Science.gov

Sample records for potential energy minimization

  1. Potential pollution prevention and waste minimization for Department of Energy operations

    SciTech Connect

    Griffin, J.; Ischay, C.; Kennicott, M.; Pemberton, S.; Tull, D.

    1995-10-01

    With the tightening of budgets and limited resources, it is important to ensure operations are carried out in a cost-effective and productive manner. Implementing an effective Pollution Prevention strategy can help to reduce the costs of waste management and prevent harmful releases to the environment. This document provides an estimate of the Department of Energy`s waste reduction potential from the implementation of Pollution Prevention opportunities. A team of Waste Minimization and Pollution Prevention professionals was formed to collect the data and make the estimates. The report includes a list of specific reduction opportunities for various waste generating operations and waste types. A generic set of recommendations to achieve these reduction opportunities is also provided as well as a general discussion of the approach and assumptions made for each waste generating operation.

  2. A non-minimally coupled potential for inflation and dark energy after Planck 2015: a comprehensive study

    NASA Astrophysics Data System (ADS)

    Eshaghi, Mehdi; Zarei, Moslem; Riazi, Nematollah; Kiasatpour, Ahmad

    2015-11-01

    In this work we introduce a new plateau-like inflationary model including a quadratic scalar potential coupled non-minimally to gravity. This potential has a dominant constant energy density at early times which can realize successful inflation. It also includes an infinitesimal non-zero term V0 responsible for explaining dark energy which causing the universe to expand accelerating at the late time. We show that this model predicts small tensor-to-scalar ratio of the order of r≈ 0.01 which is fully consistent with Planck constraints. Using the lower and upper bounds on reheating temperature, we provide additional constraints on the non-minimal coupling parameter ξ of the model. We also study the preheating stage predicted by this kind of potentials using numerical calculations.

  3. Protein structure prediction and potential energy landscape analysis using continuous global minimization

    SciTech Connect

    Dill, K.A.; Phillips, A.T.; Rosen, J.B.

    1997-12-01

    Proteins require specific three-dimensional conformations to function properly. These {open_quotes}native{close_quotes} conformations result primarily from intramolecular interactions between the atoms in the macromolecule, and also intermolecular interactions between the macromolecule and the surrounding solvent. Although the folding process can be quite complex, the instructions guiding this process are specified by the one-dimensional primary sequence of the protein or nucleic acid: external factors, such as helper (chaperone) proteins, present at the time of folding have no effect on the final state of the protein. Many denatured proteins spontaneously refold into functional conformations once denaturing conditions are removed. Indeed, the existence of a unique native conformation, in which residues distant in sequence but close in proximity exhibit a densely packed hydrophobic core, suggests that this three-dimensional structure is largely encoded within the sequential arrangement of these specific amino acids. In any case, the native structure is often the conformation at the global minimum energy. In addition to the unique native (minimum energy) structure, other less stable structures exist as well, each with a corresponding potential energy. These structures, in conjunction with the native structure, make up an energy landscape that can be used to characterize various aspects of the protein structure. 22 refs., 10 figs., 2 tabs.

  4. Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state

    PubMed Central

    Niven, Robert K.

    2010-01-01

    This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250

  5. Simulating granular materials by energy minimization

    NASA Astrophysics Data System (ADS)

    Krijgsman, D.; Luding, S.

    2016-03-01

    Discrete element methods are extremely helpful in understanding the complex behaviors of granular media, as they give valuable insight into all internal variables of the system. In this paper, a novel discrete element method for performing simulations of granular media is presented, based on the minimization of the potential energy in the system. Contrary to most discrete element methods (i.e., soft-particle method, event-driven method, and non-smooth contact dynamics), the system does not evolve by (approximately) integrating Newtons equations of motion in time, but rather by searching for mechanical equilibrium solutions for the positions of all particles in the system, which is mathematically equivalent to locally minimizing the potential energy. The new method allows for the rapid creation of jammed initial conditions (to be used for further studies) and for the simulation of quasi-static deformation problems. The major advantage of the new method is that it allows for truly static deformations. The system does not evolve with time, but rather with the externally applied strain or load, so that there is no kinetic energy in the system, in contrast to other quasi-static methods. The performance of the algorithm for both types of applications of the method is tested. Therefore we look at the required number of iterations, for the system to converge to a stable solution. For each single iteration, the required computational effort scales linearly with the number of particles. During the process of creating initial conditions, the required number of iterations for two-dimensional systems scales with the square root of the number of particles in the system. The required number of iterations increases for systems closer to the jamming packing fraction. For a quasi-static pure shear deformation simulation, the results of the new method are validated by regular soft-particle dynamics simulations. The energy minimization algorithm is able to capture the evolution of the

  6. Holographic dark energy from minimal supergravity

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo C. G.

    2016-02-01

    We embed models of holographic dark energy (HDE) coupled to dark matter (DM) in minimal supergravity plus matter, with one chiral superfield. We analyze two cases. The first one has the Hubble radius as the infrared (IR) cutoff and the interaction between the two fluids is proportional to the energy density of the DE. The second case has the future event horizon as IR cutoff while the interaction is proportional to the energy density of both components of the dark sector.

  7. Non-minimal quintessence with nearly flat potential

    SciTech Connect

    Sen, Anjan A.; Gupta, Gaveshna; Das, Sudipta E-mail: gaveshna.gupta@gmail.com

    2009-09-01

    We consider Brans-Dicke type nonminimally coupled scalar field as a candidate for dark energy. In the conformally transformed Einstein's frame, our model is a coupled quintessence model. In such models, we consider potentials for the scalar field which satisfy the slow-roll conditions: [(1/V)(dV/dφ)]{sup 2} << 1 and (1/V)(d{sup 2}V/dφ{sup 2}) << 1. For such potentials, we show that the equation of state for the scalar field can be described by a universal behaviour, provided the scalar field rolls only in the flat part of the potentials where the slow-roll conditions are satisfied. Our work generalizes the previous work by Scherrer and Sen [7] for minimally coupled scalar field case. We have also studied the observational constraints on the model parameters considering the Supernova and BAO observational data.

  8. Free energies for singleton minimal states

    NASA Astrophysics Data System (ADS)

    Golden, J. M.

    2016-06-01

    It is assumed that any free energy function exhibits strict periodic behavior for histories that have been periodic for all past times. This is not the case for the work function, which, however, has the usual defining properties of a free energy. Forms given in fairly recent years for the minimum and related free energies of linear materials with memory have this property. Materials for which the minimal states are all singletons are those for which at least some of the singularities of the Fourier transform of the relaxation function are not isolated. For such materials, the maximum free energy is the work function, and free energies intermediate between the minimum free energy and the work function should be given by a linear relation involving these two quantities. All such functionals, except the minimum free energy, therefore do not have strict periodic behavior for periodic histories, which contradicts our assumption. A way out of the difficulty is explored which involves approximating the relaxation function by a form for which the minimal states are no longer singletons. A representation can then be given of an arbitrary free energy as a linear combination of the minimum, maximum and intermediate free energies derived in earlier work. This representation obeys our periodicity assumption. Numerical data are presented, supporting the consistency of this approach.

  9. Energy minimization for self-organized structure formation and actuation

    NASA Astrophysics Data System (ADS)

    Kofod, Guggi; Wirges, Werner; Paajanen, Mika; Bauer, Siegfried

    2007-02-01

    An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation.

  10. Minimal energy damping in an axisymmetric flow

    NASA Astrophysics Data System (ADS)

    Sachs, Alexander

    2008-05-01

    The method of Lagrange's undetermined multipliers is used to find the velocity field which minimizes the energy damping for a viscous incompressible fluid described by the Navier- Stoke equation. The vorticity of this velocity field obeys a Helmholtz equation with an undetermined parameter. This Helmholtz equation is used to determine the axisymmetric velocity field in a cylinder. This velocity field is slightly different from the Poiseuille velocity field. The rate of energy damping per unit energy is calculated as a function of the parameter. It is a minimum when the parameter is equal to the root of a Bessel function.

  11. Nonlinear transient analysis via energy minimization

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.; Knight, N. F., Jr.

    1978-01-01

    The formulation basis for nonlinear transient analysis of finite element models of structures using energy minimization is provided. Geometric and material nonlinearities are included. The development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. The results indicate the effectiveness of the technique as a viable tool for this purpose.

  12. Convex Lower Bounds for Free Energy Minimization

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan

    We construct lower bounds on free energy with convex relaxations from the nonlinear minimization over probabilities to linear programs over expectation values. Finite-temperature expectation values are further resolved into distributions over energy. A superset of valid expectation values is delineated by an incomplete set of linear constraints. Free energy bounds can be improved systematically by adding constraints, which also increases their computational cost. We compute several free energy bounds of increasing accuracy for the triangular-lattice Ising model to assess the utility of this method. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Competition between potential energy minimization and number of contact points in two-dimension granular materials exhibiting Brazil-nut effect

    NASA Astrophysics Data System (ADS)

    Viridi, Sparisoma; Khotimah, Siti Nurul; Widayani, Novitrian

    2015-09-01

    The granular materials phenomenon known as Brazil-nut effect is discussed in this work, where its grain configurations are constructed artificially as time-independent using 2-d disks. Single intruder with 2.6 cm diameter is introduced to granular bed consisted of 1.3 cm diameter disks. Each created configuration is designed similar to observed one in experiments and simulations. Potential energy and number of contact points between grains are observed between initial and final configurations. Contactopy parameter change is also discussed. As comparison results from real experiment and simulation are also presented.

  14. Efficient Energy Minimization for Enforcing Label Statistics.

    PubMed

    Lim, Yongsub; Jung, Kyomin; Kohli, Pushmeet

    2014-09-01

    Energy minimization algorithms, such as graph cuts, enable the computation of the MAP solution under certain probabilistic models such as Markov random fields. However, for many computer vision problems, the MAP solution under the model is not the ground truth solution. In many problem scenarios, the system has access to certain statistics of the ground truth. For instance, in image segmentation, the area and boundary length of the object may be known. In these cases, we want to estimate the most probable solution that is consistent with such statistics, i.e., satisfies certain equality or inequality constraints. The above constrained energy minimization problem is NP-hard in general, and is usually solved using Linear Programming formulations, which relax the integrality constraints. This paper proposes a novel method that directly finds the discrete approximate solution of such problems by maximizing the corresponding Lagrangian dual. This method can be applied to any constrained energy minimization problem whose unconstrained version is polynomial time solvable, and can handle multiple, equality or inequality, and linear or non-linear constraints. One important advantage of our method is the ability to handle second order constraints with both-side inequalities with a weak restriction, not trivial in the relaxation based methods, and show that the restriction does not affect the accuracy in our cases.We demonstrate the efficacy of our method on the foreground/background image segmentation problem, and show that it produces impressive segmentation results with less error, and runs more than 20 times faster than the state-of-the-art LP relaxation based approaches. PMID:26352240

  15. Minimizing Reheat Energy Use in Laboratories

    SciTech Connect

    Frenze, David; Mathew, Paul; Morehead, Michael; Sartor, Dale; Starr Jr., William

    2005-11-29

    HVAC systems that are designed without properly accounting for equipment load variation across laboratory spaces in a facility can significantly increase simultaneous heating and cooling, particularly for systems that use zone reheat for temperature control. This best practice guide describes the problem of simultaneous heating and cooling resulting from load variations, and presents several technological and design process strategies to minimize it. This guide is one in a series created by the Laboratories for the 21st century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  16. Wormholes minimally violating the null energy condition

    SciTech Connect

    Bouhmadi-López, Mariam; Lobo, Francisco S N; Martín-Moruno, Prado E-mail: fslobo@fc.ul.pt

    2014-11-01

    We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted {sup t}he little sibling of the big rip{sup ,} where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyse the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalization of the equation of state considered above and analyse the respective stability regions. In particular, we obtain a specific wormhole solution with an asymptotic behaviour corresponding to a global monopole.

  17. FPGA design for constrained energy minimization

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Chang, Chein-I.; Cao, Mang

    2004-02-01

    The Constrained Energy Minimization (CEM) has been widely used for hyperspectral detection and classification. The feasibility of implementing the CEM as a real-time processing algorithm in systolic arrays has been also demonstrated. The main challenge of realizing the CEM in hardware architecture in the computation of the inverse of the data correlation matrix performed in the CEM, which requires a complete set of data samples. In order to cope with this problem, the data correlation matrix must be calculated in a causal manner which only needs data samples up to the sample at the time it is processed. This paper presents a Field Programmable Gate Arrays (FPGA) design of such a causal CEM. The main feature of the proposed FPGA design is to use the Coordinate Rotation DIgital Computer (CORDIC) algorithm that can convert a Givens rotation of a vector to a set of shift-add operations. As a result, the CORDIC algorithm can be easily implemented in hardware architecture, therefore in FPGA. Since the computation of the inverse of the data correlction involves a series of Givens rotations, the utility of the CORDIC algorithm allows the causal CEM to perform real-time processing in FPGA. In this paper, an FPGA implementation of the causal CEM will be studied and its detailed architecture will be also described.

  18. Minimizing the mass of a potential railgun power supply

    SciTech Connect

    Johnson, D.E.; Noel, A.P.; Clements, W.D. )

    1991-01-01

    This paper reports on the design of a pulsed power supply to deliver 5 MJ at 1 MA at 1 shot per second to a railgun. The supply stores energy at low current in the primary of the hydrogen-cooled transformer. A switch opens the primary circuit to transfer energy to the secondary, stepping the current up to 1 MA. The authors are studying the relationship between the transformer and switch to determine how the total power supply mass can be minimized. Vacuum interrupters and gate-turn-off thyristors are used in the switch. Switch mass dominates the system, accounting for 85% of the total mass. The switch must absorb the uncoupled energy of the transformer. Low transformer coupling requires large capacitors. Even with high coupling, capacitors account for 75 to 85% of the switch mass. If transformer coupling increases, the uncoupled energy decreases, resulting in low capacitor mass.

  19. Communication: Entropic measure to prevent energy over-minimization in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rydzewski, J.; Jakubowski, R.; Nowak, W.

    2015-11-01

    This work examines the impact of energy over-minimization on an ensemble of biological molecules subjected to the potential energy minimization procedure in vacuum. In the studied structures, long potential energy minimization stage leads to an increase of the main- and side-chain entropies in proteins. We show that such over-minimization may diverge the protein structures from the near-native attraction basin which possesses a minimum of free energy. We propose a measure based on the Pareto front of total entropy for quality assessment of minimized protein conformation. This measure may help in selection of adequate number of energy minimization steps in protein modelling and, thus, in preservation of the near-native protein conformation.

  20. Department of Energy's waste minimization program

    SciTech Connect

    Not Available

    1991-09-01

    Waste minimization, as mandated by the Congress, requires, the elimination or reduction of the generation of waste as its source, that is, before it can become waste. This audit was made to determine the adequacy of DOE's efforts to minimize the generation of waste. The audit emphasized radioactive and other hazardous waste generation at DOE's nuclear weapons production plants and design laboratories. We included waste minimization activities and actions that can be taken now, in contrast to the long-range weapons complex modernization effort. We reviewed waste minimization activities within the Office of Environmental Restoration and Waste Management (EM), the Office of the Assistant Secretary for Defense Programs (DP), the Hazardous Waste Remedial Action Program Office, and the Waste Minimization Management Group (WMMG) in the Albuquerque Field Office. Waste minimization programs were examined in detail at the three largest nuclear weapons production facilities -- the Rocky Flats plant, which manufactures plutonium parts; the Y-12 facility, which produces uranium components; and the Savannah River site, which manufactures and loads tritium -- and two of DOE's weapons design laboratories, Los Alamos and Sandia.

  1. Minimal self-models and the free energy principle

    PubMed Central

    Limanowski, Jakub; Blankenburg, Felix

    2013-01-01

    The term “minimal phenomenal selfhood” (MPS) describes the basic, pre-reflective experience of being a self (Blanke and Metzinger, 2009). Theoretical accounts of the minimal self have long recognized the importance and the ambivalence of the body as both part of the physical world, and the enabling condition for being in this world (Gallagher, 2005a; Grafton, 2009). A recent account of MPS (Metzinger, 2004a) centers on the consideration that minimal selfhood emerges as the result of basic self-modeling mechanisms, thereby being founded on pre-reflective bodily processes. The free energy principle (FEP; Friston, 2010) is a novel unified theory of cortical function built upon the imperative that self-organizing systems entail hierarchical generative models of the causes of their sensory input, which are optimized by minimizing free energy as an approximation of the log-likelihood of the model. The implementation of the FEP via predictive coding mechanisms and in particular the active inference principle emphasizes the role of embodiment for predictive self-modeling, which has been appreciated in recent publications. In this review, we provide an overview of these conceptions and illustrate thereby the potential power of the FEP in explaining the mechanisms underlying minimal selfhood and its key constituents, multisensory integration, interoception, agency, perspective, and the experience of mineness. We conclude that the conceptualization of MPS can be well mapped onto a hierarchical generative model furnished by the FEP and may constitute the basis for higher-level, cognitive forms of self-referral, as well as the understanding of other minds. PMID:24062658

  2. Remarks on the interquark potential in the presence of a minimal length

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio

    2013-11-01

    We calculate the lowest-order corrections to the static potential for both Yang-Mills theory and gluodynamics in curved space-time, in the presence of a quantum gravity induced minimal length. Our analysis is carried out within stationary perturbation theory. As a consequence, the potential energy is the sum of a Yukawa-like potential and a linear potential for gluodynamics in curved space-time, leading to the confinement of static charges. Interestingly, we find that the coefficient of the linear term (‘string tension’) is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis.

  3. Does osteoderm growth follow energy minimization principles?

    PubMed

    Sensale, Sebastián; Jones, Washington; Blanco, R Ernesto

    2014-08-01

    Although the growth and development of tissues and organs of extinct species cannot be directly observed, their fossils can record and preserve evidence of these mechanisms. It is generally accepted that bone architecture is the result of genetically based biomechanical constraints, but what about osteoderms? In this article, the influence of physical constraints on cranial osteoderms growth is assessed. Comparisons among lepidosaurs, synapsids, and archosaurs are performed; according to these analyses, lepidosaur osteoderms growth is predicted to be less energy demanding than that of synapsids and archosaurs. Obtained results also show that, from an energetic viewpoint, ankylosaurid osteoderms growth resembles more that of mammals than the one of reptilians, adding evidence to debate whether dinosaurs were hot or cold blooded. PMID:24634089

  4. Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems

    NASA Astrophysics Data System (ADS)

    Carrillo, J. A.; Delgadino, M. G.; Mellet, A.

    2016-05-01

    The repulsion strength at the origin for repulsive/attractive potentials determines the regularity of local minimizers of the interaction energy. In this paper, we show that if this repulsion is like Newtonian or more singular than Newtonian (but still locally integrable), then the local minimizers must be locally bounded densities (and even continuous for more singular than Newtonian repulsion). We prove this (and some other regularity results) by first showing that the potential function associated to a local minimizer solves an obstacle problem and then by using classical regularity results for such problems.

  5. Energy minimization on manifolds for docking flexible molecules

    PubMed Central

    Mirzaei, Hanieh; Zarbafian, Shahrooz; Villar, Elizabeth; Mottarella, Scott; Beglov, Dmitri; Vajda, Sandor; Paschalidis, Ioannis Ch.; Vakili, Pirooz; Kozakov, Dima

    2015-01-01

    In this paper we extend a recently introduced rigid body minimization algorithm, defined on manifolds, to the problem of minimizing the energy of interacting flexible molecules. The goal is to integrate moving the ligand in six dimensional rotational/translational space with internal rotations around rotatable bonds within the two molecules. We show that adding rotational degrees of freedom to the rigid moves of the ligand results in an overall optimization search space that is a manifold to which our manifold optimization approach can be extended. The effectiveness of the method is shown for three different docking problems of increasing complexity. First we minimize the energy of fragment-size ligands with a single rotatable bond as part of a protein mapping method developed for the identification of binding hot spots. Second, we consider energy minimization for docking a flexible ligand to a rigid protein receptor, an approach frequently used in existing methods. In the third problem we account for flexibility in both the ligand and the receptor. Results show that minimization using the manifold optimization algorithm is substantially more efficient than minimization using a traditional all-atom optimization algorithm while producing solutions of comparable quality. In addition to the specific problems considered, the method is general enough to be used in a large class of applications such as docking multidomain proteins with flexible hinges. The code is available under open source license (at http://cluspro.bu.edu/Code/Code_Rigtree.tar), and with minimal effort can be incorporated into any molecular modeling package. PMID:26478722

  6. Energy-minimizing choices of muscles and patterns of movement.

    PubMed

    Alexander, R M

    2000-01-01

    Prilutsky (1999, target paper) reports that Crowninshield and Brand's (1981) criterion, minimization of the sum of the cubes of muscle stresses, works well as a predictor of the division of labor between muscles, for various tasks. However, no direct benefit from minimizing this particular sum is apparent, and it seems likely that it is merely a correlate of the criterion that actually drives muscle choice. In many tasks, there would be a clear, direct benefit from minimizing metabolic energy costs, as Prilutsky (1999) points out. Alexander (1997a, 1997b) and Minetti and Alexander (1997) have shown how the metabolic energy costs of muscle contraction can be estimated, and used to predict optimum muscle properties or optimal patterns of movement. This article explores the feasibility of using the same approach to predict optimum division of labor between one- and two-joint muscles. PMID:10675808

  7. AMG by element agglomeration and constrained energy minimization interpolation

    SciTech Connect

    Kolev, T V; Vassilevski, P S

    2006-02-17

    This paper studies AMG (algebraic multigrid) methods that utilize energy minimization construction of the interpolation matrices locally, in the setting of element agglomeration AMG. The coarsening in element agglomeration AMG is done by agglomerating fine-grid elements, with coarse element matrices defined by a local Galerkin procedure applied to the matrix assembled from the individual fine-grid element matrices. This local Galerkin procedure involves only the coarse basis restricted to the agglomerated element. To construct the coarse basis, one exploits previously proposed constraint energy minimization procedures now applied to the local matrix. The constraints are that a given set of vectors should be interpolated exactly, not only globally, but also locally on every agglomerated element. The paper provides algorithmic details, as well as a convergence result based on a ''local-to-global'' energy bound of the resulting multiple-vector fitting AMG interpolation mappings. A particular implementation of the method is illustrated with a set of numerical experiments.

  8. Active minimization of energy density in three-dimensional enclosures

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, Scott D.

    1996-01-01

    The objective of this study was to further investigate and develop a novel approach for actively controlling the sound field in enclosures that is based on the acoustic energy density. Typically the acoustic field in an enclosure has been controlled by minimizing the sum of the squared pressures from several microphones distributed throughout the enclosure. The approach investigated in this study involved minimizing the acoustic energy density at the sensor locations, rather than the squared pressure. Research previous to this study in a simple one-dimensional enclosure showed that improved global attenuation of the acoustic field is often obtained by minimizing the energy density, rather than the pressure. The current study built on the previous research by extending the method of controlling the acoustic energy density to three-dimensional enclosures. The study was intended to help establish if improved control can still be expected in a more general enclosure. The study was designed to be both analytical/numerical and experimental in nature.

  9. Potential waste minimization of trichloroethylene and perchloroethylene via aerobic biodegradation.

    PubMed

    Wang, Jian; Cutright, Teresa J

    2005-01-01

    Trichloroethylene (TCE) and perchloroethylene (PCE) are two of the most frequently detected chlorinated organics found in groundwater. Biodegradation with a new aerobic consortium was used to ascertain the viability of bioremediation for waste minimization applications. After 1 week of treatment, the degradation rate constants, k, were between 0.004 and 0.012 d(-1) for initial concentrations of 54-664 microM TCE. When PCE was used as the sole contaminant, the k values were approximately 0.01 d(-1) regardless of the initial concentration. The addition of 0.2 microM toluene or phenol as an inducer dramatically increased TCE degradation. For instance, at 200 microM TCE the k value when toluene was added (0.03 d(-1)) was 2.2 times higher than without inducers (0.009 d(-1)). The addition of 0.2 microM phenol increased the rate constant by 58%. However, PCE degradation rates were not changed significantly. PMID:15991724

  10. Compact Muon Solenoid discovery potential for the minimal supergravity model of supersymmetry in single muon events with jets and large missing transverse energy in proton-proton collisions at center-of-mass energy 14 TEV

    NASA Astrophysics Data System (ADS)

    Scurlock, Bobby

    This dissertation estimates the ability of CMS to discover mSUGRA model of Supersymmetry in the single muon plus jets with missing transverse energy topology for 10 fb-1 of collected data using the inclusive-muon and di-muon High Level Trigger paths. A single low mass benchmark point ( m0 = 60 GeV/c2, m1/2 = 250 GeV/c2, A0 = 0, mu > 0, and tan(beta) = 10) is used to optimize the selection criteria and to study systematic uncertainties related to detector effects. Five sigma reach contours, including expected systematic uncertainties, are presented for 10, 30, and 60 fb-1.

  11. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    SciTech Connect

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  12. Minimizing sludge handling and energy requirements for AWT

    SciTech Connect

    Turnipseed, G.B.; Rivinus, R.P.; Brown, J.

    1980-02-01

    Upgrading of local stream use classification has required Cobb County, Georgia, which includes much of northwestern metropolitan Atlanta, to provide nitrification, phosphorus removal, and effluent filtration at the new 30-ML/d Noonday Creek Water Pollution Control Plant. The design study at the Noonday Plant is described, and means by which energy requirements are being minimized are discussed. Use of anaerobically produced methane will be maximized to enable the plant to be self-sufficient during electric utility peak demand periods.

  13. Five dimensional spherically symmetric minimally interacting holographic dark energy model in Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Reddy, D. R. K.; Raju, P.; Sobhanbabu, K.

    2016-04-01

    Five dimensional spherically symmetric space-time filled with two minimally interacting fields; matter and holographic dark energy components is investigated in a scalar tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To obtain a determinate solution of the highly non-linear field equations we have used (i) a relation between metric potentials and (ii) an equation of state which represents disordered radiation in five dimensional universe. The solution obtained represents a minimally interacting and radiating holographic dark energy model in five dimensional universe. Some physical and Kinematical properties of the model are, also, studied.

  14. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method

    NASA Astrophysics Data System (ADS)

    Ouyang, Runhai; Xie, Yu; Jiang, De-En

    2015-09-01

    Neural network potentials trained by first-principles density functional theory total energies were applied to search for global minima of gold nanoclusters within the basin-hopping method. Using Au58 as an example, we found a new putative global minimum which has a core-shell structure of Au10@Au48 and C4 symmetry. This new structure of Au58 is 0.24 eV per formula more stable than the best previous model that has C1 symmetry. This work demonstrates that neural network potentials combined with the basin-hopping method could be very useful in global minimization for medium-sized metal clusters which might be computationally prohibitive for first principles density functional theory.Neural network potentials trained by first-principles density functional theory total energies were applied to search for global minima of gold nanoclusters within the basin-hopping method. Using Au58 as an example, we found a new putative global minimum which has a core-shell structure of Au10@Au48 and C4 symmetry. This new structure of Au58 is 0.24 eV per formula more stable than the best previous model that has C1 symmetry. This work demonstrates that neural network potentials combined with the basin-hopping method could be very useful in global minimization for medium-sized metal clusters which might be computationally prohibitive for first principles density functional theory. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03903g

  15. Vanishing Higgs potential in minimal dark matter models

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawana, Kiyoharu

    2015-12-01

    We consider the Standard Model with a new particle which is charged under SU (2)L with the hypercharge being zero. Such a particle is known as one of the dark matter (DM) candidates. We examine the realization of the multiple point criticality principle (MPP) in this class of models. Namely, we investigate whether the one-loop effective Higgs potential Veff (ϕ) and its derivative dVeff (ϕ) / dϕ can become simultaneously zero at around the string/Planck scale, based on the one/two-loop renormalization group equations. As a result, we find that only the SU (2)L triplet extensions can realize the MPP. More concretely, in the case of the triplet Majorana fermion, the MPP is realized at the scale ϕ = O (1016 GeV) if the top mass Mt is around 172 GeV. On the other hand, for the real triplet scalar, the MPP can be satisfied for 1016 GeV ≲ ϕ ≲1017 GeV and 172 GeV ≳Mt ≳ 171 GeV, depending on the coupling between the Higgs and DM.

  16. Energy minimization mechanisms of semi-coherent interfaces

    SciTech Connect

    Shao, Shuai; Wang, J.; Misra, Amit

    2014-07-14

    In this article, we discussed energy minimization mechanisms of semi-coherent interfaces based on atomistic simulations and dislocation theory. For example, of (111) interfaces between two face centered cubic (FCC) crystals, interface comprises of two stable structures (normal FCC stacking structure and intrinsic stacking fault structure), misfit dislocations, and misfit dislocation intersections or nodes (corresponding to the high energy stacking fault (HESF) structure). According to atomistic simulations of four interfaces, we found that (1) greater spacing between misfit dislocations and/or larger slopes of generalized stacking fault energy at the stable interface structures leads to a narrower dislocation core and a higher state of coherency in the stable interfaces; (2) the HESF region is relaxed by the relative rotation and dilation/compression of the two crystals at the node. The crystal rotation is responsible for the spiral feature at the vicinity of a node and the dilation/compression is responsible for the creation of the free volume at a node; (3) the spiral feature is gradually frail and the free volume decreases with decreasing misfit dislocation spacing, which corresponds to an increase in lattice mismatch and/or a decrease in lattice rotation. Finally, the analysis method and energy minimization mechanisms explored in FCC (111) semi-coherent interfaces are also applicable for other semi-coherent interfaces.

  17. Energy minimization in medical image analysis: Methodologies and applications.

    PubMed

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26186171

  18. QoS-constrained Energy Minimization in Multiuser Multicarrier Systems

    NASA Astrophysics Data System (ADS)

    Bai, Qing; Ivrlač, Michel T.; Nossek, Josef A.

    In this paper the QoS-constrained resource allocation problem in multicarrier systems is considered. Within the established cross-layer framework, parameters for subchannel assignment, adaptive modulation and coding, and ARQ/HARQ protocols are jointly optimized. Instead of the conventional transmit power minimization, the total energy consumption for the successful transmissions of all information bits is set as the optimization goal. The nonconvex primal problem is solved by using Lagrange dual decomposition and the ellipsoid method. Numerical results indicate that the recovered primal solution is well acceptable in performance, and efficient in terms of computational effort.

  19. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  20. Inference with minimal Gibbs free energy in information field theory.

    PubMed

    Ensslin, Torsten A; Weig, Cornelius

    2010-11-01

    Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior. PMID:21230442

  1. Inference with minimal Gibbs free energy in information field theory

    SciTech Connect

    Ensslin, Torsten A.; Weig, Cornelius

    2010-11-15

    Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the Gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from Poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a Gaussian signal with unknown spectrum, and (iii) inference of a Poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-Gaussian posterior.

  2. Charge transfer interaction using quasiatomic minimal-basis orbitals in the effective fragment potential method

    SciTech Connect

    Xu, Peng; Gordon, Mark S.

    2013-11-21

    The charge transfer (CT) interaction, the most time-consuming term in the general effective fragment potential method, is made much more computationally efficient. This is accomplished by the projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) as the atomic basis onto the self-consistent field virtual molecular orbital (MO) space to select a subspace of the full virtual space called the valence virtual space. The diagonalization of the Fock matrix in terms of QUAMBOs recovers the canonical occupied orbitals and, more importantly, gives rise to the valence virtual orbitals (VVOs). The CT energies obtained using VVOs are generally as accurate as those obtained with the full virtual space canonical MOs because the QUAMBOs span the valence part of the virtual space, which can generally be regarded as “chemically important.” The number of QUAMBOs is the same as the number of minimal-basis MOs of a molecule. Therefore, the number of VVOs is significantly smaller than the number of canonical virtual MOs, especially for large atomic basis sets. This leads to a dramatic decrease in the computational cost.

  3. Free-energy minimization and the dark-room problem.

    PubMed

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark). PMID:22586414

  4. Minimization of the vibration energy of thin-plate structure

    NASA Technical Reports Server (NTRS)

    Inoue, Katsumi; Townsend, Dennis P.; Coy, John J.

    1992-01-01

    An optimization method is proposed to reduce the vibration of thin plate structures. The method is based on a finite element shell analysis, a modal analysis, and a structural optimization method. In the finite element analysis, a triangular shell element with 18 dof is used. In the optimization, the overall vibration energy of the structure is adopted as the objective function, and it is minimized at the given exciting frequency by varying the thickness of the elements. The technique of modal analysis is used to derive the sensitivity of the vibration energy with respect to the design variables. The sensitivity is represented by the sensitivities of both eigenvalues and eigenvectors. The optimum value is computed by the gradient projection method and a unidimensional search procedure under the constraint condition of constant weight. A computer code, based on the proposed method, is developed and is applied to design problems using a beam and a plate as test cases. It is confirmed that the vibration energy is reduced at the given exciting frequency. For the beam excited by a frequency slightly less than the fundamental natural frequency, the optimized shape is close to the beam of uniform strength.

  5. Nonconvex energy minimization and dislocation structures in ductile single crystals

    NASA Astrophysics Data System (ADS)

    Ortiz, M.; Repetto, E. a.

    1999-02-01

    Plastically deformed crystals are often observed to develop intricate dislocation patterns such as the labyrinth, mosaic, fence and carpet structures. In this paper, such dislocation structures are given an energetic interpretation with the aid of direct methods of the calculus of variations. We formulate the theory in terms of deformation fields and regard the dislocations as manifestations of the incompatibility of the plastic deformation gradient field. Within this framework, we show that the incremental displacements of inelastic solids follow as minimizers of a suitably defined pseudoelastic energy function. In crystals exhibiting latent hardening, the energy function is nonconvex and has wells corresponding to single-slip deformations. This favors microstructures consisting locally of single slip. Deformation microstructures constructed in accordance with this prescription are shown to be in correspondence with several commonly observed dislocation structures. Finally, we show that a characteristic length scale can be built into the theory by taking into account the self energy of the dislocations. The extended theory leads to scaling laws which appear to be in good qualitative and quantitative agreement with observation.

  6. GOLD/SILVER HEAP LEACHING AND MANAGEMENT PRACTICES THAT MINIMIZE THE POTENTIAL FOR CYANIDE RELEASES

    EPA Science Inventory

    The report presents a description of the magnitude and distribution of gold/silver heap leaching, the design and operation of leaching facilities, the potential for environmental impact, and management practices that may be used to minimize potential environmental releases. Curre...

  7. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method

    Energy Science and Technology Software Center (ESTSC)

    1995-03-01

    This program performs atomic scale computer simulations of the structure and dynamics of metallic system using energetices based on the Embedded Atom Method. The program performs two types of calculations. First, it performs local energy minimization of all atomic positions to determine ground state and saddle point energies and structures. Second, it performs molecular dynamics simulations to determine thermodynamics or miscroscopic dynamics of the system. In both cases, various constraints can be applied to themore » system. The volume of the system can be varied automatically to achieve any desired external pressure. The temperature in molecular dynamics simulations can be controlled by a variety of methods. Further, the temperature control can be applied either to the entire system or just a subset of the atoms that would act as a thermal source/sink. The motion of one or more of the atoms can be constrained to either simulate the effects of bulk boundary conditions or to facilitate the determination of saddle point configurations. The simulations are performed with periodic boundary conditions.« less

  8. Free-Energy Minimization and the Dark-Room Problem

    PubMed Central

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the “free-energy minimization” formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b – see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the “Dark-Room Problem.” Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington’s Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark). PMID:22586414

  9. Minimizing the water and air impacts of unconventional energy extraction

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  10. Inflation driven by scalar field with non-minimal kinetic coupling with Higgs and quadratic potentials

    SciTech Connect

    Granda, L.N.

    2011-04-01

    We study a scalar field with non-minimal kinetic coupling to itself and to the curvature. The slow rolling conditions allowing an inflationary background have been found. The quadratic and Higgs type potentials have been considered, and the corresponding values for the scalar fields at the end of inflation allows to recover the connection with particle physics.

  11. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    PubMed

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission. PMID:25751844

  12. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. PMID:21262520

  13. Noise Suppression for Dual-Energy CT Through Entropy Minimization.

    PubMed

    Petrongolo, Michael; Zhu, Lei

    2015-11-01

    In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects typically contain a limited number of different materials, we propose an Image-domain Decomposition method through Entropy Minimization (IDEM) for noise suppression in DECT. Pixels of decomposed images are first linearly transformed into 2D clusters of data points, which are highly asymmetric due to strong signal correlation. An optimal axis is identified in the 2D space via numerical search such that the projection of data clusters onto the axis has minimum entropy. Noise suppression is performed on each image pixel by estimating the center-of-mass value of each data cluster along the direction perpendicular to the projection axis. The IDEM method is distinct from other noise suppression techniques in that it does not suppress pixel noise by reducing spatial variation between neighboring pixels. As supported by studies on Catphan©600 and anthropomorphic head phantoms, this feature endows our algorithm with a unique capability of reducing noise standard deviation on DECT decomposed images by approximately one order of magnitude while preserving spatial resolution and image noise power spectra (NPS). Compared with a filtering method and recently developed iterative method at the same level of noise suppression, the IDEM algorithm obtains high-resolution images with less artifacts. It also maintains accuracy of electron density measurements with less than 2% bias error. The IDEM method effectively suppresses noise of DECT for quantitative use, with appealing features on preservation of image spatial resolution and NPS. PMID:25955585

  14. Renewable energy potential in Colombia

    NASA Astrophysics Data System (ADS)

    Correa Guzman, Jose Luis

    2008-12-01

    Renewable energy flows are very large in comparison with humankind's use of energy. In principle, all our energy needs, both now and into the future, can be met by energy from renewable sources. After many years trying to develop the alternative energy potential of Colombia, a major effort is principally being made since 2000 to explore and assess the renewable resources of the entire country. Until 2000, the availability of conventional energy sources in Colombia prevented renewable energy exploration from reaching a higher level. However, the extreme energy crisis of 1992 - 1993 alerted the authorities and the community to the necessity for exploring alternative energy sources. This energy study is a general approach to the current and future renewable energy scenario of Colombia. It was prepared in response to the increased interest around the world and in particular in Colombia to develop its non-fossil energy prospective. It, therefore, represents a working document giving an initial impression of the possible scale of the main renewables sources as a response to the concern about energy security and fossil fuel dependence problems. The assumptions made and calculations reported may therefore be subject to revision as more information becomes available. The aim of this dissertation is not only to improve the public understanding and discussion of renewable energy matters in Colombia but also to stimulate the development and application of renewable energy, wherever they have prospects of economic viability and environmental acceptability. To achieve such goal this paper reviews several renewable technologies, their availability, contribution and feasibility in Colombia.

  15. Periodic discrete energy for long-range potentials

    NASA Astrophysics Data System (ADS)

    Hardin, D. P.; Saff, E. B.; Simanek, B.

    2014-12-01

    We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

  16. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    PubMed

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  17. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    PubMed Central

    Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  18. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  19. Three form potential in (special) minimal supergravity superspace and supermembrane supercurrent

    NASA Astrophysics Data System (ADS)

    Bandos, Igor A.; Meliveo, Carlos

    2012-02-01

    This contribution begins the study of the complete superfield Lagrangian description of the interacting system of D = 4 Script N = 1 supergravity (SUGRA) and supermembrane. Firstly, we review a 'three form supergravity' by Ovrut and Waldram, which we prefer to call 'special minimal supergravity'. This off-shell formulation of simple SUGRA is appropriate for our purposes as the supermembrane action contains the so-called Wess-Zumino term given by the integral over a three form potential in superspace, C3. We describe this formulation in the frame of Wess-Zumino superfield approach, showing how the basic variations of minimal SUGRA are restricted by the conditions of the existence of a three-form potential C3 in its superspace. In this language the effect of dynamical generation of cosmological constant, known to be characteristic for this formulation of SUGRA, appears in its superfield form, first described by Ogievetsky and Sokatchev in their formulation of SUGRA as a theory of axial vector superfield. Secondly, we vary the supermembrane action with respect to the special minimal SUGRA superfields (basic variations) and obtain the supercurrent superfields as well as the supergravity superfield equations with the supermembrane contributions.

  20. Considerations for Minimizing the Impacts of Utility Scale Solar Energy Development on Intermittent and Ephemeral Streams

    NASA Astrophysics Data System (ADS)

    Grippo, M.; Walston, L.; LaGory, K.; Hayse, J.; Von Lonkhuyzen, R.; Vinikour, W.

    2011-12-01

    The Bureau of Land Management (BLM) and the Department of Energy are currently developing criteria for avoiding utility-scale solar energy development on certain BLM-administered lands in the arid southwest. One central criterion is avoiding and minimizing impacts to streams, a goal which can be difficult because intermittent and ephemeral streams and washes often cover much of the developable landscape. Here we discuss the potential impacts of solar energy development on ephemeral and intermittent streams and the consequences for their ecological structure and function. The primary impacts could result from the direct loss of stream habitat within the construction footprint and from a reduction in the quality and quantity of stream habitat resulting from construction activities, increased water withdrawal, and alteration in drainage patterns. Such changes could affect both terrestrial and aquatic biota including the large number of protected and special status species that depend on seasonally available aquatic habitat. Several case studies are discussed in which solar energy development was rejected in a specific region based on the potential for ecological impacts to intermittent and ephemeral streams. From the case studies we conclude that although the ecological functions and values of larger intermittent and ephemeral streams is clear, the ecology of smaller washes are less understood, and consequently developing scientifically defensible avoidance criteria and mitigation plans is challenging. Although general avoidance criteria can be developed, ultimately site specific data may be required, as well as guidance from researchers and management agencies on acceptable impact levels, particularly to small ephemeral washes. Ultimately, an understanding of the basic ecology of intermittent and ephemeral streams and how they are integrated into the larger desert ecosystem is needed to minimize the ecological impacts from utility-scale solar energy developments.

  1. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    PubMed Central

    Surles, M. C.; Richardson, J. S.; Richardson, D. C.; Brooks, F. P.

    1994-01-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  2. The potential of renewable energy

    SciTech Connect

    Not Available

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  3. [Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].

    PubMed

    de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre

    2015-01-01

    One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms. PMID:25440708

  4. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    NASA Astrophysics Data System (ADS)

    Hrycyna, Orest; Szydłowski, Marek

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  5. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  6. Guided energy-minimizing model for segmentation of vector fields

    NASA Astrophysics Data System (ADS)

    Binias, Bartosz

    2016-06-01

    Active contours or snakes, are a group of image segmentation methods based on the idea of energy-minimizng curves. In this paper classical snake model with added Balloon Force is modified, granting it the capability of performing object segmentation task on data with unlimited number of channels. Thanks to introduction of novel component, named the Guiding Energy, into the classical active contour energy functional, the method is now capable of focusing on the objects which posses a specified features provided to the model.

  7. Shapes of minimal-energy DNA ropes condensed in confinement

    PubMed Central

    Šiber, Antonio

    2016-01-01

    Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as conformations optimizing a model free energy functional accounting for the interplay between the bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed by bundled DNA brought together by (self-)attractive interactions. The conformations predicted by the model depend on the shape of the confinement, the total amount of the packed DNA but also on the relative contributions of the bending and surface energies. Some of the conformations found were not predicted previously, but many previously proposed DNA conformations, some of which are seemingly contradictory, were found as the solutions of the model. The results show that there are many possible packing conformations of the DNA and that the one which realizes in a particular virus depends on the capsid geometry and the nature of condensing agents. PMID:27364168

  8. Shapes of minimal-energy DNA ropes condensed in confinement

    NASA Astrophysics Data System (ADS)

    Šiber, Antonio

    2016-07-01

    Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as conformations optimizing a model free energy functional accounting for the interplay between the bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed by bundled DNA brought together by (self-)attractive interactions. The conformations predicted by the model depend on the shape of the confinement, the total amount of the packed DNA but also on the relative contributions of the bending and surface energies. Some of the conformations found were not predicted previously, but many previously proposed DNA conformations, some of which are seemingly contradictory, were found as the solutions of the model. The results show that there are many possible packing conformations of the DNA and that the one which realizes in a particular virus depends on the capsid geometry and the nature of condensing agents.

  9. Beam-energy-spread minimization using cell-timing optimization

    NASA Astrophysics Data System (ADS)

    Rose, C. R.; Ekdahl, C.; Schulze, M.

    2012-04-01

    Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.

  10. The Role of Geothermal Energy in Minimizing Global Environmental Problems

    SciTech Connect

    Traeger, Richard K.

    1989-03-21

    In the 1970's, the nation's attention was focused on Energy. This focus shifted to the Economy in the 80's with the concerns about the federal deficit. Emphasis has now moved to the Environment for the 1990's with the other two ''E's'' remaining as lingering concerns. Obviously geothermal resources have positive impacts on the three E's since they provide energy with limited environmental impact. However, they all are aware of the environmental concerns and must address them for the industry. Two current global environmental concerns discussed in this paper are the ''greenhouse effect'' and acid rain. Both of these areas have been emphasized by President Bush, and legislation is pending in both state and federal legislatures to address these problems. They need to understand the impact of geothermal energy production in these areas, and from a DOE viewpoint, identify R and D that is critical to meeting existing and pending regulations and laws.

  11. The role of geothermal energy in minimizing global environmental problems

    SciTech Connect

    Traeger, R.K.

    1989-01-01

    Two current global environmental concerns discussed in this paper are the ''greenhouse effect'' and acid rain. Both of these areas have been emphasized by President Bush, and legislation is pending in both state and federal legislatures to address these problems. We need to understand the impact of geothermal energy production in these areas and, from a DOE viewpoint, identify R and D that is critical to meeting existing and pending regulations and laws. 8 refs., 5 figs., 5 tabs.

  12. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. PMID:24115565

  13. The tumorigenic potential of pluripotent stem cells: What can we do to minimize it?

    PubMed

    Peterson, Suzanne E; Garitaonandia, Ibon; Loring, Jeanne F

    2016-07-01

    Human pluripotent stem cells (hPSCs) have the potential to fundamentally change the way that we go about treating and understanding human disease. Despite this extraordinary potential, these cells also have an innate capability to form tumors in immunocompromised individuals when they are introduced in their pluripotent state. Although current therapeutic strategies involve transplantation of only differentiated hPSC derivatives, there is still a concern that transplanted cell populations could contain a small percentage of cells that are not fully differentiated. In addition, these cells have been frequently reported to acquire genetic alterations that, in some cases, are associated with certain types of human cancers. Here, we try to separate the panic from reality and rationally evaluate the true tumorigenic potential of these cells. We also discuss a recent study examining the effect of culture conditions on the genetic integrity of hPSCs. Finally, we present a set of sensible guidelines for minimizing the tumorigenic potential of hPSC-derived cells. © 2016 The Authors. Inside the Cell published by Wiley Periodicals, Inc. PMID:27417126

  14. Minimization of the energy costs for operating magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, Ilyas A. H.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Increasing prospects of utilizing the STT-MRAM calls for the re-assessment of the overall energy (power) cost of operating magnetic tunnel junctions and related elements. This motivates our design, nanofabrication and characterization of simple tri-layer magnetic tunnel junctions which show measurable decrease in the operating energy cost. The MTJs we report about rely on nanoengineering interfaces between the insulating and magnetic layers in such a way that the area of the hysteresis loops can be controlled in one or both magnetic layers. Our TMR coefficient ranges from 45% to 130%, depending on the MTJ layer materials, and can be anticipated to be further increased. We also report the study of the TMR dependence on the RA product, as an important interface parameter. Lastly, we present an analysis of MTJ parameters affected by our approach and a perspective on further improvements, focusing on the device design parameters relevant for the integration of this type of MTJs. This work is supported by the SRC-ATIC Grant 2012-VJ-2335. A part of this work is being performed at Cornell University CNF, a member of NNIN. We thank CNF staff for the support.

  15. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    NASA Astrophysics Data System (ADS)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  16. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  17. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring.

    PubMed

    Eltayib, Eyman; Brady, Aaron J; Caffarel-Salvador, Ester; Gonzalez-Vazquez, Patricia; Zaid Alkilani, Ahlam; McCarthy, Helen O; McElnay, James C; Donnelly, Ryan F

    2016-05-01

    We describe, for the first time, hydrogel-forming microneedle (s) (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2mmol/l. However, after 1h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15mg/kg and 30mg/kg lithium carbonate, respectively. MN arrays were applied 1h after dosing and removed 1h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5% compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in outpatient settings. We will now focus on correlation between serum and MN lithium concentrations. PMID:26969262

  18. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  19. Minimizing the potential for nosocomial pneumonia: architectural, engineering, and environmental considerations for the intensive care unit.

    PubMed

    du Moulin, G

    1989-01-01

    The development of pneumonia in seriously ill patients remains an important concern of intensive care medicine. The design of the intensive care unit will have a direct effect upon the potential for infection. Persons involved in this design should consider engineering and architectural elements that will ultimately contribute to lower rates of infection. These include components to regulate the atmosphere, such as ventilation systems and temperature and humidity controls. Sources of contaminated water and the amplification mechanisms need to be addressed and minimized in the final designs. Architectural elements such as treatment space and lighting encourage optimal patient management and workable staffing patterns. Personnel who treat seriously ill patients should be part of the planning and design process in the construction and renovation of intensive care facilities. PMID:2495954

  20. Crystal engineering on industrial diaryl pigments using lattice energy minimizations and X-ray powder diffraction.

    PubMed

    Schmidt, Martin U; Dinnebier, Robert E; Kalkhof, Holger

    2007-08-23

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  1. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    SciTech Connect

    Schmidt,M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  2. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Schaefer, Bastian; Ghasemi, S. Alireza; Roy, Shantanu; Goedecker, Stefan; Goedecker Group Team

    Optimizations of atomic positions belong to the most frequently performed tasks in electronic structure calculations. Many simulations like global minimum searches or the identification of chemical reaction pathways can require the computation of hundreds or thousands of minimizations or saddle points. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. In this talk a recently published technique that allows to obtain significant curvature information of noisy potential energy surfaces is presented. This technique was used to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. With the help of benchmarks both the minimizer and the saddle finding approach were demonstrated to be superior to comparable existing methods.

  3. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  4. Pixel level image fusion for medical imaging: an energy minimizing approach

    NASA Astrophysics Data System (ADS)

    Miles, Brandon; Law, Max W. K.; Ben-Ayed, Ismail; Garvin, Greg; Fenster, Aaron; Li, Shuo

    2012-03-01

    In an attempt to improve the visualisation techniques for diagnosis and treatment of musculoskeletal injuries, we present a novel image fusion method for a pixel-wise fusion of CT and MR images. We focus on the spine and it's related diseases including osteophyte growth, degenerate disc disease and spinal stenosis. This will have benefit to the 50-75% of people who suffer from back pain, which is the reason for 1.8% of all hospital stays in the United States.1 Pre-registered CT and MR image pairs were used. Rigid registration was performed based on soft tissue correspondence. A pixel-wise image fusion algorithm has been designed to combine CT and MR images into a single image. This is accomplished by minimizing an energy functional using a Graph Cut approach. The functional is formulated to balance the similarity between the resultant image and the CT image as well as between the resultant image and the MR image. Furthermore the variational smoothness of the resultant image is considered in the energy functional (to enforce natural transitions between pixels). The results have been validated based on the amount of significant detail preserved in the final fused image. Based on bone cortex and disc / spinal cord areas, 95% of the relevant MR detail and 85% of the relevant CT detail was preserved. This work has the potential to aid in patient diagnosis, surgery planning and execution along with post operative follow up.

  5. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  6. Potential energy of a dinuclear system

    SciTech Connect

    Adamyan, G.G.; Antonenko, N.V.; Jolos, R.V.; Ivanova, S.P.; Mel`nikova, O.I.

    1994-11-01

    An effective method for calculating the potential energy of a dinuclear system is proposed. Analytic expressions for calculating the nuclear part of the nucleus-nucleus potential in the double-folding form are obtained. A relationship between this potential and the proximity potential is found. Effects of deformation and mutual orientation of nuclei on the interaction potential are studied. It follows from a comparison of calculated potential energies with nuclear binding energies that excited states of some nuclei can be treated as dinuclear or trinuclear systems. 27 refs., 7 figs.

  7. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE PAGESBeta

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz

    2015-02-26

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For the total 5291 $pp$more » and $np$ data in this range, we obtain a Χ2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  8. Teardrop Shapes Minimize Bending Energy of Fusion Pores Connecting Planar Bilayers

    PubMed Central

    Ryham, Rolf J.; Ward, Mark A.; Cohen, Fredric S.

    2015-01-01

    A numerical gradient flow procedure was devised to characterize minimal energy shapes of fusion pores connecting two parallel planar bilayer membranes. Pore energy, composed of splay, tilt, and stretching, was obtained by modeling each bilayer as two monolayers and treating each monolayer of a bilayer membrane as a freely deformable surface described with a mean lipid orientation field. Voids between the two monolayers were prevented by a steric penalty formulation. Pore shapes were assumed to possess both axial and reflectional symmetry. For fixed pore radius and bilayer separation, the gradient flow procedure was applied to initially toroidal pore shapes. Using initially elliptical pore shapes yielded the same final shape. The resulting minimal pore shapes and energies were analyzed as a function of pore dimension and lipid composition. Previous studies either assumed or confined pore shapes, thereby tacitly supplying an unspecified amount of energy to maintain shape. The shapes derived in the present study were outputs of calculations and an externally provided energy was not supplied. Our procedure therefore yielded energy minima significantly lower than those reported in prior studies. The membrane of minimal energy pores bowed outward near the pore lumen, yielding a pore length that exceeded the distance between the two fusing membranes. PMID:24483480

  9. Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers

    NASA Astrophysics Data System (ADS)

    Ryham, Rolf J.; Ward, Mark A.; Cohen, Fredric S.

    2013-12-01

    A numerical gradient flow procedure was devised to characterize minimal energy shapes of fusion pores connecting two parallel planar bilayer membranes. Pore energy, composed of splay, tilt, and stretching, was obtained by modeling each bilayer as two monolayers and treating each monolayer of a bilayer membrane as a freely deformable surface described with a mean lipid orientation field. Voids between the two monolayers were prevented by a steric penalty formulation. Pore shapes were assumed to possess both axial and reflectional symmetry. For fixed pore radius and bilayer separation, the gradient flow procedure was applied to initially toroidal pore shapes. Using initially elliptical pore shapes yielded the same final shape. The resulting minimal pore shapes and energies were analyzed as a function of pore dimension and lipid composition. Previous studies either assumed or confined pore shapes, thereby tacitly supplying an unspecified amount of energy to maintain shape. The shapes derived in the present study were outputs of calculations and an externally provided energy was not supplied. Our procedure therefore yielded energy minima significantly lower than those reported in prior studies. The membrane of minimal energy pores bowed outward near the pore lumen, yielding a pore length that exceeded the distance between the two fusing membranes.

  10. Exam Question Exchange: Potential Energy Surfaces.

    ERIC Educational Resources Information Center

    Alexander, John J., Ed.

    1988-01-01

    Presents three examination questions, graded in difficulty, that explore the topic of potential energy surfaces using a diagrammatic approach. Provides and discusses acceptable solutions including diagrams. (CW)

  11. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    ERIC Educational Resources Information Center

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  12. Sobolev gradient approach for the time evolution related to energy minimization of Ginzburg-Landau functionals

    NASA Astrophysics Data System (ADS)

    Raza, Nauman; Sial, Sultan; Siddiqi, Shahid S.

    2009-04-01

    The Sobolev gradient technique has been discussed previously in this journal as an efficient method for finding energy minima of certain Ginzburg-Landau type functionals [S. Sial, J. Neuberger, T. Lookman, A. Saxena, Energy minimization using Sobolev gradients: application to phase separation and ordering, J. Comput. Phys. 189 (2003) 88-97]. In this article a Sobolev gradient method for the related time evolution is discussed.

  13. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080

  14. Minimizing invasive potential of Miscanthus × giganteus grown for bioenergy: identifying demographic thresholds for population growth and spread

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of herbaceous perennial bioenergy crops in the north central region of the USA is being targeted primarily at marginal lands to avoid conflicts between food and fuel. A fundamental challenge for biofeedstock development is to evaluate and minimize the potential of such crops to escape cul...

  15. COMPARISON OF CHEMICAL SCREENING AND RANKING APPROACHES: THE WASTE MINIMIZATION PRIORITIZATION TOOL VERSUS TOXIC EQUIVALENCY POTENTIALS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-STD-0014 Pennington*, D.W., and Bare*, J.C. Comparison of Chemical Screening and Ranking Approaches: The Waste Minimization Prioritization Tool versus Toxic Equivalency Potentials. Risk Analysis (Anderson, E.L. (Ed.), Malden, MA: Blackwell Publishers) 21 (5):897-912 (2001)...

  16. Minimal cooling speed for glass transition in a simple solvable energy landscape model

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Castillo, Isaac Pérez; Naumis, Gerardo G.

    2016-06-01

    The minimal cooling speed required to form a glass is obtained for a simple solvable energy landscape model. The model, made from a two-level system modified to include the topology of the energy landscape, is able to capture either a glass transition or a crystallization depending on the cooling rate. In this setup, the minimal cooling speed to achieve glass formation is then found to be related with the crystallization relaxation time, energy barrier and with the thermal history. In particular, we obtain that the thermal history encodes small fluctuations around the equilibrium population which are exponentially amplified near the glass transition, which mathematically corresponds to the boundary layer of the master equation. The change in the glass transition temperature is also found as a function of the cooling rate. Finally, to verify our analytical results, a kinetic Monte Carlo simulation was implemented.

  17. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  18. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  19. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  20. Determining the electron energy distribution near the plasma potential in the earth's ionosphere

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Hays, P. B.; Cutler, J. R.; Dobbs, M. E.

    1981-01-01

    A determination of the plasma potential using an electrostatic analyzer is described in which the potential difference between the instrument slit system and surrounding plasma is minimized. Data obtained from rocket-borne instrumentation demonstrate the viability of this technique for electron fluxes between thermal energies (about 0.5 V) and suprathermal energies (many volts).

  1. The Use of Trust Regions in Kohn-Sham Total EnergyMinimization

    SciTech Connect

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-05-30

    The Self Consistent Field (SCF) iteration, widely used forcomputing the ground state energy and the corresponding single particlewave functions associated with a many-electronatomistic system, is viewedin this paper as an optimization procedure that minimizes the Kohn-Shamtotal energy indirectly by minimizing a sequence of quadratic surrogatefunctions. We point out the similarity and difference between the totalenergy and the surrogate, and show how the SCF iteration can fail whenthe minimizer of the surrogate produces an increase in the KS totalenergy. A trust region technique is introduced as a way to restrict theupdate of the wave functions within a small neighborhood of anapproximate solution at which the gradient of the total energy agreeswith that of the surrogate. The use of trust region in SCF is not new.However, it has been observed that directly applying a trust region basedSCF(TRSCF) to the Kohn-Sham total energy often leads to slowconvergence.We propose to use TRSCF within a direct constrainedminimization(DCM) algorithm we developed in \\cite dcm. The keyingredients of theDCM algorithm involve projecting the total energyfunction into a sequence of subspaces of small dimensions and seeking theminimizerof the total energy function within each subspace. Theminimizer of a subspace energy function, which is computed by TRSCF, notonly provides a search direction along which the KS total energy functiondecreases but also gives an optimal "step-length" that yields asufficient decrease in total energy. A numerical example is provided todemonstrate that the combination of TRSCF and DCM is more efficient thanSCF.

  2. Green Energy in New Construction: Maximize Energy Savings and Minimize Cost

    ERIC Educational Resources Information Center

    Ventresca, Joseph

    2010-01-01

    People often use the term "green energy" to refer to alternative energy technologies. But green energy doesn't guarantee maximum energy savings at a minimum cost--a common misconception. For school business officials, green energy means getting the lowest energy bills for the lowest construction cost, which translates into maximizing green energy…

  3. An energy minimization approach to automated extraction of regular building footprints from airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    He, Y.; Zhang, C.; Fraser, C. S.

    2014-08-01

    This paper presents an automated approach to the extraction of building footprints from airborne LiDAR data based on energy minimization. Automated 3D building reconstruction in complex urban scenes has been a long-standing challenge in photogrammetry and computer vision. Building footprints constitute a fundamental component of a 3D building model and they are useful for a variety of applications. Airborne LiDAR provides large-scale elevation representation of urban scene and as such is an important data source for object reconstruction in spatial information systems. However, LiDAR points on building edges often exhibit a jagged pattern, partially due to either occlusion from neighbouring objects, such as overhanging trees, or to the nature of the data itself, including unavoidable noise and irregular point distributions. The explicit 3D reconstruction may thus result in irregular or incomplete building polygons. In the presented work, a vertex-driven Douglas-Peucker method is developed to generate polygonal hypotheses from points forming initial building outlines. The energy function is adopted to examine and evaluate each hypothesis and the optimal polygon is determined through energy minimization. The energy minimization also plays a key role in bridging gaps, where the building outlines are ambiguous due to insufficient LiDAR points. In formulating the energy function, hard constraints such as parallelism and perpendicularity of building edges are imposed, and local and global adjustments are applied. The developed approach has been extensively tested and evaluated on datasets with varying point cloud density over different terrain types. Results are presented and analysed. The successful reconstruction of building footprints, of varying structural complexity, along with a quantitative assessment employing accurate reference data, demonstrate the practical potential of the proposed approach.

  4. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  5. Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.

  6. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  7. Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets

    NASA Astrophysics Data System (ADS)

    Gemmer, John; Sharon, Eran; Shearman, Toby; Venkataramani, Shankar C.

    2016-04-01

    The edges of torn plastic sheets and growing leaves often display hierarchical buckling patterns. We show that this complex morphology i) emerges even in zero strain configurations, and ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch point (or “monkey saddle”) singularities in generating complex wrinkling patterns in isometric immersions, and show how they arise naturally from minimizing the elastic energy.

  8. Rigorous treatment of electrostatics for spatially varying dielectrics based on energy minimization

    PubMed Central

    Obolensky, O. I.; Doerr, T. P.; Ray, R.; Yu, Yi-Kuo

    2009-01-01

    An energy minimization formulation of electrostatics that allows computation of the electrostatic energy and forces to any desired accuracy in a system with arbitrary dielectric properties is presented. An integral equation for the scalar charge density is derived from an energy functional of the polarization vector field. This energy functional represents the true energy of the system even in nonequilibrium states. Arbitrary accuracy is achieved by solving the integral equation for the charge density via a series expansion in terms of the equation’s kernel, which depends only on the geometry of the dielectrics. The streamlined formalism operates with volume charge distributions only, not resorting to introducing surface charges by hand. Therefore, it can be applied to any spatial variation of the dielectric susceptibility, which is of particular importance in applications to biomolecular systems. The simplicity of application of the formalism to real problems is shown with analytical and numerical examples. PMID:19518256

  9. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  10. Free Energy Minimization Calculation of Complex Chemical Equilibria. Reduction of Silicon Dioxide with Carbon at High Temperature.

    ERIC Educational Resources Information Center

    Wai, C. M.; Hutchinson, S. G.

    1989-01-01

    Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)

  11. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872

  12. Finding reaction paths using the potential energy as reaction coordinate

    NASA Astrophysics Data System (ADS)

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-01

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

  13. Wind energy in China: Estimating the potential

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9–14% of China's projected energy demand by 2030.

  14. Potential of energy production from conserved forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forages have a potential role in meeting the demand for energy. Perennial forages are attractive for various reasons. One, both the monetary and energy cost of planting is spread over many years. Two, we already have the equipment for harvesting, storing and transporting this source of biomass. Thre...

  15. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1995-07-01

    MRCI (configuration interaction) calculations were used to examine possible pathways for the O{sub 2} + CCH reaction. The H{sub 2} + CN potential surface was examined. An initial survey was made of the HCl + CN potential energy surface at a low level of theory.

  16. Minimizers of the Landau-de Gennes Energy Around a Spherical Colloid Particle

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Lamy, Xavier

    2016-05-01

    We consider energy minimizing configurations of a nematic liquid crystal around a spherical colloid particle, in the context of the Landau-de Gennes model. The nematic is assumed to occupy the exterior of a ball B r0, and satisfy homeotropic weak anchoring at the surface of the colloid and approach a uniform uniaxial state as {|x|to∞} . We study the minimizers in two different limiting regimes: for balls which are small {r_0≪ L^{1/2}} compared to the characteristic length scale {L^{1/2}} , and for large balls, {r_0≫ L^{1/2}} . The relationship between the radius and the anchoring strength W is also relevant. For small balls we obtain a limiting quadrupolar configuration, with a "Saturn ring" defect for relatively strong anchoring, corresponding to an exchange of eigenvalues of the Q-tensor. In the limit of very large balls we obtain an axisymmetric minimizer of the Oseen-Frank energy, and a dipole configuration with exactly one point defect is obtained.

  17. Power allocation strategies to minimize energy consumption in wireless body area networks.

    PubMed

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency. PMID:22254777

  18. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  19. Computational modelling of protein interactions: energy minimization for the refinement and scoring of association decoys.

    PubMed

    Dibrov, Alexander; Myal, Yvonne; Leygue, Etienne

    2009-12-01

    The prediction of protein-protein interactions based on independently obtained structural information for each interacting partner remains an important challenge in computational chemistry. Procedures where hypothetical interaction models (or decoys) are generated, then ranked using a biochemically relevant scoring function have been garnering interest as an avenue for addressing such challenges. The program PatchDock has been shown to produce reasonable decoys for modeling the association between pig alpha-amylase and the VH-domains of camelide antibody raised against it. We designed a biochemically relevant method by which PatchDock decoys could be ranked in order to separate near-native structures from false positives. Several thousand steps of energy minimization were used to simulate induced fit within the otherwise rigid decoys and to rank them. We applied a partial free energy function to rank each of the binding modes, improving discrimination between near-native structures and false positives. Sorting decoys according to strain energy increased the proportion of near-native decoys near the bottom of the ranked list. Additionally, we propose a novel method which utilizes regression analysis for the selection of minimization convergence criteria and provides approximation of the partial free energy function as the number of algorithmic steps approaches infinity. PMID:19774465

  20. Minimization of energy input to fluids for rock-fracturing experiments

    SciTech Connect

    Doiphode, P.; Chaturvedi, S.

    2001-06-01

    Rock fracturing using electrically produced shocks in water is emerging as an environment-friendly substitute for fracturing by explosives. This involves producing underwater pressure waves or shocks of the desired intensity in a water-filled cavity drilled in the rock. We have numerically studied different options in an attempt to minimize the electrical energy consumption in this process, given a desired final pressure in the cavity. The first option is to follow different thermodynamic paths, e.g., isentropic and single shock, from the initial to the final pressure of water. It is found that isentropic compression allows a reduction of 2{endash}3 times in energy input as compared to compression by a single shock. The second option is to replace water by other fluids. It has been found that the use of aqueous solutions at high electrolyte concentrations can reduce the energy consumption by over 30%. {copyright} 2001 American Institute of Physics.

  1. A strategy to minimize the energy offset in carrier injection from excited dyes to inorganic semiconductors for efficient dye-sensitized solar energy conversion.

    PubMed

    Fujisawa, Jun-Ichi; Osawa, Ayumi; Hanaya, Minoru

    2016-08-10

    Photoinduced carrier injection from dyes to inorganic semiconductors is a crucial process in various dye-sensitized solar energy conversions such as photovoltaics and photocatalysis. It has been reported that an energy offset larger than 0.2-0.3 eV (threshold value) is required for efficient electron injection from excited dyes to metal-oxide semiconductors such as titanium dioxide (TiO2). Because the energy offset directly causes loss in the potential of injected electrons, it is a crucial issue to minimize the energy offset for efficient solar energy conversions. However, a fundamental understanding of the energy offset, especially the threshold value, has not been obtained yet. In this paper, we report the origin of the threshold value of the energy offset, solving the long-standing questions of why such a large energy offset is necessary for the electron injection and which factors govern the threshold value, and suggest a strategy to minimize the threshold value. The threshold value is determined by the sum of two reorganization energies in one-electron reduction of semiconductors and typically-used donor-acceptor (D-A) dyes. In fact, the estimated values (0.21-0.31 eV) for several D-A dyes are in good agreement with the threshold value, supporting our conclusion. In addition, our results reveal that the threshold value is possible to be reduced by enlarging the π-conjugated system of the acceptor moiety in dyes and enhancing its structural rigidity. Furthermore, we extend the analysis to hole injection from excited dyes to semiconductors. In this case, the threshold value is given by the sum of two reorganization energies in one-electron oxidation of semiconductors and D-A dyes. PMID:27452717

  2. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    SciTech Connect

    Fay, Stéphane

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  3. Iterative local-global energy minimization for automatic extraction of objects of interest.

    PubMed

    Hua, Gang; Liu, Zicheng; Zhang, Zhengyou; Wu, Ying

    2006-10-01

    We propose a novel global-local variational energy to automatically extract objects of interest from images. Previous formulations only incorporate local region potentials, which are sensitive to incorrectly classified pixels during iteration. We introduce a global likelihood potential to achieve better estimation of the foreground and background models and, thus, better extraction results. Extensive experiments demonstrate its efficacy. PMID:16986550

  4. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    DOE PAGESBeta

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; et al

    2015-12-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, andmore » prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits.« less

  5. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    SciTech Connect

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-12-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits.

  6. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    SciTech Connect

    Eipeldauer, Mary D

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

  7. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (<5 m). The instrument's exploration depth and resolution capabilities in lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  8. Minimally Invasive Medial Plating of Low-Energy Lisfranc Injuries: Preliminary Experience with Five Cases

    PubMed Central

    del Vecchio, Jorge Javier; Ghioldi, Mauricio; Raimondi, Nicolás; De Elias, Manuel

    2016-01-01

    Fracture dislocations involving the Lisfranc joint are rare; they represent only 0.2% of all the fractures. There is no consensus about the surgical management of these lesions in the medical literature. However, both anatomical reduction and tarsometatarsal stabilization are essential for a good outcome. In this clinical study, five consecutive patients with a diagnosis of Lisfranc low-energy lesion were treated with a novel surgical technique characterized by minimal osteosynthesis performed through a minimally invasive approach. According to the radiological criteria established, the joint reduction was anatomical in four patients, almost anatomical in one patient (#4), and nonanatomical in none of the patients. At the final follow-up, the AOFAS score for the midfoot was 96 points (range, 95–100). The mean score according to the VAS (Visual Analog Scale) at the end of the follow-up period was 1.4 points over 10 (range, 0–3). The surgical technique described in this clinical study is characterized by the use of implants with the utilization of a novel approach to reduce joint and soft tissue damage. We performed a closed reduction and minimally invasive stabilization with a bridge plate and a screw after achieving a closed anatomical reduction. PMID:27340569

  9. Grain-oriented segmentation of images of porous structures using ray casting and curvature energy minimization.

    PubMed

    Lee, H-G; Choi, M-K; Lee, S-C

    2015-02-01

    We segment an image of a porous structure by successively identifying individual grains, using a process that requires no manual initialization. Adaptive thresholding is used to extract an incomplete edge map from the image. Then, seed points are created on a rectangular grid. Rays are cast from each point to identify the local grain. The grain with the best shape is selected by energy minimization, and the grain is used to update the edge map. This is repeated until all the grains have been recognized. Tests on scanning electron microscope images of titanium oxide and aluminium oxide show that their process achieves better results than five other contour detection techniques. PMID:25430498

  10. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

    PubMed Central

    Miller, Scott D.; Goulden, Michael L.; Hutyra, Lucy R.; Keller, Michael; Saleska, Scott R.; Wofsy, Steven C.; Figueira, Adelaine Michela Silva; da Rocha, Humberto R.; de Camargo, Plinio B.

    2011-01-01

    We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange. PMID:22087005

  11. MO-A-BRD-02: Noise Suppression for Dual-Energy CT Through Entropy Minimization

    SciTech Connect

    Petrongolo, M; Niu, T; Zhu, L

    2014-06-15

    Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise in decomposed images through entropy minimization within a 2D transformation space. Distinct from other noise suppression techniques, the entropy minimization method does not estimate and suppress noise based on spatial variations of signals and thus maximally preserves image spatial resolution. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a cluster with a highly asymmetric shape. We orient an axis by minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace the pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimized axis. The proposed method's performance is assessed using a Catphan 600 phantom and an anthropomorphic head phantom. Electron density calculations are used to quantify its accuracy. Our results are compared to those without noise suppression, with a filtering method, and with a recently developed iterative method. Results: On both phantoms, the proposed method reduces noise standard deviations of the decomposed images by at least on order of magnitude. In the Catphan study, this method retains the spatial resolution of the CT images and increases the accuracy of electron density calculations. In the head phantom study, the proposed method outperforms the others in retaining fine, intricate structures. Conclusion: This work shows that the proposed method of noise suppression through entropy minimization for DECT suppresses noise without loss of spatial resolution while increasing electron density calculation accuracy. Future investigations will analyze possible bias and

  12. Control of flow around a circular cylinder for minimizing energy dissipation

    NASA Astrophysics Data System (ADS)

    Naito, Hiroshi; Fukagata, Koji

    2014-11-01

    Control of flow around a circular cylinder is studied numerically aiming at minimization of the energy dissipation. First, we derive a mathematical relationship (i.e., identity) between the energy dissipation in an infinitely large volume and the surface quantities, so that the cost function can be expressed by the surface quantities only. Subsequently a control law to minimize the energy dissipation is derived by using the suboptimal control procedure [J. Fluid Mech. 401, 123 (1999), 10.1017/S002211209900659X]. The performance of the present suboptimal control law is evaluated by a parametric study by varying the value of the arbitrary parameter contained. Two Reynolds numbers, Re =100 and 1000, are investigated by two-dimensional simulations. Although no improvement is obtained at Re =100 , the present suboptimal control shows better results at Re =1000 than the suboptimal controls previously proposed. With the present suboptimal control, the dissipation and the drag are reduced by 58% and 44% as compared to the uncontrolled case, respectively. The suction around the front stagnation point and the blowing in the rear half are found to be weakened as compared to those in the previous suboptimal control targeting at pressure drag reduction. A predetermined control based on the control input profile obtained by the suboptimal control is also performed. The energy dissipation and the drag are found to be reduced as much as those in the present suboptimal control. It is also found that the present suboptimal and predetermined controls have better energy efficiencies than the suboptimal control previously proposed. Investigation at different control amplitudes reveals an advantage of the present control at higher amplitude. Toward its practical implementation, a localized version of the predetermined control is also examined, and it is found to work as effectively as the continuous case. Finally, the present predetermined control is confirmed to work well in a three

  13. Potential energy function for the hydroperoxyl radical

    SciTech Connect

    Lemon, W.J.; Hase, W.L.

    1987-03-12

    A switching function formalism is used to derive an analytic potential energy surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the potential energy surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.

  14. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    NASA Astrophysics Data System (ADS)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  15. Geothermal energy and its potential. [Utah

    SciTech Connect

    Berge, C.W.

    1980-06-01

    A brief review of geothermal energy and its potential as a future energy source is presented. The type of geothermal systems and their geologic occurrence is discussed, and the Phillips Petroleum Company's exploration and drilling programs in the Roosevelt Hot Springs area in parts of Iron, Beaver, and Millard Counties, Utah are detailed. A section on the rock behavior and mechanical properties of rocks in the Roosevelt Hot Springs area is included. (JMT)

  16. An asymmetric dimer in a periodic potential: a minimal model for friction of graphene flakes

    NASA Astrophysics Data System (ADS)

    Hens, Remco; Fasolino, Annalisa

    2016-07-01

    We discuss the friction and motion of a model of a dimer with asymmetric interactions with a substrate potential. Starting from the consideration that a rigid dimer with spacing equal to half of the period of the potential has exactly zero static friction like the infinite incommensurate Frenkel Kontorova model, we show how stick-slip behaviour and friction arise as a function of asymmetry. We argue that this model can yield a simple yet insightful description of the frictional behaviour of graphene flakes on graphite and of superlubricity. The results can also be of interest for diatomic molecules on surfaces. Supplementary material in the form of three mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70273-5

  17. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  18. Potential reduction of DSN uplink energy cost

    NASA Technical Reports Server (NTRS)

    Dolinsky, S.; Degroot, N. F.

    1982-01-01

    DSN Earth stations typically transmit more power than that required to meet minimum specifications for uplink performance. Energy and cost savings that could result from matching the uplink power to the amount required for specified performance are studied. The Galileo mission was selected as a case study. Although substantial reduction in transmitted energy is possible, potential savings in source energy (oil or electricity) savings are much less. This is because of the rising inefficiency in power conversion and radio frequency power generation that accompanies reduced power output.

  19. Improved bounds on the energy-minimizing strains in martensitic polycrystals

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2016-07-01

    This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable) strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The simplest form of the bounds presented is obtained by combining recent results for single crystals with a homogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the development of a more detailed analysis, leading to improved polycrystalline bounds that are notably consistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and the results are compared with lower bounds obtained by considering laminate textures.

  20. Elucidating Molecular Motion through Structural and Dynamic Filters of Energy-Minimized Conformer Ensembles

    PubMed Central

    2015-01-01

    Complex RNA structures are constructed from helical segments connected by flexible loops that move spontaneously and in response to binding of small molecule ligands and proteins. Understanding the conformational variability of RNA requires the characterization of the coupled time evolution of interconnected flexible domains. To elucidate the collective molecular motions and explore the conformational landscape of the HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized structures generated by the program “Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)”. We apply structural filters in the form of experimental residual dipolar couplings (RDCs) to select a subset of discrete energy-minimized conformers and carry out principal component analyses (PCA) to corroborate the choice of the filtered subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule using two simulation protocols that we previously published. We match the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results introduce a protocol to construct viable dynamic trajectories for RNA molecules that accord well with experimental NMR data and support the notion that the motions of the helical portions of this small RNA can be described by a relatively small number of discrete conformations exchanging over time scales longer than 1 μs. PMID:24479561

  1. A non-gradient-based energy minimization approach to the image denoising problem

    NASA Astrophysics Data System (ADS)

    Lukić, Tibor; Žunić, Joviša

    2014-09-01

    A common approach to denoising images is to minimize an energy function combining a quadratic data fidelity term with a total variation-based regularization. The total variation, comprising the gradient magnitude function, originally comes from mathematical analysis and is defined on a continuous domain only. When working in a discrete domain (e.g. when dealing with digital images), the accuracy in the gradient computation is limited by the applied image resolution. In this paper we propose a new approach, where the gradient magnitude function is replaced with an operator with similar properties (i.e. it also expresses the intensity variation in a neighborhood of the considered point), but is concurrently applicable in both continuous and discrete space. This operator is the shape elongation measure, one of the shape descriptors intensively used in shape-based image processing and computer vision tasks. The experiments provided in this paper confirm the capability of the proposed approach for providing high-quality reconstructions. Based on the performance comparison of a number of test images, we can say that the new method outperforms the energy minimization-based denoising methods often used in the literature for method comparison.

  2. Potential energy studies on silane dimers

    NASA Astrophysics Data System (ADS)

    Mahlanen, Riina; Pakkanen, Tapani A.

    2011-04-01

    Intermolecular interactions and parameters for use in MD studies of large molecule systems have earlier been determined for hydrocarbons, carbon tetrahalides and sulfur. The paper reports a model representing nonbonding interactions between silane molecules, which were examined in the same way as hydrocarbons in an earlier (neopentane, isopropane, propane, and ethane) study. Intermolecular potentials were determined for 11 combinations of silane compound pairs (silane SiH 4, disilane Si 2H 6, trisilane Si 3H 8, isotetrasilane Si 4H 10 and neopentasilane Si 5H 12) with MP2/aug(df)-6-311G ∗ab initio calculations. The most stable dimer configurations were identified. With use of the modified Morse potential model to represent the interactions, 276 new potential energy surfaces were generated for silane dimers. Separate and generic pair potentials were calculated for the silanes. The pair potentials can be used in MD studies of silanes.

  3. Hack's relation and optimal channel networks: The elongation of river basins as a consequence of energy minimization

    NASA Astrophysics Data System (ADS)

    Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio

    1993-08-01

    As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.

  4. Potential Interventions by Government and Industry to Minimize Violations of Temporary Flight Restrictions

    NASA Technical Reports Server (NTRS)

    Zuschlag, Michael

    2005-01-01

    This document enumerates interventions to reduce the frequency of restricted airspace violations, particularly those associated with temporary flight restrictions (TFRs) and air defense identification zones (ADIZs), by more effectively providing pilots with the information necessary to avoid such violations. Interventions are divided into both near term and far term groupings. Short term interventions, some variants of which are already in progress focus on improving the form and content of the textual Notices to Airmen (NOTAMs) as well as the graphical depiction of TFRs. A long-term technical intervention is proposed which would provide pilots the following functionality: ground and airborne presentation of information on any restricted airspace, including display on an electronic moving map, fully mechanized execution from the cockpit of the procedures required for entry into restricted airspaces that allow for entry, and alerting of the potential for TFR violations both during flight planning and while the aircraft is moving.

  5. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  6. Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model

    NASA Astrophysics Data System (ADS)

    Du, Xin; Weeks, Eric R.

    2016-06-01

    We study glassy dynamics using a simulation of three soft Brownian particles confined to a two-dimensional circular region. If the circular region is large, the disks freely rearrange, but rearrangements are rarer for smaller system sizes. We directly measure a one-dimensional free-energy landscape characterizing the dynamics. This landscape has two local minima corresponding to the two distinct disk configurations, separated by a free-energy barrier that governs the rearrangement rate. We study several different interaction potentials and demonstrate that the free-energy barrier is composed of a potential-energy barrier and an entropic barrier. The heights of both of these barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can arise close to the glass transition.

  7. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Li, Wentao; Liu, Jiansheng; Wang, Wentao; Yu, Changhai; Tian, Ye; Nakajima, Kazuhisa; Deng, Aihua; Qi, Rong; Wang, Cheng; Qin, Zhiyong; Fang, Ming; Liu, Jiaqi; Xia, Changquan; Li, Ruxin; Xu, Zhizhan

    2016-05-01

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, the e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.

  8. Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

    SciTech Connect

    Jiménez, Jose Beltrán; Maroto, Antonio L. E-mail: maroto@fis.ucm.es

    2010-12-01

    In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10{sup −9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.

  9. Constraints on B and Higgs physics in minimal low energy supersymmetric models

    SciTech Connect

    Carena, Marcela; Menon, A.; Noriega-Papaqui, R.; Szynkman, A.; Wagner, C.E.M.; /Argonne /Chicago U., EFI

    2006-03-01

    We study the implications of minimal flavor violating low energy supersymmetry scenarios for the search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the already stringent Tevatron bound on the decay rate B{sub s} {yields} {mu}{sup +}{mu}{sup -} sets strong constraints on the possibility of generating large corrections to the mass difference {Delta} M{sub s} of the B{sub s} eigenstates. We also show that the B{sub s} {yields} {mu}{sup +}{mu}{sup -} bound together with the constraint on the branching ratio of the rare decay b {yields} s{gamma} has strong implications for the search of light, non-standard Higgs bosons at hadron colliders. In doing this, we demonstrate that the former expressions derived for the analysis of the double penguin contributions in the Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study a specific non-minimal flavor violating scenario, where there are flavor changing gluino-squark-quark interactions, governed by the CKM matrix elements, and show that the B and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be enhanced effects on the B and K mixing parameters, without any significant effect on the rate of B{sub s} {yields} {mu}{sup +}{mu}{sup -}.

  10. Morcellator's Port-site Metastasis of a Uterine Smooth Muscle Tumor of Uncertain Malignant Potential After Minimally Invasive Myomectomy.

    PubMed

    Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Signorelli, Mauro; Chiappa, Valentina; Lorusso, Domenica; Sabatucci, Ilaria; Carcangiu, Maria L; Fiore, Marco; Gronchi, Alessandro; Raspagliesi, Francesco

    2016-01-01

    Since the safety warning from the US Food and Drug Administration on the use of power morcellators, minimally invasive procedures involving the removal of uterine myomas and large uteri are under scrutiny. Growing evidence suggests that morcellation of undiagnosed uterine malignancies is associated with worse survival outcomes of patients affected by uterine sarcoma. However, to date, only limited data regarding morcellation of low-grade uterine neoplasms are available. In the present article, we reported a case of a (morcellator) port-site implantation of a smooth muscle tumor that occurred 6 years after laparoscopic morcellation of a uterine smooth muscle tumor of uncertain potential. This case highlights the effects of intra-abdominal morcellation, even in low-grade uterine neoplasms. Caution should be used when determining techniques for tissue extraction; the potential adverse consequences of morcellation should be more fully explored. PMID:26851127

  11. Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits

    USGS Publications Warehouse

    Davidson, J.; Frankel, A.S.; Ellison, W.T.; Summerfelt, S.; Popper, A.N.; Mazik, P.; Bebak, J.

    2007-01-01

    Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in impairment of the auditory system, reduced growth rates, and increased stress. Consequently, reducing sound in fish tanks could result in advantages for cultured species and increased productivity for the aquaculture industry. The objective of this study was to evaluate the noise reduction potential of various retrofits to fiberglass fish culture tanks. The following structural changes were applied to tanks to reduce underwater noise: (1) inlet piping was suspended to avoid contact with the tank, (2) effluent piping was disconnected from a common drain line, (3) effluent piping was insulated beneath tanks, and (4) tanks were elevated on cement blocks and seated on insulated padding. Four combinations of the aforementioned structural changes were evaluated in duplicate and two tanks were left unchanged as controls. Control tanks had sound levels of 120.6 dB re 1 ??Pa. Each retrofit contributed to a reduction of underwater sound. As structural changes were combined, a cumulative reduction in sound level was observed. Tanks designed with a combination of retrofits had sound levels of 108.6 dB re 1 ??Pa, a four-fold reduction in sound pressure level. Sound frequency spectra indicated that the greatest sound reductions occurred between 2 and 100 Hz and demonstrated that nearby pumps and blowers created tonal frequencies that were transmitted into the tanks. The tank modifications used during this study were simple and inexpensive and could be applied to existing systems or considered when designing aquaculture facilities. ?? 2007 Elsevier B.V. All rights reserved.

  12. Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells.

    PubMed

    Scott, Ricardo S; Bustillo, Diego; Olivos-Oré, Luis Alcides; Cuchillo-Ibañez, Inmaculada; Barahona, Maria Victoria; Carbone, Emilio; Artalejo, Antonio R

    2011-10-01

    BK channels modulate cell firing in excitable cells in a voltage-dependent manner regulated by fluctuations in free cytosolic Ca(2+) during action potentials. Indeed, Ca(2+)-independent BK channel activity has ordinarily been considered not relevant for the physiological behaviour of excitable cells. We employed the patch-clamp technique and selective BK channel blockers to record K(+) currents from bovine chromaffin cells at minimal intracellular (about 10 nM) and extracellular (free Ca(2+)) Ca(2+) concentrations. Despite their low open probability under these conditions (V(50) of +146.8 mV), BK channels were responsible for more than 25% of the total K(+) efflux during the first millisecond of a step depolarisation to +20 mV. Moreover, BK channels activated about 30% faster (τ = 0.55 ms) than the rest of available K(+) channels. The other main source of fast voltage-dependent K(+) efflux at such a low Ca(2+) was a transient K(+) (I(A)-type) current activating with V (50) = -14.2 mV. We also studied the activation of BK currents in response to action potential waveforms and their contribution to shaping action potentials both in the presence and the absence of extracellular Ca(2+). Our results show that BK channels activate during action potentials and accelerate cell repolarisation even at minimal Ca(2+) concentration, and suggest that they could do so also in the presence of extracellular Ca(2+), before Ca(2+) entering the cell facilitates their activity. PMID:21755285

  13. Fouling mitigation by iron-based electroflocculation in microfiltration: Mechanisms and energy minimization.

    PubMed

    Ben Sasson, Moshe; Adin, Avner

    2010-07-01

    High-energy demand presents a major obstacle in the application of advanced water-purification systems. In this work, energy minimization and fouling mitigation by iron-based electroflocculation in dead-end microfiltration were investigated. Highly pure water contaminated with Silica-CMP (chemical mechanical polishing) particles were pretreated by electroflocculation at short operation times and a constant electrical current intensity of 0.4 A, followed by different slow-mixing times and filtration without any sedimentation step. By using a new method for filtration-energy appraisal, we found that an over 90% reduction in filtration energy could be achieved. The improvement was observed at all pH values examined (pH 6-8); pH values below 7 were problematic because the permeate turned yellow as a result of residual iron. The appearance of residual iron was explained by the dependence of Fe(2+) to Fe(3+) reaction rates on pH. Scanning electron micrographs of the fouled membrane surface showed the important role played by the sweep-coagulation mechanism in mitigating fouling. When internal fouling was the dominant mechanism, the amorphous iron-hydroxide solids formed a layer that filtered out the primary particles, protecting the membrane pores from plugging. Iron-hydroxide particles also reduced the hydraulic resistance of the cake when the external fouling mechanism dominated. Significant energy reduction was observed, even without the slow-mixing step, as a result of the local flocculation conditions near the membrane surface. Additional energy savings were obtained due to the significantly higher initial-flux restoration rates (>90%) resulting from electroflocculation pretreatment. PMID:20570312

  14. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Koča, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  15. Potential energy surface of triplet N2O2

    NASA Astrophysics Data System (ADS)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.

    2016-01-01

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  16. Potential energy surface of triplet N2O2.

    PubMed

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances. PMID:26772574

  17. SU-E-T-498: Energy Minimization and Dose-Volume Inverse Optimization in Prostate Cancer

    SciTech Connect

    Mihaylov, I; Moros, E

    2014-06-01

    Purpose: To compare dose-volume (DVH) and energy minimization-based (EM) optimization for prostate cancer cases. Methods: A dozen of prostate plans were retrospectively studied. For each case two IMRT plans were generated, one with DVH and the other with EM objective cost function. Those different objective functions were used only for the organs at risk (OARs), while target objectives were achieved through DVH cost functions. The plans used the same beam angles, maximum number of segments per plan, minimum segment area and MUs per segment. Both plans were normalized such that 95% of the PTV was covered by the same prescription dose. After prescription was achieved, doses to the OARs were iteratively lowered until the standard deviation of the dose across the PTV was ~3.5%. Plan quality was evaluated by several dose indices (DIs). A DI represents the dose delivered to certain volume of a structure. Tallied DIs were for rectum and bladder 10%, 40%, 60% volumes, and 1% volumes of the femoral heads as surrogate for maximum doses. Statistical significance in the differences among DIs was quantified with two-tailed paired t-tests. Results: On average EM plans performed better than DVH plans. Statistically significant dose reduction in rectum DI10, DI40, and DI60, were 2.6%, 25.7%, and 35.9%, respectively. For bladder DI10, DI40, and DI60 the differences were 1.1%, 20.8%, and 29.7%. Left and right femoral head DI1s were better by 33.8% and 27.8% in EM plans. The quoted dose reduction is with respect to EM absolute doses for the DIs. Conclusion: The performance of EM optimization with respect to DVH optimization is patient and DI dependent. While in some cases specific DIs were better with DVH optimization, on average the energy minimization allows better (ranging from 1% to ~40%) OAR sparing than DVH optimization. NIH-NCI.

  18. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  19. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  20. Potential Energy Curves of Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.

    1960-01-01

    Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.

  1. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  2. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  3. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  4. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  5. Quantum electrodynamics and the electron self-energy in a deformed space with a minimal length scale

    NASA Astrophysics Data System (ADS)

    Silva, Apollo V.; Abreu, E. M. C.; Neves, M. J.

    2016-06-01

    The main motivation to study models in the presence of a minimal length is to obtain a quantum field theory free of the divergences. In this way, in this paper, we have constructed a new framework for quantum electrodynamics embedded in a minimal length scale background. New operators are introduced and the Green function method was used for the solution of the field equations, i.e. the Maxwell, Klein-Gordon and Dirac equations. We have analyzed specifically the scalar field and its one loop propagator. The mass of the scalar field regularized by the minimal length was obtained. The QED Lagrangian containing a minimal length was also constructed and the divergences were analyzed. The electron and photon propagators, and the electron self-energy at one loop as a function of the minimal length was also obtained.

  6. Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness.

    PubMed

    Bonomi, Alberto G; Plasqui, Guy; Goris, Annelies H C; Westerterp, Klass R

    2010-09-01

    The aim of this study was to investigate the ability of a novel activity monitor designed to be minimally obtrusive in predicting free-living energy expenditure. Subjects were 18 men and 12 women (age: 41 +/- 11 years, BMI: 24.4 +/- 3 kg/m(2)). The habitual physical activity was monitored for 14 days using a DirectLife triaxial accelerometer for movement registration (Tracmor(D)) (Philips New Wellness Solutions, Lifestyle Incubator, the Netherlands). Tracmor(D) output was expressed as activity counts per day (Cnts/d). Simultaneously, total energy expenditure (TEE) was measured in free living conditions using doubly labeled water (DLW). Activity energy expenditure (AEE) and the physical activity level (PAL) were determined from TEE and sleeping metabolic rate (SMR). A multiple-linear regression model predicted 76% of the variance in TEE, using as independent variables SMR (partial-r(2) = 0.55, P < 0.001), and Cnts/d (partial r(2) = 0.21, P < 0.001). The s.e. of TEE estimates was 0.9 MJ/day or 7.4% of the average TEE. A model based on body mass (partial-r(2) = 0.31, P < 0.001) and Cnts/d (partial-r(2) = 0.23, P < 0.001) predicted 54% of the variance in TEE. Cnts/d were significantly and positively associated with AEE (r = 0.54, P < 0.01), PAL (r = 0.68, P < 0.001), and AEE corrected by body mass (r = 0.71, P < 0.001). This study showed that the Tracmor(D) is a highly accurate instrument for predicting free-living energy expenditure. The miniaturized design did not harm the ability of the instrument in measuring physical activity and in determining outcome parameters of physical activity such as TEE, AEE, and PAL. PMID:20186133

  7. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  8. The wind energy potential of western Greece

    SciTech Connect

    Katsoulis, B.D.; Metaxas, D.A. )

    1992-12-01

    In this study wind data were used to determine the monthly and annual variations of the wind at 13 meterological stations in western Greece. An analysis of the available wind data for the Ionian Sea islands and the western coasts of Greece is carried out to ascertain its potential for wind energy development. The effect of the limited number of daily observations available on the accuracy of the mean wind speed and annual wind energy estimates is ascertained. The wind speed and direction distributions are represented with Weibull functions. Besides, a mass-consistent numerical mesoscale model was used to give an overview of the wind prospecting and siting problem, and an example of its use for Corfu (Kerkira), an island in the Ionian Sea, is given. The comparison of the accuracy of the stimulation results versus measured wind at an available site is quite encouraging even though it cannot be conclusive since only one station is available.

  9. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  10. Theoretical studies of potential energy surfaces.

    SciTech Connect

    Harding, L. B.

    2006-01-01

    The goal of this program is to calculate accurate potential energy surfaces for both reactive and nonreactive systems. To do this the electronic Schroedinger equation must be solved. Our approach starts with multiconfiguration self-consistent field (MCSCF) reference wave functions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Dynamical electron correlation effects are included via multireference, singles and doubles configuration interaction (MRCI) calculations. With this approach, we are able to provide chemically useful predictions of the energetics for many systems. A second aspect of this program is the development of techniques to fit multi-dimensional potential surfaces to convenient, global, analytic functions that can then be used in dynamics calculations.

  11. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  12. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  13. Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2016-05-01

    On a star graph made of N ≥ 3 halflines (edges) we consider a Schrödinger equation with a subcritical power-type nonlinearity and an attractive delta interaction located at the vertex. From previous works it is known that there exists a family of standing waves, symmetric with respect to the exchange of edges, that can be parametrized by the mass (or L2-norm) of its elements. Furthermore, if the mass is small enough, then the corresponding symmetric standing wave is a ground state and, consequently, it is orbitally stable. On the other hand, if the mass is above a threshold value, then the system has no ground state. Here we prove that orbital stability holds for every value of the mass, even if the corresponding symmetric standing wave is not a ground state, since it is anyway a local minimizer of the energy among functions with the same mass. The proof is based on a new technique that allows to restrict the analysis to functions made of pieces of soliton, reducing the problem to a finite-dimensional one. In such a way, we do not need to use direct methods of Calculus of Variations, nor linearization procedures.

  14. Energy potential of sugarcane and sweet sorghum

    SciTech Connect

    Elawad, S.H.; Gascho, G.J.; Shih, S.F.

    1980-01-01

    The potential of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as C/sub 4/ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US energy consumption. Biomass production could be substantially increased by including tops and leaves, adopting narrow row spacing and improving cultural practices. This presents challenges for cultivating, harvesting, and hauling the biomass to processing centers. Large plants and heavy capital investment are essential for energy production. Ethanol and ammonia are the most promising candidates of a biomass program. If sugarcane were to be used for biomass production, breeding programs should be directed for more fermentable sugars and fiber. Energy research on sweet sorghum should be done with syrup varieties. Sweet sorghum needs to be incorporated with other crops because of its short growing season. The disposal of stillage from an extensive ethanol industry may pose environmental problems.

  15. Vegetative versus Minimally Conscious States: A Study Using TMS-EEG, Sensory and Event-Related Potentials

    PubMed Central

    Ragazzoni, Aldo; Pirulli, Cornelia; Veniero, Domenica; Feurra, Matteo; Cincotta, Massimo; Giovannelli, Fabio; Chiaramonti, Roberta; Lino, Mario; Rossi, Simone; Miniussi, Carlo

    2013-01-01

    Differential diagnoses between vegetative and minimally conscious states (VS and MCS, respectively) are frequently incorrect. Hence, further research is necessary to improve the diagnostic accuracy at the bedside. The main neuropathological feature of VS is the diffuse damage of cortical and subcortical connections. Starting with this premise, we used electroencephalography (EEG) recordings to evaluate the cortical reactivity and effective connectivity during transcranial magnetic stimulation (TMS) in chronic VS or MCS patients. Moreover, the TMS-EEG data were compared with the results from standard somatosensory-evoked potentials (SEPs) and event-related potentials (ERPs). Thirteen patients with chronic consciousness disorders were examined at their bedsides. A group of healthy volunteers served as the control group. The amplitudes (reactivity) and scalp distributions (connectivity) of the cortical potentials evoked by TMS (TEPs) of the primary motor cortex were measured. Short-latency median nerve SEPs and auditory ERPs were also recorded. Reproducible TEPs were present in all control subjects in both the ipsilateral and the contralateral hemispheres relative to the site of the TMS. The amplitudes of the ipsilateral and contralateral TEPs were reduced in four of the five MCS patients, and the TEPs were bilaterally absent in one MCS patient. Among the VS patients, five did not manifest ipsilateral or contralateral TEPs, and three of the patients exhibited only ipsilateral TEPs with reduced amplitudes. The SEPs were altered in five VS and two MCS patients but did not correlate with the clinical diagnosis. The ERPs were impaired in all patients and did not correlate with the clinical diagnosis. These TEP results suggest that cortical reactivity and connectivity are severely impaired in all VS patients, whereas in most MCS patients, the TEPs are preserved but with abnormal features. Therefore, TEPs may add valuable information to the current clinical and

  16. Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials.

    PubMed

    Ragazzoni, Aldo; Pirulli, Cornelia; Veniero, Domenica; Feurra, Matteo; Cincotta, Massimo; Giovannelli, Fabio; Chiaramonti, Roberta; Lino, Mario; Rossi, Simone; Miniussi, Carlo

    2013-01-01

    Differential diagnoses between vegetative and minimally conscious states (VS and MCS, respectively) are frequently incorrect. Hence, further research is necessary to improve the diagnostic accuracy at the bedside. The main neuropathological feature of VS is the diffuse damage of cortical and subcortical connections. Starting with this premise, we used electroencephalography (EEG) recordings to evaluate the cortical reactivity and effective connectivity during transcranial magnetic stimulation (TMS) in chronic VS or MCS patients. Moreover, the TMS-EEG data were compared with the results from standard somatosensory-evoked potentials (SEPs) and event-related potentials (ERPs). Thirteen patients with chronic consciousness disorders were examined at their bedsides. A group of healthy volunteers served as the control group. The amplitudes (reactivity) and scalp distributions (connectivity) of the cortical potentials evoked by TMS (TEPs) of the primary motor cortex were measured. Short-latency median nerve SEPs and auditory ERPs were also recorded. Reproducible TEPs were present in all control subjects in both the ipsilateral and the contralateral hemispheres relative to the site of the TMS. The amplitudes of the ipsilateral and contralateral TEPs were reduced in four of the five MCS patients, and the TEPs were bilaterally absent in one MCS patient. Among the VS patients, five did not manifest ipsilateral or contralateral TEPs, and three of the patients exhibited only ipsilateral TEPs with reduced amplitudes. The SEPs were altered in five VS and two MCS patients but did not correlate with the clinical diagnosis. The ERPs were impaired in all patients and did not correlate with the clinical diagnosis. These TEP results suggest that cortical reactivity and connectivity are severely impaired in all VS patients, whereas in most MCS patients, the TEPs are preserved but with abnormal features. Therefore, TEPs may add valuable information to the current clinical and

  17. Induced Seismicity Potential of Energy Technologies

    NASA Astrophysics Data System (ADS)

    Hitzman, Murray

    2013-03-01

    Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.

  18. Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals.

    PubMed

    Scherson, Yaniv D; Criddle, Craig S

    2014-01-01

    Analysis of conventional and novel wastewater treatment configurations reveals large differences in energy consumed or produced and solids generated per cubic meter of domestic wastewater treated. Complete aerobic BOD removal consumes 0.45 kWh and produces 153 g of solids, whereas complete anaerobic treatment produces 0.25 kWh and 80 g of solids. Emerging technologies, that include short-circuit nitrogen removal (SHARON, CANON with Anammox, CANDO) and mainstream anaerobic digestion, can potentially remove both BOD and nitrogen with an energy surplus of 0.17 kWh and production of 95 g of solids. Heat from biogas combustion can completely dry the solids, and these solids can be converted to syngas without imported energy. Syngas combustion can produce ∼ 0.1 kWh with an inorganic residue of just 10 g. If salt is removed, freshwater can be recovered with net production of electrical energy from methane (0.03-0.13 kWh) and syngas (∼ 0.1 kWh) and an inorganic residue of ∼ 0.1-0.3 kg as brine. Current seawater desalination requires 3-4 kWh (thermodynamic limit of 1 kWh) and results in an inorganic residue of ∼ 35 kg as brine. PMID:24963949

  19. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    PubMed

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174

  20. Certification and the potential energy landscape

    SciTech Connect

    Mehta, Dhagash; Hauenstein, Jonathan D.; Wales, David J.

    2014-06-14

    Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's α-theory can be used to certify numerically obtained stationary points of a potential energy landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed.

  1. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  2. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  3. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  4. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  5. Molecular Multipole Potential Energy Functions for Water.

    PubMed

    Tan, Ming-Liang; Tran, Kelly N; Pickard, Frank C; Simmonett, Andrew C; Brooks, Bernard R; Ichiye, Toshiko

    2016-03-01

    Water is the most common liquid on this planet, with many unique properties that make it essential for life as we know it. These properties must arise from features in the charge distribution of a water molecule, so it is essential to capture these features in potential energy functions for water to reproduce its liquid state properties in computer simulations. Recently, models that utilize a multipole expansion located on a single site in the water molecule, or "molecular multipole models", have been shown to rival and even surpass site models with up to five sites in reproducing both the electrostatic potential around a molecule and a variety of liquid state properties in simulations. However, despite decades of work using multipoles, confusion still remains about how to truncate the multipole expansions efficiently and accurately. This is particularly important when using molecular multipole expansions to describe water molecules in the liquid state, where the short-range interactions must be accurate, because the higher order multipoles of a water molecule are large. Here, truncation schemes designed for a recent efficient algorithm for multipoles in molecular dynamics simulations are assessed for how well they reproduce results for a simple three-site model of water when the multipole moments and Lennard-Jones parameters of that model are used. In addition, the multipole analysis indicates that site models that do not account for out-of-plane electron density overestimate the stability of a non-hydrogen-bonded conformation, leading to serious consequences for the simulated liquid. PMID:26562223

  6. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Arakawa, Akio; Hsu, Yueh-Jiuan G.

    1990-01-01

    To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous). Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the free surface may intersect with the lower boundary.

  7. Self-organization, free energy minimization, and optimal grip on a field of affordances

    PubMed Central

    Bruineberg, Jelle; Rietveld, Erik

    2014-01-01

    In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism's tendency toward an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston's work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the system “brain-body-landscape of affordances.” Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism's selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients. PMID:25161615

  8. Simulation of deep-bed drying of Virginia peanuts to minimize energy use

    SciTech Connect

    Kulasiri, G.D.

    1990-01-01

    A deep-bed drying model simulating the drying of peanuts in a fixed bed is required for designing energy-efficient and automatically controlled dryers. A deep-red drying model consists of a thin-layer drying model to calculate the moisture release from the material and a set of mass and energy balances. An experimental setup was constructed to determine drying rates of Virginia-type peanuts under 14 different drying air conditions. Selected empirical and semi-theoretical models available for modeling thin-layer drying rates were fitted to the collected data using nonlinear regression techniques. The modified Page's model and the two-term exponential model fitted the data better than other models considered. A deep-bed drying model PEATECH based on four coupled partial differential equations consisting of four variables, air temperature, peanut temperature, air humidity, and peanut moisture content was developed. Validation of the model was accomplished by using the data collected from 36 deep-bed drying experiments conducted using three laboratory dryers during 1987, 1988, and 1989. PEATECH predicted the variables within a peanut bed with an accuracy of less than {plus minus} 6%. The energy saving potential of exhaust-air recirculation was established by conducting simulated experiments using a modified version of PEATECH.

  9. Reduced Zeta potential through use of cationic adhesion promoter for improved resist process performance and minimizing material consumption

    NASA Astrophysics Data System (ADS)

    Hodgson, Lorna; Thompson, Andrew

    2012-03-01

    This paper presents the results of a non-HMDS (non-silane) adhesion promoter that was used to reduce the zeta potential for very thin (proprietary) polymer on silicon. By reducing the zeta potential, as measured by the minimum sample required to fully coat a wafer, the amount of polymer required to coat silicon substrates was significantly reduced in the manufacture of X-ray windows used for high transmission of low-energy X-rays. Moreover, this approach used aqueous based adhesion promoter described as a cationic surface active agent that has been shown to improve adhesion of photoresists (positive, negative, epoxy [SU8], e-beam and dry film). As well as reducing the amount of polymer required to coat substrates, this aqueous adhesion promoter is nonhazardous, and contains non-volatile solvents.

  10. An ab initio method for locating potential energy minima

    SciTech Connect

    Bock, Nicolas; Peery, Travis; Venneri, Giulia; Chisolm, Eric; Wallace, Duane; Lizarraga, Raquel; Holmstrom, Erik

    2009-01-01

    We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.

  11. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    SciTech Connect

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz

    2015-02-26

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For the total 5291 $pp$ and $np$ data in this range, we obtain a Χ2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.

  12. ASSESSMENT OF ENERGY RECOVERY POTENTIAL OF INDUSTRIAL COMBUSTION EQUIPMENT

    EPA Science Inventory

    An assessment was conducted to evaluate the waste heat content and energy recovery potential of flue gases from 30 industrial combustion devices. Pollution controls on nine of the devices were evaluated to estimate energy requirements and particulate reduction; energy requirement...

  13. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  14. Determination of Multidimensional Intermolecular Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Cohen, Ronald Carl

    High resolution spectroscopy of the low frequency van der Waals vibrations (also referred to as Vibration -Rotation-Tunneling (VRT) spectroscopy) in weakly bound complexes provides the means to probe intermolecular forces with unprecedented detail and precision. We present an overview of the experimental information on intermolecular forces and intermolecular dynamics which has been obtained by far infrared VRT spectroscopy of 18 complexes. We then turn to a detailed examination of the Ar-H_2O complex, a simple prototype for the study of intermolecular forces. The measurement and analysis of 9 VRT bands is described. These data are first used to obtain a qualitative description of the intermolecular potential energy surface (IPS). A new simple and efficient method for calculating the eigenvalues of the multidimensional intermolecular dynamics on the IPS has been developed. This algorithm (an adaptation of the Collocation Method) was then used in a direct fit to obtain an accurate and detailed description of the intermolecular forces acting within the Ar-H_2O complex.

  15. A fast multigrid algorithm for energy minimization under planar density constraints.

    SciTech Connect

    Ron, D.; Safro, I.; Brandt, A.; Mathematics and Computer Science; Weizmann Inst. of Science

    2010-09-07

    The two-dimensional layout optimization problem reinforced by the efficient space utilization demand has a wide spectrum of practical applications. Formulating the problem as a nonlinear minimization problem under planar equality and/or inequality density constraints, we present a linear time multigrid algorithm for solving a correction to this problem. The method is demonstrated in various graph drawing (visualization) instances.

  16. A Threshold-Minimization Scheme for Exploring the Energy Landscape of Biomolecules: Application to a Cyclic Peptide and a Disaccharide.

    PubMed

    Neelamraju, Sridhar; Johnston, Roy L; Schön, J Christian

    2016-05-10

    We present a scheme, called the threshold-minimization method, for globally exploring the energy landscapes of small systems of biomolecular interest where typical exploration moves always require a certain degree of subsequent structural relaxation in order to be efficient, e.g., systems containing small or large circular carbon chains such as cyclic peptides or carbohydrates. We show that using this threshold-minimization method we can not only reproduce the global minimum and relevant local minima but also overcome energetic barriers associated with different types of isomerism for the example of a cyclic peptide, cyclo-(Gly)4. We then apply the new method to the disaccharide α-d-glucopyranose-1-2-β-d-fructofuranose, report energetically preferred configurations and barriers to boat-chair isomerization in the glucopyranosyl ring, and discuss the energy landscape. PMID:27049524

  17. Potential contribution of the wastewater sector to energy supply.

    PubMed

    Heubeck, S; de Vos, R M; Craggs, R

    2011-01-01

    The biological treatment of wastewater could yield high energy fuels such as methane and alcohols, however most conventional treatment systems do not recover this energy potential. with a simple model of the energy yields of various wastewater treatment technologies it is possible to demonstrate how minor shifts in technology selection can lead the industry from being identified as predominantly energy intensive, to being recognised as a source of energy resources. The future potential energy yield is estimated by applying energy yield factors to alternative use scenarios of the same wastewater loads. The method for identifying the energy potential of wastewater was demonstrated for the New Zealand wastewater sector, but can equally be applied to other countries or regions. The model suggests that by using technologies that maximise the recovery of energy from wastewater, the potential energy yield from this sector would be substantially increased (six fold for New Zealand). PMID:21866779

  18. Minimization of Surface Energies and Ripening Outcompete Template Effects in the Surface Growth of Metal-Organic Frameworks.

    PubMed

    Yu, Xiu-Jun; Zhuang, Jin-Liang; Scherr, Julian; Abu-Husein, Tarek; Terfort, Andreas

    2016-07-11

    As well-oriented, surface-bound metal-organic frameworks become the centerpiece of many new applications, a profound understanding of their growth mode becomes necessary. This work shows that the currently favored model of surface templating is in fact a special case valid only for systems with a more or less cubic crystal shape, while in less symmetric systems crystal ripening and minimization of surface energies dominate the growth process. PMID:27258394

  19. (Molecular understanding of mutagenicity using potential energy methods)

    SciTech Connect

    Broyde, S.

    1990-01-01

    The objective of our work has been, for many year, to elucidate on a molecular level at atomic resolution the structures of DNAs modified by highly mutagenic polycyclic aromatic amines and hydrocarbons, and their less mutagenic chemically related analogs and unmodified DNAs, as controls. The ultimate purpose of this undertaking is to obtain an understanding of the relationship DNA structures and mutagenicity. Our methods for elucidating structures are computational, but we keep in close contact with experimental developments, and have, very recently, been able to incorporate the first experimental information from NMR studies by other workers in our calculations. The specific computational methods we employ are minimized potential energy calculations using the torsion angle space program DUPLEX, developed and written by Dr. Brain Hingerty to yield static views. Molecular dynamics simulations of the important static structures with full solvation and salt are carried out with the program AMBER; this yields mobile views in a milieu that best mimics the natural environment of the cell. In addition, we have been developing new strategies for searching conformation space and building DNA duplexes from favored subunit structures. 30 refs., 12 figs.

  20. Molecular understanding of mutagenicity using potential energy methods

    SciTech Connect

    Broyde, S.; Shapiro, R.

    1992-07-01

    Our objective, has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by 2-aminofluorene and its N-acetyl derivative, 2-acetylaminofluorene (AAF). The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence, for example by the formation of hairpin loops in appropriate sequences, but it may be enhanced greatly after covalent modification by a mutagenic substance. We use computational methods and have been able to incorporate the first data from NMR studies in our calculations. Computational approaches are important because x-ray and spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. The specific methods that we employ are minimized potential energy calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations, with full solvent and salt, of the important static structures are carried out with the program AMBER; this yields mobile views in a medium that mimics the natural aqueous environment of the cell as well as can be done with current available computing resources.

  1. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  2. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  3. The Potential Energy of an Autoencoder.

    PubMed

    Kamyshanska, Hanna; Memisevic, Roland

    2015-06-01

    Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented. PMID:26357347

  4. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  5. Stretching the inflaton potential with kinetic energy

    SciTech Connect

    Lidsey, James E.

    2007-08-15

    Inflation near a maximum of the potential is studied when nonlocal derivative operators are included in the inflaton Lagrangian. Such terms can impose additional sources of friction on the field. For an arbitrary spacetime geometry, these effects can be quantified in terms of a local field theory with a potential whose curvature around the turning point is strongly suppressed. This implies that a prolonged phase of slow-roll inflation can be achieved with potentials that are otherwise too steep to drive quasiexponential expansion. We illustrate this mechanism within the context of p-adic string theory.

  6. Energy functions for rubber from microscopic potentials

    NASA Astrophysics Data System (ADS)

    Johal, A. S.; Dunstan, D. J.

    2007-04-01

    The finite deformation theory of rubber and related materials is based on energy functions that describe the macroscopic response of these materials under deformation. Energy functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke's Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse Langevin statistical approximations. Methods are given for finding the energy functions as expansions of tensor invariants of deformation, with exact solutions for functions that can be expressed as expansions in even powers of the extension. Comparison with experiment shows good agreement with the neo-Hookean energy function and we show how this derives directly from the simple Gaussian statistical model with a small modification.

  7. Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: The vigdergauz microstructure

    NASA Astrophysics Data System (ADS)

    Grabovsky, Yury; Kohn, Robert V.

    1995-06-01

    For modeling coherent phase transformations, and for applications to structural optimization, it is of interest to identify microstructures with minimal energy or maximal stiffness. The existence of a particularly simple microstructure with extremal elastic behavior, in the context of two-phase composites made from isotropic components in two space dimensions, has previously been shown. This "Vigdergauz microstructure" consists of a periodic array of appropriately shaped inclusions. We provide an alternative discussion of this microstructure and its properties. Our treatment includes an explicit formula for the shape of the inclusion, and an analysis of various limits. We also discuss the significance of this microstructure (i) for minimizing the maximum stress in a composite, and (ii) as a large volume fraction analog of Michell trusses in the theory of structural optimization.

  8. Thermodynamic free-energy minimization for unsupervised fusion of dual-color infrared breast images

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Miao, Lidan; Qi, Hairong

    2006-04-01

    function [A] may vary from the point tumor to its neighborhood, we could not rely on neighborhood statistics as did in a popular unsupervised independent component analysis (ICA) mathematical statistical method, we instead impose the physics equilibrium condition of the minimum of Helmholtz free-energy, H = E - T °S. In case of the point breast cancer, we can assume the constant ground state energy E ° to be normalized by those benign neighborhood tissue, and then the excited state can be computed by means of Taylor series expansion in terms of the pixel I/O data. We can augment the X-ray mammogram technique with passive IR imaging to reduce the unwanted X-rays during the chemotherapy recovery. When the sequence is animated into a movie, and the recovery dynamics is played backward in time, the movie simulates the cameras' potential for early detection without suffering the PD=0.1 search uncertainty. In summary, we applied two satellite-grade dual-color IR imaging cameras and advanced military (automatic target recognition) ATR spectrum fusion algorithm at the middle wavelength IR (3 - 5μm) and long wavelength IR (8 - 12μm), which are capable to screen malignant tumors proved by the time-reverse fashion of the animated movie experiments. On the contrary, the traditional thermal breast scanning/imaging, known as thermograms over decades, was IR spectrum-blind, and limited to a single night-vision camera and the necessary waiting for the cool down period for taking a second look for change detection suffers too many environmental and personnel variabilities.

  9. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  10. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  11. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  12. Waste minimization policies, regulations, and practices within the U.S. Department of Energy defense programs

    SciTech Connect

    Mathur, S.P.

    1989-11-01

    In 1984 the US Congress enacted the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA). One of the goals of this legislation was to focus attention on the need to reduce or eliminate hazardous waste so as to minimize the threat to human health and the environment. Subsequently, in September of 1988, DOE issued a Radioactive Waste Management Policy, DOE Order 5820.2A, and in November a General Environmental Program Order, DOE Order 5400.1. These documents embrace the principles set forth in RCRA, and expand their scope to include radioactive, mixed, and pollutant waste, and all actions for reducing waste from the point of generation through waste treatment, storage, transportation and disposal. This paper will present an overview of the legislation and policies for waste reduction and, in addition, give site responsibilities for implementing waste reduction program activities.

  13. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  14. Dynamics of minimally coupled dark energy in spherical halos of dark matter

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2016-03-01

    We analyse the evolution of scalar field dark energy in the spherical halos of dark matter at the late stages of formation of gravitationally bound systems in the expanding Universe. The dynamics of quintessential dark energy at the center of dark matter halo strongly depends on the value of effective sound speed c_s (in units of speed of light). If c_s˜ 1 (classical scalar field) then the dark energy in the gravitationally bound systems is only slightly perturbed and its density is practically the same as in cosmological background. The dark energy with small value of sound speed (c_s<0.1), on the contrary, is important dynamical component of halo at all stages of their evolution: linear, non-linear, turnaround, collapse, virialization and later up to current epoch. These properties of dark energy can be used for constraining the value of effective sound speed c_s by comparison the theoretical predictions with observational data related to the large scale gravitationally bound systems.

  15. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  16. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    PubMed

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-01

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices. PMID:18258914

  17. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  18. Turbine under Gulf Stream: Potential energy source

    SciTech Connect

    Venezia, W.A.; Holt, J.

    1995-09-01

    Turbine under the Gulf Stream (TUGS) is a project to design, build, and deploy the prototypes necessary to demonstrate the economic and technical feasibility of generating electric power from the Gulf Stream. The project is based in part on new generator designs and emerging materials technologies. Its successful completion would demonstrate the technology and produce prototype turbines that can be mass produced and sold with service support. Past research and experimentation indicates that energy can be generated from the Gulf Stream. Problems exist such as fluctuations in the current`s axis and inconsistency. Above all, the ocean is a difficult environment in which to work. Therefore, the question is not whether or not a generator can be put in the ocean to generate electricity, but rather can it be done in an economically and environmentally sound way and still be practical?

  19. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    SciTech Connect

    Regnier, Cindy

    2012-08-31

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  20. Minimizing the energy requirement of dewatering scenedesmus sp. by microfiltration: performance, costs, and feasibility.

    PubMed

    Gerardo, Michael L; Oatley-Radcliffe, Darren L; Lovitt, Robert W

    2014-01-01

    The harvesting of the microalgae Scenedesmus species using a 200 L pilot-scale microfiltration system was investigated and critically assessed. The energy requirement was determined and correlated to the different operating parameters, such as transmembrane pressure (ΔP), membrane area, temperature, and initial biomass concentration. A filtration model was developed and showed a strong correlation with experimental data up to 20.0 g of dry cell weight (DCW)/L. The non-optimized filtration system had an energy requirement of 2.23 kWh/m(3) with an associated cost of $0.282/kg of microalgae. The investigation into the influence of the operating parameters and scale-up effects showed that the energy requirement could be substantially reduced to 0.90 kWh/m(3) and $0.058/kg of microalgae harvested. Maintenance costs associated with cleaning were estimated to be 0.23 kWh or $0.029/batch of microalgae processed. Dependent upon the operating conditions, harvesting may represent 6-45% of the energy embedded in the microalgae with a carbon footprint of 0.74-1.67 kg of CO2/kg of microalgae. Microfiltration was demonstrated to be a feasible microalgae harvesting technology allowing for more than 99% volume reduction. The energy requirement and associated carbon footprint of microalgae harvesting reported here do not forfeit the need for an industrial-scale study; however, the information provided presents a more realistic approximation than the literature reported to date. PMID:24341825

  1. Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-Zhong; Chen, Xin; Guo, Xu; Cui, Yu-Shuang; Shen, Qun-Dong; Ge, Hai-Xiong

    2014-10-01

    Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment.Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03866e

  2. Topology optimization of a suction muffler in a fluid machine to maximize energy efficiency and minimize broadband noise

    NASA Astrophysics Data System (ADS)

    Oh, Seungjae; Wang, Semyung; Cho, Sungman

    2016-03-01

    A suction muffler used in a fluid machine has three functions: noise reduction; minimizing pressure drop and improving energy efficiency using acoustic effects. However, no method of suction muffler design considers all three of these functions concurrently. Therefore, in this study, we attempt to provide an integrated design method of a suction muffler in a fluid machine that considers all three functions. The topology optimization method for acoustic and fluid systems was applied to an integrated design. However, the interaction between fluid and acoustic was not considered. In addition, the acoustic input impedance of a suction muffler was used for a specific acoustical resonance frequency to improve the energy efficiency of a fluid machine. Finally, the sequential optimization method based on physical investigations was proposed to satisfy several design criteria. The proposed method was applied to the suction muffler in refrigerator's compressor.

  3. Minimization of the Vibration Energy of Thin-Plate Structures and the Application to the Reduction of Gearbox Vibration

    NASA Technical Reports Server (NTRS)

    Inoue, Katsumi; Krantz, Timothy L.

    1995-01-01

    While the vibration analysis of gear systems has been developed, a systematic approach to the reduction of gearbox vibration has been lacking. The technique of reducing vibration by shifting natural frequencies is proposed here for gearboxes and other thin-plate structures using the theories of finite elements, modal analysis, and optimization. A triangular shell element with 18 degrees of freedom is developed for structural and dynamic analysis. To optimize, the overall vibration energy is adopted as the objective function to be minimized at the excitation frequency by varying the design variable (element thickness) under the constraint of overall constant weight. Modal analysis is used to determine the sensitivity of the vibration energy as a function of the eigenvalues and eigenvectors. The optimum design is found by the gradient projection method and a unidimensional search procedure. By applying the computer code to design problems for beams and plates, it was verified that the proposed method is effective in reducing vibration energy. The computer code is also applied to redesign the NASA Lewis gear noise rig test gearbox housing. As one example, only the shape of the top plate is varied, and the vibration energy levels of all the surfaces are reduced, yielding an overall reduction of 1/5 compared to the initial design. As a second example, the shapes of the top and two side plates are varied to yield an overall reduction in vibration energy of 1/30.

  4. Wing flapping with minimum energy. [minimize the drag for a bending moment at the wing root

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1980-01-01

    For slow flapping motions it is found that the minimum energy loss occurs when the vortex wake moves as a rigid surface that rotates about the wing root - a condition analogous to that determined for a slow-turning propeller. The optimum circulation distribution determined by this condition differs from the elliptic distribution, showing a greater concentration of lift toward the tips. It appears that very high propulsive efficiencies are obtained by flapping.

  5. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  6. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  7. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  8. Scattering with absorptive interaction: Energy-dependent potentials

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Stingl, M.; Weiguny, A.

    1983-05-01

    The energy dependence and analytic structure of the effective interaction for elastic scattering of composite particles are investigated using Feshbach's projection technique. A generalized Levinson theorem is established for complex, nonlocal, and energy-dependent interactions. The analytical results are illustrated by means of Argand diagrams for a solvable model and the effect of energy averaging is discussed. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive, energy-dependent potentials, Levinson theorem.

  9. Energy Consumption and Renewable Energy Development Potential on Indian Lands

    EIA Publications

    2000-01-01

    Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.

  10. Exploring wind energy potential off the California coast

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.; Haack, Tracy; Dvorak, Michael J.; Archer, Cristina L.; Jacobson, Mark Z.

    2008-10-01

    Wind energy represents the nearest term cost-effective renewable energy source. While efforts have been made to assess wind energy potential over land around the world, offshore wind energy resources are largely unexplored, in part because these regions have relatively sparse wind observations. In this study, the wind energy potential offshore of the California coast is evaluated using a well-tested high-resolution numerical model dataset. We found that along the coastline, the low-level winds exhibit strong spatial variation and are characterized by alternating windspeed maxima and minima near coastal promontories associated with the interaction between the marine boundary layer and coastal topography. Further analysis highlights the enormous and reliable wind energy development potential in these persistent offshore windspeed maxima.

  11. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. PMID:21703844

  12. Assessment of the potential of halophytes as energy crops for the electric utility industry. Final report

    SciTech Connect

    Goodin, J.R.

    1984-09-01

    This technical report assesses and estimates the potential of selected halophytes as future renewable energy resources, especially by US electric utilities, and familiarizes nonspecialists with research and development problems that must be resolved before these energy sources can become dependable supplies of energy. A literature search related to both indigenous and exotic species of halophytes has been done and appropriate terrestrial species have been selected. Selection criteria include: total biomass potential, genetic constraints, establishment and cultivation requirements, regions of suitability, secondary credits, and a number of other factors. Based on these selection criteria, for the arid western states with high levels of salinity in water and/or soils, there is little potential for energy feedstocks derived from grasses and herbaceous forbs. Likewise, coastal marshes, estuaries, and mangrove swamps, although excellent biomass producers, are too limited by region and have too many ecological and environmental problems for consideration. The deep-rooted, perennial woody shrubs indigenous to many saline regions of the west provide the best potential. The number of species in this group is limited, and Atriplex canescens, Sarcobatus vermiculatus, and Chrysothamnus nauseosus are the three species with the greatest biological potential. These shrubs would receive minimal energy inputs in cultivation, would not compete with agricultural land, and would restore productivity to severely disturbed sites. One might logically expect to achieve biomass feedstock yields of three to five tons/acre/yr on a long-term sustainable basis. The possibility also exists that exotic species might be introduced. 67 references, 1 figure, 5 tables.

  13. Assessing the Potential for Renewable Energy on Public Lands

    SciTech Connect

    Not Available

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.

  14. Minimizing energy utilization for growing strawberries during long-duration space habitation

    NASA Astrophysics Data System (ADS)

    Massa, Gioia D.; Santini, Judith B.; Mitchell, Cary A.

    2010-09-01

    Strawberry is a candidate crop for space that is rich in protective antioxidants and could also have psychological benefits as a component of crew diets during long-duration space habitation. Energy for electric lighting is a major input to a controlled-environment crop-production system for space habitation. Day-neutral strawberry cultivars were evaluated at several different photoperiods to determine minimum lighting requirements without limiting yield or negatively impacting fruit quality. The cultivars 'Tribute', 'Seascape', and 'Fern' were grown at 14, 17, or 20 h of light per day, and fruit yield was evaluated over a 31-week production period. This amounted to a difference of 2418 kWh m -2 in energy usage between the longest and shortest photoperiods. All cultivars produced similar total fresh weight of fruit regardless of photoperiod. Volunteer tasters rated organoleptic characteristics including sweetness, tartness, texture, and overall appeal as measures of fruit quality. Generally, organoleptic attributes were not affected by photoperiod, but these attributes were somewhat dependent upon cultivar and harvest time. Cultivars under different photoperiods varied in their production of fruit over time. 'Seascape' was the most consistent producer, typically with the largest, most palatable fruit. 'Seascape' plants subsequently were grown at 10-, 12-, or 14-h photoperiods over a treatment period of 33 weeks. Photoperiod again had no significant effect on total fruit weight, although there were periodic flushes of productivity. Fruit under all photoperiods had acceptable approval ratings. A large-fruited, day-neutral strawberry cultivar such as 'Seascape' remains productive under shortened photoperiods, allowing reductions in energy and crew labor while maintaining flexibility for mixed-cropping scenarios in space.

  15. A biomolecular implementation of logically reversible computation with minimal energy dissipation.

    PubMed

    Klein, J P; Leete, T H; Rubin, H

    1999-10-01

    Energy dissipation associated with logic operations imposes a fundamental physical limit on computation and is generated by the entropic cost of information erasure, which is a consequence of irreversible logic elements. We show how to encode information in DNA and use DNA amplification to implement a logically reversible gate that comprises a complete set of operators capable of universal computation. We also propose a method using this design to connect, or 'wire', these gates together in a biochemical fashion to create a logic network, allowing complex parallel computations to be executed. The architecture of the system permits highly parallel operations and has properties that resemble well known genetic regulatory systems. PMID:10636026

  16. Minimizing the energy spread within a single bunch by shaping its charge distribution

    SciTech Connect

    Loew, G.A.; Wang, J.W.

    1985-03-01

    It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this paper shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave. 3 refs., 5 figs., 3 tabs.

  17. New approach to calculating the potential energy of colliding nuclei

    SciTech Connect

    Kurmanov, R. S.; Kosenko, G. I.

    2014-12-15

    The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.

  18. A Frontier orbital energy approach to redox potentials

    NASA Astrophysics Data System (ADS)

    Conradie, Jeanet

    2015-09-01

    The prediction of the oxidation and reduction potentials of molecules is important in many research areas. A review of relationships obtained between frontier orbital energies (eV), the calculated ionization potentials (IP in eV), or adiabatic electron affinities (EA in eV) with the experimental oxidation and reduction potentials is presented, for selected series of β- diketones, rhodium-β-diketonato complexes, as well as metal-tris-β-diketonato complexes, with the metal Fe or Mn. The good linear relationships obtained for related series of complexes show that the oxidation and reduction potentials of these complexes can be predicted by their DFT-calculated energies.

  19. Energy minimization of separation processes using conventional/membrane hybrid systems

    SciTech Connect

    Gottschlich, D.E.; Roberts, D.L. )

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  20. Re-examining Potential for Geothermal Energy in United States

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.

  1. Biomass energy: the scale of the potential resource.

    PubMed

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439

  2. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    SciTech Connect

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  3. Minimal energy ensemble Monte Carlo algorithm for the partition function of fermions coupled to classical fields

    NASA Astrophysics Data System (ADS)

    Grzybowski, Przemysław R.; Czekaj, Łukasz; Nogala, Mariusz; Ścibior, Adam; Chhajlany, Ravindra W.

    2016-06-01

    Models of noninteracting fermions coupled to auxiliary classical fields are relevant to the understanding of a wide variety of problems in many-body physics, e.g., the description of manganites, diluted magnetic semiconductors, or strongly interacting electrons on lattices. We present a flat-histogram Monte Carlo algorithm that simulates a statistical ensemble that allows one to directly acquire the partition function at all temperatures for such systems. The defining feature of the algorithm is that it utilizes the complete thermodynamic information from the full energy spectrum of noninteracting fermions available during sampling of the configuration space of the classical fields. We benchmark the method for the classical Ising and Potts models in two dimensions, as well as the Falicov-Kimball model describing itinerant electrons interacting with heavy ions.

  4. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  5. Minimal cosmography

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Schücker, Thomas

    2016-04-01

    The minimal requirement for cosmography—a non-dynamical description of the universe—is a prescription for calculating null geodesics, and time-like geodesics as a function of their proper time. In this paper, we consider the most general linear connection compatible with homogeneity and isotropy, but not necessarily with a metric. A light-cone structure is assigned by choosing a set of geodesics representing light rays. This defines a "scale factor" and a local notion of distance, as that travelled by light in a given proper time interval. We find that the velocities and relativistic energies of free-falling bodies decrease in time as a consequence of cosmic expansion, but at a rate that can be different than that dictated by the usual metric framework. By extrapolating this behavior to photons' redshift, we find that the latter is in principle independent of the "scale factor". Interestingly, redshift-distance relations and other standard geometric observables are modified in this extended framework, in a way that could be experimentally tested. An extremely tight constraint on the model, however, is represented by the blackbody-ness of the cosmic microwave background. Finally, as a check, we also consider the effects of a non-metric connection in a different set-up, namely, that of a static, spherically symmetric spacetime.

  6. When the Lowest Energy Does Not Induce Native Structures: Parallel Minimization of Multi-Energy Values by Hybridizing Searching Intelligences

    PubMed Central

    Lü, Qiang; Xia, Xiao-Yan; Chen, Rong; Miao, Da-Jun; Chen, Sha-Sha; Quan, Li-Jun; Li, Hai-Ou

    2012-01-01

    Background Protein structure prediction (PSP), which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. Results A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. Conclusions This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise. PMID:23028708

  7. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    SciTech Connect

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-02-15

    We describe the potential energy landscapes of elemental S{sub 8}, Se{sub 8}, and Te{sub 8} clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se{sub 8}. We also map the potential energy landscapes of heterogeneous Se{sub n}(S,Te){sub 8-n} clusters, which offer insights into the structure of heterogeneous chalcogen glasses.

  8. Teaching Potential Energy Functions and Stability with Slap Bracelets

    NASA Astrophysics Data System (ADS)

    Van Hook, Stephen J.

    2005-10-01

    The slap bracelet, an inexpensive child's toy, makes it easy to engage students in hands-on exploration of potential energy curves as well as of stable, unstable, and meta-stable states. Rather than just observing the teacher performing a demonstration, the students can manipulate the equipment themselves and make their own observations, which are then pooled to focus a class discussion on potential energy functions and stability.

  9. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions.

    PubMed

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH(+) ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations. PMID:24697449

  10. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions

    NASA Astrophysics Data System (ADS)

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-01

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  11. Analytical solutions of the Frankenhaeuser-Huxley equations I: minimal model for backpropagation of action potentials in sparsely excitable dendrites.

    PubMed

    Poznanski, Roman R

    2004-09-01

    Hodgkin and Huxley's ionic theory of the nerve impulse embodies principles, applicable also to the impulses in vertebrate nerve fibers, as demonstrated by Bernhard Frankenhaeuser and Andrew Huxley 40 years ago. Frankenhaeuser and Huxley reformulated the classical Hodgkin-Huxley equations, in terms of electrodiffusion theory, and computed action potentials specifically for saltatory conduction in myelinated axons. In this paper, we obtain analytical solutions to the most difficult nonlinear partial differential equations in classical neurophysiology. We solve analytically the Frankenhaeuser-Huxley equations pertaining to a model of sparsely excitable, nonlinear dendrites with clusters of transiently activating, TTX-sensitive Na(+) channels, discretely distributed as point sources of inward current along a continuous (non-segmented) leaky cable structure. Each cluster or hot-spot, corresponding to a mesoscopic level description of Na(+) ion channels, includes known cumulative inactivation kinetics observed at the microscopic level. In such a third-order system, the 'recovery' variable is an electrogenic sodium-pump imbedded in the passive membrane, and the system is stabilized by the presence of a large leak conductance mediated by a composite number of ligand-gated channels permeable to monovalent cations Na(+) and K(+). In order to reproduce antidromic propagation and attenuation of action potentials, a nonlinear integral equation must be solved (in the presence of suprathreshold input, and a constant-field equation of electrodiffusion at each hot-spot with membrane gates controlling the flow of current). A perturbative expansion of the non-dimensional membrane potential (Phi) is used to obtain time-dependent analytical solutions, involving a voltage-dependent Na(+) activation (micro) and a state-dependent inactivation (eta) gating variables. It is shown that action potentials attenuate in amplitude in accordance with experimental findings, and that the spatial

  12. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  13. The Department of Defense energy vulnerabilities: Potential problems and observations

    NASA Astrophysics Data System (ADS)

    Freiwald, D. A.; Berger, M. E.; Roach, J. F.

    1982-08-01

    The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.

  14. DoD energy vulnerabilities: potential problems and observations

    SciTech Connect

    Freiwald, D A; Berger, M E; Roach, J F

    1982-08-01

    The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.

  15. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed. PMID:26605574

  16. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  17. Gravitational potential as a source of earthquake energy

    USGS Publications Warehouse

    Barrows, L.; Langer, C.J.

    1981-01-01

    Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.

  18. Potential geothermal energy applications for Idaho Elks Rehabilitation Hospital

    SciTech Connect

    Austin, J.C.

    1981-11-01

    Several potential applications of geothermal energy for the Idaho Elks Rehabilitation Hospital are outlined. A brief background on the resource and distribution system, is provided; which hospital heating systems should be considered for potential geothermal retrofit is discussed; and technical and economic feasibility are addressed.

  19. Fusion at deep subbarrier energies: potential inversion revisited

    SciTech Connect

    Hagino, K.; Rowley, N.

    2009-03-04

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  20. Standardization of the endogenous thrombin potential measurement: how to minimize the effect of residual platelets in stored plasma.

    PubMed

    Chantarangkul, Veena; Clerici, Marigrazia; Bressi, Caterina; Tripodi, Armando

    2004-02-01

    Platelet contamination in stored plasma may affect coagulation assays, including the endogenous thrombin potential (ETP), which has been proposed for the investigation of hyper- and hypo-coagulability. The current recommendation of filtering plasma before freezing cannot be always met. This study provides evidence that filtering frozen plasma after thawing, prior to testing, may help to eliminate the unwanted effect of residual platelets on the ETP. This may have important implications in future studies, as the ETP could be determined with plasma that have been collected without precautions relating to platelet contamination, as is the case for plasmas collected in epidemiological studies. PMID:14717784

  1. Saint Paul Energy Park: the potential for district heating

    SciTech Connect

    Lee, C.; Kron, R.; Davis, H.

    1980-03-01

    The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.

  2. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  3. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  4. Kappa distribution in the presence of a potential energy

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2015-02-01

    The present paper develops the theory and formulations of the kappa distributions that describe particle systems characterized by a nonzero potential energy. As yet, kappa distributions were used for the statistical description of the velocity or kinetic energy of particles but not of the potential energy. With the results provided here, it is straightforward to use the developed kappa distributions to describe any particle population of space plasmas subject to a nonnegligible potential energy. Starting from the kappa distribution of the Hamiltonian function, we develop the distributions that describe either the complete phase space or the marginal spaces of positions and velocities. The study shows, among others: (a) The kappa distributions of velocities that describe space plasmas can be vastly different from the standard formulation of the kappa distribution, because of the presence of a potential energy; the correct formulation should be given by the marginal kappa distribution of velocities by integrating the distribution of the Hamiltonian over the potential energy. (b) The long-standing problem of the divergence of the Boltzmannian exponential distribution for bounded radial potentials is solved using kappa distributions of negative kappa index. (c) Anisotropic distributions of velocities can exist in the presence of a velocity-dependent potential. (d) A variety of applications, including derivations/verifications of the following: (i) the Jeans', the most frequent, and the maximum radii in spherical/linear gravitational potentials; (ii) the Virial theorem for power law potentials; (iii) the generalized barometric formula, (iv) the plasma density profiles in Saturnian magnetosphere, and (v) the average electron magnetic moment in Earth's magnetotail.

  5. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  6. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  7. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  8. An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields.

    PubMed

    Whitford, Paul C; Noel, Jeffrey K; Gosavi, Shachi; Schug, Alexander; Sanbonmatsu, Kevin Y; Onuchic, José N

    2009-05-01

    Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function. PMID:18837035

  9. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy

    NASA Astrophysics Data System (ADS)

    Kostrobij, P. P.; Markovych, B. M.

    2015-08-01

    A general expression for the thermodynamic potential of the model of semi-infinite jellium is obtained. By using this expression, the surface energy for the infinite barrier model is calculated. The behavior of the surface energy and of the chemical potential as functions of the Wigner-Seitz radius and the influence of the Coulomb interaction between electrons on the calculated values is studied. It is shown that taking into account the Coulomb interaction between electrons leads to growth of the surface energy. The surface energy is positive in the entire area of the Wigner-Seitz radius. It is shown that taking into account the Coulomb interaction between electrons leads to a decrease of the chemical potential.

  10. Static task of von Mises planar truss analyzed using the potential energy

    NASA Astrophysics Data System (ADS)

    Kalina, Martin

    2013-10-01

    A Von Mises planar truss subjected to vertical static load at its top joint is studied. The mathematical concept of large displacement elastic analysis of the von Mises truss targeted for computers is described. The model geometry is described using finite mass points. Formulae for the evaluation of displacements of mass points and rotation of segments were derived with the help of geometrical and physical conditions. Formulae for the determination of potential energy of the system are listed. Deformation of the structure is evaluated by seeking the minimal potential energy. The step-by-step increment method combined with Newton-Raphson method is used. The mathematical solution described in the article enables the modelling of Mises truss using a finite amount of segments. The described solution is suitable for load-deflection curve computation of a limit load model. The equilibrium stability problem of von Mises truss is discussed in connection with the random effects of imperfections.

  11. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    SciTech Connect

    Webber, Carrie A.; Brown, Richard E.

    1998-06-19

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  12. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  13. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  14. Calculation of molecular free energies in classical potentials

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2016-02-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  15. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  16. Increased Levels of Circulating and Tissue mRNAs of Oct-4, Sox-2, Bmi-1 and Nanog is ESCC Patients: Potential Tool for Minimally Invasive Cancer Diagnosis

    PubMed Central

    Bahl, Kriti; Saraya, Anoop; Sharma, Rinu

    2012-01-01

    Background Early stages of esophageal cancer lack a specific symptom, a reliable biomarker and accurate non-invasive diagnostic modalities prompting the pressing need for identification of a marker for early diagnosis of this disease. Methods In the present study we investigated the levels of circulating and tissue mRNAs of Oct-3/4, Sox-2, Nanog and Bmi-1 in esophageal cancer patients using Reverse-Transcription Polymerase Chain Reaction (RT-PCR) with the aim of evaluating their potential as minimally invasive diagnostic markers. Result Increased transcript levels of Oct-4, Sox-2, Bmi-1 and Nanog were detected in (92%), (95%), (75%) and (67%) of the esophageal cancer tissues, respectively as compared with the matched distant normals. Conclusion Interestingly, most of the preneoplastic tissues exhibited increased transcript levels of these stemness markers suggesting their role in early stages of esophageal tumorigenesis. Furthermore, the detection of elevated levels of circulating mRNAs of Oct-4 and Nanog in sera of esophageal cancer patients emphasizes their potential as minimally invasive diagnostic markers for esophageal cancer. PMID:22493560

  17. Interpolating moving least-squares methods for fitting potential energy surfaces : computing high-density potential energy surface data from low-density ab initio data points.

    SciTech Connect

    Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M.; Chemistry; Univ. of Missouri-Columbia; Oklahoma State Univ.

    2007-05-11

    A highly accurate and efficient method for molecular global potential energy surface (PES) construction and fitting is demonstrated. An interpolating-moving-least-squares (IMLS)-based method is developed using low-density ab initio Hessian values to compute high-density PES parameters suitable for accurate and efficient PES representation. The method is automated and flexible so that a PES can be optimally generated for classical trajectories, spectroscopy, or other applications. Two important bottlenecks for fitting PESs are addressed. First, high accuracy is obtained using a minimal density of ab initio points, thus overcoming the bottleneck of ab initio point generation faced in applications of modified-Shepard-based methods. Second, high efficiency is also possible (suitable when a huge number of potential energy and gradient evaluations are required during a trajectory calculation). This overcomes the bottleneck in high-order IMLS-based methods, i.e., the high cost/accuracy ratio for potential energy evaluations. The result is a set of hybrid IMLS methods in which high-order IMLS is used with low-density ab initio Hessian data to compute a dense grid of points at which the energy, Hessian, or even high-order IMLS fitting parameters are stored. A series of hybrid methods is then possible as these data can be used for neural network fitting, modified-Shepard interpolation, or approximate IMLS. Results that are indicative of the accuracy, efficiency, and scalability are presented for one-dimensional model potentials as well as for three-dimensional (HCN) and six-dimensional (HOOH) molecular PESs

  18. Split kinetic energy method for quantum systems with competing potentials

    SciTech Connect

    Mineo, H.; Chao, Sheng D.

    2012-09-15

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.

  19. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  20. Optimizing potential energy functions for maximal intrinsic hyperpolarizability

    SciTech Connect

    Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G.; Watkins, David S.

    2007-11-15

    We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.

  1. Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS).

    PubMed

    Anastasiadis, Kyriakos; Murkin, John; Antonitsis, Polychronis; Bauer, Adrian; Ranucci, Marco; Gygax, Erich; Schaarschmidt, Jan; Fromes, Yves; Philipp, Alois; Eberle, Balthasar; Punjabi, Prakash; Argiriadou, Helena; Kadner, Alexander; Jenni, Hansjoerg; Albrecht, Guenter; van Boven, Wim; Liebold, Andreas; de Somer, Fillip; Hausmann, Harald; Deliopoulos, Apostolos; El-Essawi, Aschraf; Mazzei, Valerio; Biancari, Fausto; Fernandez, Adam; Weerwind, Patrick; Puehler, Thomas; Serrick, Cyril; Waanders, Frans; Gunaydin, Serdar; Ohri, Sunil; Gummert, Jan; Angelini, Gianni; Falk, Volkmar; Carrel, Thierry

    2016-05-01

    Minimal invasive extracorporeal circulation (MiECC) systems have initiated important efforts within science and technology to further improve the biocompatibility of cardiopulmonary bypass components to minimize the adverse effects and improve end-organ protection. The Minimal invasive Extra-Corporeal Technologies international Society was founded to create an international forum for the exchange of ideas on clinical application and research of minimal invasive extracorporeal circulation technology. The present work is a consensus document developed to standardize the terminology and the definition of minimal invasive extracorporeal circulation technology as well as to provide recommendations for the clinical practice. The goal of this manuscript is to promote the use of MiECC systems into clinical practice as a multidisciplinary strategy involving cardiac surgeons, anaesthesiologists and perfusionists. PMID:26819269

  2. The potential for harvesting energy from the movement of trees.

    PubMed

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node. PMID:22163695

  3. The Potential for Harvesting Energy from the Movement of Trees

    PubMed Central

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node. PMID:22163695

  4. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGESBeta

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are addedmore » to the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  5. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  6. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  7. Wind energy potential analysis in Al-Fattaih-Darnah

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries

    2016-03-01

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  8. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  9. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  10. Effects of a More Accurate Polarizable Hamiltonian on Polymorph Free Energies Computed Efficiently by Reweighting Point-Charge Potentials.

    PubMed

    Dybeck, Eric C; Schieber, Natalie P; Shirts, Michael R

    2016-08-01

    We examine the free energies of three benzene polymorphs as a function of temperature in the point-charge OPLS-AA and GROMOS54A7 potentials as well as the polarizable AMOEBA09 potential. For this system, using a polarizable Hamiltonian instead of the cheaper point-charge potentials is shown to have a significantly smaller effect on the stability at 250 K than on the lattice energy at 0 K. The benzene I polymorph is found to be the most stable crystal structure in all three potentials examined and at all temperatures examined. For each potential, we report the free energies over a range of temperatures and discuss the added value of using full free energy methods over the minimized lattice energy to determine the relative crystal stability at finite temperatures. The free energies in the polarizable Hamiltonian are efficiently calculated using samples collected in a cheaper point-charge potential. The polarizable free energies are estimated from the point-charge trajectories using Boltzmann reweighting with MBAR. The high configuration-space overlap necessary for efficient Boltzmann reweighting is achieved by designing point-charge potentials with intramolecular parameters matching those in the expensive polarizable Hamiltonian. Finally, we compare the computational cost of this indirect reweighted free energy estimate to the cost of simulating directly in the expensive polarizable Hamiltonian. PMID:27341280

  11. Potential function and dissociation energy of alkali halide

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  12. An adaptive interpolation scheme for molecular potential energy surfaces.

    PubMed

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-28

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task-especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version. PMID:27586901

  13. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.

    1976-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.

  14. Reference pressure changes and available potential energy in isobaric coordinates

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1985-01-01

    A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.

  15. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  16. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  17. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  18. LHC Physics Potential vs. Energy: Considerations for the 2011 Run

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2011-02-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quantify the advantage of increasing the beam energy from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.

  19. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  20. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  1. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant. PMID:27131532

  2. Computationally efficient approach for the minimization of volume constrained vector-valued Ginzburg-Landau energy functional

    NASA Astrophysics Data System (ADS)

    Tavakoli, Rouhollah

    2015-08-01

    The minimization of volume constrained vector-valued Ginzburg-Landau energy functional is considered in the present study. It has many applications in computational science and engineering, like the conservative phase separation in multiphase systems (such as the spinodal decomposition), phase coarsening in multiphase systems, color image segmentation and optimal space partitioning. A computationally efficient algorithm is presented to solve the space discretized form of the original optimization problem. The algorithm is based on the constrained nonmonotone L2 gradient flow of Ginzburg-Landau functional followed by a regularization step, which is resulted from the Tikhonov regularization term added to the objective functional, that lifts the solution from the L2 function space into H1 space. The regularization step not only improves the convergence rate of the presented algorithm, but also increases its stability bound. The step-size selection based on the Barzilai-Borwein approach is adapted to improve the convergence rate of the introduced algorithm. The success and performance of the presented approach is demonstrated throughout several numerical experiments. To make it possible to reproduce the results presented in this work, the MATLAB implementation of the presented algorithm is provided as the supplementary material.

  3. 3Drefine: Consistent Protein Structure Refinement by Optimizing Hydrogen Bonding Network and Atomic-Level Energy Minimization

    PubMed Central

    Bhattacharya, Debswapna; Cheng, Jianlin

    2013-01-01

    One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low-resolution predicted models to high-resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two-step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). PMID:22927229

  4. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  5. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  6. High energy scattering of Dirac particles on smooth potentials

    NASA Astrophysics Data System (ADS)

    Han, Nguyen Suan; Dung, Le Anh; Xuan, Nguyen Nhu; Thang, Vu Toan

    2016-08-01

    The derivation of the Glauber type representation for the high energy scattering amplitude of particles of spin 1/2 is given within the framework of the Dirac equation in the Foldy-Wouthuysen (FW) representation and two-component formalism. The differential cross-sections on the Yukawa and Gaussian potentials are also considered and discussed.

  7. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  8. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under

  9. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  10. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    PubMed

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  11. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    PubMed Central

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  12. Understanding Potential Climate Variability Impacts on the Offshore Energy Industry

    NASA Astrophysics Data System (ADS)

    Stear, J.

    2014-12-01

    Climate variability may have important implications for the offshore energy industry. Scenarios of increased storm activity and changes in sea level could require the retrofit of existing offshore platforms and coastal infrastructure, the decommissioning of facilities for which upgrade or relocation is not economically viable, and the development of new methods and equipment which are removed from or less sensitive to environmental loads. Over the past years the energy industry has been actively involved in collaborative research efforts with government and academia to identify the potential changes in the offshore operating environment, and corresponding risk implications. This presentation will review several of these efforts, and for several of the hypothetical climate variation scenarios, review the potential impacts on and possible mitigations for offshore and coastal energy infrastructure and operations.

  13. Contrastive studies of potential energy functions of some diatomic molecules

    NASA Astrophysics Data System (ADS)

    Abdallah, Hassan H.; Abdullah, Hewa Y.

    2016-03-01

    It was proposed that iron hydride, FeH, would be formed only on grains at the clouds through the reaction of the adsorbed H atoms or H2 molecules with the adsorbed Fe atoms on the grains. The importance of FeH in Astrophysics presents an additional motivation to study its energetic, spectroscopic constants and Potential Energy Curves. The structural optimization for ground state of FeH was calculated by different theoretical methods, namely, Hartree-Fock (HF), the density functional theory (DFT), B3LYP, MP2 method and QCISD(T) methods and compared with available data from the literature. The single ionized forms, cation and anion, were also obtained at the same level of calculations. Charges, dipole moment, geometrical parameters, molecular orbital energies and spectroscopic parameters were calculated and reported. In addition, the molecular ionization potential, electron affinity and dissociation energy were investigated.

  14. Three-dimensional potential energy surface of Ar–CO

    SciTech Connect

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  15. Global interior eddy available potential energy diagnosed from Argo floats

    NASA Astrophysics Data System (ADS)

    Roullet, Guillaume; Capet, Xavier; Maze, Guillaume

    2014-03-01

    By combining all Argo profiles for the period 2002 to present, a cumulative density function is constructed on a 3-D grid of the global ocean. This function quantifies the statistics of isopycnals: time-averaged density, root-mean square of isopycnal displacement, and eddy available potential energy (EAPE). EAPE is the analogue of the eddy kinetic energy, but for the potential energy reservoir. Because it is essentially tied to the spatial structure and magnitude of mesoscale activity, EAPE is an important quantity that should be useful to evaluate eddy resolving/permitting model turbulence and circulation. Among other striking features are the turbulent behavior of Pacific and southern Atlantic Tsuchiya jets and subsurface EAPE maxima in some parts of the ocean, particularly in the Southern Ocean.

  16. Heterobarrier for converting hot-phonon energy to electric potential

    NASA Astrophysics Data System (ADS)

    Shin, Seungha; Melnick, Corey; Kaviany, Massoud

    2013-02-01

    We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.

  17. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa

    SciTech Connect

    Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-01-01

    This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

  18. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  19. Development of a commercial building/site evaluation framework for minimizing energy consumption and greenhouse gas emissions of transportation and building systems

    NASA Astrophysics Data System (ADS)

    Weigel, Brent A.

    In urbanized areas, building and transportation systems generally comprise the majority of energy consumption and greenhouse gas (GHG) emissions. Realization of global environmental sustainability depends upon efficiency improvements of building and transportation systems in the built environment. The selection of efficient buildings and locations can help to improve the efficient utilization of transportation and building systems. Green building design and rating frameworks provide some guidance and incentive for the development of more efficient building and transportation systems. However, current frameworks are based primarily on prescriptive, component standards, rather than performance-based, whole-building evaluations. This research develops a commercial building/site evaluation framework for the minimization of energy consumption and GHG emissions of transportation and building systems through building/site selection. The framework examines, under uncertainty, multiple dimensions of building/site operation efficiencies: transportation access to/from a building site; heating, ventilation, air conditioning, and domestic hot water; interior and exterior lighting; occupant conveyances; and energy supply. With respect to transportation systems, the framework leverages regional travel demand model data to estimate the activity associated with home-based work and non-homebased work trips. A Monte Carlo simulation approach is used to quantify the dispersion in the estimated trip distances, travel times, and mode choice. The travel activity estimates are linked with a variety of existing calculation resources for quantifying energy consumption and GHG emissions. With respect to building systems, the framework utilizes a building energy simulation approach to estimate energy consumption and GHG emissions. The building system calculation procedures include a sensitivity analysis and Monte Carlo analysis to account for the impacts of input parameter uncertainty on

  20. Waste Minimization Crosscut Plan

    SciTech Connect

    Not Available

    1992-05-13

    On November 27, 1991, the Secretary of Energy directed that a Department of Energy (DOE) crosscut plan for waste minimization (WMin) be prepared and submitted by March 1, 1992. This Waste Minimization Crosscut Plan responds to the Secretary`s direction and supports the National Energy Strategy (NES) goals of achieving greater energy security, increasing energy and economic efficiency, and enhancing environmental quality. It provides a DOE-wide planning framework for effective coordination of all DOE WMin activities. This Plan was jointly prepared by the following Program Secretarial Officer (PSO) organizations: Civilian Radioactive Waste Management (RW); Conservation and Renewable Energy (CE); Defense Programs (DP); Environmental Restoration and Waste Management (EM), lead; Energy Research (ER); Fossil Energy (FE); Nuclear Energy (NE); and New Production Reactors (NP). Assistance and guidance was provided by the offices of Policy, Planning, and Analysis (PE) and Environment, Safety and Health (EH). Comprehensive application of waste minimization within the Department and in both the public and private sectors will provide significant benefits and support National Energy Strategy goals. These benefits include conservation of a substantial proportion of the energy now used by industry and Government, improved environmental quality, reduced health risks, improved production efficiencies, and longer useful life of disposal capacity. Taken together, these benefits will mean improved US global competitiveness, expanded job opportunities, and a better quality of life for all citizens.

  1. An exploration of the ozone dimer potential energy surface

    SciTech Connect

    Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve

    2014-06-28

    The (O{sub 3}){sub 2} dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O{sub 3} monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm{sup −1}. In addition to the five minima, 11 higher-order stationary points are identified.

  2. An exploration of the ozone dimer potential energy surface

    NASA Astrophysics Data System (ADS)

    Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve

    2014-06-01

    The (O3)2 dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O3 monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm-1. In addition to the five minima, 11 higher-order stationary points are identified.

  3. An exploration of the ozone dimer potential energy surface.

    PubMed

    Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve

    2014-06-28

    The (O3)2 dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O3 monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm(-1). In addition to the five minima, 11 higher-order stationary points are identified. PMID:24985642

  4. Taxonomic minimalism.

    PubMed

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. PMID:21236933

  5. Minimally interacting holographic dark energy model in a five dimensional spherically symmetric space-time in Saez-Ballester theory of gravitation

    NASA Astrophysics Data System (ADS)

    Raju, P.; Sobhanbabu, K.; Reddy, D. R. K.

    2016-02-01

    Five-dimensional spherically symmetric space-time filled with two minimally interacting fields, matter and holographic dark energy components, is investigated in a scalar tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). An explicit solution of the field equations is obtained. Some physical and kinematic properties of the model are also studied.

  6. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    PubMed

    Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B; Niven, Jeremy E

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+) and K(+) currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+) and K(+) channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202

  7. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a "minimal common brain".

    PubMed

    Ius, Tamara; Angelini, Elsa; Thiebaut de Schotten, Michel; Mandonnet, Emmanuel; Duffau, Hugues

    2011-06-01

    Despite recent advances in non-invasive brain mapping imaging, the resectability of a given area in a patient harboring a WHO grade II glioma cannot be predicted preoperatively with high reliability, due to mechanisms of functional reorganization. Therefore, intraoperative mapping by direct electrical stimulation remains the gold standard for detection and preservation of eloquent areas during glioma surgery, because it enables to perform on-line anatomo-functional correlations. To study potentials and limitations of brain plasticity, we gathered 58 postoperative MRI of patients operated on for a WHO grade II glioma under direct electrical cortico-subcortical stimulation. Postoperative images were registered on the MNI template to construct an atlas of functional resectability for which each voxel represents the probability to observe residual non-resectable tumor, that is, non-compensable area. The resulting atlas offers a rigorous framework to identify areas with high plastic potential (i.e. with probabilities of residual tumor close to 0), with low compensatory capabilities (i.e. probabilities of residual tumor close to 1) and with intermediate level of resectability (probability around 0.5). The resulting atlas highlights the utmost importance of preserving a core of connectivity through the main associative pathways, namely, it supports the existence of a "minimal common brain" among patients. PMID:21414413

  8. Residential energy efficiency: Progress since 1973 and future potential

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  9. Potential for luminosity improvement for low-energy RHIC operation

    SciTech Connect

    Fedotov A. V.

    2012-05-20

    At the Brookhaven National Laboratory, a physics program, motivated by the search of the QCD phase transition critical point, requires operation of the Relativistic Heavy Ion Collider (RHIC) with heavy ions at very low beam energies corresponding to 2.5-20 GeV/n. Several physics runs were already successfully performed at these low energies. However, the luminosity is very low at lowest energies of interest (< 10 GeV/n) limited by the intra-beam scattering and space-charge, as well as by machine nonlinearities. At these low energies, electron cooling could be very effective in counteracting luminosity degradation due to the IBS, while it is less effective against other limitations. Overall potential luminosity improvement for low-energy RHIC operation from cooling is summarized for various energies, taking into account all these limitations as well as beam lifetime measured during the low-energy RHIC runs. We also explore a possibility of further luminosity improvement under the space-charge limitation.

  10. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929

  11. Three-dimensional elastic image registration based on strain energy minimization: application to prostate magnetic resonance imaging.

    PubMed

    Zhang, Bao; Arola, Dwayne D; Roys, Steve; Gullapalli, Rao P

    2011-08-01

    The use of magnetic resonance (MR) imaging in conjunction with an endorectal coil is currently the clinical standard for the diagnosis of prostate cancer because of the increased sensitivity and specificity of this approach. However, imaging in this manner provides images and spectra of the prostate in the deformed state because of the insertion of the endorectal coil. Such deformation may lead to uncertainties in the localization of prostate cancer during therapy. We propose a novel 3-D elastic registration procedure that is based on the minimization of a physically motivated strain energy function that requires the identification of similar features (points, curves, or surfaces) in the source and target images. The Gauss-Seidel method was used in the numerical implementation of the registration algorithm. The registration procedure was validated on synthetic digital images, MR images from prostate phantom, and MR images obtained on patients. The registration error, assessed by averaging the displacement of a fiducial landmark in the target to its corresponding point in the registered image, was 0.2 ± 0.1 pixels on synthetic images. On the prostate phantom and patient data, the registration errors were 1.0 ± 0.6 pixels (0.6 ± 0.4 mm) and 1.8 ± 0.7 pixels (1.1 ± 0.4 mm), respectively. Registration also improved image similarity (normalized cross-correlation) from 0.72 ± 0.10 to 0.96 ± 0.03 on patient data. Registration results on digital images, phantom, and prostate data in vivo demonstrate that the registration procedure can be used to significantly improve both the accuracy of localized therapies such as brachytherapy or external beam therapy and can be valuable in the longitudinal follow-up of patients after therapy. PMID:20552248

  12. Earth mineralogical model: Gibbs free energy minimization computation in the system MgOFeOSiO 2

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.

    1996-07-01

    A thermodynamic database which is consistent with most available phase equilibrium experiments and calorimetric and physical measurements on the solids in the system MgOFeOSiO 2 is established for the phases with the compositions (Mg, Fe)SiO 3 (garnet, perovskite, pyroxene, and ilmenite), (Mg, Fe) 2SiO 4 (olivine, β, and γ phases), SiO 2 (stishovite and coesite), and (Mg, Fe)O (periclase and wustite). The data are systematized by using the high temperature Birch-Murnaghan equation of state which includes the pressure and temperature dependent bulk modulus ( K) and temperature dependent thermal expansion (α) of the solids. The systematized thermodynamic data contains heat capacity ( Cp) data, which is internally consistent with the data on α, K, volume, and temperature. Such a systematized database is used to calculate, by the method of minimization of Gibbs free energy, the mineralogical composition of the peridotitic/pyrolitic and chondritic MgOFeOSiO 2 mantles. The model corresponds closely to the seismological PREM (Preliminary Earth Reference Model) in predicting the major seismic discontinuities. However, such discontinuities resulting from reactions or phase transformation are not as sharp as the seismic ones. Calculated adiabatic geothermal gradient starting at 6 GPa and 1500 K reaches a temperature of 2046 K at the core/mantle pressure (135 GPa) in a pyrolite mantle. The model Earth parameters in the lower mantle are (PREM parameters in bracket): Ks = 308 (306) to 687 (656) GPa; φ = 70 (69) to 121 (118) km 2 s -2.

  13. Exact energy spectrum for models with equally spaced point potentials

    NASA Astrophysics Data System (ADS)

    Caudrelier, V.; Crampé, N.

    2006-03-01

    We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We also study non-perturbatively the effects of impurities in such systems. Finally, we discuss the possibility of including interactions between the particles of these systems.

  14. Bifurcations on Potential Energy Surfaces of Organic Reactions

    PubMed Central

    Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.

    2009-01-01

    A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086

  15. Quintom dark energy models with nearly flat potentials

    SciTech Connect

    Setare, M. R.; Saridakis, E. N.

    2009-02-15

    We examine quintom dark energy models, produced by the combined consideration of a canonical and a phantom field, with nearly flat potentials and dark energy equation-of-state parameter w{sub DE} close to -1. We find that all such models converge to a single expression for w{sub DE}(z), depending only on the initial field values and their derivatives. We show that this quintom paradigm allows for a description of the transition through -1 in the near cosmological past. In addition, we provide the necessary conditions for the determination of the direction of the -1 crossing.

  16. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  17. The Energy-Water Nexus: potential groundwater-quality degradation associated with production of shale gas

    USGS Publications Warehouse

    Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.

    2013-01-01

    Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.

  18. The Potential For Energy Efficiency In The State of Iowa

    SciTech Connect

    Hadley, SW

    2001-12-05

    The purpose of this study was to do an initial estimate of the potential for energy savings in the state of Iowa. Several methods for determining savings were examined, including existing programs, surveys, savings calculators, and economic simulation. Each method has advantages and disadvantages, trading off between detail of information, accuracy of results, and scope. This paper concentrated on using economic simulation (the NEMS model (EIA 2000a)) to determine market potential for energy savings for the residential and commercial sectors. The results of surveys were used to calculate the economic potential for savings in the industrial sector. The NEMS model is used by the Energy Information Administration to calculate twenty-year projections of energy use for every region of the country. The results of the Annual Energy Outlook 2000 were used as the Base case (EIA 1999a). Two alternative cases were created to simulate energy savings policies. Voluntary, market-related programs were simulated by lowering the effective discount rates that end-users use when making decisions on equipment purchases. Standards programs in the residential sector were simulated by eliminating the availability of low efficiency equipment in future years. The parameters for these programs were based on the Moderate scenario from the DOE Clean Energy Futures study (Interlaboratory Working Group 2000), which assumed increased concern by society on energy efficiency but not to the point of fiscal policies such as taxes or direct subsidies. The study only considered a subset of the various programs, policies, and technologies that could reduce energy use. The major end-uses in the residential sector affected by the policies were space cooling (20% savings by 2020) and water heating (14% savings by 2020.) Figure S-1 shows the space cooling savings when voluntary programs and minimum efficiency standards were implemented. Refrigerators, freezers, and clothes dryers saw slight improvements

  19. Kinematic Models of Southern California Deformation calibrated to GPS Velocities and a Strain Energy Minimization Criterion: How do they Differ?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2015-12-01

    Fault slip rates inferred from GPS-calibrated kinematic models may be influenced by seismic-cycle and other transient effects, whereas models that minimize strain energy ("TSEM models") represent average deformation rates over geological timescales. To explore differences in southern California fault slip rates inferred from these two approaches, I have developed kinematic, finite-element models incorporating the UCERF3 block model-bounding fault geometry and slip rates from the UCERF3 report (Field et al., 2014). A fault segment (the "Ventura-Oak Ridge segment") was added to represent shortening accommodated collectively by the San Cayetano, Ventura, Oak Ridge, Red Mountain and other faults in the Transverse Ranges. Fault slip rates are randomly sampled from ranges given in the UCERF3 report, assuming a "boxcar" distribution, and models are scored by their misfit to GPS site velocities or to their total strain energy, for cases with locked and unlocked faults. Both Monte Carlo and Independence Sampler MCMC methods are used to identify the best models of each category. All four suites of models prefer low slip rates (i.e. less than about 5 mm/yr) on the Ventura-Oak Ridge fault system. For TSEM models, low rates (< 12 mm/yr) are strongly preferred for the San Gorgonio segment of the SAF. The GPS-constrained, locked model prefers a high slip rate for the Imperial Fault (over 30 mm/yr), though the TSEM models prefer slip rates lower than 30 mm/yr. When slip rates for the Ventura-Oak Ridge fault system are restricted to less than 5 mm/yr, GPS-constrained models show a preference for high slip rates on the southern San Jacinto and Palos Verde Faults ( > 13 and > 3 mm/yr, respectively), and a somewhat low rate for the Mojave segment of the SAF (25-34 mm/yr). Because blind thrust faults of the Los Angeles Basin are not represented in the model, the inferred Ventura-Oak Ridge slip rate should be high, but the opposite is observed. GPS-calibrated models decisively prefer a

  20. Computed rotational rainbows from realistic potential energy surfaces

    SciTech Connect

    Gianturco, F.A.; Palma, A.

    1985-08-01

    The quantal IOS approximation in here employed to study interference structures in the rotationally inelastic, state-to-state differential cross sections for polar diatomic targets (LiH, FH, and CO) interacting with He atoms. Quite realistic expressions are used to describe the relevant potential energy surfaces (PES) which were taken from previous works that tested them against accurate experimental findings for total and partial differential cross sections. Specific features like short-range anisotropy and well depth, long-range attractive regions and overall range of action for each potential employed are analyzed and discussed in relation to their influence on rotational rainbows appearance and on the possible observation of cross section extrema in rotational energy distributions.

  1. Geothermal Energy Potential of Turkey: Inferred from the Aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan

    2010-05-01

    Geothermal energy potential of Turkey is well known. There are lots of hot springs with over 30° C water temperatures. However, the significance of these geothermal energy potential of Turkey is not adequately understood. We believe that the main reason for this; is the lack of exploration methods and tools in a wide area as large as Turkey. We exploited a well known physical property of rocks to estimate the geothermal energy potential. Physically, substances lose their magnetization above a temperature known as the Curie that is the 580° C for magnetite. Properties of the Curie temperature have been exploited to observe the bottom depth of the magnetization. That is the depth where the heat reaches to 580° C. In another word, there is no magnetization below this depth. In normal crust this depth is about 22-24 km. Thus, investigation of the bottom depth of magnetization by using aeromagnetic anomalies can lead to information that if there are any anomalous regions well above the normal crust. The aeromagnetic anomalies of whole of Turkey were surveyed by the Mineral Research and Exploration (MTA) of Turkey. The survey was completed during late 1980's. Five kilometers grid data were available and used for regional exploration purposes. Exploration of the geothermal energy potential of Turkey was done from west to east in the similar way to search for shallow high temperature regions. These are from west to east; i.) Western Turkey: Two major shallow depth regions were determined at the west of Kutahya and the north-east of Denizli. The Curie Point Depths (CPDs) were calculated as about 7 km and about 9 km in Kutahya and Denizli, respectively. Also, high heat flow values and crustal thinning (about 32 km from gravity anomalies of western Turkey) were calculated for western Turkey. ii.) Central Turkey: A CPD depth of 8 km was calculated. This gives us a temperature gradient of 0.073° C/m. Geothermal energy potential was studied using water chemistry and isotopic

  2. The potential impact of hydrogen energy use on the atmosphere

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  3. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.

  4. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  5. MCSCF potential energy surface for photodissociation of formaldehyde

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Morokuma, K.

    1976-01-01

    The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.

  6. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  7. Molecular potential energy surfaces for interstellar chemistry and fusion applications

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Huang, Xinchuan; Jin, Zhong; Xie, Zhen; Zhang, Xiubin; Bowman, Joel M.; Sharma, Amit Raj; Scheider, Ralf

    2006-04-01

    In the Born-Oppenheimer approximation the electronic Schr"odinger equation is solved given the nuclear positions as parameters, and this defines the potential energy surface. We have used computational invariant theory and the MAGMA computer algebra system as an aid to develop representations for the potential energy and dipole moment surfaces that are fully invariant under permutations of like nuclei, extending an approach that for 3-body and 4-body systems has a long history, e.g. [J. N. Murrell et al. Molecular Potential Energy Functions, Wiley, 1984]. A many-body (cluster) expansion is used to describe reaction complexes. The methods have been applied in an almost routine way for systems of up to 7 nuclei, including several molecules that are of interest for interstellar chemistry and for the issue of hydrocarbon breakdown in fusion edge plasma: H5^+, CH5, CH5^+, C2H3^+, and their fragments, with C2H5^+ on the way. The mathematical and computional methods and the hydrocarbon applications will be presented.

  8. Assessment of Tidal Stream Energy Potential for the United States

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Defne, Z.; Jiang, L.; Fritz, H. M.

    2010-12-01

    Tidal streams are high velocity sea currents created by periodic horizontal movement of the tides, often magnified by local topographical features such as headlands, inlets to inland lagoons, and straits. Tidal stream energy extraction is derived from the kinetic energy of the moving flow; analogous to the way a wind turbine operates in air, and as such differs from tidal barrages, which relies on providing a head of water for energy extraction. With the constantly increasing effort in promoting alternative energy, tidal streams have become promising energy sources due to their continuous, predictable and concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. A methodology for creating a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology has been developed. The tidal flows are simulated using the Regional Ocean Modeling System (ROMS). The model is calibrated and validated using observations and tidal predictions. The calibration includes adjustments to model parameters such as bottom friction coefficient, changed land/water masks, or increased grid resolutions. A systematic validation process has been developed after defining various parameters to quantify the validation results. In order to determine the total tidal stream power resource, a common method frequently proposed is to estimate it as a fraction of the total kinetic energy flux passing through a vertical section; however, this now has been shown to generally underestimate the total available resource. The total tidal energy flux includes not just the kinetic energy but also the energy flux due to the work done by the pressure force associated with the tidal motion on the water column as well

  9. Mashreq Arab interconnected power system potential for economic energy trading

    SciTech Connect

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.

  10. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  11. Market potential for optical fiber sensors in the energy sector

    NASA Astrophysics Data System (ADS)

    Bosselmann, T.

    2007-07-01

    For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fibre optic sensor application.

  12. The Potential of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  13. GIS Assessment of Wind Energy Potential in California and Florida

    NASA Astrophysics Data System (ADS)

    Snow, R. K.; Snow, M. M.

    2008-05-01

    Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of

  14. Onshore wind energy potential over Iberia: present and future projections

    NASA Astrophysics Data System (ADS)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  15. Gravitational potential energy of the earth - A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic expansion agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the crust and mantle of -2.77 x 10 to the 29th ergs, an order of magnitude below McKenzie's (1966) estimate. McKenzie's result stems from mathematical error. Our figure is almost identical with Kaula's (1963) estimate of the minimum shear strain energy in the mantle, a not unexpected result on the basis of the virial theorem. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the 20th P is found by assuming that the total geothermal flux is due to viscous dissipation of energy. This number is almost six orders of magnitude below MacDonald's (1966) estimate of the viscosity and removes his objection to convection. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at 1% efficiency, then the viscosity is 10 to the 22nd P, a number preferred by Cathles (1975) and Peltier and Andrew (1976) as the viscosity of the mantle.

  16. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  17. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. PMID:24372936

  18. Potential for energy conservation in the cement industry

    SciTech Connect

    Garrett-Price, B.A.

    1985-02-01

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  19. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  20. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    PubMed

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide. PMID:25362314

  1. Theoretical studies of potential energy surfaces and computational methods.

    SciTech Connect

    Shepard, R.

    2006-01-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces (PES) involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. Most of our work focuses on general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of molecular geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  2. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  3. Potential impacts of nanotechnology on energy transmission applications and needs.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  4. Theoretical studies of potential energy surfaces and computational methods

    SciTech Connect

    Shepard, R.

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  5. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials

    SciTech Connect

    Hassaneen, Kh.S.A.; Abo-Elsebaa, H.M.; Sultan, E.A.; Mansour, H.M.M.

    2011-03-15

    Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

  6. Potential for energy savings in old and new auto engines

    NASA Astrophysics Data System (ADS)

    Reitz, John R.

    1985-11-01

    This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.

  7. Ab initio potential energy surface and rovibrational states of HBO

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Kyu; Makarewicz, Jan

    1999-01-01

    The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.

  8. Finite field-energy and interparticle potential in logarithmic electrodynamics

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Helayël-Neto, José

    2014-03-01

    We pursue an investigation of logarithmic electrodynamics, for which the field energy of a point-like charge is finite, as happens in the case of the usual Born-Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. The calculation shows a long-range correction (-type) to the Coulomb potential for logarithmic electrodynamics. Interestingly enough, for its non-commutative version, the interaction energy is ultraviolet finite. We highlight the role played by the new quantum of length in our analysis.

  9. Calorific evaluation and energy potential of grape pomace

    NASA Astrophysics Data System (ADS)

    Burg, Patrik; Ludín, David; Rutkowski, Kazimierz; Krakowiak-Bal, Anna; Trávníček, Petr; Zemánek, Pavel; Turan, Jan; Višacki, Vladimir

    2016-04-01

    This article deals with energetic evaluation and potential of pomace - a waste product originating during production of grape wine. Calorimetric analysis of 19 grapevine varieties was performed in 2013 and 2014. The aim was to specify their combustible limit and the gross calorific value. The evaluations were performed on pristine pomace, pomace without seeds, and only on seeds themselves. The results obtained imply that pomace is an interesting energetic resource with a gross calorific value of 16.07-18.97 MJ kg-1. Lower calorific values were detected in pomace after seed separation ie 14.60-17.75 MJ kg-1; on the contrary, seeds alone had the highest calorific values of 19.78-21.13 MJ kg-1. It can be assumed from the results of energetic evaluation of pomace in Czech Republic conditions that, by purposeful and efficient usage of pomace, 6.4 GWh of electric energy and 28 GWh of thermal energy can be generated.

  10. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect

    Hodge, D.S.

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  11. Potential energy surfaces and reaction dynamics of polyatomic molecules

    SciTech Connect

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  12. Dark Energy:. the Absolute Electric Potential of the Universe

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose Beltrán; Maroto, Antonio L.

    Is there an absolute cosmic electric potential? The recent discovery of the accelerated expansion of the universe could be indicating that this is certainly the case. In this essay we show that the consistency of the covariant and gauge-invariant theory of electromagnetism is truly questionable when considered on cosmological scales. Out of the four components of the electromagnetic field, Maxwell's theory contains only two physical degrees of freedom. However, in the presence of gravity, one of the "unphysical" states cannot be consistently eliminated, thus becoming real. This third polarization state is completely decoupled from charged matter, but can be excited gravitationally, thus breaking gauge invariance. On large scales the new state can be seen as a homogeneous cosmic electric potential, whose energy density behaves as a cosmological constant.

  13. Global Expression for Representing Diatomic Potential-Energy Curves

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  14. Potential energy curves and collision integrals of air components

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  15. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  16. Freezing of Energy of a Soliton in an External Potential

    NASA Astrophysics Data System (ADS)

    Bambusi, D.; Maspero, A.

    2016-05-01

    In this paper we study the dynamics of a soliton in the generalized NLS with a small external potential ɛV of Schwartz class. We prove that there exists an effective mechanical system describing the dynamics of the soliton and that, for any positive integer r, the energy of such a mechanical system is almost conserved up to times of order ɛ - r . In the rotational invariant case we deduce that the true orbit of the soliton remains close to the mechanical one up to times of order ɛ - r .

  17. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  18. Size dependence of vacancy migration energy in ionic nano particles: A potential energy landscape perspective

    NASA Astrophysics Data System (ADS)

    Niiyama, Tomoaki; Okushima, Teruaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2016-06-01

    Size dependence of vacancy migration energy in ionic nano particles is investigated by analysis of potential energy surfaces in potassium chloride clusters. Numerical methods are used to find almost all local minima and transition states for vacancy migration in clusters of different sizes, and reveal characteristic features of energy surface structure. It is shown that migration energy is significantly lower near a cluster surface than near a cluster core, and the mean first-passage time for migration of a vacancy decreases with cluster size. These results are consistent with observations of high diffusion rates in small clusters.

  19. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1981-01-01

    The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.

  20. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  1. Interferon-α: A Potentially Effective Treatment for Minimal Residual Disease in Acute Leukemia/Myelodysplastic Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Mo, Xiao-Dong; Zhang, Xiao-Hui; Xu, Lan-Ping; Wang, Yu; Yan, Chen-Hua; Chen, Huan; Chen, Yu-Hong; Han, Wei; Wang, Feng-Rong; Wang, Jing-Zhi; Liu, Kai-Yan; Huang, Xiao-Jun

    2015-11-01

    In this prospective clinical study, the safety and efficacy of preemptive interferon-α (IFN-α) treatment were investigated and compared with preemptive donor lymphocyte infusion (DLI) in patients who were minimal residual disease (MRD)-positive after allogeneic hematopoietic stem cell transplantation (HSCT). Patients undergoing allogeneic HSCT were eligible if they had acute leukemia or myelodysplastic syndrome and were MRD-positive after HSCT. Patients who were able to receive DLI were assigned to a preemptive DLI group (n = 45); patients who could not or did not agree to receive DLI after HSCT received preemptive IFN-α. A total of 22 patients received preemptive IFN-α; the median treatment duration was 35 days (range, 4 to 180 days). Seven patients relapsed, and 1 patient died from severe pneumonia. The 1-year cumulative incidence of chronic graft-versus-host disease (cGVHD) after intervention was 90.9% for the IFN-α group and 62.9% for the DLI group (P < .001). MRD status after preemptive intervention was comparable in the 2 groups, and the 1-year cumulative incidence of relapse after intervention was 27.3% for the IFN-α group and 35.6% for the DLI group (P = .514). The 1-year cumulative incidence of nonrelapse mortality after intervention was 4.5% for the IFN-α group and 4.4% for the DLI group (P = .985). The 1-year probability of disease-free survival after intervention was 68.2% for the IFN-α group and 60.0% for the DLI group (P = .517). In multivariate analysis, early-onset MRD, persistent MRD after intervention, and absence of cGVHD after intervention were significantly associated with poorer clinical outcomes. Thus, preemptive IFN-α may be a potential alternative for MRD-positive patients who cannot receive preemptive DLI after HSCT. PMID:26116088

  2. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    PubMed

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. PMID:21507625

  3. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  4. Colloidal particles driven across periodic optical-potential-energy landscapes

    NASA Astrophysics Data System (ADS)

    Juniper, Michael P. N.; Straube, Arthur V.; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2016-01-01

    We study the motion of colloidal particles driven by a constant force over a periodic optical potential energy landscape. First, the average particle velocity is found as a function of the driving velocity and the wavelength of the optical potential energy landscape. The relationship between average particle velocity and driving velocity is found to be well described by a theoretical model treating the landscape as sinusoidal, but only at small trap spacings. At larger trap spacings, a nonsinusoidal model for the landscape must be used. Subsequently, the critical velocity required for a particle to move across the landscape is determined as a function of the wavelength of the landscape. Finally, the velocity of a particle driven at a velocity far exceeding the critical driving velocity is examined. Both of these results are again well described by the two theoretical routes for small and large trap spacings, respectively. Brownian motion is found to have a significant effect on the critical driving velocity but a negligible effect when the driving velocity is high.

  5. Computer simulations of glasses: the potential energy landscape

    NASA Astrophysics Data System (ADS)

    Raza, Zamaan; Alling, Björn; Abrikosov, Igor A.

    2015-07-01

    We review the current state of research on glasses, discussing the theoretical background and computational models employed to describe them. This article focuses on the use of the potential energy landscape (PEL) paradigm to account for the phenomenology of glassy systems, and the way in which it can be applied in simulations and the interpretation of their results. This article provides a broad overview of the rich phenomenology of glasses, followed by a summary of the theoretical frameworks developed to describe this phenomonology. We discuss the background of the PEL in detail, the onerous task of how to generate computer models of glasses, various methods of analysing numerical simulations, and the literature on the most commonly used model systems. Finally, we tackle the problem of how to distinguish a good glass former from a good crystal former from an analysis of the PEL. In summarising the state of the potential energy landscape picture, we develop the foundations for new theoretical methods that allow the ab initio prediction of the glass-forming ability of new materials by analysis of the PEL.

  6. Computer simulations of glasses: the potential energy landscape.

    PubMed

    Raza, Zamaan; Alling, Björn; Abrikosov, Igor A

    2015-07-29

    We review the current state of research on glasses, discussing the theoretical background and computational models employed to describe them. This article focuses on the use of the potential energy landscape (PEL) paradigm to account for the phenomenology of glassy systems, and the way in which it can be applied in simulations and the interpretation of their results. This article provides a broad overview of the rich phenomenology of glasses, followed by a summary of the theoretical frameworks developed to describe this phenomonology. We discuss the background of the PEL in detail, the onerous task of how to generate computer models of glasses, various methods of analysing numerical simulations, and the literature on the most commonly used model systems. Finally, we tackle the problem of how to distinguish a good glass former from a good crystal former from an analysis of the PEL. In summarising the state of the potential energy landscape picture, we develop the foundations for new theoretical methods that allow the ab initio prediction of the glass-forming ability of new materials by analysis of the PEL. PMID:26139691

  7. Microscopically derived potential energy surfaces from mostly structural considerations

    NASA Astrophysics Data System (ADS)

    Ermamatov, M. J.; Hess, Peter O.

    2016-08-01

    A simple procedure to estimate the quadrupole Potential-Energy-Surface (PES) is presented, using mainly structural information, namely the content of the shell model space and the Pauli exclusion principle. Further microscopic properties are implicitly contained through the use of results from the Möller and Nix tables or experimental information. A mapping to the geometric potential is performed yielding the PES. The General Collective Model is used in order to obtain an estimate on the spectrum and quadrupole transitions, adjusting only the mass parameter. First, we test the conjecture on known nuclei, deriving the PES and compare them to known data. We will see that the PES approximates very well the structure expected. Having acquired a certain confidence, we predict the PES of several chain of isotopes of heavy and super-heavy nuclei and at the end we investigate the structure of nuclei in the supposed island of stability. One of the main points to show is that simple assumptions can provide already important information on the structure of nuclei outside known regions and that spectra and electromagnetic transitions can be estimated without using involved calculations and assumptions. The procedure does not allow to calculate binding energies. The method presented can be viewed as a starting point for further improvements.

  8. Complex potential and bottomonium suppression at LHC energy

    NASA Astrophysics Data System (ADS)

    Kakade, Uttam; Patra, Binoy Krishna; Thakur, Lata

    2015-03-01

    We have studied the thermal suppression of the bottomonium states in relativistic heavy-ion collision at LHC energies as function of centrality, rapidity, transverse momentum. First, we address the effects of the nonperturbative confining force and the momentum anisotropy together on heavy quark potential at finite temperature, which are resolved by correcting both the perturbative and nonperturbative terms of the potential at T = 0 in a weakly-anisotropic medium, not its perturbative term alone as usually done in the literature. Second, we model the expansion of medium by the Bjorken hydrodynamics in the presence of both shear and bulk viscosity, followed by an additional pre-equilibrium anisotropic evolution. Finally, we couple them together to quantify the yields of bottomonium production in nucleus-nucleus collisions at LHC energies and found a better agreement with the CMS data. Our estimate of the inclusive ϒ(1S) production indirectly constrains both the uncertainties in isotropization time and the shear-to-entropy density ratio and favors the values as 0.3 fm/c and 0.3 (perturbative result), respectively.

  9. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    SciTech Connect

    Beste, Ariana; Harrison, Robert J; Yanai, Takeshi

    2006-01-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (c.f., thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory (DFT) and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a non-geometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as constraining the orbitals to be orthogonal.

  10. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    NASA Astrophysics Data System (ADS)

    Beste, A.; Harrison, R. J.; Yanai, T.

    2006-08-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  11. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  12. Potential contribution of wind energy to climate change mitigation

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Pryor, S. C.

    2014-08-01

    It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.

  13. Gravitational potential energy of the earth: A spherical harmonic approach

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1977-01-01

    A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic equation agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the mantle and crust of -2.77 x 10 to the twenty-ninth power ergs, an order of magnitude. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the twentieth power poises is found by assuming the total geothermal flux is due to viscous dissipation. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at one per cent efficiency, then the viscosity is ten to the twenty second power poises, a number preferred by some as the viscosity of the mantle.

  14. Practical potential of reverse electrodialysis as process for sustainable energy generation.

    PubMed

    Długołeçki, Piotr; Gambier, Antoine; Nijmeijer, Kitty; Wessling, Matthias

    2009-09-01

    Reverse electrodialysis (RED) is a nonpolluting sustainable technology that converts the free energy of mixing of two solutions with different salinity directly into electrical energy. Although the theoretical potential is high, the practical power output obtained is limited yet due to concentration polarization phenomena and spacer shadow effects. In this work we combinetheoretical calculations with direct current and alternating current experimental stack characterization methods to quantify the contribution of concentration polarization phenomena, spacer shadow effects and stack resistance in RED under different hydrodynamic conditions in a temperature range from 10 to 40 degrees C to show the practical potential of RED. Concentration polarization phenomena play an important role and their influence can be minimized by optimal stack hydrodynamics. Improved spacerdesigns and newspacerconceptsofferextensive room to reduce the spacer shadow effect and to further increase the practical power output Improvement of hydrodynamics and reduction of the spacer shadow effect directly result in a significant increase in power output of the RED process, and values almost double the values currently obtained can be realized, which brings RED close to economical viability. PMID:19764265

  15. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer

    SciTech Connect

    Bytautas, L.; Ruedenberg, K.

    2008-06-06

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  16. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-01

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion. PMID:18537423

  17. Solar energy development and aquatic ecosystems in the southwestern United States: potential impacts, mitigation, and research needs.

    PubMed

    Grippo, Mark; Hayse, John W; O'Connor, Ben L

    2015-01-01

    The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems. PMID:25331641

  18. Solar Energy Development and Aquatic Ecosystems in the Southwestern United States: Potential Impacts, Mitigation, and Research Needs

    NASA Astrophysics Data System (ADS)

    Grippo, Mark; Hayse, John W.; O'Connor, Ben L.

    2015-01-01

    The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.

  19. The Potential for Renewable Energy Development to Benefit Restoration of the Salton Sea. Analysis of Technical and Market Potential

    SciTech Connect

    Gagne, Douglas; Haase, Scott; Oakleaf, Brett; Hurlbut, David; Akar, Sertac; Wall, Anna; Turchi, Craig; Pienkos, Philip; Melius, Jennifer; Melaina, Marc

    2015-11-01

    This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.


  20. A new local theory of available potential energy for quantifying energy pathways in the oceans

    NASA Astrophysics Data System (ADS)

    Tailleux, Remi

    2013-04-01

    Lorenz's theory of available potential energy (APE) has recently received much attention in the context of ocean energetics, for it is increasingly realized to be a key tool for clarifying the relative importance of the surface buoyancy fluxes in powering the ocean circulation, a controversial issue over the past 15 years or so. So far, however, most recent approaches have been restricted to global APE budgets, often for idealized equations of state, which is arguably of limited interest to understand the precise nature of the energy pathways in the oceans. Here, we will present a local extension of the theory of available potential energy, which is developed for the primitive equations that form the basis of most current general ocean circulation models, and which is valid for an arbitrary nonlinear equation of state. Another advantage of the new theory is that it does not require the reference state underlying Lorenz's APE theory to be necessarily the state of minimum potential energy obtained in an adiabatic re-arrangement of the fluid parcels, and hence does not suffer from traditional difficulties pertaining to how to do the sorting of the fluid parcels. The main result of this work is the ability in some instances to link local conversion of APE into kinetic energy directly to the local production of APE by surface fluxes. The framework is also shown to be useful to provide an energy-based characterization of oceanic water masses.

  1. National Institutes of Health: Mixed waste minimization and treatment

    SciTech Connect

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  2. Accurate potential energy curve of the LiH{sup +} molecule calculated with explicitly correlated Gaussian functions

    SciTech Connect

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  3. Improved DFT Potential Energy Surfaces via Improved Densities.

    PubMed

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases. PMID:26722874

  4. Potential alternative energy technologies on the Outer Continental Shelf.

    SciTech Connect

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  5. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  6. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.

    PubMed

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele

    2015-06-01

    We study the ionization energy, electron affinity, and the π → π(∗) ((1)La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the (1)La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral (1)La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account. PMID:26049481

  7. Energy strategy and mitigation potential in energy sector of the Russian federation

    SciTech Connect

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  8. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  9. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    SciTech Connect

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  10. Spectroscopic constants and potential energy curves of tungsten carbide

    SciTech Connect

    Balasubramanian, K.

    2000-05-01

    Spectroscopic constants (R{sub e},{omega}{sub e},T{sub e},{mu}{sub e}) and potential energy curves for 40 low-lying electronic states of the diatomic tungsten carbide (WC) were obtained using the complete active space multiconfiguration self-consistent field followed by the multireference singles+doubles configuration interaction and full first- and second-order configuration interaction calculations that included up to 6.4 mil configurations. Spin-orbit effects were included through the enhanced relativistic configuration interaction method described here for 28 electronic states of WC lying below {approx}20 000 cm-1. The spin-orbit splitting of the ground state of WC was found to be very large (4394 cm-1). The ground and excited electronic states of the W atom were also computed and were found to be in good agreement with the experimental data. The nature of bonding was analyzed through the composition of orbitals, leading configurations, Mulliken populations, and dipole moments. The dissociation energy of WC was computed including spin-orbit and electron correlation effects. The recent photoelectron spectra of WC{sup -} were assigned on the basis of our computed results. (c) 2000 American Institute of Physics.

  11. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  12. Global potential energy hypersurface for dynamical studies of energy transfer in HF--HF collisions

    SciTech Connect

    Redmon, M.J.; Binkley, J.S.

    1987-07-15

    The interaction energy of two HF molecules at 1332 individual points has been calculated with Moeller--Plesset (many--body) perturbation theory at the MP4-SDTQ level using a 6-311G** basis set. 293 of the points correspond to stretching of one HF molecule from its equilibrium geometry. No attempt was made to use a sufficiently fine grid to accurately describe the well region corresponding to hydrogen bonding. However, the location and minimum energy are consistent with experiment and other accurate theoretical results. An extensive global fit (rms error of 1 kcal/mol) is reported of 1319 points (below 10 eV of potential energy) using a modified London potential with corrections obtained using polynomials through four-body interactions. A model electrostatic potential represents the long-range interaction. In addition, the use of an expansion in products of three Legendre functions is discussed. It is shown that the latter approach, although accurately fitting the ab initio data, has difficulties interpolating in regions of the surface exhibiting diverse magnitudes of potential energy, and therefore must be used with caution. This surface should be useful for studies of T--V--R processes in this system.

  13. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    NASA Astrophysics Data System (ADS)

    Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J.

    2014-06-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m2, equivalent to 4.8 kWh/m2/day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures.

  14. Potential of minimally invasive procedures in the treatment of uterine fibroids: a focus on magnetic resonance-guided focused ultrasound therapy.

    PubMed

    Fischer, Krisztina; McDannold, Nathan J; Tempany, Clare M; Jolesz, Ferenc A; Fennessy, Fiona M

    2015-01-01

    Minimally invasive treatment options are an important part of the uterine fibroid-treatment arsenal, especially among younger patients and in those who plan future pregnancies. This article provides an overview of the currently available minimally invasive therapy options, with a special emphasis on a completely noninvasive option: magnetic resonance-guided focused ultrasound (MRgFUS). In this review, we describe the background of MRgFUS, the patient-selection criteria for MRgFUS, and how the procedure is performed. We summarize the published clinical trial results, and review the literature on pregnancy post-MRgFUS and on the cost-effectiveness of MRgFUS. PMID:26622192

  15. Potential of minimally invasive procedures in the treatment of uterine fibroids: a focus on magnetic resonance-guided focused ultrasound therapy

    PubMed Central

    Fischer, Krisztina; McDannold, Nathan J; Tempany, Clare M; Jolesz, Ferenc A; Fennessy, Fiona M

    2015-01-01

    Minimally invasive treatment options are an important part of the uterine fibroid-treatment arsenal, especially among younger patients and in those who plan future pregnancies. This article provides an overview of the currently available minimally invasive therapy options, with a special emphasis on a completely noninvasive option: magnetic resonance-guided focused ultrasound (MRgFUS). In this review, we describe the background of MRgFUS, the patient-selection criteria for MRgFUS, and how the procedure is performed. We summarize the published clinical trial results, and review the literature on pregnancy post-MRgFUS and on the cost-effectiveness of MRgFUS. PMID:26622192

  16. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  17. Proposed actions for the US Food and Drug Administration to implement to minimize adverse effects associated with energy drink consumption.

    PubMed

    Thorlton, Janet; Colby, David A; Devine, Paige

    2014-07-01

    Energy drink sales are expected to reach $52 billion by 2016. These products, often sold as dietary supplements, typically contain stimulants. The Dietary Supplement Protection Act claims an exemplary public health safety record. However, in 2011 the number of emergency department visits related to consumption of energy drinks exceeded 20,000. Nearly half of these visits involved adverse effects occurring from product misuse. Political, social, economic, practical, and legal factors shape the landscape surrounding this issue. In this policy analysis, we examine 3 options: capping energy drink caffeine levels, creating a public education campaign, and increasing regulatory scrutiny regarding the manufacture and labeling of energy drinks. Increased regulatory scrutiny may be in order, especially in light of wrongful death lawsuits related to caffeine toxicity resulting from energy drink consumption. PMID:24832439

  18. ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces

    SciTech Connect

    Henson, Neil Jon; Waldher, Benjamin; Kuta, Jadwiga; Clark, Aurora; Clark, Aurora E

    2009-01-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  19. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  2. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  3. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Lad, R. A.

    1956-01-01

    The lattice summations of the potential energy of importance in the graphite system have been computed by direct summation assuming a Lennard-Jones 6-12 potential between carbon atoms. From these summations, potential energy curves were constructed for interactions between a carbon atom and a graphite monolayer, between a carbon atom and a graphite surface, between a graphite monolayer and a semi-infinite graphite crystal and between two graphite semi-infinite crystals. Using these curves, the equilibrium distance between two isolated physically interacting carbon atoms was found to be 2.70 a, where a is the carbon-carbon distance in a graphite sheet. The distance between a surface plane and the rest of the crystal was found to be 1.7% greater than the interlayer spacing. Theoretical values of the energy of cohesion and the compressibility were calculated from the potential curve for the interaction between two semi-infinite crystals. They were (delta)E(sub c) = -330 ergs/sq cm and beta =3.18x10(exp -12)sq cm/dyne, respectively. These compared favorably with the experimental values of (delta)E(sub c) = -260 ergs/sq cm and beta = 2.97 X 10(exp -2) sq cm/dyne.

  4. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  5. An analytical version of the free-energy-minimization method for the equation of state of stellar plasmas

    NASA Astrophysics Data System (ADS)

    Daeppen, W.

    1980-11-01

    In the free energy method statistical mechanical models are used to construct a free energy function of the plasma. The equilibrium composition for given temperature and density is found where the free energy is a minimum. Until now the free energy could not be expressed analytically, because the contributions from the partially degenerate electrons and from the inner degrees of freedom of the bound particles had to be evaluated numerically. In the present paper further simplifications are made to obtain an analytic expression for the free energy. Thus the minimum is rapidly found using a second order algorithm, whereas until now numerical first order derivatives and a steepest- descent method had to be used. Consequently time-consuming computations are avoided and the analytical version of the free energy method has successfully been incorporated into the stellar evolution programmes at Geneva Observatory. No use of thermodynamical tables is made, either. Although some accuracy is lost by the simplified analytical expression, the main advantages of the free energy method over simple ideal-gas and Sacha-equation subprogrammes (as used in the stellar programmes mentioned) are still kept. The relative errors of the simplifications made here are estimated and they are shown not to exceed 10% altogether. Densities up to those encountered in low-mass main-sequence stars can be treated within the region of validity of the method. Higher densities imply less accurate results. Nonetheless they are consistent so that they cannot disturb the numerical integration of the equilibrium equation in the stellar evolution model. The input quantities of the free energy method presented here are either temperature and density or temperature and pressure, the latter require a rapid numerical Legendre transformation which has been developed here.

  6. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean. PMID:25719956

  7. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  8. Potential Ambient Energy-Harvesting Sources and Techniques

    ERIC Educational Resources Information Center

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  9. Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design

    NASA Astrophysics Data System (ADS)

    Keyvanloo, A.; Burke, B.; St. Aubin, J.; Baillie, D.; Wachowicz, K.; Warkentin, B.; Steciw, S.; Fallone, B. G.

    2016-05-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient entrance skin dose. Also, the increased SSD of linac-MR systems reduces the maximum achievable dose rate. To accurately quantify the changes in entrance skin dose, the authors use EGSnrc Monte Carlo calculations that incorporate 3D magnetic field of the Alberta 0.5 T longitudinal linac-MR system. The Varian 600C linac head geometry assembled on the MRI components is used in the BEAMnrc simulations for 6 MV and 10 MV beam models and skin doses are calculated at an average depth of 70 μm using DOSXYZnrc. 3D modeling shows that magnetic fringe fields decay rapidly and are small at the linac head. SSDs between 100 and 120 cm result in skin-dose increases of between ~6%–19% and ~1%–9% for the 6 and 10 MV beams, respectively. For 6 MV, skin dose increases from ~10.5% to ~1.5% for field-size increases of 5  ×  5 cm2 to 20  ×  20 cm2. For 10 MV, skin dose increases by ~6% for a 5  ×  5 cm2 field, and decreases by ~1.5% for a 20  ×  20 cm2 field. Furthermore, the proposed reshaped flattening filter increases the dose rate from the current 355 MU min‑1 to 529 MU min‑1 (6 MV) or 604 MU min‑1 (10 MV), while the skin-dose increases by only an additional ~2.6% (all percent increases in skin dose are relative to D max). This study suggests that there is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. The even lower skin dose increase at 10 MV offers further advantages in future designs of linac-MR prototypes.

  10. Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design.

    PubMed

    Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S; Fallone, B G

    2016-05-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient entrance skin dose. Also, the increased SSD of linac-MR systems reduces the maximum achievable dose rate. To accurately quantify the changes in entrance skin dose, the authors use EGSnrc Monte Carlo calculations that incorporate 3D magnetic field of the Alberta 0.5 T longitudinal linac-MR system. The Varian 600C linac head geometry assembled on the MRI components is used in the BEAMnrc simulations for 6 MV and 10 MV beam models and skin doses are calculated at an average depth of 70 μm using DOSXYZnrc. 3D modeling shows that magnetic fringe fields decay rapidly and are small at the linac head. SSDs between 100 and 120 cm result in skin-dose increases of between ~6%-19% and ~1%-9% for the 6 and 10 MV beams, respectively. For 6 MV, skin dose increases from ~10.5% to ~1.5% for field-size increases of 5  ×  5 cm(2) to 20  ×  20 cm(2). For 10 MV, skin dose increases by ~6% for a 5  ×  5 cm(2) field, and decreases by ~1.5% for a 20  ×  20 cm(2) field. Furthermore, the proposed reshaped flattening filter increases the dose rate from the current 355 MU min(-1) to 529 MU min(-1) (6 MV) or 604 MU min(-1) (10 MV), while the skin-dose increases by only an additional ~2.6% (all percent increases in skin dose are relative to D max). This study suggests that there is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. The even lower skin dose increase at 10 MV offers further advantages in future designs of linac-MR prototypes. PMID:27050044

  11. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    SciTech Connect

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  12. Potential energy surface of fluoroxene: experiment and theory.

    PubMed

    Uriarte, Iciar; Écija, Patricia; Spada, Lorenzo; Zabalza, Eneko; Lesarri, Alberto; Basterretxea, Francisco J; Fernández, José A; Caminati, Walther; Cocinero, Emilio J

    2016-02-01

    The potential energy surface (PES) of the general anesthetic fluoroxene (2,2,2-trifluoroethyl vinyl ether) was probed in a supersonic jet expansion using broadband chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy and theoretical calculations. The PES is dominated by a single conformation, as other stable minima are shown to kinetically relax in the expansion to the global minimum. Consistently, the rotational spectrum reveals a single conformation. Fluoroxene adopts a CS heavy-atom planar skeleton structure in the gas phase, with a cis-trans conformation (cis for the CH2=CH-O-CH2- and trans for the =CH-O-CH2-CF3 part). The sensitivity of a recently-built CP-FTMW spectrometer at the UPV/EHU is demonstrated by the detection of five isotopologues of fluoroxene in natural abundance, corresponding to the (13)C and (18)O monosubstituted species. The rS and r0 structures were determined and are in good agreement with theoretical predictions using the MP2, B3LYP and M06-2X methods. PMID:26771032

  13. Potential of utilization of geothermal energy in Arizona. Executive summary

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    Arizona is one of the fastest growing states in the United States. It is in the midst of the movement of the population of the United States from its cold regions to the warm Southwest. Being a hot, arid region, its electrical demand is nearly 50% higher in the peak hot summer months than that of the other seven months. The major uncertainty of utilizing geothermal energy in Arizona is that very little exploration and development have occurred to date. The potential is good, based on (a) the fact that there are over 3000 thermal wells in Arizona out of a total of about 30,000 shallow (less than 1000 ft) irrigation wells. In addition, there is much young volcanic rock in the State of Arizona. The combination of data from thermal wells, young volcanic rock, water geochemistry and other geological tools, indicate that there is a large geothermal resource throughout the southern half of the state. It is believed that most of this resource is in the range of 50/sup 0/C (122/sup 0/F) to 150/sup 0/C (302/sup 0/F), limiting its uses to direct heat utilization rather than for electric power generation.

  14. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1992-01-01

    The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.

  15. Evaluation of the minimum energy hypothesis and other potential optimality criteria for human running

    PubMed Central

    Miller, Ross H.; Umberger, Brian R.; Hamill, Joseph; Caldwell, Graham E.

    2012-01-01

    A popular hypothesis for human running is that gait mechanics and muscular activity are optimized in order to minimize the cost of transport (CoT). Humans running at any particular speed appear to naturally select a stride length that maintains a low CoT when compared with other possible stride lengths. However, it is unknown if the nervous system prioritizes the CoT itself for minimization, or if some other quantity is minimized and a low CoT is a consequential effect. To address this question, we generated predictive computer simulations of running using an anatomically inspired musculoskeletal model and compared the results with data collected from human runners. Three simulations were generated by minimizing the CoT, the total muscle activation or the total muscle stress, respectively. While all the simulations qualitatively resembled real human running, minimizing activation predicted the most realistic joint angles and timing of muscular activity. While minimizing the CoT naturally predicted the lowest CoT, minimizing activation predicted a more realistic CoT in comparison with the experimental mean. The results suggest a potential control strategy centred on muscle activation for economical running. PMID:22072601

  16. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  17. Natural supersymmetric minimal dark matter

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Urbano, Alfredo

    2016-03-01

    We show how the Higgs boson mass is protected from the potentially large corrections due to the introduction of minimal dark matter if the new physics sector is made supersymmetric. The fermionic dark matter candidate (a 5-plet of S U (2 )L) is accompanied by a scalar state. The weak gauge sector is made supersymmetric, and the Higgs boson is embedded in a supersymmetric multiplet. The remaining standard model states are nonsupersymmetric. Nonvanishing corrections to the Higgs boson mass only appear at three-loop level, and the model is natural for dark matter masses up to 15 TeV—a value larger than the one required by the cosmological relic density. The construction presented stands as an example of a general approach to naturalness that solves the little hierarchy problem which arises when new physics is added beyond the standard model at an energy scale around 10 TeV.

  18. Rovibrational energy transfer in the He-C3 collision: potential energy surface and bound states.

    PubMed

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe

    2014-02-28

    We present a four-dimensional potential energy surface (PES) for the collision of C3 with He. Ab initio calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and mid-bond functions. The global minimum of the potential energy is found to be -26.9 cm(-1) and corresponds to an almost T-shaped structure of the van der Waals complex along with a slightly bent configuration of C3. This PES is used to determine the rovibrational energy levels of the He-C3 complex using the rigid monomer approximation (RMA) and the recently developed atom-rigid bender approach at the Close Coupling level (RB-CC). The calculated dissociation energies are -9.56 cm(-1) and -9.73 cm(-1), respectively at the RMA and RB-CC levels. This is the first theoretical prediction of the bound levels of the He-C3 complex with the bending motion. PMID:24588178

  19. Topographies and dynamics on multidimensional potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ball, Keith Douglas

    The stochastic master equation is a valuable tool for elucidating potential energy surface (PES) details that govern structural relaxation in clusters, bulk systems, and protein folding. This work develops a comprehensive framework for studying non-equilibrium relaxation dynamics using the master equation. Since our master equations depend upon accurate partition function models for use in Rice-Ramsperger-Kassel-Marcus (RRK(M) transition state theory, this work introduces several such models employing various harmonic and anharmonic approximations and compares their predicted equilibrium population distributions with those determined from molecular dynamics. This comparison is performed for the fully-delineated surfaces (KCl)5 and Ar9 to evaluate model performance for potential surfaces with long- and short-range interactions, respectively. For each system, several models perform better than a simple harmonic approximation. While no model gives acceptable results for all minima, and optimal modeling strategies differ for (KCl)5 and Ar9, a particular one-parameter model gives the best agreement with simulation for both systems. We then construct master equations from these models and compare their isothermal relaxation predictions for (KCl)5 and Ar9 with molecular dynamics simulations. This is the first comprehensive test of the kinetic performance of partition function models of its kind. Our results show that accurate modeling of transition-state partition functions is more important for (KCl)5 than for Ar9 in reproducing simulation results, due to a marked stiffening anharmonicity in the transition-state normal modes of (KCl)5. For both systems, several models yield qualitative agreement with simulation over a large temperature range. To examine the robustness of the master equation when applied to larger systems, for which full topographical descriptions would be either impossible or infeasible, we compute relaxation predictions for Ar11 using a master equation

  20. Nonlinear transient analysis by energy minimization: A theoretical basis for the ACTION computer code. [predicting the response of a lightweight aircraft during a crash

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1980-01-01

    The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.

  1. Available potential energy of the daily coastal circulation at Zadar (Croatia)

    NASA Astrophysics Data System (ADS)

    Trošić, T.; Šinik, N.; Trošić, Ž.

    2006-08-01

    The aim of this study is the evaluation of the sea breeze speed on the basis of its energy. Energetics of the sea breeze can be studied by means of the available potential energy (APE). Part of this energy is transformed into the kinetic energy of the sea breeze. Some similarity exists between the large scale processes of the circulation and the small coastal air circulation due to the fact that both circulations are triggered by the same physics, i.e., solenoidal activity of the baroclinic atmosphere. To evaluate the sea breeze speed, APE was calculated by use of the Lorenz’s equation (1955), and which is possible if the coastal circulation is considered to be a closed system in a hydrostatic equilibrium. For calculations and verifications hourly sea-surface temperatures, near-ground air temperatures and wind speed measurements, as well as the radio-sounding measurements at 12 UTC were used at the Zadar station (ϕ = 44° 08' N, λ = 15° 13' E), which is situated in the central part of the eastern Adriatic coast. Two days with an undisturbed sea breeze circulation were extracted using the methods for minimizing other atmospheric influences. Calculated hourly near ground sea breeze speeds obtained in this way were higher than the measured ones. With the assumption that some of the APE is transformed into the kinetic energy it is possible to obtain characteristic speed of the developed sea breeze with small discrepancies to the near-ground measurements. If 6.6% of the mean daily near ground APE was taken to be transformed to the mean daily kinetic sea breeze energy on the 29th and 4.2% on the 30th September 2002, the best agreement was obtained with the mean daily measured near ground sea breeze speed. This range of values can be attributed to inability to extract precise values for the lapse-rate needed in the APE sea breeze calculations. Results show similarities to the general circulation of the atmosphere, since about 10% of the APE is transformed to the

  2. By-products: oil sorbents as a potential energy source.

    PubMed

    Karakasi, Olga K; Moutsatsou, Angeliki

    2013-04-01

    The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further potential profit of energy production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production. PMID:23179513

  3. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results.

    PubMed

    Grabarek, Dawid; Walczak, Elżbieta; Andruniów, Tadeusz

    2016-05-10

    The effect of the quality of the ground-state geometry on excitation energies in the retinal chromophore minimal model (PSB3) was systematically investigated using various single- (within Møller-Plesset and coupled-cluster frameworks) and multiconfigurational [within complete active space self-consistent field (CASSCF) and CASSCF-based perturbative approaches: second-order CASPT2 and third-order CASPT3] methods. Among investigated methods, only CASPT3 provides geometry in nearly perfect agreement with the CCSD(T)-based equilibrium structure. The second goal of the present study was to assess the performance of the CASPT2 methodology, which is popular in computational spectroscopy of retinals, in describing the excitation energies of low-lying excited states of PSB3 relative to CASPT3 results. The resulting CASPT2 excitation energy error is up to 0.16 eV for the S0 → S1 transition but only up to 0.06 eV for the S0 → S2 transition. Furthermore, CASPT3 excitation energies practically do not depend on modification of the zeroth-order Hamiltonian (so-called IPEA shift parameter), which does dramatically and nonsystematically affect CASPT2 excitation energies. PMID:27049438

  4. Annual Waste Minimization Summary Report

    SciTech Connect

    Alfred J. Karns

    2007-01-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U. S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during CY06. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021) and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the DOE, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.

  5. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Suwono, A.; Indartono, Y. S.; Irsyad, M.; Al-Afkar, I. C.

    2015-09-01

    One way to resolve the energy problem is to increase the efficiency of energy use. Air conditioning system is one of the equipment that needs to be considered, because it is the biggest energy user in commercial building sector. Research currently developing is the use of phase change materials (PCM) as thermal energy storage (TES) in the air conditioning system to reduce energy consumption. Salt hydrates have been great potential to be developed because they have been high latent heat and thermal conductivity. This study has used a salt hydrate from calcium chloride to be tested in air conditioning systems type chiller. Thermal characteristics were examined using temperature history (T-history) test and differential scanning calorimetry (DSC). The test results showed that the thermal characteristics of the salt hydrate has been a high latent heat and in accordance with the evaporator temperature. The use of salt hydrates in air conditioning system type chiller can reduce energy consumption by 51.5%.

  6. Potential of energy farming in the southeastern California desert

    SciTech Connect

    Lew, V.

    1980-04-01

    The California Energy Commission is currently analyzing the use of energy farms to provide future sources of energy for California. Energy farms can be defined as growing plants and converting them to various forms of energy. The use of marginal desert lands in southeastern California for the siting of energy farms using acacia, Eucalyptus, euphorbia, quayule, jojoba, mesquite, or tamarisk is considered. Two hypothetical scenarios using either rainfall, or rainfall and groundwater as water sources were described to determine the maximum amount of energy produced from estimated amounts of suitable land in this area. Considering both scenarios, the maximum range of energy produced is .03 to 0.4 Quads. It is recommended that (1) genetic research be continued to increase biomass yields of these and other candidate plants grown in the desert; and (2) small test plots be established at varying desert locations to collect yield growth, and survival data. Once this information is known, the identification of the best plant(s) to use for energy farming in the California desert area will be known, as well as the cost and quantity of energy produced.

  7. Reducing start-up time and minimizing energy losses of Microbial Fuel Cells using Maximum Power Point Tracking strategy

    NASA Astrophysics Data System (ADS)

    Molognoni, Daniele; Puig, Sebastià; Balaguer, M. Dolors; Liberale, Alessandro; Capodaglio, Andrea G.; Callegari, Arianna; Colprim, Jesús

    2014-12-01

    Microbial Fuel Cells (MFCs) are considered to be an environmental friendly energy conversion technology. The main limitations that delay their industrialization include low current and power densities achievable and long start-up times. Maximum Power Point Tracking (MPPT) has been proposed as a method to enhance MFCs electrical performances. However, the specialized literature is still lacking of experimental works on scaled-up reactors and/or real wastewater utilization. This study evaluates the impact of a MPPT system applied to MFCs treating swine wastewater in terms of start-up time and long-term performance. For this purpose, two replicate cells were compared, one with applied MPPT control and one working with fixed resistance. Both MFCs were continuously fed with swine wastewater to validate the control system under real and dynamic conditions. The study demonstrated that the automatic resistance control was able to reduce the start-up time of about one month. Moreover, MPPT system increased of 40% the Coulombic efficiency at steady-state conditions, reduced energy losses associated with anode and cathode reactions and limited methanogenic activity in the anode chamber. A power density of 5.0 ± 0.2 W m-3 NAC was achieved feeding the system at an organic loading rate of 10 kg COD m-3 d-1.

  8. Projection potentials and angular momentum convergence of total energies in the full-potential Korringa-Kohn-Rostoker method.

    PubMed

    Zeller, Rudolf

    2013-03-13

    Although the full-potential Korringa-Kohn-Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd's formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. PMID:23396831

  9. Finite-element grid improvement by minimization of stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1987-01-01

    A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.

  10. Finite-element grid improvement by minimization of stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1989-01-01

    A new and simple method of finite-element grid improvement is presented. The objective is to improve the accuracy of the analysis. The procedure is based on a minimization of the trace of the stiffness matrix. For a broad class of problems this minimization is seen to be equivalent to minimizing the potential energy. The method is illustrated with the classical tapered bar problem examined earlier by Prager and Masur. Identical results are obtained.

  11. Free-energy coarse-grained potential for C{sub 60}

    SciTech Connect

    Edmunds, D. M. Tangney, P.; Vvedensky, D. D.; Foulkes, W. M. C.

    2015-10-28

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C{sub 60}. Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures.

  12. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  13. Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.

    PubMed

    Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre

    2015-03-10

    Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled. PMID:26579741

  14. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface.

    PubMed

    Pradhan, Ekadashi; Brown, Alex

    2016-05-01

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm(-1)) up to 10 000 cm(-1) above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxation with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm(-1) above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control. PMID:27155638

  15. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface

    NASA Astrophysics Data System (ADS)

    Pradhan, Ekadashi; Brown, Alex

    2016-05-01

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm-1) up to 10 000 cm-1 above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxation with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm-1 above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.

  16. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  17. Insulin sensitivity and glucose effectiveness from three minimal models: effects of energy restriction and body fat in adult male rhesus monkeys.

    PubMed

    Gresl, Theresa A; Colman, Ricki J; Havighurst, Thomas C; Byerley, Lauri O; Allison, David B; Schoeller, Dale A; Kemnitz, Joseph W

    2003-12-01

    The minimal model of glucose disappearance (MINMOD version 3; MM3) and both the one-compartment (1CMM) and the two-compartment (2CMM) minimal models were used to analyze stable isotope-labeled intravenous glucose tolerance test (IVGTT) data from year 10 of a study of the effect of dietary restriction (DR) in male rhesus monkeys. Adult monkeys were energy restricted (R; n = 12) on a semipurified diet to approximately 70% of control (C) intake (ad libitum-fed monkeys; n = 12). Under ketamine anesthesia, fasting insulin levels were greater among C monkeys. Insulin sensitivity estimates from all models were greater in R than C monkeys, whereas glucose effectiveness estimates were not consistently greater in R monkeys. Fasting plasma glucose as well as hepatic glucose production and clearance rates did not differ between groups. Body fat, in part, statistically mediated the effect of DR to enhance insulin sensitivity indexes. Precision of estimation and intermodel relationships among insulin sensitivity and glucose effectiveness estimates were in the ranges of those reported previously for humans and dogs, suggesting that the models may provide valid estimates for rhesus monkeys as well. The observed insulin sensitivity indexes from all models, elevated among R vs. C monkeys, may be explained, at least in part, by the difference in body fat content between these groups after chronic DR. PMID:12842866

  18. A potential enstrophy and energy conserving scheme for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1981-01-01

    To improve the simulation of nonlinear aspects of the flow over steep topography, a potential enstrophy and energy conserving scheme for the shallow water equations is derived. It is pointed out that a family of schemes can conserve total energy for general flow and potential enstrophy for flow with no mass flux divergence. The newly derived scheme is a unique member of this family, that conserves both potential enstrophy and energy for general flow. Comparison by means of numerical experiment with a scheme that conserves (potential) enstrophy for purely horizontal nondivergent flow demonstrated the considerable superiority of the newly derived potential enstrophy and energy conserving scheme, not only in suppressing a spurious energy cascade but also in determining the overall flow regime. The potential enstrophy and energy conserving scheme for a spherical grid is also presented.

  19. The potential for energy conservation in the United States

    SciTech Connect

    Carlsmith, R.S.

    1993-12-31

    The period of high oil prices between 1973 and 1985 was traumatic in the United States, as it was also in the rest of the world. It was also instructive in showing the kinds of adaptation that could occur rapidly in a very large industrialized economy. During the period, energy use remained essentially constant while the economy continued to grow. The efficiency of energy use, as indicated by the ratio of energy consumption to gross domestic product, increased by 24 percent. Since 1985 there has been little further improvement in energy efficiency. Can this kind of improvement in efficiency be repeated, and if so, what can make it happen? A number of energy analysts have recently made projections for the next 20 years. The projections all indicate steady increases of about 1 percent per year in the level of energy use. Since these projections assumed that gross domestic product will increase by about 2.3 percent per year, the implication is that energy efficiency is expected to increase slowly during the next two decades.

  20. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step. PMID:26574398

  1. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    SciTech Connect

    Belles, Randy J.; Omitaomu, Olufemi A.

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  2. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  3. The ratios of partition functions at different temperatures - Sensitivity to potential energy shape II

    NASA Astrophysics Data System (ADS)

    Buchowiecki, Marcin

    2016-05-01

    The ratios of partition functions at different temperatures are calculated and its dependence on potential energy shape is analyzed. The role of anharmonicity and non-rigidity of rotations is discussed in the context of the angular frequency and the shape of potential energy curve. A role of inflection point of potential energy curve for the quality of rigid rotor harmonic oscillator and rigid rotor Morse oscillator is elucidated.

  4. Potential displacement of petroleum imports by solar energy technologies

    NASA Astrophysics Data System (ADS)

    Deleon, P.; Jackson, B. L.; McNown, R. F.; Mahrenholz, G. J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. The economic, social, and political costs of a foreign oil dependency are discussed. Development of alternative, domestic energy sources, such as solar energy technologies, which can displace foreign petroleum is discussed. It is estimated that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  5. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  6. Next-to-minimal SOFTSUSY

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Athron, P.; Tunstall, Lewis C.; Voigt, A.; Williams, A. G.

    2014-09-01

    We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3 symmetry is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3 violating (denoted as =) terms are added to the soft supersymmetry breaking terms and the superpotential. The user provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the approximations and conventions used. Catalogue identifier: ADPM_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154886 No. of bytes in distributed program, including test data, etc.: 1870890 Distribution format: tar.gz Programming language: C++, fortran. Computer: Personal computer. Operating system: Tested on Linux 3.x. Word size: 64 bits Classification: 11.1, 11.6. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPM_v3_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 785 Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the next-to-minimal supersymmetric standard model. The solution to the

  7. Lesions with unclear malignant potential (B3) after minimally invasive breast biopsy: evaluation of vacuum biopsies performed in Switzerland and recommended further management

    PubMed Central

    Haueisen, Harald; Kampmann, Gert; Oehlschlegel, Christian; Seifert, B; Rageth, Luzi; Rageth, Christoph; Stadlmann, S; Kubik-Huch, Rahel A

    2015-01-01

    Background Histopathological B3 lesions after minimal invasive breast biopsy (VABB) are a particular challenge for the clinician, as there are currently no binding recommendations regarding the subsequent procedure. Purpose To analyze all B3 lesions, diagnosed at VABB and captured in the national central Swiss MIBB database and to provide a data basis for further management in this subgroup of patients. Material and Methods All 9,153 stereotactically, sonographically, or magnetic resonance imaging (MRI)-guided vacuum-assisted breast biopsies, performed in Switzerland between 2009 and 2011, captured in a central database, were evaluated. The rate of B3 lesions and the definitive pathological findings in patients who underwent surgical resection were analyzed. Results The B3 rate was 17.0% (1532 of 9000 biopsies with B classification). Among the 521 lesions with a definitive postoperative diagnosis, the malignancy rate (invasive carcinoma or DCIS) was 21.5%. In patients with atypical ductal hyperplasia, papillary lesions, flat epithelial atypia, lobular neoplasia, and radial scar diagnosed by VABB, the malignancy rates were 25.9%, 3.1%, 18.3%, 26.4%, and 11.1%, respectively. Conclusion B3 lesions, comprising 17%, of all analyzed biopsies, were common and the proportion of malignancies in those lesions undergoing subsequent surgical excision was high (21.5%). PMID:26552694

  8. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  9. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  10. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1986-01-01

    Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric energy cycle, namely those involving the generation of available potential energy (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the energy cycle of the atmosphere.

  11. Pressure-strain energy redistribution in compressible turbulence: return-to-isotropy versus kinetic-potential energy equipartition

    NASA Astrophysics Data System (ADS)

    Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.

    2016-08-01

    Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.

  12. New potential high energy density compounds: Oxadiaziridine derivatives

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Chi, Wei-Jie

    2014-10-01

    The -CN, -N3, -NF2, -NH2, -NHNO2, -NO2, and -ONO2 derivatives of oxadiaziridine were studied using B3LYP/6-311G** level of density functional theory. The gas phase heats of formation of oxadiaziridine derivatives were calculated by isodesmic reaction. All these compounds have high and positive heats of formation due to strain energies of small ring. Detonation properties were calculated via Kamlet-Jacobes equations and specific impulse. The effects of substituent groups on detonation performance were discussed. The impact sensitivity was estimated according to the "available free space per molecule in unit cell" and "energy gaps" methods. The similar conclusions were given by two different methods. The effects of substituents on impact sensitivity were discussed. According to the given estimations of detonation performance and sensitivity, some oxadiaziridine derivatives may be considered promising high energies materials.

  13. Potential impact of contrails on solar energy gain

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Rennhofer, M.; Baumgartner, D.; Gadermaier, J.; Wagner, J.; Laube, W.

    2014-08-01

    We investigated the effect of contrails on global shortwave radiation and on solar energy gain. The study was done for days with a high contrail persistence and looking at situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish eye camera, diffuse and direct shortwave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the solar observatory Kanzelhöhe (1540 m a.s.l.) during a period of one year with a time resolution of one minute. Our results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. A statistic of contrail persistence and influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may even be critical under some circumstances for PV system performance.

  14. Potential impact of contrails on solar energy gain

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Rennhofer, M.; Baumgartner, D. J.; Gadermaier, J.; Wagner, J. E.; Gehring, J. E.; Laube, W.

    2015-03-01

    The effect of contrails on global short-wave radiation (sum of direct and downward diffuse solar radiation) and on solar energy gain was investigated. The study was performed during days with high contrail persistence and focused on situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish-eye camera, diffuse and direct short-wave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the Kanzelhöhe Observatory (1540 m a.s.l.) with a time resolution of 1 min over a period of 1 year. The results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. An analysis of contrail persistence and the influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may be critical under specific circumstances.

  15. Phenomenological calculation of nuclear binding energy and density with Yukawa-potentials

    NASA Astrophysics Data System (ADS)

    Scheid, W.

    2016-01-01

    In this paper, we study a phenomenological collective model for the calculation of the nuclear density and ground state binding energy of nuclei. The proton density is assumed proportional to the nuclear density. The total binding energy of the nuclear matter consists of the binding energy of infinite nuclear matter, of two Yukawa-potentials, of the Coulomb-energy and of the symmetry-energy. The parameters of the Yukawa-potential are fitted with the Bethe-Weizsäcker (BW) mass formula. The resulting binding energies and nuclear densities agree quite satisfying with known nuclear values.

  16. Potential displacement of petroleum imports by solar energy technologies

    SciTech Connect

    DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.

    1980-05-01

    The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.

  17. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    SciTech Connect

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.; Jang, J.W.; Jung, J.W.; Tsouris, Costas

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

  18. Rivers of Energy: The Hydropower Potential. Worldwatch Paper No. 44.

    ERIC Educational Resources Information Center

    Deudney, Daniel

    Described are the history, current status and future potential of hydroelectric power in the world. Issues discussed include the environmental and social impacts of dam construction, and the use of small-scale hydroelectric installations in developing nations. Also considered are hydroelectric development of the world's remote regions, the need to…

  19. A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: Application to the UNRES force field

    PubMed Central

    Liwo, Adam; Arłukowicz, Piotr; Czaplewski, Cezary; Ołdziej, Stanisław; Pillardy, Jarosław; Scheraga, Harold A.

    2002-01-01

    A method for optimizing potential-energy functions of proteins is proposed. The method assumes a hierarchical structure of the energy landscape, which means that the energy decreases as the number of native-like elements in a structure increases, being lowest for structures from the native family and highest for structures with no native-like element. A level of the hierarchy is defined as a family of structures with the same number of native-like elements (or degree of native likeness). Optimization of a potential-energy function is aimed at achieving such a hierarchical structure of the energy landscape by forcing appropriate free-energy gaps between hierarchy levels to place their energies in ascending order. This procedure is different from methods developed thus far, in which the energy gap and/or the Z score between the native structure and all non-native structures are maximized, regardless of the degree of native likeness of the non-native structures. The advantage of this approach lies in reducing the number of structures with decreasing energy, which should ensure the searchability of the potential. The method was tested on two proteins, PDB ID codes 1FSD and 1IGD, with an off-lattice united-residue force field. For 1FSD, the search of the conformational space with the use of the conformational space annealing method and the newly optimized potential-energy function found the native structure very quickly, as opposed to the potential-energy functions obtained by former optimization methods. After even incomplete optimization, the force field obtained by using 1IGD located the native-like structures of two peptides, 1FSD and betanova (a designed three-stranded β-sheet peptide), as the lowest-energy conformations, whereas for the 46-residue N-terminal fragment of staphylococcal protein A, the native-like conformation was the second-lowest-energy conformation and had an energy 2 kcal/mol above that of the lowest-energy structure. PMID:11854494

  20. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  1. Geothermal energy: a proven resource with costly potential

    SciTech Connect

    Not Available

    1980-08-01

    The commercial use of geothermal energy to generate electricity has been spreading across the country since the California Geyser site was developed in 1960. Petroleum companies see geothermal power generation as a way to broaden their own base. The binary-cycle technology to use hydrothermal resources will be ready by 1985. Power generation from geothermal heat will be costly even though the resource itself is free and renewable; but the economics will improve as fossil-fuel prices increase. (DCK)

  2. Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA

    PubMed Central

    Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic

  3. Transportation and energy efficiency: Promised potentials, serious roadblocks

    SciTech Connect

    Kraft-Oliver, T.V.

    1995-12-31

    Transportation is both a critical element of achieving national economic development goals and a major consumer of scarce and expensive energy resources. Improvements in access and mobility from reduced congestion, higher speeds, additional non motorized and pedestrian options, and better mass transit will result in reductions in energy use in most cases. Additional improvements in vehicle efficiency are possible but will not meet the needs of the region for transportation and energy efficiency improvements in the absence of these other improvements. The barriers to success in the transport sector are obvious on a superficial level. They include lack of road space, inadequate or incomplete road networks, insufficient mass transit capacity, predation of pedestrian and nonmotorized vehicle space by motor vehicles, and financing. The lack of progress in solving many of these problems over the past ten to twenty years indicates that there are underlying issues not yet addressed. Perceptions of these problems have changed since the middle 1970s and early 1980s as international lending and technical assistance began to focus on transportation. In those early years the problems were described as financial, and `meeting demand` challenges. The World Bank is now conducting a review of their Transport Sector Policy. While the review has not progressed to a final document and certainly not to articulation or transformation of Bank policy, early drafts reflect a view that past failures to improve transportation circumstances are human resource and institutional problems.

  4. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  5. Explicit energy expansion for general odd-degree polynomial potentials

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Asiri; Mathanaranjan, Thilagarajah

    2013-11-01

    In this paper we derive an almost explicit analytic formula for asymptotic eigenenergy expansion of arbitrary odd-degree polynomial potentials of the form V (x) = (ix)2N+1 + β1x2N + β2x2N-1 + ··· + β2Nx, where β‧k are real or complex for 1 ⩽ k ⩽ 2N. The formula can be used to find semiclassical analytic expressions for eigenenergies up to any order, very efficiently. Each term of the expansion is given explicitly as a multinomial of the parameters β1,β2… and β2N of the potential. Unlike in the even-degree polynomial case, the highest-order term in the potential is pure imaginary and hence the system is non-Hermitian. Therefore all the integrations have been carried out along a contour enclosing two complex branch points, which lies within a wedge in the complex plane. With the help of some examples we demonstrate the accuracy of the method for both real and complex eigenspectra.

  6. The energy amplifier: A solid-phase, accelerator driven, sub critical Th/233 U breeder for nuclear energy production with minimal actinide waste

    SciTech Connect

    Rubbia, C.

    1994-12-31

    We describe a hybrid system consisting of a medium current (1-10 mA), medium energy (1 GeV) proton accelerator feeding a subcritical assembly consisting of Thorium (or another fertile element) and a moderator medium (e.g. light water). Under conditions of moderate neutron flux (10{sup 14} ncm{sup -2}), we show by a computer simulation that a stable equilibrium evolves whereby the concentration of fissile {sup 233}U which is bred from Thorium is stable at about 1.3%. The {sup 233}U produces energy by fission and is continuously regenerated in-situ without resorting to any chemical separation. It is shown that the energy produced is several times larger than the energy required to power the proton accelerator, hence the name Energy Amplifier that we have chosen for that system. We have paid particular attention to the question of toxicity and show that this system will result in very small quantities of Plutonium and higher actinide waste. We also show the composition of actinides produced makes this system particularly resistant to nuclear weapons proliferation. This safe subcritical system is based on an abundant and inexpensive resource which is natural Thorium and can be built using present day technology.

  7. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  8. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  9. Wind energy potential in coastal areas in India

    SciTech Connect

    Jagadeesh, A.

    1983-12-01

    The strength of the surface winds over any location is governed by the magnitude of the pressure gradient just above the planetary boundary layer, the atmospheric stability in the boundary layer as well as the modifying influences of local topography. Near the coasts, winds tend to be stronger due to the additional pressure gradient provided by the thermal contrast between the land and the sea. In this paper an attempt is made to estimate the energy availability at some coastal locations based on windspeed data of Indian Meteorological Department (1958-1968).

  10. Energy use reduction potential in the beet sugar industry

    SciTech Connect

    Barron, T.S.; Cleary, M.

    1985-01-01

    Process energy use data are presented for most of the forty operating beet sugar factories in the United States. Sixty percent of the processing capacity is in states that actively pursue cogeneration projects. Most of the present factories cogenerate steam and electricity for their own use. Fossil fuel boilers and low- to medium-pressure steam turbines are used exclusively for this purpose. Three alternative cogeneration technologies are evaluated, with economic feasibility found to depend on the price at which excess electricity can be sold.

  11. Energy use reduction potential in the beet sugar industry

    SciTech Connect

    Barron, T.S.; Heist, J.A.

    1984-01-01

    Process energy use data are presented for most of the forty operating beet sugar factories in the United States. Sixty percent of the processing capacity is in states that actively pursue cogeneration projects. Most of the present factories cogenerate steam and electricity for their own use. Fossil fuel boilers and low- to medium-pressure steam turbines are used exclusively for this purpose. Three alternative cogeneration technologies are evaluated, with economic feasibility found to depend on the price at which excess electricity can be sold.

  12. Non-resonant energy harvesting via an adaptive bistable potential

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts.

  13. Minimally refined biomass fuels: an economic shortcut

    SciTech Connect

    Pearson, R.K.; Hirschfeld, T.B.

    1980-07-01

    An economic shortcut can be realized if the sugars from which ethanol is made are utilized directly as concentrated aqueous solutions for fuels rather than by further refining them through fermentation and distillation steps. Simple evaporation of carbohydrate solutions from sugar cane or sweet sorghum, or from hydrolysis of starch or cellulose content of many plants yield potential liquid fuels of energy contents (on a volume basis) comparable to highly refined liquid fuels like methanol and ethanol. The potential utilization of such minimally refined biomass derived fuels is discussed and the burning of sucrose-ethanol-water solutions in a small modified domestic burner is demonstrated. Other potential uses of sugar solutions or emulsion and microemulsions in fuel oils for use in diesel or turbine engines are proposed and discussed.

  14. Morse potential, symmetric Morse potential and bracketed bound-state energies

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2016-04-01

    For the needs of non-perturbative quantum theory, an upgraded concept of solvability is proposed. In a broader methodical context, the innovation involves Schrödinger equations which are piecewise analytic and piecewise solvable in terms of special (in our illustrative example, Whittaker) functions. In a practical implementation of our symbolic-manipulation-based approach, we work with a non-analyticity in the origin. A persuasive advantage is then found in the both-sidedness of our iterative localization of the energies.

  15. Importance of the energy-dependent geometry in the 16O+ 16O optical model potential

    NASA Astrophysics Data System (ADS)

    Pantis, G.; Ioannidis, K.; Poirier, P.

    1985-08-01

    Optical model potentials with various forms of energy-dependent geometry have been considered for the description of 16O+ 16O elastic scattering. It is shown that the variation with energy of the imaginary radius leads to a reasonable fit of the cross-section data, throughout the energy range.

  16. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  17. Minimal quiver standard model

    SciTech Connect

    Berenstein, David; Pinansky, Samuel

    2007-05-01

    This paper discusses the minimal quiver gauge theory embedding of the standard model that could arise from brane world type string theory constructions. It is based on the low energy effective field theory of D branes in the perturbative regime. The model differs from the standard model by the addition of one extra massive gauge boson, and contains only one additional parameter to the standard model: the mass of this new particle. The coupling of this new particle to the standard model is uniquely determined by input from the standard model and consistency conditions of perturbative string theory. We also study some aspects of the phenomenology of this model and bounds on its possible observation at the Large Hadron Collider.

  18. Potential mitigation approach to minimize salinity intrusion in the Lower Savannah River Estuary due to reduced controlled releases from Lake Thurmond

    USGS Publications Warehouse

    Conrads, Paul A.; Greenfield, James M.

    2010-01-01

    The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga. and forms the State boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 187 miles upstream from the coast, is responsible for most of the flow regulation that affects the Savannah River from Augusta to the coast. The Savannah Harbor experiences semi-diurnal tides of two high and two low tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. The Savannah National Wildlife Refuge is located in the Savannah River Estuary. The tidal freshwater marsh is an essential part of the 28,000-acre refuge and is home to a diverse variety of wildlife and plant communities. The Southeastern U.S. experienced severe drought conditions in 2008 and if the conditions had persisted in Georgia and South Carolina, Thurmond Lake could have reached an emergency operation level where outflow from the lake is equal to the inflow to the lake. To decrease the effect of the reduced releases on downstream resources, a stepped approach was proposed to reduce the flow in increments of 500 cubic feet per second (ft3/s) intervals. Reduced flows from 3,600 ft3/s to 3,100 ft3/s and 2,600 ft3/s were simulated with two previously developed models of the Lower Savannah River Estuary to evaluate the potential effects on salinity intrusion. The end of the previous drought (2002) was selected as the baseline condition for the simulations with the model. Salinity intrusion coincided with the 28-day cycle semidiurnal tidal cycles. The results show a difference between the model simulations of how the salinity will respond to the decreased flows. The Model-to-Marsh Decision Support System (M2MDSS) salinity response shows a large increase in the magnitude (> 6.0 practical salinity units, psu) and duration (3-4 days) of the salinity intrusion with extended periods (21 days) of tidal

  19. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    NASA Astrophysics Data System (ADS)

    Bewerunge, Jörg; Sengupta, Ankush; Capellmann, Ronja F.; Platten, Florian; Sengupta, Surajit; Egelhaaf, Stefan U.

    2016-07-01

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g(1)(r) and an analogue of the Edwards-Anderson order parameter g(2)(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  20. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions.

    PubMed

    Bewerunge, Jörg; Sengupta, Ankush; Capellmann, Ronja F; Platten, Florian; Sengupta, Surajit; Egelhaaf, Stefan U

    2016-07-28

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g((1))(r) and an analogue of the Edwards-Anderson order parameter g((2))(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results. PMID:27475395