Note: This page contains sample records for the topic potential energy anomaly from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Local properties of the potential-energy landscape of a model glass:Understanding the low-temperature anomalies  

NASA Astrophysics Data System (ADS)

Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in the sound absorption, heat capacity, thermal conductivity and other quantities, an exact description of their microscopic nature is still lacking. We performed computer simulations for a binary Lennard-Jones system, using a newly developed algorithm to locate double-well potentials (DWP) and thus two-level systems on a systematic basis. We show that the intrinsic limitations of computer simulations like finite time and finite size problems do not hamper this analysis. We discuss how the DWP are embedded in the total potential energy landscape. It turns out that most DWP are connected to the dynamics of the smaller particles and that these DWP are rather localized. However, DWP related to the larger particles are more collective.

Reinisch, J.; Heuer, A.

2004-08-01

2

Understanding Anomalies to Extract Vacuum Energy  

Microsoft Academic Search

Recent Russian literature contains some interesting speculations of potentially wide applicability regarding the physical vacuum. These investigations examined and applied a theory to various anomalies to try and understand what these events may represent. Data were collected by Dmitriev to quantify these events and identify commonalties that indicate the anomalies might have a natural origin. Dyatlov created theories on the

P. A. Murad

2004-01-01

3

Modeling of self-potential anomalies near vertical dikes.  

USGS Publications Warehouse

The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author

Fitterman, D. V.

1983-01-01

4

Anomalies.  

ERIC Educational Resources Information Center

This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

Online-Offline, 1999

1999-01-01

5

Potential Energy  

NSDL National Science Digital Library

Part of a comprehensive physics tutorial for high school students, this page describes potential energy conceptually and mathematically, provides examples enhanced by illustrations, and problems for practice with drop down boxes for your answers and feedback. In the left navigation bar, click on Kinetic Energy to get parallel information on kinetic energy.

2010-01-01

6

Singularity analysis of potential fields to enhance weak anomalies  

NASA Astrophysics Data System (ADS)

Geoanomalies generally are nonlinear, non-stationary and weak, especially in the land cover areas, however, the traditional methods of geoanomaly identification are usually based on linear theory. In past two decades, many power-law function models have been developed based on fractal concept in mineral exploration and mineral resource assessment, such that the density-area (C-A) model and spectrum-area model (S-A) suggested by Qiuming Cheng have played important roles in extracting geophysical and geochemical anomalies. Several power-law relationships are evident in geophysical potential fields, such as field value-distance, power spectrum-wave number as well as density-area models. The singularity index based on density-area model involves the first derivative transformation of the measure. Hence, we introduce the singularity analysis to develop a novel high-pass filter for extracting gravity and magnetic anomalies with the advantage of scale invariance. Furthermore, we suggest that the statistics of singularity indices can provide a new edge detection scheme for the gravity or magnetic source bodies. Meanwhile, theoretical magnetic anomalies are established to verify these assertions. In the case study from Nanling mineral district in south China and Qikou Depression in east China, compared with traditional geophysical filtering methods including multiscale wavelet analysis and total horizontal gradient methods, the singularity method enhances and extracts the weak anomalies caused by buried magmatic rocks more effectively, and provides more distinct boundary information of rocks. Moreover, the singularity mapping results have good correspondence relationship with both the outcropping rocks and known mineral deposits to support future mineral resource exploration. The singularity method based on fractal analysis has potential to be a new useful theory and technique for processing gravity and magnetic anomaly data.

Chen, G.; Cheng, Q.; Liu, T.

2013-12-01

7

Tomography of self-potential anomalies of electrochemical nature  

NASA Astrophysics Data System (ADS)

Ore deposits and buried metals like pipelines behave as dipolar electrical geobatteries in which the source is due to (1) variation of the redox potential with depth, (2) oxido-reduction reactions acting at the ore body/groundwater contact, and (3) migration of electrons in the ore body itself between the reducing and oxidizing zones. This polarization mechanism is responsible for an electrical field at the ground surface, the so-called self-potential anomaly. A new quick-look tomographic algorithm is developed to locate electrical dipolar sources in the subsurface of the Earth from the analysis of these self-potential signals. We applied this model to the self-potential anomaly discussed by Stoll et al. [1995] in the vicinity of the KTB-boreholes drilled during the Continental Deep Drilling Project in Germany. The source of this self-potential signal is related to the presence of massive graphite veins associated with steeply inclined fault zones within the gneisses and observed in the KTB-boreholes.

Revil, A.; Ehouarne, L.; Thyreault, E.

8

Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly  

NASA Astrophysics Data System (ADS)

Abstract<p label="1">The formation of electric <span class="hlt">potential</span> over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric <span class="hlt">potential</span> was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric <span class="hlt">potential</span> mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom <span class="hlt">energy</span> spectrometer SARA/CENA on Chandrayaan-1. Electrostatic <span class="hlt">potential</span> larger than +135 V inside the Gerasimovic <span class="hlt">anomaly</span> is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric <span class="hlt">potential</span> can influence the local plasma and dust environment near the magnetic <span class="hlt">anomaly</span>.</p> <div class="credits"> <p class="dwt_author">Futaana, Y.; Barabash, S.; Wieser, M.; Lue, C.; Wurz, P.; Vorburger, A.; Bhardwaj, A.; Asamura, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">9</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19890057880&hterms=combination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2522combination%2522"> <span id="translatedtitle">The combination of satellite and topographic/isostatic <span class="hlt">potential</span> models for mean <span class="hlt">anomaly</span> determinations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A method is presented for the estimation of a global gravity <span class="hlt">anomaly</span> field using the combination of satellite-derived <span class="hlt">potential</span> coefficient models and the coefficients implied by the Airy-Heiskanen topographic/isostatic <span class="hlt">potential</span> (Rummel et al., 1988) from topographic models with a 30-km depth of compensation. Gravity <span class="hlt">anomalies</span> calculated with this method are compared with a terrestrial 1 x 1 degree <span class="hlt">anomaly</span> file where the <span class="hlt">anomaly</span> standard deviations were less than 10 mgals. Using the GEM T1 model (Marsh et al., 1988) to degree 36, the rms <span class="hlt">anomaly</span> discrepency was + or - 19 mgals, while the rms values for the terrestrial <span class="hlt">anomalies</span> was + or - 28 mgals.</p> <div class="credits"> <p class="dwt_author">Rapp, Richard H.; Pavlis, Nikolaos</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">10</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvD..83a4005F"> <span id="translatedtitle">Random matrix model at nonzero chemical <span class="hlt">potentials</span> with <span class="hlt">anomaly</span> effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Phase diagram of the chiral random matrix model with U(1)A breaking term is studied with the quark chemical <span class="hlt">potentials</span> varied independently at zero temperature by taking the chiral and meson condensates as the order parameters. Although, without the U(1)A breaking term, chiral transition of each flavor can happen separately responding to its chemical <span class="hlt">potential</span>, the U(1)A breaking terms mix the chiral condensates and correlate the phase transitions. In the three-flavor case, we find that there are mixings between the meson and chiral condensates due to the U(1)A <span class="hlt">anomaly</span>, which makes the meson condensed phase more stable. Increasing the hypercharge chemical <span class="hlt">potential</span> (?Y) with the isospin and quark chemical <span class="hlt">potentials</span> (?I,?q) kept small, we observe that the kaon-condensed phase becomes the ground state and at the larger ?Y the pion-condensed phase appears unexpectedly, which is caused by the competition between the chiral restoration and the meson condensation. The similar happens when ?Y and ?I are exchanged, and the kaon-condensed phase becomes the ground state at larger ?I below the full chiral restoration.</p> <div class="credits"> <p class="dwt_author">Fujii, H.; Sano, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">11</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54868086"> <span id="translatedtitle">Quantitative Interpretation of Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> of Some Simple Geometric Bodies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have developed a new numerical method to determine the shape (shape factor), depth, polarization angle, and electric dipole moment of a buried structure from residual self-<span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span>. The method is based on defining the <span class="hlt">anomaly</span> value at the origin and four characteristic points and their corresponding distances on the <span class="hlt">anomaly</span> profile. The problem of shape determination from residual</p> <div class="credits"> <p class="dwt_author">E. M. Abdelrahman; K. S. Soliman; E. R. Abo-Ezz; K. S. Essa; T. M. El-Araby</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">12</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=IST681"> <span id="translatedtitle">Field Theory <span class="hlt">Anomalies</span> Involving the <span class="hlt">Energy</span>-Momentum Tensor.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Generalized Ward-Takahashi identities (WTI's) of the <span class="hlt">energy</span>--momentum tensor in a free spinor field theory with SU(3) currents were analyzed for possible noncanonical behavior (<span class="hlt">anomalies</span>). The WTI's, derived by a functional integration technique, are the ...</p> <div class="credits"> <p class="dwt_author">D. B. Zacrep</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">13</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52234234"> <span id="translatedtitle">A Least-squares Approach to Shape Determination from Residual Self-<span class="hlt">potential</span> <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have developed a least-squares minimization approach to determine the shape (shape-factor) of a buried polarized body from a residual self-<span class="hlt">potential</span> <span class="hlt">anomaly</span> profile. By defining the zero <span class="hlt">anomaly</span> distance and the <span class="hlt">anomaly</span> value at the origin on the profile, the problem of the shape-factor determination is transformed into the problem of finding a solution of a nonlinear equation of the</p> <div class="credits"> <p class="dwt_author">E. M. Abdelrahman; T. M. El-Araby; A. A. Ammar; H. I. Hassanein</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">14</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/1q061436121lv127.pdf"> <span id="translatedtitle">Quantitative Interpretation of Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> of Some Simple Geometric Bodies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have developed a new numerical method to determine the shape (shape factor), depth, polarization angle, and electric dipole\\u000a moment of a buried structure from residual self-<span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span>. The method is based on defining the <span class="hlt">anomaly</span> value\\u000a at the origin and four characteristic points and their corresponding distances on the <span class="hlt">anomaly</span> profile. The problem of shape\\u000a determination from residual</p> <div class="credits"> <p class="dwt_author">E. M. Abdelrahman; K. S. Soliman; E. R. Abo-Ezz; K. S. Essa; T. M. El-Araby</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">15</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20010013023&hterms=classifying+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dclassifying%2Brocks"> <span id="translatedtitle"><span class="hlt">Potential</span> Mars 2001 Sites Coincident with Magnetic <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Of the areas that meet the engineering criteria for MSP 01, only two are coincident with magnetic <span class="hlt">anomalies</span> measured by the MAG/ER instrument on MGS. Area A is centered on about 10 deg S, 202 deg W and extends from about 7.5 deg S to 15 S. This area is associated with three bands of magnetic <span class="hlt">anomalies</span>, two with positive values surrounding an area with negative values. Area B corresponds with a circular high positive magnetic <span class="hlt">anomaly</span> and is centered at 13.5 deg S, 166 deg W. In addition to magnetic <span class="hlt">anomalies</span>, the proposed sites have other attributes that make then attractive from of standpoint of meeting the objectives of the Mars Program. The landing site candidates meet the engineering requirements outlined on the Mars '01 landing site page htip://mars.jpl.nasa.gov/2001/landingsite. These are (source of data in parentheses): latitude between 3 deg N and 12 deg S, rock abundance between 5-10% (IRTM), fine-component thermal inertia > 4 cgs units (IRTM), topography < 2.5 km (MOLA). There are three exceptions: 1) Area B contains sites that lie up to about 15 deg S, 2) some sites are considered that have rock abundance values of 3-13%. 3) High resolution Viking coverage may not be available. These exceptions will be noted.</p> <div class="credits"> <p class="dwt_author">Gilmore, M. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014AIPC.1591..210P"> <span id="translatedtitle">How attractive interaction changes water-like <span class="hlt">anomalies</span> of a core-softened model <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Understanding the origin of anomalous properties of water is of prime importance. A pertinent question in this respect is: whether tetrahedral orientational interaction is a prerequisite for the manifestation of water-like <span class="hlt">anomalies</span>. Recently it is shown that spherically symmetric <span class="hlt">potentials</span> with two length scales, popularly known as coresoftened <span class="hlt">potentials</span> yield water-like <span class="hlt">anomalies</span>. In the present study, we investigate the effect of attractive interactions among the particles on the existence and location of density <span class="hlt">anomaly</span> in the temperature-density (T-?) plane. Using a suitable form of the core-softened <span class="hlt">potential</span>, we employ extensive molecular dynamic simulations to understand microscopic origin of the density <span class="hlt">anomaly</span> in terms of local structure of the model fluid. We observe that with the increase of the attractive interaction, the density <span class="hlt">anomaly</span> region shifts towards higher densities and higher temperatures.</p> <div class="credits"> <p class="dwt_author">Pant, Shashank; Gera, Tarun; Choudhury, Niharendu</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://waas.stanford.edu/~wwu/papers/gps/PDF/LuoIONGNSS05.pdf"> <span id="translatedtitle">LAAS Study of Slow-Moving Ionosphere <span class="hlt">Anomalies</span> and Their <span class="hlt">Potential</span> Impacts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Triggered by several severe ionosphere storms that have occurred in recent years, research has been done to studying those <span class="hlt">anomalies</span>, the physics behind them, and their <span class="hlt">potential</span> impact on augmented GNSS users. In previous work (1-5), it was found that such ionosphere <span class="hlt">anomalies</span> can threaten LAAS users under extreme conditions. To determine this, a spatial-gradient \\</p> <div class="credits"> <p class="dwt_author">Ming Luo; Sam Pullen; Seebany Datta-Barua; Godwin Zhang; Todd Walter; Per Enge</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27789492"> <span id="translatedtitle">Zero-point <span class="hlt">energies</span> and the multiplicative <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For the case of a relativistic scalar field at finite temperature with a chemical <span class="hlt">potential</span>, we calculate an exact expression for the one-loop effective action using the full fourth order determinant and zeta-function regularisation. We find that it agrees with the exact expression for the factored operator and thus there appears to be no mulitplicative <span class="hlt">anomaly</span>. The appearance of the</p> <div class="credits"> <p class="dwt_author">J. J. McKenzie-Smith; D. J. Toms</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51139587"> <span id="translatedtitle"><span class="hlt">Anomaly</span> detection in premise <span class="hlt">energy</span> consumption data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Demand Response (DR) programs are designed to reduce <span class="hlt">energy</span> consumption for relatively short time periods (e.g., a few hours per event). It has been widely recognized that DR can help to meet both reliability and market needs. In order for DR programs to achieve their full benefits, however, it is critical for utilities to accurately predict the reduction in <span class="hlt">energy</span></p> <div class="credits"> <p class="dwt_author">Yi Zhang; Weiwei Chen; Jason Black</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/45496673"> <span id="translatedtitle">Interpretation of spontaneous <span class="hlt">potential</span> <span class="hlt">anomalies</span> from some simple geometrically shaped bodies using neural network inversion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new approach is proposed in order to interpret spontaneous <span class="hlt">potential</span> (self-<span class="hlt">potential</span>) <span class="hlt">anomalies</span> related to simple geometric-shaped\\u000a models such as sphere, horizontal cylinder, and vertical cylinder. This approach is mainly based on using neural network inversion\\u000a of SP <span class="hlt">anomalies</span>, particularly modular algorithm, for estimating the parameters of different simple geometrical bodies. However,\\u000a Hilbert transforms are involved to determine the origin</p> <div class="credits"> <p class="dwt_author">Mansour A. Al-Garni</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www3.iptv.org/exploremore/energy/Energy_In_Depth/sections/potential.cfm"> <span id="translatedtitle"><span class="hlt">Potential</span> and kinetic <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">What is the difference between <span class="hlt">potential</span> and kinetic <span class="hlt">energy</span>? This informational piece, part of a series about the future of <span class="hlt">energy</span>, introduces students to kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span>. The law of conservation of <span class="hlt">energy</span> is explained, using the example of turning natural gas into electricity. Definitions and examples of <span class="hlt">potential</span> <span class="hlt">energy</span> and kinetic <span class="hlt">energy</span> are provided. Copyright 2005 Eisenhower National Clearinghouse</p> <div class="credits"> <p class="dwt_author">Project, Iowa P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://docs.ksu.edu.sa/PDF/Articles14/Article140049.pdf"> <span id="translatedtitle">A new method for complete quantitative interpretation of self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A least-squares minimization approach to determine the shape of a buried polarized body from a self-<span class="hlt">potential</span> (SP) <span class="hlt">anomaly</span> profile has been developed. By defining the <span class="hlt">anomaly</span> value at three points on the profile, one at the origin and the others at any two symmetrical points around the origin, the problem of the shape-factor determination is transformed into the problem of</p> <div class="credits"> <p class="dwt_author">Hesham M. El-Araby</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60703090"> <span id="translatedtitle">Random matrix model at nonzero chemical <span class="hlt">potentials</span> with <span class="hlt">anomaly</span> effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Phase diagram of the chiral random matrix model with U(1){sub A} breaking term is studied with the quark chemical <span class="hlt">potentials</span> varied independently at zero temperature by taking the chiral and meson condensates as the order parameters. Although, without the U(1){sub A} breaking term, chiral transition of each flavor can happen separately responding to its chemical <span class="hlt">potential</span>, the U(1){sub A} breaking</p> <div class="credits"> <p class="dwt_author">H. Fujii; T. Sano</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27607462"> <span id="translatedtitle">Random matrix model at nonzero chemical <span class="hlt">potentials</span> with <span class="hlt">anomaly</span> effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Phase diagram of the chiral random matrix model with U(1)A breaking term is studied with the quark chemical <span class="hlt">potentials</span> varied independently at zero temperature by taking the chiral and meson condensates as the order parameters. Although, without the U(1)A breaking term, chiral transition of each flavor can happen separately responding to its chemical <span class="hlt">potential</span>, the U(1)A breaking terms mix the</p> <div class="credits"> <p class="dwt_author">H. Fujii; T. Sano</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PApGe.tmp...19K"> <span id="translatedtitle">Inversion of Self <span class="hlt">Potential</span> <span class="hlt">Anomalies</span> with Multilayer Perceptron Neural Networks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This study investigates the inverse solution on a buried and polarized sphere-shaped body using the self-<span class="hlt">potential</span> method via multilayer perceptron neural networks (MLPNN). The polarization angle (?), depth to the centre of sphere (h), electrical dipole moment (K) and the zero distance from the origin (x 0) were estimated. For testing the success of the MLPNN for sphere model, parameters were also estimated by the traditional Damped Least Squares (Levenberg-Marquardt) inversion technique (DLS). The MLPNN was first tested on a synthetic example. The performance of method was also tested for two S/N ratios (5 % and 10 %) by adding noise to the same synthetic data, the estimated model parameters with MLPNN and DLS method are satisfactory. The MLPNN also applied for the field data example in ?zmir, Urla district, Turkey, with two cross-section data evaluated by MLPNN and DLS, and the two methods showed good agreement.</p> <div class="credits"> <p class="dwt_author">Kaftan, Ilknur; S?nd?rg?, Petek; Akdemir, Özer</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21336101"> <span id="translatedtitle">Nonrelativistic inverse square <span class="hlt">potential</span>, scale <span class="hlt">anomaly</span>, and complex extension</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The old problem of a singular, inverse square <span class="hlt">potential</span> in nonrelativistic quantum mechanics is treated employing a field-theoretic, functional renormalization method. An emergent contact coupling flows to a fixed point or develops a limit cycle depending on the discriminant of its quadratic beta function. We analyze the fixed points in both conformal and nonconformal phases and perform a natural extension of the renormalization group analysis to complex values of the contact coupling. Physical interpretation and motivation for this extension is the presence of an inelastic scattering channel in two-body collisions. We present a geometric description of the complex generalization by considering renormalization group flows on the Riemann sphere. Finally, using bosonization, we find an analytical solution of the extended renormalization group flow equations, constituting the main result of our work.</p> <div class="credits"> <p class="dwt_author">Moroz, Sergej [Institut fuer Theoretische Physik Universitaet Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)], E-mail: s.moroz@thphys.uni-heidelberg.de; Schmidt, Richard [Physik Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JChPh.139x4505P"> <span id="translatedtitle">Effect of attractive interactions on the water-like <span class="hlt">anomalies</span> of a core-softened model <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is now well established that water-like <span class="hlt">anomalies</span> can be reproduced by a spherically symmetric <span class="hlt">potential</span> with two length scales, popularly known as core-softened <span class="hlt">potential</span>. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened <span class="hlt">potential</span> on the existence and location of various water-like <span class="hlt">anomalies</span> in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the <span class="hlt">potentials</span>. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic <span class="hlt">anomalies</span>. As many of the previous studies involving model water and a class of core softened <span class="hlt">potentials</span> have concluded that the structural <span class="hlt">anomaly</span> region encloses the diffusion <span class="hlt">anomaly</span> region, which in turn, encloses the density <span class="hlt">anomaly</span> region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion <span class="hlt">anomaly</span> region shifts toward higher densities and is not always enclosed by the structural <span class="hlt">anomaly</span> region. Also, density <span class="hlt">anomaly</span> region is not completely enclosed by diffusion <span class="hlt">anomaly</span> region in this case.</p> <div class="credits"> <p class="dwt_author">Pant, Shashank; Gera, Tarun; Choudhury, Niharendu</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/43076674"> <span id="translatedtitle">Shape and depth determinations from second moving average residual self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have developed a semi-automatic method to determine the depth and shape (shape factor) of a buried structure from second moving average residual self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> obtained from observed data using filters of successive window lengths. The method involves using a relationship between the depth and the shape to source and a combination of windowed observations. The relationship represents a parametric</p> <div class="credits"> <p class="dwt_author">E M Abdelrahman; T M El-Araby; K S Essa</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870009504&hterms=molodensky&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2522molodensky%2522"> <span id="translatedtitle">Spherical harmonic expansions of the Earth's gravitational <span class="hlt">potential</span> to degree 360 using 30' mean <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Two <span class="hlt">potential</span> coefficient fields that are complete to degree and order 360 have been computed. One field (OSU86E) excludes geophysically predicted <span class="hlt">anomalies</span> while the other (OSU86F) includes such <span class="hlt">anomalies</span>. These fields were computed using a set of 30' mean gravity <span class="hlt">anomalies</span> derived from satellite altimetry in the ocean areas and from land measurements in North America, Europe, Australia, Japan and a few other areas. Where no 30' data existed, 1 deg x 1 deg mean <span class="hlt">anomaly</span> estimates were used if available. No rigorous combination of satellite and terrestrial data was carried out. Instead advantage was taken of the adjusted <span class="hlt">anomalies</span> and <span class="hlt">potential</span> coefficients from a rigorous combination of the GEML2' <span class="hlt">potential</span> coefficient set and 1 deg x 1 deg mean gravity <span class="hlt">anomalies</span>. The two new fields were computed using a quadrature procedure with de-smoothing factors. The spectra of the new fields agree well with the spectra of the fields with 1 deg x 1 deg data out to degree 180. Above degree 180 the new fields have more power. The fields have been tested through comparison of Doppler station geoid undulations with undulations from various geopotential models. The agreement between the two types of undulations is approximately + or - 1.6 m. The use of a 360 field over a 180 field does not significantly improve the comparison. Instead it allows the comparison to be done at some stations where high frequency effects are important. In addition maps made in areas of high frequency information (such as trench areas) clearly reveal the signal in the new fields from degree 181 to 360.</p> <div class="credits"> <p class="dwt_author">Rapp, Richard H.; Cruz, Jaime Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://jersey.uoregon.edu/vlab/PotentialEnergy/index.html"> <span id="translatedtitle">Virtual Laboratory: <span class="hlt">Potential</span> <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This web page provides an introduction to mechanical <span class="hlt">energy</span>, focusing on gravity. It includes a java simulation of a dropped ball showing the conversion of <span class="hlt">potential</span> <span class="hlt">energy</span> into kinetic <span class="hlt">energy</span>. Non-elastic collisions with the ground are included, although there is no discussion of the resultant lost <span class="hlt">energy</span>. Users can change the mass, initial <span class="hlt">energy</span>, and percentage of the <span class="hlt">energy</span> lost during collisions. This item is part of a larger collection of virtual laboratories for physics, astronomy, and environmental science.</p> <div class="credits"> <p class="dwt_author">Bothun, Gregory</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-03</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60545085"> <span id="translatedtitle">Detecting and modeling persistent self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> from underground nuclear explosions at the Nevada Test Site</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> are naturally occurring, nearly stationary electric fields that are detected by measuring the <span class="hlt">potential</span> difference between two points on (or in) the ground. SP <span class="hlt">anomalies</span> arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress</p> <div class="credits"> <p class="dwt_author">H. L. McKague; E. Kansa; P. W. Kasameyer</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70023652"> <span id="translatedtitle">Rapid fluid disruption: A source for self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> on volcanoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">Self-<span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span> observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP <span class="hlt">anomalies</span> are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) <span class="hlt">potentials</span> and electrokinetic <span class="hlt">potentials</span> to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static <span class="hlt">potentials</span> will be set up that could be sustained for many years, and the simplest method for identifying these hot, active regions would be to identify the SP <span class="hlt">anomalies</span> they generate.</p> <div class="credits"> <p class="dwt_author">Johnston, M. J. S.; Byerlee, J. D.; Lockner, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19770048221&hterms=bouguer+anomaly+gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbouguer%2Banomaly%2Bgravity"> <span id="translatedtitle">On the gravitational <span class="hlt">potential</span> and field <span class="hlt">anomalies</span> due to thin mass layers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The gravitational <span class="hlt">potential</span> and field <span class="hlt">anomalies</span> for thin mass layers are derived using the technique of matched asymptotic expansions. An inner solution is obtained using an expansion in powers of the thickness and it is shown that the outer solution is given by a surface distribution of mass sources and dipoles. Coefficients are evaluated by matching the inner expansion of the outer solution with the outer expansion of the inner solution. The leading term in the inner expansion for the normal gravitational field gives the Bouguer formula. The leading term in the expansion for the gravitational <span class="hlt">potential</span> gives an expression for the perturbation to the geoid. The predictions given by this term are compared with measurements by satellite altimetry. The second-order terms in the expansion for the gravitational field are required to predict the gravity <span class="hlt">anomaly</span> at a continental margin. The results are compared with observations.</p> <div class="credits"> <p class="dwt_author">Ockendon, J. R.; Turcotte, D. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.P43F..06W"> <span id="translatedtitle">Laboratory studies of magnetic <span class="hlt">anomaly</span> effects on electric <span class="hlt">potential</span> distributions near the lunar surface</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic <span class="hlt">anomalies</span>. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic <span class="hlt">anomalies</span>. Plasmas are created above the surface by a hot filament discharge. <span class="hlt">Potential</span> distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface <span class="hlt">potential</span> at the center of the magnetic dipole is found close to the plasma bulk <span class="hlt">potential</span>. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A <span class="hlt">potential</span> minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the <span class="hlt">potential</span> minimum with respect to the bulk plasma <span class="hlt">potential</span> decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The <span class="hlt">potential</span> at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.</p> <div class="credits"> <p class="dwt_author">Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado Center for Lunar Dust; Atmospheric Studies</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997PhRvE..56.4922T"> <span id="translatedtitle">Specific heat <span class="hlt">anomalies</span> associated with Cantor-set <span class="hlt">energy</span> spectra</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Most physical models on quasicrystals, as well as the related experimental results, exhibit fractal <span class="hlt">energy</span> spectra. In order to have a deep insight on relevant thermodynamic implications of this feature, we have performed analytical and high precision numerical calculations of the specific heats Cbandn and Cdiscn associated with successive hierarchical approximations (n=1,2,3,...) to bounded Cantor-set <span class="hlt">energy</span> spectra (constructed with sets of continuous intervals for the banded case, and with discrete levels for the discretecase). Instructive <span class="hlt">anomalies</span> are exhibited, namely (i) Cbandn(T) and Cdiscn(T) differ for all temperatures and finite n (in particular, in units of kB, Cdiscn(0)=0 whereas Cbandn(0)=1), but, through an interesting nonuniform convergence, Cband?(T)=Cdisc?(T)?C?(T) for all finite temperatures; (ii) in the T-->0 limit, C?(T) exhibits an infinite number of small-amplitude oscillations symmetrically disposed precisely around the fractal dimensionality df=ln2/ln3; more precisely, C?(T)~C*(T), where C*(T)=C*(3T)=??k=-?[3kTcosh(1/3kT)]-2 =ln2/ln3+asin[2?ln(bT)/ln3]+?(T) with a=1.27...×10-2, b=1.97... and ?(T)<5×10-4 (? T) (T is measured in units of the outermost width of the Cantor set); (iii) in the T-->? limit, C?(T)~1/8T2. In addition to this, we comment on a possible connection of this type of systems with the recently introduced nonextensive thermostatistics.</p> <div class="credits"> <p class="dwt_author">Tsallis, Constantino; da Silva, Luciano R.; Mendes, Renio S.; Vallejos, Raúl O.; Mariz, Ananias M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFM.V31B2783H"> <span id="translatedtitle">Magmatic reservoir modeling of the Azufral Volcano from interpreted <span class="hlt">potential</span> field <span class="hlt">anomalies</span>, Nariño, Colombia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Azufral Volcano is an active volcano located at 1 ° 5 'N, 77 ° 43'W, at 565 km from Bogotá, in the Southern Colombian Andes. The volcano has a semicircular crater that involves a lake and four generations of rhyodacitic domes. The crater lake has a width of 300 m and a length of 1 km approximately. Azufral is considered one of the most explosive volcanoes of Colombia, apparently with a valuable geothermal <span class="hlt">potential</span> . A gravity and magnetic survey was carried out in an area of approximately 600 km2, in the Volcano influence zone. Data reduction, data filtering and spectral analysis were applied in order to highlight details on the gravity <span class="hlt">anomalies</span> that allowed correlation analysis with the general geological setting of the area including the volcano. The Complete Bouguer <span class="hlt">Anomaly</span> map shows in general, two large blocks NE-SW trend coincident with the general direction of the faults in the region, showing between these two sites a total absolute change of about 118 mGal. Spectral analysis, Euler Deconvolution showed that the region trend is that the bodies that generate the <span class="hlt">anomalies</span> are located in predominantly shallow crustal levels, less than 5 km above the volcano summit. Profile modeling in the WE direction and passing through the volcano, shows stratified deposits, typical for volcanic regions with vertical density variations from the basement, modeled at about 3 km over the summit, to shallow levels where are modeled ignimbrites, Lavas, moraines and lava domes located in the vicinity of the crater lake. In the crater lake area it is possible to outline the probable existence of an elongated zone, with a top at around 2 km deep, extending in depth about 2 km, that can be associated with an abnormal structure that is the causative body of a clear negative <span class="hlt">anomaly</span> on this particular zone.</p> <div class="credits"> <p class="dwt_author">Hernandez, O.; Gomez, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009EGUGA..11.3959A"> <span id="translatedtitle">Edge detection of <span class="hlt">potential</span> field <span class="hlt">anomalies</span> using tilt angle and its inferred filters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Potential</span> field images that are obtained in <span class="hlt">potential</span> field methods (Gravity, Magnetic) are used worldwide as part of exploration programs for mineral resources. These images consist of different <span class="hlt">anomalies</span> which in many cases are coated with noises. In order to extraction details of these images and enhancing their features, filtering techniques are applied. In this process more effort is balance between signals and noises in filtered images. When data quality permits a range of high-pass filters, such as upward continuation and vertical derivative, can be used to bring out fine details. However, since they are a form of high-pass filter they also have an undesirable property of enhancing noise. Other applied filters are local phase filters such as tilt angle filter and theta filter which fundamentally of these filters are local phase measuring of the <span class="hlt">potential</span> field data over images. The tilt angle is ratio of the vertical derivative to absolute amplitude of the total horizontal derivative. The tilt angle is positive when over the causative body, zero near body edges and negative outside the body. Advantages of this filter are possibility of comparison between its results to derivative-based filters, its dimensionless nature and simple interpretation rather than analytic signal. Disadvantage of this filter is encountering with deep sources the detected edge is blurred as form of hallo. For overcome this problem such new tilt inferred filters namely total horizontal derivative of tilt angle (THDR), 2-order vertical derivative of tilt angle, normalized total horizontal derivative (NTHD) are introduced which produce more improvement results. These filters produce useful information in both deep and shallow sources. Furthermore these filters act as a method to separate regional <span class="hlt">anomalies</span> from residual <span class="hlt">anomalies</span>. In this work we applied these filters on synthetic gravity data and on real aeromagnetic data from Abadeh quadrangle in Iran. This region has been located in 55° 35' longitudes and 32° 31' latitude. The main structure in this area is Dehshir-Baft fault with NW-SE trend which separates Shirkooh granite in northeast from Abarkooh plain in center. Other magnetic <span class="hlt">anomaly</span> source is ophiolite outcrop in southeast. With application of these fitters the main geological and structural features such as basic lava in south, ophiolite outcrops in southeast and main fault with NE_SW in northeast have been enhanced. Keywords: <span class="hlt">Potential</span> field, Signal, High-pass filter, Derivative-based filter, Local-phase filter, Tilt angle, THDR, NTHD</p> <div class="credits"> <p class="dwt_author">Alamdar, K.; Ansari, A. H.; Ghorbani, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/882035"> <span id="translatedtitle">Interpretation of Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> Using Constitutive Relationships for Electrochemical and Thermoelectric Coupling Coefficients</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Constitutive relationships for electrochemical and thermoelectric cross-coupling coefficients are derived using ionic mobilities, applying a general derivative of chemical <span class="hlt">potential</span> and employing the zero net current condition. The general derivative of chemical <span class="hlt">potential</span> permits thermal variations which give rise to the thermoelectric effect. It also accounts for nonideal solution behavior. An equation describing electric field strength is similarly derived with the additional assumption of electrical neutrality in the fluid Planck approximation. The Planck approximation implies that self-<span class="hlt">potential</span> (SP) is caused only by local sources and also that the electric field strength has only first order spatial variations. The derived relationships are applied to the NaCl-KCl concentration cell with predicted and measured voltages agreeing within 0.4 mV. The relationships are also applied to the Long Valley and Yellowstone geothermal systems. There is a high degree of correlation between predicted and measured SP response for both systems, giving supporting evidence for the validity of the approach. Predicted SP amplitude exceeds measured in both cases; this is a possible consequence of the Planck approximation. Electrochemical sources account for more than 90% of the predicted response in both cases while thermoelectric mechanisms account for the remaining 10%; electrokinetic effects are not considered. Predicted electrochemical and thermoelectric voltage coupling coefficients are comparable to values measured in the laboratory. The derived relationships are also applied to arbitrary distributions of temperature and fluid composition to investigate the geometric diversity of observed SP <span class="hlt">anomalies</span>. Amplitudes predicted for hypothetical saline spring and hot spring environments are less than 40 mV. In contrast, hypothetical near surface steam zones generate very large amplitudes, over 2 V in one case. These results should be viewed with some caution due to the uncertain validity of the Planck approximation for these conditions. All amplitudes are controlled by electrochemical mechanisms. Polarities are controlled by the curvature of the concentration or thermal profile. Concave upward thermal profiles produce positive <span class="hlt">anomalies</span>, for constant fluid concentrations, whereas concave upward concentration profiles produce negative <span class="hlt">anomalies</span>. Concave downward concentration profiles are characterized by small negative closures bounding a larger, positive SP <span class="hlt">anomaly</span>.</p> <div class="credits"> <p class="dwt_author">Knapp, R. B.; Kasameyer, P. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014MarGR..35....1M"> <span id="translatedtitle">Evaluating Cenozoic equatorial sediment deposition <span class="hlt">anomalies</span> for <span class="hlt">potential</span> paleoceanographic and Pacific plate motion applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">If equatorial sediments form characteristic deposits around the equator, they may help to resolve the amount of northwards drift of the Pacific tectonic plate. Relevant to this issue, it has been shown that 230Th has been accumulating on the equatorial seabed faster than its production from radioactive decay in the overlying water column during the Holocene (Marcantonio et al. in Paleoceanography 16:260-267, 2001). Some researchers have argued that this reflects the deposition of particles with adsorbed 230Th carried by bottom currents towards the equator ("focusing"). If correct, this effect may combine with high pelagic productivity, which is also centered on the equator, to yield a characteristic signature of high accumulation rates marking the paleoequator in older deposits. Here we evaluate <span class="hlt">potential</span> evidence that such an equatorial feature existed in the geological past. Seismic reflection data from seven meridional transects suggest that a band of equatorially enhanced accumulation of restricted latitude was variably developed, both spatially and temporally. It is absent in the interval 14.25-20.1 Ma but is well developed for the interval 8.55-14.25 Ma. We also examined eolian dust accumulation rate histories generated from scientific drilling data. A dust accumulation rate <span class="hlt">anomaly</span> near the modern equator, which is not obviously related to the inter-tropical convergence zone, is interpreted as caused by focusing. Accumulation rates of Ba and P2O5 (proxies of export production) reveal a static equatorial signature, which suggests that the movement of the Pacific plate over the period 10-25 Ma was modest. The general transition from missing to well-developed focusing signatures around 14.25 Ma in the seismic data coincides with the mid-Miocene development of the western boundary current off New Zealand. This current supplies the Pacific with deep water from Antarctica, and could therefore imply a <span class="hlt">potential</span> paleoceanographic or paleoclimatic origin. At 10.05-14.25 Ma, the latitudes of the seismic <span class="hlt">anomalies</span> are up to ~2° different from the paleoequator predicted by Pacific plate-hotspot models, suggesting <span class="hlt">potentially</span> a small change in the hotspot latitudes relative to the present day (although this inference depends on the precise form of the deposition around the equator). The Ba and P2O5 <span class="hlt">anomalies</span>, on the other hand, are broadly compatible with plate models predicting slow northward plate movement over 10-25 Ma.</p> <div class="credits"> <p class="dwt_author">Mitchell, Neil C.; Dubois, Nathalie</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1059713"> <span id="translatedtitle">Addressing the Challenges of <span class="hlt">Anomaly</span> Detection for Cyber Physical <span class="hlt">Energy</span> Grid Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The consolidation of cyber communications networks and physical control systems within the <span class="hlt">energy</span> smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of <span class="hlt">anomalies</span> and changes. However, <span class="hlt">anomaly</span> detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, <span class="hlt">energy</span> grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to <span class="hlt">anomaly</span> detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to <span class="hlt">anomaly</span> detection is adopted that allows for regulation of false alerts and comparison of <span class="hlt">anomalies</span> across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of <span class="hlt">anomalies</span> at multiple scales.</p> <div class="credits"> <p class="dwt_author">Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Melin, Alexander M [ORNL; Czejdo, Bogdan [ORNL</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFM.V53A1720L"> <span id="translatedtitle">Spontaneous <span class="hlt">Potential</span> <span class="hlt">Anomalies</span> on Active Volcanoes: New Time and Spatial Series from Masaya, Telica, and Cerro Negro, Nicaragua</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Considerable effort worldwide has gone into monitoring heat and mass transfer at active volcanoes because such information may provide clues about changes in volcanic activity and impending eruptions. Here we present new time and spatial series of spontaneous <span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span> from Masaya and Telica volcanoes, and spatial series collected at Cerro Negro volcano. Our primary purpose is to investigate correlations between more easily and cheaply monitored SP and CO2 gas flux, measured by an infrared CO2 analysis system. SP data were collected using nonpolarizing Pb-PbCL2 electrodes that we constructed following the approach of Petiau. Mapping at both Masaya, and Cerro Negro reveals broad correlations between SP <span class="hlt">anomalies</span> and CO2 flux through soils. In addition, we monitored temperature, barometric pressure, and rainfall at one minute intervals from May-August, 2006 at Masaya and Telica volcanoes. During this period it is clear that SP responds to changes in volcanic activity, with transient <span class="hlt">anomalies</span> of 75 mV as well as atmospheric forcing due to rainfall, producing <span class="hlt">anomalies</span> of 56 mV and related phenomena. Preliminary lab experiments provide further details of the electrokinetic origin of these SP <span class="hlt">anomalies</span>. Our preliminary work supports the idea that large and inexpensive networks of electrodes might track changes in SP <span class="hlt">anomalies</span> associated with changes in mass flow at active volcanoes.</p> <div class="credits"> <p class="dwt_author">Lehto, H.; Pearson, S.; Connor, C.; Sanford, W.; Saballos, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JChPh.133x4506D"> <span id="translatedtitle">Effects of the attractive interactions in the thermodynamic, dynamic, and structural <span class="hlt">anomalies</span> of a two length scale <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using molecular dynamic simulations, we study a system of particles interacting through a continuous core-softened <span class="hlt">potentials</span> consisting of a hard core, a shoulder at closest distances, and an attractive well at further distance. We obtain the pressure-temperature phase diagram of this system for various depths of the tunable attractive well. Since this is a two length scale <span class="hlt">potential</span>, density, diffusion, and structural <span class="hlt">anomalies</span> are expected. We show that the effect of increasing the attractive interaction between the molecules is to shrink the region in pressure in which the density and the diffusion <span class="hlt">anomalies</span> are present. If the attractive forces are too strong, particle will be predominantly in one of the two length scales and no density of diffusion <span class="hlt">anomaly</span> is observed. The structural anomalous region is present for all the cases.</p> <div class="credits"> <p class="dwt_author">da Silva, Jonathas Nunes; Salcedo, Evy; de Oliveira, Alan Barros; Barbosa, Marcia C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/10123754"> <span id="translatedtitle">Detecting and modeling persistent self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> from underground nuclear explosions at the Nevada Test Site</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> are naturally occurring, nearly stationary electric fields that are detected by measuring the <span class="hlt">potential</span> difference between two points on (or in) the ground. SP <span class="hlt">anomalies</span> arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these <span class="hlt">anomalies</span> that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP <span class="hlt">anomalies</span>. We not only detected <span class="hlt">anomalies</span>, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs.</p> <div class="credits"> <p class="dwt_author">McKague, H.L.; Kansa, E.; Kasameyer, P.W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-22</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52232885"> <span id="translatedtitle">A least-squares minimisation approach to depth determination from numerical second horizontal self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative <span class="hlt">anomalies</span> obtained from self-<span class="hlt">potential</span> (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of</p> <div class="credits"> <p class="dwt_author">El-Sayed Mohamed Abdelrahman; Khalid Soliman; Khalid Sayed Essa; Eid Ragab Abo-Ezz; Tarek Mohamed El-Araby</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.publish.csiro.au/?act=view_file&file_id=EG08123.pdf"> <span id="translatedtitle">A least-squares minimisation approach to depth determination from numerical second horizontal self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative <span class="hlt">anomalies</span> obtained from self-<span class="hlt">potential</span> (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric pointswithrespecttothecoordinateoftheprojectionofthecentreofthesourceintheplaneofthemeasurementpointswitha free parameter (graticule spacing). The problem of depth determination</p> <div class="credits"> <p class="dwt_author">El-Sayed Mohamed Abdelrahman; Khalid Soliman; Khalid Sayed Essa; Eid Ragab Abo-Ezz; Tarek Mohamed El-Araby</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/hew06.sci.phys.maf.lpenergy/"> <span id="translatedtitle">Investigating Kinetic and <span class="hlt">Potential</span> <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Students use media resources and an in-class investigation to explore the types of <span class="hlt">energy</span> within different types of systems. They also use the formulas for kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span> to examine the path of a projectile.</p> <div class="credits"> <p class="dwt_author">Foundation, Wgbh E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFMGP43B0800S"> <span id="translatedtitle">Drainage-Divide Approach to Finding Boundaries of Geologic Bodies Using Gradients of 2D <span class="hlt">Potential</span> Field <span class="hlt">Anomalies</span> and 3D Tomographic Velocity <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The locations of steep horizontal gradients of gravity and magnetic <span class="hlt">anomalies</span> often approximate the locations of edges of geologic source bodies, especially shallow sources. Typically, colored or contoured plots of horizontal gradient values display curvilinear high ridges that separate regions of low gradient. Various approaches have been suggested for locating ridge points and for connecting them to form continuous boundaries. A common approach for locating ridges is to examine variously oriented cross- sections at each point in the gradient field for parabolic-shaped cross-sections indicative of a ridge, or to attempt to fit a paraboloid to a small grid of points surrounding the point of interest. Although the resulting collection of ridge points determined by these methods yields a set of curvilinear lines, these lines are often disconnected and do not form continuous boundaries around the intervening low-gradient areas, which would be useful if one wished to "terrace" (as with rice fields) the <span class="hlt">potential</span> field <span class="hlt">anomalies</span> (e.g., Cordell and McCafferty, 1989), thereby delineating the "bodies" inferred from the ridge lines of steepest gradient. Mother nature has provided a convenient way for discovering ridges using the flow of raindrops. Gradient ridges form "drainage divides" separating "drainage basins" in the gradient field. Our approach is to identify the lows in the gridded gradient field, and then to determine into which low a raindrop falling at each gridpoint will ultimately come to rest, so that each low corresponds to a drainage basin. This can result in a great many drainage basins for noisy data, but consolidating nearby lows or putting "lakes" in low areas can simplify the pattern of basins. Ridge points can also be tagged with the value of the gradient at the point, offering some quality assessment of boundary lines. One advantage is that drainage basins translate directly into terrace regions. The approach can be easily extended to 3D data sets such as tomographic velocity models where 3D <span class="hlt">anomalies</span> in velocity may, in some cases, be caused by geologic bodies with sharp contacts that it would be desirable to locate.</p> <div class="credits"> <p class="dwt_author">Simpson, R. W.; Jachens, R. C.; Langenheim, V. E.; Hildenbrand, T. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.biomedcentral.com/content/pdf/1476-072X-5-60.pdf"> <span id="translatedtitle">Developing global climate <span class="hlt">anomalies</span> suggest <span class="hlt">potential</span> disease risks for 2006 – 2007</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">BACKGROUND: El Niño\\/Southern Oscillation (ENSO) related climate <span class="hlt">anomalies</span> have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA\\/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation</p> <div class="credits"> <p class="dwt_author">Assaf Anyamba; Jean-Paul Chretien; Jennifer Small; Compton J Tucker; Kenneth J Linthicum</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=72355"> <span id="translatedtitle">PERINATAL EXPOSURE TO ENDOCRINE DISRUPTING CHEMICALS: <span class="hlt">POTENTIAL</span> ROLE OF HORMONAL ALTERATIONS IN INITIATING ADULT REPRODUCTIVE <span class="hlt">ANOMALIES</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">The primary hypothesis to be tested in this series of studies is whether or not exposure to environmental agents, during certain key periods of development, will increase the risk of specific <span class="hlt">anomalies</span> of the reproductive system. Embedded in this hypothesis is the assumption that...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52794405"> <span id="translatedtitle">Classification of Self-<span class="hlt">potential</span> <span class="hlt">Anomalies</span> on Volcanoes and Its Implication for the Hydraulic Structure Deduced From SP Surveys on 10 Island-arc Type Volcanoes in Japan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is widely believed that the self <span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span> on volcanoes provide information on the subsurface hydraulic and hydrothermal flow. Many studies report that the SP around active craters or fissures is relatively positive and is interpreted as a manifestation of an upward hydrothermal flow. However, there are no SP <span class="hlt">anomalies</span> on some volcanoes in which the hydrothermal upwelling</p> <div class="credits"> <p class="dwt_author">K. Aizawa; M. Uyeshima; O. Kuwano</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19790020473&hterms=conventional+method&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2522conventional%2Bmethod%2522"> <span id="translatedtitle">Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity <span class="hlt">anomalies</span> and <span class="hlt">potential</span> coefficients</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of <span class="hlt">potential</span> harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the <span class="hlt">potential</span> coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity <span class="hlt">anomaly</span> data within this zone.</p> <div class="credits"> <p class="dwt_author">Jekeli, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995JGR...10010197J"> <span id="translatedtitle">Streaming <span class="hlt">potential</span> and permeability of saturated sandstones under triaxial stress: Consequences for electrotelluric <span class="hlt">anomalies</span> prior to earthquakes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The streaming <span class="hlt">potential</span>, due to fluid circulation in rock, was measured on saturated sediments (Fontainebleau sandstones). The electrokinetic coupling coefficient, which is the ratio of the streaming <span class="hlt">potential</span> and the excess pore pressure, is proportional to the fluid resistivity. Additionally, for a fluid conductivity of 10-3 S/m, the electrokinetic coupling coefficient varies from 10 to 6642 mV/0.1 MPa for sample permeability in the range of permeabilities from 0.15 × 10-15 to 1220 × 10-15 m2. The different values of the electrokinetic coupling coefficient have been explained by the effect of increasing surface conductivity which becomes nonnegligible compared to fluid conductivity for low permeability. When the sample is deformed under triaxial stress up to failure, the vertical permeability (along the principal stress) drops by about 0.20%/0.1 MPa when failure occurs. The typical variation of the electrokinetic coupling coefficient is a large increase beginning with the onset of the localization of the shear band at about 75% of the yield stress and stopping at the failure. This increase of the electrokinetic coupling coefficient is due to an increase of ? <span class="hlt">potential</span> in the shear zone when new surfaces are created and connected. Possible consequences of our results are given concerning the electrical fields which could appear during the preparation of an earthquake. It is shown that in some cases, self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> reported in the deformed zone preceding an earthquake occurrence could be due to an increase of the electrokinetic coupling coefficient from 75% of the yield stress to rupture in the vicinity of one of the electrodes. Any variation of fluid resistivity or permeability in the vicinity of one electrode could change the electrokinetic coupling coefficient, inducing a surface electrokinetic <span class="hlt">potential</span> <span class="hlt">anomaly</span>. In regard to the interpretation of the electrokinetic effect which occurs at large distance from the epicenter, a larger electrokinetic <span class="hlt">potential</span> <span class="hlt">anomaly</span> could be measured between electrodes situated along a vertical fluid flow, for instance, in a shallow borehole. An electrokinetic <span class="hlt">potential</span> <span class="hlt">anomaly</span> up to 30 mV, for a fluid conductivity of 0.01 S/m and a rock permeability of 10-12 m2, could be observed with a change of the underground water table level as slight as 50 cm (50 mbar). Moreover, if the permeability between the electrodes is increased by a factor of 8 × 103, the electrokinetic coupling coefficient could be enhanced by a factor up to 650.</p> <div class="credits"> <p class="dwt_author">Jouniaux, Laurence; Pozzi, Jean-Pierre</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002600/a002695/index.html"> <span id="translatedtitle">SST <span class="hlt">Anomalies</span> + Wind <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Sea surface temperature (SST) <span class="hlt">anomalies</span> and sea surface wind <span class="hlt">anomalies</span> show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).</p> <div class="credits"> <p class="dwt_author">Shirah, Greg; Allen, Jesse; Adamec, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/963444"> <span id="translatedtitle">LHC Physics <span class="hlt">Potential</span> versus <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Parton luminosities are convenient for estimating how the physics <span class="hlt">potential</span> of Large Hadron Collider experiments depends on the <span class="hlt">energy</span> of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the <span class="hlt">energy</span> range relevant to the Large Hadron Collider, along with example analyses for specific processes.</p> <div class="credits"> <p class="dwt_author">Quigg, Chris; /Fermilab</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AIPC.1325..164S"> <span id="translatedtitle">Application of Qualitative and Quantitative Analyses of Self-<span class="hlt">Potential</span> <span class="hlt">Anomaly</span> in Caves Detection in Djuanda Forest Park, Bandung</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-<span class="hlt">Potential</span> (SP) is naturally occurring electric <span class="hlt">potential</span> difference observed at the surface. In the vicinity of a cave, SP <span class="hlt">anomaly</span> is dominantly generated by the resistivity contrast of the cave with its environment and the current source associated with the streaming <span class="hlt">potential</span> generated by fluid flow through the cave. In this study we applied a simple qualitative analysis to understand the SP values caused by streaming <span class="hlt">potential</span> and values that are due to the presence of caves. Further, we conducted two-dimensional SP continuous modeling by solving the fluid velocity vector first in the modeling domain. Current source distribution and hence the SP value are obtained by incorporating resistivity value of the subsurface and calculating the divergence of the velocity vector. For validation, this scheme was applied in detection caves dug by Japanese army during WWII as at Djuanda Forest Park, Bandung. The results can be used to understand the characteristics of fluid flow and current source distribution around cavities that are responsible for the observed SP <span class="hlt">anomaly</span> at the surface.</p> <div class="credits"> <p class="dwt_author">Srigutomo, Wahyu; Arkanuddin, Muhammad R.; Pratomo, Prihandhanu M.; Novana, Eka C.; Agustina, Rena D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020087569&hterms=Solar+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522Solar%2Benergy%2522"> <span id="translatedtitle">Global Surface Solar <span class="hlt">Energy</span> <span class="hlt">Anomalies</span> Including El Nino and La Nina Years</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This paper synthesizes past events in an attempt to define the general magnitude, duration, and location of large surface solar <span class="hlt">anomalies</span> over the globe. Surface solar <span class="hlt">energy</span> values are mostly a function of solar zenith angle, cloud conditions, column atmospheric water vapor, aerosols, and surface albedo. For this study, solar and meteorological parameters for the 10-yr period July 1983 through June 1993 are used. These data were generated as part of the Release 3 Surface meteorology and Solar <span class="hlt">Energy</span> (SSE) activity under the NASA Earth Science Enterprise (ESE) effort. Release 3 SSE uses upgraded input data and methods relative to previous releases. Cloud conditions are based on recent NASA Version-D International Satellite Cloud Climatology Project (ISCCP) global satellite radiation and cloud data. Meteorological inputs are from Version-I Goddard Earth Observing System (GEOS) reanalysis data that uses both weather station and satellite information. Aerosol transmission for different regions and seasons are for an 'average' year based on historic solar <span class="hlt">energy</span> data from over 1000 ground sites courtesy of Natural Resources Canada (NRCan). These data are input to a new Langley Parameterized Shortwave Algorithm (LPSA) that calculates surface albedo and surface solar <span class="hlt">energy</span>. That algorithm is an upgraded version of the 'Staylor' algorithm. Calculations are performed for a 280X280 km equal-area grid system over the globe based on 3-hourly input data. A bi-linear interpolation process is used to estimate data output values on a 1 X 1 degree grid system over the globe. Maximum <span class="hlt">anomalies</span> are examined relative to El Nino and La Nina events in the tropical Pacific Ocean. Maximum year-to-year <span class="hlt">anomalies</span> over the globe are provided for a 10-year period. The data may assist in the design of systems with increased reliability. It may also allow for better planning for emergency assistance during some atypical events.</p> <div class="credits"> <p class="dwt_author">Whitlock, C. H.; Brown, D. E.; Chandler, W. S.; DiPasquale, R. C.; Ritchey, Nancy A.; Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.; Stackhouse, Paul W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JPhB...47l4034K"> <span id="translatedtitle">Temperature-resolution <span class="hlt">anomalies</span> in the reconstruction of time dynamics from <span class="hlt">energy</span>-loss experiments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Inelastic scattering techniques provide a powerful approach to studying electron and nuclear dynamics, via reconstruction of a propagator that quantifies the time evolution of a system. There is now growing interest in applying such methods to very low <span class="hlt">energy</span> excitations, such as lattice vibrations, but in this limit the cross section is no longer proportional to a propagator. Significant deviations occur due to the finite temperature Bose statistics of the excitations. Here we consider this issue in the context of high-resolution electron <span class="hlt">energy</span>-loss experiments on the copper-oxide superconductor Bi2Sr2CaCu2O8. We find that simple division of a Bose factor yields an accurate propagator on <span class="hlt">energy</span> scales greater than the resolution width. However, at low <span class="hlt">energy</span> scales, the effects of resolution and finite temperature conspire to create <span class="hlt">anomalies</span> in the dynamics at long times. We compare two practical ways for dealing with such <span class="hlt">anomalies</span>, and discuss the range of validity of the technique in light of this comparison.</p> <div class="credits"> <p class="dwt_author">Kogar, Anshul; Vig, Sean; Gan, Yu; Abbamonte, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFM.V52B..04S"> <span id="translatedtitle">Oxygen Isotope <span class="hlt">Anomaly</span> in the Carbonate Fractions of Aerosols and its <span class="hlt">Potential</span> to Assess Urban Pollution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Mineral dust is emitted into the atmosphere from arid regions in Asia yearly, accounting for ~36% of global aerosol emissions, 5900 Tg yr-1 [IPCC 2007]. Increasing anthropogenic emissions and persistent dust emissions not only have reduced the air quality in Asia itself, but are also affecting the pollutant deposition into the Pacific Ocean and air quality in downwind areas. The carbonate component of mineral dust (calcite (CaCO3) and dolomite (CaMg(CO3)2) is particularly reactive and can comprise as much as 30% of the total mineral dust aerosol, depending on the source region [Claquin et al., 1999]. Carbonate can affect atmospheric chemical processes and aerosol characteristics because the acid neutralizing capacity of this species facilitates the heterogeneous conversion of sulphate and nitrate. Understanding heterogeneous reactions occurring on the surface of aerosol particles will lead to a better understanding of the fate and transport of molecules in the troposphere as well as to resolve their role in air quality and pollution. The primary goal of this work is to develop an isotope methodology for carbonates that can be used as a chemical marker for the origin of polluted air plumes and chemical transformation during the long range transport of air masses. We will discuss the carbon and oxygen isotope composition of the CO2 released from the fine (< 1 ?m) and coarse (> 1 ?m) particles collected at two different sites [Mt. Soledad (800 ft) and Scripps Pier, La Jolla, California] and its possible utility as a tracer to identify the long-range transport of aerosol from local pollution events. The degree of urban influence of sampled air parcels at each site was quantified through back-trajectory analysis of NOAA HYSPLIT output data. Interestingly, the isotopes of oxygen did not follow standard mass dependent relationship (?17O ~ 0.52 ?18O) rather have excess 17O (?17O = ?17O- 0.52?18O) ranging from 0.9 to 3.9 per mil. A highly significant correlation (r2= 0.887) was observed between oxygen isotope <span class="hlt">anomaly</span> (?17O) in the carbonate fraction of coarse aerosols and urban index, indicating that the isotope <span class="hlt">anomaly</span> of carbonates can be used as a proxy for urban pollution. Additionally, controlled laboratory experiments to understand the origin of isotope <span class="hlt">anomaly</span> in the carbonate fraction of aerosols will be discussed.</p> <div class="credits"> <p class="dwt_author">Shaheen, R.; Abramian, A.; Dominguez, G.; Jackson, T.; Thiemens, M. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_energy/cub_energy_lesson01.xml"> <span id="translatedtitle">Kinetic and <span class="hlt">Potential</span> <span class="hlt">Energy</span> of Motion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">In this lesson, students are introduced to both <span class="hlt">potential</span> <span class="hlt">energy</span> and kinetic <span class="hlt">energy</span> as forms of mechanical <span class="hlt">energy</span>. A hands-on activity demonstrates how <span class="hlt">potential</span> <span class="hlt">energy</span> can change into kinetic <span class="hlt">energy</span> by swinging a pendulum, illustrating the concept of conservation of <span class="hlt">energy</span>. Students calculate the <span class="hlt">potential</span> <span class="hlt">energy</span> of the pendulum and predict how fast it will travel knowing that the <span class="hlt">potential</span> <span class="hlt">energy</span> will convert into kinetic <span class="hlt">energy</span>. They verify their predictions by measuring the speed of the pendulum.</p> <div class="credits"> <p class="dwt_author">Integrated Teaching And Learning Program</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/893003"> <span id="translatedtitle">Examining the <span class="hlt">Potential</span> of Renewable <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This outreach document goes to <span class="hlt">potential</span> partners for NREL's Renewable <span class="hlt">Energy</span> <span class="hlt">Potential</span> Initiative, which will explore the long-term <span class="hlt">potential</span> of Renewable <span class="hlt">Energy</span> to meet a substantial share of U.S. <span class="hlt">energy</span> needs.</p> <div class="credits"> <p class="dwt_author">Not Available</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-09-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=feynman&pg=3&id=EJ215006"> <span id="translatedtitle"><span class="hlt">Energies</span> of Screened Coulomb <span class="hlt">Potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb <span class="hlt">potentials</span>, the first four coefficients in the <span class="hlt">energy</span> series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)</p> <div class="credits"> <p class="dwt_author">Lai, C. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26959809"> <span id="translatedtitle">The <span class="hlt">Potential</span> of Biogas <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the <span class="hlt">potential</span> of biogas <span class="hlt">energy</span> in the 15 European Union</p> <div class="credits"> <p class="dwt_author">MUSTAFA ACAROGLU; GUNNUR KOCAR; ARIF HEPBASLI</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=potential+AND+energy+AND+examples&pg=4&id=EJ380903"> <span id="translatedtitle">Analysis of <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Introduces different methodological strategies in analyzing <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PES) used in chemical reactivity studies. Discusses the theory of PES and gives examples to be used for student work. Provides procedures for calculating normal coordinates and vibrational properties of an activated complex. (ML)</p> <div class="credits"> <p class="dwt_author">Fernandez, G. M.; And Others</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/919494"> <span id="translatedtitle">California Industrial <span class="hlt">Energy</span> Efficiency <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper presents an overview of the modeling approach andhighlights key findings of a California industrial <span class="hlt">energy</span> efficiencypotential study. In addition to providing estimates of technical andeconomic <span class="hlt">potential</span>, the study examines achievable program <span class="hlt">potential</span> undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, the<span class="hlt">Energy</span> Information Association (EIA) Manufacturing <span class="hlt">Energy</span> ConsumptionSurvey (MECS), state-sponsored avoided cost studies, <span class="hlt">energy</span> efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable <span class="hlt">potential</span> over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of <span class="hlt">energy</span> savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable <span class="hlt">potential</span> estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.</p> <div class="credits"> <p class="dwt_author">Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3482292"> <span id="translatedtitle">Cervical spine <span class="hlt">anomalies</span> in Menkes disease: a radiologic finding <span class="hlt">potentially</span> confused with child abuse</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background Menkes disease is an X-linked recessive disorder of copper transport caused by mutations in ATP7A, a copper-transporting ATPase. Certain radiologic findings reported in this condition overlap with those caused by child abuse. However, cervical spine defects simulating cervical spine fracture, a known result of nonaccidental pediatric trauma, have not been reported previously in this illness. Objective To assess the frequency of cervical spine <span class="hlt">anomalies</span> in Menkes disease after discovery of an apparent C2 posterior arch defect in a child participating in a clinical trial. Materials and methods We examined cervical spine radiographs obtained in 35 children with Menkes disease enrolled in a clinical trial at the National Institutes of Health Clinical Center. Results Four of the 35 children with Menkes disease had apparent C2 posterior arch defects consistent with spondylolysis or incomplete/delayed ossification. Conclusion Defects in C2 were found in 11% of infants and young children with Menkes disease. Discovery of cervical spine defects expands the spectrum of radiologic findings associated with this condition. As with other skeletal abnormalities, this feature simulates nonaccidental trauma. In the context of Menkes disease, suspicions of child abuse should be considered cautiously and tempered by these findings to avoid unwarranted accusations.</p> <div class="credits"> <p class="dwt_author">Hill, Suvimol C.; Dwyer, Andrew J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..15.9396K"> <span id="translatedtitle">Evaluation of Süleymanköy (Diyarbakir, Eastern Turkey) and Seferihisar (Izmir, Western Turkey) Self <span class="hlt">Potential</span> <span class="hlt">Anomalies</span> with Multilayer Perceptron Neural Networks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-<span class="hlt">potential</span> (SP) is one of the oldest geophysical methods that provides important information about near-surface structures. Several methods have been developed to interpret SP data using simple geometries. This study investigated inverse solution of a buried, polarized sphere-shaped self-<span class="hlt">potential</span> (SP ) <span class="hlt">anomaly</span> via Multilayer Perceptron Neural Networks ( MLPNN ). The polarization angle ( ? ) and depth to the centre of sphere ( h )were estimated. The MLPNN is applied to synthetic and field SP data. In order to see the capability of the method in detecting the number of sources, MLPNN was applied to different spherical models at different depths and locations.. Additionally, the performance of MLPNN was tested by adding random noise to the same synthetic test data. The sphere model successfully obtained similar parameters under different S/N ratios. Then, MLPNN method was applied to two field examples. The first one is the cross section taken from the SP <span class="hlt">anomaly</span> map of the Ergani-Süleymanköy (Turkey) copper mine. MLPNN was also applied to SP data from Seferihisar Izmir (Western Turkey) geothermal field. The MLPNN results showed good agreement with the original synthetic data set. The effect of The technique gave satisfactory results following the addition of 5% and 10% Gaussian noise levels. The MLPNN results were compared to other SP interpretation techniques, such as Normalized Full Gradient (NFG), inverse solution and nomogram methods. All of the techniques showed strong similarity. Consequently, the synthetic and field applications of this study show that MLPNN provides reliable evaluation of the self <span class="hlt">potential</span> data modelled by the sphere model.</p> <div class="credits"> <p class="dwt_author">Kaftan, Ilknur; Sindirgi, Petek</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMNS33A..08B"> <span id="translatedtitle">Efficacy of very fast simulated annealing global optimization method for interpretation of self-<span class="hlt">potential</span> <span class="hlt">anomaly</span> by different forward formulation over 2D inclined sheet type structure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-<span class="hlt">Potential</span> <span class="hlt">anomaly</span> is an important geophysical technique that measures the electrical <span class="hlt">potential</span> due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self <span class="hlt">potential</span> <span class="hlt">anomaly</span>. A number of linearized and global inversion approaches have been developed for the interpretation of SP <span class="hlt">anomaly</span> over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-<span class="hlt">potential</span> <span class="hlt">anomaly</span> using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-<span class="hlt">potential</span> <span class="hlt">anomaly</span> is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the best result without any ambiguity and smaller uncertainty. Keywords: SP <span class="hlt">anomaly</span>, inclined sheet, 2D structure, forward problems, VFSA Optimization,</p> <div class="credits"> <p class="dwt_author">Biswas, A.; Sharma, S. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009EGUGA..11.3696A"> <span id="translatedtitle">High resolution method to geological boundary detection of <span class="hlt">potential</span> field <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Potential</span> field methods such as gravity and magnetic are most applicability geophysical methods in mineral exploration. A high-resolution technique is developed to image geologic boundaries such as contacts and faults. <span class="hlt">Potential</span> field derivatives are basis of many interpretations techniques. In boundary detection analytic signal quantity defines by combining horizontal derivatives and vertical derivative. The outlines of the geologic boundaries can be determined by tracing the maximum amplitudes of analytic signal. However in cases that a variety of sources are adjacent, due to superposition effects the detected boundaries are blurred. For overcome to this problem enhanced analytic signal composed of the nth- order vertical derivative of analytic signal are used. The locations of its maximum amplitudes are independent of magnetization direction and geomagnetic parameters. This technique is particularly suitable when interference effects are considerable and when remanent magnetization are nor negligible. In this paper this technique has been applied to gravity data of southwest England. Using this method, five granites outcrops and their separator faults are enhanced accurately. Keywords: <span class="hlt">Potential</span> field data, horizontal derivative, vertical derivative, Enhanced Analytic Signal, magnetization direction, interference.</p> <div class="credits"> <p class="dwt_author">Alamdar, K.; Ansari, A. H.; Ghorbani, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.balkangeophysoc.gr/online-journal/2004_V7/may2004/paper_12_22.pdf"> <span id="translatedtitle">Estimation of the paleopole positions from <span class="hlt">potential</span> field <span class="hlt">anomalies</span> of a local area in northern central Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Gravity and aeromagnetic <span class="hlt">anomalies</span> of a local area in northern central Turkey obtained from the General Directorate of Mineral Research and Exploration of Turkey (MTA) used to estimate the source body magnetization, which can also reveal the remanent magnetization component. Rocks collected from the outcrops suggest a mafic origin for the gravity and magnetic <span class="hlt">anomalies</span>. Possible paleopole positions of latitude</p> <div class="credits"> <p class="dwt_author">F. Bilim; A. Ates</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21305088"> <span id="translatedtitle">FERMI CONSTRAINS DARK-MATTER ORIGIN OF HIGH-<span class="hlt">ENERGY</span> POSITRON <span class="hlt">ANOMALY</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Fermi measurements of the high-latitude {gamma}-ray background strongly constrain a decaying-dark-matter origin for the 1-100 GeV Galactic positron <span class="hlt">anomaly</span> measured with PAMELA. Inverse Compton scattering of the microwave background by the emergent positrons produces a bump in the diffuse 100-200 MeV {gamma}-ray background that would protrude from the observed background at these <span class="hlt">energies</span>. The positrons are thus constrained to emerge from the decay process at a typical <span class="hlt">energy</span> between {approx}100 GeV and {approx}250 GeV. By considering only {gamma}-ray emission of the excess positrons and electrons, we derive a minimum diffuse {gamma}-ray flux that, apart from the positron spectrum assumed, is independent of the actual decay modes. Any {gamma}-rays produced directly by the dark-matter decay leads to an additional signal that makes the observational limits more severe. A similar constraint on the <span class="hlt">energy</span> of emergent positrons from annihilation in dark-matter substructures is argued to exist, according to recent estimates of enhancement in low-mass dark-matter substructures, and improved simulations of such substructure will further sharpen this constraint.</p> <div class="credits"> <p class="dwt_author">Pohl, Martin [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam-Golm (Germany); DESY, 15738 Zeuthen (Germany); Eichler, David [Physics Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)], E-mail: pohlmadq@gmail.com, E-mail: eichler@bgumail.bgu.ac.il</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=LBL10058"> <span id="translatedtitle">California's Biomass and Its <span class="hlt">Energy</span> <span class="hlt">Potential</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">potentials</span> for using California's biomass for <span class="hlt">energy</span> have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed <span class="hlt">Energy</span> System's Project to specify an <span class="hlt">energy</span> future for Californians. The...</p> <div class="credits"> <p class="dwt_author">F. B. Lucarelli</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22830617"> <span id="translatedtitle">Extreme sensitivity of the spin-splitting and 0.7 <span class="hlt">anomaly</span> to confining <span class="hlt">potential</span> in one-dimensional nanoelectronic devices.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 × 2e(2)/h <span class="hlt">anomaly</span>. We report on the dependence of the 1D Landé g-factor g and 0.7 <span class="hlt">anomaly</span> on electron density and confinement in QPCs with two different top-gate architectures. We obtain g values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs and approaching that in InGaAs/InP QPCs. We show that g is highly sensitive to confinement <span class="hlt">potential</span>, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement <span class="hlt">potential</span> may enable the high g desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 <span class="hlt">anomaly</span> and zero-bias peak are also highly sensitive to confining <span class="hlt">potential</span>, explaining the conflicting density dependencies of the 0.7 <span class="hlt">anomaly</span> in the literature. PMID:22830617</p> <div class="credits"> <p class="dwt_author">Burke, A M; Klochan, O; Farrer, I; Ritchie, D A; Hamilton, A R; Micolich, A P</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://files.eric.ed.gov/fulltext/EJ938805.pdf"> <span id="translatedtitle">Geothermal <span class="hlt">Energy</span>: Tapping the <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Ground source geothermal <span class="hlt">energy</span> enables one to tap into the earth's stored renewable <span class="hlt">energy</span> for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building <span class="hlt">energy</span> utilization (30%+). At the same time, using this alternative <span class="hlt">energy</span>…</p> <div class="credits"> <p class="dwt_author">Johnson, Bill</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26589747"> <span id="translatedtitle">Biowaste <span class="hlt">energy</span> <span class="hlt">potential</span> in Kenya</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> affects all aspects of national development. Hence the current global <span class="hlt">energy</span> crisis demands greater attention to new initiatives on alternative <span class="hlt">energy</span> sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the <span class="hlt">energy</span> crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and</p> <div class="credits"> <p class="dwt_author">Charles Nzila; Jo Dewulf; Henri Spanjers; Henry Kiriamiti; Herman van Langenhove</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26587218"> <span id="translatedtitle">Wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Palestine</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Weibull parameters of the wind speed distribution function were computed for 49 weather stations in Palestine. Wind <span class="hlt">potentials</span> in kWh\\/m2 yr were calculated at the above stations, then contours of wind <span class="hlt">potential</span> were drawn. Electricity from the wind can be generated, in some locations in the West Bank, at a cost of 0.07 $\\/kWh.</p> <div class="credits"> <p class="dwt_author">Afif Hasan</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=POTENTIAL+AND+ENERGY&pg=7&id=EJ369492"> <span id="translatedtitle">Exam Question Exchange: <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Presents three examination questions, graded in difficulty, that explore the topic of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces using a diagrammatic approach. Provides and discusses acceptable solutions including diagrams. (CW)</p> <div class="credits"> <p class="dwt_author">Alexander, John J., Ed.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE90790626"> <span id="translatedtitle">Wind <span class="hlt">potential</span> <span class="hlt">energy</span> determination at Cammazes site.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Wind speed and direction data were measured on the complex topographic site of Cammazes (France). The data were then correlated to the speed and direction data from the meteorological station of Carcassonne. The <span class="hlt">potential</span> wind <span class="hlt">energy</span> and the annual <span class="hlt">energy</span>...</p> <div class="credits"> <p class="dwt_author">J. P. Flori P. Duchene-Marullaz</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26972469"> <span id="translatedtitle">Cotton Stalk as a <span class="hlt">Potential</span> <span class="hlt">Energy</span> Source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Policymakers have a growing interest in the development of domestic <span class="hlt">energy</span> sources. One renewable <span class="hlt">energy</span> source, biomass, is receiving consideration as a <span class="hlt">potential</span> <span class="hlt">energy</span> source. Among agricultural biomass materials, crop residue has <span class="hlt">energy</span> value in direct combustion and gasification as well as in the manufacture of hydrocarbon fuels. The main objective of the present study is to investigate many aspects</p> <div class="credits"> <p class="dwt_author">R. CENGIZ AKDENIZ; MUSTAFA ACAROGLU; ARIF HEPBASLI</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20040081281&hterms=bouguer+anomaly+gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbouguer%2Banomaly%2Bgravity"> <span id="translatedtitle">Bangui <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Bangui <span class="hlt">anomaly</span> is the name given to one of the Earth s largest crustal magnetic <span class="hlt">anomalies</span> and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this <span class="hlt">anomaly</span>. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough <span class="hlt">anomaly</span> with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT <span class="hlt">anomaly</span> at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough <span class="hlt">anomalies</span> of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic <span class="hlt">anomalies</span>, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT <span class="hlt">anomaly</span> (figure 2). This elliptically shaped <span class="hlt">anomaly</span> is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui <span class="hlt">anomaly</span> is composed of three segments; there are two positive <span class="hlt">anomalies</span> lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.</p> <div class="credits"> <p class="dwt_author">Taylor, Patrick T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/862083"> <span id="translatedtitle"><span class="hlt">Potential</span> Water and <span class="hlt">Energy</span> Savings from Showerheads</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize <span class="hlt">potential</span> water and <span class="hlt">energy</span> saving scenarios regarding showerheads, six scenarios were analyzed for their <span class="hlt">potential</span> water and <span class="hlt">energy</span> savings and the associated dollar savings to the consumer.</p> <div class="credits"> <p class="dwt_author">Biermayer, Peter J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-09-28</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=geothermal&pg=4&id=EJ166697"> <span id="translatedtitle">Geothermal <span class="hlt">Energy</span> <span class="hlt">Potential</span> in Western United States</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Reviews types of geothermal <span class="hlt">energy</span> sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical <span class="hlt">energy</span> is a major <span class="hlt">potential</span> use of geothermal <span class="hlt">energy</span>, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)</p> <div class="credits"> <p class="dwt_author">Pryde, Philip R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19434735"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surface of alanine polypeptide chains</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The multidimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of the peptide chains consisting of three and six alanine (Ala) residues have\\u000a been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone\\u000a (these degrees of freedom are responsible for the folding of such peptide molecules and proteins). The <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces\\u000a have been</p> <div class="credits"> <p class="dwt_author">I. A. Solov’yov; A. V. Yakubovitch; A. V. Solov’yov; W. Greiner</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55006834"> <span id="translatedtitle">Kinetic <span class="hlt">energy</span> contributions to heavy ion <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is shown that the change in the intrinsic kinetic <span class="hlt">energies</span> of two interacting heavy ions gives a repulsive contribution to the heavy ion interaction <span class="hlt">potential</span>. It is proposed that this effect explains a major part of the discrepancy between folded and experimentally determined HI <span class="hlt">potentials</span>.</p> <div class="credits"> <p class="dwt_author">P. G. Zint; U. Mosel</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/g4l27671664h336h.pdf"> <span id="translatedtitle"><span class="hlt">Energy</span> levels in modified quantum statistical <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We calculate one-electron <span class="hlt">energy</span> levels in <span class="hlt">potentials</span> derived from the solution of the atomic Thomas-Fermi-Dirac equation. A local exchange <span class="hlt">potential</span> is used. Corrections are made to a previous theory, which joins a TFD density to a quantum mechanical electron density near the nucleus, where the Thomas-Fermi-Dirac density has an incorrect singularity. Use of a <span class="hlt">potential</span> derived from this theory leads</p> <div class="credits"> <p class="dwt_author">Jerry Goodisman</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/965189"> <span id="translatedtitle">Economic <span class="hlt">Energy</span> Savings <span class="hlt">Potential</span> in Federal Buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) <span class="hlt">energy</span> savings <span class="hlt">potential</span> in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of <span class="hlt">energy</span> efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, <span class="hlt">energy</span> prices, etc.) existing in the late 1990s. The <span class="hlt">potential</span> impact of changes to any of these factors in the future was not considered.</p> <div class="credits"> <p class="dwt_author">Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-09-04</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22224234"> <span id="translatedtitle">Applying supersymmetry to <span class="hlt">energy</span> dependent <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We investigate the supersymmetry properties of <span class="hlt">energy</span> dependent <span class="hlt">potentials</span> in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent <span class="hlt">potential</span>. In this case, the superpotential becomes depending on the state. The second method, applicable when the <span class="hlt">potential</span> depends linearly on the <span class="hlt">energy</span>, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to <span class="hlt">energy</span> dependent <span class="hlt">potentials</span>. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.</p> <div class="credits"> <p class="dwt_author">Yekken, R. [Faculté de Physique, USTHB Bab Ezzouar, Alger (Algeria)] [Faculté de Physique, USTHB Bab Ezzouar, Alger (Algeria); Lassaut, M. [Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRS, Université Paris-Sud 11, 91406 Orsay Cedex (France)] [Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRS, Université Paris-Sud 11, 91406 Orsay Cedex (France); Lombard, R.J., E-mail: roland.lombard@laposte.net [Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRS, Université Paris-Sud 11, 91406 Orsay Cedex (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JHEP...02..069D"> <span id="translatedtitle"><span class="hlt">Anomaly</span> mediation in local effective theories</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The phenomenon known as "<span class="hlt">anomaly</span> mediation" can be understood in a variety of ways. Rather than an <span class="hlt">anomaly</span>, certain gaugino bilinear terms are required by local supersymmetry and gauge invariance (the derivation of these terms is in some cases related to <span class="hlt">anomalies</span> in scale invariance or R symmetries). We explain why the gaugino bilinear is required in supersymmetric gauge theories with varying number of colors and flavors. By working in the Higgs phase, gauging a flavor group, or working below the scale of gaugino condensation, each of these theories has a local effective description in which we can identify the bilinear term, establishing its necessity in the microscopic theory. For example, in theories that exhibit gaugino condensation, the <span class="hlt">potential</span> in the very low <span class="hlt">energy</span> theory is supersymmetric precisely due to the relation between the nonperturbative superpotential and the gaugino bilinear terms. Similarly, the gravitino mass appears from its coupling to the gaugino bilinear.</p> <div class="credits"> <p class="dwt_author">Dine, Michael; Draper, Patrick</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=27882"> <span id="translatedtitle"><span class="hlt">Anomalies</span> in coral reef community metabolism and their <span class="hlt">potential</span> importance in the reef CO2 source-sink debate</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">It is not certain whether coral reefs are sources of or sinks for atmospheric CO2. Air–sea exchange of CO2 over reefs has been measured directly and inferred from changes in the seawater carbonate equilibrium. Such measurements have provided conflicting results. We provide community metabolic data that indicate that large changes in CO2 concentration can occur in coral reef waters via biogeochemical processes not directly associated with photosynthesis, respiration, calcification, and CaCO3 dissolution. These processes can significantly distort estimates of reef calcification and net productivity and obscure the contribution of coral reefs to global air–sea exchange of CO2. They may, nonetheless, explain apparent <span class="hlt">anomalies</span> in the metabolic performance of reefs close to land and reconcile the differing experimental findings that have given rise to the CO2 debate.</p> <div class="credits"> <p class="dwt_author">Chisholm, John R. M.; Barnes, David J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014A%26A...564A.113A"> <span id="translatedtitle">Cosmic microwave background <span class="hlt">anomalies</span> from imperfect dark <span class="hlt">energy</span>. Confrontation with the data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We test anisotropic dark <span class="hlt">energy</span> models with the 7-year WMAP temperature observation data. In the presence of imperfect sources, large-scale gradients or anisotropies in the dark <span class="hlt">energy</span> mean that the CMB sky will be distorted anisotropically on its way to us by the ISW effect. The signal covariance matrix then becomes non-diagonal for small multipoles, but at ? ? 20 the anisotropy is negligible for any reasonably probable values of the already constrained dark <span class="hlt">energy</span> fluid parameters. As a consequence, only possible large-scale anisotropies are studied in this paper. We parametrize possible violations of rotational invariance in the late universe by the magnitude of a post-Friedmannian deviation from isotropy and its scale dependence, where the deviation from isotropy is modeled through a mismatch between the ? and ? <span class="hlt">potentials</span> that arise due to anisotropic stresses caused by some (unknown) mechanism. In this sense, our model is general. In this paper we explore the possibility that the stresses are caused by an imperfect dark <span class="hlt">energy</span> component in the form of a vector field aligned with some axis. This way we may obtain hints of the possible imperfect nature of dark <span class="hlt">energy</span> and the large-angle anomalous features in the CMB. A robust statistical analysis, subjected to various tests and consistency checks, is performed to compare the predicted correlations with those obtained from the satellite-measured CMB full sky maps. The preferred axis points toward (l,b) = (168°, -31°) and the amplitude of the anisotropy is ?0 = (0.51 ± 0.94) (1? deviation quoted). The best fit model has a steep blue anisotropic spectrum (nde = 3.1 ± 1.5). In light of recent studies, the model provides an interesting extension of the standard model of cosmology, since it is able to account for the apparent deficit in large-scale power in the spectrum through a physically motivated late time ISW effect. Further studies of this class of models are justified by the results of the analysis, which suggest that it cannot be ruled out at present.</p> <div class="credits"> <p class="dwt_author">Axelsson, Magnus; Hansen, Frode; Koivisto, Tomi; Mota, David F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.7071R"> <span id="translatedtitle"><span class="hlt">Anomaly</span> Transform method for initializing climate forecas.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new approach, an <span class="hlt">Anomaly</span> Transform method (AT) using a physics based metric, is developed to initialize decadal climate hindcast within the German climate prediction MiKlip project. The method starts from balanced <span class="hlt">anomaly</span> structures in space and time and between variables derived from control runs and applies an orthogalization to these. Two physics based metric are used to set up the eigen problem (1) the weighted total <span class="hlt">energy</span> with its zonal, meridional kinetic and available <span class="hlt">potential</span> <span class="hlt">energy</span> terms having equal contributions, and (2) the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choice of a reference state defining the <span class="hlt">anomalies</span> and the selected sequence of <span class="hlt">anomalies</span>, once on a seasonal timescales and second on an interannual timescales, project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the ACC and ENSO regions. An additional set of initial conditions was designed to fit in a least square sense <span class="hlt">anomalies</span> from the GECCO-2 ocean reanalysis. These sets of AT initial conditions and the MPIOM-ESM coupled model in T63L47/GR15 resolution were used for ensemble experiments and a retrospective forecast. The weighted total <span class="hlt">energy</span> norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instability growth on the selected metric but considerable change due to the rescaling coefficients magnitude on the perturbation amplitude. In contrary to similar atmospheric applications, we find an <span class="hlt">energy</span> conversion from kinetic to available <span class="hlt">potential</span> <span class="hlt">energy</span>, which suggests different source of uncertainties mainly associated with changes in density fields.</p> <div class="credits"> <p class="dwt_author">Romanova, Vanya; Hense, Andreas</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3616597"> <span id="translatedtitle">Peters' <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">While conducting medical aid in Mozambique, a 41 year old African male presented to our eye clinic complaining of visual impairment. The male was found to have Peters’ <span class="hlt">anomaly</span> type 2, a rare congenital ocular malformation leading to sensory amblyopia and glaucoma.</p> <div class="credits"> <p class="dwt_author">Sault, Robert W.; Sheridan, Jeffrey</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Cytology&id=ED018056"> <span id="translatedtitle">DOWN'S <span class="hlt">ANOMALY</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S <span class="hlt">ANOMALY</span>, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…</p> <div class="credits"> <p class="dwt_author">PENROSE, L.S.; SMITH, G.F.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://matse1.matse.illinois.edu/energy/a.html"> <span id="translatedtitle"><span class="hlt">Potential</span> to Kinetic <span class="hlt">Energy</span> Demonstration: Principles of <span class="hlt">Energy</span> Transfer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Materials Science and Technology Teacher's Workshop (MAST) provides this activity to illustrate the principles of <span class="hlt">energy</span> transfer. The demonstration uses a balance, matches, soda cans and a firecracker to show how <span class="hlt">energy</span> can transfer between light, sound, heat and kinetic <span class="hlt">energy</span>. <span class="hlt">Potential</span> and kinetic <span class="hlt">energy</span> are defined and explored. The lesson includes step by step directions for the experiment. Discussion questions are also included.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-07</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/902146"> <span id="translatedtitle">A universal high <span class="hlt">energy</span> <span class="hlt">anomaly</span> in angle resolved photoemissionspectra of high temperature superconductors -- possible evidence ofspinon and holon branches</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A universal high <span class="hlt">energy</span> <span class="hlt">anomaly</span> in the single particlespectral function is reported in three different families of hightemperature superconductors by using angle-resolved photoemissionspectroscopy. As we follow the dispersing peak of the spectral functionfrom the Fermi <span class="hlt">energy</span> to the valence band complex, we find dispersionanomalies marked by two distinctive high <span class="hlt">energy</span> scales, E_1 approx 0.38eV and E_2 approx 0.8 eV. E_1 marks the <span class="hlt">energy</span> above which the dispersionsplits into two branches. One is a continuation of the near parabolicdispersion, albeit with reduced spectral weight, and reaches the bottomof the band at the Gamma point at approx 0.5 eV. The other is given by apeak in the momentum space, nearly independent of <span class="hlt">energy</span> between E_1 andE_2. Above E_2, a band-like dispersion re-emerges. We conjecture thatthese two <span class="hlt">energies</span> mark the disintegration of the low energyquasiparticles into a spinon and holon branch in the high T_c cuprates.</p> <div class="credits"> <p class="dwt_author">Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi,H.; Lee, D.-H.; Lanzara A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011CP....382..121M"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> studies on silane dimers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Intermolecular interactions and parameters for use in MD studies of large molecule systems have earlier been determined for hydrocarbons, carbon tetrahalides and sulfur. The paper reports a model representing nonbonding interactions between silane molecules, which were examined in the same way as hydrocarbons in an earlier (neopentane, isopropane, propane, and ethane) study. Intermolecular <span class="hlt">potentials</span> were determined for 11 combinations of silane compound pairs (silane SiH 4, disilane Si 2H 6, trisilane Si 3H 8, isotetrasilane Si 4H 10 and neopentasilane Si 5H 12) with MP2/aug(df)-6-311G ?ab initio calculations. The most stable dimer configurations were identified. With use of the modified Morse <span class="hlt">potential</span> model to represent the interactions, 276 new <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces were generated for silane dimers. Separate and generic pair <span class="hlt">potentials</span> were calculated for the silanes. The pair <span class="hlt">potentials</span> can be used in MD studies of silanes.</p> <div class="credits"> <p class="dwt_author">Mahlanen, Riina; Pakkanen, Tapani A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10187872"> <span id="translatedtitle">Biomass resource <span class="hlt">potential</span> using <span class="hlt">energy</span> crops</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Biomass <span class="hlt">energy</span> crops can provide a significant and environmentally beneficial source of renewable <span class="hlt">energy</span> feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. <span class="hlt">Energy</span> crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar <span class="hlt">energy</span> and storing it as cellulosic compounds for several months to several years. Once solar <span class="hlt">energy</span> is thus captured, it can be converted by means of currently available technologies to a wide variety of <span class="hlt">energy</span> products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved <span class="hlt">energy</span> crops, established on cropland with moderate limitations for crop production, have the <span class="hlt">potential</span> for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called <span class="hlt">energy</span> cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic <span class="hlt">potential</span> for very rapid growth rates. New wood <span class="hlt">energy</span> crop systems developed by the Department of <span class="hlt">Energy`s</span> Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.</p> <div class="credits"> <p class="dwt_author">Wright, L.L.; Cushman, J.H.; Martin, S.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1595413"> <span id="translatedtitle">A theory for the atmospheric <span class="hlt">energy</span> spectrum: Depth-limited temperature <span class="hlt">anomalies</span> at the tropopause</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The horizontal spectra of atmospheric wind and temperature at the tropopause have a steep ?3 slope at synoptic scales, but transition to ?5/3 at wavelengths of the order of 500–1,000 km [Nastrom, G. D. & Gage, K. S. (1985) J. Atmos. Sci. 42, 950–960]. Here we demonstrate that a model that assumes zero <span class="hlt">potential</span> vorticity and constant stratification N over a finite-depth H in the troposphere exhibits the same type of spectra. In this model, temperature perturbations generated at the planetary scale excite a direct cascade of <span class="hlt">energy</span> with a slope of ?3 at large scales, ?5/3 at small scales, and a transition near horizontal wavenumber kt = f/NH, where f is the Coriolis parameter. Ballpark atmospheric estimates for N, f, and H give a transition wavenumber near that observed, and numerical simulations of the previously undescribed model verify the expected behavior. Despite its simplicity, the model is consistent with a number of perplexing features in the observations and demonstrates that a complete theory for mesoscale dynamics must take temperature advection at boundaries into account.</p> <div class="credits"> <p class="dwt_author">Tulloch, R.; Smith, K. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PApGe.168.1851A"> <span id="translatedtitle">Detection of High-<span class="hlt">Potential</span> Oil and Gas Fields Using Normalized Full Gradient of Gravity <span class="hlt">Anomalies</span>: A Case Study in the Tabas Basin, Eastern Iran</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The normalized full gradient (NFG) represents the full gradient of the gravity <span class="hlt">anomaly</span> at a point divided by the average of the full gradient at the same point. The NFG minimum between two maxima in an NFG section or a closed minimum surrounded by closed maxima on an NFG map may indicate density-deficient <span class="hlt">anomalies</span> closely related to possible oil-gas reservoirs. On a cross-section, closed minima can be used to estimate the depth to centers of possible hydrocarbon reservoirs. The NFG map can also be used to locate oil-gas exploratory wells for estimation of the depth of possible reservoirs. The objective of this paper is to use two and three-dimensional (2D and 3D) NFG on gravity data of the Tabas basin in Yazd province, eastern Iran. A hypothetical model is first considered to explore the NFG characteristics and their relationship with the geometry of the model. The physical properties of the model are then studied to simplify the interpretation of real data. Finally 2D and 3D NFG models are developed for real gravity data to predict the location of any possible high <span class="hlt">potential</span> oil-gas reservoirs. The results obtained indicate two zones in the northern and central parts of the Tabas basin suitable for hydrocarbon prospecting. However, the favorable zone located in the middle of the basin in which anticline E is detected at a depth of 5-7 km is more important for the purpose of hydrocarbon exploration.</p> <div class="credits"> <p class="dwt_author">Aghajani, Hamid; Moradzadeh, Ali; Zeng, Hualin</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24502034"> <span id="translatedtitle">Ebstein's <span class="hlt">anomaly</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Ebstein's <span class="hlt">anomaly</span> is a rare congenital heart disease, accounting for less than 1% of all congenital heart diseases, characterized by a wide clinical, electrocardiographic, echocardiographic, anatomic and prognostic polymorphism. The disease can be fatal since birth or may remain asymptomatic until adulthood, sometimes being associated with septal defects, transposition of great vessels, preexcitation syndromes, or left ventricular noncompaction. The genetic changes underlying this syndrome are not fully known, but in the cases associating left ventricular nonompaction a mutation in MYH7 gene encoding the beta-myosin heavy chain was recently detected. The authors present 2 cases of Ebstein's <span class="hlt">anomaly</span> with different onset and course and discuss the current clinical, electrocardiographic and echocardiographic criteria used for prognostic stratification of Ebstein disease in relation to international literature. PMID:24502034</p> <div class="credits"> <p class="dwt_author">Dima-Cozma, Corina; Cojocaru, Doina-Clementina; Chiriac, Silvia; Negru, R; Mitu, F</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6531749"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> savings from aquifer thermal <span class="hlt">energy</span> storage</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term <span class="hlt">potential</span> <span class="hlt">energy</span> savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest <span class="hlt">potential</span> <span class="hlt">energy</span> savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The <span class="hlt">potential</span> <span class="hlt">energy</span> savings from ATES applications was calculated. Characteristic <span class="hlt">energy</span> use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher <span class="hlt">potential</span> for <span class="hlt">energy</span> savings than do chill ATES applications; and the industrial sector can achieve the highest <span class="hlt">potential</span> <span class="hlt">energy</span> savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.</p> <div class="credits"> <p class="dwt_author">Anderson, M.R.; Weijo, R.O.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42012020"> <span id="translatedtitle">Zeta <span class="hlt">potential</span> estimation of volcanic rocks on 11 island arc-type volcanoes in Japan: Implication for the generation of local self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">From streaming <span class="hlt">potential</span> measurements, we deduced the zeta <span class="hlt">potential</span> of 73 volcanic rock samples collected in 11 volcanoes where self-<span class="hlt">potential</span> (SP) surveys had also been conducted. Experiments with crushed rock samples and 0.001 mol\\/L NaCl solution showed a large variation in streaming <span class="hlt">potential</span> coefficient, which ranged from -2860 to 2280 mV\\/MPa (deduced zeta <span class="hlt">potential</span> ranged from -45.1 to 37.2 mV).</p> <div class="credits"> <p class="dwt_author">Koki Aizawa; Makoto Uyeshima; Kenji Nogami</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/jb/jb0802/2007JB005058/2007JB005058.pdf"> <span id="translatedtitle">Zeta <span class="hlt">potential</span> estimation of volcanic rocks on 11 island arc-type volcanoes in Japan: Implication for the generation of local self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">From streaming <span class="hlt">potential</span> measurements, we deduced the zeta <span class="hlt">potential</span> of 73 volcanic rock samples collected in 11 volcanoes where self-<span class="hlt">potential</span> (SP) surveys had also been conducted. Experiments with crushed rock samples and 0.001 mol\\/L NaCl solution showed a large variation in streaming <span class="hlt">potential</span> coefficient, which ranged from ?2860 to 2280 mV\\/MPa (deduced zeta <span class="hlt">potential</span> ranged from ?45.1 to 37.2 mV).</p> <div class="credits"> <p class="dwt_author">Koki Aizawa; Makoto Uyeshima; Kenji Nogami</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5949298"> <span id="translatedtitle">Cogeneration <span class="hlt">potential</span> of <span class="hlt">energy</span> conversion systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Energy</span> conversion systems for industrial cogeneration, supplying both electricity and process heat, were characterized in order to match each candidate to specific industrial requirements. The ratio of power to process heat is shown to be a critical factor in achieving matches that produce appreciable fuel savings. Economic screening, based on return on incremental investment, further refines the selection. The <span class="hlt">potential</span> national fuel savings in 1990 are developed for the <span class="hlt">energy</span> conversion systems with the greatest impact at levels of 0% and a 20% return on investment.</p> <div class="credits"> <p class="dwt_author">Brown, D.H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910004193&hterms=electron+excitation+kinetic+energy+release&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Delectron%2Bexcitation%2Bkinetic%2Benergy%2Brelease"> <span id="translatedtitle">Computed <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for chemical reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The objective was to obtain accurate <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for these reactions are presented and discussed.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26456775"> <span id="translatedtitle">Solar-<span class="hlt">energy</span> <span class="hlt">potential</span> in Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this study, a new formula based on meteorological and geographical data was developed to determine the solar-<span class="hlt">energy</span> <span class="hlt">potential</span> in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000?2003) from 18 cities (Bilecik, K?r?ehir, Akhisar, Bingöl,</p> <div class="credits"> <p class="dwt_author">Adnan Sözen; Erol Arcaklio?lu; Mehmet Özalp; E. Galip Kanit</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23187358"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for protonation of hydrochlorofluoromethanes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The proton affinities (PAs) and <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PESs) of hydrochlorofluoromethanes (HCFMs) have been predicted by using Gaussian-3X (G3X) method. The G3X PAs agree with previous G3 predictions, while the large discrepancies between theoretical and experimental PAs persisted for CH2F2, CHF3, and CF3Cl. Protonated HCFMs usually have multiple structures, and structures with protonations at F-atom, [Methyl-FH]+, are the most stable.</p> <div class="credits"> <p class="dwt_author">Yi-Liang He; Liming Wang</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMOS31C1749S"> <span id="translatedtitle">Convective Available <span class="hlt">Potential</span> <span class="hlt">Energy</span> of World Ocean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Here, for the first time, we propose the concept of Ocean Convective Available <span class="hlt">Potential</span> <span class="hlt">Energy</span> (OCAPE), which is the maximum kinetic <span class="hlt">energy</span> (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important <span class="hlt">energy</span> source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open-ocean convection may arise through strong surface buoyancy fluxes (Schott et al. 1996), or by thermobaric instability (Akitomo 1999a, b). Ingersoll (2005) demonstrated that thermobaric-induced deep convection is due to the abrupt release of ocean <span class="hlt">potential</span> <span class="hlt">energy</span> into kinetic <span class="hlt">energy</span>. In atmospheric dynamics, Convective Available <span class="hlt">Potential</span> <span class="hlt">Energy</span> (CAPE) has long been an important thermodynamic variable (Arakawa and Schubert 1974) that has been used to forecast moist convection (Doswell and Rasmussen 1994) and to test the performance of GCMs (Ye et al. 1998). However, the development of a similar diagnostic in the ocean has received little attention.; World Ocean Convective Available <span class="hlt">Potential</span> <span class="hlt">Energy</span> distribution in North-Hemisphere Autumn (J/kg)</p> <div class="credits"> <p class="dwt_author">Su, Z.; Ingersoll, A. P.; Thompson, A. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.1933N"> <span id="translatedtitle">The Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> of Iceland</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">While Iceland has an abundant wind <span class="hlt">energy</span> resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind <span class="hlt">energy</span> has so far not been considered practical or even necessary. However, wind <span class="hlt">energy</span> is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road infrastructure and the power grid, as well as due to the harsh winter climate. However, even in easily accessible regions, wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Iceland, as measured by annual average power density, is among the highest in Western Europe. Based on these results, 14 test sites were selected for more detailed analyses using the Wind Atlas Analysis and Application Program (WAsP). These calculations show that a modest wind farm of ten medium size turbines would produce more <span class="hlt">energy</span> throughout the year than a small hydro power plant, making wind <span class="hlt">energy</span> a viable additional option.</p> <div class="credits"> <p class="dwt_author">Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997PhDT.......100T"> <span id="translatedtitle">Chiral <span class="hlt">anomalies</span> and dynamical electroweak-symmetry breaking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We explore some of the phenomenological consequences of dynamical electro-weak-symmetry breaking, where fermionic bound-states, instead of elementary scalar fields, induce the breaking. In particular, we consider processes generated by chiral <span class="hlt">anomalies</span> associated with global- symmetry currents in <span class="hlt">anomaly</span>-free gauge theories, as experimental studies of such processes have the <span class="hlt">potential</span> for revealing some of the details of the mechanism responsible for the symmetry breaking. Two investigations are conducted employing simple technicolor models. The first one deals with the way that the equivalence theorem, which relates observable longitudinal gauge- bosons to the corresponding unphysical Goldstone-bosons, is satisfied in cases where the latter bosons have <span class="hlt">anomaly</span>-generated couplings. In the second investigation, we study the production and detection of the techni- ?sp/prime, which decays via the <span class="hlt">anomaly</span> to two photons much as the ordinary ?sp/prime does, at a high-<span class="hlt">energy</span> photon collider.</p> <div class="credits"> <p class="dwt_author">Tandean, Jusak</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.6749F"> <span id="translatedtitle">IRETHERM: The geothermal <span class="hlt">energy</span> <span class="hlt">potential</span> of Irish radiothermal granites</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal <span class="hlt">energy</span> <span class="hlt">potential</span> through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal <span class="hlt">energy</span> <span class="hlt">potential</span> of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 ?Wm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 ?Wm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer <span class="hlt">anomaly</span> and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 ?Wm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of Dublin. Over the Galway granite, MT and AMT data have been collected at a total of 75 sites (33 consist of only AMT data acquisition, with both MT and AMT recorded at the remaining 42). Preliminary results show a deep resistor extending to depths of 15-20 km beneath the central block, with the resistive upper layer extending to depths of 3.5-7 km west of the Shannawona fault, a major structure that cuts the batholith. MT and AMT data acquired along a profile at 22 locations over the Kentstown granite suggests that this buried granite is at a depth of 400 m beneath the centre of the gravity <span class="hlt">anomaly</span>. The MT and AMT data will be integrated with gravity and seismic refraction data (in the case of the Leinster granite) to identify deeply penetrating faults, which may provide conduits for hydrothermal fluids, and to produce a robust estimation of the volumetric extent of the granites, which is crucial in defining their geothermal <span class="hlt">energy</span> <span class="hlt">potential</span>. Thermal conductivity and geochemical data will be incorporated to constrain the heat contribution of granites to the Irish crust.</p> <div class="credits"> <p class="dwt_author">Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PhRvD..65g3001C"> <span id="translatedtitle"><span class="hlt">Energy</span> independent solution to the solar neutrino <span class="hlt">anomaly</span> including the SNO data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the <span class="hlt">energy</span> independent solution-corresponding to near-maximal mixing. All three favor a mild upward renormalization of the Cl rate. A mild downward shift of the B neutrino flux is favored by the <span class="hlt">energy</span> independent and to a lesser extent the LOW solution, but not by LMA. A comparison with the ratio of SK elastic and SNO charged current scattering rates favors the LMA over the other two solutions, but by no more than 1.5?.</p> <div class="credits"> <p class="dwt_author">Choubey, Sandhya; Goswami, Srubabati; Roy, D. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19940015696&hterms=Nitrogen+photoabsorption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DNitrogen%2Bphotoabsorption"> <span id="translatedtitle">Computed <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for chemical reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A new global <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global <span class="hlt">potential</span> for reaction.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.; Levin, Eugene</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56132604"> <span id="translatedtitle"><span class="hlt">Energy</span> Independent Optical <span class="hlt">Potential</span> and Inverse Scattering from NonLocal <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An <span class="hlt">energy</span>-independent optical <span class="hlt">potential</span> for nucleon -nucleus scattering is formally derived. A simple relation between <span class="hlt">energy</span>-dependent and <span class="hlt">energy</span>-independent <span class="hlt">potentials</span> is established, showing that the latter has the same thresholds as the former. A generalized dispersion relation for <span class="hlt">energy</span> -independent <span class="hlt">potentials</span> is found and compared with the conventional dispersion relation of the generalized <span class="hlt">energy</span>-dependent optical <span class="hlt">potentials</span>. An inverse scattering method for</p> <div class="credits"> <p class="dwt_author">Kok-Cheung Tam</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12059429"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> landscape equation of state.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Depth, number, and shape of the basins of the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape are the key ingredients of the inherent structure thermodynamic formalism introduced by Stillinger and Weber [F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982)]. Within this formalism, an equation of state based only on the volume dependence of these landscape properties is derived. Vibrational and configurational contributions to pressure are sorted out in a transparent way. Predictions are successfully compared with data from extensive molecular dynamics simulations of a simple model for the fragile liquid orthoterphenyl. PMID:12059429</p> <div class="credits"> <p class="dwt_author">La Nave, Emilia; Mossa, Stefano; Sciortino, Francesco</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE89006193"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Savings from Aquifer Thermal <span class="hlt">Energy</span> Storage.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term <span class="hlt">potential</span> <span class="hlt">energy</span> savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a b...</p> <div class="credits"> <p class="dwt_author">M. R. Anderson R. O. Weijo</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://silver.ima.umn.edu/preprints/mar2003/1914.pdf"> <span id="translatedtitle">An Iterative Global Optimization Algorithm for <span class="hlt">Potential</span> <span class="hlt">Energy</span> Minimization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper we propose an algorithm for the minimization of <span class="hlt">potential</span> <span class="hlt">energy</span> functions. The new algorithm is based on the differential evolution algorithm of Storn and Price (1). The algorithm is tested on two different <span class="hlt">potential</span> <span class="hlt">energy</span> functions. The first function is the Lennard Jones <span class="hlt">energy</span> function and the second function is the many-body <span class="hlt">potential</span> <span class="hlt">energy</span> function of Tersoff</p> <div class="credits"> <p class="dwt_author">N. P. Moloi; M. M. Ali</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18937511"> <span id="translatedtitle">Can multistate dark matter annihilation explain the high-<span class="hlt">energy</span> cosmic ray lepton <span class="hlt">anomalies</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multistate dark matter (DM) models with small mass splittings and couplings to light hidden sector bosons have been proposed as an explanation for the PAMELA\\/Fermi\\/H.E.S.S. high-<span class="hlt">energy</span> lepton excesses. We investigate this proposal over a wide range of DM density profiles, in the framework of concrete models with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes</p> <div class="credits"> <p class="dwt_author">Marco Cirelli; James M. Cline</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.4009S"> <span id="translatedtitle">Assessment of wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Poland</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind <span class="hlt">energy</span> in Poland is rapidly increasing. According to the report of <span class="hlt">Energy</span> Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind <span class="hlt">energy</span> is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, <span class="hlt">potential</span> <span class="hlt">energy</span> zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wroc?aw, Legionowo and ?eba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable <span class="hlt">Energies</span>.</p> <div class="credits"> <p class="dwt_author">Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10173313"> <span id="translatedtitle"><span class="hlt">Energy</span> flux and hydrogeology of thermal <span class="hlt">anomalies</span> in the Gulf of Mexico basin. Progress report, June 1992--August 1993</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Specific project objectives are to: determine whether or not the observed thermal <span class="hlt">anomalies</span> in the Gulf of Mexico sedimentary basin can be accounted for by heat conduction only; determine whether or not the present-day groundwater flow system is amenable with the heat advection hypothesis; and determine fluid and heat flux histories that are consistent with the observed data. In support of these objectives, we have collected over 25,000 data points, reflecting pressures and temperatures at depths of up to 16,000 feet in the Texas portion of the Gulf of Mexico basin. These data have been collated into a computerized data base system. In addition, we have begun collection of thermophysical data. This research provides fundamental knowledge and understanding to the geosciences and contributes to the sciences and technology base required for current and future <span class="hlt">energy</span> technologies. Quantifying the evolution of the hydrodynamic and thermal regimes in sedimentary basins is important for predicting timing of hydrocarbon maturation and migration. The evolving subsurface temperature and hydrodynamic system also have a first-order control on sediment diagenesis, brine evolution, and the formation of ore deposits.</p> <div class="credits"> <p class="dwt_author">Sharp, J.M. Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001APS..MARV14002C"> <span id="translatedtitle">Concerning the Relationship Between Broken Gauge Symmetry, Pons-Fleischmann <span class="hlt">Anomalies</span> and Low <span class="hlt">Energy</span> Nuclear Reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In 1989, Pons and Fleischmann's claim of anomalous, non-chemical heat release in PdD provoked considerable confusion (C. G. Beaudette, \\underlineExcess Heat: Why Cold Fusion Research Prevailed.) (Oak Grove Press, LLC, ME, 2000). http://www.infinite-<span class="hlt">energy</span>.com. An important reason for this was their failure to observe the High <span class="hlt">Energy</span> Particles (HEP) that occur in conventional fusion. However, the assumption that HEP should be present assumes the underlying reaction involves localized particles, with large momenta p (and deBroglie wavelengths ?D arrow 0). For this case, p can be defined classically, locally, using the ``usual" definition p=mv, (m=particle mass, v=its velocity). But when ?_D's of many D-nuclei arrow ? or preserve perfect periodic order, wave behavior takes over, and p ceases to be locally defined. Then mv=p-e/cA applies, and p may change ``abruptly" (as in the Mossbauer effect). The resulting broken gauge symmetry, which may allow D-nuclei to overlap at many locations simultaneously, can imply a new effect that seems to have been observed in various experiments: D+Darrow ^4He <A HREF=http://www.aps.org/meet/CENT99/BAPS/abs/S9500.html>without ? rays or other HEP</A>(<A HREF=http://www.aps.org/meet/CENT99/BAPS/abs/S9500.html>http:// www.aps.org/meet/CENT99/BAPS/abs/S9500.html</A>).</p> <div class="credits"> <p class="dwt_author">Chubb, Scott; Chubb, Talbot</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-03-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49577311"> <span id="translatedtitle"><span class="hlt">Potential</span> of renewable <span class="hlt">energy</span> alternatives in Australia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Australia is one of those countries that are considered rich and abundant in fossil fuel <span class="hlt">energy</span> resources. It is important for Australia to regulate the use of conventional <span class="hlt">energy</span> and attempt replacing these conventional <span class="hlt">energies</span> with renewable <span class="hlt">energy</span> (RE) resources. Renewable <span class="hlt">energy</span> resources in Australia are widely categorised as solar <span class="hlt">energy</span>, biomass, wave <span class="hlt">energy</span> and wind <span class="hlt">energy</span>. By increasing the</p> <div class="credits"> <p class="dwt_author">Talal Yusaf; Steven Goh; J. A. Borserio</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE86005489"> <span id="translatedtitle">Gauge <span class="hlt">Anomalies</span>, Gravitational <span class="hlt">Anomalies</span>, and Superstrings.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The structure of gauge and gravitational <span class="hlt">anomalies</span> will be reviewed. The impact of these <span class="hlt">anomalies</span> on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs. (ERA citation 11:021380)</p> <div class="credits"> <p class="dwt_author">W. A. Bardeen</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21399858"> <span id="translatedtitle">Penile <span class="hlt">anomalies</span> in adolescence.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This article considers the impact and outcomes of both treatment and underlying condition of penile <span class="hlt">anomalies</span> in adolescent males. Major congenital <span class="hlt">anomalies</span> (such as exstrophy/epispadias) are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring) in this group, and surgical assessment for <span class="hlt">potential</span> surgical candidates. The emergence of new surgical techniques continues to improve outcomes and <span class="hlt">potentially</span> raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile <span class="hlt">anomalies</span>, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism. PMID:21399858</p> <div class="credits"> <p class="dwt_author">Wood, Dan; Woodhouse, Christopher</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013APS..MAR.F9002H"> <span id="translatedtitle">Induced Seismicity <span class="hlt">Potential</span> of <span class="hlt">Energy</span> Technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Earthquakes attributable to human activities--``induced seismic events''--have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of <span class="hlt">Energy</span>, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal <span class="hlt">energy</span> development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). <span class="hlt">Energy</span> technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from <span class="hlt">energy</span> technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have <span class="hlt">potential</span> for inducing larger seismic events.</p> <div class="credits"> <p class="dwt_author">Hitzman, Murray</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54424974"> <span id="translatedtitle">A new method for gravity <span class="hlt">anomaly</span> distortion correction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using gravity <span class="hlt">anomaly</span> covariance function based on second-order Gaussian Markov gravity <span class="hlt">anomaly</span> <span class="hlt">potential</span> model, the state equation of gravity <span class="hlt">anomaly</span> signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of cascade Kalman filter is proposed and applied to the correction of gravity <span class="hlt">anomaly</span> distortion. In the signal processing procedure, inverse</p> <div class="credits"> <p class="dwt_author">Liye Zhao; Hongsheng Li</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994uta..rept.....S"> <span id="translatedtitle"><span class="hlt">Energy</span> flux and hydrogeology of thermal <span class="hlt">anomalies</span> in the Gulf of Mexico Basin: South Texas example</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This report covers the period from 1 September 1993 through 28 February 1994. The last Technical Progress Report was submitted in September 1993. In this period, we have focused our efforts on the following activities: (1) Finalizing collection of radiogenic heat production data; (2) Evaluating petrographic controls on thermal conductivity; (3) Modeling one-dimensional heat conduction with sources; (4) Completing base geologic cross-section; (5) Acquiring pressure data to augment data base; (6) Putting map and well data into digital format for analysis; (7) Analyzing salinity, temperate and fluid <span class="hlt">potential</span> data for propensity of free convection; (8) Finalizing preliminary investigation into depressurization of reservoirs; (9) Preparing presentations for AAPG meeting in Denver; (10) Presenting results at the Geological Society of America Meeting in Boston (October 1993); (11) Collaborating with project members of the DOE funded Global Basins Research Network who are working on a project in the Eugene Island Block, offshore Louisiana; and (12) Collaborating with others working on research in the Gulf of Mexico Basin in our Department and with CSIRO scientists in Adelaide, Australia.</p> <div class="credits"> <p class="dwt_author">Sharp, J. M., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB2008111197"> <span id="translatedtitle">Commercial Building Toplighting: <span class="hlt">Energy</span> Saving <span class="hlt">Potential</span> and <span class="hlt">Potential</span> Paths Forward.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report defines the cost-effective opportunity available to building owners that provides reduction in <span class="hlt">energy</span> expenditures with rapid returns on investment while providing relief to our increasingly taxed electrical infrastructure around the country. ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21410092"> <span id="translatedtitle">Can multistate dark matter annihilation explain the high-<span class="hlt">energy</span> cosmic ray lepton <span class="hlt">anomalies</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Multistate dark matter (DM) models with small mass splittings and couplings to light hidden sector bosons have been proposed as an explanation for the PAMELA/Fermi/H.E.S.S. high-<span class="hlt">energy</span> lepton excesses. We investigate this proposal over a wide range of DM density profiles, in the framework of concrete models with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes with standard model hypercharge. The gauge coupling is bounded from below by the DM relic density, and the Sommerfeld enhancement factor is explicitly computable for given values of the DM and gauge boson masses M, {mu} and the (largest) dark matter mass splitting {delta}M{sub 12}. Sommerfeld enhancement is stronger at the galactic center than near the Sun because of the radial dependence of the DM velocity profile, which strengthens the inverse Compton (IC) gamma ray constraints relative to usual assumptions. We find that the PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model predictions, and with CMB and Fermi gamma ray constraints, for M congruent with 800 GeV, {mu} < or approx. 200 MeV, and a dark matter profile with noncuspy Einasto parameters {alpha} > or approx. 0.20, r{sub s{approx}}30 kpc. We also find that the annihilating DM must provide only a subdominant (< or approx. 0.4) component of the total DM mass density, since otherwise the boost factor due to Sommerfeld enhancement is too large.</p> <div class="credits"> <p class="dwt_author">Cirelli, Marco [CERN Theory Division, CERN, Case C01600, CH-1211 Geneve (Switzerland); Insitut de Physique Theorique, CNRS URA 2306 and CEA/Saclay, F-91191 Gif-sur-Yvette (France); Cline, James M. [CERN Theory Division, CERN, Case C01600, CH-1211 Geneve (Switzerland); Physics Department, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JChPh.140v4114M"> <span id="translatedtitle">Certification and the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's ?-theory can be used to certify numerically obtained stationary points of a <span class="hlt">potential</span> <span class="hlt">energy</span> landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed.</p> <div class="credits"> <p class="dwt_author">Mehta, Dhagash; Hauenstein, Jonathan D.; Wales, David J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23656107"> <span id="translatedtitle">Communication: Certifying the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It is highly desirable for numerical approximations to stationary points for a <span class="hlt">potential</span> <span class="hlt">energy</span> landscape to lie in the corresponding quadratic convergence basin. However, it is possible that an approximation may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the actual stationary point when further optimization is attempted. Proving that a numerical approximation will quadratically converge to the associated stationary point is termed certification. Here, we apply Smale's ?-theory to stationary points, providing a certification serving as a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed. As a practical example, employing recently developed certification algorithms, we show how the ?-theory can be used to certify all the known minima and transition states of Lennard-Jones LJ(N) atomic clusters for N = 7, ..., 14. PMID:23656107</p> <div class="credits"> <p class="dwt_author">Mehta, Dhagash; Hauenstein, Jonathan D; Wales, David J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/962310"> <span id="translatedtitle">An ab initio method for locating <span class="hlt">potential</span> <span class="hlt">energy</span> minima</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We study the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the <span class="hlt">potential</span> <span class="hlt">energy</span>. We show that this procedure reveals the underlying <span class="hlt">potential</span> <span class="hlt">energy</span> surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying <span class="hlt">potential</span> <span class="hlt">energy</span> surface, but needs to be corrected for thermodynamic weighting factors.</p> <div class="credits"> <p class="dwt_author">Bock, Nicolas [Los Alamos National Laboratory; Peery, Travis [Los Alamos National Laboratory; Venneri, Giulia [Los Alamos National Laboratory; Chisolm, Eric [Los Alamos National Laboratory; Wallace, Duane [Los Alamos National Laboratory; Lizarraga, Raquel [CHILE; Holmstrom, Erik [CHILE</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dx.doi.org/10.1306/?61EEDDD2-173E-11D7-8645000102C1865D"> <span id="translatedtitle"><span class="hlt">Energy</span> resource <span class="hlt">potential</span> of natural gas hydrates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible <span class="hlt">energy</span> resource. However, significant to <span class="hlt">potentially</span> insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource <span class="hlt">potential</span> of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.</p> <div class="credits"> <p class="dwt_author">Collett, T. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880020509&hterms=Potential+zeta&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPotential%2Bzeta"> <span id="translatedtitle">Computed <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for chemical reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The minimum <span class="hlt">energy</span> path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996AIPC..358..251O"> <span id="translatedtitle">Thermophotovoltaic <span class="hlt">energy</span> conversion: Technology and market <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market <span class="hlt">potential</span>. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of ``moving down the learning curve,'' growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall <span class="hlt">energy</span> conversion efficiency due to high radiation <span class="hlt">energy</span> density and to high electric conversion efficiency available with photovoltaic cells.</p> <div class="credits"> <p class="dwt_author">Ostrowski, Leon J.; Pernisz, Udo C.; Fraas, Lewis M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21293372"> <span id="translatedtitle">Field Theory Model of the Flyby <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Precision tracking of spacecraft on interplanetary missions has turned up several anomalous deviations from predictions of general relativity. The Flyby <span class="hlt">Anomaly</span>, wherein spacecraft gain or lose <span class="hlt">energy</span> in an earth-centric frame after an encounter with earth, is clearly associated with the rotation of the earth. The possibility that the missing ingredient is a new type of <span class="hlt">potential</span> field surrounding the earth is assessed in this write-up. A scalar field with the kinetic <span class="hlt">energy</span> distribution of the earth as a source is evaluated numerically, with an amplitude parameter adjusted to match the data of Anderson et al.(2008). The new field can be interpreted as a coupling between kinetic <span class="hlt">energies</span> of objects, a field analogous to fluid mechanics, or a field coupled to acceleration. The <span class="hlt">potential</span> field violates various aspects of standard physics, such as <span class="hlt">energy</span> non-conservation.</p> <div class="credits"> <p class="dwt_author">Lewis, R. A</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860012497&hterms=bouguer+anomaly+gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbouguer%2Banomaly%2Bgravity"> <span id="translatedtitle">Constraints on lithospheric structure from satellite <span class="hlt">potential</span> field data: Africa and Asia. Analysis and interpretation of MAGSAT <span class="hlt">anomalies</span> over North Africa</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Crustal <span class="hlt">anomaly</span> detection with MAGSAT data is frustrated by the inherent resolving power of the data and by contamination from the external and core fields. The quality of the data might be tested by modeling specific tectonic features which produce <span class="hlt">anomalies</span> that fall within the proposed resolution and crustal amplitude capabilities of the MAGSAT fields. To test this hypothesis, the north African hotspots associated with Ahaggar, Tibestia and Darfur have been modeled as magnetic induction <span class="hlt">anomalies</span> due solely to shallower depth to the Curie isotherm surface beneath these features. The MAGSAT data were reduced by subtracting the external and core fields to isolate the scalar and vertical component crustal signals. The predicted model magnetic signal arising from the surface topography of the uplift and the Curie isotherm surface was calculated at MAGSAT altitudes by the Fourier transform technique modified to allow for variable magnetization. In summary it is suggested that the region beneath Ahaggar is associated with a strong thermal <span class="hlt">anomaly</span> and the predicted <span class="hlt">anomaly</span> best fits the associated MAGSAT <span class="hlt">anomaly</span> if the African plate is moving in a northeasterly direction.</p> <div class="credits"> <p class="dwt_author">Phillips, R. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59732890"> <span id="translatedtitle">On the global and regional <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> sources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this thesis, the central research question is: what can be the contribution of renewable <span class="hlt">energy</span> sources to the present and future world and regional <span class="hlt">energy</span> supply system. The focus is on wind, solar PV and biomass <span class="hlt">energy</span> (<span class="hlt">energy</span> crops) for electricity generation. For the assessment of the economic <span class="hlt">potential</span>, we construct cost-supply curves. As the economic <span class="hlt">potential</span> also depends</p> <div class="credits"> <p class="dwt_author">Monique Maria Hoogwijk</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40877634"> <span id="translatedtitle">Renewable <span class="hlt">energy</span> costs, <span class="hlt">potentials</span>, barriers: Conceptual issues</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Renewable <span class="hlt">energy</span> can become the major <span class="hlt">energy</span> supply option in low-carbon <span class="hlt">energy</span> economies. Disruptive transformations in all <span class="hlt">energy</span> systems are necessary for tapping widely available renewable <span class="hlt">energy</span> resources. Organizing the <span class="hlt">energy</span> transition from non-sustainable to renewable <span class="hlt">energy</span> is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and</p> <div class="credits"> <p class="dwt_author">Aviel Verbruggen; Manfred Fischedick; William Moomaw; Tony Weir; Alain Nadaï; Lars J. Nilsson; John Nyboer; Jayant Sathaye</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5542821"> <span id="translatedtitle">Spatial mapping of renewable <span class="hlt">energy</span> <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An <span class="hlt">energy</span> resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable <span class="hlt">energy</span>. The need to search for renewable, alternate and non-polluting sources of <span class="hlt">energy</span> assumes top priority for self-reliance in the regional <span class="hlt">energy</span> supply. This demands an estimation of available <span class="hlt">energy</span> resources spatially to evolve better management</p> <div class="credits"> <p class="dwt_author">T. V. Ramachandra; B. V. Shruthi</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26457781"> <span id="translatedtitle"><span class="hlt">Potential</span> of renewable <span class="hlt">energy</span> systems in China</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Along with high-speed economic development and increasing <span class="hlt">energy</span> consumption, the Chinese Government faces a growing pressure to maintain the balance between <span class="hlt">energy</span> supply and demand. In 2009, China has become both the largest <span class="hlt">energy</span> consumer and CO2 emitting country in the world. In this case, the inappropriate <span class="hlt">energy</span> consumption structure should be changed. As an alternative, a suitable infrastructure for</p> <div class="credits"> <p class="dwt_author">Wen Liu; Henrik Lund; Brian Vad Mathiesen; Xiliang Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21866779"> <span id="translatedtitle"><span class="hlt">Potential</span> contribution of the wastewater sector to <span class="hlt">energy</span> supply.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The biological treatment of wastewater could yield high <span class="hlt">energy</span> fuels such as methane and alcohols, however most conventional treatment systems do not recover this <span class="hlt">energy</span> <span class="hlt">potential</span>. with a simple model of the <span class="hlt">energy</span> yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly <span class="hlt">energy</span> intensive, to being recognised as a source of <span class="hlt">energy</span> resources. The future <span class="hlt">potential</span> <span class="hlt">energy</span> yield is estimated by applying <span class="hlt">energy</span> yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the <span class="hlt">energy</span> <span class="hlt">potential</span> of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of <span class="hlt">energy</span> from wastewater, the <span class="hlt">potential</span> <span class="hlt">energy</span> yield from this sector would be substantially increased (six fold for New Zealand). PMID:21866779</p> <div class="credits"> <p class="dwt_author">Heubeck, S; de Vos, R M; Craggs, R</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.waset.org/journals/waset/v42/v42-74.pdf"> <span id="translatedtitle">Solar <span class="hlt">Energy</span> <span class="hlt">Potential</span> and Applications in Myanmar</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> consumption is one of the indices in determining the levels of development of a nation. Therefore, availability of <span class="hlt">energy</span> supply to all sectors of life in any country is crucial for its development. These exists shortage of all kinds of <span class="hlt">energy</span>, particularly electricity which is badly needed for economic development. Electricity from the sun which is quite abundant in</p> <div class="credits"> <p class="dwt_author">Thet Thet; Han Yee; Su Su Win; Nyein Nyein Soe</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002600/a002696/index.html"> <span id="translatedtitle">SST <span class="hlt">Anomalies</span> + Wind <span class="hlt">Anomalies</span> (with dates)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Sea surface temperature (SST) <span class="hlt">anomalies</span> and sea surface wind <span class="hlt">anomalies</span> show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).</p> <div class="credits"> <p class="dwt_author">Shirah, Greg; Allen, Jesse; Adamec, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56392606"> <span id="translatedtitle">Solar <span class="hlt">energy</span> in California industry - Applications, characteristics and <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Results of a survey to determine the <span class="hlt">potential</span> applicability of solar thermal <span class="hlt">energy</span> to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar <span class="hlt">energy</span>, total state <span class="hlt">energy</span> consumption could be reduced by 100 trillion Btus (2%), while the use of solar <span class="hlt">energy</span> in</p> <div class="credits"> <p class="dwt_author">R. H. Barbieri; D. S. Pivirotto</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51158313"> <span id="translatedtitle"><span class="hlt">Anomaly</span> Detection for Cybersecurity of the Substations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Cybersecurity of the substations in a power system is a major issue as the substations become increasingly dependent on computer and communication networks. This paper is concerned with <span class="hlt">anomaly</span> detection in the computer network environment of a substation. An <span class="hlt">anomaly</span> inference algorithm is proposed for early detection of cyber-intrusions at the substations. The <span class="hlt">potential</span> sce- nario of simultaneous intrusions launched</p> <div class="credits"> <p class="dwt_author">Chee-Wooi Ten; Junho Hong; Chen-Ching Liu</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5164676"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation <span class="hlt">potential</span> of surface modification technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report assesses the <span class="hlt">energy</span> conservation impact of surface modification technologies on the metalworking industries. The <span class="hlt">energy</span> conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.</p> <div class="credits"> <p class="dwt_author">Le, H.K.; Horne, D.M.; Silberglitt, R.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20795747"> <span id="translatedtitle">Zeta-function approach to Casimir <span class="hlt">energy</span> with singular <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In the framework of zeta-function approach the Casimir <span class="hlt">energy</span> for three simple model system: single delta <span class="hlt">potential</span>, step function <span class="hlt">potential</span> and three delta <span class="hlt">potentials</span> are analyzed. It is shown that the <span class="hlt">energy</span> contains contributions which are peculiar to the <span class="hlt">potentials</span>. It is suggested to renormalize the <span class="hlt">energy</span> using the condition that the <span class="hlt">energy</span> of infinitely separated <span class="hlt">potentials</span> is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The <span class="hlt">energy</span> obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of <span class="hlt">potential</span>. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed.</p> <div class="credits"> <p class="dwt_author">Khusnutdinov, Nail R. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, CEP 58051-970 Joao Pessoa, Pb (Brazil)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56796035"> <span id="translatedtitle"><span class="hlt">Energy</span> functions for rubber from microscopic <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The finite deformation theory of rubber and related materials is based on <span class="hlt">energy</span> functions that describe the macroscopic response of these materials under deformation. <span class="hlt">Energy</span> functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke’s Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse</p> <div class="credits"> <p class="dwt_author">A. S. Johal; D. J. Dunstan</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51369617"> <span id="translatedtitle"><span class="hlt">Energy</span> functions for rubber from microscopic <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The finite deformation theory of rubber and related materials is based on <span class="hlt">energy</span> functions that describe the macroscopic response of these materials under deformation. <span class="hlt">Energy</span> functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke's Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse</p> <div class="credits"> <p class="dwt_author">A. S. Johal; D. J. Dunstan</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55198647"> <span id="translatedtitle">Astrometric Solar-System <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">There are four unexplained <span class="hlt">anomalies</span> connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital <span class="hlt">energy</span> per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5</p> <div class="credits"> <p class="dwt_author">John D. Anderson</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41041423"> <span id="translatedtitle"><span class="hlt">Energy</span> sector and wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Turkey has very limited indigenous <span class="hlt">energy</span> resources and has to import around 65% of primary <span class="hlt">energy</span> to meet her needs. It is a large importer of primary <span class="hlt">energy</span> despite having ample renewable <span class="hlt">energy</span> sources.Turkey’s vibrant economy has led to increased <span class="hlt">energy</span> demand in recent years. This situation is expected to continue in the near future because its economy is dependent</p> <div class="credits"> <p class="dwt_author">R. Tugrul Ogulata</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14984290"> <span id="translatedtitle">Magnetic <span class="hlt">Anomalies</span> over Iceland</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An aeromagnetic survey of Iceland reveals broad <span class="hlt">anomalies</span> of large amplitude over zones of recent volcanic activity. The source of the <span class="hlt">anomalies</span> is ascribed to large masses of basalt that have been coherently remagnetized by intrusive heating. A simple correlation of the Icelandic <span class="hlt">anomalies</span> with those of the ocean floor therefore appears unjustified.</p> <div class="credits"> <p class="dwt_author">P. H. Serson; W. Hannaford; G. V. Haines</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17836657"> <span id="translatedtitle">Magnetic <span class="hlt">Anomalies</span> over Iceland.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An aeromagnetic survey of Iceland reveals broad <span class="hlt">anomalies</span> of large amplitude over zones of recent volcanic activity. The source of the <span class="hlt">anomalies</span> is ascribed to large masses of basalt that have been coherently remagnetized by intrusive heating. A simple correlation of the Icelandic <span class="hlt">anomalies</span> with those of the ocean floor therefore appears unjustified. PMID:17836657</p> <div class="credits"> <p class="dwt_author">Serson, P H; Hannaford, W; Haines, G V</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-10-18</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42813577"> <span id="translatedtitle">An Analysis of the Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> of Elazig, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this study, the wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Elazig is statistically analyzed based on hourly measured wind speed data over the five-year period from 1998 to 2002. The probability density distributions are derived from cumulative distribution functions. Two probability density functions are fitted to the measured probability distribution on a yearly basis. The wind <span class="hlt">energy</span> <span class="hlt">potential</span> of the location is</p> <div class="credits"> <p class="dwt_author">E. Kavak Akpinar; S. Akpinar</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4280719"> <span id="translatedtitle">Local Minimum of Elastic <span class="hlt">Potential</span> <span class="hlt">Energy</span> on Hemispherical Soft Fingertip</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper proposes a new contact deformation model between a hemispherical soft fingertip and an object. First, we develop our proposed contact model, in which an elastic <span class="hlt">potential</span> <span class="hlt">energy</span> is formulated. Second, we show that the elastic <span class="hlt">potential</span> <span class="hlt">energy</span> due to the deformation of the soft fingertip is proportional to the cube of the maximum displacement of that fingertip. Also,</p> <div class="credits"> <p class="dwt_author">Takahiro Inoue; Shinichi Hirai</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18209771"> <span id="translatedtitle"><span class="hlt">Potential-energy</span> surfaces for asymmetric heavy-ion reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We calculate the macroscopic <span class="hlt">potential</span> <span class="hlt">energy</span> of deformation as a function of mass asymmetry and distance between mass centers for shape configurations of interest in heavy-ion reactions. For the system300120 we also study the effect of adding microscopic shell and pairing corrections to the macroscopic <span class="hlt">potential</span> <span class="hlt">energy</span>. The shape configurations are generated by bringing together two separated spheres of unequal</p> <div class="credits"> <p class="dwt_author">P. Möller; J. R. Nix</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53891272"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for air triatomics. Volume 1: Literature review</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An extensive literature review on the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of fifteen atmospheric triatomic molecular systems has been made. The systems are water, nitrogen dioxide, ozone, carbon dioxide, nitrous oxide, and their singly charged positive and negative ions. The <span class="hlt">potential</span> <span class="hlt">energy</span> surface characteristics for each molecular system are summarized in the form of adiabatic correlation diagrams between the electronic states of</p> <div class="credits"> <p class="dwt_author">M. Krauss; D. G. Hopper; P. J. Fortune; A. C. Wahl; T. O. Tiernan</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52044881"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for study of heavy ion reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces are computed on the basis of an extended liquid drop model, taking into account the effects of nuclear surface diffusivity and the finite range of the nuclear interaction. <span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces are constructed in the plane of central moments for symmetric and asymmetric systems.</p> <div class="credits"> <p class="dwt_author">D. N. Poenaru; M. Ivascu</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52958861"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for hydrocarbon molecules and ions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Studies of reaction dynamics and molecular spectroscopy rely on the concept of a <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES): the <span class="hlt">potential</span> <span class="hlt">energy</span> of the molecule or reaction complex as a function of the configuration of nuclei. In practice such a PES must be available in an analytical form that can be quickly evaluated and that has been fitted to the results of</p> <div class="credits"> <p class="dwt_author">Bastiaan J. Braams; Amit R. Sharma; Joel M. Bowman</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22oil+shale%22&id=EJ096886"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Sources Pose Mining Problem</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as <span class="hlt">potential</span> sources of fuel. (CC)</p> <div class="credits"> <p class="dwt_author">Chemical and Engineering News, 1974</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFM.P43B1929R"> <span id="translatedtitle">Lunar Orbit <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Independent experiments show a large <span class="hlt">anomaly</span> in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An <span class="hlt">anomaly</span> in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark <span class="hlt">energy</span>'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;</p> <div class="credits"> <p class="dwt_author">Riofrio, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52132242"> <span id="translatedtitle">Solar <span class="hlt">energy</span> <span class="hlt">potential</span> in mountainous terrain</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Mountainous terrain provides a special radiation climate that can be of advantage for solar <span class="hlt">energy</span> conversion. Parameters influencing the general radiative climate are determined by the meso-scale of the locations. The major parameters are discussed and their respective influence on the radiative climate demonstrated using data recorded at various Alpine areas. Grid size for radiation networks has to be reduced</p> <div class="credits"> <p class="dwt_author">I. Dirmhirn</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19760015183&hterms=global+stability+analysis+mechanically+stabilized+earth+wall&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dglobal%2Bstability%2Banalysis%2Bmechanically%2Bstabilized%2Bearth%2Bwall"> <span id="translatedtitle">Analysis of spacecraft <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The <span class="hlt">anomalies</span> from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the <span class="hlt">anomalies</span> from future space activity. Thirty specific categories of <span class="hlt">anomalies</span> were found to cover nearly 85 percent of all observed <span class="hlt">anomalies</span>. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated <span class="hlt">anomalies</span>. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.</p> <div class="credits"> <p class="dwt_author">Bloomquist, C. E.; Graham, W. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007SPIE.6565E..18B"> <span id="translatedtitle"><span class="hlt">Anomaly</span> detection using topology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper we present a new topology-based algorithm for <span class="hlt">anomaly</span> detection in dimensionally large datasets. The motivating application is hyperspectral imaging where the dataset can be a collection of ~ 106 points in Rk, representing the reflected (or radiometric) spectra of electromagnetic radiation. The algorithm begins by building a graph whose edges connect close pairs of points. The background points are the points in the largest components of this graph and all other points are designated as <span class="hlt">anomalies</span>. The <span class="hlt">anomalies</span> are ranked according to their distance to the background. The algorithm is termed Topological <span class="hlt">Anomaly</span> Detection (TAD). The algorithm is tested on hyperspectral imagery collected with the HYDICE sensor which contains targets of known reflectance and spatial location. <span class="hlt">Anomaly</span> maps are created and compared to results from the common <span class="hlt">anomaly</span> detection algorithm RX. We show that the TAD algorithm performs better than RX by achieving greater separation of the <span class="hlt">anomalies</span> from the background for this dataset.</p> <div class="credits"> <p class="dwt_author">Basener, Bill; Ientilucci, Emmett J.; Messinger, David W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50139952"> <span id="translatedtitle">On <span class="hlt">energy</span> <span class="hlt">potential</span> of millimeter-wave radar</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">One of the most serious problems of a short-pulse millimeter (MM) wave radar is deficit of its <span class="hlt">energy</span> <span class="hlt">potential</span>. The radar range upper limit of about a few kilometers is caused mostly by two factors: (1) low <span class="hlt">energy</span> of transmitting signal pulses restricted by generator overheating or breakdown of waveguiding structures; and (2) decreasing of signal <span class="hlt">energy</span> received because of</p> <div class="credits"> <p class="dwt_author">B. A. Rozanov; G. V. Cheslavsky</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57705083"> <span id="translatedtitle">The Biomass <span class="hlt">Potential</span> of Turkey for <span class="hlt">Energy</span> Production: Part II</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass is the major source of <span class="hlt">energy</span> in rural Turkey. Biomass is used to meet a variety of <span class="hlt">energy</span> needs including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. Biomass <span class="hlt">potential</span> includes wood, animal and plant wastes. Among the biomass <span class="hlt">energy</span> sources, fuelwood seems to be the most interesting because its share of the total</p> <div class="credits"> <p class="dwt_author">N. Saracoglu</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37448912"> <span id="translatedtitle">The Biomass <span class="hlt">Potential</span> of Turkey for <span class="hlt">Energy</span> Production: Part I</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass is the major source of <span class="hlt">energy</span> in rural Turkey. Biomass is used to meet a variety of <span class="hlt">energy</span> needs including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. Biomass <span class="hlt">potential</span> includes wood, animal, and plant wastes. Among the biomass <span class="hlt">energy</span> sources, fuelwood seems to be the most interesting because its share of the total</p> <div class="credits"> <p class="dwt_author">N. Saracoglu</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993NuPhA.555..606S"> <span id="translatedtitle">Threshold <span class="hlt">anomaly</span> in 16O + 209Bi system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Elastic-scattering angular distributions for the 16O + 209Bi system have been measured at laboratory <span class="hlt">energies</span> of 80, 83, 90,95, 98 and 100 MeV. The present data along with the data available from the literature for this system, have been analysed using the optical model, employing both the phenomenological and the microscopic <span class="hlt">potentials</span>. Evidence is found for a marked <span class="hlt">energy</span> dependence of the real part of the optical <span class="hlt">potential</span> — threshold <span class="hlt">anomaly</span> — around the Coulomb barrier. The application of the dispersion relation proposed by Mahaux et al. to the <span class="hlt">energy</span> variation of the imaginary part of the <span class="hlt">potential</span>, reproduces the observed <span class="hlt">energy</span> dependence of the real <span class="hlt">potential</span>. Further it is demonstrated by a calculation that the "threshold <span class="hlt">anomaly</span>" determined from elastic-scattering analysis is consistent with the enhancement of the fusion cross section observed at sub-barrier <span class="hlt">energies</span>. It is also observed that the dispersive correction to the real <span class="hlt">potential</span> already reported for 16O + 208Pb is similar to that found here for 16O + 209Bi which has an extra proton.</p> <div class="credits"> <p class="dwt_author">Singh, P.; Kailas, S.; Chatterjee, A.; Kerekatte, S. S.; Navin, A.; Nijasure, A.; John, B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18513004"> <span id="translatedtitle">Virial exchange <span class="hlt">energies</span> from model exact-exchange <span class="hlt">potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It is shown by the example of Slater's averaged exchange <span class="hlt">potential</span> that a poor approximation to the optimized effective <span class="hlt">potential</span> (OEP) can yield a deceptively accurate <span class="hlt">energy</span> via the conventional Kohn-Sham <span class="hlt">energy</span> functional. For a trial exchange <span class="hlt">potential</span> to be correct, its Kohn-Sham <span class="hlt">energy</span> must coincide with the value obtained by the Levy-Perdew virial relation. Significant discrepancies between Kohn-Sham and the virial exchange <span class="hlt">energies</span> are found for self-consistent Slater, Becke-Johnson, and effective local <span class="hlt">potentials</span> (ELPs); their relative magnitudes are used to argue that, as approximations to the exact-exchange OEP, ELPs are the most accurate. Virial <span class="hlt">energy</span> discrepancies vanish for Yang-Wu OEPs when the orbital and auxiliary basis sets are balanced, and remain surprisingly small for oscillatory OEPs obtained with unbalanced basis sets. PMID:18513004</p> <div class="credits"> <p class="dwt_author">Gaiduk, Alex P; Staroverov, Viktor N</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6663818"> <span id="translatedtitle"><span class="hlt">Energy</span> savings <span class="hlt">potential</span> from <span class="hlt">energy</span>-conserving irrigation systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report systematically compares, within a consistent framework, the technical and economic characteristics of <span class="hlt">energy</span>-conserving irrigation systems with those of conventional irrigation systems and to determine total <span class="hlt">energy</span> savings. Levelized annual costs of owning and operating both <span class="hlt">energy</span>-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in <span class="hlt">energy</span> costs and irrigation conditions in each state. Market penetration of <span class="hlt">energy</span>-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual <span class="hlt">energy</span> savings were computed by matching the <span class="hlt">energy</span> savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of <span class="hlt">energy</span>-conserving systems are lower than the levelized annual costs of conventional systems.</p> <div class="credits"> <p class="dwt_author">Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE88009482"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Storage from Aquifer Thermal <span class="hlt">Energy</span> Storage.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Aquifer thermal <span class="hlt">energy</span> storage (ATES) is a technology that allows <span class="hlt">energy</span> to be stored in aquifers and retrieved when needed. With this technology, <span class="hlt">energy</span> is transferred to and from an aquifer through a network of wells. The aquifer operates as a containme...</p> <div class="credits"> <p class="dwt_author">M. R. Anderson R. O. Weijo J. L. Smoot</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008GeoRL..3520819J"> <span id="translatedtitle">Exploring wind <span class="hlt">energy</span> <span class="hlt">potential</span> off the California coast</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Wind <span class="hlt">energy</span> represents the nearest term cost-effective renewable <span class="hlt">energy</span> source. While efforts have been made to assess wind <span class="hlt">energy</span> <span class="hlt">potential</span> over land around the world, offshore wind <span class="hlt">energy</span> resources are largely unexplored, in part because these regions have relatively sparse wind observations. In this study, the wind <span class="hlt">energy</span> <span class="hlt">potential</span> offshore of the California coast is evaluated using a well-tested high-resolution numerical model dataset. We found that along the coastline, the low-level winds exhibit strong spatial variation and are characterized by alternating windspeed maxima and minima near coastal promontories associated with the interaction between the marine boundary layer and coastal topography. Further analysis highlights the enormous and reliable wind <span class="hlt">energy</span> development <span class="hlt">potential</span> in these persistent offshore windspeed maxima.</p> <div class="credits"> <p class="dwt_author">Jiang, Qingfang; Doyle, James D.; Haack, Tracy; Dvorak, Michael J.; Archer, Cristina L.; Jacobson, Mark Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57702610"> <span id="translatedtitle">Advanced Controls for Commercial Buildings: Barriers and <span class="hlt">Energy</span> Savings <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Commercial buildings consume just over 17 quads of primary <span class="hlt">energy</span> per year, about 17 percent of U.S. <span class="hlt">energy</span> consumption. TIAX has carried out a two-phase study for the U.S. Department of <span class="hlt">Energy</span> Building Technology Program (DOE\\/BT) that evaluates the <span class="hlt">energy</span> saving <span class="hlt">potential</span> of four advanced controls approaches in commercial buildings. This article presents the key results of the study, namely</p> <div class="credits"> <p class="dwt_author">Kurt W. Roth; Patricia Llana; Detlef Westphalen; Louis Quartararo; Michael Y. Feng</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/121741"> <span id="translatedtitle">Turbine under Gulf Stream: <span class="hlt">Potential</span> <span class="hlt">energy</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Turbine under the Gulf Stream (TUGS) is a project to design, build, and deploy the prototypes necessary to demonstrate the economic and technical feasibility of generating electric power from the Gulf Stream. The project is based in part on new generator designs and emerging materials technologies. Its successful completion would demonstrate the technology and produce prototype turbines that can be mass produced and sold with service support. Past research and experimentation indicates that <span class="hlt">energy</span> can be generated from the Gulf Stream. Problems exist such as fluctuations in the current`s axis and inconsistency. Above all, the ocean is a difficult environment in which to work. Therefore, the question is not whether or not a generator can be put in the ocean to generate electricity, but rather can it be done in an economically and environmentally sound way and still be practical?</p> <div class="credits"> <p class="dwt_author">Venezia, W.A. [Naval Surface Warfare Center, Dania, FL (United States); Holt, J. [Harbor Branch Oceanographic Institution, Fort Pierce, FL (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JChPh.138p4311A"> <span id="translatedtitle">Global permutationally invariant <span class="hlt">potential</span> <span class="hlt">energy</span> surface for ozone forming reaction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We constructed new global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for O + O2 --> O3 reaction. It is based on high level electronic structure theory calculations and employs fitting by permutationally invariant polynomial functions. This method of surface construction takes full advantage of permutation symmetry of three O nuclei and allows reducing dramatically the number of ab initio data points needed for accurate surface representation. New <span class="hlt">potential</span> <span class="hlt">energy</span> surface offers dramatic improvement over older surface of ozone in terms of dissociation <span class="hlt">energy</span> and behavior along the minimum <span class="hlt">energy</span> path. It can be used to refine the existing theories of ozone formation.</p> <div class="credits"> <p class="dwt_author">Ayouz, Mehdi; Babikov, Dmitri</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.1761C"> <span id="translatedtitle">Analysis of Solar Irradiation <span class="hlt">Anomalies</span> in Long Term Over India</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">India has a high <span class="hlt">potential</span> for solar <span class="hlt">energy</span> applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource <span class="hlt">potential</span>. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar <span class="hlt">energy</span> applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of global hemispheric irradiation measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of solar irradiation in India using <span class="hlt">anomalies</span> techniques and trends in ten places over India. Most of the places have exhibit a decreasing trend and negative <span class="hlt">anomalies</span> confirming thus the darkening effect already reported by solar dimming studies. The analysis of <span class="hlt">anomalies</span> has also found two periods of different behavior. From 1964 till 1988 the <span class="hlt">anomalies</span> observed were positive and the last 20 years seems to be a period of negative <span class="hlt">anomalies</span>. This observation is also consequent with solar dimming effect, apparently increased during the last two decades due to the increase of aerosol loading in the atmosphere. These results remark the important of having accurate knowledge of atmospheric aerosol loading and its dynamics over India with high spatial resolution in the framework of solar <span class="hlt">energy</span> deployment in the country. It is worth to mention that greater <span class="hlt">anomalies</span> and a noticeable decreasing trend found in Calcutta could be correlated with the highly population rate, and thus the greater the population density of the area the greater the negative <span class="hlt">anomalies</span> and the decreasing trend of solar irradiation monthly means.</p> <div class="credits"> <p class="dwt_author">Cony, M.; Polo, J.; Martin, L.; Navarro, A.; Serra, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..1613849C"> <span id="translatedtitle">Global Horizontal Irradiance <span class="hlt">Anomalies</span> in Long Term Series Over India</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">India has a high <span class="hlt">potential</span> for solar <span class="hlt">energy</span> applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource <span class="hlt">potential</span>. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar <span class="hlt">energy</span> applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation (GHI) and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of GHI measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of GHI using <span class="hlt">anomalies</span> techniques over ten different sites over India. Besides, techniques of linear trends have been applied for to show the evolution over this period. The analysis of <span class="hlt">anomalies</span> has also found two periods of different behavior. From 1964 till 1988 the <span class="hlt">anomalies</span> observed were positive and the last 20 years seems to be a period of negative <span class="hlt">anomalies</span>. The results exhibit a decreasing trend and negative <span class="hlt">anomalies</span> confirming thus the darkening effect already reported by solar dimming studies. This observation is also consequent with solar dimming effect, apparently increased during the last two decades due to the increase of aerosol loading in the atmosphere. These results remark the important of having accurate knowledge of atmospheric aerosol loading and its dynamics over India with high spatial resolution in the framework of solar <span class="hlt">energy</span> deployment in the country. It is worth to mention that greater <span class="hlt">anomalies</span> and a noticeable decreasing trend found in Calcutta could be correlated with the highly population rate, and thus the greater the population density of the area the greater the negative <span class="hlt">anomalies</span> and the decreasing trend of solar irradiation monthly means.</p> <div class="credits"> <p class="dwt_author">Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19970015323&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Ab initio <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface for H-H2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Ab initio calculations employing large basis sets are performed to determine an accurate <span class="hlt">potential</span> <span class="hlt">energy</span> surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged <span class="hlt">potential</span> determined from the calculated <span class="hlt">energies</span> agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces. Multipolar expansions of the computed H-H2 <span class="hlt">potential</span> <span class="hlt">energy</span> surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.</p> <div class="credits"> <p class="dwt_author">Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992PhRvA..46.5497P"> <span id="translatedtitle">Semiclassical <span class="hlt">energy</span> levels and the corresponding <span class="hlt">potentials</span> in nonhydrogenic ions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A semiclassical expression is derived for the <span class="hlt">potential</span> seen by an nl-shell electron in a nonhydrogenic ion. Corresponding <span class="hlt">energies</span> Enl are compared with experimental values and with results of self-consistent-field calculations.</p> <div class="credits"> <p class="dwt_author">Pankratov, P.; Meyer-Ter-Vehn, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987CPL...134..245B"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces of HgH 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for HgH 2 have been calculated using a non-empirical relativistic effective core <span class="hlt">potential</span> incorporating configuration interaction by means of the CIPSI algorithm. Core valence polarization and correlation <span class="hlt">energy</span> are included via a perturbative treatment. Spin-orbit coupling is introduced through an effective Hamiltonian. These theoretical results are used to discuss the experimental results of Breckenridge, Jouvet and Soep for the reaction Hg( 3P 1) + H 2 ? HgH( 2? +)+H.</p> <div class="credits"> <p class="dwt_author">Bernier, Anne; Millié, Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-02-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56308863"> <span id="translatedtitle">Improved <span class="hlt">potential</span> <span class="hlt">energy</span> surface for He-CO2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The anisotropic <span class="hlt">potential</span> <span class="hlt">energy</span> surface of He–CO2 is determined by the simultaneous analysis of newly measured high resolution total differential cross sections, differential <span class="hlt">energy</span> loss spectra, new low temperature second virial coefficients, new diffusion, and viscosity data. The calculations are carried out in the infinite-order-sudden approximation. The repulsive anisotropy of the <span class="hlt">potential</span> is determined from the rotationally inelastic cross sections</p> <div class="credits"> <p class="dwt_author">L. Beneventi; P. Casavecchia; F. Vecchiocattivi; G. G. Volpi; U. Buck; Ch. Lauenstein; R. Schinke</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.terrapub.co.jp/journals/EPS/pdf/2006/5803/58030287.pdf"> <span id="translatedtitle">The generalized Bouguer <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper states on the new concept of the generalized Bouguer <span class="hlt">anomaly</span> (GBA) that is defined upon the datum level of an arbitrary elevation. Discussions are particularly focused on how to realize the Bouguer <span class="hlt">anomaly</span> that is free from the assumption of the Bouguer reduction density rhoB, namely, the rhoB-free Bouguer <span class="hlt">anomaly</span>, and on what is meant by the rhoB-free</p> <div class="credits"> <p class="dwt_author">Kyozo Nozaki</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006PNAS..10314690T"> <span id="translatedtitle">From the Cover: A theory for the atmospheric <span class="hlt">energy</span> spectrum: Depth-limited temperature <span class="hlt">anomalies</span> at the tropopause</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The horizontal spectra of atmospheric wind and temperature at the tropopause have a steep -3 slope at synoptic scales, but transition to -5/3 at wavelengths of the order of 500-1,000 km [Nastrom, G. D. & Gage, K. S. (1985) J. Atmos. Sci. 42, 950-960]. Here we demonstrate that a model that assumes zero <span class="hlt">potential</span> vorticity and constant stratification N over a finite-depth H in the troposphere exhibits the same type of spectra. In this model, temperature perturbations generated at the planetary scale excite a direct cascade of <span class="hlt">energy</span> with a slope of -3 at large scales, -5/3 at small scales, and a transition near horizontal wavenumber kt = f/NH, where f is the Coriolis parameter. Ballpark atmospheric estimates for N, f, and H give a transition wavenumber near that observed, and numerical simulations of the previously undescribed model verify the expected behavior. Despite its simplicity, the model is consistent with a number of perplexing features in the observations and demonstrates that a complete theory for mesoscale dynamics must take temperature advection at boundaries into account. geophysical turbulence | meteorology | atmospheric dynamics <HR ALIGN=LEFT WIDTH=50% NOSHADE SIZE=1></p> <div class="credits"> <p class="dwt_author">Tulloch, R.; Smith, K. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/1093253"> <span id="translatedtitle">Radioactive <span class="hlt">anomaly</span> discrimination from spectral ratios</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method for discriminating a radioactive <span class="hlt">anomaly</span> from naturally occurring radioactive materials includes detecting a first number of gamma photons having <span class="hlt">energies</span> in a first range of <span class="hlt">energy</span> values within a predetermined period of time and detecting a second number of gamma photons having <span class="hlt">energies</span> in a second range of <span class="hlt">energy</span> values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having <span class="hlt">energies</span> in the first range and the second number of gamma photons having <span class="hlt">energies</span> in the second range, and determining that a radioactive <span class="hlt">anomaly</span> is present when the ratio exceeds a threshold value.</p> <div class="credits"> <p class="dwt_author">Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24304943"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces in algebraic molecular models using coherent states</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces provided by the coherent states formalism for the case of interacting one-dimensional oscillators is investigated. The case of two interacting oscillators modelled with Morse <span class="hlt">potentials</span> are considered in detail. First the traditional treatment is presented in order to identify the need to establish a new transformation between the parameters and the classical variables that allow the</p> <div class="credits"> <p class="dwt_author">O. Castaños; R. Lemus</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.eia.gov/renewable/archive/neaf0001.pdf"> <span id="translatedtitle"><span class="hlt">Energy</span> Consumption and Renewable <span class="hlt">Energy</span> Development <span class="hlt">Potential</span> on Indian Lands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p class="result-summary">Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the <span class="hlt">potential</span> for renewable resources development of Indian lands.</p> <div class="credits"> <p class="dwt_author">Fred Mayes</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49577090"> <span id="translatedtitle">The <span class="hlt">potential</span> for renewable <span class="hlt">energy</span> in industrial applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To date, insufficient attention has been paid to the <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> resources in industrial applications. Our analysis suggests that up to 21% of final <span class="hlt">energy</span> demand and feedstock-use in the manufacturing industry sector could be of renewable origin by 2050, a five-fold increase over current levels in absolute terms. This estimate is considerably higher than other recent global</p> <div class="credits"> <p class="dwt_author">Emanuele Taibi; Dolf Gielen; Morgan Bazilian</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27739980"> <span id="translatedtitle">Simple simulation for electron <span class="hlt">energy</span> levels in geometrical <span class="hlt">potential</span> wells</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An octopus program is demonstrated to generate electron <span class="hlt">energy</span> levels in three-dimensional geometrical <span class="hlt">potential</span> wells. The wells are modeled to have shapes similar to cone, pyramid and truncated-pyramid. To simulate the electron <span class="hlt">energy</span> levels in quantum mechanical scheme like the ones in parabolic band approximation scheme, the program is run initially to find a suitable electron mass fraction that can</p> <div class="credits"> <p class="dwt_author">Teparksorn Pengpan</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982STIN...8323863F"> <span id="translatedtitle">The Department of Defense <span class="hlt">energy</span> vulnerabilities: <span class="hlt">Potential</span> problems and observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Department of Defense is almost entirely dependent on civilian <span class="hlt">energy</span> supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of <span class="hlt">potential</span> vulnerabilities to the continual and timely supply of <span class="hlt">energy</span> to both the civilian and military sectors. These include denial of the <span class="hlt">energy</span> resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of <span class="hlt">energy</span> from the civilian sector to the military. General vulnerabilities of the existing <span class="hlt">energy</span> supply system are identified, along with the <span class="hlt">potential</span> for armed aggression (including terrorist and sabotage activities) against the <span class="hlt">energy</span> network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.</p> <div class="credits"> <p class="dwt_author">Freiwald, D. A.; Berger, M. E.; Roach, J. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23263108"> <span id="translatedtitle">Acousto-optically generated <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes: <span class="hlt">potential</span> mapping using colloids under flow.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Optical <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full <span class="hlt">potential</span> <span class="hlt">energy</span> of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The <span class="hlt">potential</span> of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well <span class="hlt">potentials</span> to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the <span class="hlt">potential</span> for fully controlled design of optical landscapes, constructed from single optical traps. PMID:23263108</p> <div class="credits"> <p class="dwt_author">Juniper, Michael P N; Besseling, Rut; Aarts, Dirk G A L; Dullens, Roel P A</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.7130E.188Z"> <span id="translatedtitle">A new method for gravity <span class="hlt">anomaly</span> distortion correction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using gravity <span class="hlt">anomaly</span> covariance function based on second-order Gaussian Markov gravity <span class="hlt">anomaly</span> <span class="hlt">potential</span> model, the state equation of gravity <span class="hlt">anomaly</span> signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of cascade Kalman filter is proposed and applied to the correction of gravity <span class="hlt">anomaly</span> distortion. In the signal processing procedure, inverse Kalman filter is used to restore the gravity <span class="hlt">anomaly</span> signal and high frequent noises firstly, then a adaptive Kalman filter - which uses the gravity <span class="hlt">anomaly</span> state equation as system equation - is set to estimate the actual gravity <span class="hlt">anomaly</span> data. Emulations and experiments indicate that both the cascade Kalman filter method and the single inverse Kalman filter method are effective in alleviating the distortion of the gravity <span class="hlt">anomaly</span> signal, but the performance of the cascade Kalman filter method is better than that of single inverse Kalman filter method.</p> <div class="credits"> <p class="dwt_author">Zhao, Liye; Li, Hongsheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010mss..confETI08H"> <span id="translatedtitle">New Methods for Exploring QM:MM <span class="hlt">Potential</span> <span class="hlt">Energy</span> Landscapes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In recent years, the applicability of quantum chemical methods for large system studies has been greatly enhanced by the development of hybrid QM:MM techniques. Despite these advancements, exploring the associated <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces continues to present two key challenges. First, the QM <span class="hlt">energy</span> and derivative evaluations may be too costly for simulations; and second, the system size for many QM:MM cases are too large to effectively store or use second-order information, an approach often used in QM studies to allow for larger integration steps and fewer QM evaluations of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface. Our most recent work is focused on overcoming both computational bottlenecks. Using surface fitting models together with direct Hessian-vector and diagonalization algorithms, we are developing models that can accurately and efficiently explore QM:MM <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes for very large systems. Our current development status and results from initial applications will be described.</p> <div class="credits"> <p class="dwt_author">Hratchian, Hrant P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/x087570684807146.pdf"> <span id="translatedtitle"><span class="hlt">Anomalies</span> in Political Economy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Results in cognitive psychology and experimental economics indicate that under identifiable conditions individuals do not act in an economically rational way. These results are important for Political Economy. <span class="hlt">Anomalies</span> appear in the behaviour of voters, politicans and administrators. Economic markets do not fully eliminate <span class="hlt">anomalies</span> in the aggregation process. It is shown that political aggregation by democracy, bargaining or bureaucracy</p> <div class="credits"> <p class="dwt_author">Bruno S. Frey; Reiner Eichenberger</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/jb/v077/i035/JB077i035p07089/JB077i035p07089.pdf"> <span id="translatedtitle">Filtering Marine Magnetic <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">When marine magnetic <span class="hlt">anomalies</span> can be adequately modeled by two-dimensional magnetic structures within one or more plane layers, many interesting manipulations of both models and <span class="hlt">anomalies</span> are linear filtering operations [Dean, 1958; Bott, 1967; Black and Scollar, 1969; Schouten, 1971]. Linear filters can be applied quickly and accurately by using the fast Fourier transform algorithm [Cooley and Tukey, 1965]. We</p> <div class="credits"> <p class="dwt_author">Hans Schouten; Keith McCamy</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/791179"> <span id="translatedtitle">Savings <span class="hlt">potential</span> of <span class="hlt">ENERGY</span> STAR (registered trademark) voluntary labeling programs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In 1993 the U.S. Environmental Protection Agency (EPA) introduced <span class="hlt">ENERGY</span> STAR (registered trademark), a voluntary labeling program designed to identify and promote <span class="hlt">energy</span>-efficient products. Since then EPA, now in partnership with the U.S. Department of <span class="hlt">Energy</span> (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present <span class="hlt">potential</span> <span class="hlt">energy</span>, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future <span class="hlt">ENERGY</span> STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy <span class="hlt">ENERGY</span> STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future <span class="hlt">energy</span> prices, and higher or lower rates of carbon emission by electricity generators. The <span class="hlt">potential</span> savings of <span class="hlt">ENERGY</span> STAR are substantial. If all purchasers chose <span class="hlt">Energy</span> Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their <span class="hlt">energy</span> bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)</p> <div class="credits"> <p class="dwt_author">Webber, Carrie A.; Brown, Richard E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-06-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19970013359&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Ab Initio <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface for H-H2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Ab initio calculations employing large basis sets are performed to determine an accurate <span class="hlt">potential</span> <span class="hlt">energy</span> surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged <span class="hlt">potential</span> determined from the calculated <span class="hlt">energies</span> agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) <span class="hlt">potential</span> <span class="hlt">energy</span> surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 <span class="hlt">potential</span> <span class="hlt">energy</span> surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.</p> <div class="credits"> <p class="dwt_author">Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002JChPh.116.1303J"> <span id="translatedtitle">Ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of the propane dimer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface of a model propane dimer was systematically mapped with quantum chemical calculations. The calculations included approximately 12 separation distances between the monomers for each of 121 different relative geometries, or 1487 different configurations. The generated <span class="hlt">potential</span> <span class="hlt">energy</span> map reveals that the most attractive interactions are those having a maximum number of close contacts between carbon and hydrogen. The <span class="hlt">potential</span> well depth of the most attractive orientation found was -1.625 kcal mol-1. The complete ab initio <span class="hlt">energy</span> surface was fitted to a simple model consisting of pairwise-additive interatomic <span class="hlt">potentials</span>, each modeled with a modified Morse function of interatomic distance. The resultant model accurately represents the entire propane dimer ab initio <span class="hlt">energy</span> surface. The efficacy of the generated parameter set was tested with previously published ethane dimer <span class="hlt">energies</span> and propane routes not included in fitting. The new parameter set is consistent with these results indicating a high level of transferability for the interatomic C-H, C-C, and H-H <span class="hlt">potentials</span> obtained.</p> <div class="credits"> <p class="dwt_author">Jalkanen, Jukka-Pekka; Mahlanen, Riina; Pakkanen, Tapani A.; Rowley, Richard L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21028097"> <span id="translatedtitle">Optimizing <span class="hlt">potential</span> <span class="hlt">energy</span> functions for maximal intrinsic hyperpolarizability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We use numerical optimization to study the properties of (1) the class of one-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized <span class="hlt">potentials</span>, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized <span class="hlt">potential</span> <span class="hlt">energy</span> functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the <span class="hlt">energy</span> ratio between the two dominant states. All optimized <span class="hlt">potentials</span> are found to obey the three-level ansatz to within about 1%. Many of these <span class="hlt">potential</span> <span class="hlt">energy</span> functions may be implementable in multiple quantum well structures. The subset of <span class="hlt">potentials</span> with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.</p> <div class="credits"> <p class="dwt_author">Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Watkins, David S. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Mathematics, Washington State University, Pullman, Washington 99164-3113 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19790050006&hterms=milk&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2522milk%2522"> <span id="translatedtitle">Solar <span class="hlt">energy</span> in California industry - Applications, characteristics and <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Results of a survey to determine the <span class="hlt">potential</span> applicability of solar thermal <span class="hlt">energy</span> to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar <span class="hlt">energy</span>, total state <span class="hlt">energy</span> consumption could be reduced by 100 trillion Btus (2%), while the use of solar <span class="hlt">energy</span> in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar <span class="hlt">energy</span> must contend are illustrated by a description of fluid milk processing operations. Solar <span class="hlt">energy</span> application is found to be technically feasible for processes with thermal <span class="hlt">energy</span> requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.</p> <div class="credits"> <p class="dwt_author">Barbieri, R. H.; Pivirotto, D. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMGC41D0861Z"> <span id="translatedtitle">Global Onshore Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> and Its Uncertainties</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Wind power, a clean and renewable <span class="hlt">energy</span> resource, can play an important role in providing <span class="hlt">energy</span> and reducing greenhouse gas emissions. Yet there are substantial and important uncertainties about the <span class="hlt">potential</span> costs and supplies of wind that influence our ability to understand today the strategic role of wind power in the future. A detailed global assessment of onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> and its uncertainties will help decision-makers develop policies and strategies to meet <span class="hlt">energy</span> and environmental goals. In this study, we assess the technical and economic <span class="hlt">potential</span> of onshore wind <span class="hlt">energy</span> and its spatial distribution using reanalysis wind speed data from the National Centers for Environmental Modeling (Figure 1). The study focuses in particular in exploring a range of uncertainties that impact the economic <span class="hlt">potential</span> of wind power by constructing quantitative scenarios for eight key physical and economic parameters. We present quantification of the impact of uncertainties in these parameters, focusing on areas relevant to geoscience research (Figure 2). The amount of economic <span class="hlt">potential</span> of wind <span class="hlt">energy</span> depends strongly on several uncertain parameters such as wind speed, turbine cost, and land-suitability. The distribution of wind speed at fine temporal and spatial scales is a key parameter, but is not well quantified in many regions of the world. Reanalysis datasets with more accurate wind fields are a first step, along with computationally tractable downscaling methodologies. Another key assumption is land-suitability, which is the fraction of a particular land-cover type assumed to be available for wind farm development. There is currently little scientific basis for land-suitability assumptions. While some of the data needed for progress in these areas is readily available, such as high-resolution land-cover and terrain data, further advances are likely to require new methodologies and inter-disciplinary collaboration. We outline a number of areas where further research is needed to construct improved estimates of global wind <span class="hlt">energy</span> <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Zhou, Y.; Clarke, L.; Luckow, P.; Smith, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23504527"> <span id="translatedtitle">Improved <span class="hlt">potential</span> <span class="hlt">energy</span> curve and vibrational <span class="hlt">energies</span> for the electronic ground state of the hydrogen molecule</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> curve for the electronic ground state of the hydrogen molecule has been recomputed for intermediate and large internuclear separations. For 2.4 <= R <= 8.0 a.u. the previous <span class="hlt">potential</span> <span class="hlt">energy</span> curve has been improved. The largest improvement amounts to 5.5 cm-1, and was obtained in the vicinity of R = 4.4 a.u.. Using the new <span class="hlt">potential</span> <span class="hlt">energy</span></p> <div class="credits"> <p class="dwt_author">W. Kolos; L. Wolniewicz</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19990064232&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Collisionless Plasma Modeling in an Arbitrary <span class="hlt">Potential</span> <span class="hlt">Energy</span> Distribution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) <span class="hlt">potential</span> <span class="hlt">energy</span> distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary <span class="hlt">potential</span> <span class="hlt">energy</span> composition. The formulation for relating current density to the field-aligned <span class="hlt">potential</span> as well as formulas for density, temperature and <span class="hlt">energy</span> flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.</p> <div class="credits"> <p class="dwt_author">Liemohn, M. W.; Khazanov, G. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23019353"> <span id="translatedtitle">Saturation wind power <span class="hlt">potential</span> and its implications for wind <span class="hlt">energy</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Wind turbines convert kinetic to electrical <span class="hlt">energy</span>, which returns to the atmosphere as heat to regenerate some <span class="hlt">potential</span> and kinetic <span class="hlt">energy</span>. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation <span class="hlt">potential</span> not identified previously from physical principles or turbine properties. These saturation <span class="hlt">potentials</span> are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-<span class="hlt">energy</span> economy. PMID:23019353</p> <div class="credits"> <p class="dwt_author">Jacobson, Mark Z; Archer, Cristina L</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56254868"> <span id="translatedtitle">Edge detection of magnetic body using horizontal gradient of pseudogravity <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> field methods are used extensively in mineral exploration. These methods also are used as reconnaissance method in oil and gas exploration. In Contrast with gravity <span class="hlt">anomaly</span> the magnetic surveying produces dipolar <span class="hlt">anomaly</span> which is caused complicated interpretation rather than gravity <span class="hlt">anomaly</span>. The observation magnetic <span class="hlt">anomaly</span> in each location other than magnetic poles has displacement rather than causative body. Several</p> <div class="credits"> <p class="dwt_author">K. Alamdar; A. H. Ansari; A. Ghorbani</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AnRFM..45...35T"> <span id="translatedtitle">Available <span class="hlt">Potential</span> <span class="hlt">Energy</span> and Exergy in Stratified Fluids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Lorenz's theory of available <span class="hlt">potential</span> <span class="hlt">energy</span> (APE) remains the main framework for studying the atmospheric and oceanic <span class="hlt">energy</span> cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy and is usually measured relative to a reference-state maximizing entropy at constant <span class="hlt">energy</span>, whereas APE's reference state minimizes <span class="hlt">potential</span> <span class="hlt">energy</span> at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law of thermodynamics, APE production/dissipation, extensions to binary fluids, mean/eddy decompositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.</p> <div class="credits"> <p class="dwt_author">Tailleux, Rémi</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JChPh.128j4102A"> <span id="translatedtitle">Finding reaction paths using the <span class="hlt">potential</span> <span class="hlt">energy</span> as reaction coordinate</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the <span class="hlt">potential</span> <span class="hlt">energy</span> rather than the arc-length. This change in the parametrization of the curve implies that the values of the <span class="hlt">energy</span> of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the <span class="hlt">potential</span> <span class="hlt">energy</span>, to locate an IRC path between two minima from an arbitrary curve on the <span class="hlt">potential</span> <span class="hlt">energy</span> surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.</p> <div class="credits"> <p class="dwt_author">Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18345872"> <span id="translatedtitle">Finding reaction paths using the <span class="hlt">potential</span> <span class="hlt">energy</span> as reaction coordinate.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the <span class="hlt">potential</span> <span class="hlt">energy</span> rather than the arc-length. This change in the parametrization of the curve implies that the values of the <span class="hlt">energy</span> of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the <span class="hlt">potential</span> <span class="hlt">energy</span>, to locate an IRC path between two minima from an arbitrary curve on the <span class="hlt">potential</span> <span class="hlt">energy</span> surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872</p> <div class="credits"> <p class="dwt_author">Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850045155&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Reference pressure changes and available <span class="hlt">potential</span> <span class="hlt">energy</span> in isobaric coordinates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A formulation of the available <span class="hlt">potential</span> <span class="hlt">energy</span> (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of <span class="hlt">energy</span> via boundary processes with the surrounding environment.</p> <div class="credits"> <p class="dwt_author">Robertson, F. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19770050537&hterms=hydrogen+energy&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522hydrogen%2Benergy%2522"> <span id="translatedtitle"><span class="hlt">Potential</span> structural material problems in a hydrogen <span class="hlt">energy</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Potential</span> structural material problems that may be encountered in the three components of a hydrogen <span class="hlt">energy</span> system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen <span class="hlt">energy</span> system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.</p> <div class="credits"> <p class="dwt_author">Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48479676"> <span id="translatedtitle">Assessment of wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Gaza Strip</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The analysis of collected wind data at two sites in the Gaza Strip, namely, Gaza City and Gaza International Airport in Rafah\\u000a city, is presented. The two sites are candidates for remote area wind <span class="hlt">energy</span> applications. The purpose of this paper is to\\u000a present the results of the assessment of wind <span class="hlt">energy</span> <span class="hlt">potential</span> in the Gaza Strip in order to</p> <div class="credits"> <p class="dwt_author">Juma Yousuf Alaydi</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23187497"> <span id="translatedtitle">Structure and <span class="hlt">potential</span> <span class="hlt">energy</span> surface of K +·CX 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface of K+·CO2 and K+·CS2 complexes are determined at high levels of ab initio theory (CCSD), B3LYP, and MP2 using different basis sets. These calculations predict the existence of three minima for K+·CO2 complex; linear, quadrilateral and Y-shape, and two minima for K+·CS2 complex; bent and Y-shape. In addition, the binding <span class="hlt">energies</span>, and other thermodynamic quantities are</p> <div class="credits"> <p class="dwt_author">M. I. Alomari; J. N. Dawoud</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51767418"> <span id="translatedtitle"><span class="hlt">Potential-Energy</span> Surfaces for Heavy-Ion Collisions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We calculate the nuclear <span class="hlt">potential</span> <span class="hlt">energy</span> of deformation for the collision of two heavy nuclei by means of a macroscopic-microscopic method. The nuclear macroscopic <span class="hlt">energy</span> is calculated in terms of a double volume integral of a Yukawa function, and the microscopic shell and pairing corrections are calculated by use of Strutinsky's method from the single-particle levels of a realistic diffuse-surface</p> <div class="credits"> <p class="dwt_author">J. R. Nix; A. J. Sierk</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19750018428&hterms=Hy-80+fatigue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHy-80%2Bfatigue"> <span id="translatedtitle"><span class="hlt">Potential</span> structural material problems in a hydrogen <span class="hlt">energy</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Potential</span> structural material problems that may be encountered in the three components of a hydrogen <span class="hlt">energy</span> system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen <span class="hlt">energy</span> system are described.</p> <div class="credits"> <p class="dwt_author">Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/36013111"> <span id="translatedtitle">Cadmium tolerance and accumulation in eight <span class="hlt">potential</span> <span class="hlt">energy</span> crops</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The production of <span class="hlt">energy</span> crops that can be used for biodiesel production is a sustainable approach for the removal of metal pollutants by phytoremediation. This study investigated the cadmium (Cd) accumulation and tolerance of eight <span class="hlt">potential</span> <span class="hlt">energy</span> crops. After growth for 28 days in substrates containing 0, 50, 100 or 200 mg Cd·kg?1, seedlings were evaluated for growth parameters, chlorophyll content, chlorophyll</p> <div class="credits"> <p class="dwt_author">Gangrong Shi; Qingsheng Cai</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/860768"> <span id="translatedtitle"><span class="hlt">Anomalies</span> on orbifolds</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We discuss the form of the chiral <span class="hlt">anomaly</span> on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the <span class="hlt">anomaly</span>, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional <span class="hlt">anomaly</span> cancellation ensures the consistency of the higher dimensional orbifold theory.</p> <div class="credits"> <p class="dwt_author">Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-03-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1009188"> <span id="translatedtitle">LHC Physics <span class="hlt">Potential</span> vs. <span class="hlt">Energy</span>: Considerations for the 2011 Run</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Parton luminosities are convenient for estimating how the physics <span class="hlt">potential</span> of Large Hadron Collider experiments depends on the <span class="hlt">energy</span> of the proton beams. I quantify the advantage of increasing the beam <span class="hlt">energy</span> from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the <span class="hlt">energy</span> range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.</p> <div class="credits"> <p class="dwt_author">Quigg, Chris; /Fermilab /CERN</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/2261278"> <span id="translatedtitle">Short root <span class="hlt">anomaly</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A case of generalised short root <span class="hlt">anomaly</span> is described. All permanent teeth had abnormally short roots, associated with microdontia, hypodontia and a dens invaginatus. Members of the patient's family were similarly affected. PMID:2261278</p> <div class="credits"> <p class="dwt_author">Edwards, D M; Roberts, G J</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-11-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24891214"> <span id="translatedtitle">The chlamydial <span class="hlt">anomaly</span> clarified?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Getting visible: A new method to label bacterial cell walls shows the presence of functional peptidoglycan in the important pathogen Chlamydia trachomatis. This might clarify the long-standing paradox of the "chlamydial <span class="hlt">anomaly</span>". PMID:24891214</p> <div class="credits"> <p class="dwt_author">Mohammadi, Tamimount; Breukink, Eefjan</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53185075"> <span id="translatedtitle"><span class="hlt">Energy</span> and angular momentum dependence of heavy ion optical <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The influence of bombarding <span class="hlt">energy</span> and angular momentum on the depth and shape of the real part of the optical ion-ion <span class="hlt">potential</span> is studied in a model which uses oscillator wave functions for the ground states of the interacting nuclei and takes into account the relative motion of the nuclei by a multiplication with a plane wave factor. The calculations</p> <div class="credits"> <p class="dwt_author">P. G. Zint</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42813764"> <span id="translatedtitle">Investigation of Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> in Kartalkaya-Bolu, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this study, wind characteristics and the wind <span class="hlt">energy</span> <span class="hlt">potential</span> of the Kartalkaya skinning center in the west of the Black Sea region of Turkey were analyzed using wind speed data collected during the period from 2000 to 2006. The wind speed distribution curves of the investigated location were obtained by using the Weibull and Rayleigh probability density functions based</p> <div class="credits"> <p class="dwt_author">Aynur Ucar; Figen Balo</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.plea2009.arc.ulaval.ca/papers/1.challenge/1.2%20city/poster/1-2-21-plea2009quebec.pdf"> <span id="translatedtitle">Solar <span class="hlt">Energy</span> <span class="hlt">Potential</span> of Clusters on Sloped Terrains</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Rapid worldwide urbanizations are demanding more land for construction and many cities surrounded by hills have started to expand onto neighbouring slopes. Whilst building on flat terrains is well investigated and documented, there is sill limited published research on the <span class="hlt">potential</span> of <span class="hlt">energy</span> conscious building on sloped terrain. The present study is part of a long-term research project which aims</p> <div class="credits"> <p class="dwt_author">PATRICIA VELOSO DA VEIGA; MOHAMED GADI</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JChPh.132k4301P"> <span id="translatedtitle">A highly accurate <span class="hlt">potential</span> <span class="hlt">energy</span> curve for the mercury dimer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> curve of the electronic ground state of the mercury dimer based on CCSD(T) calculations at the complete basis set (CBS) limit, including corrections for the full triples ?T and explicit spin-orbit (SO) interactions at the CCSD(T) level of theory, is presented. In the far long-range part, the <span class="hlt">potential</span> <span class="hlt">energy</span> curve is complemented by symmetry-adapted perturbation theory calculations. <span class="hlt">Potential</span> curves of an analytically simple, extended Lennard-Jones form are obtained from very accurate fits to the CBS/CCSD(T)+SO and CBS/CCSD(T)+SO+?T data. The Hg2 <span class="hlt">potential</span> curves yield dissociation <span class="hlt">energies</span> of De=424/392 cm-1 and equilibrium distances of re=3.650/3.679 A? at the CBS/CCSD(T)+SO and CBS/CCSD(T)+SO+?T levels of theory, respectively. By including perturbative quadruple corrections in our coupled-cluster calculations and corrections from correlating the 4f-core, we arrive at a final dissociation <span class="hlt">energy</span> of De=405 cm-1, in excellent agreement with the experimentally estimated value of 407 cm-1 by Greif and Hensel. In addition, the rotational and vibrational spectroscopic constants as well as the second virial coefficient B(T) in dependence of the temperature T are calculated and validated against available experimental and theoretical data.</p> <div class="credits"> <p class="dwt_author">Pahl, Elke; Figgen, Detlev; Thierfelder, Christian; Peterson, Kirk A.; Calvo, Florent; Schwerdtfeger, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18210313"> <span id="translatedtitle">Collective <span class="hlt">potential-energy</span> surfaces in heavy-ion reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multidimensional <span class="hlt">potential-energy</span> surfaces have been calculated for heavy-ion reactions as a function of separation (or elongation), neck-formation and mass-asymmetry collective degrees of freedom. The reactions Ar + Ag, Kr + Cu, Kr + Bi and Xe + Bi, of current interest, are considered as examples. The effects of the entrance channel asymmetry and the total charge and angular momentum of</p> <div class="credits"> <p class="dwt_author">O. Zohni; M. Blann</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=potential+AND+energy+AND+examples&pg=4&id=EJ346097"> <span id="translatedtitle">Teaching Field Concept and <span class="hlt">Potential</span> <span class="hlt">Energy</span> at A-Level.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the <span class="hlt">potential</span> <span class="hlt">energy</span> in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)</p> <div class="credits"> <p class="dwt_author">Poon, C. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=IPNOTH7751"> <span id="translatedtitle">Inverse Problem at Fixed <span class="hlt">Energy</span> for Finite Range Complex <span class="hlt">Potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In the inverse problem of scattering theory, a simple transformation may be used to map the results for a fixed l=0 value of the angular momentum onto similar results at fixed <span class="hlt">energy</span> concerning a finite-range <span class="hlt">potential</span>. This property is applied to non-sel...</p> <div class="credits"> <p class="dwt_author">P. Sergent C. Coudray</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993PhDT........91Z"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Functions for Transition Metals and Their Aluminides</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transition metal aluminides have a wide range of <span class="hlt">potential</span> uses in applications requiring high strength and light weight. Obtaining accurate <span class="hlt">potential</span> <span class="hlt">energy</span> functions is the first step in trying to understand the structural and defect properties of these materials. Using the simple Anderson model and ab-initio results as inputs, we are able to derive strong medium- and long-ranged interactions among the transition metal atoms in aluminides. Treating the pseudopotentials as a perturbation, we obtain a complete set of pair <span class="hlt">potentials</span> for any pair of atoms in the aluminides. These <span class="hlt">potentials</span> agree well with experiments on the structure of liquid aluminides, predict the correct chemical trends in structural stability, and in most cases reproduce the large structural <span class="hlt">energy</span> differences that have been demonstrated by ab-initio calculations. The calculated results on the structural <span class="hlt">energies</span> agree fairly well with the experimental phase diagram and the existing ab-initio results. On the basis of these <span class="hlt">potentials</span>, we propose an explanation for quasicrystal formation in the aluminides. Four-body angular forces recently developed by Carlsson are used in the molecular dynamics simulation of liquid W to examine the effect of angular forces on the structure and thermodynamic properties of the liquid. We do not find any significant effect of the angular forces as compared with radial interatomic forces. However, the angular forces are much more accurate overall in treating the thermodynamic properties.</p> <div class="credits"> <p class="dwt_author">Zou, Jun</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49474627"> <span id="translatedtitle"><span class="hlt">Energy</span> life cycle assessment of rice straw bio-<span class="hlt">energy</span> derived from <span class="hlt">potential</span> gasification technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To be a viable alternative, a biofuel should provide a net <span class="hlt">energy</span> gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such <span class="hlt">potential</span> bio-fuel in Taiwan. Through life-cycle accounting, several <span class="hlt">energy</span> indicators and four <span class="hlt">potential</span> gasification technologies (PGT)</p> <div class="credits"> <p class="dwt_author">Je-Lueng Shie; Ching-Yuan Chang; Ci-Syuan Chen; Dai-Gee Shaw; Yi-Hung Chen; Wen-Hui Kuan; Hsiao-Kan Ma</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/935754"> <span id="translatedtitle">Global <span class="hlt">Potential</span> of <span class="hlt">Energy</span> Efficiency Standards and Labeling Programs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report estimates the global <span class="hlt">potential</span> reductions in greenhouse gas emissions by 2030 for <span class="hlt">energy</span> efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of <span class="hlt">energy</span> efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around <span class="hlt">energy</span>, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to <span class="hlt">energy</span> efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the <span class="hlt">potential</span> impacts of a single policy type, applied on a global scale. The policy addressed in this report is <span class="hlt">Energy</span> Efficient Standards and Labeling (EES&L) for <span class="hlt">energy</span>-consuming equipment, which has now been implemented in over 60 countries. Mandatory <span class="hlt">energy</span> performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the <span class="hlt">energy</span>-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the <span class="hlt">potential</span> of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.</p> <div class="credits"> <p class="dwt_author">McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFM.S52A..08J"> <span id="translatedtitle">Geophysical <span class="hlt">Anomalies</span> and Earthquake Prediction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Finding <span class="hlt">anomalies</span> is easy. Predicting earthquakes convincingly from such <span class="hlt">anomalies</span> is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their <span class="hlt">energy</span> from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the <span class="hlt">anomalies</span> are generally complex as well. Electromagnetic <span class="hlt">anomalies</span> in particular require some understanding of their sources and the physical properties of the crust, which also vary from place to place and time to time. <span class="hlt">Anomalies</span> are not necessarily due to stress or earthquake preparation, and separating the extraneous ones is a problem as daunting as understanding earthquake behavior itself. Fourth, the associations presented between <span class="hlt">anomalies</span> and earthquakes are generally based on selected data. Validating a proposed association requires complete data on the earthquake record and the geophysical measurements over a large area and time, followed by prospective testing which allows no adjustment of parameters, criteria, etc. The Collaboratory for Study of Earthquake Predictability (CSEP) is dedicated to providing such prospective testing. Any serious proposal for prediction research should deal with the problems above, and anticipate the huge investment in time required to test hypotheses.</p> <div class="credits"> <p class="dwt_author">Jackson, D. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005ESASP.591..125W"> <span id="translatedtitle">SADM potentiometer <span class="hlt">anomaly</span> investigations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the last 3 years Contraves Space have been developing a Low Power (1-2kW) Solar Array Drive Mechanism (SADM) aimed at small series production. The mechanism was subjected to two test programmes in order to qualify the SADM to acceptable levels. During the two test programmes, <span class="hlt">anomalies</span> were experienced with the Potentiometers provided by Eurofarad SA and joint investigations were undertaken to resolve why these <span class="hlt">anomalies</span> had occurred. This paper deals with the lessons learnt from the failure investigation on the two Eurofarad (rotary) Potentiometer <span class="hlt">anomaly</span>. The Rotary Potentiometers that were used were fully redundant; using two back to back mounted "plastic tracks". It is a pancake configuration mounted directly to the shaft of the Slip Ring Assembly at the extreme in-board end of the SADM. It has no internal bearings. The <span class="hlt">anomaly</span> initially manifested itself as a loss of performance in terms of linearity, which was first detected during Thermal Vacuum testing. A subsequent <span class="hlt">anomaly</span> manifested itself by the complete failure of the redundant potentiometer again during thermal vacuum testing. This paper will follow and detail the chain of events following this <span class="hlt">anomaly</span> and identifies corrective measures to be applied to the potentiometer design and assembly process.</p> <div class="credits"> <p class="dwt_author">Wood, Brian; Mussett, David; Cattaldo, Olivier; Rohr, Thomas</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850062719&hterms=4p&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%25224p%2522"> <span id="translatedtitle">N2(+) bound quartet and sextet state <span class="hlt">potential</span> <span class="hlt">energy</span> curves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The N2(+) <span class="hlt">potential</span> <span class="hlt">energies</span> have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated <span class="hlt">potential</span> <span class="hlt">energy</span> curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed <span class="hlt">energies</span> near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.</p> <div class="credits"> <p class="dwt_author">Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhLB..703..193G"> <span id="translatedtitle">How deep is the antinucleon optical <span class="hlt">potential</span> at FAIR <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The key question in the interaction of antinucleons in the nuclear medium concerns the deepness of the antinucleon-nucleus optical <span class="hlt">potential</span>. In this work we study this task in the framework of the non-linear derivative (NLD) model which describes consistently bulk properties of nuclear matter and Dirac phenomenology of nucleon-nucleus interactions. We apply the NLD model to antinucleon interactions in nuclear matter and find a strong decrease of the vector and scalar self-<span class="hlt">energies</span> in <span class="hlt">energy</span> and density and thus a strong suppression of the optical <span class="hlt">potential</span> at zero momentum and, in particular, at FAIR <span class="hlt">energies</span>. This is in agreement with available empirical information and, therefore, resolves the issue concerning the incompatibility of G-parity arguments in relativistic mean-field (RMF) models. We conclude the relevance of our results for the future activities at FAIR.</p> <div class="credits"> <p class="dwt_author">Gaitanos, T.; Kaskulov, M.; Lenske, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014GeoRL..41.1651R"> <span id="translatedtitle">Global interior eddy available <span class="hlt">potential</span> <span class="hlt">energy</span> diagnosed from Argo floats</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By combining all Argo profiles for the period 2002 to present, a cumulative density function is constructed on a 3-D grid of the global ocean. This function quantifies the statistics of isopycnals: time-averaged density, root-mean square of isopycnal displacement, and eddy available <span class="hlt">potential</span> <span class="hlt">energy</span> (EAPE). EAPE is the analogue of the eddy kinetic <span class="hlt">energy</span>, but for the <span class="hlt">potential</span> <span class="hlt">energy</span> reservoir. Because it is essentially tied to the spatial structure and magnitude of mesoscale activity, EAPE is an important quantity that should be useful to evaluate eddy resolving/permitting model turbulence and circulation. Among other striking features are the turbulent behavior of Pacific and southern Atlantic Tsuchiya jets and subsurface EAPE maxima in some parts of the ocean, particularly in the Southern Ocean.</p> <div class="credits"> <p class="dwt_author">Roullet, Guillaume; Capet, Xavier; Maze, Guillaume</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JSV...131...67D"> <span id="translatedtitle">Momentum <span class="hlt">potential</span> theory of <span class="hlt">energy</span> flux carried by momentum fluctuations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The momentum <span class="hlt">potential</span> theory of time-stationary fluctuating flows is briefly reviewed and then extended to include <span class="hlt">energy</span> flux carried by momentum fluctuations. It is shown that the mean (time-averaged) <span class="hlt">energy</span> flux can be expressed as a linear superposition of mean, turbulent, acoustic and thermal components. A mean <span class="hlt">energy</span> flux balance relating turbulent, acoustic and thermal <span class="hlt">energy</span> fluxes only is obtained. For homentropic flows the Cantrell and Hart expression for acoustic intensity is obtained as a special case. Physical and analog interpretations of the mean <span class="hlt">energy</span> flux balance are presented for the general case. A formal solution of the equation for mean flow of <span class="hlt">energy</span> due to momentum fluctuations is presented, leading to a definition of local fluctuating dynamical equilibrium of a time-stationary flow and an identification of sources of far field radiated acoustic power. In the Appendix, the momentum <span class="hlt">potential</span> theory version of Jenvey's partitioning of the stagnation enthalpy into mean, turbulent, acoustic and thermal parts is presented.</p> <div class="credits"> <p class="dwt_author">Doak, P. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012CoTPh..58....5A"> <span id="translatedtitle">Asymptotic <span class="hlt">Energy</span> Expansion for Rational Power Polynomial <span class="hlt">Potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Asymptotic <span class="hlt">energy</span> expansion method is extended for polynomial <span class="hlt">potentials</span> having rational powers. New types of recurrence relations are derived for the <span class="hlt">potentials</span> of the form V (x) = x2n/m + b1xn1/m1 + b2xn2/m2 + ... + bNxnN/mN where n, m, n1, m1, ..., nN, mN are positive integers while coefficients bk ? ?. As in the case of even degree polynomial <span class="hlt">potentials</span> with integer powers, all the integrals in the expansion can be evaluated analytically in terms of ? functions. With the help of two examples, we demonstrate the usefulness of these expansions in getting analytic insight into the quantum systems having rational power polynomial <span class="hlt">potentials</span>.</p> <div class="credits"> <p class="dwt_author">Asiri, Nanayakkara</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JChPh.139o4506T"> <span id="translatedtitle">Unified interatomic <span class="hlt">potential</span> and <span class="hlt">energy</span> barrier distributions for amorphous oxides</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics <span class="hlt">potentials</span> have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body <span class="hlt">potentials</span> modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the <span class="hlt">potential</span> accurately produces <span class="hlt">energy</span> barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these <span class="hlt">potentials</span> will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.</p> <div class="credits"> <p class="dwt_author">Trinastic, J. P.; Hamdan, R.; Wu, Y.; Zhang, L.; Cheng, Hai-Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/941430"> <span id="translatedtitle">U.S. Building-Sector <span class="hlt">Energy</span> Efficiency <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper presents an estimate of the <span class="hlt">potential</span> for <span class="hlt">energy</span> efficiency improvements in the U.S. building sector by 2030. The analysis uses the <span class="hlt">Energy</span> Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency <span class="hlt">potential</span> studies. These prior studies include the U.S. Department of <span class="hlt">Energy</span>'s Scenarios for a Clean <span class="hlt">Energy</span> Future (CEF) study and a recent study of natural gas savings <span class="hlt">potential</span> in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved <span class="hlt">energy</span>. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved <span class="hlt">energy</span> of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual <span class="hlt">energy</span> bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).</p> <div class="credits"> <p class="dwt_author">Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IAU...261.0702A"> <span id="translatedtitle">Astrometric Solar-System <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There are four unexplained <span class="hlt">anomalies</span> connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital <span class="hlt">energy</span> per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two <span class="hlt">anomalies</span> are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth <span class="hlt">anomaly</span> is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four <span class="hlt">anomalies</span> have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.</p> <div class="credits"> <p class="dwt_author">Anderson, John D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24321903"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> profile of colloidal nanoparticles in optical confinement.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An optical bottle method is developed to determine the <span class="hlt">potential-energy</span> profile of colloidal Rayleigh nanoparticles in an optical trap. The three-dimensional distribution of fluorescent particles in the trap is measured by laser scanning confocal fluorescence microscopy. At sufficiently low concentrations at which interactions between the particles are negligible, the single-particle trapping <span class="hlt">potential-energy</span> profile is determined from the equilibrium number-density profile by use of the Boltzmann distribution. Fluorescence imaging as well as calculations based on a discrete dipole approximation show that effects due to scattering forces are negligible for polystyrene particles of size less than 10% of the wavelength of the trapping laser, thus justifying the assumption of conservative forces in the equilibrium <span class="hlt">potential-energy</span> determinations. The new optical bottle method measures the entire two-dimensional trapping-<span class="hlt">potential</span> profile for an individual nanoparticle without the restriction that only one particle be contained in the trap, thus obviating the need for high laser power. PMID:24321903</p> <div class="credits"> <p class="dwt_author">Fu, Jinxin; Zhan, Qiwen; Lim, Min Yao; Li, Zhiyuan; Ou-Yang, H Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JChPh.137x4101I"> <span id="translatedtitle">NVU dynamics. III. Simulating molecules at constant <span class="hlt">potential</span> <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This is the final paper in a series that introduces geodesic molecular dynamics at constant <span class="hlt">potential</span> <span class="hlt">energy</span>. This dynamics is entitled NVU dynamics in analogy to standard <span class="hlt">energy</span>-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011); T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, ibid. 135, 104102 (2011)], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant <span class="hlt">potential</span> <span class="hlt">energy</span>. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant <span class="hlt">potential</span> <span class="hlt">energy</span> for atomic systems. The rigid-bond NVU algorithm conserves <span class="hlt">potential</span> <span class="hlt">energy</span>, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nosé-Hoover NVT dynamics. Since Nosé-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems.</p> <div class="credits"> <p class="dwt_author">Ingebrigtsen, Trond S.; Dyre, Jeppe C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23277922"> <span id="translatedtitle">NVU dynamics. III. Simulating molecules at constant <span class="hlt">potential</span> <span class="hlt">energy</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This is the final paper in a series that introduces geodesic molecular dynamics at constant <span class="hlt">potential</span> <span class="hlt">energy</span>. This dynamics is entitled NVU dynamics in analogy to standard <span class="hlt">energy</span>-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011); T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, ibid. 135, 104102 (2011)], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant <span class="hlt">potential</span> <span class="hlt">energy</span>. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant <span class="hlt">potential</span> <span class="hlt">energy</span> for atomic systems. The rigid-bond NVU algorithm conserves <span class="hlt">potential</span> <span class="hlt">energy</span>, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nosé-Hoover NVT dynamics. Since Nose?-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems. PMID:23277922</p> <div class="credits"> <p class="dwt_author">Ingebrigtsen, Trond S; Dyre, Jeppe C</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22715929"> <span id="translatedtitle">Evaluation of global onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> and generation costs.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this study, we develop an updated global estimate of onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the <span class="hlt">potential</span> to supply a significant portion of the world <span class="hlt">energy</span> needs, although this <span class="hlt">potential</span> varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind <span class="hlt">potential</span> under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind <span class="hlt">potential</span> is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929</p> <div class="credits"> <p class="dwt_author">Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26972190"> <span id="translatedtitle">Role of the Clean <span class="hlt">Energy</span> <span class="hlt">Potential</span> for <span class="hlt">Energy</span> Savings and Air Pollution Control in Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article begins with a brief review of the technical <span class="hlt">potential</span>, the regional distribution, and the air pollution effects of all fossil <span class="hlt">energy</span> sources as well as of all clean and renewable <span class="hlt">energy</span> sources that could be used in Turkey. Air pollution levels due to fossil fuel consumption are examined. In this context, the role of clean <span class="hlt">energy</span> sources is</p> <div class="credits"> <p class="dwt_author">KAM?L KAYGUSUZ; HULUS? KARGI ABDULLAH KAYGUSUZ; A. Kaygusuz</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991gcai.rept.....G"> <span id="translatedtitle">Evaluation of magnetic <span class="hlt">anomalies</span> located in Lower Bayou Teche, St. Mary Parish, Louisiana</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This report presents results of testing and assessment of eleven previously recorded magnetic <span class="hlt">anomalies</span> located in Lower Bayou Teche, St. Mary Parish, Louisiana. Maintenance dredging of Lower Bayou Teche may impact several of the eight <span class="hlt">anomalies</span> evaluated in this study. Objectives of the study were to conduct detailed surveys and assessments of eight previously located <span class="hlt">anomalies</span>. These were <span class="hlt">Anomalies</span> 8, 13, 24a, 29, 30, 31, 33, and 58. Three orther <span class="hlt">anomalies</span>, <span class="hlt">Anomaly</span> nos. 23, 24b, and 55 were also briefly examined. Methods used during survey included relocation of each <span class="hlt">anomaly</span> with a magnetometer; informal magnetic and fathometer survey of each <span class="hlt">anomaly</span> and its vicinity, physical search of the river bottom at each <span class="hlt">anomaly</span> location; use of a metal detector to assess the depth of the magnetic source of each <span class="hlt">anomaly</span>; probing of the river bottom to locate buried structures; and limited excavation with a jet probe to document the source, nature, and research <span class="hlt">potential</span> of each of the eight <span class="hlt">anomalies</span>. Two of the <span class="hlt">anomalies</span>, <span class="hlt">Anomaly</span> nos. 30 and 58 could not be relocated. Four of the <span class="hlt">anomalies</span> apparently are associated with modern debris: <span class="hlt">Anomaly</span> nos. 8, 13, 29, and 31. <span class="hlt">Anomaly</span> no. 33 appears to be an isolated object. Evidence of structure was observed 14 to 15 ft below water surface, however, it occurs below the project impact zone. One archeological site, the <span class="hlt">Anomaly</span> no. 23/24 Complex (Site 16SMY76) was defined. It consists of two wooden barges and some twentieth century bridge remains.</p> <div class="credits"> <p class="dwt_author">Goodwin, R. Christopher; Athens, William P.; Saltus, Allen R., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/43145995"> <span id="translatedtitle">Stellar Coronal Abundances. VI. The First Ionization <span class="hlt">Potential</span> Effect and XI Bootis A: Solar-like <span class="hlt">Anomalies</span> at Intermediate-Activity Levels</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Lines from different elements in the Extreme-Ultraviolet Explorer spectra of the corona of the intermediate-activity star xi Bootis A have been analyzed. Assuming that a photospheric composition for the plasma is responsible for the observed coronal emission, emission measures derived from lines of elements with low first ionization <span class="hlt">potentials</span> (FIPs) are systematically higher than emission measures derived from lines formed</p> <div class="credits"> <p class="dwt_author">J. Martin Laming; Jeremy J. Drake</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930006169&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">A global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for ArH2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We describe a simple analytic representation of the ArH2 <span class="hlt">potential</span> <span class="hlt">energy</span> surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the <span class="hlt">potential</span> expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.</p> <div class="credits"> <p class="dwt_author">Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930048688&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">A global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for ArH2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We describe a simple analytic representation of the ArH2 <span class="hlt">potential</span> <span class="hlt">energy</span> surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the <span class="hlt">potential</span> expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.</p> <div class="credits"> <p class="dwt_author">Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/hew06.sci.phys.maf.lpenergy/investigating-kinetic-and-potential-energy/"> <span id="translatedtitle">PBS Learning Media: Investigating Kinetic and <span class="hlt">Potential</span> <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">In this 3-5 day multimedia module, students explore concepts of kinetic, <span class="hlt">potential</span>, and total <span class="hlt">energy</span> within different types of systems. Watch a video of engineers who recreate a medieval trebuchet (using only 14th century technology) and an animation of <span class="hlt">energy</span> transformation in a roller coaster. Play with a digital mass-and-spring model and a projectile simulator. Finally, students will use computational reasoning in a hands-on golf ball activity. This lesson was designed to engage multiple sensory paths and styles of learning through video, interactive simulation, animations, lab activities, and informative text.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2790825"> <span id="translatedtitle">Bifurcations on <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces of Organic Reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening <span class="hlt">energy</span> minimum. For such systems, the shape of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions.</p> <div class="credits"> <p class="dwt_author">Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Celebi-Olcum, Nihan; Houk, K. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21259971"> <span id="translatedtitle">Quintom dark <span class="hlt">energy</span> models with nearly flat <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We examine quintom dark <span class="hlt">energy</span> models, produced by the combined consideration of a canonical and a phantom field, with nearly flat <span class="hlt">potentials</span> and dark <span class="hlt">energy</span> equation-of-state parameter w{sub DE} close to -1. We find that all such models converge to a single expression for w{sub DE}(z), depending only on the initial field values and their derivatives. We show that this quintom paradigm allows for a description of the transition through -1 in the near cosmological past. In addition, we provide the necessary conditions for the determination of the direction of the -1 crossing.</p> <div class="credits"> <p class="dwt_author">Setare, M. R.; Saridakis, E. N. [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of); Department of Physics, University of Athens, GR-15771 Athens (Greece)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1044774"> <span id="translatedtitle"><span class="hlt">Potential</span> for luminosity improvement for low-<span class="hlt">energy</span> RHIC operation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam <span class="hlt">energies</span> corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low <span class="hlt">energies</span>. However, the luminosity is very low at lowest <span class="hlt">energies</span> of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low <span class="hlt">energies</span>, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall <span class="hlt">potential</span> luminosity improvement for low-<span class="hlt">energy</span> RHIC operation from cooling is summarized for various <span class="hlt">energies</span>, taking into account all these limitations as well as beam lifetime measured during the low-<span class="hlt">energy</span> RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.</p> <div class="credits"> <p class="dwt_author">Fedotov A. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/jb/jb0910/2008JB006154/2008JB006154.pdf"> <span id="translatedtitle">Dipolar self-<span class="hlt">potential</span> <span class="hlt">anomaly</span> associated with carbon dioxide and radon flux at Syabru-Bensi hot springs in central Nepal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Syabru-Bensi hot springs are located at the Main Central Thrust (MCT) zone in central Nepal. High carbon dioxide and radon exhalation fluxes (reaching 19 kg m?2 d?1 and 5 Bq m?2 s?1, respectively) are associated with these hot springs, making this site a promising case to study the relationship between self-<span class="hlt">potential</span> and fluids (gas and water) exhalation along a</p> <div class="credits"> <p class="dwt_author">S. Byrdina; A. Revil; S. R. Pant; B. P. Koirala; P. L. Shrestha; D. R. Tiwari; U. P. Gautam; K. Shrestha; S. N. Sapkota; S. Contraires; F. Perrier</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JChPh.140r4306G"> <span id="translatedtitle">Accurate global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the H + OH+ collision</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We mapped the global three-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH+(X3?-), the O + H2+(X2?g+), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O+(tilde X2B1) and of the diatomic fragments, the vibronic spectrum, the dissociation <span class="hlt">energy</span>, and the barrier to linearity for H2O+(tilde X2B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic <span class="hlt">potentials</span>. In whole, a good agreement is found, which validates our 3D-PES.</p> <div class="credits"> <p class="dwt_author">Gannouni, M. A.; Jaidane, N. E.; Halvick, P.; Stoecklin, T.; Hochlaf, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24832269"> <span id="translatedtitle">Accurate global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the H + OH(+) collision.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We mapped the global three-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH(+)(X(3)?(-)), the O + H2 (+)(X(2)?g (+)), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O(+)([Formula: see text](2)B1) and of the diatomic fragments, the vibronic spectrum, the dissociation <span class="hlt">energy</span>, and the barrier to linearity for H2O(+)([Formula: see text](2)B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic <span class="hlt">potentials</span>. In whole, a good agreement is found, which validates our 3D-PES. PMID:24832269</p> <div class="credits"> <p class="dwt_author">Gannouni, M A; Jaidane, N E; Halvick, P; Stoecklin, T; Hochlaf, M</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-14</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930042219&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Theoretical characterization of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface for NH + NO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19760053811&hterms=formaldehyde&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2522formaldehyde%2522"> <span id="translatedtitle">MCSCF <span class="hlt">potential</span> <span class="hlt">energy</span> surface for photodissociation of formaldehyde</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The ground state <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.</p> <div class="credits"> <p class="dwt_author">Jaffe, R. L.; Morokuma, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991JMoSp.147..114D"> <span id="translatedtitle">Spectroscopic constants and <span class="hlt">potential</span> <span class="hlt">energy</span> curves of RhH +</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Spectroscopic constants and <span class="hlt">potential</span> <span class="hlt">energy</span> curves of 14 electronic states of RhH + are computed. Several spectroscopic transitions are predicted in the IR-UV region none of which is observed. Our computed ground state De of the X2? state of RhH + [2.07 eV] is in good agreement with the experimental value deduced by Elkind and Armentrout [1.91 ± 0.1 eV].</p> <div class="credits"> <p class="dwt_author">Das, Kalyan K.; Balasubramanian, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61245068"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for RhH sub 2 sup +</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Complete active space multiconfiguration self-consistent-field (CASSCF) calculations followed by multireference singles-plus-doubles configuration interactions (MRSDCI) have been carried out on 12 electronic states of RhH{sup +}â. The bending <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of RhH{sup +}â reveal that the a³F ground state of Rh{sup +} forms a complex with Hâ with a geometry of r{sub e} = 1.737 â«, η{sub e} = 27°,</p> <div class="credits"> <p class="dwt_author">K. K. Das; K. Balasubramanian</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56743437"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces describing ion complexes containing molecular hydrogen</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">High-level abinitio molecular orbital calculations have been carried out to describe the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for a series of systems corresponding formally to dimer ions of molecular hydrogen with an inert-gas atom or a first- or second-row hydride [X???H2]˙ +, where X=He, Ne, Ar, Kr, HF, HCl, H2O, H2S, NH3, and PH3. Of the [XH2]˙ + ion complexes, [Ne???H2]˙ +,</p> <div class="credits"> <p class="dwt_author">Josef Ischtwan; Brian J. Smith; Michael A. Collins; Leo Radom</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24296953"> <span id="translatedtitle">Ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for SiH 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> surfaces for the ion SiH 2 have been calculated by an ab initio configuration interaction method. Contour diagrams are presented for the [Xtilde]A1 and ÃB1 surfaces and show that in each case the entrance valley is separated from the equilibrium configuration by a substantial <span class="hlt">energy</span> barrier. For collinear geometries, however, there is only a very small activation barrier in</p> <div class="credits"> <p class="dwt_author">David M. Hirst; Martyn F. Guest</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53277247"> <span id="translatedtitle">Ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for SiH 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> surfaces for the ion SiH+2 have been calculated by an ab initio configuration interaction method. Contour diagrams are presented for the &(X)tilde;2A1 and Ã2B1 surfaces and show that in each case the entrance valley is separated from the equilibrium configuration by a substantial <span class="hlt">energy</span> barrier. For collinear geometries, however, there is only a very small activation barrier in addition</p> <div class="credits"> <p class="dwt_author">David M. Hirst; Martyn F. Guest</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011APS..MARL41006L"> <span id="translatedtitle">Nuclear momentum distribution and <span class="hlt">potential</span> <span class="hlt">energy</span> surface in hexagonal ice</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and <span class="hlt">potential</span> <span class="hlt">energy</span> surface based on both experiment and simulation results. The <span class="hlt">potential</span> experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the <span class="hlt">potential</span> acting on the protons.</p> <div class="credits"> <p class="dwt_author">Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1051195"> <span id="translatedtitle">Evaluation of Global Onshore Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> and Generation Costs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this study, we develop an updated global estimate of onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the <span class="hlt">potential</span> to supply a significant portion of world <span class="hlt">energy</span> needs, although this <span class="hlt">potential</span> varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind <span class="hlt">potential</span> under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind <span class="hlt">potential</span> is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the <span class="hlt">potential</span> at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.</p> <div class="credits"> <p class="dwt_author">Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21167933"> <span id="translatedtitle">Market <span class="hlt">Potential</span> for Non-electric Applications of Nuclear <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The paper presents results of a recent IAEA study to assess the market <span class="hlt">potential</span> for non-electric applications of nuclear <span class="hlt">energy</span> in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, <span class="hlt">energy</span> supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric <span class="hlt">energy</span> services. The study makes a distinction between the market size (demand for a given service) and the market <span class="hlt">potential</span> for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear <span class="hlt">energy</span> entering into non-electric markets. (authors)</p> <div class="credits"> <p class="dwt_author">Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, Vienna (Austria); Nisan, S. [Commissariat a l'energie atomique (CEA), CEA/CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/986540"> <span id="translatedtitle">Data Network Equipment <span class="hlt">Energy</span> Use and Savings <span class="hlt">Potential</span> in Buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Network connectivity has become nearly ubiquitous, and the <span class="hlt">energy</span> use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment <span class="hlt">energy</span> use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total <span class="hlt">energy</span> use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of <span class="hlt">energy</span> use consuming 40percent and 30percent of the total respectively. We estimate <span class="hlt">potential</span> <span class="hlt">energy</span> savings for different scenarios using forecasts of equipment stock and <span class="hlt">energy</span> use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.</p> <div class="credits"> <p class="dwt_author">Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-09</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6616562"> <span id="translatedtitle">Mashreq Arab interconnected power system <span class="hlt">potential</span> for economic <span class="hlt">energy</span> trading</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of <span class="hlt">energy</span> resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in <span class="hlt">energy</span> production costs, a <span class="hlt">potential</span> exists for substantial <span class="hlt">energy</span> trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric <span class="hlt">energy</span> trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this <span class="hlt">energy</span> trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy <span class="hlt">energy</span> exchange, etc. This paper presents the basis, methodology, and major findings of the study.</p> <div class="credits"> <p class="dwt_author">Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007SPIE.6619E...3B"> <span id="translatedtitle">Market <span class="hlt">potential</span> for optical fiber sensors in the <span class="hlt">energy</span> sector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for <span class="hlt">energy</span> has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable <span class="hlt">energy</span> sources are gaining importance resulting in recent boom of wind <span class="hlt">energy</span> plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers <span class="hlt">potentials</span> for fibre optic sensor application.</p> <div class="credits"> <p class="dwt_author">Bosselmann, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.apsarchive.org/resource.cfm?submissionID=3713&BEN=1"> <span id="translatedtitle">Rubber Balls and Conservation of <span class="hlt">Energy</span>: A Lesson on <span class="hlt">Potential</span> and Kinetic <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This teaching resource was developed by a K-12 science teacher in the American Physiologycal Society's 2006 Frontiers in Physiology Program. For more information on this program, please visit www.frontiersinphys.org. The purpose of this lesson is to teach students about how bouncy rubber balls can be used to demonstrate the concepts of kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span>. The topics of kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span> should be previously covered or introduced. Upon completion of this activity, students will be able to calculate the <span class="hlt">energy</span> lost between bounces and account for where the missing <span class="hlt">energy</span> has gone.</p> <div class="credits"> <p class="dwt_author">William G Mahl (Seymour Middle School)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20695748"> <span id="translatedtitle">Threshold <span class="hlt">anomaly</span> with weakly bound projectiles: Elastic scattering of {sup 9}Be+{sup 27}Al</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Elastic scattering of the weakly bound {sup 9}Be on {sup 27}Al was measured at near barrier <span class="hlt">energies</span>. The optical model data analysis with the real and imaginary parts of a global double-folding <span class="hlt">potential</span> does not show strong evidence of the usual threshold <span class="hlt">anomaly</span>. The same result was obtained by using a Woods-Saxon shape optical <span class="hlt">potential</span> and calculating the <span class="hlt">potential</span> strengths at the strong absorption radius. The reason for this behavior may be explained by the presence of break-up and/or transfer channels at low <span class="hlt">energies</span>.</p> <div class="credits"> <p class="dwt_author">Gomes, P.R.S.; Anjos, R.M.; Muri, C.; Lubian, J.; Padron, I.; Chamon, L.C.; Neto, R. Liguori; Added, N.; Fernandez Niello, J.O.; Marti, G.V.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, R.J., 24210-340 (Brazil); Departamento de Fisica Nuclear, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, S.P. (Brazil); Laboratorio Tandar, Departamento de Fisica, Comision Nacional de Energia Atomica, Av. del Libertador 8250 (1419), Buenos Aires (Argentina)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JMPSo..56..772S"> <span id="translatedtitle">On boundary <span class="hlt">potential</span> <span class="hlt">energies</span> in deformational and configurational mechanics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This contribution deals with the implications of boundary <span class="hlt">potential</span> <span class="hlt">energies</span>, i.e. in short surface, curve and point <span class="hlt">potentials</span>, on deformational and configurational mechanics. Within the realm of deformational mechanics the surface/curve <span class="hlt">potentials</span> are allowed in the most general case to depend on the deformation, the surface/curve deformation gradient and the spatial surface normal/curve tangent and are parametrised in the material placement and the material surface normal/curve tangent. The point <span class="hlt">potentials</span> depend on the deformation and are parametrised in the material placement. From the configurational mechanics perspective the roles of fields and parametrisations are reversed. By considering variational arguments based on the kinematics of deforming surfaces/curves, in particular the relevant surface/curve stresses and distributed forces contributing to (localized) deformational and configurational force balances at surfaces/curves/points, which extend the common traction boundary conditions, are derived. Thereby, dissipative distributed configurational forces that are energetically conjugate to configurational changes are introduced as definitions. The (localized) force balances at surfaces/curves/points together with the contributing stresses and distributed forces within deformational and configurational mechanics display an intriguing duality. The resulting dissipative configurational tractions at the boundary are exemplified for some illustrative cases of boundary <span class="hlt">potentials</span>.</p> <div class="credits"> <p class="dwt_author">Steinmann, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3098114"> <span id="translatedtitle"><span class="hlt">Potentials</span> 'R'Us web-server for protein <span class="hlt">energy</span> estimations with coarse-grained knowledge-based <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background Knowledge-based <span class="hlt">potentials</span> have been widely used in the last 20 years for fold recognition, protein structure prediction from amino acid sequence, ligand binding, protein design, and many other purposes. However generally these are not readily accessible online. Results Our new knowledge-based <span class="hlt">potential</span> server makes available many of these <span class="hlt">potentials</span> for easy use to automatically compute the <span class="hlt">energies</span> of protein structures or models supplied. Our web server for protein <span class="hlt">energy</span> estimation uses four-body <span class="hlt">potentials</span>, short-range <span class="hlt">potentials</span>, and 23 different two-body <span class="hlt">potentials</span>. Users can select <span class="hlt">potentials</span> according to their needs and preferences. Files containing the coordinates of protein atoms in the PDB format can be uploaded as input. The results will be returned to the user's email address. Conclusions Our <span class="hlt">Potentials</span> 'R'Us server is an easily accessible, freely available tool with a web interface that collects all existing and future protein coarse-grained <span class="hlt">potentials</span> and computes <span class="hlt">energies</span> of multiple structural models.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.8957R"> <span id="translatedtitle">Onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> over Iberia: present and future projections</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable <span class="hlt">energy</span> sources in a climate change context. While advantages of wind <span class="hlt">energy</span> are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the <span class="hlt">potential</span> power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that <span class="hlt">potential</span> wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest <span class="hlt">potential</span> <span class="hlt">energy</span> outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power <span class="hlt">potential</span> are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).</p> <div class="credits"> <p class="dwt_author">Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20949985"> <span id="translatedtitle"><span class="hlt">Energy</span> surface, chemical <span class="hlt">potentials</span>, Kohn-Sham <span class="hlt">energies</span> in spin-polarized density functional theory.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">On the basis of the zero-temperature grand canonical ensemble generalization of the <span class="hlt">energy</span> E[N,N(s),v,B] for fractional particle N and spin N(s) numbers, the <span class="hlt">energy</span> surface over the (N,N(s)) plane is displayed and analyzed in the case of homogeneous external magnetic fields B(r). The (negative of the) left-/right-side derivatives of the <span class="hlt">energy</span> with respect to N, N(?), and N(?) give the fixed-N(s), spin-up, and spin-down ionization <span class="hlt">potentials</span>/electron affinities, respectively, while the derivative of E[N,N(s),v,B] with respect to N(s) gives the (signed) half excitation <span class="hlt">energy</span> to the lowest-lying state with N(s) increased (or decreased) by 2. The highest occupied and lowest unoccupied Kohn-Sham spin-orbital <span class="hlt">energies</span> are identified as the corresponding spin-up and spin-down ionization <span class="hlt">potentials</span> and electron affinities. The excitation <span class="hlt">energies</span> to the lowest-lying states with N(s)±2 can be obtained as the differences between the lowest unoccupied and the opposite-spin highest occupied spin-orbital <span class="hlt">energies</span>, if the (N,N(s)) representation of the Kohn-Sham spin-<span class="hlt">potentials</span> is used. The cases where the convexity condition on the <span class="hlt">energy</span> does not hold are also discussed. Finally, the discontinuities of the <span class="hlt">energy</span> derivatives and the Kohn-Sham <span class="hlt">potential</span> are analyzed and related. PMID:20949985</p> <div class="credits"> <p class="dwt_author">Gál, T; Geerlings, P</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800026193&hterms=virial+theorem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvirial%2Btheorem"> <span id="translatedtitle">Gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> of the earth - A spherical harmonic approach</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A spherical harmonic equation for the gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the <span class="hlt">energy</span> of a radial density distribution. The second degree terms give a maximum nonhydrostatic <span class="hlt">energy</span> in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain <span class="hlt">energy</span> in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of <span class="hlt">energy</span>. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.</p> <div class="credits"> <p class="dwt_author">Rubincam, D. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/924389"> <span id="translatedtitle"><span class="hlt">Potential</span> impacts of nanotechnology on <span class="hlt">energy</span> transmission applications and needs.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The application of nanotechnologies to <span class="hlt">energy</span> transmission has the <span class="hlt">potential</span> to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of <span class="hlt">energy</span>, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce <span class="hlt">potential</span> ROW impacts. <span class="hlt">Potential</span> environmental, safety, and health impacts are also discussed.</p> <div class="credits"> <p class="dwt_author">Elcock, D.; Environmental Science Division</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5506860"> <span id="translatedtitle">Superstrings, <span class="hlt">anomalies</span> and unification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This volume contains the lectures covering the main lines of developments in the presently most active field of particle physics: string field theory, <span class="hlt">anomalies</span>, unification and physics beyond the Planck length. The lectures are generally pedagogical in style, designed at the postdoctoral level, but at the same time they introduce one to the most recent results in the field.</p> <div class="credits"> <p class="dwt_author">Martinis, M.; Andric, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6538620"> <span id="translatedtitle">Design of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for chemical reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The design of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for two systems is considered. The first study presented is for the abstraction reaction F + H/sub 2/ ..-->.. HF + H and the exchange reaction H' + FH ..-->.. FH' + H and their related isotopic analogs. Several surfaces are proposed which incorporate both experimental and ab initio information. The new surfaces are of the form of the extended London-Eyring-Polanyi method but with angle-and distance-dependent Sato parameters and an added three-center term. The first new surface is fit using empirical data in the entrance channel but only ab initio data in the exit channel. Preliminary studies on the role of dynamical bottlenecks in the exit-channel are used to locate the crucial regions of the surface where accurate calculations are needed. A second surface is a slightly modified version of the first in which experimental information is used to recalibrate the abstraction exit channel. Two additional surfaces presented here are designed to test the effect of a higher entrance-channel saddle point on the dynamics. A study of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for the reaction CH/sub 3/ + H/sub 2/ ..-->.. CH/sub 4/ + H is also presented. This includes a thorough analysis of existing surfaces and dynamics calculations using slightly modified forms of these surfaces. Two new surfaces are calibrated using both ab initio and experimental data. Rate constants, activation <span class="hlt">energies</span>, and kinetic isotope effects calculated using the new surfaces are compared to experiment.</p> <div class="credits"> <p class="dwt_author">Steckler, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014HEAD...1410610F"> <span id="translatedtitle">Very High <span class="hlt">Energy</span> Blazars and the <span class="hlt">Potential</span> for Cosmological Insight</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Gamma-ray blazars are among the most extreme astrophysical sources, harboring phenomena far more energetic than those attainable by terrestrial accelerators. These galaxies are understood to be active galactic nuclei that are powered by accretion onto supermassive black holes and have relativistic jets pointed along the Earth line of sight. The emission displayed is variable at all wavelengths and timescales probed thus far, necessitating contemporaneous broadband observations to disentangle the details of the emission processes within the relativistic jets. The very high <span class="hlt">energy</span> (VHE; E> 100 GeV) photons emitted by these sources are detectable with ground based imaging atmospheric Cherenkov telescopes such as VERITAS. As these photons propagate extragalactic distances, the interaction with the diffuse starlight that pervades the entire Universe results in a distance and <span class="hlt">energy</span> dependent gamma-ray opacity, offering a unique method for probing photon densities on cosmological scales. These galaxies have also been postulated to be <span class="hlt">potential</span> sources of ultra-high-<span class="hlt">energy</span> cosmic rays, a theory which can be examined through the deep gamma-ray observations of sources which probe moderate gamma-ray opacities. Within this talk, I will highlight ongoing research regarding the broadband emission from VERITAS-observed VHE blazars, as well as the <span class="hlt">potential</span> to use them for cosmological insight.</p> <div class="credits"> <p class="dwt_author">Furniss, Amy</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40877743"> <span id="translatedtitle"><span class="hlt">Potential</span> of building-scale alternative <span class="hlt">energy</span> to alleviate risk from the future price of <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">energy</span> used for building operations, the associated greenhouse gas emissions, and the uncertainties in future price of natural gas and electricity can be a cause of concern for building owners and policy makers. In this work we explore the <span class="hlt">potential</span> of building-scale alternative <span class="hlt">energy</span> technologies to reduce demand and emissions while also shielding building owners from the risks associated</p> <div class="credits"> <p class="dwt_author">David Bristow; Christopher A. Kennedy</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB2011110843"> <span id="translatedtitle">Nondestructive Evaluation of Manufacturing-Induced <span class="hlt">Anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Anomalous machining events can occur that result in damage and/or <span class="hlt">anomalies</span> that lead to catastrophic failure of jet engine components. A number of <span class="hlt">potential</span> anomalous machining-induced damages may result depending on the machining process, the alloy, the...</p> <div class="credits"> <p class="dwt_author">C. Lo C. Meyer D. Eisenmann D. Enyart D. Ryan F. Margetan J. Pfeiffer J. Umbach L. Brasche R. Raulerson S. Singh T. Jensen T. Patton</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6240782"> <span id="translatedtitle"><span class="hlt">Energy</span> aspects and <span class="hlt">potential</span> <span class="hlt">energy</span> savings of the new DASI process for milk sterilization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An experimental study was conducted to determine the difference in total processing <span class="hlt">energy</span> required by the DASI ultra-high temperature (UHT) system and a conventional high temperature short time (HTST) fluid milk system. Data available in the literature were used to develop an <span class="hlt">energy</span> use profile for the current US fluid milk system from processor to consumer. The <span class="hlt">energy</span> data measured and the profile developed were used to estimate the <span class="hlt">potential</span> <span class="hlt">energy</span> savings resulting from the introduction of sterile milk in the US fluid milk market. Savings of <span class="hlt">energy</span> resulting from the introduction of sterile milk were estimated to be 12 million barrels of oil annually.</p> <div class="credits"> <p class="dwt_author">Frey, B.C. (Univ. of Maryland, College Park); Stewart, L.E.; Chandarana, D.; Wolfson, R.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020034905&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> curves and collision integrals of air components</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the <span class="hlt">potential</span> <span class="hlt">energy</span> curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction <span class="hlt">potentials</span>. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.</p> <div class="credits"> <p class="dwt_author">Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910048613&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Global Expression for Representing Diatomic <span class="hlt">Potential-Energy</span> Curves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A three-parameter expression that gives an accurate fit to diatomic <span class="hlt">potential</span> curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-<span class="hlt">energy</span> relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the <span class="hlt">potential</span> curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.</p> <div class="credits"> <p class="dwt_author">Ferrante, John; Schlosser, Herbert; Smith, John R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997CPL...275..494Y"> <span id="translatedtitle">Ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> surface of Ne?OCS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface for Ne?OCS is calculated using the second-order Møller-Plesset perturbation approach with a large basis set consisting of 6-31G + (2df) nucleus-centered basis set and the midpoint bond function set 3s3p2d. Three local <span class="hlt">potential</span> minima are found to be located at the linear Ne?OCS and Ne?SCO and the asymmetric T-shaped structures. The well depths and the distances are De (T-shaped) = 82.30 cm -1, R = 3.554 Å, ? = 71.88°; De (Ne?OCS) = 44.84 cm -1, R = 4.928 Å; De (Ne?SCO) = 58.63 cm -1, R = 4.427 Å. The results for the T-shaped minimum are in good agreement with the observed values of R = 3.539 Å and ? = 71.46° .</p> <div class="credits"> <p class="dwt_author">Yan, Guosen; Yang, Minghui; Xie, Daiqian</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5926228"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces and reaction dynamics of polyatomic molecules</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A simple empirical valence bond (EVB) model approach is suggested for constructing global <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous <span class="hlt">potential</span> surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.</p> <div class="credits"> <p class="dwt_author">Chang, Yan-Tyng.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020050253&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Rotational <span class="hlt">Energy</span> Transfer of N2 Gas Determined Using a New Ab Initio <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Rotational <span class="hlt">energy</span> transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational <span class="hlt">energy</span> transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) has been reported in the literature.</p> <div class="credits"> <p class="dwt_author">Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhyS...89e4003B"> <span id="translatedtitle">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface of 240Pu around scission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface of 240Pu is analyzed in the scission region within an elaborate macroscopic–microscopic approach, using the Lublin–Strasbourg-drop model, an improved Strutinsky shell-correction method and the BCS (Bardeen–Cooper–Schrieffer) treatment of pairing. The modified funny-hills nuclear shape parameterization, used in the present study, is further improved by introducing new collective coordinates ? and ? for the elongation and neck-constriction. These variables are shown to be very well suited for the scission region. Within a limited number of dimensions, the model is able to explain fission modes in the actinide region. More specifically, the present work indicates that the peak of the mass distribution at A\\approx 140 in the low-<span class="hlt">energy</span> fission of 240Pu is mainly caused by strong neutron shell corrections.</p> <div class="credits"> <p class="dwt_author">Bartel, J.; Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EPJC...74.2816G"> <span id="translatedtitle">Finite field-<span class="hlt">energy</span> and interparticle <span class="hlt">potential</span> in logarithmic electrodynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We pursue an investigation of logarithmic electrodynamics, for which the field <span class="hlt">energy</span> of a point-like charge is finite, as happens in the case of the usual Born-Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. The calculation shows a long-range correction (-type) to the Coulomb <span class="hlt">potential</span> for logarithmic electrodynamics. Interestingly enough, for its non-commutative version, the interaction <span class="hlt">energy</span> is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis.</p> <div class="credits"> <p class="dwt_author">Gaete, Patricio; Helayël-Neto, José</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA430829"> <span id="translatedtitle">Ferret Workflow <span class="hlt">Anomaly</span> Detection System.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Ferret workflow <span class="hlt">anomaly</span> detection system project 2003-2004 has provided validation and <span class="hlt">anomaly</span> detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits. A workflow, process, or procedure,...</p> <div class="credits"> <p class="dwt_author">T. J. Smith S. Bryant</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54155264"> <span id="translatedtitle">Space Weather and Satellite <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Results of the Satellite <span class="hlt">Anomaly</span> Project, which aims to improve the methods of safeguarding satellites in the Earth's magnetosphere from the negative effects of the space environment, are presented. <span class="hlt">Anomaly</span> data from the \\</p> <div class="credits"> <p class="dwt_author">Lev Dorman; N. Iucci; A. E. Levitin; A. V. Belov; E. A. Eroshenko; N. G. Ptitsyna; G. Villoresi; G. V. Chizhenkov; L. I. Gromova; M. Parisi; M. I. Tyasto; V. G. Yanke</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE87753204"> <span id="translatedtitle">Algebraic Structure of Chiral <span class="hlt">Anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">I will describe first the algebraic aspects of chiral <span class="hlt">anomalies</span>, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge <span class="hlt">anomalies</span> and will eventually make contact with results obta...</p> <div class="credits"> <p class="dwt_author">R. Stora</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21579868"> <span id="translatedtitle">Nuclear binding <span class="hlt">energy</span> and symmetry <span class="hlt">energy</span> of nuclear matter with modern nucleon-nucleon <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon <span class="hlt">potentials</span>. > The results come out by approximating the single particle self-consistent <span class="hlt">potential</span> with a parabolic form. > We discuss the current status of the Coester line, i.e., density and <span class="hlt">energy</span> of the various saturation points being strongly linearly correlated. > The nuclear symmetry <span class="hlt">energy</span> is calculated as the difference between the binding <span class="hlt">energy</span> of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding <span class="hlt">energy</span> of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon <span class="hlt">potentials</span> is studied. Both the standard and continuous choices of single particle <span class="hlt">energies</span> are used. These modern nucleon-nucleon <span class="hlt">potentials</span> fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry <span class="hlt">energy</span> obtained with different <span class="hlt">potentials</span>, which is of great importance in astrophysical calculation.</p> <div class="credits"> <p class="dwt_author">Hassaneen, Kh.S.A., E-mail: khs_94@yahoo.com [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Abo-Elsebaa, H.M.; Sultan, E.A. [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Mansour, H.M.M. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/862161"> <span id="translatedtitle"><span class="hlt">Energy</span> use and savings <span class="hlt">potential</span> for laboratory fume hoods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Typically relied upon as a primary source of ventilation in laboratory-type facilities, while also providing for safe conditions in areas in which experiments are being conducted, fume hoods are critical <span class="hlt">energy</span> end-use devices. Fume hoods require large amounts of airflow,which drives the overall HVAC sizing and <span class="hlt">energy</span> requirements of the buildings in which they are located. For standard six-foot hoods,per-hood <span class="hlt">energy</span> costs range from $4,200 for moderate climates such as Seattle, USA to $8,200/year for extreme cooling climates such as Singapore. With an estimated 750,000 hoods in use in the U.S., the aggregate <span class="hlt">energy</span> use and savings <span class="hlt">potential</span> is significant. We estimate the annual operating cost of U.S. fume hoods at approximately $3.8billion, with a corresponding peak electrical demand of 5,000 megawatts.With emerging technologies, per-hood savings of 50-75 percent can be safely and cost-effectively achieved.</p> <div class="credits"> <p class="dwt_author">Mills, Evan; Sartor, Dale</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-07-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41042170"> <span id="translatedtitle">Assessment of renewable <span class="hlt">energy</span> resources <span class="hlt">potential</span> for electricity generation in Bangladesh</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Renewable <span class="hlt">energy</span> encompasses a broad range of <span class="hlt">energy</span> resources. Bangladesh is known to have a good <span class="hlt">potential</span> for renewable <span class="hlt">energy</span>, but so far no systematic study has been done to quantify this <span class="hlt">potential</span> for power generation. This paper estimates the <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> resources for power generation in Bangladesh from the viewpoint of different promising available technologies. Estimation of</p> <div class="credits"> <p class="dwt_author">Manfred Denich</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37812965"> <span id="translatedtitle">The <span class="hlt">potential</span> effect of end-users on <span class="hlt">energy</span> conservation in office buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of the study is to estimate the <span class="hlt">potential</span> of end-user effect on <span class="hlt">energy</span> conservation in office buildings. The study quantifies the <span class="hlt">energy</span> conservation <span class="hlt">potential</span> and estimates the current level of <span class="hlt">energy</span> management in four banking organisations in the Nordic countries. Design\\/methodology\\/approach – The multiple case study employs quantitative scenario analysis for estimating the <span class="hlt">energy</span> conservation <span class="hlt">potential</span></p> <div class="credits"> <p class="dwt_author">Seppo Junnila</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/GLOB_CLIM/"> <span id="translatedtitle">Global Climate Highlights and <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">NOAA's Global Climate Highlights and <span class="hlt">Anomalies</span> page offers weekly summaries of global climate highlights and <span class="hlt">anomalies</span> (warm, cold, wet, dry). Areas experiencing climate <span class="hlt">anomalies</span> are color-marked on a global map, followed by written summaries of each region's climate conditions. All weeks are posted for the year 2000 (to present), and a link points users to the complete 1999 archive.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020035539&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">An Ab Initio Based <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface for Water</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We report a new determination of the water <span class="hlt">potential</span> <span class="hlt">energy</span> surface. A high quality ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.</p> <div class="credits"> <p class="dwt_author">Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014E%26PSL.397..121D"> <span id="translatedtitle">Gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> and active deformation in the Apennines</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We use velocity measurements from a network of continuous GPS sites spanning the Apennines of peninsular Italy to test the hypothesis that the active deformation of the region is explained by variations in gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> of the lithosphere. The simple geometry of the mountain chain allows us to treat the deformation as two-dimensional, neglecting gradients of velocity along the strike of the chain. Under this assumption, the integral of gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> per unit area of the lithosphere (GPE) in the direction perpendicular to the chain is related by a simple expression to the velocity in the same direction. We show that the observed velocities match this expression with an RMS misfit of 0.5 mm/yr. This agreement suggests that deformation of the Apennines reflects a balance, within the mountain chain itself, between lateral variations in GPE and the stresses required to deform the lithosphere. Forces arising from processes external to the belt are not required to explain the observations.</p> <div class="credits"> <p class="dwt_author">D'Agostino, N.; England, P.; Hunstad, I.; Selvaggi, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23617631"> <span id="translatedtitle">He-, Ne-, and Ar-phosgene intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Using the CCSD(T) model, we evaluated the intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction <span class="hlt">energies</span> with the augmented (He complex) and double augmented (Ne and Ar complexes) correlation-consistent polarized valence triple-? basis sets extended with a set of 3s3p2d1f1g midbond functions. These basis sets were selected after systematic basis set studies carried out at geometries close to those of the surface minima. The He-, Ne-, and Ar-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm(-1) at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The <span class="hlt">potentials</span> were further used in the evaluation of rovibrational states and the rotational constants of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised. PMID:23617631</p> <div class="credits"> <p class="dwt_author">Munteanu, Cristian R; Henriksen, Christian; Felker, Peter M; Fernández, Berta</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23775463"> <span id="translatedtitle"><span class="hlt">Anomaly</span> Detection and Localization in Crowded Scenes.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The detection and localization of anomalous behaviors in crowded scenes is considered, and a joint detector of temporal and spatial <span class="hlt">anomalies</span> is proposed. The proposed detector is based on a video representation that accounts for both appearance and dynamics, using a set of mixture of dynamic textures models. These models are used to implement 1)~a center-surround discriminant saliency detector that produces spatial saliency scores, and 2)~a model of normal behavior that is learned from training data and produces temporal saliency scores. Spatial and temporal <span class="hlt">anomaly</span> maps are then defined at multiple spatial scales, by considering the scores of these operators at progressively larger regions of support. The multi-scale scores act as <span class="hlt">potentials</span> of a conditional random field that guarantees global consistency of the <span class="hlt">anomaly</span> judgments. A dataset of densely crowded pedestrian walkways is introduced and used to evaluate the proposed <span class="hlt">anomaly</span> detector. Experiments on this and other datasets show that the latter achieves state-of-the-art <span class="hlt">anomaly</span> detection results. PMID:23775463</p> <div class="credits"> <p class="dwt_author">Li, Weixin; Mahadevan, Vijay; Vasconcelos, Nuno</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-12</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24231863"> <span id="translatedtitle"><span class="hlt">Anomaly</span> detection and localization in crowded scenes.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The detection and localization of anomalous behaviors in crowded scenes is considered, and a joint detector of temporal and spatial <span class="hlt">anomalies</span> is proposed. The proposed detector is based on a video representation that accounts for both appearance and dynamics, using a set of mixture of dynamic textures models. These models are used to implement 1) a center-surround discriminant saliency detector that produces spatial saliency scores, and 2) a model of normal behavior that is learned from training data and produces temporal saliency scores. Spatial and temporal <span class="hlt">anomaly</span> maps are then defined at multiple spatial scales, by considering the scores of these operators at progressively larger regions of support. The multiscale scores act as <span class="hlt">potentials</span> of a conditional random field that guarantees global consistency of the <span class="hlt">anomaly</span> judgments. A data set of densely crowded pedestrian walkways is introduced and used to evaluate the proposed <span class="hlt">anomaly</span> detector. Experiments on this and other data sets show that the latter achieves state-of-the-art <span class="hlt">anomaly</span> detection results. PMID:24231863</p> <div class="credits"> <p class="dwt_author">Li, Weixin; Mahadevan, Vijay; Vasconcelos, Nuno</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9057E..0YO"> <span id="translatedtitle">Broadband <span class="hlt">energy</span> harvesting via adaptive control of bistable <span class="hlt">potential</span> <span class="hlt">energy</span> separatrix</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">As a result of the documented performance limitations of conventional linear piezoelectric <span class="hlt">energy</span> harvesters, researchers have focused their efforts towards device designs that can better capture broadband <span class="hlt">energy</span>. The approaches used can be classified into three categories: frequency tuning, multi-modal <span class="hlt">energy</span> harvesting, and nonlinear <span class="hlt">energy</span> harvesting1. Of the nonlinear harvesting approaches studied, bistable <span class="hlt">energy</span> harvesters have been shown to have the most robust performance when subjected to broadband harmonic & stochastic excitation2-4. A conventional method for developing a nonlinear bistable restoring force is through use of magnetic repulsion. In these studies, a common theme of high-<span class="hlt">energy</span> orbit breakdown occurs during a frequency upsweep. The issue at hand is the inability of the device inertial forces to overcome the <span class="hlt">potential</span> <span class="hlt">energy</span> barrier (separatrix) inherent to a bistable <span class="hlt">potential</span> <span class="hlt">energy</span>. This paper proposes the use of a high-permeability electromagnet for adaptively controlling the bistable magnetic repulsion force to expand the frequency bandwidth for high-<span class="hlt">energy</span> harmonic oscillations. Numerical simulations of the nonlinear oscillator are used to study the system response under varying parameters of separation distance and electromagnetic coil current. An analytical model of the magnetic moment of an electromagnet is developed for use in studying the force interaction between repulsing magnets and to determine the parametric space that generates buckling loads in a cantilever bimorph <span class="hlt">energy</span> harvester.</p> <div class="credits"> <p class="dwt_author">Ouellette, Scott A.; Todd, Michael D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JGRD..119..385M"> <span id="translatedtitle"><span class="hlt">Anomaly</span> patterns about strong convective events in the tropics and midlatitudes: Observations from radiosondes and surface weather stations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">use 13 years (1998-2010) of rainfall estimates from the Tropical Rainfall Measuring Mission to identify high rain events located close to radiosondes. This is done in four regions: the Western Tropical Pacific, Tropical Brazil, Southeast China, and Southeast U.S. We then construct composite <span class="hlt">anomaly</span> patterns of temperature, relative humidity, surface pressure, convective available <span class="hlt">potential</span> <span class="hlt">energy</span> (CAPE), geopotential height, mass divergence, relative vorticity, and <span class="hlt">potential</span> vorticity about these high rain events. One motivation of this analysis is to identify regional differences in the interaction between strong convective events and the background atmosphere. We find, overall, that the changes in meteorological variables which occur during the evolution of strong convective events in midlatitudes are similar to the changes that occur in the tropics. In midlatitudes, however, strong convective events are associated with stronger <span class="hlt">anomalies</span> in surface pressure and geopotential height and exhibit a warm <span class="hlt">anomaly</span> in the lower troposphere prior to peak rainfall. In the Southeast U.S., the near-surface layer of positive CAPE that occurs prior to high rain events is thicker than in the Western Tropical Pacific. In the two midlatitude regions, the midlevel <span class="hlt">potential</span> vorticity maximum that develops during the growth stage of high rain events acquires a downward tilt toward the surface during the decay stage, suggesting downward transport toward the surface. A conceptual model previously used to interpret the <span class="hlt">anomaly</span> patterns of the 2 day equatorial wave is used to interpret the <span class="hlt">anomaly</span> patterns associated with more general types of high rain events in the tropics.</p> <div class="credits"> <p class="dwt_author">Mitovski, Toni; Folkins, Ian</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54650259"> <span id="translatedtitle">From electron densities to Kohn-Sham kinetic <span class="hlt">energies</span>, orbital <span class="hlt">energies</span>, exchange-correlation <span class="hlt">potentials</span>, and exchange-correlation <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">By developing our previous method [Phys. Rev. A 46, 2337 (1992); J. Chem. Phys. 98, 543 (1993)], we show how to calculate Kohn-Sham kinetic <span class="hlt">energies</span>, orbitals, orbital <span class="hlt">energies</span>, and exchange-correlation <span class="hlt">potentials</span>, starting from accurate ground-state electron densities. In addition, given correct total <span class="hlt">energies</span>, we also show how to obtain exchange-correlation <span class="hlt">energies</span>. The scheme used is based on the Levy constrained-search</p> <div class="credits"> <p class="dwt_author">Qingsheng Zhao; Robert C. Morrison; Robert G. Parr</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12595076"> <span id="translatedtitle">Yukawa textures and <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We augment the Minimal Supersymmetric Standard Model with a gauged family-dependent U(1) to reproduce Yukawa textures compatible with experiment. In the simplest model with one extra chiral electroweak singlet field, acceptable textures require this U(1) to be anomalous. The cancellation of its <span class="hlt">anomalies</span> by a generic Green-Schwarz mechanism requires sin2?w = 38 at the string scale, suggesting a supersting a</p> <div class="credits"> <p class="dwt_author">Pierre Binétruy; Pierre Ramond</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25062187"> <span id="translatedtitle">New type of <span class="hlt">anomaly</span> in turbulence.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The turbulent <span class="hlt">energy</span> flux through scales, ?[over ¯], remains constant and nonvanishing in the limit of zero viscosity, which results in the fundamental <span class="hlt">anomaly</span> of time irreversibility. It was considered straightforward to deduce from this the Lagrangian velocity <span class="hlt">anomaly</span>, ?du^{2}/dt?=-4?[over ¯] at t=0, where u[over ?] is the velocity difference of a pair of particles, initially separated by a fixed distance. Here we demonstrate that this assumed first taking the limit t?0 and then ??0, while a zero-friction <span class="hlt">anomaly</span> requires taking viscosity to zero first. We find that the limits t?0 and ??0 do not commute if particles deplete (accumulate) in shocks backward (forward) in time on the viscous time scale. We compute analytically the resultant Lagrangian <span class="hlt">anomaly</span> for one-dimensional Burgers turbulence and find it completely altered: ?du^{2}/dt? has different values forward and backward in time. For incompressible flows, on the other hand, we show that the limits commute and the Lagrangian <span class="hlt">anomaly</span> is still induced by the flux law, apparently due to a homogeneous distribution of fluid particles at all times. PMID:25062187</p> <div class="credits"> <p class="dwt_author">Frishman, Anna; Falkovich, Gregory</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-11</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23989523"> <span id="translatedtitle">Complex vascular <span class="hlt">anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The classification system for vascular <span class="hlt">anomalies</span> now used by experts worldwide comprises two distinct disease entities that differ in their biologic and pathologic features: vascular tumors and vascular malformations. Vascular tumors include infantile and congenital hemangiomas, tufted angiomas, and kaposiform hemangioendotheliomas. Infantile hemangiomas, the most common vascular <span class="hlt">anomaly</span>, generally have a predetermined life cycle (proliferation and subsequent involution). GLUT-1, a glucose transporter, is a marker for these specific lesions during all phases of development. Vascular malformations are classified according to their vascular tissue of origin and include capillary, venous, arteriovenous, lymphatic, and mixed malformations. Complex lymphatic malformations and complex mixed malformations, which may have most vascular components, are the most difficult vascular malformations to successfully treat. These lesions are present at birth and often expand or grow in response to trauma, infection, or hormonal changes. Imaging advancements have enabled more accurate assessments and improved management of vascular <span class="hlt">anomalies</span>. In addition, many lesions are now being managed with targeted pharmacologic therapy. Propranolol and steroids are used for complex or disfiguring tumors, and new anti-angiogenesis inhibitors such as sirolimus are selectively used to treat lymphatic and venous lymphatic malformations that are poorly responsive to sclerotherapy, embolization, and surgical excision. Multimodal therapies are often essential for complex lesions and require the combined expertise of an interdisciplinary team. PMID:23989523</p> <div class="credits"> <p class="dwt_author">Azizkhan, Richard G</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3031181"> <span id="translatedtitle">Pathogenesis of Vascular <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Vascular <span class="hlt">anomalies</span> are localized defects of vascular development. Most of them occur sporadically, i.e. there is no familial history of lesions, yet in a few cases clear inheritance is observed. These inherited forms are often characterized by multifocal lesions that are mainly small in size and increase in number with patient’s age. On the basis of these inherited forms, molecular genetic studies have unraveled a number of inherited mutations giving direct insight into the pathophysiological cause and the molecular pathways that are implicated. Genetic defects have been identified for hereditary haemorrhagic telangiectasia (HHT), inherited cutaneomucosal venous malformation (VMCM), glomuvenous malformation (GVM), capillary malformation - arteriovenous malformation (CM-AVM), cerebral cavernous malformation (CCM) and some isolated and syndromic forms of primary lymphedema. We focus on these disorders, the implicated mutated genes and the underlying pathogenic mechanisms. We also call attention to the concept of Knudson’s double-hit mechanism to explain incomplete penetrance and the large clinical variation in expressivity of inherited vascular <span class="hlt">anomalies</span>. This variability renders the making of correct diagnosis of the rare inherited forms difficult. Yet, the identification of the pathophysiological causes and pathways involved in them has had an unprecedented impact on our thinking of their etiopathogenesis, and has opened the doors towards a more refined classification of vascular <span class="hlt">anomalies</span>. It has also made it possible to develop animal models that can be tested for specific molecular therapies, aimed at alleviating the dysfunctions caused by the aberrant genes and proteins.</p> <div class="credits"> <p class="dwt_author">Boon, Laurence M.; Ballieux, Fanny; Vikkula, Miikka</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19393309"> <span id="translatedtitle">Cadmium tolerance and accumulation in eight <span class="hlt">potential</span> <span class="hlt">energy</span> crops.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The production of <span class="hlt">energy</span> crops that can be used for biodiesel production is a sustainable approach for the removal of metal pollutants by phytoremediation. This study investigated the cadmium (Cd) accumulation and tolerance of eight <span class="hlt">potential</span> <span class="hlt">energy</span> crops. After growth for 28 days in substrates containing 0, 50, 100 or 200 mg Cd x kg(-1), seedlings were evaluated for growth parameters, chlorophyll content, chlorophyll fluorescence parameters and Cd accumulation. All eight crops were moderately tolerant to Cd toxicity, with four [i.e., hemp (Cannabis sativa), flax (Linum usitatissimum), castor (Ricinus communis) and peanut (Arachis hypogaea)] being more tolerant than the others. Three of these crops (hemp, flax and peanut) had higher Cd accumulation capacities. The roots of peanut and hemp had high bioconcentration factors (BCF>1000), while flax shoots accumulated a higher concentration of Cd (>100 mg/kg). These results demonstrate that it is possible to grow <span class="hlt">energy</span> crops on Cd-contaminated soil. Hemp, flax and peanut are excellent candidates for phytoremediation. PMID:19393309</p> <div class="credits"> <p class="dwt_author">Shi, Gangrong; Cai, Qingsheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23028149"> <span id="translatedtitle">Progress in calculating the <span class="hlt">potential</span> <span class="hlt">energy</span> surface of H3+.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The most accurate electronic structure calculations are performed using wave function expansions in terms of basis functions explicitly dependent on the inter-electron distances. In our recent work, we use such basis functions to calculate a highly accurate <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) for the H(3)(+) ion. The functions are explicitly correlated Gaussians, which include inter-electron distances in the exponent. Key to obtaining the high accuracy in the calculations has been the use of the analytical <span class="hlt">energy</span> gradient determined with respect to the Gaussian exponential parameters in the minimization of the Rayleigh-Ritz variational <span class="hlt">energy</span> functional. The effective elimination of linear dependences between the basis functions and the automatic adjustment of the positions of the Gaussian centres to the changing molecular geometry of the system are the keys to the success of the computational procedure. After adiabatic and relativistic corrections are added to the PES and with an effective accounting of the non-adiabatic effects in the calculation of the rotational/vibrational states, the experimental H(3)(+) rovibrational spectrum is reproduced at the 0.1?cm(-1) accuracy level up to 16,600?cm(-1) above the ground state. PMID:23028149</p> <div class="credits"> <p class="dwt_author">Adamowicz, Ludwik; Pavanello, Michele</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JChPh.137w4301D"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surface and rovibrational <span class="hlt">energy</span> levels of the H2-CS van der Waals complex</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H2 is the most abundant collider. Predictions of the rovibrational <span class="hlt">energy</span> levels of the weakly bound complex CS-H2 (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H2 should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational <span class="hlt">energy</span> levels. A new four-dimensional intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the H2-CS complex is presented. Ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The <span class="hlt">potential</span> <span class="hlt">energy</span> surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H2-CS complex is found to be linear with the carbon pointing toward H2 at the intermolecular separation of 8.6 ao. The corresponding well depth is -173 cm-1. The <span class="hlt">potential</span> was used to calculate the rovibrational <span class="hlt">energy</span> levels of the para-H2-CS and ortho-H2-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation <span class="hlt">energies</span> are found to be 35.9 cm-1 and 49.9 cm-1, respectively, for the para and ortho complexes. The second virial coefficient for the H2-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface.</p> <div class="credits"> <p class="dwt_author">Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014SPIE.9064E..1ED"> <span id="translatedtitle">Reliable prediction of micro-<span class="hlt">anomalies</span> from macro-observables</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A stochastic multi-scale based approach is presented in this work to detect signatures of micro-<span class="hlt">anomalies</span> from macrolevel response variables. By micro-<span class="hlt">anomalies</span>, we primarily refer to micro-cracks of size 10-100 ?m (depending on the material), while macro-level response variables imply, e.g., strains, strain <span class="hlt">energy</span> density of macro-level structures (typical size often varying in the order of 10-100 m). The micro-<span class="hlt">anomalies</span> referred above are not discernible to the naked eyes. Nevertheless, they can cause catastrophic failures of structural systems due to fatigue cyclic loading that results in initiation of fatigue cracks. Analysis of such precursory state of internal damage evolution, before amacro-crack visibly appears (say, size of a few cms), is beyond the scope of the conventional crack propagation analysis, e.g., classical fracture mechanics. The present work addresses this issue in a certain sense by incorporating the effects of micro-cracks into the macro-scale constitutive material properties (e.g., constitutive elasticity tensors) within a probabilistic formalism based on random matrix theory, maximum entropy principle, and principles of minimum complementary <span class="hlt">energy</span> and minimum <span class="hlt">potential</span> <span class="hlt">energy</span>. Distinct differences are observed in the macro-level response characteristics depending on the presence or absence of micro-cracks. This particular feature can now be used to reliably detect micro-cracks from experimental measurements of macro-observables. The present work, therefore, further proposes an efficient and robust optimization scheme: (1) to identify locations of micro-cracks in macroscopic structural systems, say, in an aircraft wing which is of the size of 10- 100 m, and (2) to determine the weakened (due to the presence of micro-cracks) macroscopic material properties which will be useful in predicting the remaining useful life of structural systems. The proposed optimization scheme achieves better convergence rate and accuracy by exploiting positive-definite structure of the macroscopic constitutive matrices.</p> <div class="credits"> <p class="dwt_author">Das, Sonjoy; Chakravarty, Sourish</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21507625"> <span id="translatedtitle"><span class="hlt">Energy</span> life cycle assessment of rice straw bio-<span class="hlt">energy</span> derived from <span class="hlt">potential</span> gasification technologies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">To be a viable alternative, a biofuel should provide a net <span class="hlt">energy</span> gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such <span class="hlt">potential</span> bio-fuel in Taiwan. Through life-cycle accounting, several <span class="hlt">energy</span> indicators and four <span class="hlt">potential</span> gasification technologies (PGT) were evaluated. The input <span class="hlt">energy</span> steps for the <span class="hlt">energy</span> life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, <span class="hlt">energy</span> production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive <span class="hlt">energy</span> benefit. The input of <span class="hlt">energy</span> required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation <span class="hlt">energy</span> requirements. Bio-<span class="hlt">energy</span> sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. PMID:21507625</p> <div class="credits"> <p class="dwt_author">Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21068019"> <span id="translatedtitle">Threshold <span class="hlt">anomaly</span> in the elastic scattering of {sup 6}He on {sup 209}Bi</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">energy</span> dependence of the optical <span class="hlt">potential</span> for the elastic scattering of {sup 6}He on {sup 209}Bi at near and subbarrier <span class="hlt">energies</span> is studied. Elastic angular distributions and the reaction cross section were simultaneously fitted by performing some modifications in the ECIS code. A phenomenological optical model <span class="hlt">potential</span> with the Woods-Saxon form was used. There are signatures that the so-called breakup threshold <span class="hlt">anomaly</span> (BTA) is present in this system having a halo projectile {sup 6}He, as it had been found earlier for systems involving stable weakly bound nuclei.</p> <div class="credits"> <p class="dwt_author">Garcia, A. R.; Padron, I. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Playa, Ciudad de la Habana (Cuba); Lubian, J.; Gomes, P. R. S.; Lacerda, T.; Garcia, V. N. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, R.J., 24210-340 (Brazil); Camacho, A. Gomez; Aguilera, E. F. [Departamento del Acelerador, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C.P. 11801, Mexico, D.F. (Mexico)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014GeoRL..41.2858G"> <span id="translatedtitle">Aquarius surface salinity and the Madden-Julian Oscillation: The role of salinity in surface layer density and <span class="hlt">potential</span> <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">surface salinity (SSS) data from the Aquarius satellite are analyzed along with auxiliary data to investigate the SSS signature of the Madden-Julian Oscillation (MJO) in the equatorial Indian and Pacific Oceans, the effect of evaporation-minus-precipitation (E-P), the implication for the role of ocean dynamics, and the SSS influence on surface density and <span class="hlt">potential</span> <span class="hlt">energy</span>. MJO-related SSS changes are consistent with E-P forcing in the western Indian Ocean throughout the MJO cycle and in the central Indian Ocean during the wet phase of the MJO cycle. However, SSS changes cannot be explained by E-P in the central Indian Ocean during the dry phase and in the eastern Indian and western Pacific Oceans throughout the MJO cycle, implying the importance of ocean dynamics. SSS has an overall larger contribution to MJO-related surface density and <span class="hlt">potential</span> <span class="hlt">energy</span> <span class="hlt">anomalies</span> than SST. It partially offsets the SST effect in the western-to-central Indian Ocean and reinforces the SST effect in the eastern Indian and western Pacific Oceans. Ocean modeling and assimilation need to properly account for salinity effects in order to correctly represent mixed layer variability associated with the MJO. Our results also clarify some discrepancy in previous studies about the E-P effect on MJO-related SSS variations.</p> <div class="credits"> <p class="dwt_author">Guan, Bin; Lee, Tong; Halkides, Daria J.; Waliser, Duane E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1011420"> <span id="translatedtitle">Vector <span class="hlt">Potential</span> and Stored <span class="hlt">Energy</span> of a Quadrupole Magnet Array</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The vector <span class="hlt">potential</span>, magnetic field and stored <span class="hlt">energy</span> of a quadrupole magnet array are derived. Each magnet within the array is a current sheet with a current density proportional to the azimuthal angle 2{theta} and the longitudinal periodicity (2m-1){pi}/L. Individual quadrupoles within the array are oriented in a way that maximizes the field gradient The array does not have to be of equal spacing and can be of a finite size, however when the array is equally spaced and is of infinite size the solution can be simplified. We note that whereas, in a single quadrupole magnet with a current density proportional to cos2{theta} the gradient is pure, such purity is not preserved in a quadrupole array.</p> <div class="credits"> <p class="dwt_author">Caspi, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-03-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5209420"> <span id="translatedtitle">Collective <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of light mass Kr isotopes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Collective <span class="hlt">potential</span> <span class="hlt">energy</span> surface calculations have been performed for /sup 74 -80/Kr nuclei in the framework of the Gneuss and Greiner model. The collective Hamiltonian is diagonalized in the basis of the five-dimensional quadrupole oscillator. Our calculations suggest that the /sup 78,80/Kr nuclei are ..gamma.. unstable with a triaxial minimum at ..gamma..approx. =40/sup 0/. The /sup 74,76/Kr nuclei have two axially symmetric minima with the 0/sub 1//sup +/ ground state being located mainly in the deformed minimum, whereas the first excited 0/sub 2//sup +/ state is located in the spherical minimum. The calculations also indicate that the ground state wave function for /sup 74/Kr is spread over both the minima.</p> <div class="credits"> <p class="dwt_author">Seiwert, M.; Ramayya, A.V.; Maruhn, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020051079&hterms=POTENTIAL+ENERGY&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">An Accurate <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface for H2O</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We have carried out extensive high quality ab initio electronic structure calculations of the ground state <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic <span class="hlt">energy</span> operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF</p> <div class="credits"> <p class="dwt_author">Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850038956&hterms=subduction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsubduction"> <span id="translatedtitle">Satellite magnetic <span class="hlt">anomalies</span> over subduction zones - The Aleutian Arc <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Positive magnetic <span class="hlt">anomalies</span> seen in MAGSAT average scalar <span class="hlt">anomaly</span> data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak <span class="hlt">anomaly</span> amplitude and location depend on slab length and dip. A model for the Aleutian Arc <span class="hlt">anomaly</span> matches the general trend of the observed MAGSAT <span class="hlt">anomaly</span> if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed <span class="hlt">anomaly</span> in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.</p> <div class="credits"> <p class="dwt_author">Clark, S. C.; Frey, H.; Thomas, H. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18517937"> <span id="translatedtitle">Hypercharged <span class="hlt">anomaly</span> mediation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We show that, in string models with the minimal supersymmetric standard model residing on D-branes, the bino mass can be generated in a geometrically separated hidden sector. Hypercharge mediation thus naturally teams up with <span class="hlt">anomaly</span> mediation. The mixed scenario predicts a distinctive yet viable superpartner spectrum, provided that the ratio alpha between the bino and gravitino mass lies in the range 0.05 < or = |alpha| < or = 0.25 and m(3/2) > or = 35 TeV. We summarize some of the experimental signatures of this scenario. PMID:18517937</p> <div class="credits"> <p class="dwt_author">Dermísek, Radovan; Verlinde, Herman; Wang, Lian-Tao</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18489895"> <span id="translatedtitle">[First branchial cleft <span class="hlt">anomalies</span>].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">First branchial cleft <span class="hlt">anomalies</span> are congenital rare lesions that can sometimes be difficult to diagnose. During the normal embryonic development the outer ear canal derives from the first branchial cleft. Abnormal development can result in production of a cyst, sinus or fistula with recurring infections. Early and correct diagnosis is necessary for the correct choice of surgical set-up in which identification and preservation of the facial nerve is an important step. A case of first branchial cleft sinus is presented with further discussion of classification, diagnostics and treatment. PMID:18489895</p> <div class="credits"> <p class="dwt_author">Nikoghosyan, Gohar; Krogdahl, Annelise; Godballe, Christian</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014MS%26E...59a2004O"> <span id="translatedtitle">Wind and Solar <span class="hlt">Energy</span> <span class="hlt">Potential</span> Assessment for Development of Renewables <span class="hlt">Energies</span> Applications in Bucaramanga, Colombia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the <span class="hlt">energy</span> <span class="hlt">potential</span> resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the <span class="hlt">energy</span> <span class="hlt">potential</span> in their cities. In this paper is presented the wind and solar <span class="hlt">energy</span> resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m2, equivalent to 4.8 kWh/m2/day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind <span class="hlt">potential</span> as Class 1 according to the scale of the Department of <span class="hlt">Energy</span> of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their <span class="hlt">potential</span> for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures.</p> <div class="credits"> <p class="dwt_author">Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24758952"> <span id="translatedtitle">Representing <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces by high-dimensional neural network <span class="hlt">potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The development of interatomic <span class="hlt">potentials</span> employing artificial neural networks has seen tremendous progress in recent years. While until recently the applicability of neural network <span class="hlt">potentials</span> (NNPs) has been restricted to low-dimensional systems, this limitation has now been overcome and high-dimensional NNPs can be used in large-scale molecular dynamics simulations of thousands of atoms. NNPs are constructed by adjusting a set of parameters using data from electronic structure calculations, and in many cases <span class="hlt">energies</span> and forces can be obtained with very high accuracy. Therefore, NNP-based simulation results are often very close to those gained by a direct application of first-principles methods. In this review, the basic methodology of high-dimensional NNPs will be presented with a special focus on the scope and the remaining limitations of this approach. The development of NNPs requires substantial computational effort as typically thousands of reference calculations are required. Still, if the problem to be studied involves very large systems or long simulation times this overhead is regained quickly. Further, the method is still limited to systems containing about three or four chemical elements due to the rapidly increasing complexity of the configuration space, although many atoms of each species can be present. Due to the ability of NNPs to describe even extremely complex atomic configurations with excellent accuracy irrespective of the nature of the atomic interactions, they represent a general and therefore widely applicable technique, e.g. for addressing problems in materials science, for investigating properties of interfaces, and for studying solvation processes. PMID:24758952</p> <div class="credits"> <p class="dwt_author">Behler, J</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JPCM...26r3001B"> <span id="translatedtitle">Representing <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces by high-dimensional neural network <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The development of interatomic <span class="hlt">potentials</span> employing artificial neural networks has seen tremendous progress in recent years. While until recently the applicability of neural network <span class="hlt">potentials</span> (NNPs) has been restricted to low-dimensional systems, this limitation has now been overcome and high-dimensional NNPs can be used in large-scale molecular dynamics simulations of thousands of atoms. NNPs are constructed by adjusting a set of parameters using data from electronic structure calculations, and in many cases <span class="hlt">energies</span> and forces can be obtained with very high accuracy. Therefore, NNP-based simulation results are often very close to those gained by a direct application of first-principles methods. In this review, the basic methodology of high-dimensional NNPs will be presented with a special focus on the scope and the remaining limitations of this approach. The development of NNPs requires substantial computational effort as typically thousands of reference calculations are required. Still, if the problem to be studied involves very large systems or long simulation times this overhead is regained quickly. Further, the method is still limited to systems containing about three or four chemical elements due to the rapidly increasing complexity of the configuration space, although many atoms of each species can be present. Due to the ability of NNPs to describe even extremely complex atomic configurations with excellent accuracy irrespective of the nature of the atomic interactions, they represent a general and therefore widely applicable technique, e.g. for addressing problems in materials science, for investigating properties of interfaces, and for studying solvation processes.</p> <div class="credits"> <p class="dwt_author">Behler, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PhDT........88G"> <span id="translatedtitle">Global free <span class="hlt">energy</span> minimization by top down hierarchical dissection of smoothed <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This work presents a pilot study of a novel algorithm for perturbative protein folding by free <span class="hlt">energy</span> minimization. It combines <span class="hlt">potential</span> <span class="hlt">energy</span> smoothing using Gaussian convolution of the Boltzmann probability and hierarchical macrostate dissection of conformation space. These approaches are complementary. Smoothing deforms the <span class="hlt">potential</span> <span class="hlt">energy</span> function to reduce the complexity of the rugged protein <span class="hlt">potential</span> <span class="hlt">energy</span> landscape, but requires an efficient search of conformation space to identify regions of low free <span class="hlt">energy</span>. Macrostate dissection identifies and tracks meta-stable macroscopic states of probability (macrostates) to efficiently explore conformation space, but requires a guide to navigate through the proliferation of macrostates to reach the global free <span class="hlt">energy</span> minimum macrostate. The goals of combining these two methods are to allow fewer macrostates to be followed at each annealing step and improve the efficiency of stochastic sampling within each macrostate. Towards these goals, a set of object-oriented, parallel processing programs were developed to implement <span class="hlt">potential</span> smoothing and macrostate dissection. A novel smoothed form of the ECEPP/3 <span class="hlt">potential</span> was derived by approximating the Gaussian Convolved Probability Smoothing. Challenges unique to macrostate dissection and smoothing, including tracking merging and shifting macrostates, were overcome. A new scheme for selecting which macrostates to follow at each annealing step, based on the minimized <span class="hlt">potential</span> <span class="hlt">energy</span>, was found to be more efficient for global optimization of the peptide Met-enkephalin than existing schemes based on thermodynamic properties of macrostates. A key element to a successful combination of <span class="hlt">potential</span> smoothing and macrostate dissection lies in the relationship between the smoothing and temperature annealing schedules. In principle, the combined method would allow them to be adaptively determined. However, to begin exploring the effects of smoothing on macrostate dissection, several simple annealing schedules were tried. An annealing schedule was discovered that reduced the number of macrostates required for global optimization of Met-enkephalin. This result and results suggesting increased macrostate sampling efficiency may be obtained using an adaptive cooling schedule bode well for future research integrating an adaptive annealing schedule into the smoothing and macrostate dissection methodology.</p> <div class="credits"> <p class="dwt_author">Gans, Jason David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40764798"> <span id="translatedtitle">Assessment of sustainable <span class="hlt">energy</span> <span class="hlt">potential</span> of non-plantation biomass resources in China</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Developing bio-<span class="hlt">energy</span> and establishing sustainable rural <span class="hlt">energy</span> systems are important considerations for rural development and the protection of the global environment. This study aims to assess the sustainable <span class="hlt">energy</span> <span class="hlt">potential</span> of non-plantation biomass resources in China for the years 2005 and 2010. In this paper, the <span class="hlt">energy</span> <span class="hlt">potential</span> of the following resources have been assessed: (1) agricultural residues, (2) animal</p> <div class="credits"> <p class="dwt_author">Li Junfeng; Hu Runqing; Song Yanqin; Shi Jingli; S. C. Bhattacharya; P. Abdul Salam</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM33D..08S"> <span id="translatedtitle">Plasma structure over dayside lunar magnetic <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is well-known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth’s case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic <span class="hlt">anomalies</span> including both numerical simulations and observation by lunar orbiters. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic <span class="hlt">anomalies</span> and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed low <span class="hlt">energy</span> ion data. MAgnetic field and Plasma experiment - Plasma <span class="hlt">energy</span> Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low <span class="hlt">energy</span> charged particles around the Moon on 10 June 2009. MAP-PACE made observations at a circular lunar polar orbit of 100km altitude for about 1 year between January 2008 and December 2008. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. When Kaguya flew over strong magnetic <span class="hlt">anomalies</span>, deceleration of the solar wind ions, acceleration of the solar wind electrons, and ions reflected by magnetic <span class="hlt">anomalies</span> were observed. The deceleration of the solar wind ions was observed for both two major solar wind ion components: protons and alpha particles. Deceleration of the solar wind had the same ? E/q (? E : deceleration <span class="hlt">energy</span>, q: charge) for both protons and alpha particles. In addition, the acceleration <span class="hlt">energy</span> of the electrons was the same as the deceleration <span class="hlt">energy</span> of the ions. It indicates the existence of DC electric field over Kaguya spacecraft. Since the gyro-radius of the electrons was smaller than the size of the magnetic <span class="hlt">anomalies</span>, incident electrons were mirror reflected back. On the other hand, the gyro-radius of the ions was much larger than the size of the magnetic <span class="hlt">anomalies</span>. Therefore the incident ions could penetrate deeper into the magnetic <span class="hlt">anomalies</span>. As a result, DC electric field was generated over dayside magnetic <span class="hlt">anomalies</span>. The reflected ions were observed in much larger area than the area where strong magnetic field was observed. Mass profile of the reflected ions showed existence of reflected alpha particles as expected from the magnetic mirror reflection. However, the <span class="hlt">energy</span> of the reflected alpha particles was found to be lower than that of the alpha particles in the incident solar wind. In addition, the reflected protons also had lower <span class="hlt">energy</span> and higher temperature than those of the incident solar wind protons. It clearly indicates the existence of a non-adiabatic interaction between solar wind ions and lunar magnetic <span class="hlt">anomalies</span>.</p> <div class="credits"> <p class="dwt_author">Saito, Y.; Nishino, M. N.; Yamamoto, T.; Uemura, K.; Yokota, S.; Asamura, K.; Tsunakawa, H.; Kaguya Map Team</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24064723"> <span id="translatedtitle">Footprinting molecular electrostatic <span class="hlt">potential</span> surfaces for calculation of solvation <span class="hlt">energies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A liquid is composed of an ensemble of molecules that populate a large number of different states, so calculation of the solvation <span class="hlt">energy</span> of a molecule in solution requires a method for summing the interactions with the environment over all of these states. The surface site interaction model for the properties of liquids at equilibrium (SSIMPLE) simplifies the surface of a molecule to a discrete number of specific interaction sites (SSIPs). The thermodynamic properties of these interaction sites can be characterised experimentally, for example, through measurement of association constants for the formation of simple complexes that feature a single H-bonding interaction. Correlation of experimentally determined solution phase H-bond parameters with gas phase ab initio calculations of maxima and minima on molecular electrostatic <span class="hlt">potential</span> surfaces (MEPS) provides a method for converting gas phase calculations on isolated molecules to parameters that can be used to estimate solution phase interaction free <span class="hlt">energies</span>. This approach has been generalised using a footprinting technique that converts an MEPS into a discrete set of SSIPs (each described by a polar interaction parameter, ?i). These SSIPs represent the molecular recognition properties of the entire surface of the molecule. For example, water is described by four SSIPs, two H-bond donor sites and two H-bond acceptor sites. A liquid mixture is described as an ensemble of SSIPs that represent the components of the mixture at appropriate concentrations. Individual SSIPs are assumed to be independent, so speciation of SSIP contacts can be calculated based on properties of the individual SSIP interactions, which are given by the sum of a polar (?i?j) and a non-polar (E(vdW)) interaction term. Results are presented for calculation the free <span class="hlt">energies</span> of transfer of a range of organic molecules from the pure liquid into water, from the pure liquid into n-hexadecane, from n-hexadecane into water, from n-octanol into water, and for the transfer of water from pure water into a range of organic liquids. The agreement with experiment is accurate to within 1.6-3.9 kJ mol(-1) root mean square difference, which suggests that the SSIMPLE approach is a promising method for estimation of solvation <span class="hlt">energies</span> in more complex systems. PMID:24064723</p> <div class="credits"> <p class="dwt_author">Calero, Christian Solis; Farwer, Jochen; Gardiner, Eleanor J; Hunter, Christopher A; Mackey, Mark; Scuderi, Serena; Thompson, Stuart; Vinter, Jeremy G</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012IEITC..95.2034H"> <span id="translatedtitle">Online <span class="hlt">Anomaly</span> Prediction for Real-Time Stream Processing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">With the consideration of real-time stream processing technology, it's important to develop high availability mechanism to guarantee stream-based application not interfered by faults caused by <span class="hlt">potential</span> <span class="hlt">anomalies</span>. In this paper, we present a novel online prediction technique for predicting some <span class="hlt">anomalies</span> which may occur in the near future. Concretely, we first present a value prediction which combines the Hidden Markov Model and the Mixture of Expert Model to predict the values of feature metrics in the near future. Then we employ the Support Vector Machine to do <span class="hlt">anomaly</span> identification, which is a procedure to identify the kind of <span class="hlt">anomaly</span> that we are about to alarm. The purpose of our approach is to achieve a tradeoff between fault penalty and resource cost. The experiment results show that our approach is of high accuracy for common <span class="hlt">anomaly</span> prediction and low runtime overhead.</p> <div class="credits"> <p class="dwt_author">Huang, Yuanqiang; Luan, Zhongzhi; Qian, Depei; Du, Zhigao; Chen, Ting; Bai, Yuebin</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26604552"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation and retrofitting <span class="hlt">potential</span> in Hellenic hotels</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> consumption data from 158 Hellenic hotels and estimated <span class="hlt">energy</span> savings that result from the use of practical retrofitting techniques, materials and new <span class="hlt">energy</span> efficient systems are presented. The data were collected during an extensive <span class="hlt">energy</span> audit of buildings that was carried out in Hellas, within the frame of a National <span class="hlt">Energy</span> Programme sponsored by the CEC VALOREN Programme, for</p> <div class="credits"> <p class="dwt_author">M. Santamouris; C. A. Balaras; E. Dascalaki; A. Argiriou; A. Gaglia</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17190551"> <span id="translatedtitle">Density-functional theory with effective <span class="hlt">potential</span> expressed as a direct mapping of the external <span class="hlt">potential</span>: applications to atomization <span class="hlt">energies</span> and ionization <span class="hlt">potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this paper the authors further develop and apply the direct-mapping density functional theory to calculations of the atomization <span class="hlt">energies</span> and ionization <span class="hlt">potentials</span>. Single-particle orbitals are determined by solving the Kohn-Sham [Phys. Rev. A. 140, 1133 (1965)] equations with a local effective <span class="hlt">potential</span> expressed in terms of the external <span class="hlt">potential</span>. A two-parametric form of the effective <span class="hlt">potential</span> for molecules is proposed and equations for optimization of the parameters are derived using the exchange-only approximation. Orbital-dependent correlation functional is derived from the second-order perturbation theory in its Moller-Plesset-type zeroth-order approximation based on the Kohn-Sham orbitals and orbital <span class="hlt">energies</span>. The total atomization <span class="hlt">energies</span> and ionization <span class="hlt">potentials</span> computed with the second-order perturbation theory were found to be in agreement with experimental values and benchmark results obtained with ab initio wave mechanics methods. PMID:17190551</p> <div class="credits"> <p class="dwt_author">Glushkov, Vitaly N; Fesenko, Sergey I</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21689919"> <span id="translatedtitle">Material and <span class="hlt">energy</span> recovery in integrated waste management systems: the <span class="hlt">potential</span> for <span class="hlt">energy</span> recovery.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and <span class="hlt">energy</span> recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and <span class="hlt">energy</span> balances, which has consisted of three major efforts (i) development of a model for quantifying the <span class="hlt">energy</span> content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-<span class="hlt">Energy</span> (WtE) plants; (iii) evaluation of mass and <span class="hlt">energy</span> balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for <span class="hlt">energy</span> recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the <span class="hlt">energy</span> <span class="hlt">potential</span> of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the <span class="hlt">potential</span> for <span class="hlt">energy</span> recovery: nearly doubling SSL (from 35% to 65%) reduces the <span class="hlt">energy</span> <span class="hlt">potential</span> only by one fourth. Consequently, even at high SSL <span class="hlt">energy</span> recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its <span class="hlt">energy</span> and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of <span class="hlt">energy</span> recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). PMID:21689919</p> <div class="credits"> <p class="dwt_author">Consonni, Stefano; Viganò, Federico</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6344167"> <span id="translatedtitle">Supergravity theories, <span class="hlt">anomalies</span> and compactification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This book is a collection of reprints on the structure of Poincare, anti-de Sitter and conformal supergravity theories in one to eleven dimensions, their <span class="hlt">anomalies</span> and compactification. Each chapter contains introductory comments and an extensive list of references. Contents: Vol. 1: Representations of Supersymmetry in Various Dimensions; Poincare and ADS Supergravity Theories in Various Dimensions; <span class="hlt">Anomalies</span> in Supergravity Theories. Vol. 2: Compactification of Supergravity Theories; Conformal Supergravity Theories in Various Dimensions; <span class="hlt">Anomalies</span> in Conformal Supergravity Theories.</p> <div class="credits"> <p class="dwt_author">Salam, A.; Sezgin, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23995681"> <span id="translatedtitle">Microscopic origin of the '0.7-<span class="hlt">anomaly</span>' in quantum point contacts.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Quantum point contacts are narrow, one-dimensional constrictions usually patterned in a two-dimensional electron system, for example by applying voltages to local gates. The linear conductance of a point contact, when measured as function of its channel width, is quantized in units of GQ = 2e(2)/h, where e is the electron charge and h is Planck's constant. However, the conductance also has an unexpected shoulder at ?0.7GQ, known as the '0.7-<span class="hlt">anomaly</span>', whose origin is still subject to debate. Proposed theoretical explanations have invoked spontaneous spin polarization, ferromagnetic spin coupling, the formation of a quasi-bound state leading to the Kondo effect, Wigner crystallization and various treatments of inelastic scattering. However, explicit calculations that fully reproduce the various experimental observations in the regime of the 0.7-<span class="hlt">anomaly</span>, including the zero-bias peak that typically accompanies it, are still lacking. Here we offer a detailed microscopic explanation for both the 0.7-<span class="hlt">anomaly</span> and the zero-bias peak: their common origin is a smeared van Hove singularity in the local density of states at the bottom of the lowest one-dimensional subband of the point contact, which causes an anomalous enhancement in the Hartree <span class="hlt">potential</span> barrier, the magnetic spin susceptibility and the inelastic scattering rate. We find good qualitative agreement between theoretical calculations and experimental results on the dependence of the conductance on gate voltage, magnetic field, temperature, source-drain voltage (including the zero-bias peak) and interaction strength. We also clarify how the low-<span class="hlt">energy</span> scale governing the 0.7-<span class="hlt">anomaly</span> depends on gate voltage and interactions. For low <span class="hlt">energies</span>, we predict and observe Fermi-liquid behaviour similar to that associated with the Kondo effect in quantum dots. At high <span class="hlt">energies</span>, however, the similarities between the 0.7-<span class="hlt">anomaly</span> and the Kondo effect end. PMID:23995681</p> <div class="credits"> <p class="dwt_author">Bauer, Florian; Heyder, Jan; Schubert, Enrico; Borowsky, David; Taubert, Daniela; Bruognolo, Benedikt; Schuh, Dieter; Wegscheider, Werner; von Delft, Jan; Ludwig, Stefan</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMGP13A1135P"> <span id="translatedtitle">Spectral Methods for Magnetic <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic <span class="hlt">anomalies</span>. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic <span class="hlt">anomalies</span> can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when <span class="hlt">energy</span> leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic <span class="hlt">anomaly</span> and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this case the spectra and cross spectra show that the source of the noise is instability in the gyro platform. Spectral techniques should always be applied to vector data in order to avoid overinterpretation of short-wavelength features.</p> <div class="credits"> <p class="dwt_author">Parker, R. L.; Gee, J. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvB..88k5307R"> <span id="translatedtitle">Z2 <span class="hlt">anomaly</span> and boundaries of topological insulators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We study the edge and surface theories of topological insulators from the perspective of <span class="hlt">anomalies</span> and identify a Z2 <span class="hlt">anomaly</span> associated with charge conservation. The <span class="hlt">anomaly</span> is manifested through a two-point correlation function involving creation and annihilation operators on two decoupled boundaries. Although charge conservation on each boundary requires this quantity to vanish, we find that it diverges. A corollary result is that under an insertion of a flux quantum, the ground state evolves to an exactly orthogonal state independent of the rate at which the flux is inserted. The <span class="hlt">anomaly</span> persists in the presence of disorder and imposes sharp restrictions on possible low-<span class="hlt">energy</span> theories. Being formulated in a many-body, field-theoretical language, the <span class="hlt">anomaly</span> allows one to test the robustness of topological insulators to interactions in a concise way.</p> <div class="credits"> <p class="dwt_author">Ringel, Zohar; Stern, Ady</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20142648"> <span id="translatedtitle">Vaginal surgery for congenital <span class="hlt">anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Congenital <span class="hlt">anomalies</span> of the vagina may be isolated to the vagina or be part of a more complex Mullerian tract <span class="hlt">anomaly</span> with possible fertility concerns. Patient age, complete assessment of the <span class="hlt">anomaly</span> before surgery, and the psychologic implications for the patient are important components of the initial evaluation and treatment planning. Imaging, including magnetic resonance imaging, should be used to assess the extent of the <span class="hlt">anomaly</span> and possibly other organ systems involved. Surgeries for imperforate hymen, longitudinal septum, and low thin transverse septum are relatively straightforward. More complicated surgeries should be performed by a specialized surgical team. PMID:20142648</p> <div class="credits"> <p class="dwt_author">Quint, Elisabeth H; McCarthy, Jenifer D; Smith, Yolanda R</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7125344"> <span id="translatedtitle">Spacecraft <span class="hlt">anomalies</span> on the CRRES satellite correlated with the environment and insulator samples</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The CRRES satellite has been extensively surveyed for the occurrence of onboard <span class="hlt">anomalies</span>. CRRES system and instrument responses which were not programmed or commanded are classified as <span class="hlt">anomalies</span>. The history of <span class="hlt">anomalies</span> is correlated with the history of plasmas, high <span class="hlt">energy</span> particles, and electromagnetic fields as measured on CRRES. The <span class="hlt">anomalies</span> for each instrument on CRRES are compared with those from other instruments. The 674 <span class="hlt">anomalies</span>, as a group, correlate well with high levels of high <span class="hlt">energy</span> electron flux and poorly with every other environmental parameter.</p> <div class="credits"> <p class="dwt_author">Violet, M.D.; Frederickson, A.R. (Geophysics Directorate, Hanscom AFB, MA (United States). Phillips Lab.)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020011015&hterms=Derivative+reaction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDerivative%2Breaction"> <span id="translatedtitle">Computed <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces and Minimum <span class="hlt">Energy</span> Pathways for Chemical Reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Computed <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces are required. In this case, it is necessary to obtain the <span class="hlt">energy</span> at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930006168&hterms=Potential+zeta&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPotential%2Bzeta"> <span id="translatedtitle">Theoretical characterization of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface for NH + NO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20015087"> <span id="translatedtitle">An <span class="hlt">energy</span> balance model based on <span class="hlt">potential</span> vorticity homogenization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">It has long been suggested that the extratropical eddies originating in baroclinic instability act to neutralize the atmosphere with respect to baroclinic instability. These studies focused on the Charney-Stern condition for stability, and since the implication of this condition was the elimination of meridional temperature gradients at the surface, contrary to observations, there appeared little possibility that the hypothesis was correct. However, Lindzen found that <span class="hlt">potential</span> vorticity (PV) mixing along isentropic surfaces accompanied by elevated tropopause height and/or reduced jet width could also lead to baroclinic neutralization. Since it is not obvious what implications such a neutral state would have for meridional structure of wind and especially temperature, the authors examine, as a first step, in this paper the implications of an assumed fixed PV gradient in the extratropical troposphere. It is shown that this assumption, combined with an assumption of a moist adiabatic temperature structure in the Tropics, a constraint on surface static stability, and overall radiative equilibrium, suffices to constrain a model earth's zonal mean climate. Comparison of the model climate with the observed climate, and variation of certain of the model's assumptions to resolve differences, allow the authors to consider the role of deep convection in the climate of the midlatitudes, to investigate the connection between surface turbulent heat fluxes and meridional <span class="hlt">energy</span> fluxes carried by baroclinic eddies, and to deduce the role of the stratosphere's overturning circulation in determining the height of the tropopause.</p> <div class="credits"> <p class="dwt_author">Kirk-Davidoff, D.B.; Lindzen, R.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6308328"> <span id="translatedtitle">(Molecular understanding of mutagenicity using <span class="hlt">potential</span> <span class="hlt">energy</span> methods)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The objective of our work has been, for many year, to elucidate on a molecular level at atomic resolution the structures of DNAs modified by highly mutagenic polycyclic aromatic amines and hydrocarbons, and their less mutagenic chemically related analogs and unmodified DNAs, as controls. The ultimate purpose of this undertaking is to obtain an understanding of the relationship DNA structures and mutagenicity. Our methods for elucidating structures are computational, but we keep in close contact with experimental developments, and have, very recently, been able to incorporate the first experimental information from NMR studies by other workers in our calculations. The specific computational methods we employ are minimized <span class="hlt">potential</span> <span class="hlt">energy</span> calculations using the torsion angle space program DUPLEX, developed and written by Dr. Brain Hingerty to yield static views. Molecular dynamics simulations of the important static structures with full solvation and salt are carried out with the program AMBER; this yields mobile views in a milieu that best mimics the natural environment of the cell. In addition, we have been developing new strategies for searching conformation space and building DNA duplexes from favored subunit structures. 30 refs., 12 figs.</p> <div class="credits"> <p class="dwt_author">Broyde, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23370787"> <span id="translatedtitle">Computational studies on polynitropurines as <span class="hlt">potential</span> high <span class="hlt">energy</span> density materials.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">As part of a search for high <span class="hlt">energy</span> density materials (HEDMs), a series of purine derivatives with nitro groups were designed computationally. The relationship between the structures and the performances of these polynitropurines was studied. Density functional theory (DFT) at the B3LYP/6-311G** level was employed to evaluate the heats of formation (HOFs) of the polynitropurines by designing an isodesmic reaction method. Results indicated that the HOFs were influenced by the number and positions of substituent groups. Detonation properties were evaluated using the Kamlet-Jacobs equations, based on the theoretical densities and heats of formation of the polynitropurines. The relative stabilities of the polynitropurines were studied via the pyrolysis mechanism and the UB3LYP/6-311G** method. Homolysis of the ring-NO2 bond is predicted to be the initial step in the thermal decomposition of these purine derivatives. Considering their detonation properties and relative stabilities, the tetranitropurine (D1) derivatives may be regarded as <span class="hlt">potential</span> candidates for practical HEDCs. These results may provide useful information for further investigations. PMID:23370787</p> <div class="credits"> <p class="dwt_author">Yan, Ting; Chi, Wei-Jie; Bai, Jing; Li, Lu-Lin; Li, Bu-Tong; Wu, Hai-Shun</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMSM13A2332S"> <span id="translatedtitle">Structure of Hot Flow <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Hot Flow <span class="hlt">Anomalies</span> (HFAs) were first discovered in 1980s. These are active processes of hot plasma bulks formation that usually occur at planetary bow shocks. Though HFA were studied for long time it is still not clear if they are reforming structures and what defines particular internal structure of HFA. Our study is based on the Interball Tail Probe data. We used 10-sec measurements of complex plasma analyzer SCA-1 and 1-second magnetic field measurements, and ELECTRON spectrometer 2-dimensional measurements with 3,75-sec temporal resolution. Five <span class="hlt">anomalies</span> that were observed on the basis of well resolved structure for which we obtained displacement velocity along bow shock, flow velocities within HFA, and estimated the size. We checked if main criteria of HFA formation were fulfilled for each case. The following criteria were satisfied: motional electric field direction was directed toward current sheet at least at one side of it, bow shock was quasi-perpendicular at least at one side of HFA, and angle between current sheet normal and solar wind velocity was large. Convection velocities of plasma within HFA were calculated by subtracting average velocity from measured ion convection velocities along spacecraft trajectory through <span class="hlt">anomaly</span>. These convection velocities viewed in coordinate system of shock normal and calculated IMF current sheet normal clearly show separation of HFA region in 3 parts: leading part, narrow central part, and trailing part. Ion velocity distributions confirm this triple structure of HFA. Thomsen et al. [1986] identified the region within HFA that they called "internal recovery". It looks like central region that we call narrow central part. Vaisberg et al. [1999] discussed separation of HFA into 2 distinct parts that correspond to leading and trailing parts. Judging from plasma convection pattern within HFAs we assumed that "internal recovery" region is the source of <span class="hlt">energy</span> and momentum around interplanetary current sheet crossing. HFA formation mechanisms presume that HFA is formed when particles are reflected on bow shock, get swept by motional electric field and are injected back into the area. We tried to calculate the balance of <span class="hlt">energy</span> in solar wind and within HFA to estimate what amount of reflected particles is needed for "internal recovery" area to be the real <span class="hlt">energy</span> source. These estimations suggest that this <span class="hlt">energy</span> balance is nearly fulfilled in 4 of 5 analyzed HFAs, and does not hold for one HFA. This <span class="hlt">energy</span> balance may be in favor of quasi-stationary nature of HFA structure. References Thomsen, M. F., J. T. Gosling, S. A. Fuselier, S. J. Bame, and C. T. Russell (1986), Hot, diamagnetic cavities upstream from the Earth's bow shock, J. Geophys. Res., 91(A3), 2961-2973, doi:10.1029/JA091iA03p02961. Vaisberg, O.L., J.H.Waite, L.Avanov, V.N.Smirnov, D.Dempsey J.L.Burch and A.A.Skalsky, HFA-like signatures observed with Interball-Tail spacecraft, in: Solar Wind Nine, ed. By S.R.Habbal, R.Esser, J.V.Hollweg, and P.A.Isenberg, AIP 1-56396-865-7, 1999, pp. 551-554.</p> <div class="credits"> <p class="dwt_author">Shestakov, A.; Vaisberg, O. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/10881465"> <span id="translatedtitle">Biomass and biogas <span class="hlt">energy</span> in Thailand: <span class="hlt">Potential</span>, opportunity and barriers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass has been traditional <span class="hlt">energy</span> source in rural Thailand for decades. Country modernization, instead of reducing the biomass <span class="hlt">energy</span> consumption, has continuously increased its utilization for both households and production of modern <span class="hlt">energy</span>. While the GDP\\/capita was triple during 1980–1996, the biomass <span class="hlt">energy</span> consumption increased by 68%, and expected to be higher as signaled by the increasing number of new</p> <div class="credits"> <p class="dwt_author">S. Prasertsan; B. Sajjakulnukit</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://files.eric.ed.gov/fulltext/EJ888131.pdf"> <span id="translatedtitle"><span class="hlt">Potential</span> Ambient <span class="hlt">Energy</span>-Harvesting Sources and Techniques</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Ambient <span class="hlt">energy</span> harvesting is also known as <span class="hlt">energy</span> scavenging or power harvesting, and it is the process where <span class="hlt">energy</span> is obtained from the environment. A variety of techniques are available for <span class="hlt">energy</span> scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…</p> <div class="credits"> <p class="dwt_author">Yildiz, Faruk</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6436805"> <span id="translatedtitle"><span class="hlt">Energy</span> and education: planning for higher prices and <span class="hlt">potential</span> shortages</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This publication focuses on information generally not available in current <span class="hlt">energy</span> plans: revised federal policies, characteristics of state <span class="hlt">energy</span> contingency documents, planning considerations, fuel characteristics and <span class="hlt">energy</span> supply management techniques. Also included are the conclusions and recommendations made by the State <span class="hlt">Energy</span> and Education Task Force, chaired by the Honorable Richard D. Lamm, governor of Colorado, and composed of policy makers and experts in <span class="hlt">energy</span> and education matters. The annotated bibliography lists sources of information for monitoring <span class="hlt">energy</span>-related data, a sampling of state developed <span class="hlt">energy</span> conservation and emergency plans and other related references.</p> <div class="credits"> <p class="dwt_author">Petrock, E.M.; Bauman, P.C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24590274"> <span id="translatedtitle">Genetics of lymphatic <span class="hlt">anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Lymphatic <span class="hlt">anomalies</span> include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors. PMID:24590274</p> <div class="credits"> <p class="dwt_author">Brouillard, Pascal; Boon, Laurence; Vikkula, Miikka</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/677096"> <span id="translatedtitle">`t Hooft <span class="hlt">anomaly</span> matching for discrete symmetries</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors show how to extend the `t Hooft <span class="hlt">anomaly</span> matching conditions to discrete symmetries. They check these discrete anomally matching conditions on several proposed low-<span class="hlt">energy</span> spectra of certain strongly interacting gauge theories. The excluded examples include the proposed chirally symmetric vacuum of pure N = 1 supersymmetric yang-Mills theories, certain non-supersymmetric confining theories and some self-dual N = 1 supersymmetric theories based on exceptional groups.</p> <div class="credits"> <p class="dwt_author">Csaki, C.; Murayama, Hitoshi [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Physics Div.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IJQC..109..701D"> <span id="translatedtitle">A new quantization rule to the <span class="hlt">energy</span> spectra for modified hyperbolic-type <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new exact quantization rule simplifies the calculation of the <span class="hlt">energy</span> levels for exactly solvable quantum systems. The <span class="hlt">energy</span> spectra of the modified hyperbolic-type <span class="hlt">potentials</span> are carried out by this rule. These <span class="hlt">potentials</span> include the modified Scarf, Rosen-Morse, second Pöschl-Teller and Eckart <span class="hlt">potentials</span>.</p> <div class="credits"> <p class="dwt_author">Dong, Shi-Hai</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pdfserv.aip.org/JCPSA6/vol_114/iss_20/8789_1.pdf"> <span id="translatedtitle">Molecular excitation <span class="hlt">energies</span> computed with Kohn-Sham orbitals and exact exchange <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Exact local exchange <span class="hlt">potentials</span> are computed for the diatomic molecules N2, O2, and CO, based on expansions in terms of molecular orbitals. Kohn-Sham orbitals and orbital <span class="hlt">energies</span> are obtained for the exact exchange <span class="hlt">potentials</span>, with correlation effects neglected. The ionization <span class="hlt">potential</span> is in all cases found to be accurately predicted by the orbital <span class="hlt">energy</span> of the highest occupied orbital. Limited</p> <div class="credits"> <p class="dwt_author">L. Veseth</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18174048"> <span id="translatedtitle">A translational <span class="hlt">energy</span> spectrometer to probe interatomic <span class="hlt">potentials</span>: Dissociation dynamics of CO 2 + ions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new ion translational <span class="hlt">energy</span> spectrometer has been developed to carry out low-<span class="hlt">energy</span>, gas-phase ion-molecule collision experiments\\u000a which aim to probe molecular <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces. The collisional technique employed relates small changes in the kinetic\\u000a <span class="hlt">energy</span> of a projectile ion after it has undergone collision with a static neutral atom\\/molecule to changes in the overall\\u000a <span class="hlt">potential</span> <span class="hlt">energy</span> of the collision</p> <div class="credits"> <p class="dwt_author">M. Krishnamurthy; U T Raheja; D. Mathur</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39261291"> <span id="translatedtitle"><span class="hlt">Anomaly</span> detection in crowded scenes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel framework for <span class="hlt">anomaly</span> detection in crowded scenes is presented. Three properties are identified as important for the design of a localized video representation suitable for <span class="hlt">anomaly</span> detection in such scenes: (1) joint modeling of appearance and dynamics of the scene, and the abilities to detect (2) temporal, and (3) spatial abnormalities. The model for normal crowd behavior is</p> <div class="credits"> <p class="dwt_author">Vijay Mahadevan; Weixin Li; Viral Bhalodia; Nuno Vasconcelos</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60277025"> <span id="translatedtitle">Supergravity theories, <span class="hlt">anomalies</span> and compactification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This book is a collection of reprints on the structure of Poincare, anti-de Sitter and conformal supergravity theories in one to eleven dimensions, their <span class="hlt">anomalies</span> and compactification. Each chapter contains introductory comments and an extensive list of references. Contents: Vol. 1: Representations of Supersymmetry in Various Dimensions; Poincare and ADS Supergravity Theories in Various Dimensions; <span class="hlt">Anomalies</span> in Supergravity Theories. Vol.</p> <div class="credits"> <p class="dwt_author">A. Salam; E. Sezgin</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23179513"> <span id="translatedtitle">By-products: oil sorbents as a <span class="hlt">potential</span> <span class="hlt">energy</span> source.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further <span class="hlt">potential</span> profit of <span class="hlt">energy</span> production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production. PMID:23179513</p> <div class="credits"> <p class="dwt_author">Karakasi, Olga K; Moutsatsou, Angeliki</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SerAJ.177...15C"> <span id="translatedtitle">The Fractional Virial <span class="hlt">Potential</span> <span class="hlt">Energy</span> in Two-Component Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, ?=?(y,m), characterized (for assigned values of the fractional mass, m=M_j/ M_i) by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of m is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the ({O}y?) plane, where the fractional truncation radius along a selected direction is y=R_j/R_i, and the fractional virial <span class="hlt">potential</span> <span class="hlt">energy</span> is ?=(E_{ji})_{vir}/(E_{ij})_{vir}. Further investigation is devoted to mass distributions described by Hernquist (1990) density profiles, for which an additional relation can be used to represent a sample of N=16 elliptical galaxies (EGs) on the ({O}y?) plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM) haloes, in the light of the model, has been characterized by equal fractional mass, m, and equal scaled truncation radius, or concentration, ?_u=R_u/r_u^dagger, u=i,j, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, y, or fractional scaling radii, y^dagger=r_j^dagger/r_i^dagger, deduced from sample objects.</p> <div class="credits"> <p class="dwt_author">Caimmi, R.; Valentinuzzi, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22299853"> <span id="translatedtitle">Communication: a chemically accurate global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the HO + CO ? H + CO2 reaction.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report a chemically accurate global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the HOCO system based on high-level ab initio calculations at ~35,000 points. The <span class="hlt">potential</span> <span class="hlt">energy</span> surface is shown to reproduce important stationary points and minimum <span class="hlt">energy</span> paths. Quasi-classical trajectory calculations indicated a good agreement with experimental data. PMID:22299853</p> <div class="credits"> <p class="dwt_author">Li, Jun; Wang, Yimin; Jiang, Bin; Ma, Jianyi; Dawes, Richard; Xie, Daiqian; Bowman, Joel M; Guo, Hua</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3540475"> <span id="translatedtitle"><span class="hlt">Anomaly</span> detection in clinical processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Meaningful <span class="hlt">anomalies</span> in clinical processes may be related to caring performance or even the patient survival. It is imperative that the <span class="hlt">anomalies</span> be timely detected such that useful and actionable knowledge of interest could be extracted to clinicians. Many previous approaches assume prior knowledge about the structure of clinical processes, using which <span class="hlt">anomalies</span> are detected in a supervised manner. For a majority of clinical settings, however, clinical processes are complex, ad hoc, and even unknown a prior. In this paper, we investigate how to facilitate detection of <span class="hlt">anomalies</span> in an unsupervised manner. An <span class="hlt">anomaly</span> detection model is presented by applying a density-based clustering method on patient careflow logs. Using the learned model, it is possible to detect whether a particular patient careflow trace is anomalous with respect to normal traces in the logs. The approach has been validated over real data sets collected from a Chinese hospital.</p> <div class="credits"> <p class="dwt_author">Huang, Zhengxing; Lu, Xudong; Duan, Huilong</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE82005315"> <span id="translatedtitle">Building <span class="hlt">Energy</span> Use Model to Predict Retrofit Saving <span class="hlt">Potential</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Retrofitting the existing building stock can result in significant <span class="hlt">energy</span> savings. One important issue is the amount of <span class="hlt">energy</span> saved per dollar invested. If the results of enenergy savings from retrofits are predicted to be highly favorable, a large inves...</p> <div class="credits"> <p class="dwt_author">M. Baker</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JChPh.140h4316D"> <span id="translatedtitle">Rovibrational <span class="hlt">energy</span> transfer in the He-C3 collision: <span class="hlt">Potential</span> <span class="hlt">energy</span> surface and bound states</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a four-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) for the collision of C3 with He. Ab initio calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and mid-bond functions. The global minimum of the <span class="hlt">potential</span> <span class="hlt">energy</span> is found to be -26.9 cm-1 and corresponds to an almost T-shaped structure of the van der Waals complex along with a slightly bent configuration of C3. This PES is used to determine the rovibrational <span class="hlt">energy</span> levels of the He-C3 complex using the rigid monomer approximation (RMA) and the recently developed atom-rigid bender approach at the Close Coupling level (RB-CC). The calculated dissociation <span class="hlt">energies</span> are -9.56 cm-1 and -9.73 cm-1, respectively at the RMA and RB-CC levels. This is the first theoretical prediction of the bound levels of the He-C3 complex with the bending motion.</p> <div class="credits"> <p class="dwt_author">Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-02-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810017461&hterms=meniett&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmeniett"> <span id="translatedtitle">A satellite investigation of <span class="hlt">energy</span> flux and inferred <span class="hlt">potential</span> drop in auroral electron <span class="hlt">energy</span> spectra</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Because predicted relationship (epsilon directly varies with V squared) between auroral electron <span class="hlt">energy</span> flux (epsilon) and the inferred acceleration <span class="hlt">potential</span> drop (V) for accelerated Maxwellian distributions was favorably tested by other using sounding rocket data for the limiting case of eVE 1 (where Ec is the characteristic <span class="hlt">energy</span> of the accelerated Maxwellian distribution) and for a single inverted-V observed by the Injun 5 satellite, data from Atmosphere D were used to extend these studies over the range .2 eV/Ec 5 and for a wide range of latitudes and local times on both the nightside and the dayside. Results show good agreement with the full accelerated Maxwellian model. An analytical approximation to the electron <span class="hlt">energy</span> flux was derived which better describes the data over the range .2 eV/Ec approximated 3. Analyses of individual <span class="hlt">energy</span> spectra at small and large pitch angles through well-defined inverted-V structures suggest that the altitude of the inferred <span class="hlt">potential</span> drop maximizes near the center of the inverted-V's.</p> <div class="credits"> <p class="dwt_author">Meniett, J. D.; Burch, J. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24588178"> <span id="translatedtitle">Rovibrational <span class="hlt">energy</span> transfer in the He-C3 collision: <span class="hlt">potential</span> <span class="hlt">energy</span> surface and bound states.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present a four-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) for the collision of C3 with He. Ab initio calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and mid-bond functions. The global minimum of the <span class="hlt">potential</span> <span class="hlt">energy</span> is found to be -26.9 cm(-1) and corresponds to an almost T-shaped structure of the van der Waals complex along with a slightly bent configuration of C3. This PES is used to determine the rovibrational <span class="hlt">energy</span> levels of the He-C3 complex using the rigid monomer approximation (RMA) and the recently developed atom-rigid bender approach at the Close Coupling level (RB-CC). The calculated dissociation <span class="hlt">energies</span> are -9.56 cm(-1) and -9.73 cm(-1), respectively at the RMA and RB-CC levels. This is the first theoretical prediction of the bound levels of the He-C3 complex with the bending motion. PMID:24588178</p> <div class="credits"> <p class="dwt_author">Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-02-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50540146"> <span id="translatedtitle">Estimation of CO2 Mitigation <span class="hlt">Potential</span> through Renewable <span class="hlt">Energy</span> Generation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> is vital input for economy and social development in every society. Presently, the global primary <span class="hlt">energy</span> demands are met largely from oil, natural gas, coal, nuclear and hydroelectric <span class="hlt">energy</span> among which coal is dominant thermal power stations add to environmental degradation problems through gaseous emissions, particulate matter, fly ash, bottom ash, which are very harmful to human life. The</p> <div class="credits"> <p class="dwt_author">Mohibullah; Imdadullah; I. Ashraf</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49577040"> <span id="translatedtitle">What is the global <span class="hlt">potential</span> for renewable <span class="hlt">energy</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">World <span class="hlt">energy</span> demand is projected to rise to 1000EJ (EJ=1018J) or more by 2050 if economic growth continues its course of recent decades. Both reserve depletion and greenhouse gas emissions will necessitate a major shift from fossil fuels as the dominant <span class="hlt">energy</span> source. Since nuclear power is now unlikely to increase its present modest share, renewable <span class="hlt">energy</span> (RE) will have</p> <div class="credits"> <p class="dwt_author">Patrick Moriarty; Damon Honnery</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26286928"> <span id="translatedtitle">On the regional wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Continuous uses of fossil fuels are bound to pollute the atmosphere and consequently unwanted greenhouse and climate change effects will come to dominate every part of the earth. It is, therefore, advised to exploit clean <span class="hlt">energy</span> resources, and for many nations in the world to try to assess their environmentally friendly, clean <span class="hlt">energy</span> resources such as wind <span class="hlt">energy</span>. Hence, it</p> <div class="credits"> <p class="dwt_author">Ahmet Öztopal; Ahmet D ?ahin; Nezihe Akgün; Zekai ?en</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20953362"> <span id="translatedtitle">Algebraic Classification of Weyl <span class="hlt">Anomalies</span> in Arbitrary Dimensions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Conformally invariant systems involving only dimensionless parameters are known to describe particle physics at very high <span class="hlt">energy</span>. In the presence of an external gravitational field, the conformal symmetry may generalize to the Weyl invariance of classical massless field systems in interaction with gravity. In the quantum theory, the latter symmetry no longer survives: A Weyl <span class="hlt">anomaly</span> appears. <span class="hlt">Anomalies</span> are a cornerstone of quantum field theory, and, for the first time, a general, purely algebraic understanding of the universal structure of the Weyl <span class="hlt">anomalies</span> is obtained, in arbitrary dimensions and independently of any regularization scheme.</p> <div class="credits"> <p class="dwt_author">Boulanger, Nicolas [Academie Wallonie-Bruxelles, Mecanique et Gravitation, Universite de Mons-Hainaut, Avenue du Champ de Mars 6, B-7000 Mons (Belgium)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-29</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JPhB...47k5005H"> <span id="translatedtitle">Testing an excited-state <span class="hlt">energy</span> density functional and the associated <span class="hlt">potential</span> with the ionization <span class="hlt">potential</span> theorem</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The modified local spin density (MLSD) functional and the related local <span class="hlt">potential</span> for excited states is tested by employing the ionization <span class="hlt">potential</span> theorem. The exchange functional for an excited state is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding exchange <span class="hlt">potential</span> is given by an analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital <span class="hlt">energy</span> ?max accurately, the <span class="hlt">potential</span> is corrected for its asymptotic behaviour by employing the van Leeuwen and Baerends (LB) correction to it. ?max so obtained is then compared with the ?SCF ionization <span class="hlt">energy</span> calculated using the MLSD functional with self-interaction correction for the orbitals involved in the transition. It is shown that the two match quite accurately. The match becomes even better by tuning the LB correction with respect to a parameter in it.</p> <div class="credits"> <p class="dwt_author">Hemanadhan, M.; Shamim, Md; Harbola, Manoj K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvE..83e1120R"> <span id="translatedtitle">Brownian motor with competing spatial and temporal asymmetry of <span class="hlt">potential</span> <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A Brownian motor is considered which operates due to asymmetric dichotomic fluctuations of the spatially periodic asymmetric <span class="hlt">potential</span> <span class="hlt">energy</span>. As shown, the motion direction and stopping points of this motor are dictated by the competition between the spatial and temporal asymmetry of the <span class="hlt">potential</span> <span class="hlt">energy</span> (or solely by temporal asymmetry in the case that the <span class="hlt">potential</span> <span class="hlt">energy</span> sign fluctuates). For an asymmetric sawtooth <span class="hlt">potential</span>, the Brownian-particle average velocity is calculated numerically as a function of certain parameters of the model, whereas the low-frequency and low-<span class="hlt">energy</span> approximations allow the corresponding analytical relationships to be derived for an arbitrarily shaped <span class="hlt">potential</span> profile. It is shown that temporal asymmetry is not necessary for stopping point occurrence provided that the <span class="hlt">potential</span> profile fluctuates not only in amplitude but in shape as well. This inference is illustrated by photoinduced fluctuations of the <span class="hlt">potential</span> <span class="hlt">energy</span> for a number of substituted arylpyrene molecules on a substrate with symmetrically distributed charge density.</p> <div class="credits"> <p class="dwt_author">Rozenbaum, V. M.; Korochkova, T. Ye.; Chernova, A. A.; Dekhtyar, M. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=UCRL81224"> <span id="translatedtitle"><span class="hlt">Potential</span> Industrial Process Heat Applications for Solar <span class="hlt">Energy</span> at Temperatures <170 exp 0 C: Field Study.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A field study of <span class="hlt">potential</span> applications for solar industrial process heat has been conducted. From this study, it has been determined that while many industrial processes appear to be <span class="hlt">potential</span> candidates for the application of solar <span class="hlt">energy</span>, there are sev...</p> <div class="credits"> <p class="dwt_author">A. B. Casamajor R. L. Wood</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ICP1145"> <span id="translatedtitle"><span class="hlt">Potential</span> Application of Microwave <span class="hlt">Energy</span> in Solidifying High-Level Nuclear Wastes.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> areas of applying microwave <span class="hlt">energy</span> in processing high-level nuclear wastes are evaluated. The study considers use of microwave heating for calcining, for drying pelleted waste, and for vitrifying wastes. The <span class="hlt">potential</span> advantages and disadvan...</p> <div class="credits"> <p class="dwt_author">T. C. Piper J. R. Berreth</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5210790"> <span id="translatedtitle"><span class="hlt">Potential</span> of <span class="hlt">energy</span> farming in the southeastern California desert</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The California <span class="hlt">Energy</span> Commission is currently analyzing the use of <span class="hlt">energy</span> farms to provide future sources of <span class="hlt">energy</span> for California. <span class="hlt">Energy</span> farms can be defined as growing plants and converting them to various forms of <span class="hlt">energy</span>. The use of marginal desert lands in southeastern California for the siting of <span class="hlt">energy</span> farms using acacia, Eucalyptus, euphorbia, quayule, jojoba, mesquite, or tamarisk is considered. Two hypothetical scenarios using either rainfall, or rainfall and groundwater as water sources were described to determine the maximum amount of <span class="hlt">energy</span> produced from estimated amounts of suitable land in this area. Considering both scenarios, the maximum range of <span class="hlt">energy</span> produced is .03 to 0.4 Quads. It is recommended that (1) genetic research be continued to increase biomass yields of these and other candidate plants grown in the desert; and (2) small test plots be established at varying desert locations to collect yield growth, and survival data. Once this information is known, the identification of the best plant(s) to use for <span class="hlt">energy</span> farming in the California desert area will be known, as well as the cost and quantity of <span class="hlt">energy</span> produced.</p> <div class="credits"> <p class="dwt_author">Lew, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007APS..MARW28012S"> <span id="translatedtitle">Kohn <span class="hlt">anomalies</span> and non-adiabaticity in doped carbon nanotubes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The tangential vibrational modes of metallic single-walled carbon nanotubes (SWNTs) are thought to be characterized by Kohn <span class="hlt">anomalies</span> resulting from the combination of their intrinsic one-dimensional nature and a significant electron- phonon coupling. These properties are modified by the doping- induced tuning of the Fermi <span class="hlt">energy</span> level ?F, obtained through the intercalation of SWNTs with alkali atoms or the application of a gate <span class="hlt">potential</span>. We present a Density- Functional Theory (DFT) study of the vibrational properties of a (n,n) metallic SWNT as a function of electronic doping. For such study, we use, as in standard DFT calculations of vibrational properties, the Born-Oppenheimer (BO) approximation, but we also use time-dependent perturbation theory to explore non-adiabatic effects beyond this approximation. We compare our results with existing measurements and suggest features to be explored in future experiments.</p> <div class="credits"> <p class="dwt_author">Saitta, A. Marco; Caudal, Nicolas; Lazzeri, Michele; Mauri, Francesco</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvD..88b5042X"> <span id="translatedtitle">QCD flux tubes and <span class="hlt">anomaly</span> inflow</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We apply the Callan-Harvey <span class="hlt">anomaly</span>-inflow mechanism to the study of QCD (chromoelectric) flux tubes, quark (pair) creation, and the chiral magnetic effect, using new variables from the Cho-Faddeev-Niemi decomposition of the gauge <span class="hlt">potential</span>. A phenomenological description of chromoelectric flux tubes is obtained by studying a gauged Nambu-Jona-Lasinio effective Lagrangian, derived from the original QCD Lagrangian. At the quantum level, quark condensates in the QCD vacuum may form a vortexlike structure in a chromoelectric flux tube. Quark zero modes trapped in the vortex are chiral and lead to a two-dimensional gauge <span class="hlt">anomaly</span>. To cancel it, an effective Chern-Simons coupling is needed and, hence, a topological charge density term naturally appears.</p> <div class="credits"> <p class="dwt_author">Xiong, Chi</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1050190"> <span id="translatedtitle">Holographic models and the QCD trace <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace <span class="hlt">anomaly</span> equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton <span class="hlt">potentials</span> corresponding to perturbative and non-perturbative {beta}-functions are studied. It is shown that in the perturbative case, where the {beta}-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace <span class="hlt">anomaly</span> and on Wilson loops are carried out.</p> <div class="credits"> <p class="dwt_author">Jose L. Goity, Roberto C. Trinchero</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54064338"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surface for the M2X ion and the ionization <span class="hlt">potential</span> of M2X</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for the M2X+ ions (M denotes alkali atom, X halogen atom) have been calculated by a classical ionic model based upon the Rittner model. In all cases M2X+ has substantial binding <span class="hlt">energy</span> (˜1·5-2 eV) with respect of M+ + MX. The most stable configuration varies from linear for heavy M light X, to strongly bent for light</p> <div class="credits"> <p class="dwt_author">S. M. Lin; J. G. Wharton; R. Grice</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50876292"> <span id="translatedtitle">Assessment of Biomass <span class="hlt">Energy</span> Production <span class="hlt">Potential</span> in China</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">China is an agricultural country with fertile land, plenty of water resources, livestock, forestry resources, and agricultural residues. This paper analyses the <span class="hlt">potential</span> biomass supply in the China as (1) agricultural residues, (2) fuelwood saving: (3)animal manure. The objective of this study is to make a more detailed assessment of the <span class="hlt">potential</span> in China than previously undertaken. Year 2007 will</p> <div class="credits"> <p class="dwt_author">Wang Xiaoming; Lan Tang; Huan Wang; Haiqing Hao; Yunhe Wang; Chihui Zhu; Haitao Huang</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20040034236&hterms=admap&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dadmap"> <span id="translatedtitle">Reliability of CHAMP <span class="hlt">Anomaly</span> Continuations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, <span class="hlt">anomaly</span> continuation is severely limited by the non-uniqueness of the process and satellite <span class="hlt">anomaly</span> errors. Indeed, our numerical <span class="hlt">anomaly</span> simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the <span class="hlt">anomaly</span> details are to be exploited most fully. Given current <span class="hlt">anomaly</span> error levels, joint inversion of satellite and near- surface <span class="hlt">anomalies</span> is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic <span class="hlt">anomalies</span> are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.</p> <div class="credits"> <p class="dwt_author">vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850023277&hterms=binning&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbinning"> <span id="translatedtitle">Binning of satellite magnetic <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Crustal magnetic <span class="hlt">anomaly</span> signals over satellite orbits were simulated to investigate numerical averaging as an <span class="hlt">anomaly</span> estimator. Averaging as an <span class="hlt">anomaly</span> estimator involves significant problems concerning spatial and amplitude smoothing of the satellite magnetic observations. The results of simulations suggest that the error of numerical averaging constitutes a small and relatively minor component of the total error-budget of higher orbital <span class="hlt">anomaly</span> estimates, whereas for lower orbital estimates numerical averaging error increases substantially. As an alternative to numerical averaging, least-squares collocation was investigated and observed to produce substantially more accurate <span class="hlt">anomaly</span> estimates, particularly as the orbital elevation of prediction was decreased towards the crustal sources. In contrast to averaging, collocation is a significantly more resource-intensive procedure to apply because of the practical, but surmountable problems related to establishing and inverting the covariance matrix for accurate <span class="hlt">anomaly</span> prediction. However, collocation may be much more effectively used to exploit the <span class="hlt">anomaly</span> details contained in the lower orbital satellite magnetic data for geologic analysis.</p> <div class="credits"> <p class="dwt_author">Goyal, H. K.; Vonfrese, R. R. B.; Hinze, W. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860039980&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">A terrain-dependent reference atmosphere determination method for available <span class="hlt">potential</span> <span class="hlt">energy</span> calculations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An iterative technique that determines the reference atmosphere which incorporates the effects of uneven surface topography is presented. This method has been successfully applied in several available <span class="hlt">potential</span> <span class="hlt">energy</span> studies. An alternative method due to Taylor is also evaluated. While Taylor presented excellent continuous formulations of the available <span class="hlt">potential</span> <span class="hlt">energy</span> that include topography, his method for determining the reference atmosphere distributions failed to provide the accuracy needed to produce reliable available <span class="hlt">potential</span> <span class="hlt">energy</span> estimates. Since topography has a significant influence on the general circulation, it is important to employ techniques that incorporate its effects in the determination of available <span class="hlt">potential</span> <span class="hlt">energy</span>.</p> <div class="credits"> <p class="dwt_author">Koehler, T. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21537700"> <span id="translatedtitle">Reactor antineutrino <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recently, new reactor antineutrino spectra have been provided for {sup 235}U, {sup 239}Pu, {sup 241}Pu, and {sup 238}U, increasing the mean flux by about 3%. To a good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976{+-}0.024. With our new flux evaluation, this ratio shifts to 0.943{+-}0.023, leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino <span class="hlt">anomaly</span>. The compatibility of our results with the existence of a fourth nonstandard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-{nu} data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |{Delta}m{sub new}{sup 2}|>1.5 eV{sup 2} (95%) and sin{sup 2}(2{theta}{sub new})=0.14{+-}0.08 (95%). Constraints on the {theta}{sub 13} neutrino mixing angle are revised.</p> <div class="credits"> <p class="dwt_author">Mention, G.; Fechner, M. [CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Lasserre, Th.; Cribier, M. [CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Astroparticule et Cosmologie APC, 10 rue Alice Domon et Leonie Duquet, 75205 Paris cedex 13 (France); Mueller, Th. A.; Lhuillier, D.; Letourneau, A. [CEA, Irfu, SPhN, Centre de Saclay, F-91191 Gif-sur-Yvette (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=CANMET792"> <span id="translatedtitle">Synthesis and Characterization of Zirconia Electrolytes for <span class="hlt">Potential</span> Use in <span class="hlt">Energy</span> Conversion.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The present work is part of a program to develop ionically conducting materials for <span class="hlt">potential</span> use in <span class="hlt">energy</span> storage and conversion systems. With applications in high <span class="hlt">energy</span>-density batteries, magneto-hydrodynamic (MHD) generators, fuel cells and sensors, ...</p> <div class="credits"> <p class="dwt_author">T. A. Wheat</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB83106658"> <span id="translatedtitle">The <span class="hlt">Potential</span> for Renewable <span class="hlt">Energy</span> Technologies in the Rural Postharvest Food System in Developing Countries.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report examines <span class="hlt">energy</span> demand and <span class="hlt">potential</span> renewable <span class="hlt">energy</span> technologies for postharvest food processing with particular emphasis on technologies related to grain. Postharvest activities (harvesting, drying, threshing, winnowing, shelling, hulling, ...</p> <div class="credits"> <p class="dwt_author">C. J. Lindblad</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eetd.lbl.gov/ea/mills/emills/pubs/pdf/fh_energy_lbnl.pdf"> <span id="translatedtitle"><span class="hlt">Energy</span> use and savings <span class="hlt">potential</span> for laboratory fume hoods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Fume hoods—small but essential safety devices used in laboratory environments—are highly <span class="hlt">energy</span>-intensive, each one consuming more <span class="hlt">energy</span> than three homes in an average U.S. climate. Increasing airflow rates in an effort to enhance safety not only elevates <span class="hlt">energy</span> use but can in fact compromise safety by causing dangerous turbulence that can foil containment. New design strategies have been demonstrated to</p> <div class="credits"> <p class="dwt_author">Evan Mills; Dale Sartor</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56822765"> <span id="translatedtitle">Intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface and second virial coefficients for the water–CO2 dimer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A five-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surface is calculated for the interaction of water and CO2, using second-order Mo&slash;ller–Plesset perturbation theory and coupled-cluster theory with single, double, and perturbative triple excitations. The correlation <span class="hlt">energy</span> component of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface is corrected for basis set incompleteness. In agreement with previous studies, the most negative interaction <span class="hlt">energy</span> is calculated for a structure with</p> <div class="credits"> <p class="dwt_author">Richard J. Wheatley; Allan H. Harvey</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55620465"> <span id="translatedtitle">Intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface and second virial coefficients for the water-CO2 dimer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A five-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> surface is calculated for the interaction of water and CO2, using second-order Møller-Plesset perturbation theory and coupled-cluster theory with single, double, and perturbative triple excitations. The correlation <span class="hlt">energy</span> component of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface is corrected for basis set incompleteness. In agreement with previous studies, the most negative interaction <span class="hlt">energy</span> is calculated for a structure with</p> <div class="credits"> <p class="dwt_author">Richard J. Wheatley; Allan H. Harvey</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JHEP...05..134J"> <span id="translatedtitle"><span class="hlt">Anomaly</span> inflow and thermal equilibrium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using the <span class="hlt">anomaly</span> inflow mechanism, we compute the flavor/Lorentz non-invariant contribution to the partition function in a background with a U(1) isometry. This contribution is a local functional of the background fields. By identifying the U(1) isometry with Euclidean time we obtain a contribution of the <span class="hlt">anomaly</span> to the thermodynamic partition function from which hydrostatic correlators can be efficiently computed. Our result is in line with, and an extension of, previous studies on the role of <span class="hlt">anomalies</span> in a hydrodynamic setting. Along the way we find simplified expressions for Bardeen-Zumino polynomials and various transgression formulae.</p> <div class="credits"> <p class="dwt_author">Jensen, Kristan; Loganayagam, R.; Yarom, Amos</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26588883"> <span id="translatedtitle">The <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> technologies for rural development in Lesotho</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> and utilization of renewable <span class="hlt">energy</span> technologies (RETs), and <span class="hlt">energy</span> analysis in Lesotho with emphasis on the contribution of solar <span class="hlt">energy</span> technologies (SETs) is presented. The heavy reliance of the country on imported fossil fuel coupled with the growing demand for electricity and declining wood fuel supplies call for alternative sources of <span class="hlt">energy</span>. Taking the average global solar radiation</p> <div class="credits"> <p class="dwt_author">B. M. Taele; K. K. Gopinathan; L Mokhuts’oane</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50648769"> <span id="translatedtitle">Preliminary investigation of the <span class="hlt">potential</span> of harnessing tidal <span class="hlt">energy</span> for electricity generation in Malaysia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Malaysia is heavily dependent on fossil fuel for electricity generation. With the rapidly diminishing of its fuel reserve and the increasingly apparent negative effect of fossil fuels to climate changes, it has recently started exploring renewable <span class="hlt">energy</span>, mainly bio-fuel and solar <span class="hlt">energy</span>. However, the <span class="hlt">potential</span> of harnessing ocean <span class="hlt">energy</span>, such as tidal <span class="hlt">energy</span>, in Malaysia has yet to be studied</p> <div class="credits"> <p class="dwt_author">Koh Siong Lee; Lim Yun Seng</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26587950"> <span id="translatedtitle"><span class="hlt">Potential</span> of solar <span class="hlt">energy</span> utilization in the textile industry — a case study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">There is high <span class="hlt">energy</span> consumption in the industrial sector at low-temperature levels, and solar <span class="hlt">energy</span> could save a considerable part of this <span class="hlt">energy</span>. A feasibility study to obtain the <span class="hlt">potential</span> of solar <span class="hlt">energy</span> utilization in the textile industry is presented. Two categories were considered in this study. The first category is a preheat solar system that can feed the boiler</p> <div class="credits"> <p class="dwt_author">Adel M. Abdel-Dayem; M. A. Mohamad</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42813597"> <span id="translatedtitle">Decision Support System to Assess Regional Biomass <span class="hlt">Energy</span> <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass is a renewable source that accounts for nearly 33% of a developing country's <span class="hlt">energy</span> needs. In India, it meets about 75% of the rural <span class="hlt">energy</span> needs and the rural population constitutes 70% of the total population. Sustainable management of these resources requires better and timely decisions, which can lead to increased cost-efficiency and productivity. This would help in regional</p> <div class="credits"> <p class="dwt_author">T. V. Ramachandra; S. Vamsee Krishna; B. V. Shruthi</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.empa-ren.ch/internet-files/programm/aktuelles/aktualitaeten/status-seminar/pdf-files2004/montavon.pdf"> <span id="translatedtitle">Solar <span class="hlt">Energy</span> Utilisation <span class="hlt">Potential</span> of three different Swiss Urban Sites</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Besides providing a more efficient <span class="hlt">energy</span> use, a large scale application of solar <span class="hlt">energy</span> technologies in the urban context will be required in the upcoming decades to achieve a drastic reduction of greenhouse gas emissions in the biosphere. Three different urban sites, representative of three of the largest Swiss cities (Basel, Geneva and Lausanne), were examined in order to assess</p> <div class="credits"> <p class="dwt_author">M Montavon; J-L Scartezzini; R Compagnon</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60107855"> <span id="translatedtitle"><span class="hlt">Potential</span> for heating western tree seedling greenhouses with geothermal <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Geothermal <span class="hlt">energy</span> is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. The wisest approach to using geothermal <span class="hlt">energy</span> is to seek out and use known resources. Factors influencing greenhouse heating needs</p> <div class="credits"> <p class="dwt_author">S. E. McDonald; C. F. Austin; J. R. Lott</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60107009"> <span id="translatedtitle"><span class="hlt">Potential</span> for heating western tree seedling greenhouses with geothermal <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The technology to apply geothermal <span class="hlt">energy</span> to greenhousing is available. Geothermal <span class="hlt">energy</span> is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. Factors influencing greenhouse heating needs include climate, elevation, structure, and</p> <div class="credits"> <p class="dwt_author">S. E. McDonald; C. F. Austin; J. R. Lott</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=perturbation+AND+theory&pg=4&id=EJ015031"> <span id="translatedtitle">Computing Ligand Field <span class="hlt">Potentials</span> and Relative <span class="hlt">Energies</span> of d Orbitals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Presents a method for calculating the relative <span class="hlt">energies</span> of d orbitals in various geometric configurations having coordination numbers 1 to 12. Discusses the changes in orbital degeneracies and <span class="hlt">energies</span> due to symmetry differences. Shows that the addivity principle of Dq values gives results identical to the complete perturbation treatment. Also…</p> <div class="credits"> <p class="dwt_author">Krishnamurthy, R.; Schaap, Ward B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1969-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993PhLA..183..332K"> <span id="translatedtitle">Cluster-cluster collisions. III. <span class="hlt">Potential</span> <span class="hlt">energy</span> between clusters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The intercluster <span class="hlt">potential</span> for the systems Na8 + Na8, Na9 + Na9, Na19 + Na19andNa20 + Na20 and the fragmentation <span class="hlt">potentials</span> of Na 40, Na 58, Na 68 and Na 92 are calculated on the basis of density functional theory in the local density approximation and the jellium model. From the fragmentation <span class="hlt">potentials</span> as a function of mass asymmetry a rich variety of final size distributions of the product in cluster-cluster collisions is predicted, originating from amplification and annihilation of shell closing effects. Shell effects are also found to dominate the intercluster <span class="hlt">potentials</span> as a function of the intercluster distance. The proximity theorem is, however, found to be satisfied for metallic clusters.</p> <div class="credits"> <p class="dwt_author">Knospe, O.; Schmidt, R.; Engel, E.; Schmitt, U. R.; Dreizler, R. M.; Lutz, H. O.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20020010153&hterms=Derivative+reaction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DDerivative%2Breaction"> <span id="translatedtitle">Computed <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces and Minimum <span class="hlt">Energy</span> Pathway for Chemical Reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Computed <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.</p> <div class="credits"> <p class="dwt_author">Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850024259&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Generation of available <span class="hlt">potential</span> <span class="hlt">energy</span> and the <span class="hlt">energy</span> cycle during the global weather experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Two parallel sets of analyses, which in one case included and in the other omitted data observed by satellite based and other FGGE special observing systems are examined. The results of our previous work is extended in two separate, but not unrelated, ways. First, from these two parallel analyses, which are labeled FGGE (full FGGE system) and NOSAT (satellite omitted), it was discovered that the two sets of fields were quite close over much of the globe. Locally the influence of satellite based systems led to some differences, particularly over the Southern Hemisphere Oceans. The diabatic heating fields generated by the GLA FGGE analysis was also examined. From these fields, one can ascertain the role of total diabatic heating and of the various diabatic heating components in the atmospheric <span class="hlt">energy</span> cycle, in particular in the generation of available <span class="hlt">potential</span> <span class="hlt">energy</span>.</p> <div class="credits"> <p class="dwt_author">Salstein, D. A.; Rosen, R. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22245856"> <span id="translatedtitle">Airports offer unrealized <span class="hlt">potential</span> for alternative <span class="hlt">energy</span> production.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Scaling up for alternative <span class="hlt">energy</span> such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative <span class="hlt">energy</span> production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative <span class="hlt">energy</span> projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists. PMID:22245856</p> <div class="credits"> <p class="dwt_author">DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EnMan..49..517D"> <span id="translatedtitle">Airports Offer Unrealized <span class="hlt">Potential</span> for Alternative <span class="hlt">Energy</span> Production</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Scaling up for alternative <span class="hlt">energy</span> such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative <span class="hlt">energy</span> production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative <span class="hlt">energy</span> projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.</p> <div class="credits"> <p class="dwt_author">Devault, Travis L.; Belant, Jerrold L.; Blackwell, Bradley F.; Martin, James A.; Schmidt, Jason A.; Wes Burger, L.; Patterson, James W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002700/a002793/index.html"> <span id="translatedtitle">Pacific Temperature <span class="hlt">Anomalies</span> with Graph</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This animation shows the El Nino-La Nina Sea Surface Temperature <span class="hlt">Anomaly</span> from January 1997 through July 1999. A graph inset shows the global average sea surface temperature fluctuation during this time period.</p> <div class="credits"> <p class="dwt_author">Shirah, Greg; Bridgman, Tom; Starr, Cindy; Busalacchi, Antonio; Schultz, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-08-30</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19750039971&hterms=magnetic+anomaly+map&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmagnetic%2Banomaly%2Bmap"> <span id="translatedtitle">A global magnetic <span class="hlt">anomaly</span> map</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A subset of Pogo satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic <span class="hlt">anomalies</span>. Through the use of a thirteenth-order field model fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus or minus 50 deg. These residuals, averaged over 1-degree latitude-longitude blocks, represent a detailed global magnetic <span class="hlt">anomaly</span> map derived solely from satellite data. The occurrence of these <span class="hlt">anomalies</span> on all individual satellite passes independent of local time and their decay as altitude increases imply a definite internal origin. Their wavelength structure and their correlation with known tectonic features further suggest that these <span class="hlt">anomalies</span> are primarily of geologic origin and have their sources in the lithosphere.</p> <div class="credits"> <p class="dwt_author">Regan, R. D.; Davis, W. M.; Cain, J. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994STIN...9433262K"> <span id="translatedtitle">Spacecraft environmental <span class="hlt">anomalies</span> expert system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An expert system has been developed by The Aerospace Corporation, Space and Environment Technology Center for use in the diagnosis of satellite <span class="hlt">anomalies</span> caused by the space environment. The expert system is designed to determine the probable cause of an <span class="hlt">anomaly</span> from the following candidates: surface charging, bulk charging, single-event effects, total radiation dose, and space-plasma effects. Such <span class="hlt">anomalies</span> depend on the orbit of the satellite, the local plasma and radiation environment (which is highly variable), the satellite-exposure time, and the hardness of the circuits and components in the satellite. The expert system is a rule-based system that uses the Texas Instrument's Personal Consultant Plus expert-system shell. The expert system's knowledgebase includes about 200 rules, as well as a number of databases that contain information on spacecraft and their orbits, previous spacecraft <span class="hlt">anomalies</span>, and the environment.</p> <div class="credits"> <p class="dwt_author">Koons, Harry C.; Groney, David J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.urologyhealth.org/urology/index.cfm?article=51"> <span id="translatedtitle">Vaginal <span class="hlt">Anomalies</span>: Fusion and Duplication</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://medlineplus.gov/">MedlinePLUS</a></p> <p class="result-summary">... dolor sit amet, consectetur adipiscing elit. Vaginal Abnormalities: Fusion and Duplication Having two of everything may be ... if your child's doctor diagnoses an "<span class="hlt">anomaly</span> of fusion and duplication." What causes vaginal fusion and duplication? ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/525996"> <span id="translatedtitle">Classifying sex biased congenital <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The reasons for sex biases in congenital <span class="hlt">anomalies</span> that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue <span class="hlt">anomalies</span> are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some <span class="hlt">anomalies</span> explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital <span class="hlt">anomalies</span>. 42 refs., 7 tabs.</p> <div class="credits"> <p class="dwt_author">Lubinsky, M.S. [Medical College of Wisconsin and Children`s Hospital, Milwaukee, WI (United States)] [Medical College of Wisconsin and Children`s Hospital, Milwaukee, WI (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-03-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5880430"> <span id="translatedtitle">Obstetric consequences of uterovaginal <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This review discusses the diagnosis and classification of utero-vaginal <span class="hlt">anomalies</span> as well as obstetric considerations in their management. Diagnosis is usually made by hysterosalpingography antepartum. Ultrasonography is also recommended. 40 references, 10 figures, 9 tables.</p> <div class="credits"> <p class="dwt_author">Rock, J.A.; Schlaff, W.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB87146833"> <span id="translatedtitle"><span class="hlt">Potential</span> Impact of Ocean Thermal <span class="hlt">Energy</span> Conversion (OTEC) on Fisheries.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The commercial development of ocean thermal <span class="hlt">energy</span> conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its s...</p> <div class="credits"> <p class="dwt_author">E. P. Myers D. E. Hoss W. M. Matsumoto D. S. Peters M. P. Seki</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830010869&hterms=magnetic+anomaly+map&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmagnetic%2Banomaly%2Bmap"> <span id="translatedtitle">Satellite elevation magnetic <span class="hlt">anomaly</span> maps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The problem of inverting 2 deg average MAGSAT scalar <span class="hlt">anomalies</span> for the region 80 W, 60 E longitude and 40 S, 70 N latitude was attempted on the LARS computer; however, the effort was aborted due to insufficient allocation of CPU-time. This problem is currently being resubmitted and should be implemented shortly for quantitative comparison with free-air gravity <span class="hlt">anomaly</span>, geothermal, and tectonic data.</p> <div class="credits"> <p class="dwt_author">Braile, L. W.; Hinze, W. J. (principal investigators)</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/pg3m4382284p55m1.pdf"> <span id="translatedtitle">Mullerian duct <span class="hlt">anomalies</span>: MR imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Mullerian duct <span class="hlt">anomalies</span> (MDAs) are rare, affecting approximately 1% of all women and about 3% of women with poor reproductive\\u000a outcomes. These congenital <span class="hlt">anomalies</span> usually result from one of the following categories of abnormalities of the mullerian\\u000a ducts: failure of formation (no development or underdevelopment) or failure of fusion of the mullerian ducts. The American\\u000a Fertility Society (AFS) classification of</p> <div class="credits"> <p class="dwt_author">Leonardo Marcal; Maria Angela Nothaft; Francisco Coelho; Richard Volpato; Revathy Iyer</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870064298&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Diabatic heating fields and the generation of available <span class="hlt">potential</span> <span class="hlt">energy</span> during FGGE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Global diabatic heating is estimated using fields of directly computed heating components, in particular those due to shortwave radiation, longwave radiation, sensible heating, and latent heating produced every 6 hours. The role of average fields of diabatic heating in the generation of available <span class="hlt">potential</span> <span class="hlt">energy</span> is examined. It is observed that latent heating is most significant in generating available <span class="hlt">potential</span> <span class="hlt">energy</span>.</p> <div class="credits"> <p class="dwt_author">Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26587277"> <span id="translatedtitle">Evaluation of Renewable <span class="hlt">Energy</span> <span class="hlt">potential</span> using a GIS decision support system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A GIS Decision Support System has been developed for the evaluation of Renewable <span class="hlt">Energy</span> Sources <span class="hlt">potential</span> and the financial analysis of RE investments. A GIS database with data on wind, topography, urban areas, and special activities has been developed and used for the evaluation of theoretical <span class="hlt">potential</span> through the spatially continuous mapping of Renewable <span class="hlt">Energy</span> Resources. The available and technological</p> <div class="credits"> <p class="dwt_author">J. Corominas</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24271200"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces and predicted infrared spectra for van der Waals complexes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Involving the intramolecular vibrational coordinates in the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces and bound states calculations for van der Waals complexes is essential for fully predicting the infrared spectra of the complexes. In this review, we have summarized our recent researches on the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces and predicted infrared spectra of the van der Waals complexes containing a linear molecule and a</p> <div class="credits"> <p class="dwt_author">Daiqian Xie; Hong Ran; Yanzi Zhou</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56095609"> <span id="translatedtitle">Critical insight into the influence of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface on fission dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present work is dedicated to a careful investigation of the influence of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface on the fission process. The time evolution of nuclei at high excitation <span class="hlt">energy</span> and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic <span class="hlt">potential</span>: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg</p> <div class="credits"> <p class="dwt_author">K. Mazurek; C. Schmitt; J. P. Wieleczko; P. N. Nadtochy; G. Ademard</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18405369"> <span id="translatedtitle">Systematic study of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of light nuclei in relativistic Hartree calculations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces of light even-even nuclei are calculated within a relativistic mean field theory using an axially symmetric space lattice and a quadrupole constraint. Pairing effects are included within the constant gap approach. It is shown that the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces are sensitive to the parametrisations used. The calculated deformations generally are in good agreement with experimental data. Calculations</p> <div class="credits"> <p class="dwt_author">J. Fink; V. Blum; P.-G. Reinhard; J. A. Maruhn; W. Greiner</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51857684"> <span id="translatedtitle">A general method for constructing multidimensional molecular <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces from ab initio calculations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A general interpolation method for constructing smooth molecular <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PES’s) from abinitio data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an aposteriori error bound of the constructed PES is derived. It is shown that the method yields globally smooth <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces that are continuous</p> <div class="credits"> <p class="dwt_author">Tak-San Ho; Herschel Rabitz</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26520800"> <span id="translatedtitle">Methane hydrates as <span class="hlt">potential</span> <span class="hlt">energy</span> resource: Part 1 – Importance, resource and recovery facilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Gas hydrates are ice-like crystalline solids that form from mixtures of water and light natural gases such as methane, carbon dioxide, ethane, propane and butane. Methane was the dominant component among other hydrocarbon gases in the sediments. Gas hydrates, <span class="hlt">potentially</span> one of the most important <span class="hlt">energy</span> resources for the future. Methane gas hydrates are increasingly considered a <span class="hlt">potential</span> <span class="hlt">energy</span> resource.</p> <div class="credits"> <p class="dwt_author">Ayhan Demirbas</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5563467"> <span id="translatedtitle"><span class="hlt">Potential</span> impact of R and D on hydrothermal <span class="hlt">energy</span> cost</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The potentital impact of the DOE/Geothermal Technology Development programs on the cost of geothermal power has been estimated using the computer program IMGEO.300. Results indicate a <span class="hlt">potential</span> 30 to 40% cost reduction for hydrothermal systems with a 40 to 50% cost reduction <span class="hlt">potential</span> for binary systems. The purpose of this document is to demonstrate the use of IMGEO. The initial results are tentative because the R and D goals have not been finalized and the code has not been completely validated.</p> <div class="credits"> <p class="dwt_author">Traeger, R.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19940019391&hterms=recovery+plan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522recovery%2Bplan%2522"> <span id="translatedtitle">Galileo spacecraft <span class="hlt">anomaly</span> and safing recovery</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A high-level <span class="hlt">anomaly</span> recovery plan which identifies the steps necessary to recover from a spacecraft 'Safing' incident was developed for the Galileo spacecraft prior to launch. Since launch, a total of four in-flight <span class="hlt">anomalies</span> have lead to entry into a system fault protection 'Safing' routine which has required the Galileo flight team to refine and execute the recovery plan. These failures have allowed the flight team to develop an efficient recovery process when permanent spacecraft capability degradation is minimal and the cause of the <span class="hlt">anomaly</span> is quickly diagnosed. With this previous recovery experience and the very focused boundary conditions of a specific <span class="hlt">potential</span> failure, a Gaspra asteroid recovery plan was designed to be implemented in as quickly as forty hours (desired goal). This paper documents the work performed above, however, the Galileo project remains challenged to develop a generic detailed recovery plan which can be implemented in a relatively short time to configure the spacecraft to a nominal state prior to future high priority mission objectives.</p> <div class="credits"> <p class="dwt_author">Basilio, Ralph R.; Durham, David M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993gdss.proc..203B"> <span id="translatedtitle">Galileo spacecraft <span class="hlt">anomaly</span> and safing recovery</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A high-level <span class="hlt">anomaly</span> recovery plan which identifies the steps necessary to recover from a spacecraft 'Safing' incident was developed for the Galileo spacecraft prior to launch. Since launch, a total of four in-flight <span class="hlt">anomalies</span> have lead to entry into a system fault protection 'Safing' routine which has required the Galileo flight team to refine and execute the recovery plan. These failures have allowed the flight team to develop an efficient recovery process when permanent spacecraft capability degradation is minimal and the cause of the <span class="hlt">anomaly</span> is quickly diagnosed. With this previous recovery experience and the very focused boundary conditions of a specific <span class="hlt">potential</span> failure, a Gaspra asteroid recovery plan was designed to be implemented in as quickly as forty hours (desired goal). This paper documents the work performed above, however, the Galileo project remains challenged to develop a generic detailed recovery plan which can be implemented in a relatively short time to configure the spacecraft to a nominal state prior to future high priority mission objectives.</p> <div class="credits"> <p class="dwt_author">Basilio, Ralph R.; Durham, David M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11888&DocID=2735"> <span id="translatedtitle">Examining student ability to interpret and use <span class="hlt">potential</span> <span class="hlt">energy</span> diagrams for classical systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Physics Education Group at the University of Washington is examining the extent to which students are able to use graphs of <span class="hlt">potential</span> <span class="hlt">energy</span> vs. position to infer kinematic and dynamic quantities for a system. The findings indicate that many students have difficulty in relating the graphs to real-world systems. Some problems seem to be graphical in nature (e.g., interpreting graphs of <span class="hlt">potential</span> <span class="hlt">energy</span> vs. position as graphs of position vs. time). Others involve relating the graphs to total, kinetic, and <span class="hlt">potential</span> <span class="hlt">energies</span>, especially when the <span class="hlt">potential</span> <span class="hlt">energy</span> is negative. The results have implications beyond the introductory level since graphs of <span class="hlt">potential</span> <span class="hlt">energy</span> are used in advanced courses on classical and quantum mechanics.</p> <div class="credits"> <p class="dwt_author">Stephanik, Brian M.; Shaffer, Peter S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49334835"> <span id="translatedtitle">Microalgae Chlorella as a <span class="hlt">potential</span> bio-<span class="hlt">energy</span> feedstock</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Microalgae are promising biomass species owing to their fast growth rate and high CO2 fixation ability as compared to terrestrial plants. Microalgae have long been recognized as <span class="hlt">potentially</span> good source for biofuel production because of their high oil content and rapid biomass production. In this study Chlorella sp. MP-1 biomass was examined for its physical and chemical characteristics using Bomb</p> <div class="credits"> <p class="dwt_author">Mayur M. Phukan; Rahul S. Chutia; B. K. Konwar; R. Kataki</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://files.eric.ed.gov/fulltext/ED204171.pdf"> <span id="translatedtitle">Rivers of <span class="hlt">Energy</span>: The Hydropower <span class="hlt">Potential</span>. Worldwatch Paper No. 44.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Described are the history, current status and future <span class="hlt">potential</span> of hydroelectric power in the world. Issues discussed include the environmental and social impacts of dam construction, and the use of small-scale hydroelectric installations in developing nations. Also considered are hydroelectric development of the world's remote regions, the need to…</p> <div class="credits"> <p class="dwt_author">Deudney, Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/38357638"> <span id="translatedtitle">The <span class="hlt">potential</span> of natural gas hydrates as an <span class="hlt">energy</span> resource</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Many important questions about the <span class="hlt">potential</span> production of gas hydrates still need to be answered. These include the volumes and purities of hydrate formations. In the hydrate phase itself the gas concentration is high, but in the earth hydrate concentrations can be variable. A second question concerns the method of decomposition of gas hydrates in the earth. Hypothetical models have</p> <div class="credits"> <p class="dwt_author">G. D. Holder; S. P. Godbole; V. A. Kamath</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53902413"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for the Walden inversion reaction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A semi-empirical valence bond calculation of <span class="hlt">potential</span> surfaces for the gas phase reaction between methyl bromide and chloride ion is described. The system is treated in a four participant electron approximation with precautions to include the effects of orthogonalization to the core electrons not involved in bond formation during reaction. The core is taken to include the methyl group as</p> <div class="credits"> <p class="dwt_author">Anne M. Woolley; M. S. Child</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21541643"> <span id="translatedtitle">Flavorful hybrid <span class="hlt">anomaly</span>-gravity mediation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider supersymmetric models where <span class="hlt">anomaly</span> and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of <span class="hlt">anomaly</span> mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of <span class="hlt">anomaly</span> mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing <span class="hlt">energy</span> at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.</p> <div class="credits"> <p class="dwt_author">Gross, Christian; Hiller, Gudrun [Institut fuer Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014GeoRL..41.2243J"> <span id="translatedtitle">On vertical electric fields at lunar magnetic <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic <span class="hlt">anomaly</span> on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric <span class="hlt">potentials</span> at lunar magnetic <span class="hlt">anomalies</span>. An antimoonward Hall electric field forms in our simulation resulting in a <span class="hlt">potential</span> difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric <span class="hlt">potentials</span> at lunar magnetic <span class="hlt">anomalies</span> can be formed by decoupling of ion and electron motion even without charge separation.</p> <div class="credits"> <p class="dwt_author">Jarvinen, R.; Alho, M.; Kallio, E.; Wurz, P.; Barabash, S.; Futaana, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19478471"> <span id="translatedtitle">The Zero-<span class="hlt">Energy</span> Continuum Bound State of the Saito <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is well-known that the scattering solution for the Saito <span class="hlt">potential</span> exhibits an extra node. This feature of the Saito <span class="hlt">potential</span> is investigated in terms of Fredholm determinants. By considering the adjoint <span class="hlt">potential</span>, the extra node is identified as resulting from a continuum bound state at zero <span class="hlt">energy</span>.</p> <div class="credits"> <p class="dwt_author">B. Bagchi; B. Mulligan; S. B. Qadri</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860017284&hterms=POTENTIAL+ENERGY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPOTENTIAL%2BENERGY"> <span id="translatedtitle">Generation of available <span class="hlt">potential</span> <span class="hlt">energy</span> and the <span class="hlt">energy</span> cycle during the global weather experiment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric <span class="hlt">energy</span> cycle, namely those involving the generation of available <span class="hlt">potential</span> <span class="hlt">energy</span> (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the <span class="hlt">energy</span> cycle of the atmosphere.</p> <div class="credits"> <p class="dwt_author">Salstein, D. A.; Rosen, R. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22223065"> <span id="translatedtitle">Two-step evaluation of binding <span class="hlt">energy</span> and <span class="hlt">potential</span> <span class="hlt">energy</span> surface of van der Waals complexes.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Evaluation of intermolecular distance and binding <span class="hlt">energy</span> (BE) of van der Waals complex/cluster at ab initio level of theory is computationally demanding when many monomers are involved. Starting from MP2 <span class="hlt">energy</span>, we reached a two-step evaluation method of BE of van der Waals complex/cluster through reasonable approximations; BE = BE(HF) + sum Mi> Mj{BE (Mi- Mj)(MP2 or MP2.5) - BE(Mi-Mj)(HF)} where HF represents the Hartree-Fock calculation, Mi, Mj, etc. are interacting monomers, and MP2.5 represents the arithmetic mean of MP2 and MP3. The first term is the usual BE of the complex/cluster evaluated at the HF level. The second term is the sum of the difference in two-body BE between the correlated and HF levels of theory. This equation was applied to various van der Waals complexes consisting of up-to-four monomers at MP2 and MP2.5 levels of theory. We found that this method is capable of providing precise estimate of the BE and reproducing well the <span class="hlt">potential</span> <span class="hlt">energy</span> surface of van der Waals complexes/clusters; the maximum error of the BE is less than 1 kcal/mol and 1% in most cases except for several limited cases. The origins of error in these cases are discussed in detail. PMID:22223065</p> <div class="credits"> <p class="dwt_author">Deshmukh, Milind M; Sakaki, Shigeyoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33428"> <span id="translatedtitle">Top-down free-<span class="hlt">energy</span> minimization on protein <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The hierarchical properties of <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes have been used to gain insight into thermodynamic and kinetic properties of protein ensembles. It also may be possible to use them to direct computational searches for thermodynamically stable macroscopic states, i.e., computational protein folding. To this end, we have developed a top-down search procedure in which conformation space is recursively dissected according to the intrinsic hierarchical structure of a landscape's effective-<span class="hlt">energy</span> barriers. This procedure generates an inverted tree similar to the disconnectivity graphs generated by local minima-clustering methods, but it fundamentally differs in the manner in which the portion of the tree that is to be computationally explored is selected. A key ingredient is a branch-selection algorithm that takes advantage of statistically predictive properties of the landscape to guide searches down the tree branches that are most likely to lead to the physically relevant macroscopic states. Using the computational folding of a ?-hairpin-forming peptide as an example, we show that such predictive properties indeed exist and can be used for structure prediction by free-<span class="hlt">energy</span> global minimization.</p> <div class="credits"> <p class="dwt_author">Church, Bruce W.; Shalloway, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1988PhRvC..37.2326T"> <span id="translatedtitle">Low-<span class="hlt">energy</span> neutron-proton analyzing power and the new Bonn <span class="hlt">potential</span> and Paris <span class="hlt">potential</span> predictions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Instrumental asymmetries recently observed by Haeberli and co-workers, limit the accuracy of neutron-proton analyzing power Ay(?) data. These instrumental effects are discussed and calculated for previously published n-p Ay(?) data at 16.9 MeV. To enable these calculations, the analyzing power for the 2H(d-->,n)3He reaction was measured at small angles. Additional n-p Ay(?) data at extreme backward angles, obtained via proton recoil detection, are also reported for this <span class="hlt">energy</span> in this paper. The composite data set is compared to calculations based on the new Bonn NN <span class="hlt">potential</span>, the Paris NN <span class="hlt">potential</span>, and to the recent NN phase-shift solution of Arndt. In addition, a detailed comparison between Ay(?) calculated from the new Bonn and the Paris <span class="hlt">potentials</span> between 10 and 50 MeV is shown to reveal unexpectedly large relative differences. The experimental data in this <span class="hlt">energy</span> range are better described by the Paris <span class="hlt">potential</span> than by the new Bonn <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Tornow, W.; Howell, C. R.; Roberts, M. L.; Felsher, P. D.; Chen, Z. M.; Walter, R. L.; Mertens, G.; Šlaus, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010APh....34...40A"> <span id="translatedtitle">Simultaneous observation at sea level and at 5200 m.a.s.l. of high <span class="hlt">energy</span> particles in the South Atlantic <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We compare data obtained by two secondary cosmic ray detectors with different characteristics, located at Mt Chacaltaya, Bolivia (altitude 5200 m) and Niteroi, Brazil (sea level) respectively, separated by a distance of ˜2700 km but both inside the so-called South Atlantic <span class="hlt">Anomaly</span> (SAA) region, with different magnetic rigidities (cut-offs). A preliminary analysis, made on data obtained in September 2008, clearly shows some common characteristics between the two experiments, such as an increase in the intensity of charged particles from 3 h after sunrise until 1 h after sunset. During this period, the solar magnetic field lines overtake the Earth's surface. We conclude that in the SAA region and at ground level secondary particles have two origins. The first is from the galactic cosmic rays and the second is from particle precipitation. Other details of these observations, like the relative composition from galactic rays and precipitation, the day/night asymmetry, as well as sunset enhancement, are reported in this paper.</p> <div class="credits"> <p class="dwt_author">Augusto, C. R. A.; Navia, C. E.; Tsui, K. H.; Shigueoka, H.; Miranda, P.; Ticona, R.; Velarde, A.; Saavedra, O.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60487050"> <span id="translatedtitle">Urban mass transit <span class="hlt">energy</span> use and conservation <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Trends in urban passenger travel show a steady decline in mass-transit ridership after World War II; presently, bus and rail systems carry only 2.5 percent of the urban passenger traffic. Although mass transit carries only a tiny fraction of urban traffic, existing bus and rail systems are two to three times as <span class="hlt">energy</span> efficient as automobiles. Transit efficiencies vary widely</p> <div class="credits"> <p class="dwt_author">E. Hirst; M. S. Jr. Stuntz</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.iaee.org/en/students/best_papers/Diana_Schwyzer.pdf"> <span id="translatedtitle">The <span class="hlt">Potential</span> of Wind Power and <span class="hlt">Energy</span> Storage in California</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A great deal of new electricity generating capacity will be needed in California over the next few decades. Given California's Renewable Portfolio Standard and greenhouse gas reduction goals, a significant fraction of this capacity is likely to be renewable; and among renewables, wind <span class="hlt">energy</span> is particularly promising. Other likely types of capacity additions are natural gas and coal. Unlike these</p> <div class="credits"> <p class="dwt_author">Diana Schwyzer</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1015037"> <span id="translatedtitle">Sustainable Development and <span class="hlt">Energy</span> Geotechnology <span class="hlt">Potential</span> Roles for Geotechnical Engineering</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The world is facing unprecedented challenges related to <span class="hlt">energy</span> resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many <span class="hlt">energy</span> and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable <span class="hlt">energy</span> production; <span class="hlt">energy</span> efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.</p> <div class="credits"> <p class="dwt_author">FragaszyProgram Dire, Dr. R. J. [National Science Foundation; Santamarina, Carlos [Georgia Institute of Technology; Espinoza, N. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Jung, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51859213"> <span id="translatedtitle">Photoproduction of hydrogen - A <span class="hlt">potential</span> system of solar <span class="hlt">energy</span> bioconversion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The photoproduction of hydrogen from water utilizing the photosynthetic capacity of green plants is discussed as a possible means of solar <span class="hlt">energy</span> conversion. Advantages of the biological production of H2 over various physical and chemical processes are pointed out, and the system used for the production of hydrogen by biological agents, which comprises the photosynthetic electron transport chain, ferredoxin and</p> <div class="credits"> <p class="dwt_author">V. S. R. Das</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23400916"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surface and molecular dynamics simulation of gold(I) in liquid nitromethane</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> functions for Au(I)-nitromethane (NM, CH3NO2) and NM–NM interactions were calculated by fitting analytical expressions to quantum chemically derived <span class="hlt">energies</span>. These functions were then used in a molecular dynamics simulation of one Au(I) cation in 499 nitromethane molecules in the NVT ensemble at room temperature. A comparative simulation with a generic NM–NM <span class="hlt">potential</span> <span class="hlt">energy</span> function was also performed for</p> <div class="credits"> <p class="dwt_author">Natcha Injan; Tünde Megyes; Tamas Radnai; Imre Bako; Szabolcz Balint; Jumras Limtrakul; Daniel Spangberg; Michael Probst</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19820016723&hterms=atlantic+drift+continental&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Datlantic%2Bdrift%2Bcontinental"> <span id="translatedtitle">MAGSAT <span class="hlt">anomaly</span> map and continental drift</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Anomaly</span> maps of high quality are needed to display unambiguously the so called long wave length <span class="hlt">anomalies</span>. The <span class="hlt">anomalies</span> were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic <span class="hlt">anomalies</span> are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the <span class="hlt">anomalies</span> found in India, Australia, and Antarctic exhibit a fair consistency with the African <span class="hlt">anomalies</span>. It is also shown that <span class="hlt">anomalies</span> are locked under the continents and have a fixed geometry.</p> <div class="credits"> <p class="dwt_author">Lemouel, J. L. (principal investigator); Galdeano, A.; Ducruix, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52876641"> <span id="translatedtitle">Global and Regional Future <span class="hlt">Potential</span> for <span class="hlt">Energy</span> from Municipal Solid Waste</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Municipal Solid Waste (MSW) is a low-cost form of alternative <span class="hlt">energy</span> with a large <span class="hlt">potential</span> for future expansion. MSW is already collected and aggregated at population centers where <span class="hlt">energy</span> demands are high. In addition, it is non-seasonal, and using MSW as an <span class="hlt">energy</span> source reduces land demand for waste disposal sites in urban areas where land pressures are high. Across</p> <div class="credits"> <p class="dwt_author">J. S. Gregg; S. J. Smith</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58004782"> <span id="translatedtitle">Indian Urban Building Sector: CDM <span class="hlt">Potential</span> through <span class="hlt">Energy</span> Efficiency in Electricity Consumption</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Indian economic growth is likely to lead to a huge increase of <span class="hlt">energy</span> use in buildings but so far, policies to address this issue are lacking. Standard building <span class="hlt">energy</span> use concerning glazing, air conditioning and lighting in different climatic zones across India leads to <span class="hlt">energy</span> use per m2 which is 3-4 times of the German average. We assess the <span class="hlt">potential</span></p> <div class="credits"> <p class="dwt_author">Inderjeet Singh; Axel Michaelowa</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60620803"> <span id="translatedtitle">Marine and Hydrokinetic Renewable <span class="hlt">Energy</span> Technologies: <span class="hlt">Potential</span> Navigational Impacts and Mitigation Measures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">On April 15, 2008, the Department of <span class="hlt">Energy</span> (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable <span class="hlt">Energy</span> Market Acceleration Projects. Within this Topic Area, DOE identified <span class="hlt">potential</span> navigational impacts of marine and hydrokinetic renewable <span class="hlt">energy</span> technologies and measures to prevent adverse impacts on navigation as a sub-topic</p> <div class="credits"> <p class="dwt_author">Cool; M. Richard; Hudon; J. Thomas; David Basco; Neil Rondorf</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60620806"> <span id="translatedtitle">Marine and Hydrokinetic Renewable <span class="hlt">Energy</span> Devices, <span class="hlt">Potential</span> Navigational Hazards and Mitigation Measures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">On April 15, 2008, the Department of <span class="hlt">Energy</span> (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable <span class="hlt">Energy</span> Market Acceleration Projects. Within this Topic Area, DOE identified <span class="hlt">potential</span> navigational impacts of marine and hydrokinetic renewable <span class="hlt">energy</span> technologies and measures to prevent adverse impacts on navigation as a sub-topic</p> <div class="credits"> <p class="dwt_author">Cool; M. Richard; Hudon; J. Thomas; David Basco; Neil Rondorf</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57703410"> <span id="translatedtitle">Evaluation of Soil Liquefaction <span class="hlt">Potential</span> Based on the Non-linear <span class="hlt">Energy</span> Dissipation Principles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This study presents the principle of nonlinear <span class="hlt">energy</span> dissipation using an artificial neural network to assess liquefaction <span class="hlt">potential</span>. The nonlinear relationship between an increase in pore water pressure and the dissipation of seismic <span class="hlt">energy</span> observed in test data from triaxial shear testing of saturated sand was used to calculate the hysteresis loop <span class="hlt">energy</span> required to trigger liquefaction. Data recorded during</p> <div class="credits"> <p class="dwt_author">Yie-Ruey Chen; Jing-Wen Chen; Shun-Chieh Hsieh; Yi-Teng Chang</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20718824"> <span id="translatedtitle">Second-order perturbation <span class="hlt">energy</span> corrections for the optimized effective <span class="hlt">potential</span> for atoms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The second-order perturbation corrections to the <span class="hlt">energy</span> computed using the optimized effective <span class="hlt">potential</span> (OEP) arising from single-particle excitations are computed explicitly for a number of closed-shell atoms. It is found that almost all of the difference between the Hartree-Fock <span class="hlt">energy</span> and the OEP <span class="hlt">energy</span> is recovered in second order.</p> <div class="credits"> <p class="dwt_author">Talman, James D. [Department of Applied Mathematics and Centre for Chemical Physics, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div