Note: This page contains sample records for the topic potential energy anomaly from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Stress anomaly and gravitational potential energy of the Andean convergent margin from gravity modelling  

NASA Astrophysics Data System (ADS)

Estimates of stress anomaly and Gravitational Potential Energy (GPE) of the Nazca plate and the Andean convergent margin, as derived from gravity modelling and constrained by results of seismic experiments and other prior information, are presented. The normal stress anomalies onshore have been computed at the plate interface between the subducting slab and the overriding South American plate, and offshore on top of the oceanic Nazca plate. The GPE estimates have been made for the entire region using a 100 km vertical depth as reference level for the computation. The normal stress anomaly map of the Nazca plate, except the Nazca ridge, shows generally uniform distribution of stresses. The relatively high values of stress over the Nazca ridge are attributed to high elevation associated with young crust of the ridge. The fore-arc region is characterized by trench parallel low and high stress anomalies. The latter, which is higher by 50 to 100 MPa than in the adjacent regions, might be attributed to high density structures above the plate interface and might indicate regions of enhanced strain energy. Furthermore, the peaks of the high stress anomaly, except in the region of Iquique, correlate reasonably well with the seismicity of the trench. The high topography of the Andean mountains and the ridges in the Nazca plate exhibits high GPE values relative to the ocean. The resulting stress from GPE could influence the state of stress in the Nazca plate and adjacent regions. Provided that gravity models are well constrained, the resulting density structures could be used to infer the state of stress in the lithosphere and the associated GPE distributions.

Gutknecht, B. D.; Mahatsente, R.; Götze, H.-J.

2012-04-01

2

Energy Anomaly and Polarizability of Carbon Nanotubes  

SciTech Connect

The energy of Fermi sea perturbed by an external potential is analyzed with the help of an energy anomaly. Using an example of massive Dirac fermions on a circle, we illustrate how the anomaly accounts for the contribution of the deep-lying states. The energy anomaly is a universal function of the applied field and is related to known field-theoretic anomalies. Applied to the transverse polarizability of carbon nanotubes, the anomaly reveals universality and scale invariance of the response dominated by {pi} electrons. The electron band transformation in a strong field-effect regime is predicted.

Novikov, D.S. [Department of Electrical Engineering and Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Levitov, L.S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2006-01-27

3

Processes affecting the stratification-induced potential energy anomaly on the Skagit Bay tidal flats  

NASA Astrophysics Data System (ADS)

On the Skagit Bay tidal flats, the stratification resulting from the buoyancy input of the Skagit River is modulated by tides with a 4 m range. Here, field observations and Finite Volume Coastal Ocean Model (FVCOM) simulations are used to evaluate the terms in the equation governing the temporal evolution of the stratification-induced potential energy anomaly (?) (Burchard and Hofmeister, Estuar. Coast. Shelf Sci., 77(4), 2008). Profiles of water density (range of 1000 to 1028 kg/m3) and velocity (up to 0.6 m/s) were measured at locations separated by roughly 600 m over a 4 by 4 km region of the flats (0.5 to 2.5 m mean water depth) for 56 days from early July (river discharge of 570 m3s-1) until late August 2009 (discharge of 140 m3s-1). The FVCOM grid of Skagit Bay and surrounding basins is forced with surface winds from a regional wind model, observed river discharge, and water level based on tidal harmonics and observed low-frequency variability. The model bathymetry incorporates numerous data sources including acoustic and LIDAR surveys performed during summer 2009. Temporal changes in ? may result from tidal straining (an effect of sheared flows and horizontally varying water density) of the depth-averaged and vertically-dependent densities, along- and across-flat advection, vertical advection, surface and bottom buoyancy fluxes, mixing, changes in water depth, and turbulent transport. FVCOM simulations suggest that the horizontal and vertical resolutions of the observations are sufficient to examine the relative importance of the terms in the equation for ?. Preliminary results suggest that temporal changes in ? primarily are owing to cross-flat tidal straining of the depth-averaged density, cross-flat advection, changing water depth, and mixing. However, model results suggest that the relative importance of the terms depends on proximity to the main river channel, river discharge, and tidal range (e.g., spring versus neap tides). Funded by ONR, NSF, and NSSEFF.

Pavel, V.; Raubenheimer, B.; Elgar, S.; Ralston, D. K.

2010-12-01

4

Understanding Anomalies to Extract Vacuum Energy  

SciTech Connect

Recent Russian literature contains some interesting speculations of potentially wide applicability regarding the physical vacuum. These investigations examined and applied a theory to various anomalies to try and understand what these events may represent. Data were collected by Dmitriev to quantify these events and identify commonalties that indicate the anomalies might have a natural origin. Dyatlov created theories on the Polarized Inhomogeneous Physical Vacuum where he claimed that each anomaly possessed a distinct boundary separate from its surroundings. Within this inhomogeneous boundary, the theory suggests that the magnetic, electric, gravitic, and spin fields would be different from its surroundings. From these findings, he developed equations that resemble the London equations for a superconductor and are somewhat similar to those developed later by Puthoff. The importance of these events is that with additional understanding, they may offer a means for extracting energy from the physical vacuum. Moreover, one may speculate that these anomalies may represent a gravitational vortex or even a portal or a wormhole to look into potential travel within other dimensions.

Murad, P.A

2004-02-04

5

Anomalies  

SciTech Connect

Anomalies have a diverse impact on many aspects of physical phenomena. The role of anomalies in determining physical structure from the amplitude for decay to the foundations of superstring theory will be reviewed. 36 refs.

Bardeen, W.A.

1985-08-01

6

Anomalies.  

ERIC Educational Resources Information Center

|This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

Online-Offline, 1999

1999-01-01

7

Potential Energy  

NSDL National Science Digital Library

Part of a comprehensive physics tutorial for high school students, this page describes potential energy conceptually and mathematically, provides examples enhanced by illustrations, and problems for practice with drop down boxes for your answers and feedback. In the left navigation bar, click on Kinetic Energy to get parallel information on kinetic energy.

2010-01-01

8

Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly  

NASA Astrophysics Data System (ADS)

Abstract<p label="1">The formation of electric <span class="hlt">potential</span> over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric <span class="hlt">potential</span> was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric <span class="hlt">potential</span> mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom <span class="hlt">energy</span> spectrometer SARA/CENA on Chandrayaan-1. Electrostatic <span class="hlt">potential</span> larger than +135 V inside the Gerasimovic <span class="hlt">anomaly</span> is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric <span class="hlt">potential</span> can influence the local plasma and dust environment near the magnetic <span class="hlt">anomaly</span>.</p> <div class="credits"> <p class="dwt_author">Futaana, Y.; Barabash, S.; Wieser, M.; Lue, C.; Wurz, P.; Vorburger, A.; Bhardwaj, A.; Asamura, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">9</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989ftk..rept..271R"> <span id="translatedtitle">The combination of satellite and topographic/isostatic <span class="hlt">potential</span> models for mean <span class="hlt">anomaly</span> determinations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A method is presented for the estimation of a global gravity <span class="hlt">anomaly</span> field using the combination of satellite-derived <span class="hlt">potential</span> coefficient models and the coefficients implied by the Airy-Heiskanen topographic/isostatic <span class="hlt">potential</span> (Rummel et al., 1988) from topographic models with a 30-km depth of compensation. Gravity <span class="hlt">anomalies</span> calculated with this method are compared with a terrestrial 1 x 1 degree <span class="hlt">anomaly</span> file where the <span class="hlt">anomaly</span> standard deviations were less than 10 mgals. Using the GEM T1 model (Marsh et al., 1988) to degree 36, the rms <span class="hlt">anomaly</span> discrepency was + or - 19 mgals, while the rms values for the terrestrial <span class="hlt">anomalies</span> was + or - 28 mgals.</p> <div class="credits"> <p class="dwt_author">Rapp, Richard H.; Pavlis, Nikolaos</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">10</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhRvD..83a4005F"> <span id="translatedtitle">Random matrix model at nonzero chemical <span class="hlt">potentials</span> with <span class="hlt">anomaly</span> effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Phase diagram of the chiral random matrix model with U(1)A breaking term is studied with the quark chemical <span class="hlt">potentials</span> varied independently at zero temperature by taking the chiral and meson condensates as the order parameters. Although, without the U(1)A breaking term, chiral transition of each flavor can happen separately responding to its chemical <span class="hlt">potential</span>, the U(1)A breaking terms mix the chiral condensates and correlate the phase transitions. In the three-flavor case, we find that there are mixings between the meson and chiral condensates due to the U(1)A <span class="hlt">anomaly</span>, which makes the meson condensed phase more stable. Increasing the hypercharge chemical <span class="hlt">potential</span> (?Y) with the isospin and quark chemical <span class="hlt">potentials</span> (?I,?q) kept small, we observe that the kaon-condensed phase becomes the ground state and at the larger ?Y the pion-condensed phase appears unexpectedly, which is caused by the competition between the chiral restoration and the meson condensation. The similar happens when ?Y and ?I are exchanged, and the kaon-condensed phase becomes the ground state at larger ?I below the full chiral restoration.</p> <div class="credits"> <p class="dwt_author">Fujii, H.; Sano, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">11</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JPhCS.239a2015G"> <span id="translatedtitle">Calculations on the threshold <span class="hlt">anomaly</span> of weakly bound projectiles with São Paulo and Woods-Saxon polarization <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A thorough study of the <span class="hlt">energy</span> dependence of the nuclear optical <span class="hlt">potential</span> in reactions involving the weakly bound projectiles 8B, 7Be and 6Li on the target 58Ni and 9Be on 27Al is carried out by performing a ?2-analysis of recent measurements of elastic scattering cross sections for <span class="hlt">energies</span> around and above the Coulomb barrier. For this purpose two different <span class="hlt">potential</span> types are used: the double folding São Paulo <span class="hlt">potential</span> and the Woods-Saxon <span class="hlt">potential</span>. The calculations performed for the <span class="hlt">energy</span> dependence of the real and imaginary parts of the polarization <span class="hlt">potentials</span> show that these <span class="hlt">potentials</span> besides satisfying the dispersion relation, for some nuclear systems the uncertainties on the <span class="hlt">energy</span> dependence of the polarization <span class="hlt">potentials</span> allow to conclude that these systems present a behavior consistent with the Breakup Theshold <span class="hlt">Anomaly</span>. In other cases, due to the large uncertainties, it is not possible to make a definitive conclusion about the <span class="hlt">anomalies</span>.</p> <div class="credits"> <p class="dwt_author">Gómez-Camacho, A.; Aguilera, E. F.; Martínez-Quiroz, E.; Gomes, P. R. S.; Lubian, J.; Canto, L. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">12</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20711195"> <span id="translatedtitle">Seesaw <span class="hlt">energy</span> scale and the LSND <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The most general, renormalizable Lagrangian that includes massive neutrinos contains 'right-handed neutrino' Majorana masses of order M. While there are prejudices in favor of M>>M{sub weak}, virtually nothing is known about the magnitude of M. I argue that the Liquid Scintillator Neutrino Detector (LSND) <span class="hlt">anomaly</span> provides, currently, the only experimental hint: M{approx}1 eV. If this is the case, the LSND mixing angles are functions of the active neutrino masses and mixing and, remarkably, adequate fits to all data can be naturally obtained. I also discuss consequences of this 'eV-seesaw' for supernova neutrino oscillations, tritium beta-decay, neutrinoless double-beta-decay, and cosmology.</p> <div class="credits"> <p class="dwt_author">Gouvea, Andre de [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">13</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51139587"> <span id="translatedtitle"><span class="hlt">Anomaly</span> detection in premise <span class="hlt">energy</span> consumption data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Demand Response (DR) programs are designed to reduce <span class="hlt">energy</span> consumption for relatively short time periods (e.g., a few hours per event). It has been widely recognized that DR can help to meet both reliability and market needs. In order for DR programs to achieve their full benefits, however, it is critical for utilities to accurately predict the reduction in <span class="hlt">energy</span></p> <div class="credits"> <p class="dwt_author">Yi Zhang; Weiwei Chen; Jason Black</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">14</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1022533"> <span id="translatedtitle">Insights on the Cuprate High <span class="hlt">Energy</span> <span class="hlt">Anomaly</span> Observed in ARPES</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding <span class="hlt">energies</span> in cuprate superconductors: the high <span class="hlt">energy</span> 'waterfall' or high <span class="hlt">energy</span> <span class="hlt">anomaly</span> (HEA). The <span class="hlt">anomaly</span> is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different <span class="hlt">energy</span> scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA <span class="hlt">energy</span> scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the <span class="hlt">anomaly</span> demarcates a transition, or cross-over, from a quasiparticle band at low binding <span class="hlt">energies</span> near the Fermi level to valence bands at higher binding <span class="hlt">energy</span>, assumed to be of strong oxygen character.</p> <div class="credits"> <p class="dwt_author">Moritz, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-08-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">15</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21316219"> <span id="translatedtitle">Anisotropic dark <span class="hlt">energy</span> and CMB <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We investigate the breaking of global statistical isotropy caused by a dark <span class="hlt">energy</span> component with an <span class="hlt">energy</span>-momentum tensor which has point symmetry, that could represent a cubic or hexagonal crystalline lattice. In such models Gaussian, adiabatic initial conditions created during inflation can lead to anisotropies in the cosmic microwave background whose spherical harmonic coefficients are correlated, contrary to the standard assumption. We develop an adaptation of the line of sight integration method that can be applied to models where the background <span class="hlt">energy</span>-momentum tensor is isotropic, but whose linearized perturbations are anisotropic. We then show how this can be applied to the cases of cubic and hexagonal symmetry. We compute quantities which show that such models are indistinguishable from isotropic models even in the most extreme parameter choices, in stark contrast to models with anisotropic initial conditions based on inflation. The reason for this is that the dark <span class="hlt">energy</span> based models contribute to the CMB anisotropy via the integrated Sachs-Wolfe effect, which is only relevant when the dark <span class="hlt">energy</span> is dominant, that is, on the very largest scales. For inflationary models, however, the anisotropy is present on all scales.</p> <div class="credits"> <p class="dwt_author">Battye, Richard; Moss, Adam [Jodrell Bank Center for Astrophysics, University of Manchester, Manchester, M13 9PL (United Kingdom); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/989833"> <span id="translatedtitle">The trace <span class="hlt">anomaly</span> and dynamical vacuum <span class="hlt">energy</span> in cosmology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The trace <span class="hlt">anomaly</span> of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-<span class="hlt">energy</span> tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the <span class="hlt">anomaly</span> is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace <span class="hlt">anomaly</span> imply that the cosmological vacuum <span class="hlt">energy</span> is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.</p> <div class="credits"> <p class="dwt_author">Mottola, Emil [Los Alamos National Laboratory</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/17392802238x0mh6.pdf"> <span id="translatedtitle">GRACE-derived surface water mass <span class="hlt">anomalies</span> by <span class="hlt">energy</span> integral approach: application to continental hydrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We propose an unconstrained approach to recover regional time-variations of surface mass <span class="hlt">anomalies</span> using Level-1 Gravity Recovery\\u000a and Climate Experiment (GRACE) orbit observations, for reaching spatial resolutions of a few hundreds of kilometers. <span class="hlt">Potential</span>\\u000a differences between the twin GRACE vehicles are determined along short satellite tracks using the <span class="hlt">energy</span> integral method (i.e.,\\u000a integration of orbit parameters vs. time) in a</p> <div class="credits"> <p class="dwt_author">Guillaume Ramillien; R. Biancale; S. Gratton; X. Vasseur; S. Bourgogne</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21336101"> <span id="translatedtitle">Nonrelativistic inverse square <span class="hlt">potential</span>, scale <span class="hlt">anomaly</span>, and complex extension</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The old problem of a singular, inverse square <span class="hlt">potential</span> in nonrelativistic quantum mechanics is treated employing a field-theoretic, functional renormalization method. An emergent contact coupling flows to a fixed point or develops a limit cycle depending on the discriminant of its quadratic beta function. We analyze the fixed points in both conformal and nonconformal phases and perform a natural extension of the renormalization group analysis to complex values of the contact coupling. Physical interpretation and motivation for this extension is the presence of an inelastic scattering channel in two-body collisions. We present a geometric description of the complex generalization by considering renormalization group flows on the Riemann sphere. Finally, using bosonization, we find an analytical solution of the extended renormalization group flow equations, constituting the main result of our work.</p> <div class="credits"> <p class="dwt_author">Moroz, Sergej [Institut fuer Theoretische Physik Universitaet Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)], E-mail: s.moroz@thphys.uni-heidelberg.de; Schmidt, Richard [Physik Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGeod..85..313R"> <span id="translatedtitle">GRACE-derived surface water mass <span class="hlt">anomalies</span> by <span class="hlt">energy</span> integral approach: application to continental hydrology</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose an unconstrained approach to recover regional time-variations of surface mass <span class="hlt">anomalies</span> using Level-1 Gravity Recovery and Climate Experiment (GRACE) orbit observations, for reaching spatial resolutions of a few hundreds of kilometers. <span class="hlt">Potential</span> differences between the twin GRACE vehicles are determined along short satellite tracks using the <span class="hlt">energy</span> integral method (i.e., integration of orbit parameters vs. time) in a quasi-inertial terrestrial reference frame. <span class="hlt">Potential</span> differences residuals corresponding mainly to changes in continental hydrology are then obtained after removing the gravitational effects of the known geophysical phenomena that are mainly the static part of the Earth's gravity field and time-varying contributions to gravity (Sun, Moon, planets, atmosphere, ocean, tides, variations of Earth's rotation axis) through ad hoc models. Regional surface mass <span class="hlt">anomalies</span> are restored from <span class="hlt">potential</span> difference <span class="hlt">anomalies</span> of 10 to 30-day orbits onto 1? continental grids by regularization techniques based on singular value decomposition. Error budget analysis has been made by considering the important effects of spectrum truncation, the time length of observation (or spatial coverage of the data to invert) and for different levels of noise.</p> <div class="credits"> <p class="dwt_author">Ramillien, Guillaume; Biancale, R.; Gratton, S.; Vasseur, X.; Bourgogne, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18193080"> <span id="translatedtitle">Gravitational <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant <span class="hlt">energy</span>-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz <span class="hlt">anomaly</span>, the conformal <span class="hlt">anomaly</span> and the gauge <span class="hlt">anomaly</span></p> <div class="credits"> <p class="dwt_author">H. Leutwyler; S. Mallik</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1740238"> <span id="translatedtitle">Hazard <span class="hlt">potential</span> ranking of hazardous waste landfill sites and risk of congenital <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background: A 33% increase in the risk of congenital <span class="hlt">anomalies</span> has been found among residents near hazardous waste landfill sites in a European collaborative study (EUROHAZCON). Aims: To develop and evaluate an expert panel scoring method of the hazard <span class="hlt">potential</span> of EUROHAZCON landfill sites, and to investigate whether sites classified as posing a greater <span class="hlt">potential</span> hazard are those with a greater risk of congenital <span class="hlt">anomaly</span> among nearby residents relative to more distant residents. Methods: A total of 1270 cases of congenital <span class="hlt">anomaly</span> and 2308 non-malformed control births were selected in 14 study areas around 20 landfill sites. An expert panel of four landfill specialists scored each site in three categories—overall, water, and air hazard—based on readily available, documented data on site characteristics. Tertiles of the average ranking scores defined low, medium, and high hazard sites. Calculation of odds ratios was based on distance of residence from the sites, comparing a 0–3 km "proximate" with a 3–7 km "distant" zone. Results: Agreement between experts measured by intraclass correlation coefficients was 0.50, 0.44, and 0.20 for overall, water, and air hazard before a consensus meeting and 0.60, 0.56, and 0.53 respectively after this meeting. There was no evidence for a trend of increasing odds ratios with increasing overall hazard or air hazard. For non-chromosomal <span class="hlt">anomalies</span>, odds ratios by water hazard category showed an increasing trend of borderline statistical significance (p = 0.06) from 0.79 in the low hazard category, 1.43 in the medium, to 1.60 in the high water hazard category. Conclusions: There is little evidence for a relation between risk of congenital <span class="hlt">anomaly</span> in proximate relative to distant zones and hazard <span class="hlt">potential</span> of landfill sites as classified by the expert panel, but without external validation of the hazard <span class="hlt">potential</span> scoring method interpretation is difficult. <span class="hlt">Potential</span> misclassification of sites may have reduced our ability to detect any true dose–response effect.</p> <div class="credits"> <p class="dwt_author">Vrijheid, M; Dolk, H; Armstrong, B; Boschi, G; Busby, A; Jorgensen, T; Pointer, P</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.7810L"> <span id="translatedtitle">Gravity waves generated by sheared three-dimensional <span class="hlt">potential</span> vorticity <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The gravity waves produced by three-dimensional <span class="hlt">potential</span> vorticity <span class="hlt">anomalies</span> are examined under the asumption of constant vertical shear, constant stratification and unbounded domain. As in the two-dimensional case analysed in a previous paper by the same authors, the disturbance at small vertical distance from the <span class="hlt">potential</span> vorticity <span class="hlt">anomaly</span> is well modelled by the quasi-geostrophic theory. This is not the case at vertical distances that are beyond the inertial layers which are located above and below the <span class="hlt">anomaly</span>. There, the perturbation is made of vertically propagating gravity waves which vertical structure is described analytically. On top of the sensitivity of the gravity waves emission to the background Richardson number J, already present in the 2D case, the three dimensional results shown here reveal a strong sensitivity of the emission to the orientation of the horizontal wavenumber. More specifically, there are more gravity waves emitted with phase lines making positive angles with the direction of the shear, then gravity waves making negative angles. As the QG dynamics is little sensitive to these angles, it is shown that these differences are related to the absorptive properties of the inertial layers. These results imply that the acceleration related to the wave flow interactions that occur in the inertial layer is essentially to the left of the shear, whereas the wave effective stress vector associated with the waves propagating in the far-field is predominantly oriented to the right.</p> <div class="credits"> <p class="dwt_author">Lott, F.; Plougonven, R.; Vanneste, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ExG....44..176R"> <span id="translatedtitle">Forward modelling and inversion of self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> caused by 2D inclined sheets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> observed over sulfide ore bodies can be closely associated with electrochemical reactions and the ohmic <span class="hlt">potential</span> drop within the rocks. Self-<span class="hlt">potential</span> surveys based on laboratory measurements of electrochemical <span class="hlt">potentials</span> allow us either to measure the amplitude of the <span class="hlt">anomalies</span> generated by this mechanism or to determine the model parameters. In order to achieve these goals, two sheets of zinc and copper were joined together to simulate sheet-like ore bodies. Self-<span class="hlt">potential</span> surveys were conducted over 684 electrodes with the purpose of revealing the influence of various angles of the sheet. In a laboratory experiment, four different inclinations were chosen to perform the forward modelling. The last part of this paper involves the inversion of measured data to recover the distribution of generated self-<span class="hlt">potential</span> signals. The inversion results show a satisfactory agreement with the laboratory measured data. Finding the geometry of the buried source from the shape of the SP response is not intended as it is fixed in advance. The first aim of this paper is to show how the SP response is affected under the presence of a 2D conductive structure (sheet-like) in tank experiments. The second aim is to obtain one of the model parameters (coefficient M) using data regression.</p> <div class="credits"> <p class="dwt_author">Roudsari, Mohamad Sadegh; Beitollahi, Ali</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGE.....9..498G"> <span id="translatedtitle">Inversion of self-<span class="hlt">potential</span> <span class="hlt">anomalies</span> caused by simple-geometry bodies using global optimization algorithms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Three naturally inspired meta-heuristic algorithms—the genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO)—were used to invert some of the self-<span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span> originated by some polarized bodies with simple geometries. Both synthetic and field data sets were considered. The tests with the synthetic data comprised of the solutions with both noise-free and noisy data; in the tests with the field data some SP <span class="hlt">anomalies</span> observed over a copper belt (India), graphite deposits (Germany) and metallic sulfide (Turkey) were inverted. The model parameters included the electric dipole moment, polarization angle, depth, shape factor and origin of the <span class="hlt">anomaly</span>. The estimated parameters were compared with those from previous studies using various optimization algorithms, mainly least-squares approaches, on the same data sets. During the test studies the solutions by GA, PSO and SA were characterized as being consistent with each other; a good starting model was not a requirement to reach the global minimum. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from widely used local optimization algorithms.</p> <div class="credits"> <p class="dwt_author">Göktürkler, G.; Balkaya, Ç.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/c77g51562315147v.pdf"> <span id="translatedtitle">Global Biomass <span class="hlt">Energy</span> <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The intensive use of renewable <span class="hlt">energy</span> is one of the options to stabilize CO2atmospheric concentration at levels of 350 to 550ppm. A recent evaluation of the global <span class="hlt">potential</span> of primary renewable <span class="hlt">energy</span>\\u000a carried out by Intergovernmental Panel on Climate Change (IPCC) sets a value of at least 2800EJ\\/yr, which is more than the\\u000a most <span class="hlt">energy</span>-intensive SRES scenario forecast for the</p> <div class="credits"> <p class="dwt_author">Rua Francisco Dias Velho</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59185770"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span>\\/Kinetic <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Objectives:\\u000aStudents will:\\u000a1. use modeling to calculate the spring constant of a super ball\\u000a2. use modeling to predict the elastic bounce (spring constant of other balls)\\u000aThis will help the student understand the elastic <span class="hlt">potential</span> <span class="hlt">energy</span>, kinetic <span class="hlt">energy</span>, restoring force of a ball bounced at an angle, period, frequency of springs in simple harmonic motion Modeling will allow</p> <div class="credits"> <p class="dwt_author">David Rogers</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/882035"> <span id="translatedtitle">Interpretation of Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> Using Constitutive Relationships for Electrochemical and Thermoelectric Coupling Coefficients</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Constitutive relationships for electrochemical and thermoelectric cross-coupling coefficients are derived using ionic mobilities, applying a general derivative of chemical <span class="hlt">potential</span> and employing the zero net current condition. The general derivative of chemical <span class="hlt">potential</span> permits thermal variations which give rise to the thermoelectric effect. It also accounts for nonideal solution behavior. An equation describing electric field strength is similarly derived with the additional assumption of electrical neutrality in the fluid Planck approximation. The Planck approximation implies that self-<span class="hlt">potential</span> (SP) is caused only by local sources and also that the electric field strength has only first order spatial variations. The derived relationships are applied to the NaCl-KCl concentration cell with predicted and measured voltages agreeing within 0.4 mV. The relationships are also applied to the Long Valley and Yellowstone geothermal systems. There is a high degree of correlation between predicted and measured SP response for both systems, giving supporting evidence for the validity of the approach. Predicted SP amplitude exceeds measured in both cases; this is a possible consequence of the Planck approximation. Electrochemical sources account for more than 90% of the predicted response in both cases while thermoelectric mechanisms account for the remaining 10%; electrokinetic effects are not considered. Predicted electrochemical and thermoelectric voltage coupling coefficients are comparable to values measured in the laboratory. The derived relationships are also applied to arbitrary distributions of temperature and fluid composition to investigate the geometric diversity of observed SP <span class="hlt">anomalies</span>. Amplitudes predicted for hypothetical saline spring and hot spring environments are less than 40 mV. In contrast, hypothetical near surface steam zones generate very large amplitudes, over 2 V in one case. These results should be viewed with some caution due to the uncertain validity of the Planck approximation for these conditions. All amplitudes are controlled by electrochemical mechanisms. Polarities are controlled by the curvature of the concentration or thermal profile. Concave upward thermal profiles produce positive <span class="hlt">anomalies</span>, for constant fluid concentrations, whereas concave upward concentration profiles produce negative <span class="hlt">anomalies</span>. Concave downward concentration profiles are characterized by small negative closures bounding a larger, positive SP <span class="hlt">anomaly</span>.</p> <div class="credits"> <p class="dwt_author">Knapp, R. B.; Kasameyer, P. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004cosp...35.1813C"> <span id="translatedtitle">Gravity <span class="hlt">Potential</span> <span class="hlt">anomalies</span> on Mars : Shape of the planet and its thermal evolution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This study follows previous studies about the existence of paleo shorelines on the surface of Mars (Parker, 1993, Clifford and Parker, 2001). In order to test this hypothesis, we have computed the gravity <span class="hlt">potential</span> of the shorelines since shorelines should represent equipotential lines at the solid surface of the planet. For the so-called Deuteronilus shoreline, we find that the <span class="hlt">potential</span> varies with longitude with an order 2. We propose to interpret this order 2 as related to the formation of Tharsis, which makes the shape of the planet close to that of a 3 dimensional ellipsoid. The <span class="hlt">potential</span> calculated by the spherical harmonic decomposition (SHD) up to degree 2 is close to the SHD up to degree 60. We are exploring the values of J22 which would give a constant <span class="hlt">potential</span> along that shoreline, assuming that the moment of inertia, the rotation and the volume of the planet remained constant. The results suggest that this equipotential would have formed as Tharsis was being built up during the Hesperian. Another way to test the shoreline hypothesis is to use the first data of Mars Express spectrometer. In a joint study (Sotin et al.), we plan to analyse the OMEGA spectra to identify sedimentary deposits, carbonates or evaporites in the Deuteronilus shoreline region. In parallel, we run numerical experiments describing thermal convection in 3D spherical shells. The code takes into account large viscosity gradients due to temperature variations. Convection occurs in the so-called conductive lid regime. First results suggest that the geometry of the convection is mainly controlled by the formation of one large plume. Temperature variations in latitude, longitude and depth are transformed into density variations that are used to compute both dynamic topography and gravity <span class="hlt">anomalies</span>. A comparison between observed and computed gravity <span class="hlt">anomalies</span> will be performed to interpret some of the large scale gravity <span class="hlt">potential</span> variations.</p> <div class="credits"> <p class="dwt_author">Couturier, F.; Choblet, G.; Sotin, C.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MarGR.tmp...30M"> <span id="translatedtitle">Evaluating Cenozoic equatorial sediment deposition <span class="hlt">anomalies</span> for <span class="hlt">potential</span> paleoceanographic and Pacific plate motion applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">If equatorial sediments form characteristic deposits around the equator, they may help to resolve the amount of northwards drift of the Pacific tectonic plate. Relevant to this issue, it has been shown that 230Th has been accumulating on the equatorial seabed faster than its production from radioactive decay in the overlying water column during the Holocene (Marcantonio et al. in Paleoceanography 16:260-267, 2001). Some researchers have argued that this reflects the deposition of particles with adsorbed 230Th carried by bottom currents towards the equator ("focusing"). If correct, this effect may combine with high pelagic productivity, which is also centered on the equator, to yield a characteristic signature of high accumulation rates marking the paleoequator in older deposits. Here we evaluate <span class="hlt">potential</span> evidence that such an equatorial feature existed in the geological past. Seismic reflection data from seven meridional transects suggest that a band of equatorially enhanced accumulation of restricted latitude was variably developed, both spatially and temporally. It is absent in the interval 14.25-20.1 Ma but is well developed for the interval 8.55-14.25 Ma. We also examined eolian dust accumulation rate histories generated from scientific drilling data. A dust accumulation rate <span class="hlt">anomaly</span> near the modern equator, which is not obviously related to the inter-tropical convergence zone, is interpreted as caused by focusing. Accumulation rates of Ba and P2O5 (proxies of export production) reveal a static equatorial signature, which suggests that the movement of the Pacific plate over the period 10-25 Ma was modest. The general transition from missing to well-developed focusing signatures around 14.25 Ma in the seismic data coincides with the mid-Miocene development of the western boundary current off New Zealand. This current supplies the Pacific with deep water from Antarctica, and could therefore imply a <span class="hlt">potential</span> paleoceanographic or paleoclimatic origin. At 10.05-14.25 Ma, the latitudes of the seismic <span class="hlt">anomalies</span> are up to ~2° different from the paleoequator predicted by Pacific plate-hotspot models, suggesting <span class="hlt">potentially</span> a small change in the hotspot latitudes relative to the present day (although this inference depends on the precise form of the deposition around the equator). The Ba and P2O5 <span class="hlt">anomalies</span>, on the other hand, are broadly compatible with plate models predicting slow northward plate movement over 10-25 Ma.</p> <div class="credits"> <p class="dwt_author">Mitchell, Neil C.; Dubois, Nathalie</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1059713"> <span id="translatedtitle">Addressing the Challenges of <span class="hlt">Anomaly</span> Detection for Cyber Physical <span class="hlt">Energy</span> Grid Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The consolidation of cyber communications networks and physical control systems within the <span class="hlt">energy</span> smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of <span class="hlt">anomalies</span> and changes. However, <span class="hlt">anomaly</span> detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, <span class="hlt">energy</span> grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to <span class="hlt">anomaly</span> detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to <span class="hlt">anomaly</span> detection is adopted that allows for regulation of false alerts and comparison of <span class="hlt">anomalies</span> across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of <span class="hlt">anomalies</span> at multiple scales.</p> <div class="credits"> <p class="dwt_author">Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Melin, Alexander M [ORNL; Czejdo, Bogdan [ORNL</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AdAtS..21..923G"> <span id="translatedtitle">Impacts of cloud-induced mass forcing on the development of moist <span class="hlt">potential</span> vorticity <span class="hlt">anomaly</span> during torrential rains</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The impacts of cloud-induced mass forcing on the development of the moist <span class="hlt">potential</span> vorticity (MPV) <span class="hlt">anomaly</span> associated with torrential rains are investigated by using NCEP/NCAR 1° × 1° data. The MPV tendency equation with the cloud-induced mass forcing is derived, and applied to the torrential rain event over the Changjiang River-Huaihe River Valleys during 26 30 June 1999. The result shows that positive <span class="hlt">anomalies</span> are located mainly between 850 hPa and 500 hPa, while the maximum MPV, maximum positive tendency of the MPV, and maximum surface rainfall are nearly collocated. The cloud-induced mass forcing contributes to the positive tendency of the moist <span class="hlt">potential</span> vorticity <span class="hlt">anomaly</span>. The results indicate that the MPV may be used to track the propagation of rain systems for operational applications.</p> <div class="credits"> <p class="dwt_author">Gao, Shouting; Zhou, Yushu; Cui, Xiaopeng; Dai, Guoping</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21596766"> <span id="translatedtitle">Breakup threshold <span class="hlt">anomaly</span> for the {sup 8}B + {sup 58}Ni system at near-Coulomb barrier <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">By using recent fusion cross section measurements for the system {sup 8}B + {sup 58}Ni, a simultaneous analysis of elastic scattering, fusion, and total reaction cross sections is performed for the weakly bound system {sup 8}B + {sup 58}Ni at <span class="hlt">energies</span> close to the Coulomb barrier. The analysis is carried out with an optical <span class="hlt">potential</span> with fusion and direct reaction parts (i.e., the nuclear polarization <span class="hlt">potential</span> U is split into a volume part U{sub F}, which accounts for fusion reactions and a surface part U{sub DR}, responsible for direct reactions). The parameters of the Woods-Saxon <span class="hlt">potentials</span> are determined by a {chi}{sup 2} analysis of the data. The presence of the threshold <span class="hlt">anomaly</span> is investigated from the <span class="hlt">energy</span> dependence of both the fusion and direct reaction parts of the polarization <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Gomez Camacho, A.; Aguilera, E. F.; Gomes, P. R. S.; Lubian, J. [Departamento de Aceleradores Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C.P. 11801, Mexico, DF (Mexico); Instituto de Fisica, Universidade Federal Fluminense, Avenida Litoranea s/n, Gragoata Niteroi Rio de Janeiro 24210-340 (Brazil)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvX...2d1012D"> <span id="translatedtitle">Imaging the Formation of High-<span class="hlt">Energy</span> Dispersion <span class="hlt">Anomalies</span> in the Actinide UCoGa5</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight <span class="hlt">anomalies</span> in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding <span class="hlt">energies</span> below the Fermi <span class="hlt">energy</span>, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the <span class="hlt">anomalies</span> are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These <span class="hlt">anomalies</span> resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.</p> <div class="credits"> <p class="dwt_author">Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18571275"> <span id="translatedtitle">The relationship between sea surface temperature <span class="hlt">anomaly</span> and wind <span class="hlt">energy</span> input in the Pacific Ocean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The relationship between sea surface temperature <span class="hlt">anomaly</span> (SSTA) and wind <span class="hlt">energy</span> input in the Pacific Ocean over the period of 1949–2003 is studied by using daily-mean NOAA\\/NCEP wind stress and monthly mean Reynolds SST data. The results indicate the strong negative correlation between SSTA and local wind <span class="hlt">energy</span> input to surface waves in most of the domain at low and</p> <div class="credits"> <p class="dwt_author">Chuanjiang Huang; Fangli Qiao</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37448797"> <span id="translatedtitle">Turkey's Biogas <span class="hlt">Energy</span> <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">As in the rest of the world, in Turkey it is necessary to utilize the renewable <span class="hlt">energy</span> sources to make up for the increasing <span class="hlt">energy</span> deficit. As an alternative to these <span class="hlt">energy</span> sources, the use of biogas seems possible. Even when it is considered only with regards to the animal husbandry sector, the majority of the manure obtained is a</p> <div class="credits"> <p class="dwt_author">N. Kizilaslan; H. Kizilaslan</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37414079"> <span id="translatedtitle">Effects of Advancing Age on the Processing of Semantic <span class="hlt">Anomalies</span> in Adults: Evidence from Event-Related Brain <span class="hlt">Potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Age-related changes in the processing of sentence-embedded semantic <span class="hlt">anomalies</span> were examined using auditory event-related <span class="hlt">potentials</span> (ERPs). Semantically incongruous words elicited an N400 effect in middle-aged (50s: 55.6 years) and elderly (60s: 64.1 years) subjects, whereas in older elderly adults (70s: 74.9 years) this effect approached significance. N400 peak latencies were not delayed with advancing age; however, there was a reliable</p> <div class="credits"> <p class="dwt_author">Anja Faustmann; Bruce E. Murdoch; Simon P. Finnigan; David A. Copland</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.teachersdomain.org/resource/hew06.sci.phys.maf.lpenergy/"> <span id="translatedtitle">Investigating Kinetic and <span class="hlt">Potential</span> <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Students use media resources and an in-class investigation to explore the types of <span class="hlt">energy</span> within different types of systems. They also use the formulas for kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span> to examine the path of a projectile.</p> <div class="credits"> <p class="dwt_author">Foundation, Wgbh E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=72355"> <span id="translatedtitle">PERINATAL EXPOSURE TO ENDOCRINE DISRUPTING CHEMICALS: <span class="hlt">POTENTIAL</span> ROLE OF HORMONAL ALTERATIONS IN INITIATING ADULT REPRODUCTIVE <span class="hlt">ANOMALIES</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">The primary hypothesis to be tested in this series of studies is whether or not exposure to environmental agents, during certain key periods of development, will increase the risk of specific <span class="hlt">anomalies</span> of the reproductive system. Embedded in this hypothesis is the assumption that...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/3382912"> <span id="translatedtitle">Processing of semantic <span class="hlt">anomaly</span> by right and left hemispheres of commissurotomy patients. Evidence from event-related brain <span class="hlt">potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The ability of 5 commissurotomized patients to appreciate semantic <span class="hlt">anomalies</span> presented to their right and left hemispheres was tested using both electrophysiological and behavioural measures. In all cases, the patients heard sentence fragments that were completed either by semantically congruous or incongruous words briefly flashed to the left visual field, right visual field or to both fields simultaneously. A dissociation between behavioural and event-related brain <span class="hlt">potential</span> (ERP) measures was observed. All 5 patients were able to indicate by a pointing response with greater than chance accuracy whether the terminal word of a sentence made sense (i.e., appropriate for the context) or was nonsensical. This was true regardless of the hemisphere receiving the terminal word. Likewise, all the patients responded to right visual field <span class="hlt">anomalies</span> with a cerebral <span class="hlt">potential</span> (N400) that was typically elicited by such words in control subjects. In contrast, only those 2 patients who developed an overt speech capability under the control of the right hemisphere produced N400 waves in response to left visual field <span class="hlt">anomalies</span>. These findings were interpreted as suggesting possible relationships within language generation and semantic priming. PMID:3382912</p> <div class="credits"> <p class="dwt_author">Kutas, M; Hillyard, S A; Gazzaniga, M S</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002600/a002695/index.html"> <span id="translatedtitle">SST <span class="hlt">Anomalies</span> + Wind <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Sea surface temperature (SST) <span class="hlt">anomalies</span> and sea surface wind <span class="hlt">anomalies</span> show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).</p> <div class="credits"> <p class="dwt_author">Shirah, Greg; Allen, Jesse; Adamec, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-03</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009ExG....40..214A"> <span id="translatedtitle">A least-squares minimisation approach to depth determination from numerical second horizontal self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper develops a least-squares minimisation approach to determine the depth of a buried structure from numerical second horizontal derivative <span class="hlt">anomalies</span> obtained from self-<span class="hlt">potential</span> (SP) data using filters of successive window lengths. The method is based on using a relationship between the depth and a combination of observations at symmetric points with respect to the coordinate of the projection of the centre of the source in the plane of the measurement points with a free parameter (graticule spacing). The problem of depth determination from second derivative SP <span class="hlt">anomalies</span> has been transformed into the problem of finding a solution to a non-linear equation of the form f(z)=0. Formulas have been derived for horizontal cylinders, spheres, and vertical cylinders. Procedures are also formulated to determine the electric dipole moment and the polarization angle. The proposed method was tested on synthetic noisy and real SP data. In the case of the synthetic data, the least-squares method determined the correct depths of the sources. In the case of practical data (SP <span class="hlt">anomalies</span> over a sulfide ore deposit, Sariyer, Turkey and over a Malachite Mine, Jefferson County, Colorado, USA), the estimated depths of the buried structures are in good agreement with the results obtained from drilling and surface geology.</p> <div class="credits"> <p class="dwt_author">Abdelrahman, El-Sayed Mohamed; Soliman, Khalid; Essa, Khalid Sayed; Abo-Ezz, Eid Ragab; El-Araby, Tarek Mohamed</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFMNS31A1563B"> <span id="translatedtitle">Can we Retrieve the Seepage Velocity From Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> Associated With Leakages in Dams and Embankments?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">: Leakage in dams and embankments are responsible for self-<span class="hlt">potential</span> (SP) <span class="hlt">anomalies</span>, which can be recorded using non-polarizable electrodes. A set of laboratory experiments using glass bead packs were made in order to understand the influence of the Reynolds number, Re, on the amplitude of the self-<span class="hlt">potential</span> signals. At low Re numbers, the coupling coefficient decreases with the increase of Reynolds number. At high Re numbers, the coupling coefficient and the permeability, decreases with the increase of Re numbers. All these variations are described by a new model that we called the BCR model (Streaming <span class="hlt">potentials</span> of granular media. Influence of the Dukhin and Reynolds numbers. Submitted in Journal of Geophysical Research). A finite element numerical simulation (FEMLAB Comsol Mutliphysics 3.2) is performed, using the BCR model, to see if there is a possibility to quantitatively estimate the seepage velocity associated with these self-<span class="hlt">potential</span> <span class="hlt">anomalies</span>. This simulation was done on a water filled basin with a preferential fluid flow associated with a gravel-filled pipe. The magnitude of the SP signals depends also on the conductivity of the ground water that can be also measured in the field. A sensitivity analysis shows that, in some conditions, the seepage velocity associated with leakage can be quantitatively estimated from the magnitude of the SP signals providing of the value of the conductivity of water.</p> <div class="credits"> <p class="dwt_author">Boleve, A.; Revil, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AIPC.1325..164S"> <span id="translatedtitle">Application of Qualitative and Quantitative Analyses of Self-<span class="hlt">Potential</span> <span class="hlt">Anomaly</span> in Caves Detection in Djuanda Forest Park, Bandung</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-<span class="hlt">Potential</span> (SP) is naturally occurring electric <span class="hlt">potential</span> difference observed at the surface. In the vicinity of a cave, SP <span class="hlt">anomaly</span> is dominantly generated by the resistivity contrast of the cave with its environment and the current source associated with the streaming <span class="hlt">potential</span> generated by fluid flow through the cave. In this study we applied a simple qualitative analysis to understand the SP values caused by streaming <span class="hlt">potential</span> and values that are due to the presence of caves. Further, we conducted two-dimensional SP continuous modeling by solving the fluid velocity vector first in the modeling domain. Current source distribution and hence the SP value are obtained by incorporating resistivity value of the subsurface and calculating the divergence of the velocity vector. For validation, this scheme was applied in detection caves dug by Japanese army during WWII as at Djuanda Forest Park, Bandung. The results can be used to understand the characteristics of fluid flow and current source distribution around cavities that are responsible for the observed SP <span class="hlt">anomaly</span> at the surface.</p> <div class="credits"> <p class="dwt_author">Srigutomo, Wahyu; Arkanuddin, Muhammad R.; Pratomo, Prihandhanu M.; Novana, Eka C.; Agustina, Rena D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AdMaR.443.1587W"> <span id="translatedtitle">Another <span class="hlt">Potential</span> Explanation for Pioneer <span class="hlt">Anomaly</span> Cosmic Drag of an Orbit</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Analysis of the radio tracking data from the Pioneer 10/11 spacecraft at distances between about 20-70 AU from the Sun has consistently indicated the presence of a constant acceleration of 8.6× 10-8 cm/s-2 directed towards the Sun. This has been one of the most interesting and intriguing astrophysical problems in the last decade. Currently, an independent research rises from the planetary long-term orbital evolution study and may be helpful to understand the nature of Pioneer <span class="hlt">Anomaly</span>. Furthermore, calculation shows that the Pioneer data match with the new discovery’s prediction very well.</p> <div class="credits"> <p class="dwt_author">Zhang, Weijia</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61354249"> <span id="translatedtitle">Building envelope thermal <span class="hlt">anomaly</span> analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A detailed study has been made of building <span class="hlt">energy</span> thermal <span class="hlt">anomalies</span> (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the <span class="hlt">potential</span> for retrofit or initial design modifications.</p> <div class="credits"> <p class="dwt_author">B. S. Melton; P. Mulroney; T. Scott; K. W. Childs</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/963444"> <span id="translatedtitle">LHC Physics <span class="hlt">Potential</span> versus <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Parton luminosities are convenient for estimating how the physics <span class="hlt">potential</span> of Large Hadron Collider experiments depends on the <span class="hlt">energy</span> of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the <span class="hlt">energy</span> range relevant to the Large Hadron Collider, along with example analyses for specific processes.</p> <div class="credits"> <p class="dwt_author">Quigg, Chris; /Fermilab</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.energy-based.nrct.go.th/article/ts-3%20biomass%20energy%20potential%20in%20thailand.pdf"> <span id="translatedtitle">Biomass <span class="hlt">energy</span> <span class="hlt">potential</span> in Thailand</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Estimation of biomass <span class="hlt">energy</span> <span class="hlt">potential</span> including biomass residue and forestry biomass in Thailand was carried out taking into account the amount of biomass residue which has already been used and the possibility of biomass <span class="hlt">energy</span> plantation in accordance with the National Plan of the Thai Government. According to this estimation, 65 PJ can be derived from agricultural and forestry waste</p> <div class="credits"> <p class="dwt_author">Shin-ya Yokoyama; Tomoko Ogi; Anan Nalampoon</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_energy/cub_energy_lesson01.xml"> <span id="translatedtitle">Kinetic and <span class="hlt">Potential</span> <span class="hlt">Energy</span> of Motion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">In this lesson, students are introduced to both <span class="hlt">potential</span> <span class="hlt">energy</span> and kinetic <span class="hlt">energy</span> as forms of mechanical <span class="hlt">energy</span>. A hands-on activity demonstrates how <span class="hlt">potential</span> <span class="hlt">energy</span> can change into kinetic <span class="hlt">energy</span> by swinging a pendulum, illustrating the concept of conservation of <span class="hlt">energy</span>. Students calculate the <span class="hlt">potential</span> <span class="hlt">energy</span> of the pendulum and predict how fast it will travel knowing that the <span class="hlt">potential</span> <span class="hlt">energy</span> will convert into kinetic <span class="hlt">energy</span>. They verify their predictions by measuring the speed of the pendulum.</p> <div class="credits"> <p class="dwt_author">Integrated Teaching And Learning Program</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3482292"> <span id="translatedtitle">Cervical spine <span class="hlt">anomalies</span> in Menkes disease: a radiologic finding <span class="hlt">potentially</span> confused with child abuse</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background Menkes disease is an X-linked recessive disorder of copper transport caused by mutations in ATP7A, a copper-transporting ATPase. Certain radiologic findings reported in this condition overlap with those caused by child abuse. However, cervical spine defects simulating cervical spine fracture, a known result of nonaccidental pediatric trauma, have not been reported previously in this illness. Objective To assess the frequency of cervical spine <span class="hlt">anomalies</span> in Menkes disease after discovery of an apparent C2 posterior arch defect in a child participating in a clinical trial. Materials and methods We examined cervical spine radiographs obtained in 35 children with Menkes disease enrolled in a clinical trial at the National Institutes of Health Clinical Center. Results Four of the 35 children with Menkes disease had apparent C2 posterior arch defects consistent with spondylolysis or incomplete/delayed ossification. Conclusion Defects in C2 were found in 11% of infants and young children with Menkes disease. Discovery of cervical spine defects expands the spectrum of radiologic findings associated with this condition. As with other skeletal abnormalities, this feature simulates nonaccidental trauma. In the context of Menkes disease, suspicions of child abuse should be considered cautiously and tempered by these findings to avoid unwarranted accusations.</p> <div class="credits"> <p class="dwt_author">Hill, Suvimol C.; Dwyer, Andrew J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..15.9396K"> <span id="translatedtitle">Evaluation of Süleymanköy (Diyarbakir, Eastern Turkey) and Seferihisar (Izmir, Western Turkey) Self <span class="hlt">Potential</span> <span class="hlt">Anomalies</span> with Multilayer Perceptron Neural Networks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-<span class="hlt">potential</span> (SP) is one of the oldest geophysical methods that provides important information about near-surface structures. Several methods have been developed to interpret SP data using simple geometries. This study investigated inverse solution of a buried, polarized sphere-shaped self-<span class="hlt">potential</span> (SP ) <span class="hlt">anomaly</span> via Multilayer Perceptron Neural Networks ( MLPNN ). The polarization angle ( ? ) and depth to the centre of sphere ( h )were estimated. The MLPNN is applied to synthetic and field SP data. In order to see the capability of the method in detecting the number of sources, MLPNN was applied to different spherical models at different depths and locations.. Additionally, the performance of MLPNN was tested by adding random noise to the same synthetic test data. The sphere model successfully obtained similar parameters under different S/N ratios. Then, MLPNN method was applied to two field examples. The first one is the cross section taken from the SP <span class="hlt">anomaly</span> map of the Ergani-Süleymanköy (Turkey) copper mine. MLPNN was also applied to SP data from Seferihisar Izmir (Western Turkey) geothermal field. The MLPNN results showed good agreement with the original synthetic data set. The effect of The technique gave satisfactory results following the addition of 5% and 10% Gaussian noise levels. The MLPNN results were compared to other SP interpretation techniques, such as Normalized Full Gradient (NFG), inverse solution and nomogram methods. All of the techniques showed strong similarity. Consequently, the synthetic and field applications of this study show that MLPNN provides reliable evaluation of the self <span class="hlt">potential</span> data modelled by the sphere model.</p> <div class="credits"> <p class="dwt_author">Kaftan, Ilknur; Sindirgi, Petek</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5238418"> <span id="translatedtitle">Wind <span class="hlt">Energy</span>: Progress and <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article reviews the progress made by wind <span class="hlt">energy</span> in the last 10 years, and discusses the <span class="hlt">potential</span> of this technology. During the last decade of the 20th century, grid-connected wind capacity worldwide has doubled approximately every three years. Due to the fast market development, wind turbine technology has experienced an important evolution over time. Some of the countries with</p> <div class="credits"> <p class="dwt_author">KAMIL KAYGUSUZ</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=feynman&pg=3&id=EJ215006"> <span id="translatedtitle"><span class="hlt">Energies</span> of Screened Coulomb <span class="hlt">Potentials</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb <span class="hlt">potentials</span>, the first four coefficients in the <span class="hlt">energy</span> series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)|</p> <div class="credits"> <p class="dwt_author">Lai, C. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22potential+energy+surface%22&id=EJ380903"> <span id="translatedtitle">Analysis of <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Introduces different methodological strategies in analyzing <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PES) used in chemical reactivity studies. Discusses the theory of PES and gives examples to be used for student work. Provides procedures for calculating normal coordinates and vibrational properties of an activated complex. (ML)|</p> <div class="credits"> <p class="dwt_author">Fernandez, G. M.; And Others</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54640464"> <span id="translatedtitle">Gravity <span class="hlt">Potential</span> <span class="hlt">anomalies</span> on Mars : Shape of the planet and its thermal evolution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This study follows previous studies about the existence of paleo shorelines on the surface of Mars (Parker, 1993, Clifford and Parker, 2001). In order to test this hypothesis, we have computed the gravity <span class="hlt">potential</span> of the shorelines since shorelines should represent equipotential lines at the solid surface of the planet. For the so-called Deuteronilus shoreline, we find that the <span class="hlt">potential</span></p> <div class="credits"> <p class="dwt_author">F. Couturier; G. Choblet; C. Sotin</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004PhRvB..70l5304E"> <span id="translatedtitle">SU(4) skyrmions and activation <span class="hlt">energy</span> <span class="hlt">anomaly</span> in bilayer quantum Hall systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The bilayer quantum Hall (QH) system has four <span class="hlt">energy</span> levels in the lowest Landau level, corresponding to the layer and spin degrees of freedom. We investigate the system in the regime where all four levels are nearly degenerate and equally active. The underlying group structure is SU(4) . At ?=1 the QH state is a charge-transferable state between the two layers and the SU(4) isospin coherence develops spontaneously. Quasiparticles are isospin textures to be identified with SU(4) skyrmions. The skyrmion <span class="hlt">energy</span> consists of the Coulomb <span class="hlt">energy</span>, the Zeeman <span class="hlt">energy</span> and the pseudo-Zeeman <span class="hlt">energy</span>. The Coulomb <span class="hlt">energy</span> consists of the self-<span class="hlt">energy</span>, the capacitance <span class="hlt">energy</span> and the exchange <span class="hlt">energy</span>. At the balanced point only pseudospins are excited unless the tunneling gap is too large. Then, the SU(4) skyrmion evolves continuously from the pseudospin-skyrmion limit into the spin-skyrmion limit as the system is transformed from the balanced point to the monolayer point by controlling the bias voltage. Our theoretical result explains quite well the experimental data due to Murphy [S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72, 728 (1994)] and Sawada [A. Sawada, D. Terasawa, N. Kumada, M. Morino, K. Tagashira, Z. F. Ezawa, K. Muraki, T. Saku, and Y. Hirayama, Physica E 18, 118 (2003); D. Terasawa, M. Morino, K. Nakada, S. Kozumi, A. Sawada, Z. F. Ezawa, N. Kumada, K. Muraki, T. Saku, and Y. Hirayama, Physica E 22, 52 (2004)] on the activation <span class="hlt">energy</span> <span class="hlt">anomaly</span> induced by applying parallel magnetic field.</p> <div class="credits"> <p class="dwt_author">Ezawa, Z. F.; Tsitsishvili, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AdG.....7..251A"> <span id="translatedtitle">High resolution numerical study of the Algiers 2001 flash flood: sensitivity to the upper-level <span class="hlt">potential</span> vorticity <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">From 9 to 11 November 2001, intense cyclogenesis affected the northern coasts of Africa and more particularly the densely populated city of Algiers. During the morning of 10 November, more than 130 mm of precipitation was recorded at Bouzareah and resulted in mudslides which devastated the Bab-el-Oued district. This disaster caused more than 700 casualties and catastrophic damage. Like many other heavy rainstorms in the western Mediterranean, this event was associated with the presence of an upper-level trough materialized by a deep stratospheric intrusion and characterized by high <span class="hlt">potential</span> vorticity values. In this study, the impact of this synoptic structure on the localization and intensity of the precipitation which affected Algiers is investigated using a <span class="hlt">potential</span> vorticity (PV) inversion method coupled for the first time with the French non-hydrostatic MESO-NH model. A set of perturbed synoptic environments was designed by slightly modifying the extent and the intensity of the coherent <span class="hlt">potential</span> vorticity structures in the operational ARPEGE analysis. It is shown that such modifications may have a strong impact on the fine-scale precipitation forecast in the Algiers region, thereby demonstrating the fundamental role played by the <span class="hlt">potential</span> vorticity <span class="hlt">anomaly</span> during this exceptional meteorological event.</p> <div class="credits"> <p class="dwt_author">Argence, S.; Lambert, D.; Richard, E.; Söhne, N.; Chaboureau, J.-P.; Crépin, F.; Arbogast, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1424682"> <span id="translatedtitle">Penetrating electron fluctuations associated with GEO spacecraft <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Space weather is a known factor in spacecraft <span class="hlt">anomalies</span>. Solar minimum carries with it an enhanced electron content. Electrons with sufficient <span class="hlt">energy</span> to penetrate a spacecraft structure pose a hazard. They can accumulate in interior dielectrics creating an electric <span class="hlt">potential</span> sufficient to cause a spontaneous breakdown. The resulting electrostatic discharge has been a cause of operational <span class="hlt">anomalies</span>. The physical process</p> <div class="credits"> <p class="dwt_author">David P. Love; Donald S. Toomb; Daniel C. Wilkinson; J. B. Parkinson</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=489175"> <span id="translatedtitle">Somatosensory and brainstem auditory evoked <span class="hlt">potential</span> in congenital craniovertebral <span class="hlt">anomaly</span>; effect of surgical management.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Clinical features and evoked <span class="hlt">potential</span> recordings were analysed in 32 patients with congenital atlantoaxial dislocation before and after surgery. Seven patients (group 1) had atlantoaxial dislocation, while 22 patients had associated basilar invagination (group 2). In both groups, pyramidal tract signs, posterior column signs, wasting of the upper limbs, and abnormality of somatosensory evoked <span class="hlt">potentials</span> (SSEP) were similar. Conversely, lower cranial nerve involvement and abnormal brainstem auditory evoked <span class="hlt">potentials</span> (BAEP) were significantly more in patients with basilar invagination (p less than 0.05). All seven patients in group 1 and 17 patients in group 2 were operated upon. Clinical and electrophysiological deterioration were significant in patients with basilar invagination (group 2), following posterior fixation compared with group 1. Among the patients in group 2, who clinically deteriorated following posterior fixation, seven had transoral excision of odontoid and six of them improved both clinically and electrophysiologically. Two patients in group 2 had odontoid excision before posterior fixation, and in both the evoked <span class="hlt">potentials</span> improved postoperatively. In group 1 the patient's BAEP remained unaffected following posterior fixation, however, in group 2, eight patients over 53% showed improvement in brainstem function following posterior fixation. This study shows the value of evoked <span class="hlt">potentials</span> in congenital atlantoaxial dislocation, and rationalizes the surgical procedure in these patients. In patients with basilar invagination, odontoid excision is the preferred first stage procedure. Images</p> <div class="credits"> <p class="dwt_author">Sood, S; Mahapatra, A K; Bhatia, R</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=technology%27s+AND+effect+AND+brain&pg=4&id=EJ881806"> <span id="translatedtitle">Do U Txt? Event-Related <span class="hlt">Potentials</span> to Semantic <span class="hlt">Anomalies</span> in Standard and Texted English</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Texted English is a hybrid, technology-based language derived from standard English modified to facilitate ease of communication via instant and text messaging. We compared semantic processing of texted and standard English sentences by recording event-related <span class="hlt">potentials</span> in a classic semantic incongruity paradigm designed to elicit an N400 effect.…</p> <div class="credits"> <p class="dwt_author">Berger, Natalie I.; Coch, Donna</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/7037830"> <span id="translatedtitle">The <span class="hlt">potential</span> of renewable <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">On June 27 and 28, 1989, the US Department of <span class="hlt">Energy</span> (DOE) national laboratories were convened to discuss plans for the development of a National <span class="hlt">Energy</span> Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable <span class="hlt">energy</span> technologies contribute to diversifying sources of <span class="hlt">energy</span> supply What are the major barriers to greater renewable <span class="hlt">energy</span> use and what is the <span class="hlt">potential</span> timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable <span class="hlt">energy</span>. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.</p> <div class="credits"> <p class="dwt_author">Not Available</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-03-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21305088"> <span id="translatedtitle">FERMI CONSTRAINS DARK-MATTER ORIGIN OF HIGH-<span class="hlt">ENERGY</span> POSITRON <span class="hlt">ANOMALY</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Fermi measurements of the high-latitude {gamma}-ray background strongly constrain a decaying-dark-matter origin for the 1-100 GeV Galactic positron <span class="hlt">anomaly</span> measured with PAMELA. Inverse Compton scattering of the microwave background by the emergent positrons produces a bump in the diffuse 100-200 MeV {gamma}-ray background that would protrude from the observed background at these <span class="hlt">energies</span>. The positrons are thus constrained to emerge from the decay process at a typical <span class="hlt">energy</span> between {approx}100 GeV and {approx}250 GeV. By considering only {gamma}-ray emission of the excess positrons and electrons, we derive a minimum diffuse {gamma}-ray flux that, apart from the positron spectrum assumed, is independent of the actual decay modes. Any {gamma}-rays produced directly by the dark-matter decay leads to an additional signal that makes the observational limits more severe. A similar constraint on the <span class="hlt">energy</span> of emergent positrons from annihilation in dark-matter substructures is argued to exist, according to recent estimates of enhancement in low-mass dark-matter substructures, and improved simulations of such substructure will further sharpen this constraint.</p> <div class="credits"> <p class="dwt_author">Pohl, Martin [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam-Golm (Germany); DESY, 15738 Zeuthen (Germany); Eichler, David [Physics Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)], E-mail: pohlmadq@gmail.com, E-mail: eichler@bgumail.bgu.ac.il</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PApGe.170..895T"> <span id="translatedtitle">An Approach for Interpretation of Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> due to Simple Geometrical Structures Using Fair Function Minimization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A quantitative interpretation method of self-<span class="hlt">potential</span> field <span class="hlt">anomalies</span> has been proposed. The method is designed and implemented for the estimation of center depth, electric dipole moment or magnitude of polarization, polarization angle, and geometric shape factor of a buried body from SP field data, related to simple geometric structures such as cylinders, spheres and sheet-like bodies. The proposed method is based on Fair function minimization and also on stochastic optimization modeling. This new technique was first tested on theoretical synthetic data randomly generated by a chosen statistical distribution from a known model with different random noise components. Such mathematical simulation shows a very close agreement between assumed and estimated model parameters. Being theoretically proven, it has been applied and tested on self-<span class="hlt">potential</span> field data taken from the United States, Germany, India and Turkey. The agreement between results obtained by the suggested method and those obtained by other previous methods is good and comparable. Moreover, the depth obtained by this method is found to be in high accordance with that obtained from drilling information.</p> <div class="credits"> <p class="dwt_author">Tlas, M.; Asfahani, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004JGRD..109.2102D"> <span id="translatedtitle">Observed variations of tropical convective available <span class="hlt">potential</span> <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Data from selected tropical radiosonde stations (located between 25°S and 25°N) are used to compute multidecadal trends in convective available <span class="hlt">potential</span> <span class="hlt">energy</span> (CAPE). Positive trends slightly outnumber negative trends, with the greatest concentration of positive trends occurring in the western Pacific Ocean and the Caribbean Sea. Analysis shows that positive and negative CAPE trends are primarily driven by same-signed trends in low-level moisture, while lapse rate trends play a secondary role and may either increase or decrease the magnitude of the CAPE trends. Monthly CAPE <span class="hlt">anomalies</span> are generally positively correlated with sounding-derived precipitable water (PW) and lapse rate as well as with Special Sensor Microwave Imager (SSMI)-derived PW for retrievals located over the sounding location. Sounding-derived PW estimates for island and coastal locations were averaged and compared to tropical SSMI PW estimates, which are available only over the oceans. The two time series are poorly correlated, suggesting that the limited number of sounding stations considered herein does not adequately capture tropical-wide variability. The relationship of CAPE changes to PW and lapse rate changes is examined on a variety of timescales for evidence of quasi-equilibrium (QE) behavior, in which convection acts to maintain an approximately moist adiabatic temperature profile. Strict QE, in which convection maintains an exactly moist adiabatic temperature profile, is assumed in the convective parameterizations of many general circulation models. PW and lapse rate <span class="hlt">anomalies</span> are negatively correlated on multidecadal timescales and on monthly timescales in heavily raining regions, in support of QE theory. However, no such negative correlation is seen over the course of the seasonal cycle or for monthly timescales in low-rain areas. CAPE <span class="hlt">anomalies</span> were compared to nearest-grid-point monthly precipitation <span class="hlt">anomalies</span> derived from surface-based rain gauges. Correlations are small and centered at about zero. Mean tropical rainfall estimates, based on a combination of satellite and surface gauge data, are uncorrelated with the mean tropical SSMI PW estimates.</p> <div class="credits"> <p class="dwt_author">Demott, Charlotte A.; Randall, David A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998JChPh.108..203A"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surface of cyclooctatetraene</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a theoretical study of the cyclooctatetraene (COT) molecule. Seven COT structures are located on the singlet ground state <span class="hlt">potential</span> <span class="hlt">energy</span> surface. Four of them, which present D2d (tub), Cs (bicyclo[4.2.0]octa-2,4,7-triene or BOT), C2h (chair) and D4 (crown) symmetries are stable species, and the other three are transition state structures showing Cs, D4h, and D8h symmetry. We discuss the symmetry of wave functions for these stationary points. Geometries, <span class="hlt">energies</span>, and harmonic vibrational frequencies of these structures, and <span class="hlt">energy</span> gaps between singlet-triplet states and low-lying singlets are presented. For the planar D4h and D8h structures, Jahn-Teller and tunneling effects have also been discussed. Ring inversion, bond shifting and valence isomerization reactive channels from the tub COT conformer are discussed from the point of view of the corresponding transition state structures. Where possible, in order to lend support to this theoretical information comparisons with recent transition state spectroscopy data are made.</p> <div class="credits"> <p class="dwt_author">Andrés, José L.; Castaño, Obis; Morreale, Antonio; Palmeiro, Raul; Gomperts, Roberto</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3232202"> <span id="translatedtitle">Chromosome 3 <span class="hlt">Anomalies</span> Investigated by Genome Wide SNP Analysis of Benign, Low Malignant <span class="hlt">Potential</span> and Low Grade Ovarian Serous Tumours</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Ovarian carcinomas exhibit extensive heterogeneity, and their etiology remains unknown. Histological and genetic evidence has led to the proposal that low grade ovarian serous carcinomas (LGOSC) have a different etiology than high grade carcinomas (HGOSC), arising from serous tumours of low malignant <span class="hlt">potential</span> (LMP). Common regions of chromosome (chr) 3 loss have been observed in all types of serous ovarian tumours, including benign, suggesting that these regions contain genes important in the development of all ovarian serous carcinomas. A high-density genome-wide genotyping bead array technology, which assayed >600,000 markers, was applied to a panel of serous benign and LMP tumours and a small set of LGOSC, to characterize somatic events associated with the most indolent forms of ovarian disease. The genomic patterns inferred were related to TP53, KRAS and BRAF mutations. An increasing frequency of genomic <span class="hlt">anomalies</span> was observed with pathology of disease: 3/22 (13.6%) benign cases, 40/53 (75.5%) LMP cases and 10/11 (90.9%) LGOSC cases. Low frequencies of chr3 <span class="hlt">anomalies</span> occurred in all tumour types. Runs of homozygosity were most commonly observed on chr3, with the 3p12-p11 candidate tumour suppressor region the most frequently homozygous region in the genome. An LMP harboured a homozygous deletion on chr6 which created a GOPC-ROS1 fusion gene, previously reported as oncogenic in other cancer types. Somatic TP53, KRAS and BRAF mutations were not observed in benign tumours. KRAS-mutation positive LMP cases displayed significantly more chromosomal aberrations than BRAF-mutation positive or KRAS and BRAF mutation negative cases. Gain of 12p, which harbours the KRAS gene, was particularly evident. A pathology review reclassified all TP53-mutation positive LGOSC cases, some of which acquired a HGOSC status. Taken together, our results support the view that LGOSC could arise from serous benign and LMP tumours, but does not exclude the possibility that HGOSC may derive from LMP tumours.</p> <div class="credits"> <p class="dwt_author">Birch, Ashley H.; Arcand, Suzanna L.; Oros, Kathleen K.; Rahimi, Kurosh; Watters, A. Kevin; Provencher, Diane; Greenwood, Celia M.; Mes-Masson, Anne-Marie; Tonin, Patricia N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JHEP...06..137S"> <span id="translatedtitle">When <span class="hlt">anomaly</span> mediation is UV sensitive</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Despite its successes — such as solving the supersymmetric flavor problem — <span class="hlt">anomaly</span> mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the <span class="hlt">anomaly</span> mediated super-symmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low <span class="hlt">energy</span> form of this model is the so-called extended <span class="hlt">anomaly</span> mediation proposed by Nelson and Weiner, but with <span class="hlt">potential</span> for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of <span class="hlt">anomaly</span> mediated supersymmetry breaking deflecting models is larger than previously thought.</p> <div class="credits"> <p class="dwt_author">Setzer, N.; Spinner, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=LBL10058"> <span id="translatedtitle">California's Biomass and Its <span class="hlt">Energy</span> <span class="hlt">Potential</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">potentials</span> for using California's biomass for <span class="hlt">energy</span> have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed <span class="hlt">Energy</span> System's Project to specify an <span class="hlt">energy</span> future for Californians. The...</p> <div class="credits"> <p class="dwt_author">F. B. Lucarelli</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21499306"> <span id="translatedtitle">Optical model calculations on the threshold <span class="hlt">anomaly</span> for the {sup 6}Li+{sup 28}Si and {sup 7}Li+{sup 28}Si systems at near-Coulomb-barrier <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A simultaneous analysis of elastic scattering, fusion, and total reaction cross sections for the weakly bound systems {sup 6,7}Li+{sup 28}Si at <span class="hlt">energies</span> close to the Coulomb barrier is performed by optical model calculations. The nuclear polarization <span class="hlt">potential</span> U is split into volume part U{sub F}, which accounts for fusion reactions and a surface part U{sub DR}, responsible for direct reactions. The parameters of the Woods-Saxon <span class="hlt">potentials</span> are determined by a {chi}{sup 2} analysis of the data. The presence of the threshold <span class="hlt">anomaly</span> or the breakup threshold <span class="hlt">anomaly</span> is investigated from the <span class="hlt">energy</span> dependence of both the fusion and direct reaction parts of the polarization <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Gomez Camacho, A. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C.P. 11801, Mexico, D.F. (Mexico); Gomes, P. R. S.; Lubian, J. [Instituto de Fisica, Universidade Federal Fluminenese, Avenida Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro 24210-340 (Brazil)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26588097"> <span id="translatedtitle">Biomass <span class="hlt">energy</span> <span class="hlt">potential</span> in Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass <span class="hlt">energy</span> includes fuelwood, agricultural residues, animal wastes, charcoal and other fuels derived from biological sources. It currently accounts for about 14% of world <span class="hlt">energy</span> consumption. Biomass is the main source of <span class="hlt">energy</span> for many developed and developing countries. In Turkey <span class="hlt">energy</span> wood is available in the form of forest chips, fuelwood, wood waste, wood pellets, and it is also</p> <div class="credits"> <p class="dwt_author">K. Kaygusuz; M. F. Türker</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21370802"> <span id="translatedtitle">Hydrodynamics with Triangle <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider the hydrodynamic regime of theories with quantum <span class="hlt">anomalies</span> for global currents. We show that a hitherto discarded term in the conserved current is not only allowed by symmetries, but is in fact required by triangle <span class="hlt">anomalies</span> and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical <span class="hlt">potential</span>. The new kinetic coefficients can be expressed, in a unique fashion, through the <span class="hlt">anomaly</span> coefficients and the equation of state. We briefly discuss the relevance of this new hydrodynamic term for physical situations, including heavy-ion collisions.</p> <div class="credits"> <p class="dwt_author">Son, Dam T. [Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550 (United States); Surowka, Piotr [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013NHESS..13.1077A"> <span id="translatedtitle">A comparison of classical and intelligent methods to detect <span class="hlt">potential</span> thermal <span class="hlt">anomalies</span> before the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper, a number of classical and intelligent methods, including interquartile, autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVM), have been proposed to quantify <span class="hlt">potential</span> thermal <span class="hlt">anomalies</span> around the time of the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). The duration of the data set, which is comprised of Aqua-MODIS land surface temperature (LST) night-time snapshot images, is 62 days. In order to quantify variations of LST data obtained from satellite images, the air temperature (AT) data derived from the meteorological station close to the earthquake epicenter has been taken into account. For the models examined here, results indicate the following: (i) ARIMA models, which are the most widely used in the time series community for short-term forecasting, are quickly and easily implemented, and can efficiently act through linear solutions. (ii) A multilayer perceptron (MLP) feed-forward neural network can be a suitable non-parametric method to detect the anomalous changes of a non-linear time series such as variations of LST. (iii) Since SVMs are often used due to their many advantages for classification and regression tasks, it can be shown that, if the difference between the predicted value using the SVM method and the observed value exceeds the pre-defined threshold value, then the observed value could be regarded as an <span class="hlt">anomaly</span>. (iv) ANN and SVM methods could be powerful tools in modeling complex phenomena such as earthquake precursor time series where we may not know what the underlying data generating process is. There is good agreement in the results obtained from the different methods for quantifying <span class="hlt">potential</span> <span class="hlt">anomalies</span> in a given LST time series. This paper indicates that the detection of the <span class="hlt">potential</span> thermal <span class="hlt">anomalies</span> derive credibility from the overall efficiencies and <span class="hlt">potentialities</span> of the four integrated methods.</p> <div class="credits"> <p class="dwt_author">Akhoondzadeh, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56407956"> <span id="translatedtitle">The Available <span class="hlt">Potential</span> <span class="hlt">Energy</span> of Storms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The storm's available <span class="hlt">potential</span> <span class="hlt">energy</span> and its rate of change are derived for a vertically walled volume encircling the storm and extending from the surface to the top of the atmosphere. The rate of change includes explicit expressions for the generation of the storm's available <span class="hlt">potential</span> <span class="hlt">energy</span>, for its conversion to kinetic <span class="hlt">energy</span>, and for its change through boundary work</p> <div class="credits"> <p class="dwt_author">Donald R. Johnson</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56466265"> <span id="translatedtitle">Mapping Stratigraphy and <span class="hlt">Anomalies</span> in Iron-Rich Volcanoclastics Using Ground-Penetrating Radar: <span class="hlt">Potential</span> for Subsurface Exploration on Mars</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Ground-penetrating radar (GPR) studies conducted in iron-rich volcanoclastics can yield valuable information for interpreting the subsurface stratigraphy resulting from lava flows and intervening unconsolidated volcanic and sedimentary deposits with different compositions and ages. GPR is also valuable for mapping subsurface <span class="hlt">anomalies</span> and structures, such as rifts and lava tubes. We performed a geophysical field survey in Craters of the Moon</p> <div class="credits"> <p class="dwt_author">E. Heggy; S. Clifford; S. Khan; J. Fernandez; E. Wiggs; S. L. Gonzalez; D. Wyrick; R. Grimm; C. Dinwiddie; A. Pommerol</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB97128730"> <span id="translatedtitle"><span class="hlt">Energy</span> Savings <span class="hlt">Potential</span> for Commercial Refrigeration Equipment.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The study examined commercial refrigeration equipment (supermarkets, refrigerated vending machines, beverage merchandisers, reach-in and walk-in refrigerators and freezers, and ice machines). Baseline <span class="hlt">energy</span> use, <span class="hlt">potential</span> <span class="hlt">energy</span> savings, and the economic...</p> <div class="credits"> <p class="dwt_author">D. Westphalen R. A. Zogg A. F. Varone M. A. Foran</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22potential+energy+surface%22&id=EJ369492"> <span id="translatedtitle">Exam Question Exchange: <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Presents three examination questions, graded in difficulty, that explore the topic of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces using a diagrammatic approach. Provides and discusses acceptable solutions including diagrams. (CW)|</p> <div class="credits"> <p class="dwt_author">Alexander, John J., Ed.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26972469"> <span id="translatedtitle">Cotton Stalk as a <span class="hlt">Potential</span> <span class="hlt">Energy</span> Source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Policymakers have a growing interest in the development of domestic <span class="hlt">energy</span> sources. One renewable <span class="hlt">energy</span> source, biomass, is receiving consideration as a <span class="hlt">potential</span> <span class="hlt">energy</span> source. Among agricultural biomass materials, crop residue has <span class="hlt">energy</span> value in direct combustion and gasification as well as in the manufacture of hydrocarbon fuels. The main objective of the present study is to investigate many aspects</p> <div class="credits"> <p class="dwt_author">R. CENGIZ AKDENIZ; MUSTAFA ACAROGLU; ARIF HEPBASLI</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61221192"> <span id="translatedtitle">The biomass <span class="hlt">energy</span> <span class="hlt">potential</span> of Mississippi</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The current and <span class="hlt">potential</span> future contribution of biomass <span class="hlt">energy</span> to the <span class="hlt">energy</span> consumption of Mississippi was estimated through a county-level inventory. In 1989, 91 industrial or commercial facilities were found to burn wood, municipal solid waste, or rice hulls for <span class="hlt">energy</span>, with an estimated <span class="hlt">energy</span> contribution of 58.7 trillion Btu. Other commercial biomass industries found to make contributions to Mississippi's</p> <div class="credits"> <p class="dwt_author">H. M. Draper; R. T. Jr. Brooks; J. D. Thomas; L. A. Weaver</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010cosp...38.4223D"> <span id="translatedtitle">Space Weather and Satellite <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Results of the Satellite <span class="hlt">Anomaly</span> Project, which aims to improve the methods of safeguarding satellites in the Earth's magnetosphere from the negative effects of the space environment, are presented. <span class="hlt">Anomaly</span> data from the "Kosmos" series satellites in the period 1971-1999 are com-bined in one database, together with similar information on other spacecrafts. This database contains, beyond the <span class="hlt">anomaly</span> information, various characteristics of the space weather: geo-magnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different <span class="hlt">energies</span>, high <span class="hlt">energy</span> cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite <span class="hlt">anomalies</span> was carried out for the total number of <span class="hlt">anomalies</span> (about 6000 events), and separately for high ( 5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite <span class="hlt">anomalies</span>. Daily numbers of satel-lite <span class="hlt">anomalies</span>, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (?1500 km) and low (¡1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital char-acteristics (altitude and inclination). The relation of satellite <span class="hlt">anomalies</span> to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the <span class="hlt">anomaly</span> frequency models. The preliminary <span class="hlt">anomaly</span> frequency models are presented. Keywords: Space weather; Satellite <span class="hlt">anomalies</span>; Energetic particles; Magnetic storms</p> <div class="credits"> <p class="dwt_author">Dorman, Lev; Iucci, N.; Levitin, A. E.; Belov, A. V.; Eroshenko, E. A.; Ptitsyna, N. G.; Villoresi, G.; Chizhenkov, G. V.; Gromova, L. I.; Parisi, M.; Tyasto, M. I.; Yanke, V. G.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10191907"> <span id="translatedtitle"><span class="hlt">Potential</span> tank waste material <span class="hlt">anomalies</span> located near the liquid observation wells: Model predicted responses of a neutron moisture detection system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Extensive analyses have been completed to demonstrate that a neutron moisture probe can be used to recognize <span class="hlt">anomalies</span> in materials and geometry surrounding the liquid observation wells (LOWs). Furthermore, techniques can be developed that will permit the interpretation of detector readings, perturbed by the presence of <span class="hlt">anomalies</span>, as more accurate moisture concentrations. This analysis effort extends the usefulness of a neutron moisture probe system significantly, especially in the complicated geometries and material conditions that may be encountered in the waste tanks. Both static-source and pulsed-source neutron probes were considered in the analyses. Four different detector configurations were investigated: Thermal and epithermal neutron detectors located in both the near and far field.</p> <div class="credits"> <p class="dwt_author">Finfrock, S.H.; Toffer, H.; Watson, W.T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18237829"> <span id="translatedtitle">Gravitational <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is shown that in certain parity-violating theories in 4k+2 dimensions, general covariance is spoiled by <span class="hlt">anomalies</span> at the one-loop level. This occurs when Weyl fermions of spin-1\\/2 or -3\\/2 or self-dual antisymmetric tensor fields are coupled to gravity. (For Dirac fermions there is no trouble.) The conditions for <span class="hlt">anomaly</span> cancellation between fields of different spin is investigated. In six</p> <div class="credits"> <p class="dwt_author">Luis Alvarez-Gaumé; Edward Witten</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/862083"> <span id="translatedtitle"><span class="hlt">Potential</span> Water and <span class="hlt">Energy</span> Savings from Showerheads</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize <span class="hlt">potential</span> water and <span class="hlt">energy</span> saving scenarios regarding showerheads, six scenarios were analyzed for their <span class="hlt">potential</span> water and <span class="hlt">energy</span> savings and the associated dollar savings to the consumer.</p> <div class="credits"> <p class="dwt_author">Biermayer, Peter J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-09-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19085873"> <span id="translatedtitle">Baryon junction loops and the baryon-meson <span class="hlt">anomaly</span> at high <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new version, v2.0, of the HIJING\\/B B¯ Monte Carlo nuclear collision event generator is introduced in order to explore further the possible role of baryon junctions loops in the baryon-meson <span class="hlt">anomaly</span> (2< pT <5 GeV\\/c) observed in 200A GeV Au+Au reactions at RHIC. We show that junction loops with an enhanced intrinsic kT ≈1 GeV\\/c transverse momentum kick may</p> <div class="credits"> <p class="dwt_author">V. Topor Pop; M. Gyulassy; J. Barrette; C. Gale; X. N. Wang; N. Xu</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26587829"> <span id="translatedtitle">Wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Algeria</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Mean wind data for 64 stations, 48 of which are located in Algeria and 16 in neighbouring countries has been used to establish the wind <span class="hlt">energy</span> map of Algeria at a height of 10 m. It is found that the wind speed varies between 1 and 6 m\\/s. The windy regions are located at the west south of Algeria, in</p> <div class="credits"> <p class="dwt_author">N. Kasbadji Merzouk</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41041982"> <span id="translatedtitle">Renewable <span class="hlt">energy</span> resource <span class="hlt">potential</span> in Pakistan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Pakistan <span class="hlt">energy</span> situation is seriously troubling today due to lack of careful planning and implementation of its <span class="hlt">energy</span> policies. To avoid the worse situation in the years ahead, the country will have to exploit its huge natural renewable resource. In this paper a review is being presented about renewable <span class="hlt">energy</span> resource <span class="hlt">potential</span> available in the country to be exploited for</p> <div class="credits"> <p class="dwt_author">Munawar A. Sheikh</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=corrosion&pg=3&id=EJ166697"> <span id="translatedtitle">Geothermal <span class="hlt">Energy</span> <span class="hlt">Potential</span> in Western United States</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Reviews types of geothermal <span class="hlt">energy</span> sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical <span class="hlt">energy</span> is a major <span class="hlt">potential</span> use of geothermal <span class="hlt">energy</span>, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)</p> <div class="credits"> <p class="dwt_author">Pryde, Philip R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=corrosion&pg=4&id=EJ166697"> <span id="translatedtitle">Geothermal <span class="hlt">Energy</span> <span class="hlt">Potential</span> in Western United States</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Reviews types of geothermal <span class="hlt">energy</span> sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical <span class="hlt">energy</span> is a major <span class="hlt">potential</span> use of geothermal <span class="hlt">energy</span>, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)|</p> <div class="credits"> <p class="dwt_author">Pryde, Philip R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40875227"> <span id="translatedtitle">Substitution <span class="hlt">potential</span> of wind <span class="hlt">energy</span> in Egypt</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The amount of <span class="hlt">energy</span> generated by conventional power plants is expected to decline in near future due to environmental concern and the possible penetration of renewable <span class="hlt">energy</span> such as wind generation. Therefore, the evaluation of the substitution <span class="hlt">potential</span> of wind <span class="hlt">energy</span> is becoming an important task by generation planning of power systems. A new methodology for estimating the capacity credit</p> <div class="credits"> <p class="dwt_author">Mohamed A. H. El-Sayed</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/r65705188vn11867.pdf"> <span id="translatedtitle">Diuretic <span class="hlt">potential</span> of <span class="hlt">energy</span> drinks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary.  Recent literature suggests that both caffeine and taurine can induce diuresis and natriuresis in rat and man. Although they\\u000a act via different cellular mechanisms, their diuretic actions might be additive. This is of considerable interest, as several\\u000a commercially available <span class="hlt">energy</span> drinks contain both substances.\\u000a \\u000a In this study we examined the possible diuretic effects of caffeine and taurine in a cross-over-design</p> <div class="credits"> <p class="dwt_author">A. Riesenhuber; M. Boehm; M. Posch; C. Aufricht</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23763085"> <span id="translatedtitle">Unlocking <span class="hlt">potential</span> for <span class="hlt">energy</span> reduction.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In the latest of our series of articles designed to provide healthcare engineers with sound technical guidance on equipment or technology-related topics, John O'Leary, key account manager at Trend Controls (who in April's HEJ discussed the benefits of natural ventilation in healthcare settings), explains the functions of a building <span class="hlt">energy</span> management system (BEMS), and the vital that role such equipment can play in helping healthcare estates teams reduce carbon emissions and save money, as well as ensuring the most comfortable environment for patients, staff, and visitors. PMID:23763085</p> <div class="credits"> <p class="dwt_author">O'Leary, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6272010"> <span id="translatedtitle"><span class="hlt">Energy</span> <span class="hlt">potential</span> of modern landfills</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable <span class="hlt">energy</span> resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable <span class="hlt">energy</span> resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.</p> <div class="credits"> <p class="dwt_author">Bogner, J.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23630110"> <span id="translatedtitle"><span class="hlt">Potential</span> teratogenicity of methimazole: exposure of zebrafish embryos to methimazole causes similar developmental <span class="hlt">anomalies</span> to human methimazole embryopathy.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">While methimazole (MMI) is widely used in the therapy for hyperthyroidism, several groups have reported that maternal exposure to MMI results in a variety of congenital <span class="hlt">anomalies</span>, including choanal and esophageal atresia, iridic and retinal coloboma, and delayed neurodevelopment. Thus, adverse effects of maternal exposure to MMI on fetal development have long been suggested; however, direct evidence for the teratogenicity of MMI has not been presented. Therefore, we studied the effects of MMI on early development by using zebrafish as a model organism. The fertilized eggs of zebrafish were collected immediately after spawning and grown in egg culture water containing MMI at various concentrations. External observation of the embryos revealed that exposure to high concentrations of MMI resulted in loss of pigmentation, hypoplastic hindbrain, turbid tissue in the forebrain, swelling of the notochord, and curly trunk. Furthermore, these effects occurred in a dose-dependent manner. Precise observation of the serial cross-sections of MMI-exposed embryos elucidated delayed development and hypoplasia of the whole brain and spinal cord, narrowing of the pharynx and esophagus, severe disruption of the retina, and aberrant structure of the notochord. These neuronal, pharyngeal, esophageal, and retinal anomalous morphologies have a direct analogy to the congenital <span class="hlt">anomalies</span> observed in children exposed to MMI in utero. Here, we show the teratogenic effects of MMI on the development of zebrafish and provide the first experimental evidence for the connection between exposure to MMI and human MMI embryopathy. PMID:23630110</p> <div class="credits"> <p class="dwt_author">Komoike, Yuta; Matsuoka, Masato; Kosaki, Kenjiro</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2006862083"> <span id="translatedtitle"><span class="hlt">Potential</span> Water and <span class="hlt">Energy</span> Savings from Showerheads.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize <span class="hlt">potential</span> water and <span class="hlt">energy</span> saving scenarios regardi...</p> <div class="credits"> <p class="dwt_author">P. J. Biermayer</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21301115"> <span id="translatedtitle">Water: Thermodynamic and Dynamic <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">While the majority of fluids contract upon cooling, water expands when cooled below T = 4 deg. C at atmospheric pressure. This effect is called density <span class="hlt">anomaly</span>. Besides the density <span class="hlt">anomaly</span>, there are more than 60 other <span class="hlt">anomalies</span> known for water. Diffusivity is one of them. For normal liquids the diffusion coefficient decreases under compression. However, experimental results have shown that for water at temperatures below approximately 10 deg. C, the diffusion coefficient increases under compression and has a maximum. The temperature of maximum density line, inside which the density <span class="hlt">anomaly</span> occurs, and the line of maximum in diffusivity are located in the same region of the pressure-temperature phase diagram of water. We show how simulations for water also show thermodynamic and dynamic <span class="hlt">anomalies</span>. These <span class="hlt">anomalies</span> are then demonstrated to be related to two length scales effective <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Barbosa, Marcia C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Cytology&id=ED018056"> <span id="translatedtitle">DOWN'S <span class="hlt">ANOMALY</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S <span class="hlt">ANOMALY</span>, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…</p> <div class="credits"> <p class="dwt_author">PENROSE, L.S.; SMITH, G.F.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE91601161"> <span id="translatedtitle">Threshold <span class="hlt">anomaly</span> in doublet nd-scattering.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The doublet nd-scattering amplitude behaviour near the three-particle threshold is studied analytically and numerically. The scattering amplitude possesses an <span class="hlt">anomaly</span> caused by the small <span class="hlt">energy</span> of singlet deuteron virtual level. The <span class="hlt">anomaly</span> manifests itse...</p> <div class="credits"> <p class="dwt_author">D. V. Shapoval I. V. Simenog</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/95413"> <span id="translatedtitle">Theoretical studies of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">MRCI (configuration interaction) calculations were used to examine possible pathways for the O{sub 2} + CCH reaction. The H{sub 2} + CN <span class="hlt">potential</span> surface was examined. An initial survey was made of the HCl + CN <span class="hlt">potential</span> <span class="hlt">energy</span> surface at a low level of theory.</p> <div class="credits"> <p class="dwt_author">Harding, L.B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=27882"> <span id="translatedtitle"><span class="hlt">Anomalies</span> in coral reef community metabolism and their <span class="hlt">potential</span> importance in the reef CO2 source-sink debate</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">It is not certain whether coral reefs are sources of or sinks for atmospheric CO2. Air–sea exchange of CO2 over reefs has been measured directly and inferred from changes in the seawater carbonate equilibrium. Such measurements have provided conflicting results. We provide community metabolic data that indicate that large changes in CO2 concentration can occur in coral reef waters via biogeochemical processes not directly associated with photosynthesis, respiration, calcification, and CaCO3 dissolution. These processes can significantly distort estimates of reef calcification and net productivity and obscure the contribution of coral reefs to global air–sea exchange of CO2. They may, nonetheless, explain apparent <span class="hlt">anomalies</span> in the metabolic performance of reefs close to land and reconcile the differing experimental findings that have given rise to the CO2 debate.</p> <div class="credits"> <p class="dwt_author">Chisholm, John R. M.; Barnes, David J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26604755"> <span id="translatedtitle"><span class="hlt">Potential</span> for <span class="hlt">energy</span> conservation in apartment buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> for <span class="hlt">energy</span> conservation in apartment buildings is investigated following the epiqr methodology and software. Several scenarios are evaluated for various apartment buildings located in three climatic zones of Hellas. The proposed retrofit actions concentrate on space heating and cooling, domestic hot water production and lighting. <span class="hlt">Energy</span> savings for the corresponding actions in each building are accounted for in</p> <div class="credits"> <p class="dwt_author">C. A Balaras; K Droutsa; A. A Argiriou; D. N Asimakopoulos</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/972260"> <span id="translatedtitle">Effect of Strong Correlations on the High <span class="hlt">Energy</span> <span class="hlt">Anomaly</span> in Hole- and Electron-Doped High-Tc Superconductors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding <span class="hlt">energies</span> in cuprate superconductors: the high <span class="hlt">energy</span> 'waterfall' or high <span class="hlt">energy</span> <span class="hlt">anomaly</span> (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the byproduct of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding <span class="hlt">energies</span> near the Fermi level to valence bands at higher binding <span class="hlt">energy</span>, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA <span class="hlt">energy</span> scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.</p> <div class="credits"> <p class="dwt_author">Moritz, B.; /SLAC, SIMES; Schmitt, F.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.; Meevasana, W.; /Stanford U., Geballe Lab. /Stanford U., Phys. Dept.; Johnston, S.; /SLAC, SIMES /Waterloo U.; Motoyama, E.M.; /Stanford U., Geballe Lab. /Stanford U., Phys. Dept.; Greven, M.; /SLAC, SIMES /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.; Lu, D.H.; /SLAC, SSRL; Kim, C.; /IPAP, Seoul; Scalettar, R.T.; /UC, Davis; Shen, Z.-X.; /SLAC, SIMES /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.; Devereaux, T.P.; /SLAC, SIMES</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/902146"> <span id="translatedtitle">A universal high <span class="hlt">energy</span> <span class="hlt">anomaly</span> in angle resolved photoemissionspectra of high temperature superconductors -- possible evidence ofspinon and holon branches</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A universal high <span class="hlt">energy</span> <span class="hlt">anomaly</span> in the single particlespectral function is reported in three different families of hightemperature superconductors by using angle-resolved photoemissionspectroscopy. As we follow the dispersing peak of the spectral functionfrom the Fermi <span class="hlt">energy</span> to the valence band complex, we find dispersionanomalies marked by two distinctive high <span class="hlt">energy</span> scales, E_1 approx 0.38eV and E_2 approx 0.8 eV. E_1 marks the <span class="hlt">energy</span> above which the dispersionsplits into two branches. One is a continuation of the near parabolicdispersion, albeit with reduced spectral weight, and reaches the bottomof the band at the Gamma point at approx 0.5 eV. The other is given by apeak in the momentum space, nearly independent of <span class="hlt">energy</span> between E_1 andE_2. Above E_2, a band-like dispersion re-emerges. We conjecture thatthese two <span class="hlt">energies</span> mark the disintegration of the low energyquasiparticles into a spinon and holon branch in the high T_c cuprates.</p> <div class="credits"> <p class="dwt_author">Graf, J.; Gweon, G.-H.; McElroy, K.; Zhou, S.Y.; Jozwiak, C.; Rotenberg, E.; Bill, A.; Sasagawa, T.; Eisaki, H.; Uchida, S.; Takagi,H.; Lee, D.-H.; Lanzara A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-19</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2327822"> <span id="translatedtitle">Common Congenital <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Congenital <span class="hlt">anomalies</span> account for a substantial proportion of childhood morbidity and mortality. They have become proportionately larger because of the decline of such other categories as infections or birth trauma. Approximately 3% of newborns have a serious handicapping or <span class="hlt">potentially</span> lethal condition; in longterm studies the frequency is much higher. There is no good evidence to suggest that the rates of congenital <span class="hlt">anomalies</span> are increasing, although this is a common perception. This article discusses diagnosis and management (especially genetic implications) of heart defects, neural tube defects, orofacial clefting, dislocated hip, clubfoot, and hypospadias.</p> <div class="credits"> <p class="dwt_author">Lowry, R. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/965189"> <span id="translatedtitle">Economic <span class="hlt">Energy</span> Savings <span class="hlt">Potential</span> in Federal Buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) <span class="hlt">energy</span> savings <span class="hlt">potential</span> in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of <span class="hlt">energy</span> efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, <span class="hlt">energy</span> prices, etc.) existing in the late 1990s. The <span class="hlt">potential</span> impact of changes to any of these factors in the future was not considered.</p> <div class="credits"> <p class="dwt_author">Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-09-04</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013FBS....54.2113Y"> <span id="translatedtitle">Bound States of <span class="hlt">Energy</span> Dependent Singular <span class="hlt">Potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We consider attractive power-law <span class="hlt">potentials</span> depending on <span class="hlt">energy</span> through their coupling constant. These <span class="hlt">potentials</span> are proportional to 1/| x| m with m ? 1 in the D = 1 dimensional space, to 1/ r m with m ? 2 in the D = 3 dimensional space. We study the ground state of such <span class="hlt">potentials</span>. First, we show that all singular attractive <span class="hlt">potentials</span> with an <span class="hlt">energy</span> dependent coupling constant are bounded from below, contrarily to the usual case. In D = 1, a bound state of finite <span class="hlt">energy</span> is found with a kind of universality for the eigenvalue and the eigenfunction, which become independent on m for m > 1. We prove the solution to be unique. A similar situation arises for D = 3 for m > 2, except that, in this case, the solution is not directly comparable to a bound state: the wave function, though square integrable, diverges at the origin.</p> <div class="credits"> <p class="dwt_author">Yekken, R.; Lassaut, M.; Lombard, R. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21333939"> <span id="translatedtitle">Trajectory integration with <span class="hlt">potential</span> <span class="hlt">energy</span> discontinuities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Many approximate methods of quantum chemistry yield <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces with discontinuities. While clearly unphysical, such features often fall within the typical error bounds of the method, and cannot be easily eliminated. The integration of nuclear trajectories when the <span class="hlt">potential</span> <span class="hlt">energy</span> is locally discontinuous is obviously problematic. We propose a method to smooth out the discontinuities that are detected along a trajectory, based on the definition of a continuous function that fits locally the computed <span class="hlt">potential</span>, and is used to integrate the trajectory across the discontinuity. With this correction, the <span class="hlt">energy</span> conservation error can be reduced by about one order of magnitude, and a considerable improvement is obtained in the <span class="hlt">energy</span> distribution among the internal coordinates.</p> <div class="credits"> <p class="dwt_author">Hurd, Patricia [Arizona State University, School of Mechanical, Aerospace, Chemical and Materials Engineering, P. O. Box 876106, Tempe, Arizona 85287-6106 (United States); Cusati, Teresa [Universita di Pisa, Dipartimento di Chimica e Chimica Industriale v. Risorgimento 35, I-56126 Pisa (Italy); Persico, Maurizio [Universita di Pisa, Dipartimento di Chimica e Chimica Industriale v. Risorgimento 35, I-56126 Pisa (Italy)], E-mail: mau@dcci.unipi.it</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1595413"> <span id="translatedtitle">A theory for the atmospheric <span class="hlt">energy</span> spectrum: Depth-limited temperature <span class="hlt">anomalies</span> at the tropopause</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The horizontal spectra of atmospheric wind and temperature at the tropopause have a steep ?3 slope at synoptic scales, but transition to ?5/3 at wavelengths of the order of 500–1,000 km [Nastrom, G. D. & Gage, K. S. (1985) J. Atmos. Sci. 42, 950–960]. Here we demonstrate that a model that assumes zero <span class="hlt">potential</span> vorticity and constant stratification N over a finite-depth H in the troposphere exhibits the same type of spectra. In this model, temperature perturbations generated at the planetary scale excite a direct cascade of <span class="hlt">energy</span> with a slope of ?3 at large scales, ?5/3 at small scales, and a transition near horizontal wavenumber kt = f/NH, where f is the Coriolis parameter. Ballpark atmospheric estimates for N, f, and H give a transition wavenumber near that observed, and numerical simulations of the previously undescribed model verify the expected behavior. Despite its simplicity, the model is consistent with a number of perplexing features in the observations and demonstrates that a complete theory for mesoscale dynamics must take temperature advection at boundaries into account.</p> <div class="credits"> <p class="dwt_author">Tulloch, R.; Smith, K. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/990773"> <span id="translatedtitle">Astrometric solar system <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">There are at least four unexplained <span class="hlt">anomalies</span> connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital <span class="hlt">energy</span> per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two <span class="hlt">anomalies</span> are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth <span class="hlt">anomaly</span> is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four <span class="hlt">anomalies</span> have mundane explanations, or that one or more <span class="hlt">anomalies</span> are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.</p> <div class="credits"> <p class="dwt_author">Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6239045"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation in Kenya: progress, <span class="hlt">potentials</span>, problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A study was carried out of the flows of commercial <span class="hlt">energy</span> in the economy of Kenya. Indications were sought of the extent to which <span class="hlt">energy</span> conservation, (i.e., increase in efficiency of <span class="hlt">energy</span> use) has reduced the ratio of <span class="hlt">energy</span> inputs to economic outputs, in the post-1973 years. An assessment was made of the <span class="hlt">potential</span> for <span class="hlt">energy</span> conservation to reduce the growth of Kenyan <span class="hlt">energy</span> use in the future and of significant barriers to increasing <span class="hlt">energy</span> efficiency. Consideration was given to the role of government policy and of international assistance in fostering <span class="hlt">energy</span> conservation in Kenya and other developing countries. The study was performed by analyzing available <span class="hlt">energy</span> data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial <span class="hlt">energy</span> use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, <span class="hlt">energy</span> production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, <span class="hlt">energy</span> production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.</p> <div class="credits"> <p class="dwt_author">Schipper, L.; Hollander, J.M.; Milukas, M.; Alcamo, J.; Meyers, S.; Noll, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20771205"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for cluster emitting nuclei</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces are calculated by use of the most advanced asymmetric two-center shell model that allows us to obtain shell-and-pairing corrections that are added to the Yukawa-plus-exponential model deformation <span class="hlt">energy</span>. Shell effects are of crucial importance for the experimental observation of spontaneous disintegration by heavy-ion emission. Results for {sup 222}Ra, {sup 232}U, {sup 236}Pu, and {sup 242}Cm illustrate the main ideas and show for the first time, for a cluster emitter, a <span class="hlt">potential</span> barrier obtained by use of the macroscopic-microscopic method.</p> <div class="credits"> <p class="dwt_author">Poenaru, Dorin N.; Gherghescu, Radu A. [Horia Hulubei National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest-Magurele (Romania); Frankfurt Institute for Advanced Studies, J. W. Goethe Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Greiner, Walter [Frankfurt Institute for Advanced Studies, J. W. Goethe Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6772833"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> function for the hydroperoxyl radical</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A switching function formalism is used to derive an analytic <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the <span class="hlt">potential</span> <span class="hlt">energy</span> surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.</p> <div class="credits"> <p class="dwt_author">Lemon, W.J.; Hase, W.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-03-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://matse1.matse.illinois.edu/energy/a.html"> <span id="translatedtitle"><span class="hlt">Potential</span> to Kinetic <span class="hlt">Energy</span> Demonstration: Principles of <span class="hlt">Energy</span> Transfer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Materials Science and Technology Teacher's Workshop (MAST) provides this activity to illustrate the principles of <span class="hlt">energy</span> transfer. The demonstration uses a balance, matches, soda cans and a firecracker to show how <span class="hlt">energy</span> can transfer between light, sound, heat and kinetic <span class="hlt">energy</span>. <span class="hlt">Potential</span> and kinetic <span class="hlt">energy</span> are defined and explored. The lesson includes step by step directions for the experiment. Discussion questions are also included.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-07</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26589298"> <span id="translatedtitle">Wave <span class="hlt">energy</span> <span class="hlt">potential</span> in Galicia (NW Spain)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wave power presents significant advantages with regard to other CO2-free <span class="hlt">energy</span> sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its <span class="hlt">potential</span> for <span class="hlt">energy</span> production is assessed based on three-hourly</p> <div class="credits"> <p class="dwt_author">G. Iglesias; M. López; R. Carballo; A. Castro; J. A. Fraguela; P. Frigaard</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10187872"> <span id="translatedtitle">Biomass resource <span class="hlt">potential</span> using <span class="hlt">energy</span> crops</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Biomass <span class="hlt">energy</span> crops can provide a significant and environmentally beneficial source of renewable <span class="hlt">energy</span> feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. <span class="hlt">Energy</span> crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar <span class="hlt">energy</span> and storing it as cellulosic compounds for several months to several years. Once solar <span class="hlt">energy</span> is thus captured, it can be converted by means of currently available technologies to a wide variety of <span class="hlt">energy</span> products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved <span class="hlt">energy</span> crops, established on cropland with moderate limitations for crop production, have the <span class="hlt">potential</span> for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called <span class="hlt">energy</span> cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic <span class="hlt">potential</span> for very rapid growth rates. New wood <span class="hlt">energy</span> crop systems developed by the Department of <span class="hlt">Energy`s</span> Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.</p> <div class="credits"> <p class="dwt_author">Wright, L.L.; Cushman, J.H.; Martin, S.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26542578"> <span id="translatedtitle">The wind <span class="hlt">energy</span> <span class="hlt">potential</span> of western Greece</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this study wind data were used to determine the monthly and annual variations of the wind at 13 meterological stations in western Greece. An analysis of the available wind data for the Ionian Sea islands and the western coasts of Greece is carried out to ascertain its <span class="hlt">potential</span> for wind <span class="hlt">energy</span> development. The effect of the limited number of</p> <div class="credits"> <p class="dwt_author">B. D. Katsoulis; D. A. Metaxas</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51975838"> <span id="translatedtitle">Bohmian Dynamics on Multiple <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The coupled Schrodinger equations that describe nonadiabatic dynamics on multiple <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces are recast using the Bohm formulation of quantum mechanics. The resulting coupled Bohm equations are exact; i.e., numerical solutions are identical to those obtained from the original coupled Schrodinger equations by wave packet propagation. The classical limit of the coupled Bohm equations is derived. It corresponds to</p> <div class="credits"> <p class="dwt_author">John Burant; John Tully</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60395535"> <span id="translatedtitle"><span class="hlt">Energy</span> <span class="hlt">potential</span> of sugarcane and sweet sorghum</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as Câ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US <span class="hlt">energy</span> consumption. Biomass production</p> <div class="credits"> <p class="dwt_author">S. H. Elawad; G. J. Gascho; S. F. Shih</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/jb/jb0802/2007JB005058/2007JB005058.pdf"> <span id="translatedtitle">Zeta <span class="hlt">potential</span> estimation of volcanic rocks on 11 island arc-type volcanoes in Japan: Implication for the generation of local self-<span class="hlt">potential</span> <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">From streaming <span class="hlt">potential</span> measurements, we deduced the zeta <span class="hlt">potential</span> of 73 volcanic rock samples collected in 11 volcanoes where self-<span class="hlt">potential</span> (SP) surveys had also been conducted. Experiments with crushed rock samples and 0.001 mol\\/L NaCl solution showed a large variation in streaming <span class="hlt">potential</span> coefficient, which ranged from ?2860 to 2280 mV\\/MPa (deduced zeta <span class="hlt">potential</span> ranged from ?45.1 to 37.2 mV).</p> <div class="credits"> <p class="dwt_author">Koki Aizawa; Makoto Uyeshima; Kenji Nogami</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JHEP...01..093P"> <span id="translatedtitle"><span class="hlt">Anomaly</span> equations and intersection theory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Six-dimensional supergravity theories with mathcal{N} = (1, 0) supersymmetry must satisfy <span class="hlt">anomaly</span> equations. These equations come from demanding the cancellation of gravitational, gauge and mixed <span class="hlt">anomalies</span>. The <span class="hlt">anomaly</span> equations have implications for the geometrical data of Calabi-Yau threefolds, since F-theory compactified on an elliptically fibered Calabi-Yau threefold with a section generates a consistent six-dimensional mathcal{N} = (1, 0) supergravity theory. In this paper, we show that the <span class="hlt">anomaly</span> equations can be summarized by three intersection theory identities. In the process we also identify the geometric counterpart of the <span class="hlt">anomaly</span> coefficients — in particular, those of the abelian gauge groups — that govern the low-<span class="hlt">energy</span> dynamics of the theory. We discuss the results in the context of investigating string universality in six dimensions.</p> <div class="credits"> <p class="dwt_author">Park, Daniel S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3527321"> <span id="translatedtitle">Congenital <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital <span class="hlt">anomalies</span> diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital <span class="hlt">anomalies</span>. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed.</p> <div class="credits"> <p class="dwt_author">Kunisaki, Shaun M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55767242"> <span id="translatedtitle">Concerning the Relationship Between Broken Gauge Symmetry, Pons-Fleischmann <span class="hlt">Anomalies</span> and Low <span class="hlt">Energy</span> Nuclear Reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In 1989, Pons and Fleischmann's claim of anomalous, non-chemical heat release in PdD provoked considerable confusion (C. G. Beaudette, \\\\underlineExcess Heat: Why Cold Fusion Research Prevailed.) (Oak Grove Press, LLC, ME, 2000). http:\\/\\/www.infinite-<span class="hlt">energy</span>.com. An important reason for this was their failure to observe the High <span class="hlt">Energy</span> Particles (HEP) that occur in conventional fusion. However, the assumption that HEP should be</p> <div class="credits"> <p class="dwt_author">Scott Chubb; Talbot Chubb</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.sbfisica.org.br/bjp/files/v34_17.pdf"> <span id="translatedtitle">The Interpretation of Water <span class="hlt">Anomalies</span> in Terms of Core-Softened Models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In the first part of this paper I review the understanding of anomalous properties of water in terms of particles interacting by core-softened <span class="hlt">potentials</span>. I discuss the origin of the bulk <span class="hlt">anomalies</span> in terms of the two different configurations of neighbor particles: low <span class="hlt">energy</span>-high volume and high <span class="hlt">energy</span>-low volume. In the second part I study some <span class="hlt">anomalies</span> of water under</p> <div class="credits"> <p class="dwt_author">E. A. Jaglay</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981PhRvC..24..329L"> <span id="translatedtitle">General properties of <span class="hlt">energy</span> independent nuclear optical model <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An <span class="hlt">energy</span> independent optical <span class="hlt">potential</span> for nucleon-nucleus scattering is formally derived. A simple relation between <span class="hlt">energy</span> dependent and <span class="hlt">energy</span> independent <span class="hlt">potentials</span> is established showing that the latter has the same thresholds as the former. A generalized dispersion relation for <span class="hlt">energy</span> independent <span class="hlt">potentials</span> is found and compared to the conventional dispersion relation of the generalized <span class="hlt">energy</span> dependent optical <span class="hlt">potentials</span>. [REACTION THEORY General formulation of the <span class="hlt">energy</span> independent optical <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Lee, S. Y.; Osterfeld, F.; Tam, K.; Kuo, T. T. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6531749"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> savings from aquifer thermal <span class="hlt">energy</span> storage</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term <span class="hlt">potential</span> <span class="hlt">energy</span> savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest <span class="hlt">potential</span> <span class="hlt">energy</span> savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The <span class="hlt">potential</span> <span class="hlt">energy</span> savings from ATES applications was calculated. Characteristic <span class="hlt">energy</span> use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher <span class="hlt">potential</span> for <span class="hlt">energy</span> savings than do chill ATES applications; and the industrial sector can achieve the highest <span class="hlt">potential</span> <span class="hlt">energy</span> savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.</p> <div class="credits"> <p class="dwt_author">Anderson, M.R.; Weijo, R.O.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013A%26A...550A.102T"> <span id="translatedtitle"><span class="hlt">Anomalies</span> in low-<span class="hlt">energy</span> gamma-ray burst spectra with the Fermi Gamma-ray Burst Monitor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Context. A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the Fermi era. Aims: We present a systematic and rigorous search for spectral deviations from a Band function at low <span class="hlt">energies</span> in a sample of the first two years of high fluence, long bursts detected by the Fermi Gamma-ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2 × 10-5 erg/cm2 (10-1000 keV). Methods: An extrapolated fit method is used to search for low-<span class="hlt">energy</span> spectral <span class="hlt">anomalies</span>, whereby a Band function is fit above a variable low-<span class="hlt">energy</span> threshold and then the best fit function is extrapolated to lower <span class="hlt">energy</span> data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the instrument response. This method was employed for both time-integrated burst spectra and time-resolved bins defined by a signal-to-noise ratio of 25? and 50?. Results: Significant deviations are evident in 3 bursts (GRB 081215A, GRB 090424 and GRB 090902B) in the time-integrated sample (~7%) and 5 bursts (GRB 090323, GRB 090424, GRB 090820, GRB 090902B and GRB 090926A) in the time-resolved sample (~11%). Conclusions: The advantage of the systematic, blind search analysis is that it can demonstrate the requirement for an additional spectral component without any prior knowledge of the nature of that extra component. Deviations are found in a large fraction of high fluence GRBs; fainter GRBs may not have sufficient statistics for deviations to be found using this method.</p> <div class="credits"> <p class="dwt_author">Tierney, D.; McBreen, S.; Preece, R. D.; Fitzpatrick, G.; Foley, S.; Guiriec, S.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Goldstein, A.; Greiner, J.; Gruber, D.; Kouveliotou, C.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; von Kienlin, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PhRvD..65g3001C"> <span id="translatedtitle"><span class="hlt">Energy</span> independent solution to the solar neutrino <span class="hlt">anomaly</span> including the SNO data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the <span class="hlt">energy</span> independent solution-corresponding to near-maximal mixing. All three favor a mild upward renormalization of the Cl rate. A mild downward shift of the B neutrino flux is favored by the <span class="hlt">energy</span> independent and to a lesser extent the LOW solution, but not by LMA. A comparison with the ratio of SK elastic and SNO charged current scattering rates favors the LMA over the other two solutions, but by no more than 1.5?.</p> <div class="credits"> <p class="dwt_author">Choubey, Sandhya; Goswami, Srubabati; Roy, D. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23891326"> <span id="translatedtitle">Transient receptor <span class="hlt">potential</span> channels and <span class="hlt">energy</span> homeostasis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Transient receptor <span class="hlt">potential</span> (TRP) channels are members of an ancient class of ion channels that are present in most mammalian tissues. Consistent with their wide tissue distribution, TRPs are capable of influencing diverse physiological processes including adipocyte function, <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure. TRPs function as transduction channels downstream of G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, and some can also be direct sensors of chemical irritants that influence food intake or regulate body temperature and thermogenesis. TRP agonists were shown to reduce body weight and adiposity, suggesting that they might be exploited as therapeutic targets. In this review I discuss the current knowledge of how TRP channels influence <span class="hlt">energy</span> balance. PMID:23891326</p> <div class="credits"> <p class="dwt_author">Ahern, Gerard P</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-24</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10173313"> <span id="translatedtitle"><span class="hlt">Energy</span> flux and hydrogeology of thermal <span class="hlt">anomalies</span> in the Gulf of Mexico basin. Progress report, June 1992--August 1993</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Specific project objectives are to: determine whether or not the observed thermal <span class="hlt">anomalies</span> in the Gulf of Mexico sedimentary basin can be accounted for by heat conduction only; determine whether or not the present-day groundwater flow system is amenable with the heat advection hypothesis; and determine fluid and heat flux histories that are consistent with the observed data. In support of these objectives, we have collected over 25,000 data points, reflecting pressures and temperatures at depths of up to 16,000 feet in the Texas portion of the Gulf of Mexico basin. These data have been collated into a computerized data base system. In addition, we have begun collection of thermophysical data. This research provides fundamental knowledge and understanding to the geosciences and contributes to the sciences and technology base required for current and future <span class="hlt">energy</span> technologies. Quantifying the evolution of the hydrodynamic and thermal regimes in sedimentary basins is important for predicting timing of hydrocarbon maturation and migration. The evolving subsurface temperature and hydrodynamic system also have a first-order control on sediment diagenesis, brine evolution, and the formation of ore deposits.</p> <div class="credits"> <p class="dwt_author">Sharp, J.M. Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFM.T13A0494Y"> <span id="translatedtitle">Self-<span class="hlt">potential</span> <span class="hlt">Anomalies</span> Around the Earthquake Swarm Area in the Southeastern Flank of Ontake Volcano, Central Japan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ontake Volcano is located in the southern end of the Norikura Volcanic Chain, central Japan, close to the junction of the Izu Bonin and Mariana and Southwestern Japan volcanic arcs. It is almost conical and made of andesite. Earthquake swarm activity has been continuously observed around the southeastern flank of Mt. Ontake since 1976. A phreatic explosion occurred in 1979 at a fissure on the southwestern slope of the Kengamine, the main peak of Mt. Ontake. And a large earthquake with the depth about 2 km and a magnitude of 6.8 occurred in 1984 in the southeastern flank of the volcano. Recently, Kimata et al. (2004) revealed uplift ground deformation above the earthquake swarm area by using repeated leveling. Furthermore, Magnetotelluric soundings estimated a low resistivity region with the depth about 2km beneath the uplift area [Kasaya et al., 2002]. In order to investigate a relationship between tectonic movements and subsurface low resistivity zone, we carried out self-<span class="hlt">potential</span>(SP) measurements from 2003 and 2006 around the focal region of the 1984 Earthquake and the summit area of Mt. Ontake. The equipment for measuring surface self-<span class="hlt">potentials</span> consists of a pair of non-polarizing copper-copper sulfate/silver-silver chloride electrodes, an insulated connecting conductor cable, and a high input impedance digital multimeter. In this survey, profiles totaling to about 90km length (982 sites) were made, with an average measurement interval of 100m. Two distinctive SP features are found around the active earthquake cluster and inside of the aseismic area of southeastern flank of Mt. Ontake. In this presentation, we will report a detail of SP measurements and results.</p> <div class="credits"> <p class="dwt_author">Yoshimura, R.; Yamazaki, K.; Okada, Y.; Oshiman, N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/962710"> <span id="translatedtitle"><span class="hlt">ANOMALY</span> STRUCTURE OF SUPERGRAVITY AND <span class="hlt">ANOMALY</span> CANCELLATION</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We display the full <span class="hlt">anomaly</span> structure of supergravity, including new D-term contributions to the conformal <span class="hlt">anomaly</span>. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for <span class="hlt">anomaly</span> cancellation. We outline the procedure for full <span class="hlt">anomaly</span> cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.</p> <div class="credits"> <p class="dwt_author">Butter, Daniel; Gaillard, Mary K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001APS..MARV14002C"> <span id="translatedtitle">Concerning the Relationship Between Broken Gauge Symmetry, Pons-Fleischmann <span class="hlt">Anomalies</span> and Low <span class="hlt">Energy</span> Nuclear Reactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In 1989, Pons and Fleischmann's claim of anomalous, non-chemical heat release in PdD provoked considerable confusion (C. G. Beaudette, \\underlineExcess Heat: Why Cold Fusion Research Prevailed.) (Oak Grove Press, LLC, ME, 2000). http://www.infinite-<span class="hlt">energy</span>.com. An important reason for this was their failure to observe the High <span class="hlt">Energy</span> Particles (HEP) that occur in conventional fusion. However, the assumption that HEP should be present assumes the underlying reaction involves localized particles, with large momenta p (and deBroglie wavelengths ?D arrow 0). For this case, p can be defined classically, locally, using the ``usual" definition p=mv, (m=particle mass, v=its velocity). But when ?_D's of many D-nuclei arrow ? or preserve perfect periodic order, wave behavior takes over, and p ceases to be locally defined. Then mv=p-e/cA applies, and p may change ``abruptly" (as in the Mossbauer effect). The resulting broken gauge symmetry, which may allow D-nuclei to overlap at many locations simultaneously, can imply a new effect that seems to have been observed in various experiments: D+Darrow ^4He <A HREF=http://www.aps.org/meet/CENT99/BAPS/abs/S9500.html>without ? rays or other HEP</A>(<A HREF=http://www.aps.org/meet/CENT99/BAPS/abs/S9500.html>http:// www.aps.org/meet/CENT99/BAPS/abs/S9500.html</A>).</p> <div class="credits"> <p class="dwt_author">Chubb, Scott; Chubb, Talbot</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009pcms.confE.130M"> <span id="translatedtitle">High resolution <span class="hlt">energy</span> fluxes climatology and <span class="hlt">anomalies</span> using satellite data assimilation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Energy</span> flux exchanges between land and atmosphere are relevant for a number of hydrometeorological processes e.g. extreme atmospheric convection , runoff formation. High resolution climatologies and departures from climatological values of latent and sensible heat exchanges are very important to be quantified both in meteorological and hydrological models for flash flood prediction. They are usually unavailable, due to lack of observations. Here we present the results of a large scale climatological study using a variational data assimilation scheme associated to a simplified <span class="hlt">energy</span>-mass balance equation at the soil surface: Achab-API (Assimilation Code for HeAt and moisture Balance - Antecedent Precipitation Index). It is a model which estimates evaporative fraction and surface fluxes by assimilating satellite-derived Land Surface Temperatures. Using different data sources (satellite estimates, micro-meteorological observations) the model gives a daily spatially distributed description of soil conditions at national scale. The model has been applied to the Italian territory for the period 2005-2009 and its performance validated directly using ground observations and indirectly to estimate initial conditions for operational flash flood models.</p> <div class="credits"> <p class="dwt_author">Martina, F.; Boni, G.; Caparrini, F.; Castelli, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21293372"> <span id="translatedtitle">Field Theory Model of the Flyby <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Precision tracking of spacecraft on interplanetary missions has turned up several anomalous deviations from predictions of general relativity. The Flyby <span class="hlt">Anomaly</span>, wherein spacecraft gain or lose <span class="hlt">energy</span> in an earth-centric frame after an encounter with earth, is clearly associated with the rotation of the earth. The possibility that the missing ingredient is a new type of <span class="hlt">potential</span> field surrounding the earth is assessed in this write-up. A scalar field with the kinetic <span class="hlt">energy</span> distribution of the earth as a source is evaluated numerically, with an amplitude parameter adjusted to match the data of Anderson et al.(2008). The new field can be interpreted as a coupling between kinetic <span class="hlt">energies</span> of objects, a field analogous to fluid mechanics, or a field coupled to acceleration. The <span class="hlt">potential</span> field violates various aspects of standard physics, such as <span class="hlt">energy</span> non-conservation.</p> <div class="credits"> <p class="dwt_author">Lewis, R. A</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5264947"> <span id="translatedtitle">California's biomass and its <span class="hlt">energy</span> <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">potentials</span> for using California's biomass for <span class="hlt">energy</span> have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed <span class="hlt">Energy</span> System's Project to specify an <span class="hlt">energy</span> future for Californians. These works identify transportation fuels as the most valuable <span class="hlt">energy</span> conversion for biomass. Within this context, the extent of five categories of terrestial biomass is estimated, in addition to the environmental impacts and monetary cost of collecting and transporting each biomass category. Estimates of the costs of transforming biomass into different fuels as well as a survey of government's role in a biomass <span class="hlt">energy</span> program are presented. The major findings are summarized below. (1) California's existing biomass resources are sufficient to provide only 20 percent of its future liquid fuel requirements. (2) Meeting the full transportation demand with biomass derived fuels will require the development of exotic biomass sources such as kelp farms and significant reductions in automobile travel in the State. (3) Under assumptions of moderate increases in gasoline prices and without major new government incentives, the cost of transforming biomass into transport fuels will be competitive with the price of gasoline on a Btu basis by the year 1990. (4) The environmental impacts of collecting most forms of biomass are beneficial and should reduce air pollution from agricultural burning and water pollution from feedlot and dairy farm runoff. Moreover, the collection of logging residues should improve timber stand productivity and the harvest of chaparral should reduce the risk of wildfire in the State. (5) The institutional context for implementing biomass <span class="hlt">energy</span> projects is complex and fragmented.</p> <div class="credits"> <p class="dwt_author">Lucarelli, F.B. Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59186024"> <span id="translatedtitle"><span class="hlt">Potential</span> and Kinetic <span class="hlt">Energy</span> - What's it all about?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Our investigation deals with the difference between kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span>, and different situations that model those <span class="hlt">energies</span>. Students needed to define kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span>. In addition they needed to discover what the equations are to calculate these <span class="hlt">energies</span>. Students were to investigate different situations where these <span class="hlt">energies</span> are evident using various modeling technologies and design a tangible model</p> <div class="credits"> <p class="dwt_author">Fayne Winter; Larry Bedgood; Susan Cooper</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/q43kx51k386tk74r.pdf"> <span id="translatedtitle">Global gravitational <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A general formula for global gauge and gravitational <span class="hlt">anomalies</span> is derived. It is used to show that the <span class="hlt">anomaly</span> free supergravity and superstring theories in ten dimensions are all free of global <span class="hlt">anomalies</span> that might have ruined their consistency. However, it is shown that global <span class="hlt">anomalies</span> lead to some restrictions on allowed compactifications of these theories. For example, in the</p> <div class="credits"> <p class="dwt_author">Edward Witten</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6818152"> <span id="translatedtitle"><span class="hlt">Energy</span> <span class="hlt">potential</span> of sugarcane and sweet sorghum</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">potential</span> of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as C/sub 4/ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US <span class="hlt">energy</span> consumption. Biomass production could be substantially increased by including tops and leaves, adopting narrow row spacing and improving cultural practices. This presents challenges for cultivating, harvesting, and hauling the biomass to processing centers. Large plants and heavy capital investment are essential for <span class="hlt">energy</span> production. Ethanol and ammonia are the most promising candidates of a biomass program. If sugarcane were to be used for biomass production, breeding programs should be directed for more fermentable sugars and fiber. <span class="hlt">Energy</span> research on sweet sorghum should be done with syrup varieties. Sweet sorghum needs to be incorporated with other crops because of its short growing season. The disposal of stillage from an extensive ethanol industry may pose environmental problems.</p> <div class="credits"> <p class="dwt_author">Elawad, S.H.; Gascho, G.J.; Shih, S.F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5461614"> <span id="translatedtitle">Chiral <span class="hlt">anomalies</span> and differential geometry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Some properties of chiral <span class="hlt">anomalies</span> are described from a geometric point of view. Topics include chiral <span class="hlt">anomalies</span> and differential forms, transformation properties of the <span class="hlt">anomalies</span>, identification and use of the <span class="hlt">anomalies</span>, and normalization of the <span class="hlt">anomalies</span>. 22 references. (WHK)</p> <div class="credits"> <p class="dwt_author">Zumino, B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/962310"> <span id="translatedtitle">An ab initio method for locating <span class="hlt">potential</span> <span class="hlt">energy</span> minima</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We study the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the <span class="hlt">potential</span> <span class="hlt">energy</span>. We show that this procedure reveals the underlying <span class="hlt">potential</span> <span class="hlt">energy</span> surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying <span class="hlt">potential</span> <span class="hlt">energy</span> surface, but needs to be corrected for thermodynamic weighting factors.</p> <div class="credits"> <p class="dwt_author">Bock, Nicolas [Los Alamos National Laboratory; Peery, Travis [Los Alamos National Laboratory; Venneri, Giulia [Los Alamos National Laboratory; Chisolm, Eric [Los Alamos National Laboratory; Wallace, Duane [Los Alamos National Laboratory; Lizarraga, Raquel [CHILE; Holmstrom, Erik [CHILE</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.public.iastate.edu/~rehmann/Rehmann&Koseff_DAO_2004.pdf"> <span id="translatedtitle">Mean <span class="hlt">potential</span> <span class="hlt">energy</span> change in stratified grid turbulence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Laboratory experiments are used to study the effect of stratification and molecular diffusiv- ity on the mean <span class="hlt">potential</span> <span class="hlt">energy</span> change due to grid turbulence in a linearly stratified fluid. Two quantities that characterize the <span class="hlt">potential</span> <span class="hlt">energy</span> change are the mixing efficiency, defined as the ratio of the mean <span class="hlt">potential</span> <span class="hlt">energy</span> change and the work done by the grid on the</p> <div class="credits"> <p class="dwt_author">Chris R. Rehmanna; Jeffrey R. Koseff</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dx.doi.org/10.1306/?61EEDDD2-173E-11D7-8645000102C1865D"> <span id="translatedtitle"><span class="hlt">Energy</span> resource <span class="hlt">potential</span> of natural gas hydrates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible <span class="hlt">energy</span> resource. However, significant to <span class="hlt">potentially</span> insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource <span class="hlt">potential</span> of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.</p> <div class="credits"> <p class="dwt_author">Collett, T. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996AIPC..358..251O"> <span id="translatedtitle">Thermophotovoltaic <span class="hlt">energy</span> conversion: Technology and market <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market <span class="hlt">potential</span>. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of ``moving down the learning curve,'' growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall <span class="hlt">energy</span> conversion efficiency due to high radiation <span class="hlt">energy</span> density and to high electric conversion efficiency available with photovoltaic cells.</p> <div class="credits"> <p class="dwt_author">Ostrowski, Leon J.; Pernisz, Udo C.; Fraas, Lewis M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-02-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..1512315G"> <span id="translatedtitle">Estimates of the state of stress, isostacy and Gravitational <span class="hlt">Potential</span> <span class="hlt">Energy</span> of the Central Andes from 3D gravity modelling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Gravitational stress fields generated by lateral variations in lithospheric structure and thickness could be as significant as those associated with far field forces and could influence the state of stress within a plate. To gain insight on the state of stress along the plate interface of the Andean convergent margin and plateau, we derived vertical stress (?v), normal stress component (?n) and Gravitational <span class="hlt">Potential</span> <span class="hlt">Energy</span> (GPE) <span class="hlt">anomalies</span> from two existing 3D gravity models of the region. The stress <span class="hlt">anomalies</span> are caused by spatial variations of density in the overlaying crustal/lithospheric rock column, including topographic masses, and hence, can be detected in the local gravity field. The 3D density models are constrained using results of seismic experiments, geological and petrological prior information. The lithostatic stress <span class="hlt">anomalies</span> onshore have been computed at the plate interface between the subducting slab and the overriding South American plate relative to a layered standard density model. To study the isostatic state of the region, vertical stress <span class="hlt">anomaly</span> maps have been computed at various constant depths and the Moho. The GPE estimates have been made for the entire region using a constant depth of 125 km (base of the mantle lithosphere). To assess the tectonic state of the region, GPE <span class="hlt">anomalies</span> have been computed using the mean <span class="hlt">potential</span> <span class="hlt">energy</span> of the lithosphere (2.379 ?1014 N m-1 for a body of constant density of 3200 kg m-3). Results from both models show that the fore-arc region exhibits isolated positive trench-parallel normal stress <span class="hlt">anomalies</span> of the order of 20-100 MPa compared to the adjacent regions. The peaks of the high stress <span class="hlt">anomalies</span> of both models correlate well with seismicity of magnitude 5 and greater east of the trench. This confirms the possibility that a physical correlation between seismicity and high-density structures above the plate interface exists. Estimates of GPE based on vertical stress show that the high topography of the Andean mountains and the ridges in the Nazca plate exhibit high GPE values of the order of +1013 N m-1 relative to mean. The resulting stress from GPE could influence the state of stress in the Nazca plate and adjacent regions.</p> <div class="credits"> <p class="dwt_author">Gutknecht, Benjamin D.; Mahatsente, Rezene; Götze, Hans-Jürgen</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55927236"> <span id="translatedtitle">The high <span class="hlt">potential</span> of wind as an <span class="hlt">energy</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A recently completed ERDA study shows that the full <span class="hlt">potential</span> of wind as an <span class="hlt">energy</span> source is far greater than previously estimated. The paper reviews various aspects of wind <span class="hlt">energy</span> including wind <span class="hlt">energy</span> resources, conversion systems, wind turbine applications, and the national <span class="hlt">potential</span> for wind <span class="hlt">energy</span>.</p> <div class="credits"> <p class="dwt_author">U. Coty; M. Dubey</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59732890"> <span id="translatedtitle">On the global and regional <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> sources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this thesis, the central research question is: what can be the contribution of renewable <span class="hlt">energy</span> sources to the present and future world and regional <span class="hlt">energy</span> supply system. The focus is on wind, solar PV and biomass <span class="hlt">energy</span> (<span class="hlt">energy</span> crops) for electricity generation. For the assessment of the economic <span class="hlt">potential</span>, we construct cost-supply curves. As the economic <span class="hlt">potential</span> also depends</p> <div class="credits"> <p class="dwt_author">Monique Maria Hoogwijk</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37448903"> <span id="translatedtitle"><span class="hlt">Potential</span> Analysis of Wind <span class="hlt">Energy</span> as a Power Generation Source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wind <span class="hlt">energy</span> as a power generation source is one of the most significant and rapidly developing renewable <span class="hlt">energy</span> sources in the world. Because wind <span class="hlt">energy</span> <span class="hlt">potential</span> in various parts of Turkey is becoming economical, it is necessary to determine to start the immediate usage of the wind <span class="hlt">energy</span> <span class="hlt">potential</span> and the investigation of the necessary techniques and economic feasibility. In</p> <div class="credits"> <p class="dwt_author">M. Kurban; F. O. Hocaoglu</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.floridastandards.org/resources/PublicPreviewResource11154.aspx"> <span id="translatedtitle"><span class="hlt">Potential</span> and Kinetic <span class="hlt">Energy</span>; "To Move or not to Move".</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Students will investigate, through a guided exploration lab, using a tennis ball, the Law of Conservation of <span class="hlt">Energy</span> to differentiate between <span class="hlt">Potential</span> and Kinetic <span class="hlt">Energy</span>, and identify real life situations where <span class="hlt">potential</span> <span class="hlt">energy</span> is transformed into kinetic <span class="hlt">energy</span> and vice versa.</p> <div class="credits"> <p class="dwt_author">Sherdan, Danielle</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE92607944"> <span id="translatedtitle">Renewable <span class="hlt">energy</span> resources in Pakistan: status, <span class="hlt">potential</span> and information systems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This paper provides some details regarding the characteristic properties, <span class="hlt">potential</span> and assessment of renewable <span class="hlt">energy</span> compared with other forms of <span class="hlt">energy</span> sources. It gives status of renewable <span class="hlt">energy</span> sources in Pakistan. It also lights about the agencies ...</p> <div class="credits"> <p class="dwt_author">A. M. Khan</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/7n86434758j2xjj0.pdf"> <span id="translatedtitle">On Dark <span class="hlt">Energy</span>, Weyl’s Geometry, Different Derivations of the Vacuum <span class="hlt">Energy</span> Density and the Pioneer <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Two different derivations of the observed vacuum <span class="hlt">energy</span> density are presented. One is based on a class of proper and novel\\u000a generalizations of the (Anti) de Sitter solutions in terms of a family of radial functions R(r) that provides an explicit\\u000a formula for the cosmological constant along with a natural explanation of the ultraviolet\\/infrared (UV\\/IR) entanglement required\\u000a to solve this</p> <div class="credits"> <p class="dwt_author">Carlos Castro</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://wgbis.ces.iisc.ernet.in/energy/paper/REN2007/TVR24_P8_REN2007.pdf"> <span id="translatedtitle">Spatial mapping of renewable <span class="hlt">energy</span> <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An <span class="hlt">energy</span> resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable <span class="hlt">energy</span>. The need to search for renewable, alternate and non-polluting sources of <span class="hlt">energy</span> assumes top priority for self-reliance in the regional <span class="hlt">energy</span> supply. This demands an estimation of available <span class="hlt">energy</span> resources spatially to evolve better management</p> <div class="credits"> <p class="dwt_author">T. V. Ramachandraa</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009PhDT.........8Y"> <span id="translatedtitle"><span class="hlt">Anomalies</span> of water and simple liquids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This thesis applies statistical physics approaches and computer simulations to investigate quantitatively the relationship between the structure and the dynamic and thermodynamic <span class="hlt">anomalies</span> observed in water and some other simple liquids. In Chapter 1, we give a general introduction to the properties of water. In Chapter 2 we address the question of whether spherically-symmetric <span class="hlt">potentials</span> are also able to reproduce the structural <span class="hlt">anomalies</span> found in systems with local tetrahedral order. We find that water-like structural order <span class="hlt">anomalies</span> exist for the two-scale "ramp <span class="hlt">potential</span>". Our findings suggest that the water-like relationship between structural order and <span class="hlt">anomalies</span> is related to the presence of two different length scales in the <span class="hlt">potential</span>. In Chapter 3, we use the ratio of characteristic length scales of the two-scale ramp <span class="hlt">potential</span> as a control parameter to investigate the evolution of dynamic, thermodynamic and structural <span class="hlt">anomalies</span>. In this manner we show that the family of tunable spherically-symmetric <span class="hlt">potentials</span> so generated evolves continuously between water-like and hard sphere behavior. These findings suggest that strong orientational interactions in the first shell of water are not necessary for a liquid to show thermodynamic, dynamic and structural <span class="hlt">anomalies</span>, and highlight the importance of the second shell of water. In Chapter 4, we investigate how much orientation-dependent first-shell interaction and the second-shell environment each contribute to water's <span class="hlt">anomalies</span>. We show that the changes in the second shell of water are the structural bases for the <span class="hlt">anomalies</span>. In Chapter 5, we study the quantitative connection between our idealized ramp <span class="hlt">potential</span> and water's pair <span class="hlt">potential</span>, as well as the relation between the regions of <span class="hlt">anomalies</span> in their respective phase diagrams. Finally in Chapter 6 we show that the "two-body excess entropy" is a useful quantity for predicting the regions of thermodynamic, dynamic and structural <span class="hlt">anomalies</span> of water.</p> <div class="credits"> <p class="dwt_author">Yan, Zhenyu</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE93041044"> <span id="translatedtitle">Biomass resource <span class="hlt">potential</span> using <span class="hlt">energy</span> crops.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Biomass <span class="hlt">energy</span> crops can provide a significant and environmentally beneficial source of renewable <span class="hlt">energy</span> feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. <span class="hlt">Energy</span> cr...</p> <div class="credits"> <p class="dwt_author">L. L. Wright J. H. Cushman S. A. Martin</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002600/a002696/index.html"> <span id="translatedtitle">SST <span class="hlt">Anomalies</span> + Wind <span class="hlt">Anomalies</span> (with dates)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Sea surface temperature (SST) <span class="hlt">anomalies</span> and sea surface wind <span class="hlt">anomalies</span> show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).</p> <div class="credits"> <p class="dwt_author">Shirah, Greg; Allen, Jesse; Adamec, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22739063"> <span id="translatedtitle">Water and other tetrahedral liquids: order, <span class="hlt">anomalies</span> and solvation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In order to understand the common features of tetrahedral liquids with water-like <span class="hlt">anomalies</span>, the relationship between local order and <span class="hlt">anomalies</span> has been studied using molecular dynamics simulations for three categories of such liquids: (a) atomistic rigid-body models for water (TIP4P, TIP4P/2005, mTIP3P, SPC/E), (b) ionic melts, BeF(2) (TRIM model) and SiO(2) (BKS <span class="hlt">potential</span>) and (c) Stillinger-Weber liquids parametrized to model water (mW) and silicon. Rigid-body, atomistic models for water and the Stillinger-Weber liquids show a strong correlation between tetrahedral and pair correlation order and the temperature for the onset of the density <span class="hlt">anomaly</span> is close to the melting temperature. In contrast, the ionic melts show weaker and more variable degrees of correlation between tetrahedral and pair correlation metrics, and the onset temperature for the density <span class="hlt">anomaly</span> is more than twice the melting temperature. In the case of water, the relationship between water-like <span class="hlt">anomalies</span> and solvation is studied by examining the hydration of spherical solutes (Na(+), Cl(-), Ar) in water models with different temperature regimes of <span class="hlt">anomalies</span> (SPC/E, TIP4P and mTIP3P). For both ionic and nonpolar solutes, the local structure and <span class="hlt">energy</span> of water molecules is essentially the same as in bulk water beyond the second-neighbour shell. The local order and binding <span class="hlt">energy</span> of water molecules are not perturbed by the presence of a hydrophobic solute. In the case of ionic solutes, the perturbation is largely localized within the first hydration shell. The binding <span class="hlt">energies</span> for the ions are strongly dependent on the water models and clearly indicate that the geometry of the partial charge distributions, and the associated multipole moments, play an important role. However the anomalous behaviour of the water network has been found to be unimportant for polar solvation. PMID:22739063</p> <div class="credits"> <p class="dwt_author">Jabes, B Shadrack; Nayar, Divya; Dhabal, Debdas; Molinero, Valeria; Chakravarty, Charusita</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ssed.gsfc.nasa.gov/gunther/gunther/2007Schmidtetal.pdf"> <span id="translatedtitle">Magnetic properties and <span class="hlt">potential</span> field modeling of the Peculiar Knob metamorphosed iron formation, South Australia: An analog for the source of the intense Martian magnetic <span class="hlt">anomalies</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">an extremely intense (? 120 A m? 1) remanence, directed steeply upward. This ancient remanence reinforces the local Earth's field (inclination ? 63). A simple geological model, constrained by drilling and physical property measurements, explains both the observed magnetic and gravity <span class="hlt">anomalies</span>, consistent with the Poisson theorem. Koenigsberger ratios (Qs) of 10 and greater, as found here, are rare in</p> <div class="credits"> <p class="dwt_author">Phillip W. Schmidt; Suzanne A. McEnroe; David A. Clark; Peter Robinson</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8022386"> <span id="translatedtitle">The Elliptic <span class="hlt">Anomaly</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate <span class="hlt">anomaly</span> (an <span class="hlt">anomaly</span> intermediate between the eccentric and the ...</p> <div class="credits"> <p class="dwt_author">G. Janin V. R. Bond</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60561590"> <span id="translatedtitle">Biomass resource <span class="hlt">potential</span> using <span class="hlt">energy</span> crops</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass <span class="hlt">energy</span> crops can provide a significant and environmentally beneficial source of renewable <span class="hlt">energy</span> feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. <span class="hlt">Energy</span> crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar <span class="hlt">energy</span> and storing it as cellulosic compounds for several months</p> <div class="credits"> <p class="dwt_author">L. L. Wright; J. H. Cushman; S. A. Martin</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60477164"> <span id="translatedtitle"><span class="hlt">Potential</span> for <span class="hlt">energy</span> conservation in Montana</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A brief review of the status of national, regional, and state <span class="hlt">energy</span> policies is made. The possibility of <span class="hlt">energy</span> conservation in all sectors is cited and in the state of Montana, the state government has powers to promote <span class="hlt">energy</span> conservation that include utilities regulation, land use control, tax incentives or disincentives, police power (such as rationing), and education. An <span class="hlt">energy</span></p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Definition+AND+energy&pg=4&id=EJ088334"> <span id="translatedtitle">Transportation <span class="hlt">Energy</span> Use and Conservation <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Analyzes transportation <span class="hlt">energy</span> consumption and <span class="hlt">energy</span> intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of <span class="hlt">energy</span> intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of <span class="hlt">energy</span> conservation. (CC)</p> <div class="credits"> <p class="dwt_author">Hirst, Eric</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42059039"> <span id="translatedtitle">Re-examining <span class="hlt">Potential</span> for Geothermal <span class="hlt">Energy</span> in United States</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">New technological initiatives, along with <span class="hlt">potential</span> policy and economic incentives, could help to bring about a resurgence in geothermal <span class="hlt">energy</span> development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable <span class="hlt">Energy</span> and <span class="hlt">Energy</span> Efficiency Caucuses, the Sustainable <span class="hlt">Energy</span> Coalition, and the Environmental and <span class="hlt">Energy</span></p> <div class="credits"> <p class="dwt_author">Randy Showstack</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26520316"> <span id="translatedtitle"><span class="hlt">Potential</span> contribution of biomass to the sustainable <span class="hlt">energy</span> development</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass is a renewable <span class="hlt">energy</span> source and its importance will increase as national <span class="hlt">energy</span> policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable <span class="hlt">energy</span> source with the highest <span class="hlt">potential</span> to contribute to the <span class="hlt">energy</span> needs of modern society for both the industrialized and developing countries worldwide. The most important biomass <span class="hlt">energy</span> sources are</p> <div class="credits"> <p class="dwt_author">M. Fatih Demirbas; Mustafa Balat; Havva Balat</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22526009"> <span id="translatedtitle">[Vascular <span class="hlt">anomaly</span> of the iris].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A 48-year-old man presented with a vascular <span class="hlt">anomaly</span> of the iris in the left eye. Slit-lamp microscopy revealed dilated and tortuous vessels of the iris between 12 and 4 o'clock. Fluorescein angiography confirmed a diagnosis of arteriovenous (AV) malformation of the iris. The vessel originated at the iris base, passed to the pupillary margin and returned to the base. Such AV-malformations of the iris are very rare, benign vascular <span class="hlt">anomalies</span> that have to be distinguished from other, <span class="hlt">potentially</span> malignant pathologies of the iris (e. g. tortuous vessels in iris melanoma). PMID:22526009</p> <div class="credits"> <p class="dwt_author">Ponto, K A; Mirshahi, A</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/30539403"> <span id="translatedtitle">Familial Poland <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Poland <span class="hlt">anomaly</span> is usually a non-genetic malformation syndrome. This paper reports two second cousins who both had a typical left sided Poland <span class="hlt">anomaly</span>, and this constitutes the first recorded case of this condition affecting more than one member of a family. Despite this, for the purposes of genetic counselling, the Poland <span class="hlt">anomaly</span> can be regarded as a sporadic condition</p> <div class="credits"> <p class="dwt_author">T J David</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2894498"> <span id="translatedtitle">Peters' <span class="hlt">Anomaly</span> - Anaesthetic Management</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Summary Peters' <span class="hlt">anomaly</span> occurs as an isolated ocular abnormality, in association with other systemic abnormality or one component of a number of well-defined syndromes. We review our experience of anaesthetic management and systemic association of peters' <span class="hlt">anomaly</span>. To the best of our knowledge there are no reports in the literature of Peters' <span class="hlt">anomaly</span> with relevant to anaesthesia.</p> <div class="credits"> <p class="dwt_author">M, Senthilkumar; V, Darlong; Punj, Jyotsna; Pandey, Ravinder</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB83174185"> <span id="translatedtitle">Domestic <span class="hlt">Potential</span> of Solar and Other Renewable <span class="hlt">Energy</span> Sources.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This is a study of the present and <span class="hlt">potential</span> use in the United States of the renewable <span class="hlt">energy</span> resources generally included under the term solar <span class="hlt">energy</span>. In particular, the study attempts to estimate the likely <span class="hlt">energy</span> costs and <span class="hlt">potential</span> market penetrations...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cas.muohio.edu/~stevenmh/field%20et%20al%202008.pdf"> <span id="translatedtitle">Biomass <span class="hlt">energy</span>: the scale of the <span class="hlt">potential</span> resource</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Increased production of biomass for <span class="hlt">energy</span> has the <span class="hlt">potential</span> to offset substantial use of fossil fuels, but it also has the <span class="hlt">potential</span> to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass <span class="hlt">energy</span> agriculture on climate could be eithercoolingor warming, depending on the crop,the technology for converting biomass into useable <span class="hlt">energy</span>, and the difference</p> <div class="credits"> <p class="dwt_author">B. Field; J. Elliott Campbell; David B. Lobell</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=CONF7605361"> <span id="translatedtitle"><span class="hlt">Potential</span> for <span class="hlt">Energy</span> Conservation Technology Transfer.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The segment of <span class="hlt">energy</span> consumption related to space conditioning and water heating in residential, commercial, and institutional buildings is discussed specifically. Within this constraint building <span class="hlt">energy</span> consumption is discussed, considering three choices...</p> <div class="credits"> <p class="dwt_author">E. C. Hise</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUSMGP54A..03P"> <span id="translatedtitle">Integrated <span class="hlt">Potential</span>-field Studies in Support of <span class="hlt">Energy</span> Resource Assessment in Frontier Areas of Alaska</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In frontier areas of Alaska, <span class="hlt">potential</span>-field studies play an important role in characterizing the geologic structure of sedimentary basins having <span class="hlt">potential</span> for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a <span class="hlt">potential</span> source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity <span class="hlt">anomaly</span> data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic <span class="hlt">potential</span> (blue), and basement gravity (green) highlight domains with common geophysical characteristics and, by inference, lithology. The observed patterns suggest that much of the basin is underlain by Devonian to Jurassic oceanic rocks that probably have little or no <span class="hlt">potential</span> for hydrocarbon generation. The coastal plain surficial deposits in the northern part of ANWR conceal another frontier basin with hydrocarbon <span class="hlt">potential</span>. Proprietary aeromagnetic and gravity data were used, along with seismic reflection profiles, to construct a structural and stratigraphic model of this highly deformed sedimentary basin for use in an <span class="hlt">energy</span> resource assessment. Matched-filtering techniques were used to separate short-wavelength magnetic and gravity <span class="hlt">anomalies</span> attributed to sources near the top of the sedimentary section from longer-wavelength <span class="hlt">anomalies</span> attributed to deeper basin and basement sources. Models along the seismic reflection lines indicate that the primary sources of the short-wavelength <span class="hlt">anomalies</span> are folded and faulted sedimentary beds truncated at the Pleistocene erosion surface. In map view, the aeromagnetic and gravity <span class="hlt">anomalies</span> produced by the sedimentary units were used to identify possible structural trapping features and geometries, but they also indicated that these features may be significantly disrupted by faulting.</p> <div class="credits"> <p class="dwt_author">Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994E%26PSL.126..143S"> <span id="translatedtitle">Plate-scale <span class="hlt">potential-energy</span> distributions and the fragmentation of ageing plates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Geoid <span class="hlt">anomalies</span> associated with mid-ocean ridge systems and a number of continental margins imply that, on the scale of individual plates, the old ocean lithosphere represents a gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> sink. Since lateral variations in <span class="hlt">potential</span> <span class="hlt">energy</span> contribute to deviatoric stresses in the lithosphere, the changing <span class="hlt">potential-energy</span> distributions in individual plates associated with the growth and ageing of the oceanic lithosphere may be expected to result in changes in the intraplate stress field. Analytical models for simple plate geometries using lithospheric density models consistent with small positive (+6 m) geoid <span class="hlt">anomalies</span> across continental margins show that the growth of oceanic lithospheric over a period of 200 Ma may contribute to a decline in the mean plate <span class="hlt">potential</span> <span class="hlt">energy</span> bar-U(sub p) of about -1 x 10(exp 12) N/m and thus contribute a mean extensional stress difference (bar-sigma(sub zz) - bar-sigma(sub xx)) in continental lithosphere of up to about 8 MPa (averaged over a 125 km thick lithosphere). These estimates are sensitive to the assumed mean continental <span class="hlt">potential</span> <span class="hlt">energy</span> bar-U(sub c), about which there is some uncertainty. For higher bar-U(sub c), approaching that of the mid-ocean ridges (U(sub MOR)), the net decline in bar-U(sub p) may be as much as -1.7 x 10(exp 12) N/m, whereas for significantly lower bar-U(sub c), approaching that of old ocean lithosphere, plate growth may increase bar-U(sub p) transiently by up to 2.7 x 10(exp 12) N/m, leading to compression in the continents. In the African and Antarctic plates the ageing of the ocean lithosphere since the late Jurassic is estimated to have contributed to a decline in bar-U(sub p) of about -0.6 x 10(exp 12) and -0.95 x 10(exp 12) N/m respectively, contributing a mean stress difference of about 5 MPa and 7.5 MPa in the respective continents. The predicted stress changes associated with ageing of the oceanic lithosphere may provide an important contribution to the stress fields that eventually lead to the fragmentation of ageing plates.</p> <div class="credits"> <p class="dwt_author">Sandiford, Mike; Coblentz, David</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6186289"> <span id="translatedtitle">A model analytic <span class="hlt">potential</span> <span class="hlt">energy</span> function for formyl radical decomposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An analytic function for the ground-electronic-state HCO {yields} H + CO <span class="hlt">potential</span> <span class="hlt">energy</span> surface is presented. Both experimental and ab initio data are used to derive parameters for the <span class="hlt">potential</span> <span class="hlt">energy</span> surface. Bound-state eigenvalues are obtained, and the results show good agreement with reported experimental and theoretical values. The analytic function is quite flexible and can be easily adjusted to determine how specific <span class="hlt">potential</span> <span class="hlt">energy</span> surface properties affect state-specific unimolecular decomposition.</p> <div class="credits"> <p class="dwt_author">Cho, Seonwoog; Hase, W.L. (Wayne State Univ., Detroit, MI (USA)); Swamy, K.N. (IBM Corp., Kingston, NY (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-09-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60727628"> <span id="translatedtitle">Electrical <span class="hlt">energy</span> and cost savings <span class="hlt">potential</span> at DOD facilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The US Department of Defense (DOD) has been mandated to reduce <span class="hlt">energy</span> consumption and costs by 20% from 1985 to 2000 and by 30% from 1985 to 2005. Reduction of electrical <span class="hlt">energy</span> consumption at DOD facilities requires a better understanding of <span class="hlt">energy</span> consumption patterns and <span class="hlt">energy</span> and financial savings <span class="hlt">potential</span>. This paper utilizes two independent studies--EDA (End-Use Disaggregation Algorithm) and</p> <div class="credits"> <p class="dwt_author">S. Konopacki; H. Akbari; L. Lister; L. DeBaille</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55871435"> <span id="translatedtitle">Stretching the inflaton <span class="hlt">potential</span> with kinetic <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Inflation near a maximum of the <span class="hlt">potential</span> is studied when nonlocal derivative operators are included in the inflaton Lagrangian. Such terms can impose additional sources of friction on the field. For an arbitrary spacetime geometry, these effects can be quantified in terms of a local field theory with a <span class="hlt">potential</span> whose curvature around the turning point is strongly suppressed. This</p> <div class="credits"> <p class="dwt_author">James E. Lidsey</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26972472"> <span id="translatedtitle">Renewable <span class="hlt">Energy</span> Resources <span class="hlt">Potential</span> in Lao PDR</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Renewable <span class="hlt">energy</span> resources provide a large share of the total <span class="hlt">energy</span> consumption of many developing countries. Evaluation of these resources has not been made in many countries and in many cases, data necessary to estimate the resource availability is also not easily available. However, for the profitable and sustained exploitation of these resources, a knowledge of their availability should be</p> <div class="credits"> <p class="dwt_author">KAYASITH SADETTANH</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/755051"> <span id="translatedtitle">HIGH <span class="hlt">ENERGY</span> PHYSICS <span class="hlt">POTENTIAL</span> AT MUON COLLIDERS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this paper, high <span class="hlt">energy</span> physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher <span class="hlt">Energy</span> Muon Colliders (HEMC) are briefly reviewed and encouraged.</p> <div class="credits"> <p class="dwt_author">PARSA,Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-04-07</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22international+emergency%22&id=ED212481"> <span id="translatedtitle"><span class="hlt">Energy</span> in America: Progress and <span class="hlt">Potential</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|An overview of America's <span class="hlt">energy</span> situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the <span class="hlt">energy</span> problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…</p> <div class="credits"> <p class="dwt_author">American Petroleum Inst., Washington, DC.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5164676"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation <span class="hlt">potential</span> of surface modification technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report assesses the <span class="hlt">energy</span> conservation impact of surface modification technologies on the metalworking industries. The <span class="hlt">energy</span> conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.</p> <div class="credits"> <p class="dwt_author">Le, H.K.; Horne, D.M.; Silberglitt, R.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56970562"> <span id="translatedtitle">Expedient Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> in Louisiana</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Year after year, the world improves upon new ideas and forms of practical ways of applying green <span class="hlt">energy</span> to humanity''s daily life. Some of these types include solar, nuclear, and natural gas <span class="hlt">energy</span>, but wind power is growing in the ranks as far as popularity and usage. Countries such as China, the United States, and Germany have led the interest</p> <div class="credits"> <p class="dwt_author">Jasmin Honegger; Yucheng Liu</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003JCli...16.3482M"> <span id="translatedtitle">The Amplification of East Pacific Madden-Julian Oscillation Convection and Wind <span class="hlt">Anomalies</span> during June-November.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Madden-Julian oscillation (MJO) wind and convection <span class="hlt">anomalies</span> are locally amplified over the northeast Pacific warm pool during June-November. Composite analysis using NCEP reanalysis data indicates that perturbation available <span class="hlt">potential</span> <span class="hlt">energy</span> (PAPE) production through the positive correlation of intraseasonal temperature and convective diabatic heating <span class="hlt">anomalies</span> supports the local intensification of MJO-related east Pacific warm pool wind <span class="hlt">anomalies</span>. PAPE production is maximum during periods of strong MJO convection and low-level westerly wind perturbations. PAPE is converted to perturbation kinetic <span class="hlt">energy</span> through positive correlations between intraseasonal temperature and vertical velocity. Microwave Sounding Unit (MSU) temperature and NOAA outgoing longwave radiation data support the <span class="hlt">energy</span> budget results derived from NCEP reanalysis.The amplified east Pacific circulation enhances surface convergence and latent heat flux <span class="hlt">anomalies</span> during MJO convective periods. The surface convergence <span class="hlt">anomalies</span> have a strong frictional component. Intraseasonal surface convergence and latent heat flux <span class="hlt">anomalies</span> are strongly correlated (greater than 0.7) with the negative outgoing longwave radiation <span class="hlt">anomalies</span> that is associated with east Pacific MJO convective regions. Surface latent heat and convergence variations may therefore be important in modulating MJO convective <span class="hlt">anomalies</span> over the east Pacific during June-November. Enhanced surface flux and convergence <span class="hlt">anomalies</span> associated with an enhanced surface circulation may intensify MJO convection, thereby creating a feedback loop that leads to the further intensification of local wind and convection <span class="hlt">anomalies</span>. Work with mesoscale or general circulation models is needed to confirm that surface latent heat and convergence variations are indeed important for modulating east Pacific MJO convection.Enhanced MJO convection over the boreal summer east Pacific is accompanied by positive water vapor <span class="hlt">anomalies</span> throughout the troposphere. Column precipitable water <span class="hlt">anomalies</span> from both NASA Water Vapor Project (NVAP) and NCEP reanalysis are in phase with MJO convection <span class="hlt">anomalies</span> over the east Pacific. These results support the observations of previous studies that the equatorial troposphere must be sufficiently moistened before significant MJO deep convection can occur. The strongest NCEP reanalysis specific humidity <span class="hlt">anomalies</span> at lower levels are collocated with positive surface latent heat flux and surface convergence <span class="hlt">anomalies</span>.</p> <div class="credits"> <p class="dwt_author">Maloney, Eric. D.; Esbensen, Steven K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18933185"> <span id="translatedtitle">Stretching the inflaton <span class="hlt">potential</span> with kinetic <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Inflation near a maximum of the <span class="hlt">potential</span> is studied when non-local\\u000aderivative operators are included in the inflaton Lagrangian. Such terms can\\u000aimpose additional sources of friction on the field. For an arbitrary spacetime\\u000ageometry, these effects can be quantified in terms of a local field theory with\\u000aa <span class="hlt">potential</span> whose curvature around the turning point is strongly suppressed.\\u000aThis</p> <div class="credits"> <p class="dwt_author">James E. Lidsey</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004PhRvC..70b4306V"> <span id="translatedtitle">?? bond <span class="hlt">energy</span> from the Nijmegen <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ?? bond <span class="hlt">energy</span> ? B?? in ?? hypernuclei is obtained from a G -matrix calculation which includes the coupling between the ?? , ?N , and ?? channels, as well as the effect of Pauli blocking to all orders. The Nijmegen NSC97e model is used as bare baryon-baryon interaction in the strangeness S=-2 sector. The ?? - ?N coupling increases substantially the bond <span class="hlt">energy</span> with respect to the uncoupled ?? case. However, the additional incorporation of the ?? channel, which couples simultaneously to ?? and ?N states, has a surprisingly drastic effect and reduces the bond <span class="hlt">energy</span> down to a value closer to that obtained in an uncoupled calculation. We find that a complete treatment of Pauli blocking reduces the repulsive effect on the bond <span class="hlt">energy</span> to about half of what was claimed before.</p> <div class="credits"> <p class="dwt_author">Vidaña, I.; Ramos, A.; Polls, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JAP...101h4917J"> <span id="translatedtitle"><span class="hlt">Energy</span> functions for rubber from microscopic <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The finite deformation theory of rubber and related materials is based on <span class="hlt">energy</span> functions that describe the macroscopic response of these materials under deformation. <span class="hlt">Energy</span> functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke's Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse Langevin statistical approximations. Methods are given for finding the <span class="hlt">energy</span> functions as expansions of tensor invariants of deformation, with exact solutions for functions that can be expressed as expansions in even powers of the extension. Comparison with experiment shows good agreement with the neo-Hookean <span class="hlt">energy</span> function and we show how this derives directly from the simple Gaussian statistical model with a small modification.</p> <div class="credits"> <p class="dwt_author">Johal, A. S.; Dunstan, D. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.1761C"> <span id="translatedtitle">Analysis of Solar Irradiation <span class="hlt">Anomalies</span> in Long Term Over India</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">India has a high <span class="hlt">potential</span> for solar <span class="hlt">energy</span> applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource <span class="hlt">potential</span>. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar <span class="hlt">energy</span> applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of global hemispheric irradiation measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of solar irradiation in India using <span class="hlt">anomalies</span> techniques and trends in ten places over India. Most of the places have exhibit a decreasing trend and negative <span class="hlt">anomalies</span> confirming thus the darkening effect already reported by solar dimming studies. The analysis of <span class="hlt">anomalies</span> has also found two periods of different behavior. From 1964 till 1988 the <span class="hlt">anomalies</span> observed were positive and the last 20 years seems to be a period of negative <span class="hlt">anomalies</span>. This observation is also consequent with solar dimming effect, apparently increased during the last two decades due to the increase of aerosol loading in the atmosphere. These results remark the important of having accurate knowledge of atmospheric aerosol loading and its dynamics over India with high spatial resolution in the framework of solar <span class="hlt">energy</span> deployment in the country. It is worth to mention that greater <span class="hlt">anomalies</span> and a noticeable decreasing trend found in Calcutta could be correlated with the highly population rate, and thus the greater the population density of the area the greater the negative <span class="hlt">anomalies</span> and the decreasing trend of solar irradiation monthly means.</p> <div class="credits"> <p class="dwt_author">Cony, M.; Polo, J.; Martin, L.; Navarro, A.; Serra, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51369617"> <span id="translatedtitle"><span class="hlt">Energy</span> functions for rubber from microscopic <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The finite deformation theory of rubber and related materials is based on <span class="hlt">energy</span> functions that describe the macroscopic response of these materials under deformation. <span class="hlt">Energy</span> functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke's Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse</p> <div class="credits"> <p class="dwt_author">A. S. Johal; D. J. Dunstan</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42813577"> <span id="translatedtitle">An Analysis of the Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> of Elazig, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this study, the wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Elazig is statistically analyzed based on hourly measured wind speed data over the five-year period from 1998 to 2002. The probability density distributions are derived from cumulative distribution functions. Two probability density functions are fitted to the measured probability distribution on a yearly basis. The wind <span class="hlt">energy</span> <span class="hlt">potential</span> of the location is</p> <div class="credits"> <p class="dwt_author">E. Kavak Akpinar; S. Akpinar</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56784027"> <span id="translatedtitle">Appearance <span class="hlt">Potential</span> Studies. I. Determination of Excess Kinetic <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The metastable ion suppressor on the Consolidated Engineering Corporation Model 21—103 mass spectrometer has been used as a retarding <span class="hlt">potential</span> device to determine the excess kinetic <span class="hlt">energies</span> possessed by the ions formed during appearance <span class="hlt">potential</span> measurements. The suppressor setting at which an ion beam is extinguished is compared with the extinction setting for an ion beam with no excess <span class="hlt">energy</span>.</p> <div class="credits"> <p class="dwt_author">Richard J. Kandel</p> <p class="dwt_publisher"></p> <p class="publishDate">1954-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JGRB..112.3102S"> <span id="translatedtitle">Magnetic properties and <span class="hlt">potential</span> field modeling of the Peculiar Knob metamorphosed iron formation, South Australia: An analog for the source of the intense Martian magnetic <span class="hlt">anomalies</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Magnetic property measurements show that the strongly metamorphosed Peculiar Knob iron formation (IF), South Australia, is coarse-grained, high-grade hematite with variable amounts of magnetite and maghemite. This body exhibits a relatively low magnetic susceptibility (<0.3 SI) that cannot explain the associated intense magnetic <span class="hlt">anomaly</span>, 30,000 nT, in terms of induced magnetization alone. Peculiar Knob IF possesses an extremely intense (˜120 A m-1) remanence, directed steeply upward. This ancient remanence reinforces the local Earth's field (inclination -63°). A simple geological model, constrained by drilling and physical property measurements, explains both the observed magnetic and gravity <span class="hlt">anomalies</span>, consistent with the Poisson theorem. Koenigsberger ratios (Qs) of 10 and greater, as found here, are rare in nature. We postulate that acquisition of a thermoremanent magnetization (TRM) by the ore during postmetamorphic cooling from above the Curie/Néel temperature accounts for the intense remanence and high Qs. Although the hematite is in the multidomain size range, the coercivity is higher than expected. Also, the natural remanent magnetization (NRM) values are less than 10% of the expected value for a saturated TRM of hematite. On the basis of reflected light, scanning electron microscope observations, and rock magnetism, we propose that the common fine intergrowths of a very small amount of magnetite and/or maghemite within the hematite host are responsible for the relatively high coercivity and contribute to the NRM. These intergrowths are not normal exsolution lamellae and were likely present at high temperature. This study suggests that coarse-grained hematite-rich bodies that carry TRM and have been subjected to high-grade (>680°C) metamorphism may be possible sources for some of the prominent Martian <span class="hlt">anomalies</span>.</p> <div class="credits"> <p class="dwt_author">Schmidt, Phillip W.; McEnroe, Suzanne A.; Clark, David A.; Robinson, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=1093253"> <span id="translatedtitle">Radioactive <span class="hlt">anomaly</span> discrimination from spectral ratios</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method for discriminating a radioactive <span class="hlt">anomaly</span> from naturally occurring radioactive materials includes detecting a first number of gamma photons having <span class="hlt">energies</span> in a first range of <span class="hlt">energy</span> values within a predetermined period of time and detecting a second number of gamma photons having <span class="hlt">energies</span> in a second range of <span class="hlt">energy</span> values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having <span class="hlt">energies</span> in the first range and the second number of gamma photons having <span class="hlt">energies</span> in the second range, and determining that a radioactive <span class="hlt">anomaly</span> is present when the ratio exceeds a threshold value.</p> <div class="credits"> <p class="dwt_author">Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.arc.gov/images/reports/2006/energy/arc_altenergy_full.pdf"> <span id="translatedtitle">ECONOMIC DEVELOPMENT <span class="hlt">POTENTIAL</span> OF CONVENTIONAL AND <span class="hlt">POTENTIAL</span> ALTERNATIVE <span class="hlt">ENERGY</span> SOURCES IN APPALACHIAN COUNTIES</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Appalachia has significant <span class="hlt">potential</span> to contribute to both national <span class="hlt">energy</span> independence and to achieve regional import substitution in the <span class="hlt">energy</span> sector. There are significant opportunities for regional and community- scaled industrial development, especially in the areas of bio-fuels. Major choices exist in the selection of a minimum scale of production for many of the new technologies and <span class="hlt">energy</span> sources. Technologies</p> <div class="credits"> <p class="dwt_author">Amy Glasmeier; Tom Bell</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5249448"> <span id="translatedtitle">Preliminary evaluation of wind <span class="hlt">energy</span> <span class="hlt">potential</span>: Cook Inlet area, Alaska</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind <span class="hlt">energy</span> <span class="hlt">potential</span> for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for <span class="hlt">energy</span> <span class="hlt">potential</span>, and to recommend a monitoring program sufficient to quantify the <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Hiester, T.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49315612"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> studies on silane dimers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Intermolecular interactions and parameters for use in MD studies of large molecule systems have earlier been determined for hydrocarbons, carbon tetrahalides and sulfur. The paper reports a model representing nonbonding interactions between silane molecules, which were examined in the same way as hydrocarbons in an earlier (neopentane, isopropane, propane, and ethane) study. Intermolecular <span class="hlt">potentials</span> were determined for 11 combinations of</p> <div class="credits"> <p class="dwt_author">Riina Mahlanen; Tapani A. Pakkanen</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Synthetic+AND+Fuels&id=EJ096886"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Sources Pose Mining Problem</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as <span class="hlt">potential</span> sources of fuel. (CC)</p> <div class="credits"> <p class="dwt_author">Chemical and Engineering News, 1974</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22oil+shale%22&id=EJ096886"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Sources Pose Mining Problem</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as <span class="hlt">potential</span> sources of fuel. (CC)|</p> <div class="credits"> <p class="dwt_author">Chemical and Engineering News, 1974</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013APS..MARZ34007M"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> landscape contribution to the dynamic heat capacity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The dynamic heat capacity of a simple polymeric, model glass former was computed using molecular dynamics simulations by sinusoidally driving the temperature and recording the resultant <span class="hlt">energy</span>. The underlying <span class="hlt">potential</span> <span class="hlt">energy</span> landscape of the system was probed by taking a time series of particle positions and quenching them. The resulting dynamic heat capacity demonstrates that the long time relaxation is the direct result of dynamics resulting from the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape.</p> <div class="credits"> <p class="dwt_author">McCoy, John; Brown, Jonathan</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24041019"> <span id="translatedtitle">[Heredity of orthodontic <span class="hlt">anomalies</span>].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The survey of most common orthodontic <span class="hlt">anomalies</span> is given in this article. Authors, utilizing literature data, their own research as well as their therapeutic experience, try to elucidate the role of genetics in determination of dental <span class="hlt">anomalies</span> and malocclusion. They emphasise the fact that genetically determined orthodontic <span class="hlt">anomalies</span> are not easy to treat. Retention of treatment result could also be a problem. Occurrence of an <span class="hlt">anomaly</span> in one member of the family should lead to the examination of other members, especially the young ones. PMID:24041019</p> <div class="credits"> <p class="dwt_author">Svábová, Miroslava; Racek, Jaroslav; Marková, Marie</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=powerhouse&pg=4&id=EJ142450"> <span id="translatedtitle">Solar <span class="hlt">Energy</span>: <span class="hlt">Potential</span> Powerhouse for Jobs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Components of solar <span class="hlt">energy</span> systems are described, the development of the solar industry discussed, and implications are drawn for employment opportunities in industries (which may expand into new, solar-related areas) and in the professions, from law to sales, upon the advent of solar heating. (AJ)</p> <div class="credits"> <p class="dwt_author">McCallion, Tom</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/10819195"> <span id="translatedtitle">Biomass <span class="hlt">energy</span> in China and its <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass is a significant source of <span class="hlt">energy</span> in China today, particularly in rural areas. However, most current use of firewood and agricultural residues for cooking and heating brings with it detrimental effects of indoor air pollution and associated adverse health impacts. In addition, the time spent collecting biomass fuels creates a burden on women and children, which reduces their time</p> <div class="credits"> <p class="dwt_author">Li Jingjing; Zhuang Xing; Pat DeLaquil; Eric D. Larson</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/8243386"> <span id="translatedtitle">Registries of congenital <span class="hlt">anomalies</span>: EUROCAT.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Congenital <span class="hlt">anomalies</span> are one of the <span class="hlt">potential</span> adverse effects of the environment on reproductive health. Registries of congenital <span class="hlt">anomalies</span> are useful to detect abnormal frequencies, clusters, and trends. Such registries should meet a number of conditions, including an appropriate population denominator, an efficient system for collecting information, standardized diagnostic procedures, postmortem examinations of still-births, and linkage of records. The EUROCAT (European Registration of Congenital <span class="hlt">Anomalies</span> and Twins) program is a Concerted Action of the Commission of the European Communities initiated in 1979. One of its objectives is the surveillance of congenital <span class="hlt">anomalies</span> as related to environmental hazards. This surveillance system covers at present 350,000 births per year in 15 countries. A number of problems encountered in the development of EUROCAT and in the course of ongoing activities are reviewed: populations coverage, classification of malformations, coding, definition and coverage of late fetal death, registration of induced abortion, validation of diagnostic information, registration of late diagnosed cases, and maintenance of motivation in data collection. The issue of confidentiality and the need for strict safeguards for the protection of individual privacy are emphasized. PMID:8243386</p> <div class="credits"> <p class="dwt_author">Lechat, M F; Dolk, H</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://web.sdu.dk/bio/JHN_paper_07.pdf"> <span id="translatedtitle"><span class="hlt">ENERGY</span> CROP <span class="hlt">POTENTIALS</span> FOR BIOENERGY IN EU27</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Bioenergy gives Europe the best opportunity to reduce GHG emission and secure its <span class="hlt">energy</span> supply. However, the biomass production should not create additional pressure on the environment. Therefore, for presented calculations, biomass for <span class="hlt">energy</span> utilization originates from the cropland of the agricultural areas. Permanent grassland, areas of agro-forestry and pasture have not been taken into account. The <span class="hlt">energy</span> crops <span class="hlt">potential</span></p> <div class="credits"> <p class="dwt_author">Jens Bo; Holm Nielsen; Piotr Oleskowicz-Popiel; Teodorita Al Seadi</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57814288"> <span id="translatedtitle">Determination of wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Kirklareli-Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wind <span class="hlt">energy</span> has become an important source that has begun to be used for <span class="hlt">energy</span> in all over the world in recent years. In this study, by examining the wind <span class="hlt">potential</span> of the western region of Turkey in detail, an analysis was made. The data were provided by the State Meteorology Affairs Kirklareli Office. In Kirklareli region, the <span class="hlt">energy</span> produced</p> <div class="credits"> <p class="dwt_author">Sedat Ersoz; Tahir Cetin Akinci; H. Selcuk Nogay; Gokhan Dogan</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002EGSGA..27.4832F"> <span id="translatedtitle">Evaluation Of The <span class="hlt">Potential</span> Of Gravity <span class="hlt">Anomalies</span> From Satellite Altimetry By Merging With Gravity Data From Various Sources - Application To Coastal Areas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The region of the Azores archipelago is a natural laboratory for gravity field studies, due to its peculiar geodynamic and oceanographic features, related to rough structures in the gravity field. As a consequence, gravity data from various sources have been collected in the scope of various observation campaigns. The available data set comprises marine, airborne and satellite derived gravity anoma- lies. The satellite data have been derived by altimetric inversion of satellite altimeter data (Topex/Poseidon and ERS), to which processing methods tuned for optimal data recovery in coastal areas have been applied. Marine and airborne data along coinci- dent profiles, some of them coincident with satellite tracks, were collected during an observation campaign that took place in the Azores in 1997, in the scope of the Eu- ropean Union project AGMASCO. In addition, gravity <span class="hlt">anomalies</span> from an integrated GPS/INS system installed aboard an aircraft, have also been computed from the posi- tion and navigation data collected during the AGMASCO campaign. This paper presents a comparison study between all available data sets. In particular, the improvement of the satellite derived <span class="hlt">anomalies</span> near the shoreline is assessed with respect to existing satellite derived models and with the high resolution geopotential model GPM98. The impact of these data sets in the regional geoid improvement will also be presented.</p> <div class="credits"> <p class="dwt_author">Fernandes, M. J.; Bastos, L.; Tomé, P.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://web.engr.orst.edu/~wong/papers/pdf/panda.KDD.2005.pdf"> <span id="translatedtitle">Population-wide <span class="hlt">Anomaly</span> Detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Early detection of disease outbreaks, particularly an outbreak due to an act of bioterrorism, is a critically important problem due to the <span class="hlt">potential</span> to reduce both morbidity and mortality. One of the most lethal bioterrorism scenarios is a large-scale release of inhalational anthrax. The Population-wide <span class="hlt">Anomaly</span> Detection and Assessment (PANDA) algorithm (1) is specifically designed to monitor health-care data for</p> <div class="credits"> <p class="dwt_author">Weng-Keen Wong; Gregory F. Cooper; Denver H. Dash; John D. Levander; John N. Dowling; William R. Hogan; Michael M. Wagner</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/10162735"> <span id="translatedtitle"><span class="hlt">ENERGY</span> CONSERVATION <span class="hlt">POTENTIAL</span> OF URBAN TREE PLANTING</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Findings from monitoring and computer simu- lation studies indicate that trees can be a cost-effective <span class="hlt">energy</span> conservation measure for some electric utilities. Our simula- tions suggest that a single 25-ft tall tree can reduce annual heating and cooling costs of a typical residence by 8 to 12 percent ($10-25). Assuming annual savings of $10 per household, a nationwide residential tree</p> <div class="credits"> <p class="dwt_author">E. Gregory McPherson; Rowan A. Rowntree</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7033880"> <span id="translatedtitle">Realizing the <span class="hlt">potential</span> of nuclear <span class="hlt">energy</span>. [Monograph</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in <span class="hlt">energy</span> demand made possible by conservation, we will need a 35% growth in total <span class="hlt">energy</span> for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total <span class="hlt">energy</span> and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures. (DCK)</p> <div class="credits"> <p class="dwt_author">Walske, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6663818"> <span id="translatedtitle"><span class="hlt">Energy</span> savings <span class="hlt">potential</span> from <span class="hlt">energy</span>-conserving irrigation systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report systematically compares, within a consistent framework, the technical and economic characteristics of <span class="hlt">energy</span>-conserving irrigation systems with those of conventional irrigation systems and to determine total <span class="hlt">energy</span> savings. Levelized annual costs of owning and operating both <span class="hlt">energy</span>-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in <span class="hlt">energy</span> costs and irrigation conditions in each state. Market penetration of <span class="hlt">energy</span>-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual <span class="hlt">energy</span> savings were computed by matching the <span class="hlt">energy</span> savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of <span class="hlt">energy</span>-conserving systems are lower than the levelized annual costs of conventional systems.</p> <div class="credits"> <p class="dwt_author">Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49317341"> <span id="translatedtitle"><span class="hlt">Potential</span> problems and limitations of <span class="hlt">energy</span> conservation and <span class="hlt">energy</span> efficiency</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We discuss that whilst <span class="hlt">energy</span> conservation and <span class="hlt">energy</span> efficiency both ultimately have the same goal they attempt to achieve this via very different approaches. We then discuss how both options face significant barriers to ultimately successfully reduce electricity consumption.</p> <div class="credits"> <p class="dwt_author">Matt Croucher</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52911636"> <span id="translatedtitle">Breakup threshold <span class="hlt">anomaly</span> in the near-barrier elastic scattering of Li6+Sn116,112</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have measured the elastic scattering of the weakly bound Li6 on the Sn116,112 targets, at <span class="hlt">energies</span> close to the Coulomb barrier. The <span class="hlt">energy</span> dependence of the interaction <span class="hlt">potential</span> has been investigated by two different methods and the presence of the breakup threshold <span class="hlt">anomaly</span> is observed. We have also derived the total reaction cross sections for the above systems and</p> <div class="credits"> <p class="dwt_author">N. N. Deshmukh; S. Mukherjee; D. Patel; N. L. Singh; P. K. Rath; B. K. Nayak; D. C. Biswas; S. Santra; E. T. Mirgule; L. S. Danu; Y. K. Gupta; A. Saxena; R. K. Choudhury; R. Kumar; J. Lubian; C. C. Lopes; E. N. Cardozo; P. R. S. Gomes</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60700088"> <span id="translatedtitle">Breakup threshold <span class="hlt">anomaly</span> in the near-barrier elastic scattering of Li+{sup 116,112}Sn</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have measured the elastic scattering of the weakly bound Li on the {sup 116,112}Sn targets, at <span class="hlt">energies</span> close to the Coulomb barrier. The <span class="hlt">energy</span> dependence of the interaction <span class="hlt">potential</span> has been investigated by two different methods and the presence of the breakup threshold <span class="hlt">anomaly</span> is observed. We have also derived the total reaction cross sections for the above systems</p> <div class="credits"> <p class="dwt_author">N. N. Deshmukh; S. Mukherjee; D. Patel; N. L. Singh; P. K. Rath; B. K. Nayak; D. C. Biswas; S. Santra; E. T. Mirgule; L. S. Danu; Y. K. Gupta; A. Saxena; R. K. Choudhury; R. Kumar; J. Lubian; C. C. Lopes; E. N. Cardozo; P. R. S. Gomes</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58898052"> <span id="translatedtitle"><span class="hlt">Energy</span> Storage:Maximising Irelands Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Ireland plan's to generate up to 40% of its electricity from wind generation by 2020. This thesis outlines the problems that may be faced by the electricity system and illustrates the benefits that large scale <span class="hlt">energy</span> storage can bring to the electricity system when trying to integrate large amounts of wind <span class="hlt">energy</span>. <span class="hlt">Energy</span> storage is currently a topical subject in</p> <div class="credits"> <p class="dwt_author">Damien Kelly</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/x087570684807146.pdf"> <span id="translatedtitle"><span class="hlt">Anomalies</span> in Political Economy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Results in cognitive psychology and experimental economics indicate that under identifiable conditions individuals do not act in an economically rational way. These results are important for Political Economy. <span class="hlt">Anomalies</span> appear in the behaviour of voters, politicans and administrators. Economic markets do not fully eliminate <span class="hlt">anomalies</span> in the aggregation process. It is shown that political aggregation by democracy, bargaining or bureaucracy</p> <div class="credits"> <p class="dwt_author">Bruno S. Frey; Reiner Eichenberger</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41977336"> <span id="translatedtitle">Relationships between available <span class="hlt">potential</span> <span class="hlt">energy</span>, kinetic <span class="hlt">energy</span>, and extratropical cyclone activity within east coast cyclogenetic regions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Interrelationships between the available <span class="hlt">potential</span> <span class="hlt">energy</span> and kinetic <span class="hlt">energy</span> associated with extratropical cyclones are examined for portions of the First GARP Global Experiment (FGGE) year. The study is confirmed to the cyclogenetically active regions encompassing the eastern coasts of Asia and North America. Calculations of vertically integrated available <span class="hlt">potential</span> <span class="hlt">energy</span> (APE) and kinetic <span class="hlt">energy</span> (KE) are done for an active</p> <div class="credits"> <p class="dwt_author">John V. Zapotocny</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JChPh.138p4311A"> <span id="translatedtitle">Global permutationally invariant <span class="hlt">potential</span> <span class="hlt">energy</span> surface for ozone forming reaction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We constructed new global <span class="hlt">potential</span> <span class="hlt">energy</span> surface for O + O2 --> O3 reaction. It is based on high level electronic structure theory calculations and employs fitting by permutationally invariant polynomial functions. This method of surface construction takes full advantage of permutation symmetry of three O nuclei and allows reducing dramatically the number of ab initio data points needed for accurate surface representation. New <span class="hlt">potential</span> <span class="hlt">energy</span> surface offers dramatic improvement over older surface of ozone in terms of dissociation <span class="hlt">energy</span> and behavior along the minimum <span class="hlt">energy</span> path. It can be used to refine the existing theories of ozone formation.</p> <div class="credits"> <p class="dwt_author">Ayouz, Mehdi; Babikov, Dmitri</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18331099"> <span id="translatedtitle">Polarizable interaction <span class="hlt">potential</span> for water from coupled cluster calculations. I. Analysis of dimer <span class="hlt">potential</span> <span class="hlt">energy</span> surface.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A six-dimensional interaction <span class="hlt">potential</span> for the water dimer has been fitted to ab initio interaction <span class="hlt">energies</span> computed at 2510 dimer configurations. These <span class="hlt">energies</span> were obtained by combining the supermolecular second-order <span class="hlt">energies</span> extrapolated to the complete basis set limit from up to quadruple-zeta quality basis sets with the contribution from the coupled-cluster method including single, double, and noniterative triple excitations computed in a triple-zeta quality basis set. All basis sets were augmented by diffuse functions and supplemented by midbond functions. The <span class="hlt">energies</span> have been fitted using an analytic form with the induction component represented by a polarizable term, making the <span class="hlt">potential</span> directly transferable to clusters and the bulk phase. Geometries and <span class="hlt">energies</span> of stationary points on the <span class="hlt">potential</span> surface agree well with the results of high-level ab initio geometry optimizations. PMID:18331099</p> <div class="credits"> <p class="dwt_author">Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C; van der Avoird, Ad</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE20131060845"> <span id="translatedtitle">Estimating the <span class="hlt">Energy</span>-Efficiency <span class="hlt">Potential</span> in the Eastern Interconnection.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Comprehensive and integrated resource planning considers the <span class="hlt">potential</span> for increases in <span class="hlt">energy</span> efficiency to reduce the requirements for new generation and transmission investments. This study supports such planning efforts by developing robust estimates ...</p> <div class="credits"> <p class="dwt_author">M. A. Brown Y. Wang</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=UCRL52196"> <span id="translatedtitle"><span class="hlt">Potential</span> Effects of Geothermal <span class="hlt">Energy</span> Conversion on Imperial Valley Ecosystems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This workshop on <span class="hlt">potential</span> effects of geothermal <span class="hlt">energy</span> conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project...</p> <div class="credits"> <p class="dwt_author">J. H. Shinn</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012IAUS..286..410C"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> stored by planets and grand minima events</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recently, Wolff & Patrone (2010), have developed a simple but very interesting model by which the movement of the Sun around the barycentre of the Solar system could create <span class="hlt">potential</span> <span class="hlt">energy</span> that could be released by flows pre-existing inside the Sun. The authors claim that it is the first mechanism showing how planetary movements can modify internal structure in the Sun that can be related to solar cycle. In this work we point out limitations of mentioned mechanism (which is based on interchange arguments), which could be inapplicable to a real star. Then, we calculate the temporal evolution of <span class="hlt">potential</span> <span class="hlt">energy</span> stored in zones of Sun's interior in which the <span class="hlt">potential</span> <span class="hlt">energy</span> could be most efficiently stored taking into account detailed barycentric Sun dynamics. We show strong variations of <span class="hlt">potential</span> <span class="hlt">energy</span> related to Maunder Minimum, Dalton Minimum and the maximum of Cycle 22, around 1990. We discuss briefly possible implications of this putative mechanism to solar cycle specially Grand Minima events.</p> <div class="credits"> <p class="dwt_author">Cionco, Rodolfo G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE88700433"> <span id="translatedtitle"><span class="hlt">Potential</span> Use of Ionising <span class="hlt">Energy</span> Treatment in Queensland's Horticultural Industries.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> application of ionising <span class="hlt">energy</span> treatment technology in Queensland falls into three categories: insect disinfestation, disease control and quality improvement. The technology fulfils the requirements of a disinfestation treatment against Quee...</p> <div class="credits"> <p class="dwt_author">N. W. Heather P. T. Sheehy I. F. Muirhead B. I. Brown R. N. Hassall</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2008924389"> <span id="translatedtitle"><span class="hlt">Potential</span> Impacts of Nanotechnology on <span class="hlt">Energy</span> Transmission Applications and Needs.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The application of nanotechnologies to <span class="hlt">energy</span> transmission has the <span class="hlt">potential</span> to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of...</p> <div class="credits"> <p class="dwt_author">D. Elcock</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9315357"> <span id="translatedtitle">Theoretical Characterization of the <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface for NH + NO.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configu...</p> <div class="credits"> <p class="dwt_author">S. P. Walch</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9315358"> <span id="translatedtitle">Global <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface for ArH2.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We describe a simple analytic representation of the ArH2 <span class="hlt">potential</span> <span class="hlt">energy</span> surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and ...</p> <div class="credits"> <p class="dwt_author">D. W. Schwenke S. P. Walch P. R. Taylor</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010APS..DNP.NH009B"> <span id="translatedtitle">Mass <span class="hlt">Energy</span> Equivalence Formula Must Include Rotational and Vibrational Kinetuic <span class="hlt">Energies</span> as Well As <span class="hlt">Potential</span> <span class="hlt">Energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Originally Einstein proposed the the mass-<span class="hlt">energy</span> equivalence at low speeds as E=mc^2 + 1/2 mv^2. However, a mass may also be rotating and vibrating as well as moving linearly. Although small, these kinetic <span class="hlt">energies</span> must be included in formulating a true mathematical statement of the mass-<span class="hlt">energy</span> equivalence. Also, gravitational, electromagneic and magnetic <span class="hlt">potential</span> <span class="hlt">energies</span> must be included in the mass-<span class="hlt">energy</span> equivalence mathematical statement. While the kinetic <span class="hlt">energy</span> factors may differ in each physical situation such as types of vibrations and rotations, the basic equation for the mass- <span class="hlt">energy</span> equivalence is therefore E = m0c^2 + 1/2m0v^2 + 1/2I2?+ 1/2kx^2 + WG+ WE+ WM.</p> <div class="credits"> <p class="dwt_author">Brekke, Stewart</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52645386"> <span id="translatedtitle">Dynamics and <span class="hlt">Potential</span> <span class="hlt">Energy</span> Landscape of Supercooled Water</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present molecular dynamics simulations of the SPC\\/E model of water to explore the connection between dynamic properties and the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape. We calculate the configurational entropy and instantaneous normal mode (or local <span class="hlt">potential</span> <span class="hlt">energy</span> curvature) spectrum in the same region of the phase diagram where the dynamics are well-described by the predictions of the mode-coupling theory. We find</p> <div class="credits"> <p class="dwt_author">Francis W. Starr; Emilia Lanave; Antonio Scala; Francesco Sciortino; H. Eugene Stanley</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21289458"> <span id="translatedtitle">Fusion at deep subbarrier <span class="hlt">energies</span>: <span class="hlt">potential</span> inversion revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">For a single <span class="hlt">potential</span> barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at <span class="hlt">energies</span> well below the Coulomb barrier and directly determine the inter-nucleus <span class="hlt">potential</span> between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier <span class="hlt">energies</span> are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus <span class="hlt">potentials</span> for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological <span class="hlt">potentials</span>. We discuss a consequence of such thick <span class="hlt">potential</span> by fitting the inverted <span class="hlt">potentials</span> with the Bass function.</p> <div class="credits"> <p class="dwt_author">Hagino, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Rowley, N. [Institut Pluridisciplinaire Hubert Curien (UMR 7178: CNRS/ULP), 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-04</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26542719"> <span id="translatedtitle"><span class="hlt">Energy</span> characteristics and savings <span class="hlt">potential</span> in office buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present paper reports the finding of a monitoring campaign in 186 office buildings in Greece. The specific <span class="hlt">energy</span> consumption of the buildings for heating, cooling, and lighting purposes, as well as the consumption of the office equipment is reported. The impact of the used systems, techniques, and components is investigated. The <span class="hlt">potential</span> and the limitations of various <span class="hlt">energy</span> conservation</p> <div class="credits"> <p class="dwt_author">M. Santamouris; A. Argiriou; E. Dascalaki; C. Balaras; A. Gaglia</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60593472"> <span id="translatedtitle">Market <span class="hlt">Potential</span> for Non-electric Applications of Nuclear <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper presents results of a recent IAEA study to assess the market <span class="hlt">potential</span> for non-electric applications of nuclear <span class="hlt">energy</span> in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, <span class="hlt">energy</span> supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While</p> <div class="credits"> <p class="dwt_author">T. Konishi; S. Kononov; J. Kupitz; A. McDonald; H. H. Rogner; S. Nisan</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61369566"> <span id="translatedtitle">Overview of worldwide biomass <span class="hlt">energy</span> <span class="hlt">potential</span> and applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">As costs for traditional <span class="hlt">energy</span> sources have risen around the world, more attention has been focused on biomass <span class="hlt">energy</span> sources. These activities have occurred in both developed and undeveloped countries. This paper examines the need for alternate fuels on a worldwide basis, and discusses the <span class="hlt">potential</span> for biomass fuel use in certain regions. In addition, the technologies for using biomass</p> <div class="credits"> <p class="dwt_author">J. L. Birchfield; W. S. Bulpitt</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61320237"> <span id="translatedtitle">Regional <span class="hlt">potentials</span> for on-farm <span class="hlt">energy</span> production alternatives</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Alternative <span class="hlt">energy</span> production options available to farmers in the United States are not equally adaptable throughout various regions. A literature review assesses indirect solar technologies for on-farm <span class="hlt">energy</span> production and was the basis for selecting certain alternatives for further study. A regional assessment of the feasibility and <span class="hlt">potential</span> profitability of on-farm alcohol production from grain, direct combustion, and gasification of</p> <div class="credits"> <p class="dwt_author">Dauve</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2008941430"> <span id="translatedtitle">U. S. Building-Sector <span class="hlt">Energy</span> Efficiency <span class="hlt">Potential</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This paper presents an estimate of the <span class="hlt">potential</span> for <span class="hlt">energy</span> efficiency improvements in the U.S. building sector by 2030. The analysis uses the <span class="hlt">Energy</span> Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies p...</p> <div class="credits"> <p class="dwt_author">J. Koomey P. Biermayer R. Brown S. Borgeson</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49473322"> <span id="translatedtitle">The <span class="hlt">potential</span> role of renewable <span class="hlt">energy</span> in Moldova</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The European Union (EU) is developing an increasingly close relationship with Moldova, going beyond cooperation, to gradual economic integration and a deepening of political cooperation. This fact indicates that eventually the adoption of EU legislation in the <span class="hlt">energy</span> sector is a necessity. Therefore, the provision of a clear picture of the country’s renewable <span class="hlt">energy</span> <span class="hlt">potential</span> is considered essential, bearing in</p> <div class="credits"> <p class="dwt_author">Charikleia Karakosta; Stamatia Dimopoulou; Haris Doukas; John Psarras</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40875287"> <span id="translatedtitle">Brazilian waste <span class="hlt">potential</span>: <span class="hlt">energy</span>, environmental, social and economic benefits</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> <span class="hlt">energy</span> that could be produced from solid wastes in Brazil tops 50TWh. Equivalent to some 17% of the nation's total power consumption at costs that are competitive with more traditional options, this would also reduce greenhouse gases emissions. Moreover, managing wastes for <span class="hlt">energy</span> generation purposes could well open up thousands of jobs for unskilled workers. Related to power</p> <div class="credits"> <p class="dwt_author">Luciano Basto Oliveira; Luiz Pinguelli Rosa</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39934711"> <span id="translatedtitle">On conversion between <span class="hlt">potential</span> and kinetic <span class="hlt">energy</span> in the atmosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary The mechanism of conversion between <span class="hlt">potential</span> and kinetic <span class="hlt">energy</span> in different parts of the Northern Hemisphere is discussed. In low latitudes, between the Equator and 30° N, a large part of the total <span class="hlt">energy</span> conversion occurs in connection with a mean meridional circulation, the «Hadley circulation». In this the rate of conversion amounts to about 35×1010 kilojoules per second</p> <div class="credits"> <p class="dwt_author">E. Palmén</p> <p class="dwt_publisher"></p> <p class="publishDate">1961-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70012003"> <span id="translatedtitle">Gravitational <span class="hlt">potential</span> as a source of earthquake <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the <span class="hlt">energy</span> of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of <span class="hlt">energy</span> from the gravitational <span class="hlt">potential</span> of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake <span class="hlt">energy</span> comes directly from a net decrease in gravitational <span class="hlt">potential</span> <span class="hlt">energy</span>. The gravitational <span class="hlt">potential</span> <span class="hlt">energy</span> released at the time of the earthquake is split between the <span class="hlt">energy</span> released by the earthquake, including work done in the fault zone and an increase in stored elastic strain <span class="hlt">energy</span>. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.</p> <div class="credits"> <p class="dwt_author">Barrows, L.; Langer, C. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE85007393"> <span id="translatedtitle"><span class="hlt">Potential</span> for <span class="hlt">Energy</span> Conservation in the Cement Industry.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report assesses the <span class="hlt">potential</span> for <span class="hlt">energy</span> conservation in the cement industry. <span class="hlt">Energy</span> consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its prim...</p> <div class="credits"> <p class="dwt_author">B. A. Garrett-Price</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41886193"> <span id="translatedtitle">U.S. Carbon offset <span class="hlt">potential</span> using biomass <span class="hlt">energy</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A previous analysis had assumed that about 20% of 1990 U.S. C emissions could be avoided by the substitution of biomass <span class="hlt">energy</span> technologies for fossil <span class="hlt">energy</span> technologies at some point in the future. Short-rotation woody crop (SRWC) plantations were found to be the dedicated feedstock supply system (DFSS) offering the greatest C emission reduction <span class="hlt">potential</span>. High efficiency biomass to electricity</p> <div class="credits"> <p class="dwt_author">L. L. Wright; E. E. Hughes</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982STIN...8323863F"> <span id="translatedtitle">The Department of Defense <span class="hlt">energy</span> vulnerabilities: <span class="hlt">Potential</span> problems and observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Department of Defense is almost entirely dependent on civilian <span class="hlt">energy</span> supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of <span class="hlt">potential</span> vulnerabilities to the continual and timely supply of <span class="hlt">energy</span> to both the civilian and military sectors. These include denial of the <span class="hlt">energy</span> resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of <span class="hlt">energy</span> from the civilian sector to the military. General vulnerabilities of the existing <span class="hlt">energy</span> supply system are identified, along with the <span class="hlt">potential</span> for armed aggression (including terrorist and sabotage activities) against the <span class="hlt">energy</span> network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.</p> <div class="credits"> <p class="dwt_author">Freiwald, D. A.; Berger, M. E.; Roach, J. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.eia.gov/renewable/archive/neaf0001.pdf"> <span id="translatedtitle"><span class="hlt">Energy</span> Consumption and Renewable <span class="hlt">Energy</span> Development <span class="hlt">Potential</span> on Indian Lands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eia.doe.gov/reports/">EIA Publications</a></p> <p class="result-summary">Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the <span class="hlt">potential</span> for renewable resources development of Indian lands.</p> <div class="credits"> <p class="dwt_author">Fred Mayes</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22090176"> <span id="translatedtitle">Vascular <span class="hlt">anomalies</span> in children.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Vascular <span class="hlt">anomalies</span> are divided in two major categories: tumours (such as infantile hemangiomas) and malformations. Hemangiomas are common benign neoplasms that undergo a proliferative phase followed by stabilization and eventual spontaneous involution, whereas vascular malformations are rare structural <span class="hlt">anomalies</span> representing morphogenetic errors of developing blood vessels and lymphatics. It is important to properly diagnose vascular <span class="hlt">anomalies</span> early in childhood because of their distinct differences in morbidity, prognosis and need for a multidisciplinary management. We discuss a number of characteristic clinical features as clues for early diagnosis and identification of associated syndromes. PMID:22090176</p> <div class="credits"> <p class="dwt_author">Weibel, L</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21579889"> <span id="translatedtitle">Nonrelativistic scale <span class="hlt">anomaly</span>, and composite operators with complex scaling dimensions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Research Highlights: > Nonrelativistic scale <span class="hlt">anomaly</span> leads to operators with complex scaling dimensions. > We study an operator O={psi}{psi} in quantum mechanics with 1/r{sup 2} potenial. > The propagator of the composite operator is analytically computed. - Abstract: It is demonstrated that a nonrelativistic quantum scale <span class="hlt">anomaly</span> manifests itself in the appearance of composite operators with complex scaling dimensions. In particular, we study nonrelativistic quantum mechanics with an inverse square <span class="hlt">potential</span> and consider a composite s-wave operator O={psi}{psi}. We analytically compute the scaling dimension of this operator and determine the propagator <0|TOO{sup +}|0>. The operator O represents an infinite tower of bound states with a geometric <span class="hlt">energy</span> spectrum. Operators with higher angular momenta are briefly discussed.</p> <div class="credits"> <p class="dwt_author">Moroz, Sergej, E-mail: s.moroz@thphys.uni-heidelberg.de [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/453497"> <span id="translatedtitle">Electrical <span class="hlt">energy</span> and cost savings <span class="hlt">potential</span> at DOD facilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The US Department of Defense (DOD) has been mandated to reduce <span class="hlt">energy</span> consumption and costs by 20% from 1985 to 2000 and by 30% from 1985 to 2005. Reduction of electrical <span class="hlt">energy</span> consumption at DOD facilities requires a better understanding of <span class="hlt">energy</span> consumption patterns and <span class="hlt">energy</span> and financial savings <span class="hlt">potential</span>. This paper utilizes two independent studies--EDA (End-Use Disaggregation Algorithm) and MEIP (Model <span class="hlt">Energy</span> Installation Program)--and whole-installation electricity use data obtained from a state utility to estimate electrical <span class="hlt">energy</span> conservation <span class="hlt">potential</span> (ECP) and cost savings <span class="hlt">potential</span> (CSP) at the Fort Hood, Texas, military installation and at DOD nationwide. At Fort Hood, the authors estimated an annual electricity savings of 62.2 GWh/yr (18%), a peak demand savings of 10.1 MW (14%), and an annual <span class="hlt">energy</span> cost savings of $6.5 million per year. These savings could be attained with an initial investment of $41.1 million, resulting in a simple payback of 6.3 years. Across the DOD, they estimated an annual electricity savings of 4,900 GWh/yr, a peak demand savings of 694 MW, and an annual <span class="hlt">energy</span> cost savings of $316 million per year. The estimated cost savings is 16% of the total nationwide DOD 1993 annual <span class="hlt">energy</span> costs. These savings could be attained with an initial investment of $1.23 billion, resulting in a simple payback of 3.9 years.</p> <div class="credits"> <p class="dwt_author">Konopacki, S.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Lister, L.; DeBaille, L. [Army Construction Engineering Research Labs., Champaign, IL (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/42534"> <span id="translatedtitle"><span class="hlt">Energy</span> <span class="hlt">potential</span> of municipal solid waste is limited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Energy</span> recovery from municipal solid waste has the <span class="hlt">potential</span> for making only a limited contribution to the nation`s overall <span class="hlt">energy</span> production. Although the current contribution of waste-derived <span class="hlt">energy</span> production is less than one-half of 1 percent of the nation`s total <span class="hlt">energy</span> Supply, DOE has set a goal for <span class="hlt">energy</span> from waste at 2 percent of the total supply by 2010. The industry`s estimates show a smaller role for waste as an <span class="hlt">energy</span> source in the future. The <span class="hlt">energy</span> <span class="hlt">potential</span> from waste is limited not only by the volume and <span class="hlt">energy</span> content of the waste itself, but also by the factors affecting the use of waste disposal options, including public opposition and the availability of financing. <span class="hlt">Energy</span> production from waste combustors and from landfill gases generates pollutants, although these are reduced through current regulations that require the use of emissions control technology and define operational criteria for the facilities. Although DOE estimates that one-third of the <span class="hlt">energy</span> available from waste is available in the form of <span class="hlt">energy</span> savings through the recycling of materials, the Department`s research in this area is ongoing.</p> <div class="credits"> <p class="dwt_author">NONE</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005PEPI..148..149K"> <span id="translatedtitle">Grain size dependent <span class="hlt">potential</span> for self generation of magnetic <span class="hlt">anomalies</span> on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Early in the history of planetary evolution portions of Martian crust became magnetized by dynamo-generated magnetic field. A lateral distribution of the secondary magnetic field generated by crustal remanent sources containing magnetic carriers of certain grain size and mineralogy is able to produce an ambient magnetic field of larger intensity than preexisting dynamo. This ambient field is capable of magnetizing portions of deeper crust that cools through its blocking temperatures in an absence of dynamo. We consider both magnetite (Fe3O4) and hematite (?-Fe2O3) as minerals contributing to the overall magnetization. Analysis of magnetization of magnetic minerals of various grain size and concentration reveals that magnetite grains less than 0.01 mm in size, and hematite grains larger than 0.01 mm in size can become effective magnetic source capable of magnetizing magnetic minerals contained in surrounding volume. Preexisting crustal remanence (for example ˜250 A/m relates to 25% of multi-domain hematite) can trigger a self-magnetizing process that can continue in the absence of magnetic dynamo and continue strengthening and/or weakening magnetic <span class="hlt">anomalies</span> on Mars. Thickness of the primary magnetic layer and concentration of magnetic carriers allow specification of the temperature gradient required to trigger a self-magnetization process.</p> <div class="credits"> <p class="dwt_author">Kletetschka, Gunther; Ness, Norman F.; Connerney, J. E. P.; Acuna, M. H.; Wasilewski, P. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60537300"> <span id="translatedtitle"><span class="hlt">Potential</span> impact of <span class="hlt">energy</span> farming for conserving the fossil-fuel <span class="hlt">energy</span> requirements of food production</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> of supplying the <span class="hlt">energy</span> requirements for food production by utilizing waste biomass was investigated. It was found that the <span class="hlt">energy</span> available was more than sufficient even after conversion of waste biomass to more versatile fuel forms. The concept of utilizing waste biomass has the <span class="hlt">potential</span> for conserving fossil fuels. Only the <span class="hlt">energy</span> balance aspects of utilizing waste biomass</p> <div class="credits"> <p class="dwt_author">R. C. Bailie; D. M. Doner; J. D. Henry</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE88750488"> <span id="translatedtitle">Skyrmions and <span class="hlt">Anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The author summarizes the works presented at the meeting on Skyrmions and <span class="hlt">anomalies</span>. He divides the principal issues of this workshop into five categories: QCD effective Lagrangians, chiral bags and the Cheshire cat principle, strangeness problem, phenome...</p> <div class="credits"> <p class="dwt_author">M. Rho</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12728394"> <span id="translatedtitle">Recurrent chest wall <span class="hlt">anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Chest wall <span class="hlt">anomalies</span> are a heterogeneous group of malformations requiring repair. Recurrence and the need for secondary repair may occur. Congenital <span class="hlt">anomalies</span>, including bifid sternum, pentalogy of Cantrell, Jeunes's syndrome and Poland's <span class="hlt">anomaly</span>, rarely recur. Pectus carinatum may recur in the original surgical area or an adjacent area and most often recurs in patients who undergo repair before completion of teenage growth. Pectus excavatum may recur in approximately 5% of patients. Simple recurrence, floating sternum, or Acquired Jeune's syndrome may result. All of these would require reoperation. Each chest wall <span class="hlt">anomaly</span> recurrence requires an individualized approach to timing and type of repair. Overall excellent results should be obtained for operative repair of recurrences. PMID:12728394</p> <div class="credits"> <p class="dwt_author">Colombani, Paul M</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20871460"> <span id="translatedtitle">Axial <span class="hlt">anomaly</span> of QED in a strong magnetic field and noncommutative <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Adler-Bell-Jackiw (ABJ) <span class="hlt">anomaly</span> of a 3+1 dimensional QED is calculated in the presence of a strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a dimensional reduction from D=4 to D=2 dimensions occurs in the longitudinal sector of the low <span class="hlt">energy</span> effective field theory. In the chiral limit, the resulting <span class="hlt">anomaly</span> is therefore comparable with the axial <span class="hlt">anomaly</span> of a two-dimensional massless Schwinger model. It is further shown that the U{sub A}(1) <span class="hlt">anomaly</span> of QED in a strong magnetic field is closely related to the nonplanar axial <span class="hlt">anomaly</span> of a conventional noncommutative U(1) gauge theory.</p> <div class="credits"> <p class="dwt_author">Sadooghi, N. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Physics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Jafari Salim, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12938640"> <span id="translatedtitle"><span class="hlt">Anomalies</span> and gravity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Anomalies</span> in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F ? F = dC arise in the chiral <span class="hlt">anomaly</span>, even when coupled to gravity. Implications</p> <div class="credits"> <p class="dwt_author">Eckehard W. Mielke; Eckehard W</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009ChPhB..18..462Z"> <span id="translatedtitle">GENERAL: Hawking radiation from the charged and magnetized BTZ black hole via covariant <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper discusses Hawking radiation from the charged and magnetized Bañados-Teitelboim-Zanelli (BTZ) black hole from the viewpoint of <span class="hlt">anomaly</span>, initiated by Robinson and Wilczek recently. It reconstructs the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges to redefine an equivalent charge and gauge <span class="hlt">potential</span>. It employs the covariant <span class="hlt">anomaly</span> cancellation method to determine the compensating fluxes of charge flow and <span class="hlt">energy</span>-momentum tensor, which are shown to match with those of the 2-dimensional blackbody radiation at the Hawking temperature exactly.</p> <div class="credits"> <p class="dwt_author">Zeng, Xiao-Xiong; Yang, Shu-Zheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/791179"> <span id="translatedtitle">Savings <span class="hlt">potential</span> of <span class="hlt">ENERGY</span> STAR (registered trademark) voluntary labeling programs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In 1993 the U.S. Environmental Protection Agency (EPA) introduced <span class="hlt">ENERGY</span> STAR (registered trademark), a voluntary labeling program designed to identify and promote <span class="hlt">energy</span>-efficient products. Since then EPA, now in partnership with the U.S. Department of <span class="hlt">Energy</span> (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present <span class="hlt">potential</span> <span class="hlt">energy</span>, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future <span class="hlt">ENERGY</span> STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy <span class="hlt">ENERGY</span> STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future <span class="hlt">energy</span> prices, and higher or lower rates of carbon emission by electricity generators. The <span class="hlt">potential</span> savings of <span class="hlt">ENERGY</span> STAR are substantial. If all purchasers chose <span class="hlt">Energy</span> Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their <span class="hlt">energy</span> bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)</p> <div class="credits"> <p class="dwt_author">Webber, Carrie A.; Brown, Richard E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-06-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhRvA..76e3831Z"> <span id="translatedtitle">Optimizing <span class="hlt">potential</span> <span class="hlt">energy</span> functions for maximal intrinsic hyperpolarizability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We use numerical optimization to study the properties of (1) the class of one-dimensional <span class="hlt">potential</span> <span class="hlt">energy</span> functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized <span class="hlt">potentials</span>, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized <span class="hlt">potential</span> <span class="hlt">energy</span> functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the <span class="hlt">energy</span> ratio between the two dominant states. All optimized <span class="hlt">potentials</span> are found to obey the three-level ansatz to within about 1%. Many of these <span class="hlt">potential</span> <span class="hlt">energy</span> functions may be implementable in multiple quantum well structures. The subset of <span class="hlt">potentials</span> with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability ?xxxint than higher-dimensional systems.</p> <div class="credits"> <p class="dwt_author">Zhou, Juefei; Szafruga, Urszula B.; Watkins, David S.; Kuzyk, Mark G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMGC41D0861Z"> <span id="translatedtitle">Global Onshore Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> and Its Uncertainties</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Wind power, a clean and renewable <span class="hlt">energy</span> resource, can play an important role in providing <span class="hlt">energy</span> and reducing greenhouse gas emissions. Yet there are substantial and important uncertainties about the <span class="hlt">potential</span> costs and supplies of wind that influence our ability to understand today the strategic role of wind power in the future. A detailed global assessment of onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> and its uncertainties will help decision-makers develop policies and strategies to meet <span class="hlt">energy</span> and environmental goals. In this study, we assess the technical and economic <span class="hlt">potential</span> of onshore wind <span class="hlt">energy</span> and its spatial distribution using reanalysis wind speed data from the National Centers for Environmental Modeling (Figure 1). The study focuses in particular in exploring a range of uncertainties that impact the economic <span class="hlt">potential</span> of wind power by constructing quantitative scenarios for eight key physical and economic parameters. We present quantification of the impact of uncertainties in these parameters, focusing on areas relevant to geoscience research (Figure 2). The amount of economic <span class="hlt">potential</span> of wind <span class="hlt">energy</span> depends strongly on several uncertain parameters such as wind speed, turbine cost, and land-suitability. The distribution of wind speed at fine temporal and spatial scales is a key parameter, but is not well quantified in many regions of the world. Reanalysis datasets with more accurate wind fields are a first step, along with computationally tractable downscaling methodologies. Another key assumption is land-suitability, which is the fraction of a particular land-cover type assumed to be available for wind farm development. There is currently little scientific basis for land-suitability assumptions. While some of the data needed for progress in these areas is readily available, such as high-resolution land-cover and terrain data, further advances are likely to require new methodologies and inter-disciplinary collaboration. We outline a number of areas where further research is needed to construct improved estimates of global wind <span class="hlt">energy</span> <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Zhou, Y.; Clarke, L.; Luckow, P.; Smith, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IAU...261.0702A"> <span id="translatedtitle">Astrometric Solar-System <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There are four unexplained <span class="hlt">anomalies</span> connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital <span class="hlt">energy</span> per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two <span class="hlt">anomalies</span> are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth <span class="hlt">anomaly</span> is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four <span class="hlt">anomalies</span> have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.</p> <div class="credits"> <p class="dwt_author">Anderson, John D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3465402"> <span id="translatedtitle">Saturation wind power <span class="hlt">potential</span> and its implications for wind <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Wind turbines convert kinetic to electrical <span class="hlt">energy</span>, which returns to the atmosphere as heat to regenerate some <span class="hlt">potential</span> and kinetic <span class="hlt">energy</span>. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation <span class="hlt">potential</span> not identified previously from physical principles or turbine properties. These saturation <span class="hlt">potentials</span> are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-<span class="hlt">energy</span> economy.</p> <div class="credits"> <p class="dwt_author">Jacobson, Mark Z.; Archer, Cristina L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21945161"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> production from algae on marginal land in China.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This study is aimed to systematically estimate marginal land resources with different grades (total area; land with certain eco-environmental-economic feasibility; centralized reserve land) in China, and evaluate <span class="hlt">potential</span> <span class="hlt">energy</span> production from microalgae on marginal lands in the long-, mid- and near-term, based on a model. The annual <span class="hlt">potential</span> <span class="hlt">energy</span> production from algae in total marginal land of China (APEMC) was estimated to 4.19 billion standard coal equivalent (tce), far more than total annual <span class="hlt">energy</span> consumption equivalent in China (TECCE) in 2007. For microalgae with 35% lipid content, the APEMC in the mid-term would be 37.6-65.8% of the TECCE in 2007. The corresponding annual CO(2) emission mitigation by replacement of fossil fuels by algal bioenergy would be 4.27-7.44 billiont. Although Southwest China provides the highest <span class="hlt">potential</span> algae production in the long-term, Northwest China provides the highest value in the near-term. PMID:21945161</p> <div class="credits"> <p class="dwt_author">Zhang, Qingtao; Ma, Jiong; Qiu, Guoyu; Li, Li; Geng, Shu; Hasi, E; Li, Cheng; Wang, Guangyi; Li, Xiaoyan</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-08-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26457422"> <span id="translatedtitle">Fossil <span class="hlt">energy</span> savings <span class="hlt">potential</span> of sugar cane bio-<span class="hlt">energy</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">One important rationale for bio-<span class="hlt">energy</span> systems is their <span class="hlt">potential</span> to save fossil <span class="hlt">energy</span>. Converting a conventional sugar mill into a bio-<span class="hlt">energy</span> process plant would contribute to fossil <span class="hlt">energy</span> savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches</p> <div class="credits"> <p class="dwt_author">Thu Lan T. Nguyen; John E. Hermansen; Masayuki Sagisaka</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981STIN...8211589K"> <span id="translatedtitle">Modeling <span class="hlt">energy</span>-conservation <span class="hlt">potentials</span> of community <span class="hlt">energy</span>-system technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A mathematical model is presented for estimating <span class="hlt">energy</span>-conservation <span class="hlt">potentials</span> of community-<span class="hlt">energy</span>-system technologies in meeting community <span class="hlt">energy</span> service demands. The model is formulated to identify optimal community composition, technology choices, and fuel use under various fuel price, <span class="hlt">energy</span> service demand, and other system-parameter assumptions.</p> <div class="credits"> <p class="dwt_author">Kleeman, P. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003EAEJA.....8011A"> <span id="translatedtitle">Satellite <span class="hlt">anomalies</span> caused by disturbed space weather</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Seven types of satellite <span class="hlt">anomalies</span> are discussed and examples are given from historical reports. Types of <span class="hlt">anomalies</span> and their causes are: o Single Event Upsets (SEU) caused by penetrating energetic ions; o Deep dielectric ("bulk") charging (DDC) by high-<span class="hlt">energy</span> electrons; o Surface charging by thermal electrons causing electrostatic discharge (ESD) and Phantom Commands (PC); o Magnetopause crossing events (MPE) that reverse ambient fields at geostationary satellite altitudes; o dB/dT of field-aligned currents causing satellite tumbling at lower altitudes; o Optical effects of high-<span class="hlt">energy</span> ions on star-trackers and limb sensors; and o Power panel degradation from high-<span class="hlt">energy</span> ions. Recent and older events are considered, in part because the problems recur even though technology has changed to take them into account and awareness of the conditions causing them seems widespread. Systematic <span class="hlt">anomaly</span> reporting is requested to increase the significance of records collected for particular events.</p> <div class="credits"> <p class="dwt_author">Allen, J. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20709512"> <span id="translatedtitle">Constraints on the redshift dependence of the dark <span class="hlt">energy</span> <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We develop a formalism to characterize the shape and the redshift evolution of the dark <span class="hlt">energy</span> <span class="hlt">potential</span>. Our formalism makes use of quantities similar to the horizon-flow parameters in inflation and is general enough that can deal with multiscalar quintessence scenarios, exotic matter components, and higher-order curvature corrections to General Relativity. We show how the shape of the dark <span class="hlt">energy</span> <span class="hlt">potential</span> can be recovered nonparametrically using this formalism and we present approximations analogous to the ones relevant to slow-roll inflation. Since presently available data do not allow a nonparametric and exact reconstruction of the <span class="hlt">potential</span>, we consider a general parametric description. This reconstruction can also be used in other approaches followed in the literature (e.g., the reconstruction of the redshift evolution of the dark <span class="hlt">energy</span> equation of state w(z)). Using observations of passively evolving galaxies and supernova data we derive constraints on the dark <span class="hlt">energy</span> <span class="hlt">potential</span> shape in the redshift range 0.1<z<1.8. Our findings show that at the 1{sigma} level the <span class="hlt">potential</span> is consistent with being constant, although at the same level of confidence variations cannot be excluded with current data. We forecast constraints achievable with future data from the Atacama Cosmology Telescope.</p> <div class="credits"> <p class="dwt_author">Simon, Joan; Verde, Licia; Jimenez, Raul [Dept. of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982JPSJ...51.1243S"> <span id="translatedtitle">Interionic <span class="hlt">Potential</span> and Stacking Fault <span class="hlt">Energy</span> of Copper</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Formation <span class="hlt">energy</span> of an intrinsic stacking fault in copper is calculated by the use of two interionic <span class="hlt">potential</span> functions given by Prakash and Lucasson. A modified Ewald method is used to calculate lattice sum of long-range interionic <span class="hlt">potentials</span> expressed by Vp \\sin\\cos(2kFr)/(2kFr)3. Numerical results show that 1) the two <span class="hlt">potential</span> functions give 60.5 erg/cm2 and 78.3 erg/cm2 to the intrinsic stacking fault <span class="hlt">energy</span>, and 2) the <span class="hlt">energy</span> comes mainly from a long-range interaction but not from a short-range one. These <span class="hlt">potentials</span> are used also for calculations of binding <span class="hlt">energies</span> of fcc, bcc and hcp structures. Numerical results show that the fcc structure is stable and the binding <span class="hlt">energies</span> of the bcc and the hcp structures are larger than that of the fcc by 0.06 eV/ion and 0.01 eV/ion, respectively.</p> <div class="credits"> <p class="dwt_author">Sugiyama, Akira</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/c77r426505u2602u.pdf"> <span id="translatedtitle">Assessment of wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Gaza Strip</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The analysis of collected wind data at two sites in the Gaza Strip, namely, Gaza City and Gaza International Airport in Rafah\\u000a city, is presented. The two sites are candidates for remote area wind <span class="hlt">energy</span> applications. The purpose of this paper is to\\u000a present the results of the assessment of wind <span class="hlt">energy</span> <span class="hlt">potential</span> in the Gaza Strip in order to</p> <div class="credits"> <p class="dwt_author">Juma Yousuf Alaydi</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010APS..MAR.K1264H"> <span id="translatedtitle">Calculation of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces using explicitly correlated methods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent developments in explicitly correlated wavefunctions mean that highly accurate <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for small molecules can be obtained with a low computational cost. Key components of these composite surfaces will be presented, including extrapolation of explicitly correlated CCSD(T) correlation <span class="hlt">energies</span> and correcting for core-valence correlation effects using F12 methods. Recent applications will be highlighted, including high-resolution spectroscopy of CCN, CCO^+ and COC^+.</p> <div class="credits"> <p class="dwt_author">Hill, Grant; Peterson, Kirk A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1001516"> <span id="translatedtitle">Reaction Path Optimization with Holonomic Constraints and Kinetic <span class="hlt">Energy</span> <span class="hlt">Potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum <span class="hlt">energy</span> paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic <span class="hlt">energy</span> <span class="hlt">potential</span> of each replica with its <span class="hlt">potential</span> <span class="hlt">energy</span> function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic <span class="hlt">energy</span> <span class="hlt">potentials</span> of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic <span class="hlt">energy</span> <span class="hlt">potentials</span> (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C?eq-to-Cax isomerization of an alanine dipeptide, the ?C?- to-¹C? transition of an ?-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose <span class="hlt">energy</span> barriers are consistent with experimental measurements. Further, we develop a method based on the work <span class="hlt">energy</span> theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of <span class="hlt">energy</span> barriers.</p> <div class="credits"> <p class="dwt_author">Brokaw, Jason B.; Haas, Kevin R.; Chu, Jhih-wei</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-11</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/36013111"> <span id="translatedtitle">Cadmium tolerance and accumulation in eight <span class="hlt">potential</span> <span class="hlt">energy</span> crops</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The production of <span class="hlt">energy</span> crops that can be used for biodiesel production is a sustainable approach for the removal of metal pollutants by phytoremediation. This study investigated the cadmium (Cd) accumulation and tolerance of eight <span class="hlt">potential</span> <span class="hlt">energy</span> crops. After growth for 28 days in substrates containing 0, 50, 100 or 200 mg Cd·kg?1, seedlings were evaluated for growth parameters, chlorophyll content, chlorophyll</p> <div class="credits"> <p class="dwt_author">Gangrong Shi; Qingsheng Cai</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MPLA...2850079B"> <span id="translatedtitle"><span class="hlt">Energy</span>-Dependent <span class="hlt">Potential</span> and Normalization of Wave Function</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The problem of normalization related to <span class="hlt">energy</span>-dependent <span class="hlt">potentials</span> is examined in the context of the path integral approach, and a justification is given. As examples, the harmonic oscillator and the hydrogen atom (radial) where, respectively the frequency and the Coulomb's constant depend on <span class="hlt">energy</span>, are considered and their propagators determined. From their spectral decomposition, we have found that the wave functions extracted are correctly normalized.</p> <div class="credits"> <p class="dwt_author">Benchikha, A.; Chetouani, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17887836"> <span id="translatedtitle">Preferential attachment during the evolution of a <span class="hlt">potential</span> <span class="hlt">energy</span> landscape.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It has previously been shown that the network of connected minima on a <span class="hlt">potential</span> <span class="hlt">energy</span> landscape is scale-free, and that this reflects a power-law distribution for the areas of the basins of attraction surrounding the minima. Here, the aim is to understand more about the physical origins of these puzzling properties by examining how the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape of a 13-atom cluster evolves with the range of the <span class="hlt">potential</span>. In particular, on decreasing the range of the <span class="hlt">potential</span> the number of stationary points increases and thus the landscape becomes rougher and the network gets larger. Thus, the evolution of the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape can be followed from one with just a single minimum to a complex landscape with many minima and a scale-free pattern of connections. It is found that during this growth process, new edges in the network of connected minima preferentially attach to more highly connected minima, thus leading to the scale-free character. Furthermore, minima that appear when the range of the <span class="hlt">potential</span> is shorter and the network is larger have smaller basins of attraction. As there are many of these smaller basins because the network grows exponentially, the observed growth process thus also gives rise to a power-law distribution for the hyperareas of the basins. PMID:17887836</p> <div class="credits"> <p class="dwt_author">Massen, Claire P; Doye, Jonathan P K</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-09-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993PhLB..302..230B"> <span id="translatedtitle">A new <span class="hlt">anomaly</span> matching condition?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We formulate ``Witten'' matching conditions for confining gauge theories. The conditions are analogous to 't Hooft's, but involve Witten's global SU(2) <span class="hlt">anomaly</span>. Using a group theoretic result of Geng, Marshak, Zhao and Okubo, we show that if the fourth homotopy group of the flavor group H is trivial (?4(H)=0) then realizations of massless composite fermions that satisfy the't Hooft conditions also satisfy the Witten conditions. If ?4(H) is nontrivial, the new matching conditioms can yield additional information about the low <span class="hlt">energy</span> spectrum of the theory. We give a simple physical proof of Geng et al.'s result. Junior Fellow, Harvard Society of Fellows.</p> <div class="credits"> <p class="dwt_author">Bhansali, Vineer; Hsu, Stephen D. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004cosp...35.2804R"> <span id="translatedtitle">Space Weather Applications and Spacecraft <span class="hlt">Anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The first priority for the use of space weather information for improving spacecraft performance is in the diagnosis of <span class="hlt">anomalies</span> so that designs and procedures may be optimised to limit their occurrence. The association of certain spacecraft <span class="hlt">anomalies</span> with the space environment is well established on the basis of statistical correlations with space weather indicators. However, the global indicators commonly used are frequently only an indirect measure of the aspects of the environment that causes the <span class="hlt">anomaly</span>. Better diagnosis of <span class="hlt">anomalies</span> should be possible by processing raw data to extract physically relevant parameters. Spacecraft operators can rapidly diagnose <span class="hlt">anomalies</span> and even anticipate or avoid them if provided with now-casts and short-term forecasts of relevant hazard indicators. This is the goal of space weather applications like GEOSHAFT, part of ESA's network of space weather prototype services. The space weather indices currently available need to be supplemented by data that is more directly related to the way the space environment interacts with electronic equipment, e.g. for the outer belt, charging current is preferred to electron flux; and for solar particle events LET is preferred to <span class="hlt">energy</span>. Instruments such as Merlin are focussed on collecting data which will aid <span class="hlt">anomaly</span> diagnosis.</p> <div class="credits"> <p class="dwt_author">Rodgers, D.; Dyer, C.; Clucas, S.; Hunter, K.; Ryden, K.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=specific+AND+heat&pg=6&id=ED190755"> <span id="translatedtitle">Unified Technical Concepts. Module 7: <span class="hlt">Potential</span> and Kinetic <span class="hlt">Energy</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This concept module on <span class="hlt">potential</span> and kinetic <span class="hlt">energy</span> is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to…</p> <div class="credits"> <p class="dwt_author">Technical Education Research Center, Waco, TX.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48914266"> <span id="translatedtitle">Observed variations of tropical convective available <span class="hlt">potential</span> <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Data from selected tropical radiosonde stations (located between 25°S and 25°N) are used to compute multidecadal trends in convective available <span class="hlt">potential</span> <span class="hlt">energy</span> (CAPE). Positive trends slightly outnumber negative trends, with the greatest concentration of positive trends occurring in the western Pacific Ocean and the Caribbean Sea. Analysis shows that positive and negative CAPE trends are primarily driven by same-signed trends</p> <div class="credits"> <p class="dwt_author">Charlotte A. DeMott; David A. Randall</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42813764"> <span id="translatedtitle">Investigation of Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> in Kartalkaya-Bolu, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this study, wind characteristics and the wind <span class="hlt">energy</span> <span class="hlt">potential</span> of the Kartalkaya skinning center in the west of the Black Sea region of Turkey were analyzed using wind speed data collected during the period from 2000 to 2006. The wind speed distribution curves of the investigated location were obtained by using the Weibull and Rayleigh probability density functions based</p> <div class="credits"> <p class="dwt_author">Aynur Ucar; Figen Balo</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=gravitation&pg=3&id=EJ346097"> <span id="translatedtitle">Teaching Field Concept and <span class="hlt">Potential</span> <span class="hlt">Energy</span> at A-Level.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the <span class="hlt">potential</span> <span class="hlt">energy</span> in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)</p> <div class="credits"> <p class="dwt_author">Poon, C. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/43104744"> <span id="translatedtitle">DIATOMIC MOLECULES OF ASTROPHYSICAL INTEREST: IONIZATION <span class="hlt">POTENTIALS</span> AND DISSOCIATION <span class="hlt">ENERGIES</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A critical analysis was made of the ionization <span class="hlt">potentials</span> and ; dissociation <span class="hlt">energies</span> of 148 diatomic molecules and molecular ions that have ; astrophysical significance. This summary provides useful data for the ; calculation of molecular abundances and for discussions of dissociation ; equllibria and ionization processes. It also points out the great need for ; further experimental and theoretical</p> <div class="credits"> <p class="dwt_author">P. G. Wilkinson</p> <p class="dwt_publisher"></p> <p class="publishDate">1963-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41042183"> <span id="translatedtitle">Investigation of wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Muradiye in Manisa, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The purpose of this survey is about to investigate wind <span class="hlt">energy</span> <span class="hlt">potential</span> of Celal Bayar University Muradiye Campus. The experimental system was commissioned in November 2006 and performance monitoring tests have been conducted since then. Author also undertake a case study to investigate how varying wind speeds considered affect the electricity production of the wind turbine system and to estimate</p> <div class="credits"> <p class="dwt_author">Leyla Ozgener</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA022829"> <span id="translatedtitle">The <span class="hlt">Potential</span> of Indigenous <span class="hlt">Energy</span> Resources for Remote Military Bases.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An examination of the <span class="hlt">potential</span> of solar radiation, wind, and ocean waves to provide thermal and electrical power to standard remote military bases. Sufficient <span class="hlt">energy</span> is shown to be available in the North Atlantic, Indian, and Pacific Oceans, and the Cari...</p> <div class="credits"> <p class="dwt_author">T. T. Connors P. F. Morrison C. C. Mow R. G. Salter</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19477192"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces for the Fission of the Actinide Nuclei</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Collective <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces have been systematically calculated for the symmetric fission of the five isotopes of the elements Th, Ph, Cm, Cf, Fm and No and the sight isotopes of the element U. The calculation is performed on the basis of Strutinsky's prescription in which the liquid drop model of v. Groote and Hilf and the modified two-center harmonic</p> <div class="credits"> <p class="dwt_author">Akira Iwamoto; Shuhei Yamaji; Shota Suekane; Kichinosuke Harada</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE85700015"> <span id="translatedtitle">Laplacian of the <span class="hlt">Potential</span> and the Order of <span class="hlt">Energy</span> Levels.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We prove that for non-relativistic two-body systems the order of <span class="hlt">energy</span> levels with the same principal Coulomb quantum number is controlled by the sign of the Laplacian of the (spherically symmetric) <span class="hlt">potential</span>. If it is positive, the levels with larger an...</p> <div class="credits"> <p class="dwt_author">B. Baumgartner H. Grosse A. Martin</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26606094"> <span id="translatedtitle">Green roofs; building <span class="hlt">energy</span> savings and the <span class="hlt">potential</span> for retrofit</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Green roofs are a passive cooling technique that stop incoming solar radiation from reaching the building structure below. Many studies have been conducted over the past 10 years to consider the <span class="hlt">potential</span> building <span class="hlt">energy</span> benefits of green roofs and shown that they can offer benefits in winter heating reduction as well as summer cooling.This paper reviews the current literature and</p> <div class="credits"> <p class="dwt_author">H. F. Castleton; V. Stovin; S. B. M. Beck; J. B. Davison</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.energy-based.nrct.go.th/Article/Ts-3%20biomass%20energy%20potential%20for%20electricity%20generation%20in%20thailand.pdf"> <span id="translatedtitle">Biomass <span class="hlt">Energy</span> <span class="hlt">Potential</span> for Electricity Generation in Thailand</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Thailand has high <span class="hlt">potential</span> of biomass to utilize for <span class="hlt">energy</span>. The processing of agricultural produces in the agro-based industries in Thailand results in remarkable amount of biomass residues. These residues are considered as waste and are, generally, disposed off through various methods such as open dumping or inefficiently combust as heat sources in industries. One of the most efficient uses</p> <div class="credits"> <p class="dwt_author">Jerasorn Santisirisomboon</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7089985"> <span id="translatedtitle"><span class="hlt">Energy</span> use in irrigation and the <span class="hlt">potential</span> for <span class="hlt">energy</span> savings by application of <span class="hlt">energy</span>-saving technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The findings of a study to assess the cost saving and market penetration of the <span class="hlt">energy</span> conserving technologies are reported. The study of the <span class="hlt">potential</span> for saving <span class="hlt">energy</span> in irrigation covered the following field projects: low-pressure center pivot sprinklers, low-<span class="hlt">energy</span> precision application, automated gated pipe, well development, pump redesign, computerized scheduling, and instrumented scheduling. The total quantity of <span class="hlt">energy</span> consumed annually by irrigated agriculture and the <span class="hlt">potential</span> for <span class="hlt">energy</span> savings are discussed.</p> <div class="credits"> <p class="dwt_author">Clark, M.A.; Patton, W.P.; Wilfert, G.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/935754"> <span id="translatedtitle">Global <span class="hlt">Potential</span> of <span class="hlt">Energy</span> Efficiency Standards and Labeling Programs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report estimates the global <span class="hlt">potential</span> reductions in greenhouse gas emissions by 2030 for <span class="hlt">energy</span> efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of <span class="hlt">energy</span> efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around <span class="hlt">energy</span>, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to <span class="hlt">energy</span> efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the <span class="hlt">potential</span> impacts of a single policy type, applied on a global scale. The policy addressed in this report is <span class="hlt">Energy</span> Efficient Standards and Labeling (EES&L) for <span class="hlt">energy</span>-consuming equipment, which has now been implemented in over 60 countries. Mandatory <span class="hlt">energy</span> performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the <span class="hlt">energy</span>-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the <span class="hlt">potential</span> of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.</p> <div class="credits"> <p class="dwt_author">McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/842870"> <span id="translatedtitle"><span class="hlt">Potentials</span> and policy implications of <span class="hlt">energy</span> and material efficiency improvement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">There is a growing awareness of the serious problems associated with the provision of sufficient <span class="hlt">energy</span> to meet human needs and to fuel economic growth world-wide. This has pointed to the need for <span class="hlt">energy</span> and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing <span class="hlt">energy</span> and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of <span class="hlt">energy</span> supply, and adopting environmentally advantageous <span class="hlt">energy</span> supply. A large <span class="hlt">potential</span> exists for <span class="hlt">energy</span> savings through <span class="hlt">energy</span> and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing <span class="hlt">energy</span> efficiency improvements. There are serious barriers to <span class="hlt">energy</span> efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired <span class="hlt">energy</span> efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large <span class="hlt">potential</span> for improved use of many materials in industrialized countries.</p> <div class="credits"> <p class="dwt_author">Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59195667"> <span id="translatedtitle">Self-<span class="hlt">Potential</span> <span class="hlt">Anomalies</span> and CO2 Flux on Active Volcanoes: Insights from Time and Spatial Series at Masaya, Telica, and Cerro Negro, Nicaragua</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Considerable effort worldwide has gone into monitoring heat and mass transfer at active volcanoes, as this information may provide clues about changes in volcanic activity and impending eruptions. One method used is the self-<span class="hlt">potential</span> (SP) method, which has been employed on volcanoes to map hydrothermal systems and structural features and to monitor changes in the hydrothermal system due to volcanic</p> <div class="credits"> <p class="dwt_author">Heather L. Lehto</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1980JGR....85.8295S"> <span id="translatedtitle">Gravity <span class="hlt">anomalies</span> on Venus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many <span class="hlt">anomalies</span> were detected, and there is considerable correlation with radar altimetry topography (Pettengill et al., 1980). The amplitudes of the <span class="hlt">anomalies</span> are relatively mild and similar to those on earth at this resolution. Calculations for isostatic adjustment reveal that significant compensation has occurred.</p> <div class="credits"> <p class="dwt_author">Sjogren, W. L.; Phillips, R. J.; Birkeland, P. W.; Wimberly, R. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60544562"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation <span class="hlt">potential</span> of the US Department of <span class="hlt">Energy</span> interim commercial building standards</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This report describes a project conducted to demonstrate the whole-building <span class="hlt">energy</span> conservation <span class="hlt">potential</span> achievable from full implementation of the US Department of <span class="hlt">Energy</span> (DOE) Interim <span class="hlt">Energy</span> Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of <span class="hlt">energy</span> performance standards for commercial buildings were established by the <span class="hlt">Energy</span> Conservation Standards for New Buildings Act</p> <div class="credits"> <p class="dwt_author">D. L. Hadley; M. A. Halverson</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..1410076B"> <span id="translatedtitle">Turkey's High Temperature Geothermal <span class="hlt">Energy</span> Resources and Electricity Production <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Turkey is in the first 7 countries in the world in terms of <span class="hlt">potential</span> and applications. Geothermal <span class="hlt">energy</span> which is an alternative <span class="hlt">energy</span> resource has advantages such as low-cost, clean, safe and natural resource. Geothermal <span class="hlt">energy</span> is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production <span class="hlt">potential</span> was investigated.</p> <div class="credits"> <p class="dwt_author">Bilgin, Ö.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24137982"> <span id="translatedtitle">[Impact of the method choice and the extent of correction on the development of visual evoked <span class="hlt">potentials</span> in children and adolescents with refractive <span class="hlt">anomalies</span>].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The article discusses a possible impact of different refraction correction methods, providing full or partial correction, on visual acuity and the development of visual evoked <span class="hlt">potentials</span> in children and adolescents with myopia and myopic astigmatism. The accuracy of identification of visual evoked <span class="hlt">potentials</span> depends, as shown in the article, on the extent of the correction chosen and the method used. In childhood the visual system is very susceptible to visual afferent deficit. The permanent deficit of visual information impedes further maturation of the visual analyzer, i.e. the development of central vision, binocular vision, and stereopsis. In high myopia it is important to decide not only on the extent of the correction but also on the method to use. In patients wearing soft contact lenses the visual evoked <span class="hlt">potentials</span> have more regular shape, amplitude, and latency. The introduction of silicone hydrogel and daily disposal contact lenses, spherical and toric (for astigmatism correction), provided an opportunity to solve hygienic problems associated with contact lens use in children and adolescents and to decrease the risk of hypoxia complications. PMID:24137982</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/941430"> <span id="translatedtitle">U.S. Building-Sector <span class="hlt">Energy</span> Efficiency <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper presents an estimate of the <span class="hlt">potential</span> for <span class="hlt">energy</span> efficiency improvements in the U.S. building sector by 2030. The analysis uses the <span class="hlt">Energy</span> Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency <span class="hlt">potential</span> studies. These prior studies include the U.S. Department of <span class="hlt">Energy</span>'s Scenarios for a Clean <span class="hlt">Energy</span> Future (CEF) study and a recent study of natural gas savings <span class="hlt">potential</span> in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved <span class="hlt">energy</span>. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved <span class="hlt">energy</span> of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual <span class="hlt">energy</span> bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).</p> <div class="credits"> <p class="dwt_author">Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JChPh.139o4506T"> <span id="translatedtitle">Unified interatomic <span class="hlt">potential</span> and <span class="hlt">energy</span> barrier distributions for amorphous oxides</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics <span class="hlt">potentials</span> have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body <span class="hlt">potentials</span> modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the <span class="hlt">potential</span> accurately produces <span class="hlt">energy</span> barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these <span class="hlt">potentials</span> will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.</p> <div class="credits"> <p class="dwt_author">Trinastic, J. P.; Hamdan, R.; Wu, Y.; Zhang, L.; Cheng, Hai-Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6605703"> <span id="translatedtitle">Assessment of market <span class="hlt">potential</span> of compressed air <span class="hlt">energy</span> storage systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An assessment of the <span class="hlt">potential</span> market for compressed air <span class="hlt">energy</span> storage (CAES) systems in the United States is developed based on projections of CAES installations in areas of the country where CAES sales are most likely to occur before the year 2000. These projections are made using the utility storage commercialization model developed for the Electric Power Research Institute. Because the market <span class="hlt">potential</span> for CAES depends critically on CAES's performance and economics relative to competitive technologies, the model is used to project installations of other central-station storage technologies as well. Extensive sensitivity analyses are conducted to determine the variables having the largest impact on the <span class="hlt">potential</span> market for CAES. The market projections indicate that if the utility operating environment improves, there will be a significant market <span class="hlt">potential</span> for CAES systems.</p> <div class="credits"> <p class="dwt_author">Boyd, D.W.; Buckley, O.E.; Clark, C.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24160526"> <span id="translatedtitle">Unified interatomic <span class="hlt">potential</span> and <span class="hlt">energy</span> barrier distributions for amorphous oxides.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics <span class="hlt">potentials</span> have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body <span class="hlt">potentials</span> modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the <span class="hlt">potential</span> accurately produces <span class="hlt">energy</span> barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these <span class="hlt">potentials</span> will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications. PMID:24160526</p> <div class="credits"> <p class="dwt_author">Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.phys.lsu.edu/faculty/adams/PDF%20files/PRL_82_4284_1999.pdf"> <span id="translatedtitle">Exchange Fields and the Finite Bias Tunneling <span class="hlt">Anomaly</span> in Paramagnetically Limited Superconducting Al Films</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present an experimental investigation of the finite bias <span class="hlt">anomaly</span> in the tunneling density of states of superconducting Al films above the paramagnetic limit. We show that the <span class="hlt">anomaly</span> is a manifestation of a new fluctuation mechanism that forms a pseudogap near the Zeeman <span class="hlt">energy</span>. The field dependence of the <span class="hlt">anomaly</span> <span class="hlt">energy</span> is in good agreement with the recent theory</p> <div class="credits"> <p class="dwt_author">V. Yu. Butko; P. W. Adams; I. L. Aleiner</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1035715"> <span id="translatedtitle">Technical <span class="hlt">Potential</span> of Solar <span class="hlt">Energy</span> to Address <span class="hlt">Energy</span> Poverty and Avoid GHG Emissions in Africa</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This analysis explores the technical <span class="hlt">potential</span> of photovoltaics (PV) or concentrating solar power (CSP) to address <span class="hlt">energy</span> poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of <span class="hlt">Energy</span>'s National Renewable <span class="hlt">Energy</span> Laboratory (NREL).</p> <div class="credits"> <p class="dwt_author">Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54265875"> <span id="translatedtitle">Gravity <span class="hlt">anomalies</span> on Venus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many <span class="hlt">anomalies</span> were detected, and there is considerable</p> <div class="credits"> <p class="dwt_author">W. L. Sjogren; R. J. Phillips; P. W. Birkeland; R. N. Wimberly</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5506860"> <span id="translatedtitle">Superstrings, <span class="hlt">anomalies</span> and unification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This volume contains the lectures covering the main lines of developments in the presently most active field of particle physics: string field theory, <span class="hlt">anomalies</span>, unification and physics beyond the Planck length. The lectures are generally pedagogical in style, designed at the postdoctoral level, but at the same time they introduce one to the most recent results in the field.</p> <div class="credits"> <p class="dwt_author">Martinis, M.; Andric, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23277922"> <span id="translatedtitle">NVU dynamics. III. Simulating molecules at constant <span class="hlt">potential</span> <span class="hlt">energy</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This is the final paper in a series that introduces geodesic molecular dynamics at constant <span class="hlt">potential</span> <span class="hlt">energy</span>. This dynamics is entitled NVU dynamics in analogy to standard <span class="hlt">energy</span>-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011); T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, ibid. 135, 104102 (2011)], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant <span class="hlt">potential</span> <span class="hlt">energy</span>. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant <span class="hlt">potential</span> <span class="hlt">energy</span> for atomic systems. The rigid-bond NVU algorithm conserves <span class="hlt">potential</span> <span class="hlt">energy</span>, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nosé-Hoover NVT dynamics. Since Nose?-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems. PMID:23277922</p> <div class="credits"> <p class="dwt_author">Ingebrigtsen, Trond S; Dyre, Jeppe C</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002JChPh.116..666B"> <span id="translatedtitle">An accurate analytic H4 <span class="hlt">potential</span> <span class="hlt">energy</span> surface</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The interaction <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) of H4 is of great importance for quantum chemistry as a test case for molecule-molecule interactions. It is also required for a detailed understanding of certain astrophysical processes, namely collisional excitation and dissociation of H2 in molecular clouds, at densities too low to be accessible experimentally. The 6101 ab initio H4 <span class="hlt">energies</span> reported in 1991 by Boothroyd et al. demonstrated large inaccuracies in analytic H4 surfaces available at that time. Some undesirable features remained in the more accurate H4 surfaces fitted to these <span class="hlt">energies</span> by Keogh and by Aguado et al., due in part to the relatively sparse coverage of the six-dimensional H4 conformation space afforded by the 6101 ab initio <span class="hlt">energies</span>. To improve the coverage, 42 079 new ab initio H4 <span class="hlt">energies</span> were calculated, using Buenker's multiple reference (single and) double excitation configuration interaction program. Here the lowest excited states were computed as well as the ground state, and <span class="hlt">energies</span> for the original 6101 conformations were recomputed. The ab initio <span class="hlt">energies</span> have an estimated rms ``random'' error of ~0.5 millihartree and a systematic error of ~1 millihartree (0.6 kcal/mol). A new analytical H4 PES was fitted to these 48 180 ab initio <span class="hlt">energies</span> (and to an additional 13 367 points generated at large separations), yielding a significant improvement over previous H4 surfaces. This new PES has an rms error of 1.43 millihartree relative to these 48 180 ab initio <span class="hlt">energies</span> (the fitting procedure used a reduced weight for high <span class="hlt">energies</span>, yielding a weighted rms error of 1.15 millihartree for these 48 180 ab initio <span class="hlt">energies</span>). For the 39 064 ab initio <span class="hlt">energies</span> that lie below twice the H2 dissociation <span class="hlt">energy</span>, the new PES has an rms error of 0.95 millihartree. These rms errors are comparable to the estimated error in the ab initio <span class="hlt">energies</span> themselves. The new PES also fits the van der Waals well to an accuracy of about 5%. For relatively compact conformations (<span class="hlt">energies</span> higher than the H2 dissociation <span class="hlt">energy</span>), the conical intersection between the ground state and the first excited state is the largest source of error in the analytic surface. The position of this conical intersection forms a somewhat complicated three-dimensional hypersurface in the six-dimensional conformation space of H4. A large portion of the position of the conical intersection has been mapped out, but trying to include the conical intersection explicitly in an analytic surface is beyond the scope of the present paper.</p> <div class="credits"> <p class="dwt_author">Boothroyd, A. I.; Martin, P. G.; Keogh, W. J.; Peterson, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22715929"> <span id="translatedtitle">Evaluation of global onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> and generation costs.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this study, we develop an updated global estimate of onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the <span class="hlt">potential</span> to supply a significant portion of the world <span class="hlt">energy</span> needs, although this <span class="hlt">potential</span> varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind <span class="hlt">potential</span> under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind <span class="hlt">potential</span> is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929</p> <div class="credits"> <p class="dwt_author">Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010LRR....13....4T"> <span id="translatedtitle">The Pioneer <span class="hlt">Anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ˜ 6× 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 ± 1.33)× 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse square law has become known as the Pioneer <span class="hlt">anomaly</span>; the nature of this <span class="hlt">anomaly</span> remains unexplained. In this review, we summarize the current knowledge of the physical properties of the <span class="hlt">anomaly</span> and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the <span class="hlt">anomaly</span> and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer <span class="hlt">anomaly</span>, but it is critical for the new investigation.</p> <div class="credits"> <p class="dwt_author">Turyshev, Slava G.; Toth, Viktor T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21259971"> <span id="translatedtitle">Quintom dark <span class="hlt">energy</span> models with nearly flat <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We examine quintom dark <span class="hlt">energy</span> models, produced by the combined consideration of a canonical and a phantom field, with nearly flat <span class="hlt">potentials</span> and dark <span class="hlt">energy</span> equation-of-state parameter w{sub DE} close to -1. We find that all such models converge to a single expression for w{sub DE}(z), depending only on the initial field values and their derivatives. We show that this quintom paradigm allows for a description of the transition through -1 in the near cosmological past. In addition, we provide the necessary conditions for the determination of the direction of the -1 crossing.</p> <div class="credits"> <p class="dwt_author">Setare, M. R.; Saridakis, E. N. [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of); Department of Physics, University of Athens, GR-15771 Athens (Greece)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/572698"> <span id="translatedtitle">Parallel unconstrained minimization of <span class="hlt">potential</span> <span class="hlt">energy</span> in LAMMPS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report describes a new minimization capability added to LAMMPS V4.0. Minimization of <span class="hlt">potential</span> <span class="hlt">energy</span> is used to find molecular conformations that are close to structures found in nature. The new minimization algorithm uses LAMMPS subroutines for calculating <span class="hlt">energy</span> and force vectors, and follows the LAMMPS partitioning scheme for distributing large data objects on multiprocessor machines. Since gradient-based algorithms cannot tolerate nonsmoothness, a new Coulomb style that smoothly cuts off to zero at a finite distance is provided. This report explains the minimization algorithm and its parallel implementation within LAMMPS. Guidelines are given for invoking the algorithm and interpreting results.</p> <div class="credits"> <p class="dwt_author">Plantenga, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-10-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/hew06.sci.phys.maf.lpenergy/investigating-kinetic-and-potential-energy/"> <span id="translatedtitle">PBS Learning Media: Investigating Kinetic and <span class="hlt">Potential</span> <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">In this 3-5 day multimedia module, students explore concepts of kinetic, <span class="hlt">potential</span>, and total <span class="hlt">energy</span> within different types of systems. Watch a video of engineers who recreate a medieval trebuchet (using only 14th century technology) and an animation of <span class="hlt">energy</span> transformation in a roller coaster. Play with a digital mass-and-spring model and a projectile simulator. Finally, students will use computational reasoning in a hands-on golf ball activity. This lesson was designed to engage multiple sensory paths and styles of learning through video, interactive simulation, animations, lab activities, and informative text.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-06</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1044774"> <span id="translatedtitle"><span class="hlt">Potential</span> for luminosity improvement for low-<span class="hlt">energy</span> RHIC operation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam <span class="hlt">energies</span> corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low <span class="hlt">energies</span>. However, the luminosity is very low at lowest <span class="hlt">energies</span> of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low <span class="hlt">energies</span>, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall <span class="hlt">potential</span> luminosity improvement for low-<span class="hlt">energy</span> RHIC operation from cooling is summarized for various <span class="hlt">energies</span>, taking into account all these limitations as well as beam lifetime measured during the low-<span class="hlt">energy</span> RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.</p> <div class="credits"> <p class="dwt_author">Fedotov A. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8913485"> <span id="translatedtitle">Spacecraft Environmental <span class="hlt">Anomalies</span> Expert System.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A microcomputer based expert system is being developed to assist in the diagnosis of satellite <span class="hlt">anomalies</span> caused by the space environment. The expert system is designed to address <span class="hlt">anomalies</span> caused by surface charging, bulk charging, single event effects, a...</p> <div class="credits"> <p class="dwt_author">H. C. Koons D. J. Gorney</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA430829"> <span id="translatedtitle">Ferret Workflow <span class="hlt">Anomaly</span> Detection System.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Ferret workflow <span class="hlt">anomaly</span> detection system project 2003-2004 has provided validation and <span class="hlt">anomaly</span> detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits. A workflow, process, or procedure,...</p> <div class="credits"> <p class="dwt_author">T. J. Smith S. Bryant</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18894156"> <span id="translatedtitle">Hawking radiation from gravity's rainbow via gravitational <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Based on the <span class="hlt">anomaly</span> cancellation method, initiated by Robinson and Wilczek, we investigates Hawking radiation from the modified Schwarzschild black hole from gravity's rainbow from the <span class="hlt">anomaly</span> point of view. Unlike the general Schwarzschild space---time, the metric of this black hole depends on the <span class="hlt">energies</span> of probes. The obtained result shows to restore the underlying general covariance at the quantum</p> <div class="credits"> <p class="dwt_author">Xiao-Xiong Zeng; Shu-Zheng Yang; De-You Chen</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvD..87g5022H"> <span id="translatedtitle">Strictly <span class="hlt">anomaly</span> mediated supersymmetry breaking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We consider an extension of the minimal supersymmetric Standard Model with <span class="hlt">anomaly</span> mediation as the only source of supersymmetry breaking, and the tachyonic slepton problem solved by a gauged U(1) symmetry. The extra gauge symmetry is broken at high <span class="hlt">energies</span> in a manner preserving supersymmetry, while also introducing both the seesaw mechanism for neutrino masses, and the Higgs ?-term. We call the model strictly <span class="hlt">anomaly</span> mediated supersymmetry breaking. We present typical spectra for the model and compare them with those from so-called minimal <span class="hlt">anomaly</span> mediated supersymmetry breaking. We find a Standard Model-like Higgs of mass 125 GeV with a gravitino mass of 140 TeV and tan??=16. However, the muon anomalous magnetic moment is 3? away from the experimental value. The model naturally produces a period of hybrid inflation, which can exit to a false vacuum characterized by large Higgs vacuum expectation values, reaching the true ground state after a period of thermal inflation. The scalar spectral index is reduced to approximately 0.975, and the correct abundance of neutralino dark matter can be produced by decays of thermally produced gravitinos, provided the gravitino mass (and hence the Higgs mass) is high. Naturally light cosmic strings are produced, satisfying bounds from the cosmic microwave background. The complementary pulsar timing and cosmic ray bounds require that strings decay primarily via loops into gravitational waves. Unless the loops are extremely small, the next generation pulsar timing array will rule out or detect the string-derived gravitational radiation background in this model.</p> <div class="credits"> <p class="dwt_author">Hindmarsh, Mark; Jones, D. R. Timothy</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/814468"> <span id="translatedtitle">The <span class="hlt">Potential</span> For <span class="hlt">Energy</span> Efficiency In The State of Iowa</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The purpose of this study was to do an initial estimate of the <span class="hlt">potential</span> for <span class="hlt">energy</span> savings in the state of Iowa. Several methods for determining savings were examined, including existing programs, surveys, savings calculators, and economic simulation. Each method has advantages and disadvantages, trading off between detail of information, accuracy of results, and scope. This paper concentrated on using economic simulation (the NEMS model (EIA 2000a)) to determine market <span class="hlt">potential</span> for <span class="hlt">energy</span> savings for the residential and commercial sectors. The results of surveys were used to calculate the economic <span class="hlt">potential</span> for savings in the industrial sector. The NEMS model is used by the <span class="hlt">Energy</span> Information Administration to calculate twenty-year projections of <span class="hlt">energy</span> use for every region of the country. The results of the Annual <span class="hlt">Energy</span> Outlook 2000 were used as the Base case (EIA 1999a). Two alternative cases were created to simulate <span class="hlt">energy</span> savings policies. Voluntary, market-related programs were simulated by lowering the effective discount rates that end-users use when making decisions on equipment purchases. Standards programs in the residential sector were simulated by eliminating the availability of low efficiency equipment in future years. The parameters for these programs were based on the Moderate scenario from the DOE Clean <span class="hlt">Energy</span> Futures study (Interlaboratory Working Group 2000), which assumed increased concern by society on <span class="hlt">energy</span> efficiency but not to the point of fiscal policies such as taxes or direct subsidies. The study only considered a subset of the various programs, policies, and technologies that could reduce <span class="hlt">energy</span> use. The major end-uses in the residential sector affected by the policies were space cooling (20% savings by 2020) and water heating (14% savings by 2020.) Figure S-1 shows the space cooling savings when voluntary programs and minimum efficiency standards were implemented. Refrigerators, freezers, and clothes dryers saw slight improvements. The study did not involve changes to the building shell (e.g., increased insulation) or residential lighting improvements. Nevertheless, the residential sector's market <span class="hlt">potential</span> for electrical <span class="hlt">energy</span> savings was calculated to be 5.3% of expected electrical use, representing 850 GWh by 2020. Natural gas savings could be 2.4% of expected gas use, representing 2.1 trillion Btus. Using expected prices for <span class="hlt">energy</span> in that year, these represent savings of $47 million and $12 million per year. In the commercial sector, the study only considered voluntary market-based policies for some of the technologies. The most notable savings were in ventilation (12% savings by 2020), lighting (12% savings), refrigeration (7% savings), water heating (6% savings), and space heating (5% savings by 2020). The commercial sector's market <span class="hlt">potential</span> for electrical <span class="hlt">energy</span> savings based on the programs modeled was calculated to be 5.1% of its total expected electrical use, representing 605 GWh of power by 2020. Natural gas savings were 2.3 trillion Btu, 3.7% of use. Using the same prices as the residential sector (5.5{cents}/kWh and $5.74/MBtu), the savings represent $33 million and $13 million per year, respectively.</p> <div class="credits"> <p class="dwt_author">Hadley, SW</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-05</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009cip..book..101S"> <span id="translatedtitle">Modeling And Detecting <span class="hlt">Anomalies</span> In Scada Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The detection of attacks and intrusions based on <span class="hlt">anomalies</span> is hampered by the limits of specificity underlying the detection techniques. However, in the case of many critical infrastructure systems, domain-specific knowledge and models can impose constraints that <span class="hlt">potentially</span> reduce error rates. At the same time, attackers can use their knowledge of system behavior to mask their manipulations, causing adverse effects to observed only after a significant period of time. This paper describes elementary statistical techniques that can be applied to detect <span class="hlt">anomalies</span> in critical infrastructure networks. A SCADA system employed in liquefied natural gas (LNG) production is used as a case study.</p> <div class="credits"> <p class="dwt_author">Svendsen, Nils; Wolthusen, Stephen</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24033045"> <span id="translatedtitle">Free <span class="hlt">energy</span> generalization of the peierls <span class="hlt">potential</span> in iron.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In body-centered-cubic (bcc) crystals, 1/2?111? screw dislocations exhibit high intrinsic lattice friction as a consequence of their nonplanar core structure, which results in a periodic <span class="hlt">energy</span> landscape known as the Peierls <span class="hlt">potential</span> U_{P}. The main features determining plastic flow, including its stress and temperature dependences, can be derived directly from this <span class="hlt">potential</span>, hence its importance. In this Letter, we use thermodynamic integration to provide a full thermodynamic extension of U_{P} for bcc Fe. We compute the Peierls free <span class="hlt">energy</span> path as a function of stress and temperature and show that the critical stress vanishes at 700 K, supplying the qualitative elements that explain plastic behavior in the athermal limit. PMID:24033045</p> <div class="credits"> <p class="dwt_author">Gilbert, M R; Schuck, P; Sadigh, B; Marian, J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-27</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvL.111i5502G"> <span id="translatedtitle">Free <span class="hlt">Energy</span> Generalization of the Peierls <span class="hlt">Potential</span> in Iron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In body-centered-cubic (bcc) crystals, 1/2?111? screw dislocations exhibit high intrinsic lattice friction as a consequence of their nonplanar core structure, which results in a periodic <span class="hlt">energy</span> landscape known as the Peierls <span class="hlt">potential</span> UP. The main features determining plastic flow, including its stress and temperature dependences, can be derived directly from this <span class="hlt">potential</span>, hence its importance. In this Letter, we use thermodynamic integration to provide a full thermodynamic extension of UP for bcc Fe. We compute the Peierls free <span class="hlt">energy</span> path as a function of stress and temperature and show that the critical stress vanishes at 700 K, supplying the qualitative elements that explain plastic behavior in the athermal limit.</p> <div class="credits"> <p class="dwt_author">Gilbert, M. R.; Schuck, P.; Sadigh, B.; Marian, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JChPh.127r4309S"> <span id="translatedtitle">Intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface of Ar-NO</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Rotational spectra of an open-shell complex, Ar-NO, in the electronic ground state have been analyzed by employing an analysis using a free-rotor model, where previously observed data by Mills et al. [J. Phys. Chem. 90, 3331 (1986); 90, 4961 (1986)] and additional transitions observed by Fourier-transform microwave spectroscopy in the present study are simultaneously analyzed with a standard deviation of the least-squares fit to be 27.5 kHz. A two-dimensional intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface for Ar-NO has been determined from the analysis. The determined <span class="hlt">potential</span> <span class="hlt">energy</span> surface is compared with those of Ar-OH and Ar-SH, which are also complexes containing an open-shell species with the 2? ground electronic state.</p> <div class="credits"> <p class="dwt_author">Sumiyoshi, Yoshihiro; Endo, Yasuki</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18020641"> <span id="translatedtitle">Intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface of Ar-NO.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Rotational spectra of an open-shell complex, Ar-NO, in the electronic ground state have been analyzed by employing an analysis using a free-rotor model, where previously observed data by Mills et al. [J. Phys. Chem. 90, 3331 (1986); 90, 4961 (1986)] and additional transitions observed by Fourier-transform microwave spectroscopy in the present study are simultaneously analyzed with a standard deviation of the least-squares fit to be 27.5 kHz. A two-dimensional intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface for Ar-NO has been determined from the analysis. The determined <span class="hlt">potential</span> <span class="hlt">energy</span> surface is compared with those of Ar-OH and Ar-SH, which are also complexes containing an open-shell species with the 2Pi ground electronic state. PMID:18020641</p> <div class="credits"> <p class="dwt_author">Sumiyoshi, Yoshihiro; Endo, Yasuki</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-14</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12149703"> <span id="translatedtitle">Hepatic exstrophy complicating Poland's <span class="hlt">anomaly</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Poland's <span class="hlt">anomaly</span> is comprised of a constellation of <span class="hlt">anomalies</span>. To be included in the syndrome, a child must have a deficiency of the pectoralis major and minor muscles and an associated <span class="hlt">anomaly</span> of either the ipsilateral breast or hand. Associated defects may include syndactyly osseous and cartilagenous costal aplasia and adactyly. A case of hepatic exstrophy through a full-thickness chest wall defect in an infant with Poland's <span class="hlt">anomaly</span> is reported. PMID:12149703</p> <div class="credits"> <p class="dwt_author">Puder, Mark; Greene, Arin; Mooney, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49472951"> <span id="translatedtitle">Wild reed of Suncheon Bay: <span class="hlt">Potential</span> bio-<span class="hlt">energy</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Threat of global warming and imminent exhaustion of fossil fuels call for development of alternative carbon-neutral <span class="hlt">energy</span> sources. Among others, bio-oil, which can be produced from various biomass, can be used not only as an alternative fuel but also as a feedstock for production of high-value chemicals. In this study, the <span class="hlt">potential</span> of wild reed growing in Suncheon Bay Ecological</p> <div class="credits"> <p class="dwt_author">Young-Kwon Park; Myung Lang Yoo; Hyeon Su Heo; Hyung Won Lee; Sung Hoon Park; Sang-Chul Jung; Sang-Sook Park; Seong-Gyu Seo</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pdfserv.aip.org/JCPSA6/vol_119/iss_12/5889_1.pdf"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for the uranium hydriding reaction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have computed the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for the low-lying electronic states of uranium hydrides, UHn (n=1-3), which are important in the uranium hydriding reactions. We have employed a number of computational methods including the complete active space multiconfiguration self-consistent field followed by multireference relativistic configuration interaction computations with spin-orbit coupling that included up to 6 million configurations. We find</p> <div class="credits"> <p class="dwt_author">K. Balasubramanian; Wigbert J. Siekhaus; William McLean II</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/31471002"> <span id="translatedtitle">Hepatic exstrophy complicating Poland's <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Poland's <span class="hlt">anomaly</span> is comprised of a constellation of <span class="hlt">anomalies</span>. To be included in the syndrome, a child must have a deficiency of the pectoralis major and minor muscles and an associated <span class="hlt">anomaly</span> of either the ipsilateral breast or hand. Associated defects may include syndactyly osseous and cartilagenous costal aplasia and adactyly. A case of hepatic exstrophy through a full-thickness chest</p> <div class="credits"> <p class="dwt_author">Mark Puder; Arin Greene; David Mooney</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21316754"> <span id="translatedtitle">{sup 9}Be breakup polarization <span class="hlt">potential</span> at near barrier <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this work, we study the {sup 9}Be+{sup 144}Sm system with the aim of extracting the breakup polarization <span class="hlt">potential</span> and to check the influence of this channel on other reaction channels at <span class="hlt">energies</span> close to the Coulomb barrier. As the projectile breaks up into four fragments the Continuum Discretized Coupled Channel (CDCC) method becomes a tool very difficult to be used. For this reason, we developed a methodology that consists in calculating the dynamic polarization <span class="hlt">potential</span> (DPP) for the breakup channel using a very simple approximate technique. This technique has already been recently used in obtaining the dynamic polarization <span class="hlt">potential</span> for the {sup 7}Li+{sup 27}Al system.</p> <div class="credits"> <p class="dwt_author">Garcia, V. N.; Lubian, J.; Gomes, P. R. S. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, 24210-340, Rio de Janeiro (Brazil); Canto, L. F. [Intituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972, Rio de Janeiro (Brazil); Gomez-Camacho, A. [Departamento del Acelerador, Instituto Nacional de Investigaciones Nucleares-Mexico D. F. Centro-Mexico (Mexico)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.apsarchive.org/resource.cfm?submissionID=3713&BEN=1"> <span id="translatedtitle">Rubber Balls and Conservation of <span class="hlt">Energy</span>: A Lesson on <span class="hlt">Potential</span> and Kinetic <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This teaching resource was developed by a K-12 science teacher in the American Physiologycal Society's 2006 Frontiers in Physiology Program. For more information on this program, please visit www.frontiersinphys.org. The purpose of this lesson is to teach students about how bouncy rubber balls can be used to demonstrate the concepts of kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span>. The topics of kinetic and <span class="hlt">potential</span> <span class="hlt">energy</span> should be previously covered or introduced. Upon completion of this activity, students will be able to calculate the <span class="hlt">energy</span> lost between bounces and account for where the missing <span class="hlt">energy</span> has gone.</p> <div class="credits"> <p class="dwt_author">William G Mahl (Seymour Middle School)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1051195"> <span id="translatedtitle">Evaluation of Global Onshore Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> and Generation Costs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this study, we develop an updated global estimate of onshore wind <span class="hlt">energy</span> <span class="hlt">potential</span> using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the <span class="hlt">potential</span> to supply a significant portion of world <span class="hlt">energy</span> needs, although this <span class="hlt">potential</span> varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind <span class="hlt">potential</span> under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind <span class="hlt">potential</span> is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the <span class="hlt">potential</span> at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.</p> <div class="credits"> <p class="dwt_author">Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21167933"> <span id="translatedtitle">Market <span class="hlt">Potential</span> for Non-electric Applications of Nuclear <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The paper presents results of a recent IAEA study to assess the market <span class="hlt">potential</span> for non-electric applications of nuclear <span class="hlt">energy</span> in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, <span class="hlt">energy</span> supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric <span class="hlt">energy</span> services. The study makes a distinction between the market size (demand for a given service) and the market <span class="hlt">potential</span> for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear <span class="hlt">energy</span> entering into non-electric markets. (authors)</p> <div class="credits"> <p class="dwt_author">Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, Vienna (Austria); Nisan, S. [Commissariat a l'energie atomique (CEA), CEA/CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23738948"> <span id="translatedtitle">CO Dimer: New <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface and Rovibrational Calculations.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new <span class="hlt">potential</span> <span class="hlt">energy</span> surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The <span class="hlt">potential</span> has two nonpolar minima giving rise to a complicated set of <span class="hlt">energy</span> level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction <span class="hlt">energy</span> even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation <span class="hlt">energy</span> (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated <span class="hlt">energy</span> levels were compared to 105 J ? 10 levels from experiment. The rms error for 68 levels with J ? 6 is only 0.29 cm(-1). The calculated <span class="hlt">energy</span> levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an <span class="hlt">energy</span> lower than many previously known stacks and may be observable. PMID:23738948</p> <div class="credits"> <p class="dwt_author">Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21947901"> <span id="translatedtitle">On the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape of supercooled liquids and glasses.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation <span class="hlt">energies</span> around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation <span class="hlt">energies</span> and more broken bonds than the MD simulation. PMID:21947901</p> <div class="credits"> <p class="dwt_author">Rodney, D; Schrøder, T</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12609486"> <span id="translatedtitle">Holographic gravitational <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In the AdS\\/CFT correspondence one encounters theories that are not invariant under diffeomorphisms. In the boundary theory this is a gravitational <span class="hlt">anomaly</span>, and can arise in 4k+2 dimensions. In the bulk, there can be gravitational Chern-Simons terms which vary by a total derivative. We work out the holographic stress tensor for such theories, and demonstrate agreement between the bulk and</p> <div class="credits"> <p class="dwt_author">Per Kraus; Finn Larsen</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvD..85b5017B"> <span id="translatedtitle">Mixed states from <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There are several instances where quantum <span class="hlt">anomalies</span> of continuous and discrete classical symmetries play an important role in fundamental physics. Examples come from chiral <span class="hlt">anomalies</span> in the Standard Model of fundamental interactions and gravitational <span class="hlt">anomalies</span> in string theories. Their generic origin is the fact that classical symmetries may not preserve the domains of quantum operators like the Hamiltonian. In this work, we show by simple examples that anomalous symmetries can often be implemented at the expense of working with mixed states having nonzero entropies. In particular there is the result on color breaking by non-abelian magnetic monopoles. This <span class="hlt">anomaly</span> can be rectified by using impure states. We also argue that non-abelian groups of twisted bundles are always anomalous for pure states sharpening an earlier argument of Sorkin and Balachandran [A. P. Balachandran, G. Marmo, B. S. Skagerstam, and A. Stern, Classical Topology and Quantum States (World Scientific, Singapore, 1991).]. This is the case of mapping class groups of geons [A. P. Balachandran, G. Marmo, B. S. Skagerstam, and A. Stern, Classical Topology and Quantum States (World Scientific, Singapore, 1991).] indicating that large diffeos are anomalous for pure states in the presence of geons. Nevertheless diffeo invariance may be restored by using impure states. This work concludes with examples of these ideas drawn from molecular physics. The above approach using impure states is entirely equivalent to restricting all states to the algebra of observables invariant under the anomalous symmetries. For anomalous gauge groups such as color, this would mean that we work with observables singlet under global gauge transformations. For color, this will mean that we work with color singlets, a reasonable constraint.</p> <div class="credits"> <p class="dwt_author">Balachandran, A. P.; de Queiroz, Amilcar R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5569387"> <span id="translatedtitle"><span class="hlt">Energy</span> dependence of the low <span class="hlt">energy</span> pion-nucleus optical <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">By assuming a smooth <span class="hlt">energy</span> dependence of the s-italic- and p-italic-wave strengths, optical model fits have been made to low <span class="hlt">energy</span> /sup 16/O(..pi../sup +/,..pi../sup +/) data. Constraints are imposed to ensure that the <span class="hlt">potential</span> does not violate unitarity and avoids the Kisslinger singularity. Such an analysis removes many experimental uncertainties from the <span class="hlt">potential</span> strength and provides a simple way of generating distorted waves for the study of inelastic scattering.</p> <div class="credits"> <p class="dwt_author">Whisnant, C.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23989523"> <span id="translatedtitle">Complex vascular <span class="hlt">anomalies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The classification system for vascular <span class="hlt">anomalies</span> now used by experts worldwide comprises two distinct disease entities that differ in their biologic and pathologic features: vascular tumors and vascular malformations. Vascular tumors include infantile and congenital hemangiomas, tufted angiomas, and kaposiform hemangioendotheliomas. Infantile hemangiomas, the most common vascular <span class="hlt">anomaly</span>, generally have a predetermined life cycle (proliferation and subsequent involution). GLUT-1, a glucose transporter, is a marker for these specific lesions during all phases of development. Vascular malformations are classified according to their vascular tissue of origin and include capillary, venous, arteriovenous, lymphatic, and mixed malformations. Complex lymphatic malformations and complex mixed malformations, which may have most vascular components, are the most difficult vascular malformations to successfully treat. These lesions are present at birth and often expand or grow in response to trauma, infection, or hormonal changes. Imaging advancements have enabled more accurate assessments and improved management of vascular <span class="hlt">anomalies</span>. In addition, many lesions are now being managed with targeted pharmacologic therapy. Propranolol and steroids are used for complex or disfiguring tumors, and new anti-angiogenesis inhibitors such as sirolimus are selectively used to treat lymphatic and venous lymphatic malformations that are poorly responsive to sclerotherapy, embolization, and surgical excision. Multimodal therapies are often essential for complex lesions and require the combined expertise of an interdisciplinary team. PMID:23989523</p> <div class="credits"> <p class="dwt_author">Azizkhan, Richard G</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21409187"> <span id="translatedtitle"><span class="hlt">Anomalies</span> at finite density and chiral fermions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using perturbation theory in the Euclidean (imaginary time) formalism as well as the nonperturbative Fujikawa method, we verify that the chiral <span class="hlt">anomaly</span> equation remains unaffected in the presence of nonzero chemical <span class="hlt">potential</span>, {mu}. We extend our considerations to fermions with exact chiral symmetry on the lattice and discuss the consequences for the recent Bloch-Wettig proposal for the Dirac operator at finite chemical <span class="hlt">potential</span>. We propose a new simpler method of incorporating {mu} and compare it with the Bloch-Wettig idea.</p> <div class="credits"> <p class="dwt_author">Gavai, R. V.; Sharma, Sayantan [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6653959"> <span id="translatedtitle">Geologic interpretation of gravity <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This Russian textbook provides a sufficiently complete and systematic illumination of physico-geologic and mathematical aspect of complex problem of interpretation of gravity <span class="hlt">anomalies</span>. The rational methods of localization of <span class="hlt">anomalies</span> are examined in detail. All methods of interpreting gravity <span class="hlt">anomalies</span> are described which have found successful application in practice. Also given are ideas of some new methods of the interpretation of gravity <span class="hlt">anomalies</span>, the prospects for further development and industrial testing. Numerous practical examples to interpretation are given. Partial Contents: Bases of gravitational field theory; Physico-geologic bases of gravitational prospecting; Principles of geologic interpretation of gravity <span class="hlt">anomalies</span>; Conversions and calculations of <span class="hlt">anomalies</span>; Interpretation of gravity <span class="hlt">anomalies</span> for bodies of correct geometric form and for bodies of arbitrary form; Geologic interpretation of the results of regional gravitational photographing; Searches and prospecting of oil- and gas-bearing structures and of deposits of ore and nonmetalliferous useful minerals.</p> <div class="credits"> <p class="dwt_author">Andreyev, B.A.; Klushin, I.G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-04-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985PhDT........38N"> <span id="translatedtitle"><span class="hlt">Anomaly</span> General Circulation Models.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The feasibility of the <span class="hlt">anomaly</span> model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic <span class="hlt">anomaly</span> model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic <span class="hlt">anomaly</span> model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear <span class="hlt">anomaly</span> model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the dominant response. The most sensitive areas are identified; they correspond to north Japan, the Pole and Greenland regions. A limited set of higher resolution (R15) experiments indicate that this situation is still present and enhanced at higher resolution. The linear <span class="hlt">anomaly</span> model is also applied to a realistic case. (Abstract shortened with permission of author.).</p> <div class="credits"> <p class="dwt_author">Navarra, Antonio</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhRvC..76f7603G"> <span id="translatedtitle">Threshold <span class="hlt">anomaly</span> in the elastic scattering of He6 on Bi209</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">energy</span> dependence of the optical <span class="hlt">potential</span> for the elastic scattering of He6 on Bi209 at near and subbarrier <span class="hlt">energies</span> is studied. Elastic angular distributions and the reaction cross section were simultaneously fitted by performing some modifications in the ECIS code. A phenomenological optical model <span class="hlt">potential</span> with the Woods-Saxon form was used. There are signatures that the so-called breakup threshold <span class="hlt">anomaly</span> (BTA) is present in this system having a halo projectile He6, as it had been found earlier for systems involving stable weakly bound nuclei.</p> <div class="credits"> <p class="dwt_author">Garcia, A. R.; Lubian, J.; Padron, I.; Gomes, P. R. S.; Lacerda, T.; Garcia, V. N.; Camacho, A. Gómez; Aguilera, E. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/924389"> <span id="translatedtitle"><span class="hlt">Potential</span> impacts of nanotechnology on <span class="hlt">energy</span> transmission applications and needs.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The application of nanotechnologies to <span class="hlt">energy</span> transmission has the <span class="hlt">potential</span> to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of <span class="hlt">energy</span>, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce <span class="hlt">potential</span> ROW impacts. <span class="hlt">Potential</span> environmental, safety, and health impacts are also discussed.</p> <div class="credits"> <p class="dwt_author">Elcock, D.; Environmental Science Division</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5419505"> <span id="translatedtitle"><span class="hlt">Potential</span> environmental effects of <span class="hlt">energy</span> conservation measures in northwest industries</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their <span class="hlt">potential</span> environmental impacts. <span class="hlt">Energy</span> efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different <span class="hlt">energy</span> and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe <span class="hlt">potential</span> conservation measures that Bonneville may employ in industrial programs and discuss <span class="hlt">potential</span> primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.</p> <div class="credits"> <p class="dwt_author">Baechler, M C; Gygi, K F; Hendrickson, P L</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1013964"> <span id="translatedtitle">Theoretical studies of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces and computational methods.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PES) involving molecular species that occur in hydrocarbon combustion. These <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces require an accurate and balanced treatment of reactants, intermediates, and products. Most of our work focuses on general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the <span class="hlt">potential</span> surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of molecular geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.</p> <div class="credits"> <p class="dwt_author">Shepard, R. (Chemistry)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40877743"> <span id="translatedtitle"><span class="hlt">Potential</span> of building-scale alternative <span class="hlt">energy</span> to alleviate risk from the future price of <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">energy</span> used for building operations, the associated greenhouse gas emissions, and the uncertainties in future price of natural gas and electricity can be a cause of concern for building owners and policy makers. In this work we explore the <span class="hlt">potential</span> of building-scale alternative <span class="hlt">energy</span> technologies to reduce demand and emissions while also shielding building owners from the risks associated</p> <div class="credits"> <p class="dwt_author">David Bristow; Christopher A. Kennedy</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000APS..MARZ30010S"> <span id="translatedtitle">Dynamics and <span class="hlt">Potential</span> <span class="hlt">Energy</span> Landscape of Supercooled Water</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present molecular dynamics simulations of the SPC/E model of water to explore the connection between dynamic properties and the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape. We calculate the configurational entropy and instantaneous normal mode (or local <span class="hlt">potential</span> <span class="hlt">energy</span> curvature) spectrum in the same region of the phase diagram where the dynamics are well-described by the predictions of the mode-coupling theory. We find a strong correlation between the diffusion constant and the configurational entropy, in the sprit of the Adam-Gibbs hypothesis. We also find that the diffusion constant has monotonic dependence on the fraction of negatively curved directions sampled in the landscape. We further show that a roughly linear relation exists between the number of minima and the connectivity of the minima (i.e. the number of negatively curved directions). These results suggest that the behavior described by MCT captures the slowing of liquid dynamics caused by the ruggedness of the <span class="hlt">energy</span> landscape, where barrier hopping does not play a role.</p> <div class="credits"> <p class="dwt_author">Starr, Francis W.; Lanave, Emilia; Scala, Antonio; Sciortino, Francesco; Stanley, H. Eugene</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6111358"> <span id="translatedtitle"><span class="hlt">Potential</span> for <span class="hlt">energy</span> conservation in the cement industry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report assesses the <span class="hlt">potential</span> for <span class="hlt">energy</span> conservation in the cement industry. <span class="hlt">Energy</span> consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the <span class="hlt">energy</span> consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest <span class="hlt">potential</span> for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.</p> <div class="credits"> <p class="dwt_author">Garrett-Price, B.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55448105"> <span id="translatedtitle">Mass-<span class="hlt">Energy</span> Relationship Must Include Factors For Vibrational and Rotational Kinetic <span class="hlt">Energies</span> as Well as Various <span class="hlt">Potential</span> <span class="hlt">Energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Einstein proposed that at low speeds E=M0c^2 + 1\\/2M0v^2. However, a mass may also have vibrating and rotating kinetic <span class="hlt">energies</span> and may also have various <span class="hlt">potential</span> <span class="hlt">energies</span> such as gravitational, electric and magnetic <span class="hlt">potential</span> <span class="hlt">energies</span> which must be part of the total mass-<span class="hlt">energy</span> equivalence. Therefore, the basic equation for the mass-<span class="hlt">energy</span> equivalence should be E=M0c^2 + 1\\/2M0v^2 + 1\\/2I2ˆ+ 1\\/2kx^2</p> <div class="credits"> <p class="dwt_author">Stewart Brekke</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10124759"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces and reaction dynamics of polyatomic molecules</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A simple empirical valence bond (EVB) model approach is suggested for constructing global <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous <span class="hlt">potential</span> surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.</p> <div class="credits"> <p class="dwt_author">Chang, Yan-Tyng</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/501526"> <span id="translatedtitle">Assessing geothermal <span class="hlt">energy</span> <span class="hlt">potential</span> in upstate New York. Final report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">potential</span> of geothermal <span class="hlt">energy</span> for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best <span class="hlt">potential</span> for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.</p> <div class="credits"> <p class="dwt_author">Hodge, D.S. [SUNY, Buffalo, NY (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012InvPr..28h5007P"> <span id="translatedtitle">Fixed <span class="hlt">energy</span> <span class="hlt">potentials</span> through an auxiliary inverse eigenvalue problem</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An inverse scattering method based on an auxiliary inverse Sturm-Liouville problem recently proposed by Horváth and Apagyi (2008 Mod. Phys. Lett. B 22 2137) is examined in various aspects and developed further to (re)construct spherically symmetric fixed <span class="hlt">energy</span> <span class="hlt">potentials</span> of compact support realized in the three-dimensional Schrödinger equation. The method is generalized to obtain a family of inverse procedures characterized by two parameters originating, respectively, from the Liouville transformation and the solution of the inverse Sturm-Liouville problem. Both parameters affect the bound states arising in the auxiliary inverse spectral problem and one of them enables us to reduce their number which is assessed by a simple method. Various solution techniques of the underlying moment problem are proposed including the exact Cauchy matrix inversion method, usage of spurious bound state and assessment of the number of bound states. Examples include (re)productions of <span class="hlt">potentials</span> from phase shifts known theoretically or derived from scattering experiments.</p> <div class="credits"> <p class="dwt_author">Pálmai, Tamás; Apagyi, Barnabás</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004APS..DNP.CH008S"> <span id="translatedtitle">Constraining the <span class="hlt">energy</span> dependence of the symmetry <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Stringent constraints for theoretical models of the isospin-dependent part of the equation of state (EOS) are very much needed. Collisions of neutron-rich nuclei are capable of producing extended regions of space/time where both the total nucleon density and the neutron/proton asymmetry are large, and thus are especially suitable for testing predictions of neutron-rich matter properties. Optical <span class="hlt">potential</span> information can also be exploited to set constraints on the EOS, particularly the symmetry <span class="hlt">potential</span>. The latter is proportional to the difference between the neutron and the proton <span class="hlt">potentials</span> in asymmetric matter, and thus should bear a clear signature of the isovector part of the optical <span class="hlt">potential</span> in the nuclear interior.(B.A. Li, nucl-th/0404040) At this time, different phenomenological models are capable of producing opposite tendencies in the <span class="hlt">energy</span> dependence. We will show and discuss our predictions and stress the importance of microscopic, parameter-free approaches as the best way to gain insight into the less known aspects of the nuclear equation of state.</p> <div class="credits"> <p class="dwt_author">Sammarruca, Francesca; Barredo, Wilson; Krastev, Plamen</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1983JEner...7..549B"> <span id="translatedtitle">Assessment of market <span class="hlt">potential</span> of compressed air <span class="hlt">energy</span> storage systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This report describes an assessment of <span class="hlt">potential</span> roles that EPRI might take to facilitate the commercial acceptance of compressed air <span class="hlt">energy</span> storage (CAES) systems. The assessment is based on (1) detailed analyses of the market <span class="hlt">potential</span> of utility storage technologies, (2) interviews with representatives of key participants in the CAES market, and (3) a decision analysis synthesizing much of the information about market and technology status. The results indicate a large <span class="hlt">potential</span> market for CAES systems if the overall business environment for utilities improves. In addition, it appears that EPRI can have a valuable incremental impact in ensuring that utilities realize the <span class="hlt">potential</span> of CAES by (1) continuing an aggressive information dissemination and technology transfer program, (2) working to ensure the success of the first United States CAES installation at Soyland Power Cooperative, (3) developing planning methods to allow utilities to evaluate CAES and other storage options more effectively and more realistically, and (4) supporting R and D to resolve residual uncertainties in first-generation CAES cost and performance characteristics. Previously announced in STAR as N83-25121</p> <div class="credits"> <p class="dwt_author">Boyd, D. W.; Buckley, O. E.; Clark, C. E., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/16354053"> <span id="translatedtitle">p-Difluorobenzene-argon ground state intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The ground state intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the p-difluorobenzene-Ar van der Waals complex is evaluated using the coupled cluster singles and doubles including connected triple excitations [CCSD(T)] model and the augmented correlation consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. The surface minima are characterized by the Ar atom located above and below the difluorobenzene center of mass at a distance of 3.5290 A. The corresponding binding <span class="hlt">energy</span> is -398.856 cm(-1). The surface is used in the evaluation of the intermolecular level structure of the complex. The results clearly improve previously available data and show the importance of using a good correlation method and basis set when dealing with van der Waals complexes. PMID:16354053</p> <div class="credits"> <p class="dwt_author">Cagide Fajín, José Luis; Fernández, Berta; Felker, Peter M</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-22</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10187192"> <span id="translatedtitle">Domestic refrigeration appliances in Poland: <span class="hlt">Potential</span> for improving <span class="hlt">energy</span> efficiency</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the <span class="hlt">energy</span> consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective <span class="hlt">potential</span> to increase <span class="hlt">energy</span> efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that the production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.</p> <div class="credits"> <p class="dwt_author">Meyers, S.; Schipper, L. [Lawrence Berkeley Lab., CA (United States); Lebot, B. [Agence de l`Environnement and de la Maitrise de l`Energie, 6 - Sophia Antipolis (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-08-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012E%26PSL.345....1M"> <span id="translatedtitle">Tsunami earthquake generation by the release of gravitational <span class="hlt">potential</span> <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Earthquakes that generate large tsunamis share a number of unusual features. They commonly have long source-time functions, involve large displacements, of 10 m or more, of the prisms of poorly consolidated sediment that form the accretionary wedge, and have many aftershocks with normal faulting mechanisms on the landward side of the trench. These features are not easily understood if the only source of the <span class="hlt">energy</span> involved is the stored elastic strain. The observations, especially those from the Tohoku, Japan, 2011 earthquake, instead suggest that the observed behaviour results from the release of gravitational <span class="hlt">potential</span> <span class="hlt">energy</span>, as well as elastic strain. A simple model of this process can account for these and other observations.</p> <div class="credits"> <p class="dwt_author">McKenzie, Dan; Jackson, James</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41042170"> <span id="translatedtitle">Assessment of renewable <span class="hlt">energy</span> resources <span class="hlt">potential</span> for electricity generation in Bangladesh</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Renewable <span class="hlt">energy</span> encompasses a broad range of <span class="hlt">energy</span> resources. Bangladesh is known to have a good <span class="hlt">potential</span> for renewable <span class="hlt">energy</span>, but so far no systematic study has been done to quantify this <span class="hlt">potential</span> for power generation. This paper estimates the <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> resources for power generation in Bangladesh from the viewpoint of different promising available technologies. Estimation of</p> <div class="credits"> <p class="dwt_author">Manfred Denich</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37812965"> <span id="translatedtitle">The <span class="hlt">potential</span> effect of end-users on <span class="hlt">energy</span> conservation in office buildings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of the study is to estimate the <span class="hlt">potential</span> of end-user effect on <span class="hlt">energy</span> conservation in office buildings. The study quantifies the <span class="hlt">energy</span> conservation <span class="hlt">potential</span> and estimates the current level of <span class="hlt">energy</span> management in four banking organisations in the Nordic countries. Design\\/methodology\\/approach – The multiple case study employs quantitative scenario analysis for estimating the <span class="hlt">energy</span> conservation <span class="hlt">potential</span></p> <div class="credits"> <p class="dwt_author">Seppo Junnila</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004JChPh.12111023A"> <span id="translatedtitle">Anchoring the <span class="hlt">potential</span> <span class="hlt">energy</span> surface of the cyclic water trimer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Six cyclic stationary points on the water trimer <span class="hlt">potential</span> <span class="hlt">energy</span> surface have been fully optimized at the MP2 level with the aug-cc-pVQZ basis set. In agreement with previous work, harmonic vibrational frequencies indicate that two structures are minima, three are transition states connecting minima on the surface while the remaining stationary point is a higher-order saddle point. The 1- and n-particle limits of the electronic <span class="hlt">energies</span> of each of these six structures were estimated by systematically varying both the basis sets and theoretical methods. The former limit was approached with the cc-pVXZ and aug-cc-pVXZ families of basis sets (X=2-7) while MP2, CCSD(T), and BD(TQ) calculations helped examine the latter. Core correlation effects have also been assessed at the MP2 level with the cc-pCVXZ series of basis sets (X=2-5). These data have been combined to provide highly accurate relative <span class="hlt">energies</span> and dissociation <span class="hlt">energies</span> for these stationary points.</p> <div class="credits"> <p class="dwt_author">Anderson, Julie A.; Crager, Kelly; Fedoroff, Lisa; Tschumper, Gregory S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/885869"> <span id="translatedtitle">The <span class="hlt">Potential</span> for <span class="hlt">Energy</span> Efficiency and Renewable <span class="hlt">Energy</span> in North Carolina</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">As many states have restructured their electric power industry, they have established a ''systems benefit charge'' to help fund those activities that will no longer be funded by utilities in the new structure. Examples include weatherization of low-income housing, efficiency programs, and renewable <span class="hlt">energy</span> development. Varying amounts have been collected and allocated depending on state needs and abilities. One question that arises is what are the <span class="hlt">potential</span> results of funding the different types of programs. What is the <span class="hlt">potential</span> for <span class="hlt">energy</span> efficiency or for renewable power, and what would be accomplished given the amount of funding that the system benefit charge may provide? The purpose of this project is to provide an initial estimate of the <span class="hlt">potential</span> for <span class="hlt">energy</span> efficiency and renewable <span class="hlt">energy</span> in North Carolina. This <span class="hlt">potential</span> could be funded by a public benefits fund resulting from a green power program being considered in the state. It concentrates on electric <span class="hlt">energy</span> savings and production. Savings in buildings can include improvements to space conditioning as well as improvements to lighting or other appliances. Distributed power <span class="hlt">potential</span>, through use of combined heat and power and renewables such as photovoltaic, wind, and biomass were examined. The goal is to provide information to decision makers who are developing a green power program in North Carolina. It will not be a complete and detailed study of all efficiency <span class="hlt">potentials</span> but is more of a scoping exercise to determine the relative impacts and begin the process for a more definitive study at a later date. Statewide <span class="hlt">energy</span> savings <span class="hlt">potential</span> cannot be directly measured but must be calculated. First, the word ''<span class="hlt">potential</span>'' means that the savings have not occurred yet. Second, the savings are often only indirectly measured by estimating what <span class="hlt">energy</span> use there would have been without the changes in technology or behavior. Calculations through sampling and statistical analysis or by simulation are a necessary part of any mechanism to determine <span class="hlt">energy</span> savings <span class="hlt">potential</span>. There are currently several methods for calculating savings. Extrapolation of savings achieved from specific programs, surveys of existing building stock or <span class="hlt">energy</span>-using activities, computer calculations of representative building types, and economic simulations all provide insight into the amount of <span class="hlt">energy</span> that could be saved.</p> <div class="credits"> <p class="dwt_author">Hadley, SW</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-08-06</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22110015"> <span id="translatedtitle">Familial Poland <span class="hlt">anomaly</span> revisited.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Poland <span class="hlt">anomaly</span> (PA) is a pectoral muscle hypoplasia/aplasia variably associated with ipsilateral thoracic (TA) and/or upper limb <span class="hlt">anomalies</span> (ULA). PA is usually sporadic and sometimes familial, making recurrence risk an issue in genetic counseling. Multidisciplinary evaluation of 240 PA patients was carried out, including physical examination of patients and their parents in 190 PA (subjects of the study). Familial conditions were classified into three groups. Group1: true familial PA (F-PA): pectoral muscle defects with familial recurrence: 8(4.2%). Group2: familial Poland-like <span class="hlt">anomaly</span> families (F-PLA): PA index case and ?1 relative(s) showing normal pectoral muscles but ULA and/or TA common in PA: 16(8.4%). Group3: sporadic PA (S-PA): 166(87.4%). F-PA indicated a stronger male (87.5%) and left side (62.5%) prevalence, but fewer ULA (37.5%) compared to the other two groups. Maternal transmission (6/8) was more common in F-PA. Statistical significance was not reached due to the small number of F-PA and F-PLA. Karyotyping and array-comparative genomic hybridization were performed in 13 families. Three maternally inherited copy number variants were identified in three patients: 1p31.1 deletion, Xp11.22 duplication, and 16q23.1 duplication. Interestingly, the proband's mother carrying the 16q23.1 duplication displayed moderate breast and areola asymmetry, but normal pectoral muscles on ultrasound. Though there is no recent review discussing recurrence of PA, we reviewed 31 published PA families. On the basis of our study and previous reports, familial PA is not uncommon. Nonetheless, no information can be derived either regarding a molecular basis or clinical tools with which to identify cases with recurrence risk. PMID:22110015</p> <div class="credits"> <p class="dwt_author">Baban, Anwar; Torre, Michele; Costanzo, Sara; Gimelli, Stefania; Bianca, Sebastiano; Divizia, Maria Teresa; Sénès, Filippo Maria; Garavelli, Livia; Rivieri, Francesca; Lerone, Margherita; Valle, Maura; Ravazzolo, Roberto; Calevo, Maria Grazia</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM33D..08S"> <span id="translatedtitle">Plasma structure over dayside lunar magnetic <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is well-known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth’s case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic <span class="hlt">anomalies</span> including both numerical simulations and observation by lunar orbiters. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic <span class="hlt">anomalies</span> and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed low <span class="hlt">energy</span> ion data. MAgnetic field and Plasma experiment - Plasma <span class="hlt">energy</span> Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low <span class="hlt">energy</span> charged particles around the Moon on 10 June 2009. MAP-PACE made observations at a circular lunar polar orbit of 100km altitude for about 1 year between January 2008 and December 2008. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. When Kaguya flew over strong magnetic <span class="hlt">anomalies</span>, deceleration of the solar wind ions, acceleration of the solar wind electrons, and ions reflected by magnetic <span class="hlt">anomalies</span> were observed. The deceleration of the solar wind ions was observed for both two major solar wind ion components: protons and alpha particles. Deceleration of the solar wind had the same ? E/q (? E : deceleration <span class="hlt">energy</span>, q: charge) for both protons and alpha particles. In addition, the acceleration <span class="hlt">energy</span> of the electrons was the same as the deceleration <span class="hlt">energy</span> of the ions. It indicates the existence of DC electric field over Kaguya spacecraft. Since the gyro-radius of the electrons was smaller than the size of the magnetic <span class="hlt">anomalies</span>, incident electrons were mirror reflected back. On the other hand, the gyro-radius of the ions was much larger than the size of the magnetic <span class="hlt">anomalies</span>. Therefore the incident ions could penetrate deeper into the magnetic <span class="hlt">anomalies</span>. As a result, DC electric field was generated over dayside magnetic <span class="hlt">anomalies</span>. The reflected ions were observed in much larger area than the area where strong magnetic field was observed. Mass profile of the reflected ions showed existence of reflected alpha particles as expected from the magnetic mirror reflection. However, the <span class="hlt">energy</span> of the reflected alpha particles was found to be lower than that of the alpha particles in the incident solar wind. In addition, the reflected protons also had lower <span class="hlt">energy</span> and higher temperature than those of the incident solar wind protons. It clearly indicates the existence of a non-adiabatic interaction between solar wind ions and lunar magnetic <span class="hlt">anomalies</span>.</p> <div class="credits"> <p class="dwt_author">Saito, Y.; Nishino, M. N.; Yamamoto, T.; Uemura, K.; Yokota, S.; Asamura, K.; Tsunakawa, H.; Kaguya Map Team</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54650259"> <span id="translatedtitle">From electron densities to Kohn-Sham kinetic <span class="hlt">energies</span>, orbital <span class="hlt">energies</span>, exchange-correlation <span class="hlt">potentials</span>, and exchange-correlation <span class="hlt">energies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">By developing our previous method [Phys. Rev. A 46, 2337 (1992); J. Chem. Phys. 98, 543 (1993)], we show how to calculate Kohn-Sham kinetic <span class="hlt">energies</span>, orbitals, orbital <span class="hlt">energies</span>, and exchange-correlation <span class="hlt">potentials</span>, starting from accurate ground-state electron densities. In addition, given correct total <span class="hlt">energies</span>, we also show how to obtain exchange-correlation <span class="hlt">energies</span>. The scheme used is based on the Levy constrained-search</p> <div class="credits"> <p class="dwt_author">Qingsheng Zhao; Robert C. Morrison; Robert G. Parr</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23617631"> <span id="translatedtitle">He-, Ne-, and Ar-Phosgene Intermolecular <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Using the CCSD(T) model, we evaluated the intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction <span class="hlt">energies</span> with the augmented (He complex) and double augmented (Ne and Ar complexes) correlation-consistent polarized valence triple-? basis sets extended with a set of 3s3p2d1f1g midbond functions. These basis sets were selected after systematic basis set studies carried out at geometries close to those of the surface minima. The He-, Ne-, and Ar-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm(-1) at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The <span class="hlt">potentials</span> were further used in the evaluation of rovibrational states and the rotational constants of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised. PMID:23617631</p> <div class="credits"> <p class="dwt_author">Munteanu, Cristian R; Henriksen, Christian; Felker, Peter M; Fernández, Berta</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-26</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB2008110411"> <span id="translatedtitle">Guide for Conducting <span class="hlt">Energy</span> Efficiency <span class="hlt">Potential</span> Studies. A Resource of the National Action Plan for <span class="hlt">Energy</span> Efficiency.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Guide for Conducting <span class="hlt">Energy</span> Efficiency <span class="hlt">Potential</span> Studies identifies three main applications for <span class="hlt">energy</span> efficiency <span class="hlt">potential</span> studies and provides examples of each, along with a description of how key decisions regarding scope and methodology were made ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5685614"> <span id="translatedtitle">Maternal water consumption during pregnancy and congenital cardiac <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This case-control study, conducted in a California county that had a local incident of water contamination in 1981, investigated the relation between a mother's reported consumption of tap water during pregnancy and congenital cardiac <span class="hlt">anomalies</span> in their offspring born during 1981-1983. Data were obtained from telephone interviews with 145 mothers of children born with a severe cardiac <span class="hlt">anomaly</span> and 176 mothers of children born without such an <span class="hlt">anomaly</span>. A positive association between a mother's consumption of home tap water during the first trimester of pregnancy and cardiac <span class="hlt">anomalies</span> in her infant was unrelated to the incident of water contamination, the mother's race, or her educational level. A negative relation was found between a mother's use of bottled water and cardiac <span class="hlt">anomalies</span> among the infants. These findings corresponded primarily to births in 1981. These data could not fully distinguish between a <span class="hlt">potential</span> causal agent in the water and differential reporting of exposure by study subjects.</p> <div class="credits"> <p class="dwt_author">Shaw, G.M.; Swan, S.H.; Harris, J.A.; Malcoe, L.H. (California Birth Defects Monitoring Program, Emeryville (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26588797"> <span id="translatedtitle">Investigation of wind characteristics and wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Kirklareli, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Utilization of wind <span class="hlt">energy</span> as an <span class="hlt">energy</span> source has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Although Turkey has fairly high wind <span class="hlt">energy</span> <span class="hlt">potential</span>, exploitation of the wind <span class="hlt">energy</span> is still in the crawling level. In the current study, wind characteristics and wind <span class="hlt">energy</span> <span class="hlt">potential</span> of K?rklareli</p> <div class="credits"> <p class="dwt_author">Murat Gökçek; Ahmet Bayülken; ?ükrü Bekdemir</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40764610"> <span id="translatedtitle">Exploration of the ranges of the global <span class="hlt">potential</span> of biomass for <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This study explores the range of future world <span class="hlt">potential</span> of biomass for <span class="hlt">energy</span>. The focus has been put on the factors that influence the <span class="hlt">potential</span> biomass availability for <span class="hlt">energy</span> purposes rather than give exact numbers. Six biomass resource categories for <span class="hlt">energy</span> are identified: <span class="hlt">energy</span> crops on surplus cropland, <span class="hlt">energy</span> crops on degraded land, agricultural residues, forest residues, animal manure and</p> <div class="credits"> <p class="dwt_author">Monique Hoogwijk; Richard van den Broek; Göran Berndes; Dolf Gielen; Wim Turkenburg</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/789187"> <span id="translatedtitle">Steam systems in industry: <span class="hlt">Energy</span> use and <span class="hlt">energy</span> efficiency improvement <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline <span class="hlt">energy</span> consumption for steam systems. Based on a detailed analysis of boiler <span class="hlt">energy</span> use we estimate current <span class="hlt">energy</span> use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe <span class="hlt">potential</span> savings measures, and estimate the economic <span class="hlt">energy</span> savings <span class="hlt">potential</span> in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic <span class="hlt">potential</span>, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic <span class="hlt">potential</span> at 18-20% of total boiler <span class="hlt">energy</span> use, resulting in <span class="hlt">energy</span> savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.</p> <div class="credits"> <p class="dwt_author">Einstein, Dan; Worrell, Ernst; Khrushch, Marta</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-07-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23267480"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surface and rovibrational <span class="hlt">energy</span> levels of the H2-CS van der Waals complex.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational <span class="hlt">energy</span> levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational <span class="hlt">energy</span> levels. A new four-dimensional intermolecular <span class="hlt">potential</span> <span class="hlt">energy</span> surface for the H(2)-CS complex is presented. Ab initio <span class="hlt">potential</span> <span class="hlt">energy</span> calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The <span class="hlt">potential</span> <span class="hlt">energy</span> surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The <span class="hlt">potential</span> was used to calculate the rovibrational <span class="hlt">energy</span> levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation <span class="hlt">energies</span> are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface. PMID:23267480</p> <div class="credits"> <p class="dwt_author">Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003JChPh.119.5889B"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces for the uranium hydriding reaction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have computed the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces for the low-lying electronic states of uranium hydrides, UHn (n=1-3), which are important in the uranium hydriding reactions. We have employed a number of computational methods including the complete active space multiconfiguration self-consistent field followed by multireference relativistic configuration interaction computations with spin-orbit coupling that included up to 6 million configurations. We find that the activation barrier to insert uranium into H2 is reduced substantially by spin-orbit coupling, and the product species UH2 in its A1 spin-orbit ground state is substantially stable over U(5L)+H2 dissociated products. We have found two electronic states for UH to be quite close to each other, and depending on the level of theory the relative ordering of the 6? and 4I states changes, 4I state being the lowest at the highest second-order configuration interaction level. The UH2 species also exhibits a similar feature in that the triplet state is favored at the single-reference second-order Møller-Plesset and coupled cluster levels, while the quintet state is favored at the multireference and density functional theory levels. The UH3 species is extremely floppy, exhibiting an inversion <span class="hlt">potential</span> surface that has a barrier smaller than its zero-point <span class="hlt">energy</span>. It is shown that the UH3 species is considerably more ionic than UH2 or UH, and UH3 is responsible for catalyzing the U-hydriding reaction as the highly positive U site in UH3 reacts with H2 spontaneously without an activation barrier. The results of our computations are compared with previous experimental results. The spin-orbit coupling is shown to be more important for <span class="hlt">energy</span> activation than near the minima.</p> <div class="credits"> <p class="dwt_author">Balasubramanian, K.; Siekhaus, Wigbert J.; McLean, William</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvB..88k5307R"> <span id="translatedtitle">Z2 <span class="hlt">anomaly</span> and boundaries of topological insulators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We study the edge and surface theories of topological insulators from the perspective of <span class="hlt">anomalies</span> and identify a Z2 <span class="hlt">anomaly</span> associated with charge conservation. The <span class="hlt">anomaly</span> is manifested through a two-point correlation function involving creation and annihilation operators on two decoupled boundaries. Although charge conservation on each boundary requires this quantity to vanish, we find that it diverges. A corollary result is that under an insertion of a flux quantum, the ground state evolves to an exactly orthogonal state independent of the rate at which the flux is inserted. The <span class="hlt">anomaly</span> persists in the presence of disorder and imposes sharp restrictions on possible low-<span class="hlt">energy</span> theories. Being formulated in a many-body, field-theoretical language, the <span class="hlt">anomaly</span> allows one to test the robustness of topological insulators to interactions in a concise way.</p> <div class="credits"> <p class="dwt_author">Ringel, Zohar; Stern, Ady</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002SPIE.4716..128K"> <span id="translatedtitle">Automated <span class="hlt">anomaly</span> detection processor</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Robust exploitation of tracking and surveillance data will provide an early warning and cueing capability for military and civilian Law Enforcement Agency operations. This will improve dynamic tasking of limited resources and hence operational efficiency. The challenge is to rapidly identify threat activity within a huge background of noncombatant traffic. We discuss development of an Automated <span class="hlt">Anomaly</span> Detection Processor (AADP) that exploits multi-INT, multi-sensor tracking and surveillance data to rapidly identify and characterize events and/or objects of military interest, without requiring operators to specify threat behaviors or templates. The AADP has successfully detected an <span class="hlt">anomaly</span> in traffic patterns in Los Angeles, analyzed ship track data collected during a Fleet Battle Experiment to detect simulated mine laying behavior amongst maritime noncombatants, and is currently under development for surface vessel tracking within the Coast Guard's Vessel Traffic Service to support port security, ship inspection, and harbor traffic control missions, and to monitor medical surveillance databases for early alert of a bioterrorist attack. The AADP can also be integrated into combat simulations to enhance model fidelity of multi-sensor fusion effects in military operations.</p> <div class="credits"> <p class="dwt_author">Kraiman, James B.; Arouh, Scott L.; Webb, Michael L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21507625"> <span id="translatedtitle"><span class="hlt">Energy</span> life cycle assessment of rice straw bio-<span class="hlt">energy</span> derived from <span class="hlt">potential</span> gasification technologies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">To be a viable alternative, a biofuel should provide a net <span class="hlt">energy</span> gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such <span class="hlt">potential</span> bio-fuel in Taiwan. Through life-cycle accounting, several <span class="hlt">energy</span> indicators and four <span class="hlt">potential</span> gasification technologies (PGT) were evaluated. The input <span class="hlt">energy</span> steps for the <span class="hlt">energy</span> life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, <span class="hlt">energy</span> production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive <span class="hlt">energy</span> benefit. The input of <span class="hlt">energy</span> required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation <span class="hlt">energy</span> requirements. Bio-<span class="hlt">energy</span> sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. PMID:21507625</p> <div class="credits"> <p class="dwt_author">Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-02</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JHEP...02..088J"> <span id="translatedtitle">Thermodynamics, gravitational <span class="hlt">anomalies</span> and cones</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By studying the Euclidean partition function on a cone, we argue that pure and mixed gravitational <span class="hlt">anomalies</span> generate a "Casimir momentum" which manifests itself as parity violating coefficients in the hydrodynamic stress tensor and charge current. The coefficients generated by these <span class="hlt">anomalies</span> enter at a lower order in the hydrodynamic gradient expansion than would be naively expected. In 1 + 1 dimensions, the gravitational <span class="hlt">anomaly</span> affects coefficients at zeroth order in the gradient expansion. The mixed <span class="hlt">anomaly</span> in 3 + 1 dimensions controls the value of coefficients at first order in the gradient expansion.</p> <div class="credits"> <p class="dwt_author">Jensen, Kristan; Loganayagam, R.; Yarom, Amos</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998sct..conf..227B"> <span id="translatedtitle">Environmental On-Orbit <span class="hlt">Anomaly</span> Correlation Efforts at Hughes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On-orbit spacecraft <span class="hlt">anomalies</span> are relatively infrequent occurrences on modern satellite systems. However, the severity of these <span class="hlt">anomalies</span> can vary dramatically, ranging from the corruption of telemetry data to the loss of an entire spacecraft. It is the dire consequences of a major <span class="hlt">anomaly</span> which focus so much attention on anomalous on-orbit events. An environmental cause is often suspected for many of the observed <span class="hlt">anomalies</span>, but it is quite difficult to conclusively demonstrate such a link. Limited data and limited resources complicate the investigation, making it almost impossible to identify a single root cause. The large Hughes commercial satellite fleet affords a unique opportunity to develop meaningful statistics regarding repeated <span class="hlt">anomalies</span>. A close examination of the Hughes <span class="hlt">anomaly</span> database has made it possible to identify certain patterns and trends that would not be discernible with a smaller sample set. A correlation technique has been developed which makes it possible to definitively isolate an environmental relationship for a given class of <span class="hlt">anomalies</span>. This technique has been utilized to identify those <span class="hlt">anomalies</span> which are generated by the high <span class="hlt">energy</span> electron (deep charging) environment, and thus focus product improvement and corrective action efforts in a more constructive manner.</p> <div class="credits"> <p class="dwt_author">Balcewicz, P. T.; Bodeau, J. M.; Frey, M. A.; Leung, P. L.; Mikkelson, E. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10121034"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation <span class="hlt">potential</span> of the US Department of <span class="hlt">Energy</span> interim commercial building standards</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report describes a project conducted to demonstrate the whole-building <span class="hlt">energy</span> conservation <span class="hlt">potential</span> achievable from full implementation of the US Department of <span class="hlt">Energy</span> (DOE) Interim <span class="hlt">Energy</span> Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of <span class="hlt">energy</span> performance standards for commercial buildings were established by the <span class="hlt">Energy</span> Conservation Standards for New Buildings Act of 1976, as amended, Public Law (PL) 94-385, 42 USC 6831 et seq., hereinafter referred to as the Act. In accordance with the Act, DOE was to establish performance standards for both federal and private sector buildings ``to achieve the maximum practicable improvements in <span class="hlt">energy</span> efficiency and use of non-depletable resources for all new buildings``.</p> <div class="credits"> <p class="dwt_author">Hadley, D.L.; Halverson, M.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48356719"> <span id="translatedtitle">Modeling And Detecting <span class="hlt">Anomalies</span> In Scada Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The detection of attacks and intrusions based on <span class="hlt">anomalies</span> is hampered by the limits of specificity underlying the detection\\u000a techniques. However, in the case of many critical infrastructure systems, domain-specific knowledge and models can impose\\u000a constraints that <span class="hlt">potentially</span> reduce error rates. At the same time, attackers can use their knowledge of system behavior to\\u000a mask their manipulations, causing adverse effects</p> <div class="credits"> <p class="dwt_author">Nils Svendsen; Stephen Wolthusen</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21231594"> <span id="translatedtitle">Maximal <span class="hlt">potential</span> <span class="hlt">energy</span> transport: a variational principle for solidification problems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We analyze numerically the mechanisms controlling the spacing of chimneys--channels devoid of solid--in two-dimensional mushy layers formed by solidifying a binary alloy. Chimneys are the principal conduits through which buoyancy effects material transport out of the mushy layer and into the liquid from which it formed. Experiments show a coarsening of chimney spacing; we pursue the hypothesis that the spacing adjusts to optimize material transport and hence maximize the rate of removal of <span class="hlt">potential</span> <span class="hlt">energy</span> stored in the mushy layer. The optimal solute flux increases approximately linearly with the mush Rayleigh number. However, for spacings below a critical value, the chimneys collapse and solute fluxes cease, revealing a hysteresis between chimney convection and no flow. The results are consistent with a variational principle controlling the dynamics of this dissipative system. PMID:21231594</p> <div class="credits"> <p class="dwt_author">Wells, A J; Wettlaufer, J S; Orszag, S A</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1011420"> <span id="translatedtitle">Vector <span class="hlt">Potential</span> and Stored <span class="hlt">Energy</span> of a Quadrupole Magnet Array</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The vector <span class="hlt">potential</span>, magnetic field and stored <span class="hlt">energy</span> of a quadrupole magnet array are derived. Each magnet within the array is a current sheet with a current density proportional to the azimuthal angle 2{theta} and the longitudinal periodicity (2m-1){pi}/L. Individual quadrupoles within the array are oriented in a way that maximizes the field gradient The array does not have to be of equal spacing and can be of a finite size, however when the array is equally spaced and is of infinite size the solution can be simplified. We note that whereas, in a single quadrupole magnet with a current density proportional to cos2{theta} the gradient is pure, such purity is not preserved in a quadrupole array.</p> <div class="credits"> <p class="dwt_author">Caspi, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004CP....306..201M"> <span id="translatedtitle">Exploring the <span class="hlt">potential</span> <span class="hlt">energy</span> surface for proton transfer in acetylacetone</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The portion of the <span class="hlt">potential</span> <span class="hlt">energy</span> surface (PES) of acetylacetone relevant for the intramolecular proton transfer reaction is studied using ab initio and DFT methods. The best estimate of the barrier governing proton transfer was found to be 3.4 kcal mol-1 at the MP4(FC)/6-311 + G(2d,2p)//MP2(FC)/6-311 + G(2d,2p) level of theory. Six stationary points on the PES were characterized as well as the reaction paths connecting these points. Special attention paid to the pathway of intramolecular proton transfer reveals that the internal rotation of the methyl group adjacent to the carbonyl group and the proton transfer reaction are consecutive processes.</p> <div class="credits"> <p class="dwt_author">Matanovi?, Ivana; Došli?, Nadja; Mihali?, Zlatko</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010PhRvL.105y4502W"> <span id="translatedtitle">Maximal <span class="hlt">Potential</span> <span class="hlt">Energy</span> Transport: A Variational Principle for Solidification Problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We analyze numerically the mechanisms controlling the spacing of chimneys—channels devoid of solid—in two-dimensional mushy layers formed by solidifying a binary alloy. Chimneys are the principal conduits through which buoyancy effects material transport out of the mushy layer and into the liquid from which it formed. Experiments show a coarsening of chimney spacing; we pursue the hypothesis that the spacing adjusts to optimize material transport and hence maximize the rate of removal of <span class="hlt">potential</span> <span class="hlt">energy</span> stored in the mushy layer. The optimal solute flux increases approximately linearly with the mush Rayleigh number. However, for spacings below a critical value, the chimneys collapse and solute fluxes cease, revealing a hysteresis between chimney convection and no flow. The results are consistent with a variational principle controlling the dynamics of this dissipative system.</p> <div class="credits"> <p class="dwt_author">Wells, A. J.; Wettlaufer, J. S.; Orszag, S. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/925348"> <span id="translatedtitle"><span class="hlt">Potential</span> alternative <span class="hlt">energy</span> technologies on the Outer Continental Shelf.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This technical memorandum (TM) describes the technology requirements for three alternative <span class="hlt">energy</span> technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident <span class="hlt">potential</span>. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.</p> <div class="credits"> <p class="dwt_author">Elcock, D.; Environmental Assessment</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991JMoSp.145..142B"> <span id="translatedtitle">Spectroscopic constants and <span class="hlt">potential</span> <span class="hlt">energy</span> curves of HfH</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Complete active space multiconfiguration self-consistent field (CAS-MCSFC) followed by full second-roder CI (SOCI) and relativistic configuration interaction (RCI) including spin-orbit coupling calculations are carried out on 14 ?-s and 10 ?-? states of HfH. The spectroscopic constants (re, Te, ?e, ?e, De) of these states are computed. The <span class="hlt">potential</span> <span class="hlt">energy</span> curves of these states are also reported. We find several electronic transitions in the IR-UV regions for HfH which are yet to be observed. The ground state of HfH is found to be a 3/2 state (82% 2?, 8% 2?) with re = 1.854 Å, ?e = 1704 cm-1 and ?e = 0.66 D. The spin-orbit effects are found to be very significant for HfH. Present address: Department of Chemistry, University of North Bengal, Darjeeling 734430 India.</p> <div class="credits"> <p class="dwt_author">Balasubramanian, K.; Das, Kalyan K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JChPh.136j4309T"> <span id="translatedtitle">Very accurate <span class="hlt">potential</span> <span class="hlt">energy</span> curve of the He2+ ion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A very accurate ground-state <span class="hlt">potential</span> <span class="hlt">energy</span> curve (PEC) of the He2+ molecule is calculated with 1200 explicitly correlated Gaussian functions with shifted centers in the range between 0.9 and 100 a0. The calculations include the adiabatic corrections determined for the 3He4He+, 3He2+, and 4He2+ isotopologues. The absolute accuracy of the PEC is better than 0.05 cm-1 and that of the adiabatic corrections is around 0.01 cm-1. The depths of the PECs augmented with the adiabatic corrections for the three isotopologues are: 19 956.708 cm-1 for 4He2+, 19 957.054 cm-1 for 3He4He+, and 19 957.401 cm-1 for 3He2+. The rovibrational <span class="hlt">energies</span> are also determined. For 3He4He+ the computed rovibrational transitions corresponding to the ? = 1-0 band differ from the experiment by less than 0.005 cm-1. For the rovibrational transitions corresponding to the ? = 23-22 band the difference is around 0.012 cm-1. Presently, this represents the best agreement between theory and experiment for He2+.</p> <div class="credits"> <p class="dwt_author">Tung, Wei-Cheng; Pavanello, Michele; Adamowicz, Ludwik</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/677096"> <span id="translatedtitle">`t Hooft <span class="hlt">anomaly</span> matching for discrete symmetries</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors show how to extend the `t Hooft <span class="hlt">anomaly</span> matching conditions to discrete symmetries. They check these discrete anomally matching conditions on several proposed low-<span class="hlt">energy</span> spectra of certain strongly interacting gauge theories. The excluded examples include the proposed chirally symmetric vacuum of pure N = 1 supersymmetric yang-Mills theories, certain non-supersymmetric confining theories and some self-dual N = 1 supersymmetric theories based on exceptional groups.</p> <div class="credits"> <p class="dwt_author">Csaki, C.; Murayama, Hitoshi [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Physics Div.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://journals.tums.ac.ir/upload_files/pdf/12277.pdf"> <span id="translatedtitle">External Genital <span class="hlt">Anomalies</span> in Newborn Babies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Objective: External genital <span class="hlt">anomalies</span> are common congenital <span class="hlt">anomalies</span>, especially in male newborns. It seems that the incidence of these <span class="hlt">anomalies</span> is increasing. Although the etiology of these <span class="hlt">anomalies</span> is obscure in most cases, genetic and environmental factors have important roles. This study aimed to determine the types and frequency of these <span class="hlt">anomalies</span> in newborn babies and to compare the results</p> <div class="credits"> <p class="dwt_author">Siamak Shiva; Pediatric Endocrinologist; Mohammad-Hosein Hoseinian</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/jb/v083/iB12/JB083iB12p05923/JB083iB12p05923.pdf"> <span id="translatedtitle">Electrokinetic and magnetic <span class="hlt">anomalies</span> associated with dilatant regions in a layered earth</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">According to the dilatancy-diffusion earthquake model, there will be fluid motion into a dilatant zone prior to an earthquake. One possible consequence of this fluid motion is the generation of an electric <span class="hlt">potential</span> <span class="hlt">anomaly</span> by means of electrokinetic processes. A surface electric <span class="hlt">potential</span> <span class="hlt">anomaly</span> will not be produced unless there is a boundary separating regions of differing streaming <span class="hlt">potential</span> coefficient</p> <div class="credits"> <p class="dwt_author">David V. Fitterman</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/921867"> <span id="translatedtitle">The Extremely Flat Torsional <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface of Oxalyl Chloride</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of <span class="hlt">Energy</span>'s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The conformational behavior of oxalyl chloride has been investigated using ab initio Hartree–Fock (HF) and second-order Møller–Plesset (MP2) perturbation theories, and the coupled-cluster singles and doubles method appended with a perturbative inclusion of connected triple excitations [CCSD(T)]. Correlation consistent polarized valence quadruple-z (cc-pVQZ) and quintuple-z (cc-pV5Z) basis sets were used in this research. At the cc-pVQZ and cc-pV5Z HF levels, there is no stationary point corresponding to a stable gauche conformer. On the other hand, at the cc-pVQZ and cc-pV5Z MP2 levels and with the cc-pVQZ CCSD(T) method, the gauche conformer of oxalyl chloride was found at O=C-C=O dihedral angles of 81.9°, 79.4°, and 83.4°, respectively. At the cc-pV5Z MP2 level, the <span class="hlt">energy</span> barrier from trans to gauche was predicted to be 0.74 kcal mol?1 and that from gauche to trans to be 0.09 kcal mol?1. Thus, the <span class="hlt">potential-energy</span> surface along the OvC-CvO torsional mode is exceedingly flat. The existence of the gauche conformation is mainly due to the minimization of steric repulsion.</p> <div class="credits"> <p class="dwt_author">Kim, Sunghwang; Wheeler, Steven E.; DeYonker, Nathan John; Schaefer, Henry F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-06-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://faculty.chicagobooth.edu/ray.ball/research/Papers/1992%20The%20Earnings%20Price%20Anomaly.pdf"> <span id="translatedtitle">The earnings-price <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This review explores systematic explanations for the anomalous evidence in the relation between accounting earnings and stock prices. The <span class="hlt">anomaly</span> is that estimated future abnormal returns are predicted by public information about future earnings, contained in (1) current earnings and (2) current financial statement ratios. The current-earnings <span class="hlt">anomaly</span> appears due to either market inefficiency or substantial costs of investors acquiring</p> <div class="credits"> <p class="dwt_author">Ray Ball</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54955304"> <span id="translatedtitle">Measuring <span class="hlt">anomaly</span> with algorithmic entropy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Anomaly</span> detection refers to the identification of observations that are considered outside of normal. Since they are unknown to the system prior to training and rare, the <span class="hlt">anomaly</span> detection problem is particularly challenging. Model based techniques require large quantities of existing data are to build the model. Statistically based techniques result in the use of statistical metrics or thresholds for</p> <div class="credits"> <p class="dwt_author">Wanda M. Solano</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE83700866"> <span id="translatedtitle">Power Coefficient <span class="hlt">Anomaly</span> in JOYO.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Power Coefficient <span class="hlt">Anomaly</span> appeared in JOYO, which occurred in 75MW Power Ascension Test, Summer 1979. The substance of this <span class="hlt">anomaly</span> was the non-reproducible power coefficient during the initial power-up from 50MWt to 75MWt and the permanent reactivity los...</p> <div class="credits"> <p class="dwt_author">M. Ishikawa Y. Yamashita Y. Nara H. Yamamoto</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://rses.anu.edu.au/people/lambeck_k/pdf/20.pdf"> <span id="translatedtitle">Gravity <span class="hlt">Anomalies</span> over Ocean Ridges</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary The presence of positive free-air gravity <span class="hlt">anomalies</span> over ocean ridges is supported by both the global solutions derived essentially from satellite observations and by surface measurements. The <span class="hlt">anomalies</span> over the ridges observed by the satellite solutions are described by the harmonics of degree 8 or 9 and higher and they can be supported statically if maximum shear stresses in</p> <div class="credits"> <p class="dwt_author">Kurt Lambeck</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55887754"> <span id="translatedtitle"><span class="hlt">Anomalies</span> in the Solar System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Several observations show unexplained phenomena in our solar system. These observations are e.g. the Pioneer <span class="hlt">Anomaly</span>, an unexplained constant acceleration of the Pioneer 10 and 11 spacecraft, the Flyby <span class="hlt">Anomaly</span>, an unexplained increase of the velocity of a series of spacecraft after Earth gravity assists, the recently reported increase of the Astronomical Unit defined by the distance of the planets</p> <div class="credits"> <p class="dwt_author">Hansjoerg Dittus</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59293185"> <span id="translatedtitle">Congenital cardiac <span class="hlt">anomalies</span> in calves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Seven cases of congenital cardiac <span class="hlt">anomalies</span> in calves were reviewed from the files of the Ohio Veterinary Diagnostic Laboratory. The collection of material occurred during a six-month period from June 1977 to January 1978. The major clinical signs were dyspnoea, failure to gain weight and sudden death in young animals. The cardiac defects included two patent ductus arteriosus, two <span class="hlt">anomalies</span></p> <div class="credits"> <p class="dwt_author">GE Sandusky; CW Smith</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26973125"> <span id="translatedtitle">The <span class="hlt">Potential</span> of Wind <span class="hlt">Energy</span> as an Alternative Source in Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Development in wind <span class="hlt">energy</span> systems and the <span class="hlt">potential</span> of wind <span class="hlt">energy</span> in Turkey were studied; the wind <span class="hlt">energy</span> <span class="hlt">potential</span> of various regions was investigated in this study. A power equation was derived by a mathematical approach using the characteristics of wind <span class="hlt">energy</span>, including rotor diameter, wind speed, and density of the wind power. The maximum power obtainable at each location</p> <div class="credits"> <p class="dwt_author">C. ?lkiliç; M. Nursoy</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50519741"> <span id="translatedtitle">Investigating the Profile of <span class="hlt">Potential</span> New <span class="hlt">Energy</span> Innovators: An Example from UNIDO-ICHET Website Users</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The innovators play vital roles in promoting the acceptance of new technology. This is a poll for investigating the profile of <span class="hlt">potential</span> new <span class="hlt">energy</span> innovators. The researchers tried to describe the new <span class="hlt">energy</span> <span class="hlt">potential</span> innovators' profile via the variables of demographics, information sources, opinions regarding hydrogen <span class="hlt">energy</span> safety, familiarity about new <span class="hlt">energy</span> media issues, innovativeness, opinion leadership, their usage of</p> <div class="credits"> <p class="dwt_author">M. Tsai; S. Warren; Rue-de Song; Jing-yi Gao</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12636595"> <span id="translatedtitle">Saddles on the <span class="hlt">potential</span> <span class="hlt">energy</span> landscape of a Lennard-Jones liquid</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">By means of molecular dynamics simulations, we study the stationary points of the <span class="hlt">potential</span> <span class="hlt">energy</span> in a Lennard-Jones liquid, giving a purely geometric characterization of the <span class="hlt">energy</span> landscape of the system. We find a linear relation between the degree of instability of the stationary points and their <span class="hlt">potential</span> <span class="hlt">energy</span>, and we locate the <span class="hlt">energy</span> where the instability vanishes. This threshold</p> <div class="credits"> <p class="dwt_author">Kurt Broderix; Kamal K. Bhattacharya; Andrea Cavagna; Annette Zippelius; Irene Giardina</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PhDT........88G"> <span id="translatedtitle">Global free <span class="hlt">energy</span> minimization by top down hierarchical dissection of smoothed <span class="hlt">potential</span> <span class="hlt">energy</span> landscapes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This work presents a pilot study of a novel algorithm for perturbative protein folding by free <span class="hlt">energy</span> minimization. It combines <span class="hlt">potential</span> <span class="hlt">energy</span> smoothing using Gaussian convolution of the Boltzmann probability and hierarchical macrostate dissection of conformation space. These approaches are complementary. Smoothing deforms the <span class="hlt">potential</span> <span class="hlt">energy</span> function to reduce the complexity of the rugged protein <span class="hlt">potential</span> <span class="hlt">energy</span> landscape, but requires an efficient search of conformation space to identify regions of low free <span class="hlt">energy</span>. Macrostate dissection identifies and tracks meta-stable macroscopic states of probability (macrostates) to efficiently explore conformation space, but requires a guide to navigate through the proliferation of macrostates to reach the global free <span class="hlt">energy</span> minimum macrostate. The goals of combining these two methods are to allow fewer macrostates to be followed at each annealing step and improve the efficiency of stochastic sampling within each macrostate. Towards these goals, a set of object-oriented, parallel processing programs were developed to implement <span class="hlt">potential</span> smoothing and macrostate dissection. A novel smoothed form of the ECEPP/3 <span class="hlt">potential</span> was derived by approximating the Gaussian Convolved Probability Smoothing. Challenges unique to macrostate dissection and smoothing, including tracking merging and shifting macrostates, were overcome. A new scheme for selecting which macrostates to follow at each annealing step, based on the minimized <span class="hlt">potential</span> <span class="hlt">energy</span>, was found to be more efficient for global optimization of the peptide Met-enkephalin than existing schemes based on thermodynamic properties of macrostates. A key element to a successful combination of <span class="hlt">potential</span> smoothing and macrostate dissection lies in the relationship between the smoothing and temperature annealing schedules. In principle, the combined method would allow them to be adaptively determined. However, to begin exploring the effects of smoothing on macrostate dissection, several simple annealing schedules were tried. An annealing schedule was discovered that reduced the number of macrostates required for global optimization of Met-enkephalin. This result and results suggesting increased macrostate sampling efficiency may be obtained using an adaptive cooling schedule bode well for future research integrating an adaptive annealing schedule into the smoothing and macrostate dissection methodology.</p> <div class="credits"> <p class="dwt_author">Gans, Jason David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhRvL..98z1302B"> <span id="translatedtitle">Algebraic Classification of Weyl <span class="hlt">Anomalies</span> in Arbitrary Dimensions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Conformally invariant systems involving only dimensionless parameters are known to describe particle physics at very high <span class="hlt">energy</span>. In the presence of an external gravitational field, the conformal symmetry may generalize to the Weyl invariance of classical massless field systems in interaction with gravity. In the quantum theory, the latter symmetry no longer survives: A Weyl <span class="hlt">anomaly</span> appears. <span class="hlt">Anomalies</span> are a cornerstone of quantum field theory, and, for the first time, a general, purely algebraic understanding of the universal structure of the Weyl <span class="hlt">anomalies</span> is obtained, in arbitrary dimensions and independently of any regularization scheme.</p> <div class="credits"> <p class="dwt_author">Boulanger, Nicolas</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21068136"> <span id="translatedtitle">Extended optical model analyses of elastic scattering and fusion cross section data for the {sup 12}C+{sup 208}Pb system at near-Coulomb-barrier <span class="hlt">energies</span> by using a folding <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Simultaneous {chi}{sup 2} analyses are performed for elastic scattering and fusion cross section data for the {sup 12}C+{sup 208}Pb system at near-Coulomb-barrier <span class="hlt">energies</span> by using the extended optical model approach in which the polarization <span class="hlt">potential</span> is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding <span class="hlt">potential</span> as a bare <span class="hlt">potential</span>. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding <span class="hlt">potential</span> and also that both DR and fusion parts of the polarization <span class="hlt">potential</span> determined from the {chi}{sup 2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion <span class="hlt">potentials</span> at the strong absorption radius change very rapidly, which results in a typical threshold <span class="hlt">anomaly</span> in the total imaginary <span class="hlt">potential</span> as observed with tightly bound projectiles such as {alpha}-particle and {sup 16}O.</p> <div class="credits"> <p class="dwt_author">So, W. Y. [Department of Physics, University of Texas, Austin, Texas 78712 (United States); Department of Radiological Science, Catholic University of Pusan, Pusan 609-757 (Korea, Republic of); Udagawa, T. [Department of Physics, University of Texas, Austin, Texas 78712 (United States); Hong, S. W.; Kim, B. T. [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-02-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012CoTPh..57..315L"> <span id="translatedtitle">Electronic <span class="hlt">Energy</span> Band and Transport Properties in Monolayer Graphene with Periodically Modulated Magnetic Vector <span class="hlt">Potential</span> and Electrostatic <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigated the electronic <span class="hlt">energy</span> band and transport features of graphene superlattice with periodically modulated magnetic vector <span class="hlt">potential</span> and electrostatic <span class="hlt">potential</span>. It is found that both parallel magnetic vector <span class="hlt">potential</span> and electrostatic <span class="hlt">potential</span> can decisively shift Dirac point in a different way, which may be an efficient way to achieve electron or hole filter. We also find that applying modulated parallel and anti-parallel magnetic vector <span class="hlt">potential</span> to the electrons can efficiently change electronic states between pass and stop states, which can be useful in designing electron or hole switches and lead to large magneto-resistance.</p> <div class="credits"> <p class="dwt_author">Liu, Zheng-Fang; Wu, Qing-Ping; Liu, Nian-Hua</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24064723"> <span id="translatedtitle">Footprinting molecular electrostatic <span class="hlt">potential</span> surfaces for calculation of solvation <span class="hlt">energies</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A liquid is composed of an ensemble of molecules that populate a large number of different states, so calculation of the solvation <span class="hlt">energy</span> of a molecule in solution requires a method for summing the interactions with the environment over all of these states. The surface site interaction model for the properties of liquids at equilibrium (SSIMPLE) simplifies the surface of a molecule to a discrete number of specific interaction sites (SSIPs). The thermodynamic properties of these interaction sites can be characterised experimentally, for example, through measurement of association constants for the formation of simple complexes that feature a single H-bonding interaction. Correlation of experimentally determined solution phase H-bond parameters with gas phase ab initio calculations of maxima and minima on molecular electrostatic <span class="hlt">potential</span> surfaces (MEPS) provides a method for converting gas phase calculations on isolated molecules to parameters that can be used to estimate solution phase interaction free <span class="hlt">energies</span>. This approach has been generalised using a footprinting technique that converts an MEPS into a discrete set of SSIPs (each described by a polar interaction parameter, ?i). These SSIPs represent the molecular recognition properties of the entire surface of the molecule. For example, water is described by four SSIPs, two H-bond donor sites and two H-bond acceptor sites. A liquid mixture is described as an ensemble of SSIPs that represent the components of the mixture at appropriate concentrations. Individual SSIPs are assumed to be independent, so speciation of SSIP contacts can be calculated based on properties of the individual SSIP interactions, which are given by the sum of a polar (?i?j) and a non-polar (EvdW) interaction term. Results are presented for calculation the free <span class="hlt">energies</span> of transfer of a range of organic molecules from the pure liquid into water, from the pure liquid into n-hexadecane, from n-hexadecane into water, from n-octanol into water, and for the transfer of water from pure water into a range of organic liquids. The agreement with experiment is accurate to within 1.6-3.9 kJ mol(-1) root mean square difference, which suggests that the SSIMPLE approach is a promising method for estimation of solvation <span class="hlt">energies</span> in more complex systems. PMID:24064723</p> <div class="credits"> <p class="dwt_author">Calero, Christian Solis; Farwer, Jochen; Gardiner, Eleanor J; Hunter, Christopher A; Mackey, Mark; Scuderi, Serena; Thompson, Stuart; Vinter, Jeremy G</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21689919"> <span id="translatedtitle">Material and <span class="hlt">energy</span> recovery in integrated waste management systems: the <span class="hlt">potential</span> for <span class="hlt">energy</span> recovery.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and <span class="hlt">energy</span> recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and <span class="hlt">energy</span> balances, which has consisted of three major efforts (i) development of a model for quantifying the <span class="hlt">energy</span> content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-<span class="hlt">Energy</span> (WtE) plants; (iii) evaluation of mass and <span class="hlt">energy</span> balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for <span class="hlt">energy</span> recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the <span class="hlt">energy</span> <span class="hlt">potential</span> of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the <span class="hlt">potential</span> for <span class="hlt">energy</span> recovery: nearly doubling SSL (from 35% to 65%) reduces the <span class="hlt">energy</span> <span class="hlt">potential</span> only by one fourth. Consequently, even at high SSL <span class="hlt">energy</span> recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its <span class="hlt">energy</span> and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of <span class="hlt">energy</span> recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). PMID:21689919</p> <div class="credits"> <p class="dwt_author">Consonni, Stefano; Viganò, Federico</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26604552"> <span id="translatedtitle"><span class="hlt">Energy</span> conservation and retrofitting <span class="hlt">potential</span> in Hellenic hotels</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> consumption data from 158 Hellenic hotels and estimated <span class="hlt">energy</span> savings that result from the use of practical retrofitting techniques, materials and new <span class="hlt">energy</span> efficient systems are presented. The data were collected during an extensive <span class="hlt">energy</span> audit of buildings that was carried out in Hellas, within the frame of a National <span class="hlt">Energy</span> Programme sponsored by the CEC VALOREN Programme, for</p> <div class="credits"> <p class="dwt_author">M. Santamouris; C. A. Balaras; E. Dascalaki; A. Argiriou; A. Gaglia</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52868296"> <span id="translatedtitle"><span class="hlt">Potential</span> system efficiencies for MEMS vibration <span class="hlt">energy</span> harvesting</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Reliable power sources are needed for portable micro-electromechanical systems (MEMS) devices such as wireless automobile tire pressure sensors. Vibration is an ubiquitous <span class="hlt">energy</span> source that maybe 'harvested' as electrical <span class="hlt">energy</span> at the site of the MEMS device. Existing vibration <span class="hlt">energy</span> harvesting systems use either a piezoelectric or an electromagnetic transducer to convert vibrations into electrical <span class="hlt">energy</span>. This electrical <span class="hlt">energy</span> is</p> <div class="credits"> <p class="dwt_author">S. Behrens</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB80127202"> <span id="translatedtitle">The <span class="hlt">Potential</span> for <span class="hlt">Energy</span> Savings with Water Conservation Devices.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Through a survey of water-related <span class="hlt">energy</span> use, a relationship between water usage and <span class="hlt">energy</span> consumption is developed. Results obtained indicate that <span class="hlt">energy</span> requirements for water heating far exceed those for water supply and wastewater treatment. Based on...</p> <div class="credits"> <p class="dwt_author">R. L. Palla</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1980cec..rept.....L"> <span id="translatedtitle">The <span class="hlt">potential</span> of <span class="hlt">energy</span> farming in the southeastern California desert</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The use of <span class="hlt">energy</span> forms to provide future sources of <span class="hlt">energy</span> for California is considered. Marginal desert lands in southeastern California are proposed for the siting of <span class="hlt">energy</span> farms using acacia, eucalyptus, euphorbia, guayule, jojoba, mesquite, or tamarisk.</p> <div class="credits"> <p class="dwt_author">Lew, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/951833"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">Energy</span> Surface of Methanol Decomposition on Cu(110)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Combining the dimer saddle point searching method and periodic density functional theory calculations, the <span class="hlt">potential</span> <span class="hlt">energy</span> surface of methanol decomposition on Cu(110) has been mapped out. Each elementary step in the methanol decomposition reaction into CO and hydrogen occurs via one of three possible mechanisms: O?H, C?H or C?O bond scission. Multiple reaction pathways for each bond scission have been identified in the present work. Reaction pathway calculations were started from an initial (reactant) state with methanol adsorbed in the most stable geometry on Cu(110). The saddle point and corresponding final state of each reaction or diffusion mechanism were determined without assuming the reaction mechanism. In this way, the reaction paths are determined without chemical intuition. The harmonic pre-exponential factor of each identified reaction is calculated from a normal mode analysis of the stationary points. Then, using harmonic transition state theory, the reaction rate of each identified reaction pathway in the entire reaction network is obtained. The most favorable decomposition route for methanol on Cu(110) is found as follows: . The rate-limiting step in this route is the dehydrogenation of methoxy to formaldehyde. Our calculation results are in agreement with previous experimental observations and results. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of <span class="hlt">Energy</span> national scientific user facility located at PNNL in Richland, Washington.</p> <div class="credits"> <p class="dwt_author">Mei, Donghai; Xu, Lijun; Henkelman, Graeme A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21289490"> <span id="translatedtitle">Extraction of nucleus-nucleus <span class="hlt">potential</span> and <span class="hlt">energy</span> dissipation from dynamical mean-field theory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Nucleus-nucleus interaction <span class="hlt">potentials</span> in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory. When the center-of-mass <span class="hlt">energy</span> is much higher than the Coulomb barrier <span class="hlt">energy</span>, extracted <span class="hlt">potentials</span> identify with the frozen density approximation. As the center-of-mass <span class="hlt">energy</span> decreases to the Coulomb barrier <span class="hlt">energy</span>, <span class="hlt">potentials</span> become <span class="hlt">energy</span> dependent. This dependence indicates dynamical reorganization of internal degrees of freedom and leads to a reduction of the ''apparent'' barrier. Including this effect leads to the Coulomb barrier <span class="hlt">energy</span> very close to experimental one. Aspects of one-body <span class="hlt">energy</span> dissipation extracted from the mean-field theory are discussed.</p> <div class="credits"> <p class="dwt_author">Washiyama, Kouhei; Lacroix, Denis [GANIL, BP55027, 14076 Caen (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-04</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JHEP...09..125D"> <span id="translatedtitle"><span class="hlt">Anomaly</span> mediation from unbroken supergravity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">When supergravity (SUGRA) is spontaneously broken, it is well known that <span class="hlt">anomaly</span> mediation generates sparticle soft masses proportional to the gravitino mass. Recently, we showed that one-loop <span class="hlt">anomaly</span>-mediated gaugino masses should be associated with unbroken supersymmetry (SUSY). This counterintuitive result arises because the underlying symmetry structure of (broken) SUGRA in flat space is in fact (unbroken) SUSY in anti-de Sitter (AdS) space. When quantum corrections are regulated in a way that preserves SUGRA, the underlying AdS curvature (proportional to the gravitino mass) necessarily appears in the regulated action, yielding soft masses without corresponding goldstino couplings. In this paper, we extend our analysis of <span class="hlt">anomaly</span> mediation to sfermion soft masses. Already at tree-level we encounter a number of surprises, including the fact that zero soft masses correspond to broken (AdS) SUSY. At one-loop, we explain how <span class="hlt">anomaly</span> mediation appears when regulating SUGRA in a way that preserves super-Weyl invariance. We find that recent claims in the literature about the non-existence of <span class="hlt">anomaly</span> mediation were based on a Wilsonian effective action with residual gauge dependence, and the gauge-invariant 1PI effective action contains the expected <span class="hlt">anomaly</span>-mediated spectrum. Finally, we calculate the sfermion spectrum to all orders, and use supertrace relations to derive the familiar two-loop soft masses from minimal <span class="hlt">anomaly</span> mediation, as well as unfamiliar tree-level and one-loop goldstino couplings consistent with renormalization group invariance.</p> <div class="credits"> <p class="dwt_author">D'Eramo, Francesco; Thaler, Jesse; Thomas, Zachary</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JChPh.137p4305T"> <span id="translatedtitle">Accurate <span class="hlt">potential</span> <span class="hlt">energy</span> curves for HeH+ isotopologues</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">New accurate ground-state <span class="hlt">potential</span> <span class="hlt">energy</span> curves (PEC) for the 4HeH+, 4HeD+, 3HeH+, and 3HeD+ isotopologues are calculated with 600 explicitly correlated Gaussian (ECG) functions with shifted centers in the range between R = 0.35 a0 and 145 a0. The calculations include the adiabatic corrections (AC). The absolute accuracy of all Born-Oppenheimer (BO) PEC points is better than 0.0018 cm-1 and it is better than 0.0005 cm-1 for the ACs. With respect to the very recent BO PEC calculations performed by Pachucki with 20 000 generalized Heitler-London explicitly correlated functions [K. Pachucki, Phys. Rev. A 85, 042511 (2012)], the present <span class="hlt">energy</span> calculated at R = 1.46 a0 (a point near the BO equilibrium distance) lies above by only 0.0012 cm-1. Using Pachucki's BO <span class="hlt">energy</span> at the equilibrium distance of R = 1.463 283 a0, and the adiabatic corrections calculated in this work for the 4HeH+, 4HeD+, 3HeH+, and 3HeD+ isotopologues, the following values are obtained for their PEC depths: 16 448.99893 cm-1, 16 456.86246 cm-1, 16 451.50635 cm-1, and 16 459.36988 cm-1, respectively. We also calculate the rovibrational (rovib) frequencies for the four isotopologues using the BO PEC of Pachucki augmented with the present ACs. The improvements over the BO+AC PEC of Bishop and Cheung (BC) [J. Mol. Spectrosc. 75, 462 (1979)] are 1.522 cm-1 at R = 4.5 a0 and 0.322 cm-1 at R = ?. To partially account for the nonadiabatic effects in the rovib calculations an effective reduced-mass approach is used. With that, the present 4HeH+ rovibrational transitions are considerably improved over the BC transitions as compared with the experimental values. Now the rovibrational transitions near the dissociation limit are as well reproduced by the present calculations as the lower transitions. For example, for the 4HeD+ transitions corresponding to the ? = 13-9 hot bands the results are off from the experimental values by less than 0.023 cm-1. This confirms high accuracy of the present PECs at larger internuclear separations.</p> <div class="credits"> <p class="dwt_author">Tung, Wei-Cheng; Pavanello, Michele; Adamowicz, Ludwik</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23126708"> <span id="translatedtitle">Accurate <span class="hlt">potential</span> <span class="hlt">energy</span> curves for HeH+ isotopologues.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">New accurate ground-state <span class="hlt">potential</span> <span class="hlt">energy</span> curves (PEC) for the (4)HeH(+), (4)HeD(+), (3)HeH(+), and (3)HeD(+) isotopologues are calculated with 600 explicitly correlated Gaussian (ECG) functions with shifted centers in the range between R = 0.35 a(0) and 145 a(0). The calculations include the adiabatic corrections (AC). The absolute accuracy of all Born-Oppenheimer (BO) PEC points is better than 0.0018 cm(-1) and it is better than 0.0005 cm(-1) for the ACs. With respect to the very recent BO PEC calculations performed by Pachucki with 20 000 generalized Heitler-London explicitly correlated functions [K. Pachucki, Phys. Rev. A 85, 042511 (2012)], the present <span class="hlt">energy</span> calculated at R = 1.46 a(0) (a point near the BO equilibrium distance) lies above by only 0.0012 cm(-1). Using Pachucki's BO <span class="hlt">energy</span> at the equilibrium distance of R = 1.463 283 a(0), and the adiabatic corrections calculated in this work for the (4)HeH(+), (4)HeD(+), (3)HeH(+), and (3)HeD(+) isotopologues, the following values are obtained for their PEC depths: 16 448.99893 cm(-1), 16 456.86246 cm(-1), 16 451.50635 cm(-1), and 16 459.36988 cm(-1), respectively. We also calculate the rovibrational (rovib) frequencies for the four isotopologues using the BO PEC of Pachucki augmented with the present ACs. The improvements over the BO+AC PEC of Bishop and Cheung (BC) [J. Mol. Spectrosc. 75, 462 (1979)] are 1.522 cm(-1) at R = 4.5 a(0) and 0.322 cm(-1) at R = ?. To partially account for the nonadiabatic effects in the rovib calculations an effective reduced-mass approach is used. With that, the present (4)HeH(+) rovibrational transitions are considerably improved over the BC transitions as compared with the experimental values. Now the rovibrational transitions near the dissociation limit are as well reproduced by the present calculations as the lower transitions. For example, for the (4)HeD(+) transitions corresponding to the ? = 13-9 hot bands the results are off from the experimental values by less than 0.023 cm(-1). This confirms high accuracy of the present PECs at larger internuclear separations. PMID:23126708</p> <div class="credits"> <p class="dwt_author">Tung, Wei-Cheng; Pavanello, Michele; Adamowicz, Ludwik</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-28</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6899512"> <span id="translatedtitle">Molecular understanding of mutagenicity using <span class="hlt">potential</span> <span class="hlt">energy</span> methods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Our objective, has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by 2-aminofluorene and its N-acetyl derivative, 2-acetylaminofluorene (AAF). The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence, for example by the formation of hairpin loops in appropriate sequences, but it may be enhanced greatly after covalent modification by a mutagenic substance. We use computational methods and have been able to incorporate the first data from NMR studies in our calculations. Computational approaches are important because x-ray and spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. The specific methods that we employ are minimized <span class="hlt">potential</span> <span class="hlt">energy</span> calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations, with full solvent and salt, of the important static structures are carried out with the program AMBER; this yields mobile views in a medium that mimics the natural aqueous environment of the cell as well as can be done with current available computing resources.</p> <div class="credits"> <p class="dwt_author">Broyde, S.; Shapiro, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6308328"> <span id="translatedtitle">(Molecular understanding of mutagenicity using <span class="hlt">potential</span> <span class="hlt">energy</span> methods)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The objective of our work has been, for many year, to elucidate on a molecular level at atomic resolution the structures of DNAs modified by highly mutagenic polycyclic aromatic amines and hydrocarbons, and their less mutagenic chemically related analogs and unmodified DNAs, as controls. The ultimate purpose of this undertaking is to obtain an understanding of the relationship DNA structures and mutagenicity. Our methods for elucidating structures are computational, but we keep in close contact with experimental developments, and have, very recently, been able to incorporate the first experimental information from NMR studies by other workers in our calculations. The specific computational methods we employ are minimized <span class="hlt">potential</span> <span class="hlt">energy</span> calculations using the torsion angle space program DUPLEX, developed and written by Dr. Brain Hingerty to yield static views. Molecular dynamics simulations of the important static structures with full solvation and salt are carried out with the program AMBER; this yields mobile views in a milieu that best mimics the natural environment of the cell. In addition, we have been developing new strategies for searching conformation space and building DNA duplexes from favored subunit structures. 30 refs., 12 figs.</p> <div class="credits"> <p class="dwt_author">Broyde, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20015087"> <span id="translatedtitle">An <span class="hlt">energy</span> balance model based on <span class="hlt">potential</span> vorticity homogenization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">It has long been suggested that the extratropical eddies originating in baroclinic instability act to neutralize the atmosphere with respect to baroclinic instability. These studies focused on the Charney-Stern condition for stability, and since the implication of this condition was the elimination of meridional temperature gradients at the surface, contrary to observations, there appeared little possibility that the hypothesis was correct. However, Lindzen found that <span class="hlt">potential</span> vorticity (PV) mixing along isentropic surfaces accompanied by elevated tropopause height and/or reduced jet width could also lead to baroclinic neutralization. Since it is not obvious what implications such a neutral state would have for meridional structure of wind and especially temperature, the authors examine, as a first step, in this paper the implications of an assumed fixed PV gradient in the extratropical troposphere. It is shown that this assumption, combined with an assumption of a moist adiabatic temperature structure in the Tropics, a constraint on surface static stability, and overall radiative equilibrium, suffices to constrain a model earth's zonal mean climate. Comparison of the model climate with the observed climate, and variation of certain of the model's assumptions to resolve differences, allow the authors to consider the role of deep convection in the climate of the midlatitudes, to investigate the connection between surface turbulent heat fluxes and meridional <span class="hlt">energy</span> fluxes carried by baroclinic eddies, and to deduce the role of the stratosphere's overturning circulation in determining the height of the tropopause.</p> <div class="credits"> <p class="dwt_author">Kirk-Davidoff, D.B.; Lindzen, R.S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23370787"> <span id="translatedtitle">Computational studies on polynitropurines as <span class="hlt">potential</span> high <span class="hlt">energy</span> density materials.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">As part of a search for high <span class="hlt">energy</span> density materials (HEDMs), a series of purine derivatives with nitro groups were designed computationally. The relationship between the structures and the performances of these polynitropurines was studied. Density functional theory (DFT) at the B3LYP/6-311G** level was employed to evaluate the heats of formation (HOFs) of the polynitropurines by designing an isodesmic reaction method. Results indicated that the HOFs were influenced by the number and positions of substituent groups. Detonation properties were evaluated using the Kamlet-Jacobs equations, based on the theoretical densities and heats of formation of the polynitropurines. The relative stabilities of the polynitropurines were studied via the pyrolysis mechanism and the UB3LYP/6-311G** method. Homolysis of the ring-NO2 bond is predicted to be the initial step in the thermal decomposition of these purine derivatives. Considering their detonation properties and relative stabilities, the tetranitropurine (D1) derivatives may be regarded as <span class="hlt">potential</span> candidates for practical HEDCs. These results may provide useful information for further investigations. PMID:23370787</p> <div class="credits"> <p class="dwt_author">Yan, Ting; Chi, Wei-Jie; Bai, Jing; Li, Lu-Lin; Li, Bu-Tong; Wu, Hai-Shun</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21537700"> <span id="translatedtitle">Reactor antineutrino <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recently, new reactor antineutrino spectra have been provided for {sup 235}U, {sup 239}Pu, {sup 241}Pu, and {sup 238}U, increasing the mean flux by about 3%. To a good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976{+-}0.024. With our new flux evaluation, this ratio shifts to 0.943{+-}0.023, leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino <span class="hlt">anomaly</span>. The compatibility of our results with the existence of a fourth nonstandard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-{nu} data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |{Delta}m{sub new}{sup 2}|>1.5 eV{sup 2} (95%) and sin{sup 2}(2{theta}{sub new})=0.14{+-}0.08 (95%). Constraints on the {theta}{sub 13} neutrino mixing angle are revised.</p> <div class="credits"> <p class="dwt_author">Mention, G.; Fechner, M. [CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Lasserre, Th.; Cribier, M. [CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Astroparticule et Cosmologie APC, 10 rue Alice Domon et Leonie Duquet, 75205 Paris cedex 13 (France); Mueller, Th. A.; Lhuillier, D.; Letourneau, A. [CEA, Irfu, SPhN, Centre de Saclay, F-91191 Gif-sur-Yvette (France)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006JHEP...03..100L"> <span id="translatedtitle"><span class="hlt">Anomalies</span> and graded coisotropic branes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We compute the <span class="hlt">anomaly</span> of the axial U(1) current in the A-model on a Calabi-Yau manifold, in the presence of coisotropic branes discovered by Kapustin and Orlov. Our results relate the <span class="hlt">anomaly</span>-free condition to a recently proposed definition of graded coisotropic branes in Calabi-Yau manifolds. More specifically, we find that a coisotropic brane is <span class="hlt">anomaly</span>-free if and only if it is gradable. We also comment on a different grading for coisotropic submanifolds introduced recently by Oh.</p> <div class="credits"> <p class="dwt_author">Li, Yi</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://environ.chemeng.ntua.gr/en/Uploads/Doc/Papers/Water/1999_Market%20potential%20of%20renewable%20energy%20powered%20desali.pdf"> <span id="translatedtitle">Market <span class="hlt">potential</span> of renewable <span class="hlt">energy</span> powered desalination systems in Greece</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present work analyzes water management strategies based on advanced desalination schemes powered by renewable <span class="hlt">energy</span> sources. The framework for developing a decision procedure, which monitors water shortage problems and identifies the availability of renewable <span class="hlt">energy</span> resources to power desalination plants, is presented. Cost of alternative solutions, taking into account <span class="hlt">energy</span> cost or profits by <span class="hlt">energy</span> selling to grid, is</p> <div class="credits"> <p class="dwt_author">D. Voivontas; K. Yannopoulos; K. Rados; A. Zervos; D. Assimacopoulos</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/10881465"> <span id="translatedtitle">Biomass and biogas <span class="hlt">energy</span> in Thailand: <span class="hlt">Potential</span>, opportunity and barriers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass has been traditional <span class="hlt">energy</span> source in rural Thailand for decades. Country modernization, instead of reducing the biomass <span class="hlt">energy</span> consumption, has continuously increased its utilization for both households and production of modern <span class="hlt">energy</span>. While the GDP\\/capita was triple during 1980–1996, the biomass <span class="hlt">energy</span> consumption increased by 68%, and expected to be higher as signaled by the increasing number of new</p> <div class="credits"> <p class="dwt_author">S. Prasertsan; B. Sajjakulnukit</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gl/v025/i008/98GL00914/98GL00914.pdf"> <span id="translatedtitle">An internal <span class="hlt">energy</span> theorem for the atmosphere and its association with turbulent (<span class="hlt">potential</span>) temperature variances</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An extended treatment of the internal <span class="hlt">energy</span> as a thermodynamic <span class="hlt">potential</span> in the <span class="hlt">energy</span>-entropy picture is presented in connection with atmospheric systems under turbulent conditions. One finds that a turbulent thermodynamically autonomous <span class="hlt">energy</span> quantity, the turbulent internal <span class="hlt">energy</span> (TIE) which belongs to the mean state internal <span class="hlt">energy</span> depending on averaged state variables, can be derived. The elementary relevance of TIE</p> <div class="credits"> <p class="dwt_author">Fritz Herbert; Fred Kucharski</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58440683"> <span id="translatedtitle">The roles and <span class="hlt">potentials</span> of renewable <span class="hlt">energy</span> in less-developed economies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Increasing the renewable <span class="hlt">energy</span> share in national <span class="hlt">energy</span> mix remains one of the major <span class="hlt">energy</span> policy goals across many economies. This paper assesses the roles and <span class="hlt">potentials</span> of renewable <span class="hlt">energy</span> sources in less-developed economies while citing Nepal as an example. Renewable <span class="hlt">energy</span> has a significant role to play in the electrification of rural areas in developing economies and contribute towards</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58182238"> <span id="translatedtitle">Roles and <span class="hlt">potentials</span> of renewable <span class="hlt">energy</span> in less-developed economies: The case of Nepal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Increasing the share of renewable <span class="hlt">energy</span> in the national <span class="hlt">energy</span> mix remains one of the major <span class="hlt">energy</span> policy goals across many economies. This paper assesses the roles and <span class="hlt">potentials</span> of renewable <span class="hlt">energy</span> sources in less-developed economies while citing Nepal as an example. Renewable <span class="hlt">energy</span> has a significant role to play in the electrification of rural areas in developing economies and</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/991258"> <span id="translatedtitle">Earth flyby <span class="hlt">anomalies</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In the planet-centric system, a spacecraft should have the same initial and final <span class="hlt">energies</span>, even though its <span class="hlt">energy</span> and angular momentum will change in the barycenter of the solar system. However, without explanation, a number of earth flybys have yielded small <span class="hlt">energy</span> changes.</p> <div class="credits"> <p class="dwt_author">Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LAB.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JPCM...25j5505Z"> <span id="translatedtitle">Projection <span class="hlt">potentials</span> and angular momentum convergence of total <span class="hlt">energies</span> in the full-<span class="hlt">potential</span> Korringa-Kohn-Rostoker method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Although the full-<span class="hlt">potential</span> Korringa-Kohn-Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total <span class="hlt">energies</span> with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle <span class="hlt">energies</span> are expected if they are calculated by Lloyd’s formula and because accurate densities and hence accurate double-counting <span class="hlt">energies</span> should result from the total <span class="hlt">energy</span> variational principle. It is shown how the concept of projection <span class="hlt">potentials</span> can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total <span class="hlt">energies</span> can be improved with only a modest increase of computing time.</p> <div class="credits"> <p class="dwt_author">Zeller, Rudolf</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23396831"> <span id="translatedtitle">Projection <span class="hlt">potentials</span> and angular momentum convergence of total <span class="hlt">energies</span> in the full-<span class="hlt">potential</span> Korringa-Kohn-Rostoker method.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Although the full-<span class="hlt">potential</span> Korringa-Kohn-Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total <span class="hlt">energies</span> with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle <span class="hlt">energies</span> are expected if they are calculated by Lloyd's formula and because accurate densities and hence accurate double-counting <span class="hlt">energies</span> should result from the total <span class="hlt">energy</span> variational principle. It is shown how the concept of projection <span class="hlt">potentials</span> can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total <span class="hlt">energies</span> can be improved with only a modest increase of computing time. PMID:23396831</p> <div class="credits"> <p class="dwt_author">Zeller, Rudolf</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-08</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/43169992"> <span id="translatedtitle">Aluminium interatomic <span class="hlt">potential</span> from density functional theory calculations with improved stacking fault <span class="hlt">energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new Al <span class="hlt">potential</span> with improved stacking fault <span class="hlt">energy</span> is constructed using the force-matching method. The <span class="hlt">potential</span> is fitted to an ab initio forces database and various experimental data. By using a slightly larger cut-off, we found that the new <span class="hlt">potential</span> gives the relaxed stacking fault <span class="hlt">energy</span> in the experimental range without changing the excellent thermal and surface properties of</p> <div class="credits"> <p class="dwt_author">Xiang-Yang Liu; Furio Ercolessi; James B. Adams</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6397119"> <span id="translatedtitle">Nuclear Data and Measurements Series: The <span class="hlt">energy</span> dependence of the optical-model <span class="hlt">potential</span> for fast-neutron scattering from bismuth</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Neutron differential-elastic-scattering cross sections of bismuth were measured at 0.5 MeV intervals from 4.5 to 10.0 MeV. At each incident <span class="hlt">energy</span> greater than or equal to40 differential values were obtained, distributed between 18/sup 0/ and 160/sup 0/. The measured data were combined with lower-<span class="hlt">energy</span> results previously reported from this laboratory, and others available in the literature, to provide a detailed data base extending from 1.5 to 10.0 MeV. This data base was interpreted in terms of the conventional optical-statistical model and also a model inclusive of the surface-peaked real <span class="hlt">potential</span> predicted by the dispersion relation. Particular attention was given to the <span class="hlt">energy</span> dependence of the volume-integral-per-nucleon of the real <span class="hlt">potential</span>, J/sub v/, to see if there was evidence of the Fermi Surface <span class="hlt">Anomaly</span>. In the range 3.0 to 10.0 MeV the present data indicate that dJ/sub v//dE is essentially constant, with a relatively large negative value of -6.0 to -9.0 fm/sup 3/, depending on the model used in the analysis. Below 3.0 MeV, there is some evidence for a decrease in the magnitude of dJ/dE. However, the effect is very small and it is only when this trend is combined with considerations of the J/sub v/ values needed to give correct bound-state <span class="hlt">energies</span> that evidence for the Fermi Surface <span class="hlt">Anomaly</span> emerges. J/sub v/ and the geometry of the optical <span class="hlt">potentials</span> found for /sup 209/Bi become equal to those needed to explain the high-<span class="hlt">energy</span> /sup 208/Pb data at about 10.0 MeV. Since dJ/sub v//dE for the latter is smaller in magnitude than for /sup 209/Bi, a change in dJ/sub v//dE is clearly indicated near 10.0 MeV. This may effect the extrapolation of higher-<span class="hlt">energy</span> and charged-particle <span class="hlt">potentials</span> into the lower-<span class="hlt">energy</span> neutron domain. 47 refs., 9 figs.</p> <div class="credits"> <p class="dwt_author">Smith, A.B.; Guenther, P.T.; Lawson, R.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49577246"> <span id="translatedtitle">Status and <span class="hlt">potentials</span> of renewable <span class="hlt">energies</span> in Yazd Province-Iran</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present study attempts to review and discuss the status and <span class="hlt">potential</span> of Yazd Province in utilizing renewable <span class="hlt">energy</span> sources with a special focus on solar and wind <span class="hlt">energies</span>. Solar insulation data reveals that the region has great <span class="hlt">potentials</span> for harnessing solar <span class="hlt">energy</span> and implementing the related promising available technologies. The province is experiencing power generation by a 12kW off</p> <div class="credits"> <p class="dwt_author">A. A. Dehghan</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60822632"> <span id="translatedtitle">A PRELIMINARY STUDY OF THE <span class="hlt">POTENTIAL</span> TO KINETIC <span class="hlt">ENERGY</span> CONVERSION PROCESS IN THE STRATOSPHERE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> to kinetic <span class="hlt">energy</span> conversion process in the lower ; stratosphere is evaluated using adiabatically derived vertical velocities for the ; North American region for a five-day period. Preliminary results suggest the ; possibility that on the average the kinetic <span class="hlt">energy</span> of stratospheric motions may ; not result from a conversion of <span class="hlt">potential</span> <span class="hlt">energy</span> within the stratosphere. The ;</p> <div class="credits"> <p class="dwt_author">R. M. White; G. F. Nolan</p> <p class="dwt_publisher"></p> <p class="publishDate">1959-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a002700/a002793/index.html"> <span id="translatedtitle">Pacific Temperature <span class="hlt">Anomalies</span> with Graph</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This animation shows the El Nino-La Nina Sea Surface Temperature <span class="hlt">Anomaly</span> from January 1997 through July 1999. A graph inset shows the global average sea surface temperature fluctuation during this time period.</p> <div class="credits"> <p class="dwt_author">Shirah, Greg; Bridgman, Tom; Starr, Cindy; Busalacchi, Antonio; Schultz, Peter</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-08-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=IFINFT1621978"> <span id="translatedtitle">Axial <span class="hlt">Anomaly</span> in Nonrenormalizable Theories.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The <span class="hlt">anomaly</span> for the axial current in nonrenormalizable theories with electromagnetic coupling is considered. The spinor electrodynamics with Pauli term is examined in detail using the Feynman graph technique and the point-splitting method. The same finite...</p> <div class="credits"> <p class="dwt_author">S. Marculescu L. Mezincescu</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20849891"> <span id="translatedtitle">Future World <span class="hlt">Energy</span> Demand and Supply: China and India and the <span class="hlt">Potential</span> Role of Fusion <span class="hlt">Energy</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Massive increases in <span class="hlt">energy</span> demand are projected for countries such as China and India over this century e.g., many 100s of megawatts of electricity (MWe) of additional electrical capacity by 2050, with more additions later, are being considered for each of them. All <span class="hlt">energy</span> sources will be required to meet such a demand. Fortunately, while world <span class="hlt">energy</span> demand will be increasing, the world is well endowed with a variety of <span class="hlt">energy</span> resources. However, their distribution does not match the areas of demand and there are many environmental issues.Such geopolitical issues affect China and India and make it important for them to be able to deploy improved technologies. In this regard, South Korea is an interesting example of a country that has developed the capability to do advanced technologies - such as nuclear power plants. International collaborations in developing these technologies, such as the International Thermonuclear Reactor (ITER), may be important in all <span class="hlt">energy</span> areas. Fusion <span class="hlt">energy</span> is viewed as an interesting <span class="hlt">potential</span> option in these three countries.</p> <div class="credits"> <p class="dwt_author">Sheffield, John [Joint Institute for Energy and Environment at the University of Tennessee (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981STIA...8138516J"> <span id="translatedtitle">Wind <span class="hlt">energy</span>: An assessment of the technical and economic <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The technical and economic possibilities of the conversion of wind <span class="hlt">energy</span> into electrical <span class="hlt">energy</span> in the region of 300 MW is examined. A simulations model SWING (Simulation of Wind <span class="hlt">Energy</span> Integration in the National Power Grid) is developed based on conventional systems for current conservation and wind <span class="hlt">energy</span> production designs. Wind patterns in the Federal Republic of Germany are investigated along with optimal sizes of storage systems. Fuel savings are considered along with reductions in power plant performance.</p> <div class="credits"> <p class="dwt_author">Jarass, L.; Hoffmann, L.; Jarass, A.; Obermair, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008ChPhB..17.1629Z"> <span id="translatedtitle">Hawking radiation from gravity's rainbow via gravitational <span class="hlt">anomaly</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Based on the <span class="hlt">anomaly</span> cancellation method, initiated by Robinson and Wilczek, we investigates Hawking radiation from the modified Schwarzschild black hole from gravity's rainbow from the <span class="hlt">anomaly</span> point of view. Unlike the general Schwarzschild space—time, the metric of this black hole depends on the <span class="hlt">energies</span> of probes. The obtained result shows to restore the underlying general covariance at the quantum level in the effective field, the covariant compensating flux of <span class="hlt">energy</span>—momentum tensor, which is related to the <span class="hlt">energies</span> of the probes, should precisely equal to that of a (1 + 1)-dimensional blackbody at the Hawking temperature.</p> <div class="credits"> <p class="dwt_author">Zeng, Xiao-Xiong; Yang, Shu-Zheng; Chen, De-You</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53107478"> <span id="translatedtitle">Canada's renewable <span class="hlt">energy</span> resources: An assessment of <span class="hlt">potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Rising costs of conventional, frontier, and nuclear <span class="hlt">energy</span> production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable <span class="hlt">energy</span> technologies. Principal sources of renewable <span class="hlt">energy</span> (solar radiation, wind, and biomass), as well as waves, thermal gradients, and, sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next,</p> <div class="credits"> <p class="dwt_author">P. Middleton; R. Argue; T. Burrell; G. Hathaway</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26284602"> <span id="translatedtitle">Analysis of the <span class="hlt">potential</span> of wind <span class="hlt">energy</span> conversion systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This presentation (a) reviews the flow of solar <span class="hlt">energy</span> and wind, (b) describes the time and space distribution of useful wind power, (c) considers some of the modern machinery that has been conceived to capture wind <span class="hlt">energy</span>, (d) points out some limitations to practical wind <span class="hlt">energy</span> extraction and use, and (e) summarizes available and projected wind power hardware systems. In</p> <div class="credits"> <p class="dwt_author">J REED</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51592316"> <span id="translatedtitle">GIS Assessment of Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> in California and Florida</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> efficiency coupled with renewable <span class="hlt">energy</span> technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative <span class="hlt">energy</span> sector is wind power, which is now one of the largest sources of new</p> <div class="credits"> <p class="dwt_author">R. K. Snow; M. M. Snow</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://geoinformatics.sut.ac.th/sut/student/AdvGISpresent/2006-2/Windenergy.pdf"> <span id="translatedtitle">Wind <span class="hlt">energy</span> <span class="hlt">potential</span> mapping in Karnataka, India, using GIS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Increasing negative effects of fossil fuel combustion on the environment in addition to limited stock have forced many countries to explore and change to environmentally friendly alternatives that are renewable to sustain the increasing <span class="hlt">energy</span> demand. Changing to renewable sources and implementation of effective conservation measures would ensure sustainability. Currently, wind <span class="hlt">energy</span> is one of the fastest developing renewable <span class="hlt">energy</span></p> <div class="credits"> <p class="dwt_author">T. V. Ramachandra; B. V. Shruthi</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE97004225"> <span id="translatedtitle">Electrical <span class="hlt">energy</span> and cost savings <span class="hlt">potential</span> at DOD facilities.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The US Department of Defense (DOD) has been mandated to reduce <span class="hlt">energy</span> consumption and costs by 20% from 1985 to 2000 and by 30% from 1985 to 2005. Reduction of electrical <span class="hlt">energy</span> consumption at DOD facilities requires a better understanding of <span class="hlt">energy</span> consu...</p> <div class="credits"> <p class="dwt_author">S. Konopacki H. Akbari L. Lister L. DeBaille</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.usaee.org/usaee2008/submissions/onlineproceedings/full%20paper_usaee2008-for%20pdf.pdf"> <span id="translatedtitle">Technical and Economic <span class="hlt">Potentials</span> of Renewable <span class="hlt">Energy</span> Development in Thailand</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Energy</span> consumption of Thailand has been continually increasing whereas the government policy to import those conventional <span class="hlt">energy</span> seems to be limited. To sustainably overcome this problem, the development of renewable <span class="hlt">energy</span> projects are important keys. Among them, bio- fuels projects seem to be the most promising one because of abundant reserves available in the domestic. There have been two groups</p> <div class="credits"> <p class="dwt_author">Watchara Permchart; Somporn Tanatvanit</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JPhB...43a5003D"> <span id="translatedtitle"><span class="hlt">Energy</span> eigenvalues of spherical symmetric <span class="hlt">potentials</span> with relativistic corrections: analytic results</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including the relativistic corrections. The <span class="hlt">energy</span> eigenvalues of spherical symmetric <span class="hlt">potentials</span> for two-particle bound state systems with relativistic corrections are analytically derived. The <span class="hlt">energy</span> spectra of linear and funnel <span class="hlt">potentials</span> with orbital and radial excitations are determined. The <span class="hlt">energy</span> spectrum of a superposition of Coulomb and Yukawa <span class="hlt">potentials</span> is also determined. Our result shows that the <span class="hlt">energy</span> spectrum with the relativistic corrections for the linear, harmonic oscillator and funnel <span class="hlt">potentials</span> is smaller than the upper boundaries for the <span class="hlt">energy</span> spectrum established in the framework of the spinless Salpeter equation for the orbital and radial excited states. The relativistic corrections to the <span class="hlt">energy</span> spectrum of a superposition of the attractive Coulomb <span class="hlt">potential</span> and the Yukawa (exponentially screened Coulomb) <span class="hlt">potentials</span> are very small.</p> <div class="credits"> <p class="dwt_author">Dineykhan, M.; Zhaugasheva, S. A.; Toinbaeva, N. Sh</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21541643"> <span id="translatedtitle">Flavorful hybrid <span class="hlt">anomaly</span>-gravity mediation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider supersymmetric models where <span class="hlt">anomaly</span> and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of <span class="hlt">anomaly</span> mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of <span class="hlt">anomaly</span> mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing <span class="hlt">energy</span> at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.</p> <div class="credits"> <p class="dwt_author">Gross, Christian; Hiller, Gudrun [Institut fuer Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013CPL...584...49J"> <span id="translatedtitle"><span class="hlt">Potential</span> <span class="hlt">energy</span> function for HeS+ and transport properties of S+ in He</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The interaction <span class="hlt">potential</span> <span class="hlt">energy</span> curve for HeS+ is obtained directly from experimental ion mobility values and by ab initio calculations. The <span class="hlt">potentials</span> are compared to similar results for HeS-. It is concluded that the experimentally-inferred <span class="hlt">potential</span> may be more accurate than the ab initio <span class="hlt">potential</span> because spin-orbit interactions have not been included in the latter.</p> <div class="credits"> <p class="dwt_author">Jalili, Amir H.; Behnejad, Hassan; Afsahi, Ghazaleh; Gharibi, Mahtab; Viehland, Larry A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB83106658"> <span id="translatedtitle">The <span class="hlt">Potential</span> for Renewable <span class="hlt">Energy</span> Technologies in the Rural Postharvest Food System in Developing Countries.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This report examines <span class="hlt">energy</span> demand and <span class="hlt">potential</span> renewable <span class="hlt">energy</span> technologies for postharvest food processing with particular emphasis on technologies related to grain. Postharvest activities (harvesting, drying, threshing, winnowing, shelling, hulling, ...</p> <div class="credits"> <p class="dwt_author">C. J. Lindblad</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE92005454"> <span id="translatedtitle">Surface structure, bonding, and dynamics: The universality of zincblende (110) <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Using a tight-binding, total <span class="hlt">energy</span> (TBTE) model we examine the hypothesis that the <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces (PES) describing the (110) cleavage faces of the tetrahedrally coordinated, zincblende-structure compound semiconductors exhibit a common ''unive...</p> <div class="credits"> <p class="dwt_author">T. J. Godin J. P. LaFemina</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61311043"> <span id="translatedtitle"><span class="hlt">Potential</span> for <span class="hlt">energy</span> recovery from humid air streams. Forest Service research paper (final)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">potential</span> for <span class="hlt">energy</span> recovery from the vent stream of dryers is examined by assuming the vent stream transfers its <span class="hlt">energy</span> in a regenerative heat exchanger. Tables present <span class="hlt">energy</span> recovery over a range of conditions. Example problems demonstrate the use of the <span class="hlt">energy</span> recovery tables.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26587950"> <span id="translatedtitle"><span class="hlt">Potential</span> of solar <span class="hlt">energy</span> utilization in the textile industry — a case study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">There is high <span class="hlt">energy</span> consumption in the industrial sector at low-temperature levels, and solar <span class="hlt">energy</span> could save a considerable part of this <span class="hlt">energy</span>. A feasibility study to obtain the <span class="hlt">potential</span> of solar <span class="hlt">energy</span> utilization in the textile industry is presented. Two categories were considered in this study. The first category is a preheat solar system that can feed the boiler</p> <div class="credits"> <p class="dwt_author">Adel M. Abdel-Dayem; M. A. Mohamad</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50648769"> <span id="translatedtitle">Preliminary investigation of the <span class="hlt">potential</span> of harnessing tidal <span class="hlt">energy</span> for electricity generation in Malaysia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Malaysia is heavily dependent on fossil fuel for electricity generation. With the rapidly diminishing of its fuel reserve and the increasingly apparent negative effect of fossil fuels to climate changes, it has recently started exploring renewable <span class="hlt">energy</span>, mainly bio-fuel and solar <span class="hlt">energy</span>. However, the <span class="hlt">potential</span> of harnessing ocean <span class="hlt">energy</span>, such as tidal <span class="hlt">energy</span>, in Malaysia has yet to be studied</p> <div class="credits"> <p class="dwt_author">Koh Siong Lee; Lim Yun Seng</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57706394"> <span id="translatedtitle">A Statistical Investigation on the Wind <span class="hlt">Energy</span> <span class="hlt">Potential</span> of Turkey's Geographical Regions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wind <span class="hlt">energy</span> is one of the most significant and rapidly developing renewable <span class="hlt">energy</span> sources in the world, and it provides a clean <span class="hlt">energy</span> resource, which is a promising alternative in the short term in Turkey. The wind <span class="hlt">energy</span> <span class="hlt">potential</span> in various parts of Turkey is becoming economical due to reductions in wind turbine costs, and in fossil fuel atmospheric pollution.</p> <div class="credits"> <p class="dwt_author">I. Turk Togrul; C. Ertekin</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41041445"> <span id="translatedtitle">The analysis of wind data and wind <span class="hlt">energy</span> <span class="hlt">potential</span> in Kutahya, Turkey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The wind <span class="hlt">energy</span> is one of the most significant and rapidly developing renewable <span class="hlt">energy</span> sources in the world and it provides a clean <span class="hlt">energy</span> resource, which is a promising alternative in the short term in Turkey. The wind <span class="hlt">energy</span> <span class="hlt">potential</span> in various parts of Turkey is becoming economical due to reductions in the wind turbine costs, and in fossil fuel</p> <div class="credits"> <p class="dwt_author">Ramazan Kose; M. Arif Ozgur; Oguzhan Erbas; Abtullah Tugcu</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992JNuM..191....7P"> <span id="translatedtitle">Global <span class="hlt">energy</span> scenarios and the <span class="hlt">potential</span> role of fusion <span class="hlt">energy</span> in the 21st century</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Global <span class="hlt">energy</span> usage is increasing at about 2% p.a. The expansion is related to population growth and to demand for economic growth and higher standards of living, despite some economies in <span class="hlt">energy</span> use per unit GNP. A severalfold increase in global electricity demand by the middle of the 21st century seems inevitable, with the largest increment from large-population developing countries such as China and India. Currently, most electricity is provided by carbon-based fossil fuels, by hydroelectricity and by nuclear fission. Fusion, with its <span class="hlt">potential</span> to provide electricity from large central power stations could help meet a significant part of this expanding demand. It will have to be broadly competitive with established generating methods. Current advances in fusion research indicate good prospects for technical demonstration of fusion electricity generation. Research and development of materials for fusion <span class="hlt">energy</span> is needed now not only for demonstration plant, but also to enhance the estimates of the competitivity of fusion and to maximise its economic and environmental <span class="hlt">potential</span>.</p> <div class="credits"> <p class="dwt_author">Pease, R. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42813597"> <span id="translatedtitle">Decision Support System to Assess Regional Biomass <span class="hlt">Energy</span> <span class="hlt">Potential</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Biomass is a renewable source that accounts for nearly 33% of a developing country's <span class="hlt">energy</span> needs. In India, it meets about 75% of the rural <span class="hlt">energy</span> needs and the rural population constitutes 70% of the total population. Sustainable management of these resources requires better and timely decisions, which can lead to increased cost-efficiency and productivity. This would help in regional</p> <div class="credits"> <p class="dwt_author">T. V. Ramachandra; S. Vamsee Krishna; B. V. Shruthi</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=163978"> <span id="translatedtitle">PERENNIAL HERBACEOUS BIOMASS <span class="hlt">ENERGY</span> CROPS: <span class="hlt">POTENTIAL</span> AND STATUS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Agricultural Research Service, U.S. Dept. of Agriculture (USDA-ARS), U.S. Dept. of <span class="hlt">Energy</span> (DOE), and cooperating Universities have been investigating the feasibility of using perennial forages (herbaceous biomass) for <span class="hlt">energy</span> production. The most promising species include switchgrass, a native prair...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27182370"> <span id="translatedtitle">Multiglazed windows: <span class="hlt">potential</span> for savings in <span class="hlt">energy</span>, emissions and cost</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper details case studies undertaken in four office buildings in Edinburgh, Scotland. Analyses were undertaken of the <span class="hlt">energy</span> requirements to maintain room temperature in each building. Alternative high performance window specifications were analysed and compared to results for existing specifications. Comparisons were made between the additional embodied <span class="hlt">energy</span> and associated emissions, and financial cost required to install higher performance</p> <div class="credits"> <p class="dwt_author">GF Menzies; JR Wherrett</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52993109"> <span id="translatedtitle">Materials resource requirements and <span class="hlt">potential</span> limitations in solar <span class="hlt">energy</span> products</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A systematic methodology for identifying material constraints to the future expansion of advanced <span class="hlt">energy</span> supply technologies is presented and applied to various solar <span class="hlt">energy</span> applications. The identification process involves tracking the sources of technology components by means of an interactive computer system and evaluating their supply according to defined thresholds at various supply levels. Nine solar heating and cooling of</p> <div class="credits"> <p class="dwt_author">R. L. Watts</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/750806"> <span id="translatedtitle">The <span class="hlt">potential</span> for reducing <span class="hlt">energy</span> utilization in the refining industry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The paper first discusses <span class="hlt">energy</span> use in petroleum refineries and CO{sub 2} emissions because of the fuels used. Then the paper looks at near-, mid-, and long-term opportunities for <span class="hlt">energy</span> reduction. Some of the options are catalysts, cooling water recycling, steam system efficiency, and the use of coke and petroleum residues.</p> <div class="credits"> <p class="dwt_author">Petrick, M.; Pellegrino, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-10-08</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">444</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21486862"> <span id="translatedtitle">FOLD LENS FLUX <span class="hlt">ANOMALIES</span>: A GEOMETRIC APPROACH</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We develop a new approach for studying flux <span class="hlt">anomalies</span> in quadruply imaged fold lens systems. We show that in the absence of substructure, microlensing, or differential absorption, the expected flux ratios of a fold pair can be tightly constrained using only geometric arguments. We apply this technique to 11 known quadruple lens systems in the radio and infrared and compare our estimates to the Monte Carlo based results of Keeton et al. We show that a robust estimate for a flux ratio from a smoothly varying <span class="hlt">potential</span> can be found, and at long wavelengths those lenses deviating from this ratio almost certainly contain significant substructure.</p> <div class="credits"> <p class="dwt_author">Goldberg, David M.; Chessey, Mary K.; Harris, Wendy B.; Richards, Gordon T., E-mail: goldberg@drexel.ed [Department of Physics, Drexel University, Philadelphia, PA 19104 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">445</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/861207"> <span id="translatedtitle">A New Methodology for Early <span class="hlt">Anomaly</span> Detection of BWR Instabilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The objective of the performed research is to develop an early <span class="hlt">anomaly</span> detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of <span class="hlt">potential</span> power oscillations in BWRs by detecting small <span class="hlt">anomalies</span> at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for <span class="hlt">anomaly</span> detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the <span class="hlt">anomalies</span> as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small <span class="hlt">anomalies</span>. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on <span class="hlt">anomaly</span> detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.</p> <div class="credits"> <p class="dwt_author">Ivanov, K. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-27</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">446</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE84006091"> <span id="translatedtitle">Alternative Work Schedules <span class="hlt">Energy</span> Conservation <span class="hlt">Potential</span>. Task IV Report.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An evaluation of the <span class="hlt">potential</span> economic impacts of flexitime, compressed workweek and permanent part-time work schedules is presented. In three major sections: an economic impact assessment at the establishment level based on case studies of nine firms us...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">447</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EnMan..49..517D"> <span id="translatedtitle">Airports Offer Unrealized <span class="hlt">Potential</span> for Alternative <span class="hlt">Energy</span> Production</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Scaling up for alternative <span class="hlt">energy</span> such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative <span class="hlt">energy</span> production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative <span class="hlt">energy</span> projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.</p> <div class="credits"> <p class="dwt_author">Devault, Travis L.; Belant, Jerrold L.; Blackwell, Bradley F.; Martin, James A.; Schmidt, Jason A.; Wes Burger, L.; Patterson, James W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">448</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB87146833"> <span id="translatedtitle"><span class="hlt">Potential</span> Impact of Ocean Thermal <span class="hlt">Energy</span> Conversion (OTEC) on Fisheries.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The commercial development of ocean thermal <span class="hlt">energy</span> conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its s...</p> <div class="credits"> <p class="dwt_author">E. P. Myers D. E. Hoss W. M. Matsumoto D. S. Peters M. P. Seki</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">449</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1980STIN...8032959D"> <span id="translatedtitle"><span class="hlt">Potential</span> displacement of petroleum imports by solar <span class="hlt">energy</span> technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The United States currently imports close to half of its petroleum requirements. The economic, social, and political costs of a foreign oil dependency are discussed. Development of alternative, domestic <span class="hlt">energy</span> sources, such as solar <span class="hlt">energy</span> technologies, which can displace foreign petroleum is discussed. It is estimated that by the year 2000, solar <span class="hlt">energy</span> technologies can displace 3.6 quads of petroleum. This figure includes solar <span class="hlt">energy</span> applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.</p> <div class="credits"> <p class="dwt_author">Deleon, P.; Jackson, B. L.; McNown, R. F.; Mahrenholz, G. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">450</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1046548"> <span id="translatedtitle">Graph <span class="hlt">anomalies</span> in cyber communications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for <span class="hlt">anomalies</span> with respect to a nominal reference model. Traditional <span class="hlt">anomaly</span> detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of <span class="hlt">anomalies</span> that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.</p> <div class="credits"> <p class="dwt_author">Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-11</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">451</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1993310"> <span id="translatedtitle">A <span class="hlt">potential</span> enstrophy and <span class="hlt">energy</span> conserving scheme for the shallow water equations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To improve the simulation of nonlinear aspects of the flow over steep topography, a <span class="hlt">potential</span> enstrophy and <span class="hlt">energy</span> conserving scheme for the shallow water equations is derived. It is pointed out that a family of schemes can conserve total <span class="hlt">energy</span> for general flow and <span class="hlt">potential</span> enstrophy for flow with no mass flux divergence. The newly derived scheme is a unique</p> <div class="credits"> <p class="dwt_author">Akio Arakawa; V. R. Lamb</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">452</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nd.edu/~wschnei1/Courses/CBE_547/Lectures/Lecture5/Schlegel_JCC_2005.pdf"> <span id="translatedtitle">Feature Article Exploring <span class="hlt">Potential</span> <span class="hlt">Energy</span> Surfaces for Chemical Reactions: An Overview of Some Practical Methods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Potential</span> <span class="hlt">energy</span> surfaces form a central concept in the application of electronic structure methods to the study of molecular structures, properties, and reactivities. Recent advances in tools for exploring <span class="hlt">potential</span> <span class="hlt">energy</span> surfaces are surveyed. Methods for geometry optimization of equilibrium structures, searching for transition states, following reaction paths and ab initio molecular dynamics are discussed. For geometry optimization, topics include</p> <div class="credits"> <p class="dwt_author">H. BERNHARD SCHLEGEL</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">453</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18494031"> <span id="translatedtitle">A comparison of crystal–melt interfacial free <span class="hlt">energies</span> using different Al <span class="hlt">potentials</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have calculated the crystal–melt interfacial stiffnesses using simulations with three different interatomic <span class="hlt">potentials</span> for Al, and from these derived the anisotropic crystal–melt interfacial free <span class="hlt">energies</span>. We find that there is a strong dependence of the results on the <span class="hlt">potential</span>, and that this dependence cannot be explained by the usual Turnbull relation between the interfacial free <span class="hlt">energy</span> and the latent</p> <div class="credits"> <p class="dwt_author">James R. Morris; Mikhail I. Mendelev; D. J. Srolovitz</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">454</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JChPh.137f4503H"> <span id="translatedtitle">A one-dimensional model with water-like <span class="hlt">anomalies</span> and two phase transitions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate a one-dimensional model that shows several properties of water. The model combines the long-range attraction of the van der Waals model with the nearest-neighbor interaction <span class="hlt">potential</span> by Ben-Naim, which is a step <span class="hlt">potential</span> that includes a hard core and a <span class="hlt">potential</span> well. Starting from the analytical expression for the partition function, we determine numerically the Gibbs <span class="hlt">energy</span> and other thermodynamic quantities. The model shows two phase transitions, which can be interpreted as the liquid-gas transition and a transition between a high-density and a low-density liquid. At zero temperature, the low-density liquid goes into the crystalline phase. Furthermore, we find several <span class="hlt">anomalies</span> that are considered characteristic for water. We explore a wide range of pressure and temperature values and the dependence of the results on the depth and width of the <span class="hlt">potential</span> well.</p> <div class="credits"> <p class="dwt_author">Heckmann, Lotta; Drossel, Barbara</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">455</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/922145"> <span id="translatedtitle">Assessment of the Technical <span class="hlt">Potential</span> for Achieving Net Zero-<span class="hlt">Energy</span> Buildings in the Commercial Sector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report summarizes the findings from research conducted at NREL to assess the technical <span class="hlt">potential</span> for zero-<span class="hlt">energy</span> building technologies and practices to reduce the impact of commercial buildings on the U.S. <span class="hlt">energy</span> system. Commercial buildings currently account for 18% of annual U.S. <span class="hlt">energy</span> consumption, and <span class="hlt">energy</span> use is growing along with overall floor area. Reducing the <span class="hlt">energy</span> use of this sector will require aggressive research goals and rapid implementation of the research results.</p> <div class="credits"> <p class="dwt_author">Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">456</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/7210447"> <span id="translatedtitle">Congenital cardiac <span class="hlt">anomalies</span> in calves.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Seven cases of congenital cardiac <span class="hlt">anomalies</span> in calves were reviewed from the files of the Ohio Veterinary Diagnostic Laboratory. The collection of material occurred during a six-month period from June 1977 to January 1978. The major clinical signs were dyspnoea, failure to gain weight and sudden death in young animals. The cardiac defects included two patent ductus arteriosus, two <span class="hlt">anomalies</span> of the coronary vessels, one persistent truncus arteriosus, one transposition of the aorta and pulmonary artery and one ventricular septal defect. PMID:7210447</p> <div class="credits"> <p class="dwt_author">Sandusky, G E; Smith, C W</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-02-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">457</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.compadre.org/Repository/document/ServeFile.cfm?ID=11888&DocID=2735"> <span id="translatedtitle">Examining student ability to interpret and use <span class="hlt">potential</span> <span class="hlt">energy</span> diagrams for classical systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Physics Education Group at the University of Washington is examining the extent to which students are able to use graphs of <span class="hlt">potential</span> <span class="hlt">energy</span> vs. position to infer kinematic and dynamic quantities for a system. The findings indicate that many students have difficulty in relating the graphs to real-world systems. Some problems seem to be graphical in nature (e.g., interpreting graphs of <span class="hlt">potential</span> <span class="hlt">energy</span> vs. position as graphs of position vs. time). Others involve relating the graphs to total, kinetic, and <span class="hlt">potential</span> <span class="hlt">energies</span>, especially when the <span class="hlt">potential</span> <span class="hlt">energy</span> is negative. The results have implications beyond the introductory level since graphs of <span class="hlt">potential</span> <span class="hlt">energy</span> are used in advanced courses on classical and quantum mechanics.</p> <div class="credits"> <p class="dwt_author">Stephanik, Brian M.; Shaffer, Peter S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-15</p> </div> </div> </div> </div> <div class="fl