extremely small energy splitting (about 6 × 10-16eV) and relative probabilities having a ratio of about 1/99.
NASA Astrophysics Data System (ADS)
Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J.
2014-06-01
Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m2, equivalent to 4.8 kWh/m2/day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures.
Axial anomaly of QED in a strong magnetic field and noncommutative anomaly
N. Sadooghi; A. Jafari Salim
2006-01-01
The Adler-Bell-Jackiw (ABJ) anomaly of a 3+1 dimensional QED is calculated in the presence of a strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a dimensional reduction from D=4 to D=2 dimensions occurs in the longitudinal sector of the low energy effective field theory. In the chiral limit, the resulting anomaly
Equivalence of the three empirical potential energy models for diatomic molecules
NASA Astrophysics Data System (ADS)
Wang, Ping-Quan; Zhang, Lie-Hui; Jia, Chun-Sheng; Liu, Jian-Yi
2012-04-01
It is found that the Manning-Rosen potential, Schiöberg potential and Deng-Fan potential are the same solvable empirical potential energy function for diatomic molecules. We calculate the anharmonicity ?exe and vibrational rotational coupling parameter ?e for 16 molecules by choosing the experimental values of the dissociation energy De, equilibrium bond length re and vibrational frequency ?e as inputs. The results show that the Manning-Rosen potential, Deng-Fan potential and Schiöberg potential are not better than the traditional Morse potential.
NASA Astrophysics Data System (ADS)
Hill, J. C.; Driscoll, N. W.; Weissel, J. K.; Kastner, M.; Singh, H.; Cormier, M.; Camilli, R.; Eustice, R.; Lipscomb, R.; McPhee, N.; Newman, K.; Robertson, G.; Solomon, E.; Tomanka, K.
2004-12-01
Geochemical, bathymetric and AUV based surveys conducted aboard the R/V Cape Hatteras in July 2004 provided new constraints on the formation of large-scale gas blowout features located along the U.S. Atlantic margin. These features, believed to be formed by gas expulsion processes, are ~4km long, ~1km wide and up to 50m deep. The stratal geometry of these features and their location on the shelf-edge has led us to hypothesize that they may indicate incipient slope failure. Interpretation from our chirp seismic reflection data, collected in 2000, showed gas generally was trapped under a thin veneer (several tens of meters) of deltaic sediments, but may be venting along the landward wall of the blowouts. New geochemical data indicate significant methane anomalies above both the seaward and landward walls of the blowouts and reveals that these features are actively venting fluids at the seafloor. Using a METSr sensor mounted on the WHOI Seabed AUV, we observed methane concentrations ranging from 50-100nM in the water column directly above the inner and outer walls, whereas typical methane concentrations in seawater are expected to be 2-4nM. Some of these methane hot spots were also associated with salinity anomalies. Additionally, pore fluids squeezed from a series of piston cores in the blowout region show relatively high alkalinity values (>4-15mM), with a near absence of hydrogen sulfide. These initial results are particularly intriguing since high alkalinity concentrations are commonly associated with high sulfide concentrations. We speculate that there may be a flux of CO2 into the sediments that may be responsible for the high alkalinity and low sulfide. In addition to our geochemical studies, we collected a full suite of bottom photographs, gravity cores, and high resolution bathymetry. Visualization of these data in three dimensions, along with methane concentration profiles, chirp reflection, and sidescan-sonar data has enabled us to build a relatively comprehensive picture of the blowout features. There are strong spatial correlations between trapped gas and the overlying shelf-edge delta deposit, as well as with relatively high methane concentrations in the water column, and indications of inner wall venting in the chirp profiles. Nevertheless, a distinct spatial correlation between the occurrence of biological communities and the fluid expulsion sites was not observed. The active fluid expulsion we measured is consistent with our geophysical observations, and supports our hypothesis that there is a link between upslope fluid migration, downslope creep, and potential slope failure.
Trace anomalies in chiral theories revisited
Loriano Bonora; Stefano Giaccari; Bruno Lima de Souza
2014-08-29
Motivated by the search for possible CP violating terms in the trace of the energy-momentum tensor in theories coupled to gravity we revisit the problem of trace anomalies in chiral theories. We recalculate the latter and ascertain that in the trace of the energy-momentum tensor of theories with chiral fermions at one-loop the Pontryagin density appears with an imaginary coefficient. We argue that this may break unitarity, in which case the trace anomaly has to be used as a selective criterion for theories, analogous to the chiral anomalies in gauge theories. We analyze some remarkable consequences of this fact, that seem to have been overlooked in the literature.
Dielectric loss anomaly of BaBiO3
NASA Astrophysics Data System (ADS)
Lee, Seung-Hoon; Jung, Woo-Hwan; Sohn, Jeong-Ho; Lee, Joon-Hyung; Cho, Sang-Hee
1999-12-01
Dielectric properties of oxygen deficient BaBiO3-? have been analyzed, and dielectric loss anomalies at 175 and 225 K were found, which were dependent on oxygen deficiency. The activation energies corresponding to the relaxation processes of dielectric anomalies at 175 and 225 K were 0.26 and 0.50 eV, respectively. The dielectric anomaly at 175 K is believed to be caused by hole movement from an occupied Bi 6s band to hole polaron accommodating band state. Another anomaly at 225 K is believed to occur from the hopping of a hole between a Bi 6s band and the Fermi level.
An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection
Somayaji, Anil
An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection TR investigate potential simulation artifacts and their effects on the evaluation of network anomaly detection traffic into the simulation. We compare five anomaly detection algorithms on simulated and mixed traffic
Molecular understanding of mutagenicity using potential energy methods
Broyde, S.; Shapiro, R.
1992-07-01
Our objective, has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by 2-aminofluorene and its N-acetyl derivative, 2-acetylaminofluorene (AAF). The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence, for example by the formation of hairpin loops in appropriate sequences, but it may be enhanced greatly after covalent modification by a mutagenic substance. We use computational methods and have been able to incorporate the first data from NMR studies in our calculations. Computational approaches are important because x-ray and spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. The specific methods that we employ are minimized potential energy calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations, with full solvent and salt, of the important static structures are carried out with the program AMBER; this yields mobile views in a medium that mimics the natural aqueous environment of the cell as well as can be done with current available computing resources.
Theoretical characterization of the potential energy surface for NH + NO
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1992-01-01
The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.
Cerebral developmental venous anomalies
Diego San Millán Ruíz; Philippe Gailloud
2010-01-01
Introduction Cerebral developmental venous anomalies (DVAs) are the most frequently encountered cerebral vascular malformation. As such,\\u000a they are often observed incidentally during routine CT and MRI studies. Yet, what DVAs represent from a clinical perspective\\u000a is frequently not common knowledge and DVAs, therefore, still generate uncertainty and concern amongst physicians. This article\\u000a reviews our current understanding of developmental venous anomalies.\\u000a \\u000a \\u000a \\u000a \\u000a Results In
On the potential energy in an electrostatically bound two-body system
K. Wilhelm; B. N. Dwivedi
2014-08-30
The potential energy problem in an electrostatically bound two-body system is studied in the framework of a recently proposed impact model of the electrostatic force and in analogy to the potential energy in a gravitationally bound system. The physical processes are described that result in the variation of the potential energy as a function of the distance between the charged bodies. The energy is extracted from distributions of hypothetical interaction entities modified by the charged bodies.
Energy conservation and retrofitting potential in Hellenic hotels
M. Santamouris; C. A. Balaras; E. Dascalaki; A. Argiriou; A. Gaglia
1996-01-01
Energy consumption data from 158 Hellenic hotels and estimated energy savings that result from the use of practical retrofitting techniques, materials and new energy efficient systems are presented. The data were collected during an extensive energy audit of buildings that was carried out in Hellas, within the frame of a National Energy Programme sponsored by the CEC VALOREN Programme, for
Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.
The Hubble Space Telescope attitude observer anomaly
NASA Astrophysics Data System (ADS)
Van Arsdall, Morgan M.; Ramsey, Patrick R.; Swain, Scott R.
2006-06-01
In mid-2004, the Hubble Space Telescope (HST) began experiencing occasional losses of lock during Fine Guidance Sensor (FGS) guide star acquisitions, threatening a potential loss of science. These failures were associated with an increasing disparity between the FGS-derived estimates of gyro bias calculated in orbit day and those calculated in orbit night. Early efforts to mitigate the operational effects of this Attitude Observer Anomaly (AOA) succeeded; however, the magnitude of the anomaly continued to increase at a linear rate and operational problems resumed in mid-2005. Continued analysis led to an additional on-orbit mitigation strategy that succeeded in reducing the AOA signature. Before the investigation could be completed, HST began operations under the life-extending Two Gyro Science mode. This eliminated both the operational effects of and the visibility into the AOA phenomenon. Possible causes of the anomaly at the vehicle system level included component hardware failures, flight software errors in control law processing, distortion of the telescope optical path, and deformation of vehicle structure. Although the mechanism of the AOA was not definitively identified, the Anomaly Review Board (ARB) chartered to investigate the anomaly concluded that the most likely root cause lies within one of HST's 6 rate-integrating gyroscopes. This paper provides a summary of the initial paths of investigation, the analysis and testing performed to attempt to isolate the source, and a review of the findings of the ARB. The possibility of future operational impacts and available methods of on-orbit mitigation are also addressed.
Multidetector CT urography of renal fusion anomalies.
Türkvatan, Aysel; Olçer, Tülay; Cumhur, Turhan
2009-06-01
Renal fusion anomalies, in which both kidneys are fused togeher in early embyronic life, are rarely encountered. Once a fused kidney is diagnosed or suspected, further laboratory and imaging evaluation should be performed to assess the status of the kidneys and to look for treatable causes of renal pathology. The early dignosis of potential complications that can accompany this anomaly must be made in order to prevent permanent renal damage. The advantage of multidetector computed tomographic (MDCT) urography is its ability to depict the normal urinary tract anatomy, including both the renal parenchyma, and collecting structures and ureters. MDCT urography is helpful to screen for the presence of stones, hydronephrosis or masses. Additionally, it provides information about the vascular supply of the fused kidneys. Therefore, MDCT urography enables a comprehensive evaluation of patients with renal fusion anomalies in a single examination. Especially three-dimensional reformatted images can provide good delineation of congenital fusion anomalies of the kidney. In this study we report our experience with MDCT urography for the anatomic demonstration of renal fusion anomalies. PMID:19517383
Xiang-Yang Liu; Furio Ercolessi; James B. Adams
2004-01-01
A new Al potential with improved stacking fault energy is constructed using the force-matching method. The potential is fitted to an ab initio forces database and various experimental data. By using a slightly larger cut-off, we found that the new potential gives the relaxed stacking fault energy in the experimental range without changing the excellent thermal and surface properties of
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations
de Groot, Bert
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft
J. A. F. Gerrard; L. Strickland; A. L. Wade; H. K. Reynolds
1957-01-01
An instrument that will simulate the anomalous gravity effects of a subsurface body, having a density differing from that of its surroundings, is described. The device makes use of the similarity between the gravity equation and Lambert's cosine ? law, and enables the geophysicist to synthesize the anomaly producing body in a time much shorter than that required for conventional
Claus Lämmerzahl; Hansjörg Dittus
2008-01-01
At various occasions a significant unexplained velocity increase by a few mm\\/s of satellites after an Earth swing-by has been observed what is called the flyby anomaly. We discuss the validity of these observations and discuss general features.
Orbital Anomalies FLORIN DIACU
Diacu, Florin
other parameters beyond gravita- tion, such as magnetic effects and solar wind. To know the exact they understand gravity at all. The Pioneer Anomaly On March 2, 1972, Pioneer 10 was launched from Cape Canaveral cosmic rays, magnetic fields, solar wind, neutral hydrogen, dust particles; the Jovian aurorae, radio
Anomaly detection for diagnosis
Roy A. Maxion
1990-01-01
The author presents a method for detecting anomalous events in communication networks and other similarly characterized environments in which performance anomalies are indicative of failure. The methodology, based on automatically learning the difference between normal and abnormal behavior, has been implemented as part of an automated diagnosis system from which performance results are drawn and presented. The dynamic nature of
Varun Chandola; Arindam Banerjee; Vipin Kumar
2009-01-01
to difierentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the efiectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the difierent existing techniques in that category are variants of the basic tech-
Wang, Xiaorui "Ray"
Erik M. Ferragut (ferragutem@ornl.gov) Jason Laska (laskaja@ornl.gov) Robert A. Bridges (bridgesra@ornl Application Conclusion Cyber Operational Challenge Question. How can intrusions be detected in an enterprise as Rare Events Anomaly Definition Main Theorem Application Conclusion Cyber Data and Requirements Cyber
Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide.
da Silva, Gabriel; Bozzelli, Joseph W
2007-11-29
Thermochemical properties of dimethyl tetraoxide (CH(3)OOOOCH(3)), the dimer of the methylperoxy radical, are studied using ab initio and density functional theory methods. Methylperoxy radicals are known to be important intermediates in the tropospheric ozone cycle, and the self-reaction of methylperoxy radicals, which is thought to proceed via dimethyl tetraoxide, leads to significant chain radical termination in this process. Dimethyl tetraoxide has five internal rotors, three of them unique; the potential energy profiles are calculated for these rotors, as well as for those in the CH(3)OO, CH(3)OOO, and CH(3)OOOO radicals. The dimethyl tetraoxide internal rotor profiles show barriers to rotation of 2-8 kcal mol(-1). Using B3LYP/6-31(d) geometries, frequencies, internal rotor potentials, and moments of inertia, we determine entropy and heat capacity values for dimethyl tetraoxide and its radicals. Isodesmic work reactions with the G3B3 and CBS-APNO methods are used; we calculate this enthalpy as -9.8 kcal mol(-1). Bond dissociation energies (BDEs) are calculated for all C-O and O-O bonds in dimethyl tetraoxide, again with the G3B3 and CBS-APNO theoretical methods, and we suggest the following BDEs: 46.0 kcal mol(-1) for CH(3)-OOOOCH(3), 20.0 kcal mol(-1) for CH(3)O-OOOCH(3), and 13.9 kcal mol(-1) for CH(3)OO-OOCH(3). From the BDE calculations and the isodesmic enthalpy of formation for dimethyl tetraoxide, we suggest enthalpies of 2.1, 5.8, and 1.4 kcal mol(-1) for the CH(3)OO, CH(3)OOO, and CH(3)OOOO radicals, respectively. We evaluate the suitability of 10 different density functional theory (DFT) methods for calculating thermochemical properties of dimethyl tetraoxide and its radicals with the 6-31G(d) and 6-311++G(3df,3pd) basis sets, using a variety of work reaction schemes. Overall, the best-performed DFT methods of those tested were TPSSh, BMK, and B1B95. Significant improvements in accuracy were made by moving from atomization to isodesmic work reactions, with most DFT methods yielding errors of less than 2 kcal mol(-1) with the 6-311++G(3df,3pd) basis set for isodesmic calculations on the dimethyl tetraoxide enthalpy. These isodesmic calculations were basis set consistent, with a considerable reduction in error found by using the 6-311++G(3df,3pd) basis set over the 6-31G(d) basis set. This was not the case, however, for atomization and bond dissociation work reactions, where the two basis sets returned similar results. Improved group additivity terms for the O-O-O moiety (O/O2 central atom group) are also determined. PMID:17983209
Land Transport Demand Analysis and Energy Saving Potentials in Thailand
Jakapong Pongthanaisawan; Chumnong Sorapipatana; Bundit Limmeechokchai
Transportation is one of the major economic sectors in energy consumption. For Thailand, this sector has been the largest energy consuming sector. It accounted for about 38% of the total energy consumption and about 80% of this sector was used in the road transport in 2004. During 2000 - 2004, the energy consumption in the transport sector in Thailand increased
Market potential of renewable energy powered desalination systems in Greece
D. Voivontas; K. Yannopoulos; K. Rados; A. Zervos; D. Assimacopoulos
1999-01-01
The present work analyzes water management strategies based on advanced desalination schemes powered by renewable energy sources. The framework for developing a decision procedure, which monitors water shortage problems and identifies the availability of renewable energy resources to power desalination plants, is presented. Cost of alternative solutions, taking into account energy cost or profits by energy selling to grid, is
Potential Ambient Energy-Harvesting Sources and Techniques
ERIC Educational Resources Information Center
Yildiz, Faruk
2009-01-01
Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…
By-products: oil sorbents as a potential energy source.
Karakasi, Olga K; Moutsatsou, Angeliki
2013-04-01
The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further potential profit of energy production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production. PMID:23179513
Hyperbolic Orbits and the Planetary Flyby Anomaly
H.-J. Blome; T. L. Wilson
2009-01-01
The virial theorem in astrophysics is used to show that energy is not being conserved during the gravity assist procedure used in planetary flybys. These involve hyperbolic trajectories. So the so-called flyby anomaly exists at a very fundamental level.
Hyperbolic Orbits and the Planetary Flyby Anomaly
NASA Astrophysics Data System (ADS)
Blome, H.-J.; Wilson, T. L.
2009-03-01
The virial theorem in astrophysics is used to show that energy is not being conserved during the gravity assist procedure used in planetary flybys. These involve hyperbolic trajectories. So the so-called flyby anomaly exists at a very fundamental level.
Chiral anomaly and {gamma}3{pi}
Holstein, B.R. [Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 (United States)] [Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 (United States)
1996-04-01
Measurement of the {gamma}3{pi} process has revealed a possible conflict with what should be a solid prediction generated by the chiral anomaly. We show that inclusion of appropriate energy-momentum dependence in the matrix element reduces the discrepancy. {copyright} {ital 1996 The American Physical Society.}
Temperature anomaly reemergence in seasonally frozen soils
Kevin M. Schaefer; Tingjun Zhang; Pieter P. Tans; Reto Stöckli
2007-01-01
In cold regions where soils experience seasonally freezing and thawing, past soil temperature anomalies are stored as variations in the amount of ground ice and can reemerge at the surface after frozen soils thaw. Warmer soils in autumn result in shallower freeze depths in winter, requiring less energy to thaw in spring, and resulting in warmer soils the following summer.
Congenital Vascular Anomalies.
Gravereaux, Edwin C.; Nguyen, Louis L.; Cunningham, Leslie D.
2004-04-01
Congenital vascular anomalies are rare. The cardiovascular specialist should nevertheless be aware of the more common types of vascular anomalies and understand the implications for patient treatment and the likelihood of associated morbidity. The presentation of congenital arteriovenous malformations can range from asymptomatic or cosmetic lesions, to those causing ischemia, ulceration, hemorrhage, or high-output congestive heart failure. Treatment of large, symptomatic arteriovenous malformations often requires catheter-directed embolization prior to the attempt at complete surgical excision. Later recurrence, due to collateral recruitment, is frequent. Graded compression stockings and leg elevation are the mainstays of treatment for the predominantly venous congenital vascular anomalies. Most congenital central venous disorders are clinically silent. An exception is the retrocaval ureter. Retroaortic left renal vein, circumaortic venous ring, and absent, left-sided or duplicated inferior vena cava are relevant when aortic or inferior vena cava procedures are planned. The treatment of the venous disorders is directed at prevention or management of symptoms. Persistent sciatic artery, popliteal entrapment syndrome, and aberrant right subclavian artery origin are congenital anomalies that are typically symptomatic at presentation. Because they mimic more common diseases, diagnosis is frequently delayed. Delay can result in significant morbidity for the patient. Failure to make the diagnosis of persistent sciatic artery and popliteal entrapment can result in critical limb ischemia and subsequent amputation. Unrecognized aberrant right subclavian artery origin associated with aneurysmal degeneration can rupture and result in death. The treatment options for large-vessel arterial anomalies are surgical, sometimes in combination with endovascular techniques. PMID:15066242
Strictly anomaly mediated supersymmetry breaking
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark; Jones, D. R. Timothy
2013-04-01
We consider an extension of the minimal supersymmetric Standard Model with anomaly mediation as the only source of supersymmetry breaking, and the tachyonic slepton problem solved by a gauged U(1) symmetry. The extra gauge symmetry is broken at high energies in a manner preserving supersymmetry, while also introducing both the seesaw mechanism for neutrino masses, and the Higgs ?-term. We call the model strictly anomaly mediated supersymmetry breaking. We present typical spectra for the model and compare them with those from so-called minimal anomaly mediated supersymmetry breaking. We find a Standard Model-like Higgs of mass 125 GeV with a gravitino mass of 140 TeV and tan??=16. However, the muon anomalous magnetic moment is 3? away from the experimental value. The model naturally produces a period of hybrid inflation, which can exit to a false vacuum characterized by large Higgs vacuum expectation values, reaching the true ground state after a period of thermal inflation. The scalar spectral index is reduced to approximately 0.975, and the correct abundance of neutralino dark matter can be produced by decays of thermally produced gravitinos, provided the gravitino mass (and hence the Higgs mass) is high. Naturally light cosmic strings are produced, satisfying bounds from the cosmic microwave background. The complementary pulsar timing and cosmic ray bounds require that strings decay primarily via loops into gravitational waves. Unless the loops are extremely small, the next generation pulsar timing array will rule out or detect the string-derived gravitational radiation background in this model.
Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin
2015-03-24
With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean. PMID:25719956
Improved expressions for the Schiöberg potential energy models for diatomic molecules
NASA Astrophysics Data System (ADS)
Wang, Ping-Quan; Liu, Jian-Yi; Zhang, Lie-Hui; Cao, Si-Yi; Jia, Chun-Sheng
2012-08-01
By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate improved expressions for both versions of the Schiöberg potential energy function. Both versions of the Schiöberg potential function are the Rosen-Morse potential function and Manning-Rosen potential functions. By choosing the experimental values of the dissociation energy, equilibrium bond length and equilibrium harmonic vibrational frequency as inputs, we calculate the average deviations of the energies calculated with the potential model from the experimental data for five diatomic molecules, and find that no one of six three-parameter empirical potential energy functions is superior to the other potentials in fitting experimental data for all molecules examined.
Lighting energy savings potential of split-pane electrochromic windows controlled for
LBNL-6152E Lighting energy savings potential of split- pane electrochromic windows controlled Berkeley National Laboratory G. Ward Anyhere Software Windows and Envelope Materials Group Building potential of split-pane electrochromic windows controlled for daylighting with visual comfort L
NASA Astrophysics Data System (ADS)
Chen, Mu-Chun; Fallbacher, Maximilian; Ratz, Michael; Trautner, Andreas; Vaudrevange, Patrick K. S.
2015-07-01
We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies. We present two different ways that allow one to understand these statements.
Global Climate Highlights and Anomalies
NSDL National Science Digital Library
NOAA's Global Climate Highlights and Anomalies page offers weekly summaries of global climate highlights and anomalies (warm, cold, wet, dry). Areas experiencing climate anomalies are color-marked on a global map, followed by written summaries of each region's climate conditions. All weeks are posted for the year 2000 (to present), and a link points users to the complete 1999 archive.
Vascular Anomalies and Airway Concerns
Clarke, Caroline; Lee, Edward I.; Edmonds, Joseph
2014-01-01
Vascular anomalies, both tumors and malformations, can occur anywhere in the body, including the airway, often without any external manifestations. However, vascular anomalies involving the airway deserve special consideration as proper recognition and management can be lifesaving. In this article, the authors discuss vascular anomalies as they pertains to the airway, focusing on proper diagnosis, diagnostic modalities, and therapeutic options. PMID:25045336
A potential enstrophy and energy conserving scheme for the shallow water equations
NASA Technical Reports Server (NTRS)
Arakawa, A.; Lamb, V. R.
1981-01-01
To improve the simulation of nonlinear aspects of the flow over steep topography, a potential enstrophy and energy conserving scheme for the shallow water equations is derived. It is pointed out that a family of schemes can conserve total energy for general flow and potential enstrophy for flow with no mass flux divergence. The newly derived scheme is a unique member of this family, that conserves both potential enstrophy and energy for general flow. Comparison by means of numerical experiment with a scheme that conserves (potential) enstrophy for purely horizontal nondivergent flow demonstrated the considerable superiority of the newly derived potential enstrophy and energy conserving scheme, not only in suppressing a spurious energy cascade but also in determining the overall flow regime. The potential enstrophy and energy conserving scheme for a spherical grid is also presented.
Rovibrational energy transfer in the He-C3 collision: potential energy surface and bound states.
Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe
2014-02-28
We present a four-dimensional potential energy surface (PES) for the collision of C3 with He. Ab initio calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and mid-bond functions. The global minimum of the potential energy is found to be -26.9 cm(-1) and corresponds to an almost T-shaped structure of the van der Waals complex along with a slightly bent configuration of C3. This PES is used to determine the rovibrational energy levels of the He-C3 complex using the rigid monomer approximation (RMA) and the recently developed atom-rigid bender approach at the Close Coupling level (RB-CC). The calculated dissociation energies are -9.56 cm(-1) and -9.73 cm(-1), respectively at the RMA and RB-CC levels. This is the first theoretical prediction of the bound levels of the He-C3 complex with the bending motion. PMID:24588178
Ground state potential energy curve and dissociation energy of MgH.
Shayesteh, Alireza; Henderson, Robert D E; Le Roy, Robert J; Bernath, Peter F
2007-12-13
New high-resolution visible emission spectra of the MgH molecule have been recorded with high signal-to-noise ratios using a Fourier transform spectrometer. Many bands of the A 2Pi-->X 2Sigma+ and B' 2Sigma+-->X 2Sigma+ electronic transitions of 24MgH were analyzed; the new data span the v' = 0-3 levels of the A 2Pi and B'2Sigma+ excited states and the v''=0-11 levels of the X 2Sigma+ ground electronic state. The vibration-rotation energy levels of the perturbed A 2Pi and B' 2Sigma+ states were fitted as individual term values, while those of the X 2Sigma+ ground state were fitted using the direct-potential-fit approach. A new analytic potential energy function that imposes the theoretically correct attractive potential at long-range, and a radial Hamiltonian that includes the spin-rotation interaction were employed, and a significantly improved value for the ground state dissociation energy of MgH was obtained. The v''=11 level of the X 2Sigma+ ground electronic state was found to be the highest bound vibrational level of 24MgH, lying only about 13 cm(-1) below the dissociation asymptote. The equilibrium dissociation energy for the X 2Sigma+ ground state of 24MgH has been determined to be De=11104.7+/-0.5 cm(-1) (1.37681+/-0.00006 eV), whereas the zero-point energy (v''=0) is 739.11+/-0.01 cm(-1). The zero-point dissociation energy is therefore D0=10365.6+/-0.5 cm(-1) (1.28517+/-0.00006 eV). The uncertainty in the new experimental dissociation energy of MgH is more than 2 orders of magnitude smaller than that for the best value available in the literature. MgH is now the only hydride molecule other than H2 itself for which all bound vibrational levels of the ground electronic state are observed experimentally and for which the dissociation energy is determined with subwavenumber accuracy. PMID:18020428
Dependence of the energy of vanishing flow on different components of the nuclear potential
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Kaur, Varinderjit; Kumar, Suneel
2013-11-01
The contribution of various components of potential towards balance energy is analyzed for the reactions of 2658Fe+2658Fe, 2858Ni+2858Ni, 3686Kr+4193Nb, and 79197Au+79197Au using an isospin-dependent quantum molecular dynamics (IQMD) model. We show that the balance energy changes with the addition of various components of potentials. Our calculations for the considered energy range clearly demonstrate the dominance of the Coulomb potential and momentum-dependent interactions over the other potentials for the lighter colliding systems. However, the contribution of the symmetry potential also becomes significant while handling heavier nuclei.
Energy Consumption and Conservation Potential at a Georgia Textile Plant
Gurta, M. E.; Brown, M. L.
prosperity. With energy constituting a major component of variable operating costs, an analysis of energy consumption at a typical integrated mill was formulated. Because the process includes knitting, bleaching, dyeing, and compaction and the knitting area...
Wind energy potential mapping in Karnataka, India, using GIS
T. V. Ramachandra; B. V. Shruthi
2005-01-01
Increasing negative effects of fossil fuel combustion on the environment in addition to limited stock have forced many countries to explore and change to environmentally friendly alternatives that are renewable to sustain the increasing energy demand. Changing to renewable sources and implementation of effective conservation measures would ensure sustainability. Currently, wind energy is one of the fastest developing renewable energy
Cluster and reentrant anomalies of nearly Gaussian core particles
Daniele Coslovich; Atsushi Ikeda
2013-03-13
We study through integral equation theory and numerical simulations the structure and dynamics of fluids composed of ultrasoft, nearly Gaussian particles. Namely, we explore the fluid phase diagram of a model in which particles interact via the generalized exponential potential u(r)=\\epsilon exp[-(r/\\sigma)^n], with a softness exponent n slightly larger than 2. In addition to the well-known anomaly associated to reentrant melting, the structure and dynamics of the fluid display two additional anomalies, which are visible in the isothermal variation of the structure factor and diffusivity. These features are correlated to the appearance of dimers in the fluid phase and to the subsequent modification of the cluster structure upon compression. We corroborate these results through an analysis of the local minima of the potential energy surface, in which clusters appear as much tighter conglomerates of particles. We find that reentrant melting and clustering coexist for softness exponents ranging from 2^+ up to values relevant for the description of amphiphilic dendrimers, i.e., n=3.
Maternal water consumption during pregnancy and congenital cardiac anomalies
Shaw, G.M.; Swan, S.H.; Harris, J.A.; Malcoe, L.H. (California Birth Defects Monitoring Program, Emeryville (USA))
1990-05-01
This case-control study, conducted in a California county that had a local incident of water contamination in 1981, investigated the relation between a mother's reported consumption of tap water during pregnancy and congenital cardiac anomalies in their offspring born during 1981-1983. Data were obtained from telephone interviews with 145 mothers of children born with a severe cardiac anomaly and 176 mothers of children born without such an anomaly. A positive association between a mother's consumption of home tap water during the first trimester of pregnancy and cardiac anomalies in her infant was unrelated to the incident of water contamination, the mother's race, or her educational level. A negative relation was found between a mother's use of bottled water and cardiac anomalies among the infants. These findings corresponded primarily to births in 1981. These data could not fully distinguish between a potential causal agent in the water and differential reporting of exposure by study subjects.
Lee, A. H. W.; Golden, J. W.; Zarnikau, J. W.
1997-01-01
. This paper presents the potential for energy efficiency improvements at a semiconductor manufacturing plant from various energy efficiency measures such as high efficiency motors, adjustable speed drive motors, high efficiency HVAC, and high efficiency...
Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.
2012-01-01
The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...
Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.
2012-01-01
The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...
Analysis of the Potential Energy Savings for 14 Office Buildings with VAV Systems
Claridge, D. E.; Liu, J.; Baltazar, J. C.
2010-01-01
At the beginning of an existing building commissioning (EBCx)/energy retrofit project, some form of screening is usually applied to determine whether there is sufficient potential for savings to justify a formal EBCx assessment/energy audit...
Anomaly mediated supersymmetry breaking
Alwis, S. P. de [Physics Department, University of Colorado, Boulder, Colorado 80309 (United States)
2008-05-15
A discrepancy between the anomaly mediated supersymmetry breaking (AMSB) gaugino mass calculated from the work of Kaplunovsky and Louis (hep-th/9402005) (KL) and other calculations in the literature is explained, and it is argued that the KL expression is the correct one relevant to the Wilsonian action. Furthermore it is argued that the AMSB contribution to the squark and slepton masses should be replaced by the contribution pointed out by Dine and Seiberg (DS) which has nothing to do with Weyl anomalies. This is not in general equivalent to the AMSB expression, and it is shown that there are models in which the usual AMSB expression would vanish but the DS one is nonzero. In fact the latter has aspects of both AMSB and gauge mediated supersymmetry (SUSY) breaking. In particular like the latter, it gives positive squared masses for sleptons.
NASA Technical Reports Server (NTRS)
Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.
2004-01-01
Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.
Pierre Binetruy; Pierre Ramond
1994-12-29
We augment the Minimal Supersymmetric Standard Model with a gauged family-dependent $U(1)$ to reproduce Yukawa textures compatible with experiment. In the simplest model with one extra chiral electroweak singlet field, acceptable textures require this $U(1)$ to be anomalous. The cancellation of its anomalies by a generic Green-Schwarz mechanism requires $\\sin^2\\theta_w=3/8$ at the string scale, suggesting a superstring origin for the standard model.
Yearly Arctic Temperature Anomaly
NSDL National Science Digital Library
Cindy Starr
2003-10-23
This animation shows the yearly temperature anomaly over the Arctic region from 1981-82 through 2002-03. Years run from August 1 through July 31. Blue hues indicate cooling regions; red hues depict warming. Light regions indicate less change while darker regions indicate more. The temperature scale used ranges from -7.0 to +7.0 degrees Celsius in increments of .25 degrees. (See color bar below)
Utpal Sarkar
2006-06-19
A simple algorithm to calculate the group theory factor entering in anomalies at four and six dimensions for SU(N) and SO(N) groups in terms of the Casimir invariants of their subgroups is presented. Explicit examples of some of the lower dimensional representations of $SU(n), n \\leq 5$ and SO(10) groups are presented, which could be used for model building in four and six dimensions.
NASA Astrophysics Data System (ADS)
Lindsey, Beth A.
2014-06-01
This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed about gravitational potential energy in the context of universal gravitation in introductory mechanics. This finding is relevant for interdisciplinary research, because many courses in multiple disciplines first introduce the concept of electric potential energy in analogy to gravitational potential energy. The results suggest that in introductory courses students do not gain an understanding of potential energy that is sufficiently robust to apply in more advanced physics courses or in disciplines other than physics, in which students must frequently reason with energy in the context of interactions between atoms and molecules.
Pathogenesis of Vascular Anomalies
Boon, Laurence M.; Ballieux, Fanny; Vikkula, Miikka
2010-01-01
Vascular anomalies are localized defects of vascular development. Most of them occur sporadically, i.e. there is no familial history of lesions, yet in a few cases clear inheritance is observed. These inherited forms are often characterized by multifocal lesions that are mainly small in size and increase in number with patient’s age. On the basis of these inherited forms, molecular genetic studies have unraveled a number of inherited mutations giving direct insight into the pathophysiological cause and the molecular pathways that are implicated. Genetic defects have been identified for hereditary haemorrhagic telangiectasia (HHT), inherited cutaneomucosal venous malformation (VMCM), glomuvenous malformation (GVM), capillary malformation - arteriovenous malformation (CM-AVM), cerebral cavernous malformation (CCM) and some isolated and syndromic forms of primary lymphedema. We focus on these disorders, the implicated mutated genes and the underlying pathogenic mechanisms. We also call attention to the concept of Knudson’s double-hit mechanism to explain incomplete penetrance and the large clinical variation in expressivity of inherited vascular anomalies. This variability renders the making of correct diagnosis of the rare inherited forms difficult. Yet, the identification of the pathophysiological causes and pathways involved in them has had an unprecedented impact on our thinking of their etiopathogenesis, and has opened the doors towards a more refined classification of vascular anomalies. It has also made it possible to develop animal models that can be tested for specific molecular therapies, aimed at alleviating the dysfunctions caused by the aberrant genes and proteins. PMID:21095468
GEOTHERMAL ENERGY: AN OVERVIEW ON RESOURCES AND POTENTIAL
Ruggero Bertani
Electricity is produced by geothermal in 24 countries, five of which obtain 15-22% of their national electricity production from geothermal energy. Direct application of geo- thermal energy (for heating, bathing etc.) has been reported by 72 countries. By the end of 2004, the worldwide use of geothermal energy was 57 TWh\\/yr of electricity and 76 TWh\\/yr for direct use. Ten
Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward
2014-01-01
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ?50% in generator potentials, to ?3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197
Potential of renewable hydrogen production for energy supply in Hong Kong
Meng Ni; Michael K. H. Leung; K. Sumathy; Dennis Y. C. Leung
2006-01-01
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental
Sarralde, Juan José; Quinn, David James; Wiesmann, Daniel; Steemers, Koen
2014-07-07
Centre, University of Cambridge; 2000. [3] Yun GY, Steemers K. Implications of urban settings for the design of photo- voltaic and conventional façades. Sol Energy 2009;83:69e80. [4] Robinson D, Scartezzini J-L, Montavon M, Compagnon R. SOLURBAN project... on the urban form of a neighbourhood. These models are named Roof- SolREP and Façade-SolREP, respectively. Finally, the two models were used to test different scenarios of urban form. The aim of this was to explore whether the solar potential of building...
Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.
Assessment of Tidal Stream Energy Potential for the United States
K. A. Haas; Z. Defne; L. Jiang; H. M. Fritz
2010-01-01
Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal
Modeling the energy potential of biomass – H 2RES
Pat Fowler; Goran Kraja?i?; Dražen Lon?ar; Neven Dui?
2009-01-01
Modeling biomass as a renewable energy source poses many challenges with respect to feedstock variability, which are difficult to account for. It is found that at the preliminary stages of energy planning, heating value and moisture content of the feedstock are the most important factors. In addition, the effects of harvesting, transportation and storage are found to be significant even
Generation of available potential energy and the energy cycle during the global weather experiment
NASA Technical Reports Server (NTRS)
Salstein, D. A.; Rosen, R. D.
1985-01-01
Two parallel sets of analyses, which in one case included and in the other omitted data observed by satellite based and other FGGE special observing systems are examined. The results of our previous work is extended in two separate, but not unrelated, ways. First, from these two parallel analyses, which are labeled FGGE (full FGGE system) and NOSAT (satellite omitted), it was discovered that the two sets of fields were quite close over much of the globe. Locally the influence of satellite based systems led to some differences, particularly over the Southern Hemisphere Oceans. The diabatic heating fields generated by the GLA FGGE analysis was also examined. From these fields, one can ascertain the role of total diabatic heating and of the various diabatic heating components in the atmospheric energy cycle, in particular in the generation of available potential energy.
Potential impact of R and D on hydrothermal energy cost
Traeger, R.K.
1988-01-01
The potentital impact of the DOE/Geothermal Technology Development programs on the cost of geothermal power has been estimated using the computer program IMGEO.300. Results indicate a potential 30 to 40% cost reduction for hydrothermal systems with a 40 to 50% cost reduction potential for binary systems. The purpose of this document is to demonstrate the use of IMGEO. The initial results are tentative because the R and D goals have not been finalized and the code has not been completely validated.
Construction of the Pauli potential, Pauli energy, and effective potential from the electron density
A. Holas; N. H. March
1991-01-01
The Kohn-Sham (KS) one-electron Schrödinger equations assume the existence of a one-body effective potential veff(x), defined to generate the correct electron density rho(x) of the ground state. This paper returns to the electron-density description of an N-fermion system. It is best thought of as starting from a given rho(x), ideally to be obtained from diffraction experiments. A method is then
Z2 anomaly and boundaries of topological insulators
NASA Astrophysics Data System (ADS)
Ringel, Zohar; Stern, Ady
2013-09-01
We study the edge and surface theories of topological insulators from the perspective of anomalies and identify a Z2 anomaly associated with charge conservation. The anomaly is manifested through a two-point correlation function involving creation and annihilation operators on two decoupled boundaries. Although charge conservation on each boundary requires this quantity to vanish, we find that it diverges. A corollary result is that under an insertion of a flux quantum, the ground state evolves to an exactly orthogonal state independent of the rate at which the flux is inserted. The anomaly persists in the presence of disorder and imposes sharp restrictions on possible low-energy theories. Being formulated in a many-body, field-theoretical language, the anomaly allows one to test the robustness of topological insulators to interactions in a concise way.
Adiabatic model of (d,p) reactions with explicitly energy-dependent nonlocal potentials
NASA Astrophysics Data System (ADS)
Johnson, R. C.; Timofeyuk, N. K.
2014-02-01
We have developed an approximate way of dealing with explicit energy dependence of nonlocal nucleon optical potentials as used to predict the (d,p) cross sections within the adiabatic theory. Within this approximation, the nonlocal optical potentials have to be evaluated at an energy shifted from half the incident deuteron energy by the n-p kinetic energy averaged over the range of the n-p interaction and then treated as an energy-independent nonlocal potential. Thus, the evaluation of the distorting potential in the incident channel is reduced to a problem solved in our previous work [N. K. Timofeyuk and R. C. Johnson, Phys. Rev. Lett. 110, 112501 (2013), 10.1103/PhysRevLett.110.112501; Phys. Rev. C 87, 064610 (2013), 10.1103/PhysRevC.87.064610]. We have demonstrated how our new model works for the case of 16O(d ,p)17O, 36Ar(d,p)37Ar, and 40Ca(d,p)41Ca reactions and highlighted the need for a detailed understanding of the energy dependence of nonlocal potentials. We have also suggested a simple way of correcting the d-A effective potentials for nonlocality when the underlying energy-dependent nonlocal nucleon potentials are unknown but energy-dependent local phenomenological nucleon potentials are available.
A Nano-Power Class-AB Current Multiplier for Energy-based Action Potential Detector
Serdijn, Wouter A.
A Nano-Power Class-AB Current Multiplier for Energy-based Action Potential Detector Chutham Sawigun.sawigun@tudelft.nl, w.a.serdijn@tudelft.nl Abstract-- An ultra low-power class-AB four-quadrant current multiplier designed to be used in an energy-based action potential detector is presented. The multiplier is considered
A potential enstrophy and energy conserving scheme for the shallow water equations
Akio Arakawa; V. R. Lamb
1981-01-01
To improve the simulation of nonlinear aspects of the flow over steep topography, a potential enstrophy and energy conserving scheme for the shallow water equations is derived. It is pointed out that a family of schemes can conserve total energy for general flow and potential enstrophy for flow with no mass flux divergence. The newly derived scheme is a unique
High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter
Lie-Wen Chen; Che Ming Ko; Bao-An Li
2005-12-07
Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.
Rivers of Energy: The Hydropower Potential. Worldwatch Paper No. 44.
ERIC Educational Resources Information Center
Deudney, Daniel
Described are the history, current status and future potential of hydroelectric power in the world. Issues discussed include the environmental and social impacts of dam construction, and the use of small-scale hydroelectric installations in developing nations. Also considered are hydroelectric development of the world's remote regions, the need to…
Herbaceous energy crops and the potential for soil conservation
McLaughlin, S.B. [Oak Ridge National Laboratory, TN (United States)
1994-12-31
Planning for a national scale up of biofuels feedstock production and utilization has raised many issues about potential environmental impacts. This article focuses on some of the more obvious tradeoffs in soil conservation involved in replacing annual row crops with perennial grasses, such as switchgrass.
Retention of the potential energy of multiply charged argon ions incident on copper.
Kentsch, U; Tyrroff, H; Zschornack, G; Möller, W
2001-09-01
The retained fraction of the potential energy of argon ions incident on copper has been measured using stationary calorimetry at charge states up to 9+ and kinetic energies ranging from 75 to 240 eV per ionic charge. An average fraction of 30% to 40% is found with little dependence on the charge number and on the kinetic energy. The retention of the total energy ranges from 60% to 75% and can mainly be accounted for by the retained fraction of the potential energy and the collisional energy lost by reflected ions and sputtered target atoms. PMID:11531486
Plasma structure over dayside lunar magnetic anomalies
NASA Astrophysics Data System (ADS)
Saito, Y.; Nishino, M. N.; Yamamoto, T.; Uemura, K.; Yokota, S.; Asamura, K.; Tsunakawa, H.; Kaguya Map Team
2010-12-01
It is well-known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth’s case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies including both numerical simulations and observation by lunar orbiters. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed low energy ion data. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. MAP-PACE made observations at a circular lunar polar orbit of 100km altitude for about 1 year between January 2008 and December 2008. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. When Kaguya flew over strong magnetic anomalies, deceleration of the solar wind ions, acceleration of the solar wind electrons, and ions reflected by magnetic anomalies were observed. The deceleration of the solar wind ions was observed for both two major solar wind ion components: protons and alpha particles. Deceleration of the solar wind had the same ? E/q (? E : deceleration energy, q: charge) for both protons and alpha particles. In addition, the acceleration energy of the electrons was the same as the deceleration energy of the ions. It indicates the existence of DC electric field over Kaguya spacecraft. Since the gyro-radius of the electrons was smaller than the size of the magnetic anomalies, incident electrons were mirror reflected back. On the other hand, the gyro-radius of the ions was much larger than the size of the magnetic anomalies. Therefore the incident ions could penetrate deeper into the magnetic anomalies. As a result, DC electric field was generated over dayside magnetic anomalies. The reflected ions were observed in much larger area than the area where strong magnetic field was observed. Mass profile of the reflected ions showed existence of reflected alpha particles as expected from the magnetic mirror reflection. However, the energy of the reflected alpha particles was found to be lower than that of the alpha particles in the incident solar wind. In addition, the reflected protons also had lower energy and higher temperature than those of the incident solar wind protons. It clearly indicates the existence of a non-adiabatic interaction between solar wind ions and lunar magnetic anomalies.
Dirac optical potentials for nucleon scattering by 208Pb at intermediate energies
NASA Astrophysics Data System (ADS)
Kozack, R.; Madland, D. G.
1989-04-01
We perform a global analysis of intermediate energy nucleon plus 208Pb scattering data using the Dirac phenomenology. Proton elastic differential cross sections, analyzing powers, spin rotation functions, and total reaction cross sections, together with neutron total cross sections, spanning an incident energy range of 80-800 MeV, are used in the determination of a Dirac scalar-vector global potential. Two of six energy dependencies studied are selected to construct best-fit nucleon-nucleus potentials for the reduced incident-energy interval of 95-300 MeV. These potentials reproduce the experimental data uniformly within the reduced energy interval. Explicit values for the isovector strengths of the nucleon-nucleus potential are given. The correlations and ambiguities among the parameters of the potentials are studied. Predictions are made for the elastic differential cross section and spin observables for neutron plus 208Pb scattering.
The economic potential of producing energy from agricultural biomass
Jerko, Christine
1996-01-01
Agricultural biomass is a substitute for fossil fuels, which could provide a sustained energy feedstock and possibly reduce further accumulations of greenhouse gases. However, these feedstocks currently face a market dominated by low cost fossil...
The economic potential of producing energy from agricultural biomass
Jerko, Christine
1996-01-01
activities which produce ethanol and biomass electricity. The forced supply of new biomass crops, along with corn, involves several levels of energy production. This forced supply was based on projected ethanol demands and land capability for biomass...
Current status and future potential of energy derived from Chinese agricultural land: a review.
Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe
2015-01-01
Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229
Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review
Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe
2015-01-01
Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229
Potential scattering for complex energy and angular momentum
A. Bottino; A. M. Longoni; T. Regge
1962-01-01
Summary The analytic properties of the partial wave scattering amplitude for potential scattering in the pair of variablesk (wave number) and?=l+1\\/2 have been derived when both variables are complex. Several results on the location of the poles of theS-matrix follow from a procedure of analytic completion. The scattering process is then considered as described by the variables? andk, instead ofs andt,
Why High-Energy Optical Potential can be and should be Considered Local
Reading, John F.
1970-01-01
PHYSICAL REVIEW C V OL UM E 1, N UM B E R 3 MARCH &97O Why the High-Energy Optical Potential Can Be and Should Be Considered Local* J. F. READING f' northeastern Vn& ersity, Boston, Massachusetts OZll5 (Received 23 October 1969...) The approximate treatment of the nonlocality of the optical potential describing scattering from a set of E nonoverlapping potentials is shown to lead to erroneous effective local potentials. The difhculty is circumvented by constructing a local two...
On the potential energy in a gravitationally bound two-body system
NASA Astrophysics Data System (ADS)
Wilhelm, Klaus; Dwivedi, Bhola N.
2015-01-01
The potential energy problem in a gravitationally bound two-body system is studied in the framework of a recently proposed impact model of gravity (Wilhelm et al., 2013). The concept of a closed system has been modified, before the physical processes resulting in the liberation of the potential energy can be described. The energy is extracted from the background flux of hypothetical interaction entities.
Potential impact of contrails on solar energy gain
NASA Astrophysics Data System (ADS)
Weihs, P.; Rennhofer, M.; Baumgartner, D.; Gadermaier, J.; Wagner, J.; Laube, W.
2014-08-01
We investigated the effect of contrails on global shortwave radiation and on solar energy gain. The study was done for days with a high contrail persistence and looking at situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish eye camera, diffuse and direct shortwave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the solar observatory Kanzelhöhe (1540 m a.s.l.) during a period of one year with a time resolution of one minute. Our results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. A statistic of contrail persistence and influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may even be critical under some circumstances for PV system performance.
Rajakulasingam, Ramyah; Francis, Rohin; Rajakulasingam, Ramanan
2013-01-01
Anomalous vena cavae can have significant implications for procedures on the right side of the heart. We report a rare anatomical configuration in a 44-year-old female, which to the best of our knowledge, is the first report of such an association. She had a bicuspid aortic valve in conjunction with a persistent left superior vena cava (PLSVC) draining into the coronary sinus, and a left-sided inferior vena cava (IVC) draining into a left superior vena cava via the hemiazygos vein. Comprehensive assessment of these anomalies is crucial given the widespread use of invasive cardiac procedures. PMID:24404410
The Potential for Energy Retrofits within the City of Sacramento's Rental Housing Inspection Program
Iverson, Megan M.; Sande, Susan; Britt, Michelle L.
2011-04-15
This report presents the results of an analysis performed by Pacific Northwest National Laboratory for the City of Sacramento--under the U.S. Department of Energy’s Energy Efficiency and Renewable Energy Office of Weatherization and Intergovernmental Projects Technical Assistance Program--to help determine the potential for incorporating energy efficiency standards into the City’s existing Rental Housing Inspection Program as part of Sacramento’s efforts to create a Climate Action Plan.
Top-down free-energy minimization on protein potential energy landscapes
Church, Bruce W.; Shalloway, David
2001-01-01
The hierarchical properties of potential energy landscapes have been used to gain insight into thermodynamic and kinetic properties of protein ensembles. It also may be possible to use them to direct computational searches for thermodynamically stable macroscopic states, i.e., computational protein folding. To this end, we have developed a top-down search procedure in which conformation space is recursively dissected according to the intrinsic hierarchical structure of a landscape's effective-energy barriers. This procedure generates an inverted tree similar to the disconnectivity graphs generated by local minima-clustering methods, but it fundamentally differs in the manner in which the portion of the tree that is to be computationally explored is selected. A key ingredient is a branch-selection algorithm that takes advantage of statistically predictive properties of the landscape to guide searches down the tree branches that are most likely to lead to the physically relevant macroscopic states. Using the computational folding of a ?-hairpin-forming peptide as an example, we show that such predictive properties indeed exist and can be used for structure prediction by free-energy global minimization. PMID:11344256
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis
2015-04-01
The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.
Energy efficiency improvement potential of commercial aircraft to 2010
Greene
1990-01-01
Aircraft are second only to motor vehicles in the use of motor fuels. Furthermore, air travel is growing twice as fast as highway travel. Clearly, the importance of energy use by commercial aircraft will continue to increase. Since 1970, air travel has more then tripled, but the growth of fuel use has been restrained by a near doubling of efficiency,
Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries
Hawai'i at Manoa, University of
, M.Sc. Candidate University of Hawaii at Manoa Department of Oceanography Hawaii Natural Energy distributions Densities Seasonal variability · Example: Mesopelagic boundary community Benoit-Bird et al offshore of Oahu #12;Yellowfin Reproductive Biology · Spawning frequency Hawaii: 1.02-1.24 days · Batch
Reconstruction of potential energy profiles from multiple rupture time
Chou, Tom
, such as the height and the width of an energy barrier, can be easily extracted from a single first passage time (FPT problems arise in many biophysical con- texts. For example, the voltage across a nerve cell membrane fluctuates due to noisy inputs from other neurons, and can be described by a biased random walk deter- mined
The Potential of Wind Power and Energy Storage in California
Diana Schwyzer
A great deal of new electricity generating capacity will be needed in California over the next few decades. Given California's Renewable Portfolio Standard and greenhouse gas reduction goals, a significant fraction of this capacity is likely to be renewable; and among renewables, wind energy is particularly promising. Other likely types of capacity additions are natural gas and coal. Unlike these
WIND ENERGY POTENTIAL IN THE CAPE COASTAL BELT
MARK R. JURY; ROSEANNE DIAB
1989-01-01
Climatological records have indicated that the coastal zone of the Cape Province experiences sustained wind speeds suitable for wind energy conversion systems (7 m s at 10 m). The seasonal, synoptic and diurnal cycles within the prevailing coast- parallel winds are outlined from climatological data. Screening of the coastal zone for high wind power and suitable land usage leads to
Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering
FragaszyProgram Dire, Dr. R. J. [National Science Foundation; Santamarina, Carlos [Georgia Institute of Technology; Espinoza, N. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Jung, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL
2011-01-01
The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.
Potential displacement of petroleum imports by solar energy technologies
DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.
1980-05-01
The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.
Spectral Methods for Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Parker, R. L.; Gee, J. S.
2013-12-01
Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this case the spectra and cross spectra show that the source of the noise is instability in the gyro platform. Spectral techniques should always be applied to vector data in order to avoid overinterpretation of short-wavelength features.
NASA Astrophysics Data System (ADS)
Ndengue, Steve Alexandre; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker
2014-06-01
The isotopic ratios for ozone observed in laboratory and atmospheric measurements, known as the ozone isotopic anomaly,[1,2] have been an open question in physical and atmospheric chemistry for the past 30 years. The biggest limitation in achieving agreement between theory and experiment has been the availability of a satisfactory[3-5] ground state potential energy surface (PES). The presence of a spurious reef feature in the asymptotic region of most PESs has been associated with large discrepancies between calculated and observed rates of formation especially at low temperature. We recently proposed a new global potential energy surface for ozone[6,7] possessing 4 features that make it suitable for kinetics and dynamics studies: excellent equilibrium parameters, good agreement with experimental vibrational levels, accurate dissociation energy and a transition region with accurate topography (without the reef artifact). This PES has been used recently to simulate the temperature dependent exchange reaction (16O+16O2) with a quantum statistical model[6,7], and, for the first time, a negative temperature dependence which agrees with experiments was obtained, indicating the good quality of this global surface. A quantum description of the ozone exchange and recombination reaction requires knowledge of the resonances but also the rovibrational levels just below the dissociation. We present results of global 3-well vibrational-state calculations up to the dissociation threshold and (J = 0) resonances up to 1000 wn beyond. The calculations were done using a large DVR basis ( 24 million functions) with a symmetry-adapted Lanczos algorithm as well as MCTDH. Results indicate the presence of localized bound states at energies close to the dissociation threshold beyond which some long-lived resonances follow, contrasted with a few delocalized bound states with density at large values of the stretching coordinates. References: 1- K. Mauersberger et al., Adv. At. Mol. Opt. Phys. 50, 1 (2005) 2- R. Schinke et al., Ann. Rev. Phys. Chem. 57, 625 (2006) 3- R. Siebert et al., J. Chem. Phys. 116, 9749 (2002) 4- M. Ayouz and D. Babikov, J. Chem. Phys. 138, 164311 (2013) 5- V.G. Tyuterev et al., J. Chem. Phys. 139, 134307 (2013) 6- R. Dawes et al., J. Chem. Phys. 135, 081102 (2011) 7- R. Dawes et al., J. Chem. Phys. 139, 201103 (2013)
Griffin, John [university of Alabama - Birmingham] [university of Alabama - Birmingham
2014-02-20
The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.
Morphed Potential Energy Surfaces from the Spectroscopy of Weakly Bound Complexes
Rivera-Rivera, Luis A.
2012-07-16
............................... 10 3.2 Fitting of the ab initio potentials .......................................................... 12 3.3 Calculation of rovibrational energy levels ........................................... 17 3.4 Calculation of the spectroscopic...) accurate and varied sets of spectroscopic data such as rotationally resolved spectra, rovibrational transition energies, dissociation energies, and virial coefficients; (iii) a good functional form for interpolating the PES between the computed ab initio...
Solar energy for heat and electricity: the potential for mitigating climate change
Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. EkiNs-DaukEs Executive summary Why are we interested in using solar energy? Sunlight provides the energy source. In developing countries, solar technologies are already in use to enhance the standard of living
On the equivalence between the effective potential and zero-point energy
JoséAlexandre Nogueira; Adolfo Maia Jr.
1997-01-01
We investigate a possible difference between the effective potential and the zero-point energy. We define the zero-point ambiguity (ZPA) as the difference between these two definitions of vacuum energy. Using the zeta function technique, in order to obtain renormalized quantities, we show that ZPA vanishes, implying that both of the above definitions of vacuum energy coincide for a large class
Cool; M. Richard; Hudon; J. Thomas; David Basco; Neil Rondorf
2009-01-01
On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic
M. R. Brown
2002-02-05
The composition of the quantum potential and its role in the breakdown of classical symplectic symmetry in quantum mechanics is investigated. General expressions are derived for the quantum potential in both configuration space and momentum space representations. By comparing the configuration space and momentum space representations of the causal interpretation of quantum mechanics, the quantum potential is shown to break the symplectic symmetry that exists between these two representations in classical mechanics. In addition, it is shown that the quantum potential in configuration space may be expressed as the sum of a momentum dispersion energy and a spatial localisation energy; a complementary expression for the quantum potential being found in the momentum representation. The composition and role of the quantum potential in both representations is analysed for a particle in a linear potential and for two eigenstates of the quantum harmonic oscillator.
Channels of potential energy dissipation during multiply charged argon-ion bombardment of copper.
Kost, D; Facsko, S; Möller, W; Hellhammer, R; Stolterfoht, N
2007-06-01
The dissipation of potential energy of multiply charged Ar ions incident on Cu has been studied by complementary electron spectroscopy and calorimetry at charge states between 2 and 10 and kinetic energies between 100 eV and 1 keV. The emitted and deposited fractions of potential energy increase at increasing charge state, showing a significant jump for charge states q>8 due to the presence of L-shell vacancies in the ion. Both fractions balance the total potential energy, thus rendering former hypotheses of a significant deficit of potential energy obsolete. The experimental data are reproduced by computer simulations based on the extended dynamic classical-over-the-barrier model. PMID:17677857
Sustainable development and energy geotechnology — Potential roles for geotechnical engineering
R. J. Fragaszy; J. C. Santamarina; A. Amekudzi; D. Assimaki; R. Bachus; S. E. Burns; M. Cha; G. C. Cho; D. D. Cortes; S. Dai; D. N. Espinoza; L. Garrow; H. Huang; J. Jang; J. W. Jung; S. Kim; K. Kurtis; C. Lee; C. Pasten; H. Phadnis; G. Rix; H. S. Shin; M. C. Torres; C. Tsouris
2011-01-01
The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation.\\u000a Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard\\u000a of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary\\u000a research across the social and
Do VFD Energy Savings Outweigh Potential Mechanical Problems?
Martin, V.
of this outcome. In the case of VFD's, it would appear that there has been a significant amount of research, analysis and documentation concerning the application and compatibility issues related to electric motors. Many of the electro mechanical problems....0 SYSTEM COMPATIBILITY ISSUES From an energy standpoint, the ideal turbomachine candidate for a VFD operates on a fixed resistance curve where the operating points correspond to the best efficiency point of the equipment. This same criteria minimizes...
Energy conservation potential of Portland Cement particle size distribution control
Tresouthick, S.W.
1985-01-01
The main objective of Phase 3 is to develop practical economic methods of controlling the particle size distribution of portland cements using existing or modified mill circuits with the principal aim of reducing electrical energy requirements for cement manufacturing. The work of Phase 3, because of its scope, will be carried out in 10 main tasks, some of which will be handled simultaneously. Progress on each of these tasks is discussed in this paper.
Geothermal energy: a proven resource with costly potential
Not Available
1980-08-01
The commercial use of geothermal energy to generate electricity has been spreading across the country since the California Geyser site was developed in 1960. Petroleum companies see geothermal power generation as a way to broaden their own base. The binary-cycle technology to use hydrothermal resources will be ready by 1985. Power generation from geothermal heat will be costly even though the resource itself is free and renewable; but the economics will improve as fossil-fuel prices increase. (DCK)
Potential energy surfaces for CH bond cleavage reactions
Harding, L.B.
1996-12-31
Ab initio, multi-reference, configuration interaction calculations are reported for CH{sub 4}{leftrightarrow}CH{sub 3}+H, CH{sub 3}F{leftrightarrow}CH{sub 2}F+H, CH{sub 2}F{sub 2}{leftrightarrow}CHF{sub 2}+H, and CHF{sub 3}{leftrightarrow}CF{sub 3}+H. Two equivalent, barrier-less paths are found for the CH{sub 3}+H recombination, two inequivalent, barrier-less paths are found for the CH{sub 2}F+H and CHF{sub 2}+H recombinations (depending on which side of the radical the H atom approaches), and only one barrier-less path is found for the CF{sub 3}+H recombination. Minimum energy path for H atom approaching CF{sub 3} from the concave side is predicted to have a barrier of 27 kcal/mole. Both minimum energy path energies and transitional frequencies as function of R{sub CH} for all 4 reactions are predicted to be similar.
The GSI Time Anomaly: Facts and Fiction
Carlo Giunti
2008-12-10
The claims that the GSI time anomaly is due to the mixing of neutrinos in the final state of the observed electron-capture processes are refuted. With the help of an analogy with a double-slit experiment, it is shown that the standard method of calculation of the rate of an interaction process by adding the rates of production of all the allowed final states, regardless of a possible coherence among them, is correct. It is a consequence of causality. It is shown that the GSI time anomaly may be caused by quantum beats due to the existence of two coherent energy levels of the decaying ion with an extremely small energy splitting (about $6\\times10^{-16} \\text{eV}$) and relative probabilities having a ratio of about 1/99.
General relativity and quintessence explain the Pioneer anomaly
Mbelek, J P
2004-01-01
The anomalous time depending blueshift, the so-called "Pioneer anomaly", that was detected in the radio-metric data from Pioneer 10/11, Ulysses and Galileo spacecraft may not result from a real change of velocity. Rather, the Pioneer anomaly may be understood within the framework of general relativity as a time depending gravitational frequency shift accounting for the time dependence of the density of the dark energy when the latter is identified with quintessence. Thus, instead of being in conflict with Einstein equivalence principle, the main Pioneer anomaly appears merely as a new validation of general relativity in the weak field and low velocity limit.
General relativity and quintessence explain the Pioneer anomaly
J. P. Mbelek
2004-07-06
The anomalous time depending blueshift, the so-called "Pioneer anomaly", that was detected in the radio-metric data from Pioneer 10/11, Ulysses and Galileo spacecraft may not result from a real change of velocity. Rather, the Pioneer anomaly may be understood within the framework of general relativity as a time depending gravitational frequency shift accounting for the time dependence of the density of the dark energy when the latter is identified with quintessence. Thus, instead of being in conflict with Einstein equivalence principle, the main Pioneer anomaly appears merely as a new validation of general relativity in the weak field and low velocity limit.
Excitation energies from frozen-density embedding with accurate embedding potentials.
Artiukhin, Denis G; Jacob, Christoph R; Neugebauer, Johannes
2015-06-21
We present calculations of excitation energies within the time-dependent density functional theory (TDDFT) extension of frozen-density embedding (FDE) using reconstructed accurate embedding potentials. Previous applications of FDE showed significant deviations from supermolecular calculations; our current approach eliminates one potential error source and yields excitation energies of generally much better agreement with Kohn-Sham-TDDFT. Our results demonstrate that the embedding potentials represent the main error source in FDE-TDDFT calculations using standard approximate kinetic-energy functionals for excitations localized within one subsystem. PMID:26093544
Excitation energies from frozen-density embedding with accurate embedding potentials
NASA Astrophysics Data System (ADS)
Artiukhin, Denis G.; Jacob, Christoph R.; Neugebauer, Johannes
2015-06-01
We present calculations of excitation energies within the time-dependent density functional theory (TDDFT) extension of frozen-density embedding (FDE) using reconstructed accurate embedding potentials. Previous applications of FDE showed significant deviations from supermolecular calculations; our current approach eliminates one potential error source and yields excitation energies of generally much better agreement with Kohn-Sham-TDDFT. Our results demonstrate that the embedding potentials represent the main error source in FDE-TDDFT calculations using standard approximate kinetic-energy functionals for excitations localized within one subsystem.
Permutation invariant polynomial neural network approach to fitting potential energy surfaces.
Jiang, Bin; Guo, Hua
2013-08-01
A simple, general, and rigorous scheme for adapting permutation symmetry in molecular systems is proposed and tested for fitting global potential energy surfaces using neural networks (NNs). The symmetry adaptation is realized by using low-order permutation invariant polynomials (PIPs) as inputs for the NNs. This so-called PIP-NN approach is applied to the H + H2 and Cl + H2 systems and the analytical potential energy surfaces for these two systems were accurately reproduced by PIP-NN. The accuracy of the NN potential energy surfaces was confirmed by quantum scattering calculations. PMID:23927248
Permutation invariant polynomial neural network approach to fitting potential energy surfaces
NASA Astrophysics Data System (ADS)
Jiang, Bin; Guo, Hua
2013-08-01
A simple, general, and rigorous scheme for adapting permutation symmetry in molecular systems is proposed and tested for fitting global potential energy surfaces using neural networks (NNs). The symmetry adaptation is realized by using low-order permutation invariant polynomials (PIPs) as inputs for the NNs. This so-called PIP-NN approach is applied to the H + H2 and Cl + H2 systems and the analytical potential energy surfaces for these two systems were accurately reproduced by PIP-NN. The accuracy of the NN potential energy surfaces was confirmed by quantum scattering calculations.
Reexamination of an anomaly in near-threshold pair production
De Braeckeleer, L.; Adelberger, E.G.; Garcia, A. (Physics Department FM-15, University of Washington, Seattle, Washington 98195 (United States))
1992-11-01
We investigated a reported anomaly in near-threshold pair production, using radioactive sources to measure the {gamma}+Ge{r arrow}{ital e}{sup +}+{ital e}{sup {minus}}+Ge cross-section at {ital E}{sub {gamma}}=1063, 1086, 1112, 1173, 1213, 1299, 1332, and 1408 keV. Although the data agree with the theory (numerical calculations based on an exact partial-wave formulation for a screened central potential) at the higher energies, the data lie above the theory at 1063, 1082, and 1112 keV. The discrepancy is reduced by including the final-state Coulomb interaction between the {ital e}{sup +} and {ital e}{sup {minus}}.
Potentials for High-Energy Scattering from Hydrogenlike Atoms
Reading, John F.
1970-01-01
) 1646 J. F. RE ADING 1 2 1V/(r) = ?? exp(iqz) sin(2nq) dqtRl ~ lR ?rt 0 q (A2) where n = R ?r /2cZ The integral in Eq. (A2) exists for all real a. For a='0, If we write g(p)= f exp( ?r ts)d(r ) f F(e, r)d8 we note that f '/ E(8, r) d8... the diabatic ap- proximation can be relaxed by modifying V to include the effect of H, to order v . In particular in the impulse approximation, scattering is described by a static local potential Vl.(x, 8) =1/8 ?[erf(i' e+e)]/I R ?rll, where n = l R ?r t /(2...
Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon.
Vasisht, Vishwas V; Mathew, John; Sengupta, Shiladitya; Sastry, Srikanth
2014-09-28
Anomalous behaviour in density, diffusivity, and structural order is investigated for silicon modeled by the Stillinger-Weber potential by performing molecular dynamics simulations. As previously reported in the case of water [J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001)] and silica [M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, Phys. Rev. E 66, 011202 (2002)], a cascading of thermodynamic, dynamic, and structural anomalous regions is also observed in liquid silicon. The region of structural anomaly includes the region of diffusivity anomaly, which in turn encompasses the region of density anomaly (which is unlike water but similar to silica). In the region of structural anomaly, a tight correlation between the translational and tetrahedrality order parameter is found, but the correlation is weaker when a local orientational order parameter (q3) is used as a measure of tetrahedrality. The total excess entropy and the pair correlation entropy are computed across the phase diagram and the correlation between the excess entropy and the regions of anomalies in the phase diagram of liquid silicon is examined. Scaling relations associating the excess entropy with the diffusion coefficient show considerable deviation from the quasi-universal behaviour observed in hard-sphere and Lennard-Jones liquids and some liquid metals. Excess entropy based criteria for diffusivity and structural anomalies fail to capture the observed regions of anomaly. PMID:25273445
Potentials for High-Energy Scattering from Hydrogenlike Atoms
Reading, John F.
1970-01-01
of Physics, Kent State University, Kent, Ohio 44240 (Received 15 August 1969) A general method for calculating the cross sections for single-quantum. annihilation (SQA) of positrons in various atomic shells, valid to second order in the G. Z expansion (one... that the differential cross sections are of the form 0&&(k, q) = C?&0??(k, q), where no= l+1, and k and q are the photon energy and the magnitude of momentum transfer to a nucleus, respectively. The factor C?& is evaluated in general. The SQA cross sections...
Accurate energy spectrum for double-well potential: periodic basis
P. Pedram; M. Mirzaei; S. S. Gousheh
2010-06-03
We present a variational study of employing the trigonometric basis functions satisfying periodic boundary condition for the accurate calculation of eigenvalues and eigenfunctions of quartic double-well oscillators. Contrary to usual Dirichlet boundary condition, imposing periodic boundary condition on the basis functions results in the existence of an inflection point with vanishing curvature in the graph of the energy versus the domain of the variable. We show that this boundary condition results in a higher accuracy in comparison to Dirichlet boundary condition. This is due to the fact that the periodic basis functions are not necessarily forced to vanish at the boundaries and can properly fit themselves to the exact solutions.
Ma,R.J.; Yu,N.Y.
2014-01-01
1 A new route for energy efficiency diagnosis and potential analysis of energy consumption from air-conditioning system Rong-Jiang Ma Nan-Yang Yu PhD candidate Professor School of Mechanical Engineering, Southwest Jiaotong... route and validate its feasibility and effectiveness. The results show that the approach can effectively identify system defaults and reduce the time spent on troubleshooting. It is a powerful and effective tool for diagnosis and potential analysis...
Energy potential from livestock and poultry wastes in the South. Agricultural Economic Report
Jones, H.B.; Ogden, E.A.
1984-11-01
Livestock and poultry wastes could produce significant amounts of biomass energy if conventional energy prices continue to rise. This study estimates the economically recoverable energy available through anaerobic digestion or direct burning of animal wastes in the South for the base year 1980 with projections for 1985 and 1990. Potential thermal energy from livestock and poultry wastes in 1990 could total more than 79.5 trillion Btu, or about 30 percent of the energy from such sources nationwide. The total potential farm value of biomass energy from livestock and poultry enterprises in the South could range from $344 million to $1.08 billion in 1990 depending upon the types of conventional energy displaced. Energy products from these wastes attained their highest value when substituted for LP gas.
Gravity tests and the Pioneer anomaly
Marc-Thierry Jaekel; Serge Reynaud
2005-11-04
Experimental tests of gravity performed in the solar system show a good agreement with general relativity. The latter is however challenged by the Pioneer anomaly which might be pointing at some modification of gravity law at ranges of the order of the size of the solar system. We introduce a metric extension of general relativity which, while preserving the equivalence principle, modifies the coupling between curvature and stress tensors and, therefore, the metric solution in the solar system. The ``post-Einsteinian extension'' replaces Newton gravitation constant by two running coupling constants, which depend on the scale and differ in the sectors of traceless and traced tensors, so that the metric solution is characterized by two gravitation potentials. The extended theory has the capability to preserve compatibility with gravity tests while accounting for the Pioneer anomaly. It can also be tested by new experiments or, maybe, by having a new look at data of already performed experiments.
Holographic models and the QCD trace anomaly
Jose L. Goity, Roberto C. Trinchero
2012-08-01
Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative {beta}-functions are studied. It is shown that in the perturbative case, where the {beta}-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.
Anomaly, Charge Quantization and Family
C. Q. Geng
2001-01-30
We first review the three known chiral anomalies in four dimensions and then use the anomaly free conditions to study the uniqueness of quark and lepton representations and charge quantizations in the standard model. We also extend our results to theory with an arbitrary number of color. Finally, we discuss the family problem.
Hansjoerg Dittus
2008-01-01
Several observations show unexplained phenomena in our solar system. These observations are e.g. the Pioneer Anomaly, an unexplained constant acceleration of the Pioneer 10 and 11 spacecraft, the Flyby Anomaly, an unexplained increase of the velocity of a series of spacecraft after Earth gravity assists, the recently reported increase of the Astronomical Unit defined by the distance of the planets
Anomaly detection in IP networks
Marina Thottan; Chuanyi Ji
2003-01-01
Network anomaly detection is a vibrant research area. Researchers have approached this problem using various techniques such as artificial intelligence, machine learning, and state machine modeling. In this paper, we first review these anomaly detection methods and then describe in detail a statistical signal processing technique based on abrupt change detection. We show that this signal processing technique is effective
Caleb C. Noble; Diane J. Cook
2003-01-01
Anomaly detection is an area that has received much attention in recent years. It has a wide variety of applications, including fraud detection and network intrusion detection. A good deal of research has been performed in this area, often using strings or attribute-value data as the medium from which anomalies are to be extracted. Little work, however, has focused on
Conservation and solar energy potential at the community level: Ocean Township, New Jersey
Boucher
1984-01-01
The energy use of the residents of Ocean Township was evaluated to determine the potential for the 5797 residents to reduce their annual consumption of energy from non-renewable sources (oil, natural gas, and electricity) through conservation measures and the use of solar energy. Ninety-two representative residents agreed to participate in a detailed on-site energy audit. If the conservation measures that
Chiral anomaly in soft collinear effective theory
Waalewijn, Wouter Jonathan
Anomalies have infrared and ultraviolet ingredients, and are often realized in effective theories in a nontrivial way. We study the chiral anomaly in soft collinear effective theory (SCET), where the anomaly equation has ...
Impact of Sampling on Anomaly Detection
Chuah, Chen-Nee
? ISPs interested in detecting and stopping anomalous traffic early Additional service to stub networks of Sampling on Anomaly Detection Volume Anomaly Detection Portscan Detection Entropy-based Traffic Profiling Towards Accurate Measurements for Anomaly Detection Filtered Sampling Programmable
Anomaly Detection Approaches for Communication Networks
Ji, Chuanyi
Anomaly Detection Approaches for Communication Networks Marina Thottan, Guanglei Liu, Chuanyi Ji Abstract In recent years network anomaly detection has become an important area for both commercial interests as well as academic research. Applications of anomaly detection typically stem from
Graph-Based Anomaly Detection Bill Eberle
Eberle, William
SIAM Southeastern Sectional Annual Meeting #12;Anomaly Detection Challenge: Insider Threats ScenariosGraph-Based Anomaly Detection Bill Eberle Department of Computer Science Tennessee Tech University or leak sensitive information? March 24, 2013 2 #12;Anomaly Detection Challenge: Fraud Detection
Anomaly detection in clinical processes
Huang, Zhengxing; Lu, Xudong; Duan, Huilong
2012-01-01
Meaningful anomalies in clinical processes may be related to caring performance or even the patient survival. It is imperative that the anomalies be timely detected such that useful and actionable knowledge of interest could be extracted to clinicians. Many previous approaches assume prior knowledge about the structure of clinical processes, using which anomalies are detected in a supervised manner. For a majority of clinical settings, however, clinical processes are complex, ad hoc, and even unknown a prior. In this paper, we investigate how to facilitate detection of anomalies in an unsupervised manner. An anomaly detection model is presented by applying a density-based clustering method on patient careflow logs. Using the learned model, it is possible to detect whether a particular patient careflow trace is anomalous with respect to normal traces in the logs. The approach has been validated over real data sets collected from a Chinese hospital. PMID:23304307
Stress Tensors from Trace Anomalies in Conformal Field Theories
Christopher P. Herzog; Kuo-Wei Huang
2013-04-08
Using trace anomalies, we determine the vacuum stress tensors of arbitrary even dimensional conformal field theories in Weyl flat backgrounds. We demonstrate a simple relation between the Casimir energy on the real line times a sphere and the type A anomaly coefficient. This relation generalizes earlier results in two and four dimensions. These field theory results for the Casimir are shown to be consistent with holographic predictions in two, four, and six dimensions.
S Matrix Proof of Consistency Condition Derived from Mixed Anomaly
NASA Astrophysics Data System (ADS)
Bhansali, Vineer
For a confining quantum field theory with conserved current J and stress tensor T, the
Analysis of the Energy Savings Potential in K-5 Schools in Hot and Humid Climates
Im, P.; Haberl, J.
2008-01-01
simulation to estimate the energy savings potential. The measures include high R-values for walls and roofs, high performance glazing, T-5 or T-8 fluorescent lamps, occupancy sensors for lighting control, and high efficient chillers and boilers....
Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico
Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.
2014-01-01
This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...
Determining the Intermolecular Potential Energy in a Gas: A Physical Chemistry Experiment
ERIC Educational Resources Information Center
Olbregts, J.; Walgraeve, J. P.
1976-01-01
Describes an experiment in which gas viscosity coefficients over a large temperature range are used to determine the parameters of the intermolecular potential energy and other properties such as virial coefficients. (MLH)
Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico
Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.
2014-01-01
This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...
Full potential KKR approach to the calculation of Hellmann-Feynman force and total energy
NASA Astrophysics Data System (ADS)
Wang, Yang; Stocks, G. M.
2015-03-01
The Korringa-Kohn-Rostoker (KKR) method is an ab initio electronic structure calculation method based on multiple scattering theory. Unlike the traditional approach, the full-potential KKR method, as well as its linear scaling approach, namely the full-potential LSMS method, does not make a spherical geometry assumption for the LDA potential and the charge density, i.e., the the muffin-tin approximation. Consequently, these full-potential methods allow to calculate the Hellmann-Feynman force acting on each ion in the unit cell. In this presentation, we show an implementation of the full-potential KKR and LSMS methods, discuss the force and total energy calculation in the framework of multiple scattering theory, and finally discuss our approach to overcoming the major computational bottleneck in a full-potential calculation by employing GPGPU acceleration technique. The work is supported by the Center for Defect Physics, an Energy Frontier Research Center of DoE.
Sabaliunas, Darius; Pittinger, Charles; Kessel, Cristy; Masscheleyn, Patrick
2006-04-01
A residential energy-use model was developed to estimate energy budgets for household laundering practices in the United States and Canada. The thermal energy for heating water and mechanical energy for agitating clothes in conventional washing machines were calculated for representative households in the United States and Canada. Comparisons in energy consumption among hot-, warm-, and cold-water wash and rinse cycles, horizontal- and vertical-axis washing machines, and gas and electric water heaters, were calculated on a per-wash-load basis. Demographic data for current laundering practices in the United States and Canada were then incorporated to estimate household and national energy consumption on an annual basis for each country. On average, the thermal energy required to heat water using either gas or electric energy constitutes 80% to 85% of the total energy consumed per wash in conventional, vertical-axis (top-loading) washing machines. The balance of energy used is mechanical energy. Consequently, the potential energy savings per load in converting from hot-and-warm- to cold-wash temperatures can be significant. Annual potential energy and cost savings and reductions in carbon dioxide emissions are also estimated for each country, assuming full conversion to cold-wash water temperatures. This study provides useful information to consumers for conserving energy in the home, as well as to, manufacturers in the design of more energy-efficient laundry formulations and appliances. PMID:16646382
Large scale anomalies in the microwave background: causation and correlation.
Aslanyan, Grigor; Easther, Richard
2013-12-27
Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe. PMID:24483788
Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model
Hiromi Yamamoto; Junichi Fujino; Kenji Yamaji
2001-01-01
The purpose of this study is to evaluate the global bioenergy potential in the future using a multi-regional global-land-use-and-energy model (GLUE-11). The model covers a wide range of biomass flow including food chains from feed to meat, paper recycling, and discharge of biomass residues.Through a set of simulations, the following results are obtained. (1) Supply potential of energy crops produced
F H2 3 FH H Potential Energy Surface: Construction of the Reference
Simons, Jack
F H2 3 FH H Potential Energy Surface: Construction of the Reference Configuration State Function-cc-pVQZ basis set as a step toward constructing a new potential energy surface (PES) for the F H2 3 FH H that to obtain a three-dimensional (3D) PES for the F H2 3 FH H Correspondence to: J. Simons; e-mail: simons
Potential energy curves for excited states of the hydrogen-antihydrogen system.
Sharipov, V; Labzowsky, L; Plunien, G
2006-09-01
The potential energy curves for the hydrogen-antihydrogen (HH) system in states with a leptonic orbital angular momentum projection Lambda=0, 1, 2, 6, and 30 are presented. Within the framework of the adiabatic picture, explicitly correlated Gaussians are used as basis functions which describe accurately the hydrogen-antihydrogen interaction. The critical internuclear distances where the system transforms into positronium and protonium atoms are found. Adiabatic corrections to the potential energy curves are also estimated. PMID:17025813
The potential energy surface and chaos in 2D Hamiltonian systems
NASA Astrophysics Data System (ADS)
Li, Jiangdan; Zhang, Suying
2011-02-01
We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.
Assessment of wind energy potential locations in Oman using data from existing weather stations
Sultan AL-Yahyai; Yassine Charabi; Adel Gastli; Saleh Al-Alawi
2010-01-01
This paper analyzes five years hourly wind data from twenty-nine weather stations to identify the potential location for wind energy applications in Oman. Different criteria including theoretical wind power output, vertical profile, turbulence and peak demand fitness were considered to identify the potential locations. Air density and roughness length, which play an important role in the calculation of the wind
The Energy Saving Potential of Membrane-Based Enthalpy Recovery in Vav Systems for Commercial
LBNL-6032E The Energy Saving Potential of Membrane-Based Enthalpy Recovery in Vav Systems POTENTIAL OF MEMBRANE-BASED ENTHALPY RECOVERY IN VAV SYSTEMS FOR COMMERCIAL OFFICE BUILDINGS Liping Wang1 and pressure drop of a membrane-based enthalpy exchanger was developed and then used to optimize
Brittle fracture in a periodic structure with internal potential energy
Mishuris, Gennady S.; Slepyan, Leonid I.
2014-01-01
We consider a brittle fracture taking account of self-equilibrated distributed stresses existing at microlevel in the absence of external forces. To determine how the latter can affect the crack equilibrium and growth, a model of a structured linearly elastic body is introduced, consisting of two equal symmetrically arranged layers (or half-planes) connected by an interface as a prospective crack path. The interface comprises a discrete set of elastic bonds. In the initial state, the bonds are assumed to be stressed in such a way that tensile and compressive forces of the same value alternate. In the general considerations, the layers are assumed to be of an unspecified periodic structure, where such self-equilibrated stresses may also exist. A two-line chain and a lattice are examined as the specified structure. We consider the states of the body-with-a-crack under such microlevel stresses (MS) and under a combined action of the remote forces and MS. Analytical solutions to the considered problems are presented based on the introduction of a selective discrete transform. We demonstrate that MS can increase as well as decrease the crack resistance depending on the internal energy level. We also discuss different scenarios of the crack growth. PMID:24808756
Self-Assembly and Waterlike Anomalies in Janus Nanoparticles
José Rafael Bordin; Leandro B. Krott; Marcia C. Barbosa
2015-04-28
We explore the pressure versus temperature phase diagram of dimeric Janus nanoparticles using Molecular Dynamics simulations. The nanoparticle was modeled as a dumbbells particle, and have one monomer that interacts by a standard Lennard Jones potential and another monomer that is modeled using a two-length scale shoulder potential. Monomeric and dimeric systems modeled by this shoulder potential show waterlike anomalies, and we investigate if a Janus nanoparticle composed by one anomalous monomer will exhibit anomalous behavior and self-assembly structures. The influence of the non-anomalous monomer in the dimeric system properties was explored. We show that the diffusion anomaly is maintained, while the density anomaly can disappear depending on the non-anomalous monomer characteristics. As well, the self-assembled structures are affected. Our results are discussed in the basis of the distinct monomer-monomer interactions and on the two-length scale fluid characteristics.
Cheung, Ngaam J; Shen, Hong-Bin
2014-11-01
The stable conformation of a molecule is greatly important to uncover the secret of its properties and functions. Generally, the conformation of a molecule will be the most stable when it is of the minimum potential energy. Accordingly, the determination of the conformation can be solved in the optimization framework. It is, however, not an easy task to achieve the only conformation with the lowest energy among all the potential ones because of the high complexity of the energy landscape and the exponential computation increasing with molecular size. In this paper, we develop a hierarchical and heterogeneous particle swarm optimizer (HHPSO) to deal with the problem in the minimization of the potential energy. The proposed method is evaluated over a scalable simplified molecular potential energy function with up to 200 degrees of freedom and a realistic energy function of pseudo-ethane molecule. The experimental results are compared with other six PSO variants and four genetic algorithms. The results show HHPSO is significantly better than the compared PSOs with p-value less than 0.01277 over molecular potential energy function. PMID:25459763
Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations
NASA Technical Reports Server (NTRS)
Arakawa, Akio; Hsu, Yueh-Jiuan G.
1990-01-01
To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous). Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the free surface may intersect with the lower boundary.
Marie-Claude Dubois; Åke Blomsterberg
2011-01-01
This article presents key energy use figures and explores the energy saving potential for electric lighting in office buildings based on a review of relevant literature, with special emphasis on a North European context. The review reveals that theoretical calculations, measurements in full-scale rooms and simulations with validated lighting programs indicate that an energy intensity of around 10kWh\\/m2yr is a
Reliability of CHAMP Anomaly Continuations
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.
2003-01-01
CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.
Anomaly mediation from unbroken supergravity
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Thaler, Jesse; Thomas, Zachary
2013-09-01
When supergravity (SUGRA) is spontaneously broken, it is well known that anomaly mediation generates sparticle soft masses proportional to the gravitino mass. Recently, we showed that one-loop anomaly-mediated gaugino masses should be associated with unbroken supersymmetry (SUSY). This counterintuitive result arises because the underlying symmetry structure of (broken) SUGRA in flat space is in fact (unbroken) SUSY in anti-de Sitter (AdS) space. When quantum corrections are regulated in a way that preserves SUGRA, the underlying AdS curvature (proportional to the gravitino mass) necessarily appears in the regulated action, yielding soft masses without corresponding goldstino couplings. In this paper, we extend our analysis of anomaly mediation to sfermion soft masses. Already at tree-level we encounter a number of surprises, including the fact that zero soft masses correspond to broken (AdS) SUSY. At one-loop, we explain how anomaly mediation appears when regulating SUGRA in a way that preserves super-Weyl invariance. We find that recent claims in the literature about the non-existence of anomaly mediation were based on a Wilsonian effective action with residual gauge dependence, and the gauge-invariant 1PI effective action contains the expected anomaly-mediated spectrum. Finally, we calculate the sfermion spectrum to all orders, and use supertrace relations to derive the familiar two-loop soft masses from minimal anomaly mediation, as well as unfamiliar tree-level and one-loop goldstino couplings consistent with renormalization group invariance.
Schweik, Charles M.
Environmental Conservation/Studies "focus area" (with potential courses listed) Energy Energy Efficient Housing * BCT 304 Properties of Wood * BCT 313 Light-Frame Structure Technology * BCT (minimum 3 cr) * BCT 220 Introduction to CAD in Construction and Architecture * BCT 420 Advanced Topics
Projecting yield and utilization potential of switchgrass as an energy crop
Technology Transfer Automated Retrieval System (TEKTRAN)
The potential utilization of switchgrass (Panicum virgatum L.) as a cellulosic energy crop was evaluated as a component of a projected future national network of biorefineries designed to increase national reliance on renewable energy from American farms. Empirical data on current yields of switchg...
Potential energy surface and large amplitude motions of the water-carbon dioxide complex
J. Makarewicz; Tae-Kyu Ha; A. Bauder
1993-01-01
The results of abinitio investigations of the equilibrium structure and the potential energy surface of water–carbon dioxide are presented. It has been found that the complex has two equivalent, slightly nonplanar equilibrium configurations. A hydrogen-bonded structure has not been found. Large amplitude van der Waals motions of the complex have been studied and the vibrational and rotational energy levels have
Completed April 30, 2004. LBNL-54966. The Energy-Savings Potential of Electrochromic Windows
1 Completed April 30, 2004. LBNL-54966. The Energy-Savings Potential of Electrochromic Windows Road, Berkeley, CA 94720, USA Abstract Switchable electrochromic (EC) windows have been projected of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader
REVIEW OF THE POTENTIAL OF NUCLEAR HYDROGEN FOR ADDRESSING ENERGY SECURITY AND CLIMATE CHANGE
James E. OBrien
2010-01-01
Nuclear energy has the potential to exert a major positive impact on energy security and climate change by coupling it to the transportation sector, primarily through hydrogen production. In the short term, this coupling will provide carbon-free hydrogen for upgrading increasingly lower quality petroleum resources such as oil sands, offsetting carbon emissions associated with steam methane reforming. In the intermediate
Substitution potential of solar thermal power stations in electrical energy systems
J. Kreusel
1995-01-01
The use of fossil fuels should be reduced in future due to limited resources and increasing ecological impacts. Therefore, increased interest and incentives have been created for the development of electricity supply utilising renewable energy sources. Solar thermal generation represents an energy conversion device which has long-range potential and is applicable to most geographical regions.This paper describes the methodology used
Denny P. Alappattu; P. K. Kunhikrishnan
2009-01-01
Convective available potential energy (CAPE) and convective inhibition energy (CIN) are important parameters in determining the stability of the atmosphere for moist convection. This paper presents the estimates of CAPE and CIN during the premonsoon season over the oceanic region surrounding the Indian subcontinent. The high-resolution radiosonde data used in this study were collected as a part of the Integrated
Potential hazards of compressed air energy storage in depleted natural gas reservoirs
Paul W. Cooper; Mark Charles Grubelich; Stephen J. Bauer
2011-01-01
This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to
Energy Decay Rate of the Plate Equation with Potential and Indefinite Damping
Wu Yingtao
2007-01-01
We consider the plate equation with an indefinite sign damping and a zero order potential term. By means of the global Carleman-type estimate and the usual energy estimate, we show that the energy of the system decays exponentially. Also, using the classical perturbation theory, we give an explicit upper bound estimate on the negative damping to guarantee the exponential decay
Anomaly Detection in Dynamic Networks
Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.
Gravitational anomaly and transport phenomena.
Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco
2011-07-01
Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid. PMID:21797593
Feature-based anomaly detection
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.
2007-04-01
A feature-based approach for detecting anomalies in spectral, spatial, temporal, and other domains is described. When the frequency of occurrence is small relative to the background, anomalies such as man-made objects in natural image backgrounds do not form their own clusters, but are instead assigned the nearest background cluster, becoming an outlier (statistical anomaly) in that cluster. Our method clusters data, which may be spectral, spatial, or temporal in nature, into one or more background types and computes the Mahalanobis distance between the data and assigned model (background cluster). The detection of a variety of objects and phenomena in panchromatic and multispectral imagery, and video are illustrated.
Ketefian, Gerard
A mass, energy, vorticity, and potential enstrophy conserving lateral fluidland boundary scheme conditions Conservation Energy Vorticity Potential enstrophy a b s t r a c t A numerical scheme for treating. Introduction The use of energy, enstrophy, and/or potential enstrophy conserving numerical schemes
Galileo spacecraft anomaly and safing recovery
NASA Technical Reports Server (NTRS)
Basilio, Ralph R.; Durham, David M.
1993-01-01
A high-level anomaly recovery plan which identifies the steps necessary to recover from a spacecraft 'Safing' incident was developed for the Galileo spacecraft prior to launch. Since launch, a total of four in-flight anomalies have lead to entry into a system fault protection 'Safing' routine which has required the Galileo flight team to refine and execute the recovery plan. These failures have allowed the flight team to develop an efficient recovery process when permanent spacecraft capability degradation is minimal and the cause of the anomaly is quickly diagnosed. With this previous recovery experience and the very focused boundary conditions of a specific potential failure, a Gaspra asteroid recovery plan was designed to be implemented in as quickly as forty hours (desired goal). This paper documents the work performed above, however, the Galileo project remains challenged to develop a generic detailed recovery plan which can be implemented in a relatively short time to configure the spacecraft to a nominal state prior to future high priority mission objectives.
On the Equivalence between the Effective Potential and Zero-Point Energy
Jose Alexandre Nogueira; Adolfo Maia Jr.
1996-10-04
We investigate a possible difference between the effective potential and zero-point energy. We define the zero-point ambiguity (ZPA) as the difference between these two definitions of vacuum energy. Using the zeta function technique, in order to obtain renormalized quantities, we show that ZPA vanishes, implying that both of the above definitions of vacuum energy coincide for a large class of geometries and a very general potential. In addition, we show explicitly that an extra term, obtained by E. Myers some years ago for the ZPA, disappears when a scale parameter $\\mu$ is consistently introduced in all zeta functions in order to keep them dimensionless.
Summary of UTMB O&M Project: Energy Conservation Potential in Five Buildings
Liu, M.; Athar, A.; Reddy, T. A.; Claridge, D. E.; Haberl, J. S.
1993-01-01
ESL-TR-93/10-03 LoanSTAR Monitoring and Analysis Program Summary of UTMB O&M Project: ENERGY CONSERVATION POTENTIAL IN FIVE BUILDINGS Submitted to the Texas State Energy Conservation Office By the Monitoring and Analysis Task E (O&M) Dr. Mingsheng... Building: 10 4.4 Moody Library Building: 11 4.5 John Sealy South Building: 12 5. OTHER O&M MEASURES 13 5.1 Delamping at the John Sealy South Building 13 5.2 Using Economizer Cycle at the Moody Library Building 14 6. POTENTIAL ENERGY SAVINGS 15 7. MEASURED...
Investigation of the threshold anomaly for the 7Li+159Tb system
NASA Astrophysics Data System (ADS)
Patel, D.; Mukherjee, S.; Biswas, D. C.; Nayak, B. K.; Gupta, Y. K.; Danu, L. S.; Santra, S.; Mirgule, E. T.
2015-05-01
Elastic-scattering angular distributions were measured for the 7Li+159Tb system at various energies; namely, 24, 26, 28, 30, 35, 40, and 44 MeV. The optical-model analysis was performed to investigate the energy dependence of real and imaginary potentials, employing a Woods-Saxon form of potential. The dispersion-relation analysis were also carried out to check the consistency of real and imaginary parts of the potentials. The energy dependence of real and imaginary potentials does not follow the trend of conventional threshold anomaly but rather represents unusual behavior of the increase of imaginary part of the potential and corresponding decrease in real part of the potential near the Coulomb barrier energy. The effect of breakup coupling on elastic-scattering angular distributions was studied by a continuum-discretized coupled-channels (CDCC) calculation. The behavior of dynamic polarization potentials obtained due to the breakup coupling is discussed. The total reaction cross sections for the present and various other systems are also compared involving 7Li projectile on different target nuclei in the mass range A =16 to 232.
Quantum anomalies and linear response theory
Itamar Sela; James Aisenberg; Tsampikos Kottos; Doron Cohen
2010-07-18
The analysis of diffusive energy spreading in quantized chaotic driven systems, leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient $D$ that is proportional to the intensity $\\epsilon^2$ of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time $t_{\\epsilon}$, and a self-generated (intrinsic) dephasing process leads to non-linear dependence of $D$ on $\\epsilon^2$.
On Cosmological Implications of Gravitational Trace Anomaly
Bilic, Neven; Horvat, Raul; Nikolic, Hrvoje; Stefancic, Hrvoje
2007-01-01
We study the infrared effective theory of gravity that stems from the quantum trace anomaly. Quantum fluctuations of the metric induce running of the cosmological constant and the Newton constant at cosmological scales. By imposing the generalized Bianchi identity we obtain a prediction for the scale dependence of the dark matter and dark energy densities in terms of the parameters of the underlying conformal theory. For certain values of the model parameters the dark energy equation of state and the observed spectral index of the primordial density fluctuations can be simultaneously reproduced.
Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential
Masera, O.; Friedmann, R.; deBuen, O.
1993-05-01
This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.
L. N. Granda
2008-11-25
We propose an holographic quintessence and tachyon models of dark energy. The correspondence between the quintessence and tachyon energy densities with the holographic density, allows the reconstruction of the potentials and the dynamics for the quintessence and tachyon fields, in flat FRW background. The proposed infrared cut-off for the holographic energy density works for two cases of the constant $\\alpha$: for $\\alpha1$ was also reconstructed for the holographic quintessence and tachyon models.
Analysis of Energy-Rescued Potential of a Hot Water Heating Network
Han, J.; Wang, D.; Tian, G.
2006-01-01
ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-6-4 Analysis of Energy-Rescued Potential of a Hot Water Heating Network Jibing Han Delin Wang Guansan Tian Master... of Large and Medium City?s Heating Manner in North China, Heating Ventilating and Air conditioning, China, 2000,30(4), 30-45. (In Chinese) [2] Weiguo HAN, Yi JIANG, Fei GUO. Energy Consumption Analysis of Several Kinds of Heating Systems. Heating...
NASA Astrophysics Data System (ADS)
Cuthbertson, J.; Doerner, R.; Lehmer, R.; Jakubowski, M.; Luckhardt, S.
1996-11-01
We previously reported electrostatic analyzer measurements of the parallel energy distribution of ions incident on a floating target in PISCES-A showing significantly wider than thermal distributions for the expected T_ion.( J. Cuthbertson et al., Bull. APS), 39, 1563 (1994) We have investigated the widened distributions by making simultaneous measurements of the ion energies and of fluctuations in the plasma, using Langmuir probes, and of the floating reference potential of the gridded energy analyzer (GEA). We have also modified the GEA to achieve better energy resolution. Fluctuations in ?_plasma that are slow relative to ion sheath transit times but fast relative to measurement integration times would be expected to broaden the energy distribution. We have varied plasma conditions in order to change the fluctuation amplitudes, and observe that the width of the measured energy distributions is correlated with the strength of potential fluctuations. Potential fluctuations occur in many plasma-surface interactions of interest, e.g. tokamak divertors, and can be large relative to the time-average potential drop to the surface; such fluctuations will have a major influence on the energy distributions of charged particles impinging on these surfaces. Work supported by US-DOE contract DE-FG03-95ER-54301.
Energy dependence of nucleus-nucleus potential close to the Coulomb barrier
Kouhei Washiyama; Denis Lacroix
2008-08-12
The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory for mass symmetric reactions $^{16}$O${}+^{16}$O, $^{40}$Ca${}+^{40}$Ca, $^{48}$Ca${}+^{48}$Ca and mass asymmetric reactions $^{16}$O$ +^{40,48}$Ca, $^{40}$Ca${}+^{48}$Ca, $^{16}$O+$^{208}$Pb, $^{40}$Ca+$^{90}$Zr. When the center-of-mass energy is much higher than the Coulomb barrier energy, potentials deduced with the microscopic theory identify with the frozen density approximation. As the center-of-mass energy decreases and approaches the Coulomb barrier, potentials become energy dependent. This dependence signs dynamical reorganization of internal degrees of freedom and leads to a reduction of the "apparent" barrier felt by the two nuclei during fusion of the order of $2-3 %$ compared to the frozen density case. Several examples illustrate that the potential landscape changes rapidly when the center-of-mass energy is in the vicinity of the Coulomb barrier energy. The energy dependence is expected to have a significant role on fusion around the Coulomb barrier.
Classifying sex biased congenital anomalies
Lubinsky, M.S. [Medical College of Wisconsin and Children`s Hospital, Milwaukee, WI (United States)] [Medical College of Wisconsin and Children`s Hospital, Milwaukee, WI (United States)
1997-03-31
The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.
Obstetric consequences of uterovaginal anomalies
Rock, J.A.; Schlaff, W.D.
1985-05-01
This review discusses the diagnosis and classification of utero-vaginal anomalies as well as obstetric considerations in their management. Diagnosis is usually made by hysterosalpingography antepartum. Ultrasonography is also recommended. 40 references, 10 figures, 9 tables.
Spacecraft environmental anomalies expert system
NASA Astrophysics Data System (ADS)
Koons, Harry C.; Groney, David J.
1994-02-01
An expert system has been developed by The Aerospace Corporation, Space and Environment Technology Center for use in the diagnosis of satellite anomalies caused by the space environment. The expert system is designed to determine the probable cause of an anomaly from the following candidates: surface charging, bulk charging, single-event effects, total radiation dose, and space-plasma effects. Such anomalies depend on the orbit of the satellite, the local plasma and radiation environment (which is highly variable), the satellite-exposure time, and the hardness of the circuits and components in the satellite. The expert system is a rule-based system that uses the Texas Instrument's Personal Consultant Plus expert-system shell. The expert system's knowledgebase includes about 200 rules, as well as a number of databases that contain information on spacecraft and their orbits, previous spacecraft anomalies, and the environment.
Understanding the mineral sources of remanent crustal magnetic anomalies
NASA Astrophysics Data System (ADS)
McEnroe, S. A.; Fabian, K.; Robinson, P.; Gattacceca, J.; Hankard, F.; Langenhorst, F.
2009-04-01
Magnetic exploration on local and global scale is focused on interpreting magnetic anomalies in terms of induced magnetization in today's geomagnetic field. However, numerous anomalies in Norway, Sweden and USA originate from rocks with oxide exsolution intergrowths with an overwhelmingly dominant magnetic remanence. In these rocks different magnetic minerals control induced versus remanent magnetization. Although, different types of magnetic interaction control the details of their potential to create anomalies, little is known about the detailed interplay between them. Using a newly developed giant-magnetoresistance micro-scanner, it is now possible to map remanent and induced magnetization at the mineral size scale from 10 micron up to several millimeters. In case studies presented here, Lamellar Magnetization (LM) accounts for the strong and stable magnetic signal in the rhombohedral oxides which produces significant large-scale negative anomalies. We explore experimentally and theoretically how the co-existing multi-domain magnetite and LM contributes to these anomalies, and correlate the mineral-scale maps with ground-magnetic traverses and high- resolution airborne surveys. This combination of methods provides a new paradigm for interpretation of remanence -dominated magnetic anomalies in Earth and planetary applications.
Critical insight into the influence of the potential energy surface on fission dynamics
Mazurek, K. [Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Krakow (Poland); Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, F-14076 Caen (France); Schmitt, C.; Wieleczko, J. P.; Ademard, G. [Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, F-14076 Caen (France); Nadtochy, P. N. [Omsk State University, Department of Theoretical Physics, 644077 Omsk (Russian Federation)
2011-07-15
The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.
Energy dependence of the nucleus-nucleus potential and the friction parameter in fusion reactions
NASA Astrophysics Data System (ADS)
Wen, Kai; Sakata, Fumihiko; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui
2014-11-01
Applying a macroscopic reduction procedure to the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.
An assessment of wind energy potential in Iberia under climate change
NASA Astrophysics Data System (ADS)
Liberato, Margarida L. R.; Santos, João A.; Rochinha, Carlos; Reyers, Mark; Pinto, Joaquim G.
2015-04-01
Wind energy potential in Iberia is assessed for recent-past (1961-2000) and future (2041-2070) climates. For recent-past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent-past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day-1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day-1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day-1). The northward displacement of North Atlantic westerly winds (autumn-spring) and the strengthening of easterly flows (summer) are key drivers of future projections. Santos, J.A.; Rochinha, C.; Liberato, M.L.R.; Reyers, M.; Pinto, J.G. (2015) Projected changes in wind energy potentials over Iberia. Renewable Energy, 75, 1: 68-80. doi: 10.1016/j.renene.2014.09.026 Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).
Triangle Anomalies, Thermodynamics, and Hydrodynamics
Kristan Jensen
2012-04-11
We consider 3+1-dimensional fluids with U(1)^3 anomalies. We use Ward identities to constrain low-momentum Euclidean correlation functions and obtain differential equations that relate two and three-point functions. The solution to those equations yields, among other things, the chiral magnetic conductivity. We then compute zero-frequency functions in hydrodynamics and show that the consistency of the hydrodynamic theory also fixes the anomaly-induced conductivities.
Satellite elevation magnetic anomaly maps
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J. (principal investigators)
1982-01-01
The problem of inverting 2 deg average MAGSAT scalar anomalies for the region 80 W, 60 E longitude and 40 S, 70 N latitude was attempted on the LARS computer; however, the effort was aborted due to insufficient allocation of CPU-time. This problem is currently being resubmitted and should be implemented shortly for quantitative comparison with free-air gravity anomaly, geothermal, and tectonic data.
NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface
NASA Astrophysics Data System (ADS)
Ingebrigtsen, Trond S.; Toxvaerd, Søren; Heilmann, Ole J.; Schrøder, Thomas B.; Dyre, Jeppe C.
2011-09-01
An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid.
Regional prediction of long-term landfill gas to energy potential.
Amini, Hamid R; Reinhart, Debra R
2011-01-01
Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. PMID:21703844
Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01
. Keywords: hydrokinetic energy; wave energy; ocean energy; Gulf of Mexico; wave energy conversion INTRODUCTION Ocean energy comes in a variety of forms such as marine currents, tidal currents, geothermal vents, and waves. All are concentrated... currents and waves. Some research has been conducted on constructing a heat cycle based on geothermal vents, but this work has led to the conclusion that geothermal vents are not commercially viable [2]. On the other hand, ocean current and wave...
NASA Astrophysics Data System (ADS)
Aciksoz, E.; Bayrak, O.; Soylu, A.
2015-01-01
The impurity binding energy in the GaAs -Ga1-xAlx As system is studied with an anharmonic type confinement potential by taking into account the influence of the external electric and magnetic fields within the framework of the effective mass approximation and asymptotic iteration method (AIM). The influence of the external electromagnetic fields and anharmonicity on a donor binding energy is examined systematically. It is shown that the donor binding energy is highly dependent on the external electric and magnetic fields and the confinement potential shapes. Both the electric and magnetic fields are increased, the binding energies increase for each of them. However, the behaviors of increase in the weak and strong fields' regimes have different character a bit. Furthermore, when the more anharmonicity is considered, the binding energy of donor slightly increases as well.
Chiral anomaly and transport in Weyl metals
NASA Astrophysics Data System (ADS)
Burkov, A. A.
2015-03-01
We present an overview of our recent work on transport phenomena in Weyl metals, which may be connected to their nontrivial topological properties, particularly to chiral anomaly. We argue that there are two basic phenomena, which are related to chiral anomaly in Weyl metals: anomalous Hall effect (AHE) and chiral magnetic effect (CME). While AHE is in principle present in any ferromagnetic metal, we demonstrate that a magnetic Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone. In other words, a ferromagnetic Weyl metal may be thought of as the only example of a ferromagnetic metal with a purely intrinsic AHE. We further develop a fully microscopic theory of diffusive magnetotransport in Weyl metals. We derive coupled diffusion equations for the total and axial (i.e. node-antisymmetric) charge densities and show that chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that an experimentally-observable consequence of CME in magnetotransport in Weyl metals is a quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance under certain conditions and may be regarded as a smoking-gun transport characteristic, unique to Weyl metals.
Little SUSY hierarchy in mixed modulus-anomaly mediation
Kiwoon Choi; Kwang Sik Jeong; Tatsuo Kobayashi; Ken-Ichi Okumura
2006-01-01
Motivated by the KKLT string compactification involving a supersymmetry-breaking uplifting potential, we examine 4D effective supergravity with a generic form of uplifting potential, focusing on the possibility that the resulting mixed modulus-anomaly mediated soft terms realize the little hierarchy between the Higgs boson masses mH and the sparticle masses mSUSY. It is noted that for some type of uplifting potential,
MAGSAT anomaly map and continental drift
NASA Technical Reports Server (NTRS)
Lemouel, J. L. (principal investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LAB.
2009-01-01
In the planet-centric system, a spacecraft should have the same initial and final energies, even though its energy and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small energy changes.
Feet on the potential energy surface, head in the pi clouds
Smith, Quentin
2012-07-12
This work presents explorations of the potential energy surface of clusters of atoms and of the interactions between molecules. First, structures of small aluminum clusters are examined and classified as ground states, transition states, or higher-order saddle points. Subsequently, the focus shifts to dispersion-dominated ?-? interactions when the potential energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of the substituted benzene and pyridine investigations is to model paired nucleotide bases. Finally, the success of the dispersion studies inspires the development of an extension to the computational method used, which will enable the dispersion energy to be modeled – and the potential energy surface explored – in additional chemical systems. The effective fragment potential (EFP) method is described, as well as various quantum mechanical methods. An ab inito quantum mechanical study of 13-atom aluminum clusters is described. EFP studies of aromatic dimers are reported in which dispersion energy makes a significant contribution to the attraction between monomers. Theory and code development toward a means of computing dispersion energy in mixed ab inito-EFP systems are described.
Heat flux boundary anomalies and thermal winds
NASA Astrophysics Data System (ADS)
Dietrich, Wieland; Wicht, Johannes
2013-04-01
Several studies have shown strong effects of outer boundary heat flux patterns on the dynamo mechanism in planets. For example, the hemispherical field of the ancient Martian dynamo can be explained by a large scale sinusoidal anomaly of the core mantle boundary heat flux triggered by large scale mantle convection or giant impacts. The magnetic fields show typically the desired effect - though dynamo action is locally stronger where the underneath heat flux is higher. However, it remains an open question if these effects still apply for more realistic planetary parameters, such as vigor of the convection (Rayleigh number) or the rotation rate (Ekman). The sinusoidal variation of the CMB heat flux along the colatitude with larger heat flux in the southern and smaller in the northern hemisphere as used for Mars can lead to a concentration of magnetic field in the south. The shape of such a hemispherical dynamo matches the crustal magnetization pattern at the surface and seems therefore an admissible mode for the ancient Martian dynamo. As the consequence of the emerging latitudinal temperature gradients convection and induction are dominated by thermal winds. These zonal flows were found to be equatorial antisymmetric, axisymmetric, ageostrophic, of strong amplitude and have therefore a severe effect on core convection and especially the induction process. We measure the underlying thermal anomalies as a function of Rayleigh and Ekman number and show that they are responsible for the thermal winds. Our results suggest that temperature anomalies decrease clearly with the supercriticality of the convection due to faster stirring and mixing, but show no additional dependence on the Ekman number. Interestingly, the decline of the latitudinal temperature anomaly follows a recently suggested scaling law for the thickness of thermal boundary layers. Even though the convective supercriticality of planetary cores is rather large and therefore only a minor effect of thermal boundary disturbances is expected, we suggest thermal winds can still significantly contribute to the total kinetic energy in real planetary core.
Conformal Anomaly Actions and Dilaton Interactions
Mirko Serino
2014-08-01
A number of computational results concerning quantum conformal symmetry is presented. After a review of the connection between conformal symmetry for a Lagrangian field theory in flat space and Weyl symmetry for the same system embedded in a gravitational background, which is discussed in chapter 1, in chapter 2 the 3 energy momentum tensors correlation function is explicitly computed in three free field theories in 4 dimensions; the result is given for two of the three operators on the mass-shell. In chapter 3 a general method to map Green functions built in position space on the ground of symmetry requirements to momentum space, where they can be computed in terms of Feynman diagrams, is developed and discussed: an "integrability" condition, allowing to decide whether a certain correlator can exist within a Lagrangian theory, is derived. Chapter 4 discusses the possible phenomenological implications of the conformal anomaly pole which shows up in the 3 point Green function of one energy momentum tensor with two gauge currents and is interpreted as the perturbative signature of the pseudo-Goldstone boson of conformal symmetry, the dilaton. In chapter 5 we present the computation of the completely traced 4 point function of the energy momentum tensor with a method that exploits the relation between 1-loop counterterms and conformal anomalies, completely bypassing perturbative computations with Feynman diagrams. Later in chapter 6, an algorithm is developed which allows to compute recursively the completely traced Green functions of any number of energy momentum tensors in any renormalization scheme, starting from the dilaton Wess-Zumino action for conformal anomalies. This is derived by applying the Weyl-gauging procedure to the 1-loop counterterms in dimensional regularization. The result is explicitly derived and tested in 2, 4 and 6 dimensions.
A geometrical approach to computing free energy landscapes from short-ranged potentials
Holmes-Cerfon, Miranda; Brenner, Michael P
2012-01-01
Particles interacting with short-ranged potentials have attracted increasing interest, partly for their ability to model mesoscale systems such as colloids interacting via DNA or depletion. We consider the free energy landscape of such systems as the range of the potential goes to zero. In this limit, the landscape is entirely defined by geometrical manifolds, plus a single control parameter. These manifolds are fundamental objects that do not depend on the details of the interaction potential, and provide the starting point from which any quantity characterizing the system -- equilibrium or non-equilibrium -- can be computed for arbitrary potentials. To consider dynamical quantities we compute the asymptotic limit of the Fokker-Planck equation, and show that it becomes restricted to the low-dimensional manifolds connected by "sticky" boundary conditions. To illustrate our theory, we compute the low-dimensional manifolds for n<=8 identical particles, providing a complete description of the lowest-energy pa...
Ionic melts with waterlike anomalies: thermodynamic properties of liquid BeF2.
Agarwal, Manish; Sharma, Ruchi; Chakravarty, Charusita
2007-10-28
Thermodynamic properties of liquid beryllium difluoride (BeF(2)) are studied using canonical ensemble molecular dynamics simulations of the transferable rigid ion model potential. The negative slope of the locus of points of maximum density in the temperature-pressure plane is mapped out. The excess entropy, computed within the pair correlation approximation, is found to show an anomalous increase with isothermal compression at low temperatures which will lead to diffusional as well as structural anomalies resembling those in water. The anomalous behavior of the entropy is largely connected with the behavior of the Be-F pair correlation function. The internal energy shows a T(35) temperature dependence. The pair correlation entropy shows a T(-25) temperature dependence only at high densities and temperatures. The correlation plots between internal energy and the pair correlation entropy for isothermal compression show the characteristic features expected of network-forming liquids with waterlike anomalies. The tagged particle potential energy distributions are shown to have a multimodal form at low temperatures and densities similar to those seen in other liquids with three-dimensional tetrahedral networks, such as water and silica. PMID:17979355
Ionic melts with waterlike anomalies: Thermodynamic properties of liquid BeF2
NASA Astrophysics Data System (ADS)
Agarwal, Manish; Sharma, Ruchi; Chakravarty, Charusita
2007-10-01
Thermodynamic properties of liquid beryllium difluoride (BeF2) are studied using canonical ensemble molecular dynamics simulations of the transferable rigid ion model potential. The negative slope of the locus of points of maximum density in the temperature-pressure plane is mapped out. The excess entropy, computed within the pair correlation approximation, is found to show an anomalous increase with isothermal compression at low temperatures which will lead to diffusional as well as structural anomalies resembling those in water. The anomalous behavior of the entropy is largely connected with the behavior of the Be-F pair correlation function. The internal energy shows a T3/5 temperature dependence. The pair correlation entropy shows a T-2/5 temperature dependence only at high densities and temperatures. The correlation plots between internal energy and the pair correlation entropy for isothermal compression show the characteristic features expected of network-forming liquids with waterlike anomalies. The tagged particle potential energy distributions are shown to have a multimodal form at low temperatures and densities similar to those seen in other liquids with three-dimensional tetrahedral networks, such as water and silica.
Potential energy surface and bound states of the NH3-Ar and ND3-Ar complexes.
Loreau, J; Liévin, J; Scribano, Y; van der Avoird, A
2014-12-14
A new, four-dimensional potential energy surface for the interaction of NH3 and ND3 with Ar is computed using the coupled-cluster method with single, double, and perturbative triple excitations and large basis sets. The umbrella motion of the ammonia molecule is explicitly taken into account. The bound states of both NH3-Ar and ND3-Ar are calculated on this potential for total angular momentum values from J = 0 to 10, with the inclusion of Coriolis interactions. The energies and splittings of the rovibrational levels are in excellent agreement with the extensive high-resolution spectroscopic data accumulated over the years in the infrared and microwave regions for both complexes, which demonstrates the quality of the potential energy surface. PMID:25494745
NASA Astrophysics Data System (ADS)
Accioly, Antonio; Helayël-Neto, José; Barone, F. E.; Herdy, Wallace
2015-02-01
A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude ({{M}NR}), a trivial expression for computing {{M}NR} is obtained from our prescription as an added bonus.
Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future
Ferland, K.
2014-01-01
Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future Industrial Energy Technology Conference New Orleans, La May 21, 2014 Texas Industries of the Future Kathey Ferland The University of Texas at Austin... kferland@mail.utexas.edu ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Water Use by Texas Industries ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology...
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials. PMID:23181297
U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis
Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G.
2012-07-01
This report presents the state-level results of a spatial analysis effort calculating energy technical potential, reported in square kilometers of available land, megawatts of capacity, and gigawatt-hours of generation, for six different renewable technologies. For this analysis, the system specific power density (or equivalent), efficiency (capacity factor), and land-use constraints were identified for each technology using independent research, published research, and professional contacts. This report also presents technical potential findings from previous reports.
Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential
Richard Latter
1955-01-01
The eigenvalues of the Schrödinger equation have been obtained for the Thomas-Fermi and Thomas-Fermi-Dirac atomic potentials. Electron self-interactions were taken into account by modifying the potentials to give asymptotically the field of a unit charge. All levels were treated from 1s to 7d for a range of Z-values sufficient to permit easy interpolation. It was found that the energies, for
Prasad, Pandurangan Arun; Vengadesan, Krishnan; Gautham, Namasivayam
2005-01-01
We describe a computer program that uses mutually orthogonal Latin squares (MOLS) to perform an efficient and exhaustive conformational search of the multi-dimensional potential energy hypersurface of an oligopeptide, and locate all its low energy conformations. The software package has been developed with a user-friendly graphical interface using the Fast Light Tool Kit (FLTK)--a cross platform C++ toolkit. PMID:16268784
Babalola, O.O.
1984-04-01
The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of the Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.
Carmona-Espíndola, Javier; Gázquez, José L; Vela, Alberto; Trickey, S B
2015-02-01
A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.g., static and dynamic polarizabilities and hyperpolarizabilities. CAP combined with the Lee-Yang-Parr correlation functional gives roughly equivalent results. Consideration of the computed dynamical polarizabilities in the context of the broad spectrum of other properties considered tips the balance to the non-empirical CAP-PBE combination. Intriguingly, these improvements arise primarily from improvements in the highest occupied and lowest unoccupied molecular orbitals, and not from shifts in the associated eigenvalues. Those eigenvalues do not change dramatically with respect to eigenvalues from other GGA-type functionals that do not provide the correct asymptotic behavior of the potential. Unexpected behavior of the potential at intermediate distances from the nucleus explains this unexpected result and indicates a clear route for improvement. PMID:25662634
Energy expressions for Kohn-Sham potentials and their relation to the Slater-Janak theorem.
Elkind, Pavel D; Staroverov, Viktor N
2012-03-28
Direct approximation of exchange-correlation potentials is a promising approach to accurate prediction of molecular response properties. However, little is known about ways of obtaining total energies from model potentials other than by using the Levy-Perdew virial relation. We introduce and explore several alternative formulas which arise as line integrals of potentials taken along density scaling and aufbau-filling paths, and which are not limited to the exchange term. The relaxed-orbital variant of the aufbau-path energy expression is shown to be closely related to the Slater-Janak theorem. Although the Levy-Perdew relation generally yields reasonable energies for all model exchange potentials, the relaxed-orbital aufbau path gives better results for those potentials that predict accurate highest-occupied orbital eigenvalues, such as the potential of Ra?sa?nen, Pittalis, and Proetto [J. Chem. Phys. 132, 044112 (2010)]. The ideas presented in this work may guide the development of new types of density-functional approximations for exchange and correlation. PMID:22462843
NASA Astrophysics Data System (ADS)
Carmona-Espíndola, Javier; Gázquez, José L.; Vela, Alberto; Trickey, S. B.
2015-02-01
A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.g., static and dynamic polarizabilities and hyperpolarizabilities. CAP combined with the Lee-Yang-Parr correlation functional gives roughly equivalent results. Consideration of the computed dynamical polarizabilities in the context of the broad spectrum of other properties considered tips the balance to the non-empirical CAP-PBE combination. Intriguingly, these improvements arise primarily from improvements in the highest occupied and lowest unoccupied molecular orbitals, and not from shifts in the associated eigenvalues. Those eigenvalues do not change dramatically with respect to eigenvalues from other GGA-type functionals that do not provide the correct asymptotic behavior of the potential. Unexpected behavior of the potential at intermediate distances from the nucleus explains this unexpected result and indicates a clear route for improvement.
Influence of the membrane potential on the free energy of an intrinsic protein.
Roux, B
1997-01-01
A modified Poisson-Boltzmann equation is developed from statistical mechanical considerations to describe the influence of the transmembrane potential on macromolecular systems. Using a Green's function formalism, the electrostatic free energy of a protein associated with the membrane is expressed as the sum of three terms: a contribution from the energy required to charge the system's capacitance, a contribution corresponding to the interaction of the protein charges with the membrane potential, and a contribution corresponding to a voltage-independent reaction field free energy. The membrane potential, which is due to the polarization interface, is calculated in the absence of the protein charges, whereas the reaction field is calculated in the absence of transmembrane potential. Variations in the capacitive energy associated with typical molecular processes are negligible under physiological conditions. The formulation of the theory is closely related to standard algorithms used to solve the Poisson-Boltzmann equation and only small modifications to current source codes are required for its implementation. The theory is illustrated by examining the voltage-dependent membrane insertion of a simple polyalanine alpha-helix and by computing the electrostatic potential across a 60-A-diameter sphere meant to represent a large intrinsic protein. Images FIGURE 2 PMID:9414213
Ab initio potential energy surfaces and nonadiabatic collision dynamics in H(+)+O(2) system.
Amaran, Saieswari; Kumar, Sanjay
2008-04-21
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy. PMID:18433227
Cost-Energy Dynamics of Thermal Insulation: Potential Energy Savings and Policy Recommendations
Phung, D. L.; Plaza, H.
1980-01-01
and manufacturing sectors are assessed. A hypothetical $10 billion insulation budget is determined to save 0.5 quad/yr of energy for the next 10 to 15 years, resulting in conservation energy costing less than $2/MMBtu. It is argued that public subsidies to energy...