Science.gov

Sample records for potential hypokalemic agent

  1. Reversible electrophysiological abnormalities in hypokalemic paralysis: Case report of two cases.

    PubMed

    Sharma, C M; Nath, Kunal; Parekh, Jigar

    2014-01-01

    Compound muscle action potential (CMAP) amplitude declines during a paralytic attack in patients with hypokalemic periodic paralysis (HPP). However, serial motor nerve conduction studies in hypokalemic paralysis have not been commonly reported. We report two cases with hypokalemic paralysis, who had severely reduced CMAPs in all motor nerves at presentation during the episode of quadriparesis. However, the amplitude of CMAPs increased and reached normal levels, as the serum potassium concentration and motor power returned to normal state. PMID:24753672

  2. Hypokalemic paraplegia in pregnancy.

    PubMed

    Kulkarni, Maitri; Tv, Srividya; Gopal, N

    2014-06-01

    Hypokalemic myopathy may range from numbness/weakness to complete paralysis. The aetiology may be congenital or acquired. It is characterized by acute muscular weakness with low levels of potassium (<3.5 meq/L). We present a case of 26-year-old multigravida at 36 weeks of gestation with gestational hypertension on treatment, who came with acute onset of pain, numbness and weakness of both legs which worsened following betamethasone injection. She was diagnosed to have Hypokalemic paralysis with potassium levels of 2.1 meq/L. The medical profile remitted promptly on intravenous potassium replacement. Pregnancy was continued till 37 weeks with oral potassium supplements, antihypertensives and regular monitoring of serum potassium levels. The pregnancy was terminated after 37 weeks in view of gestational hypertension. Postpartum period was uneventful, patient was discharged after two weeks when potassium levels and BP returned to normal. PMID:25121034

  3. Hypokalemic quadriparesis in dengue

    PubMed Central

    Mishra, Vikas; Harbada, Rishit; Sharma, Akhilesh; Mishra, Meenakshi

    2015-01-01

    Dengue infection is the leading cause of illness and death in tropical and subtropical regions of the world. The common complications associated with dengue fever are usual hematological abnormalities, shock, and organ failure. The neurological complications of dengue are uncommon. However, evidence of dengue virus neurotropism and complications has been slowly but surely rising as seen from increased literature on this subject over the last decade. We report an uncommon case of hypokalemic quadriparesis with dengue that had a favorable outcome. PMID:25949983

  4. Hypokalemic quadriparesis in dengue.

    PubMed

    Mishra, Vikas; Harbada, Rishit; Sharma, Akhilesh; Mishra, Meenakshi

    2015-01-01

    Dengue infection is the leading cause of illness and death in tropical and subtropical regions of the world. The common complications associated with dengue fever are usual hematological abnormalities, shock, and organ failure. The neurological complications of dengue are uncommon. However, evidence of dengue virus neurotropism and complications has been slowly but surely rising as seen from increased literature on this subject over the last decade. We report an uncommon case of hypokalemic quadriparesis with dengue that had a favorable outcome. PMID:25949983

  5. Hypokalemic paralysis in a professional bodybuilder.

    PubMed

    Mayr, Florian B; Domanovits, Hans; Laggner, Anton N

    2012-09-01

    Severe hypokalemia is a potentially life-threatening disorder and is associated with variable degrees of skeletal muscle weakness, even to the point of paralysis. On rare occasions, diaphragmatic paralysis from hypokalemia can lead to respiratory arrest. There may also be decreased motility of smooth muscle, manifesting with ileus or urinary retention. Rarely, severe hypokalemia may result in rhabdomyolysis. Other manifestations of severe hypokalemia include alteration of cardiac tissue excitability and conduction. Hypokalemia can produce electrocardiographic changes such as U waves, T-wave flattening, and arrhythmias, especially if the patient is taking digoxin. Common causes of hypokalemia include extrarenal potassium losses (vomiting and diarrhea) and renal potassium losses (eg, hyperaldosteronism, renal tubular acidosis, severe hyperglycemia, potassium-depleting diuretics) as well as hypokalemia due to potassium shifts (eg, insulin administration, catecholamine excess, familial periodic hypokalemic paralysis, thyrotoxic hypokalemic paralysis). Although the extent of diuretic misuse in professional bodybuilding is unknown, it may be regarded as substantial. Hence, diuretics must always be considered as a cause of hypokalemic paralysis in bodybuilders. PMID:21871759

  6. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  7. Apparently persistent weakness after recurrent hypokalemic paralysis: a tale of two disorders.

    PubMed

    Ramachandiran, Nandhagopal

    2008-09-01

    A 19-year-old woman presented with recurrent hypokalemic paralysis, followed by apparently persistent symptoms due to coexisting osteomalacia. Distal renal tubular acidosis type 1 (dRTA1) linked the metabolic abnormalities and occurred as an extraglandular feature of Sjögren syndrome (SS). This case highlights the fact that in the setting of recurrent hypokalemia, apparently progressive weakness should be distinguished from primary hypokalemic paralysis and evaluated for dRTA1, as the metabolic alterations are potentially treatable. Further dRTA1 may precede the occurrence of sicca syndrome in SS. PMID:18708979

  8. Heterocyclic chalcone analogues as potential anticancer agents.

    PubMed

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  9. Licorice-induced hypokalemic myopathy and hypokalemic renal tubular damage in anorexia nervosa.

    PubMed

    Ishikawa, S; Kato, M; Tokuda, T; Momoi, H; Sekijima, Y; Higuchi, M; Yanagisawa, N

    1999-07-01

    A patient with a history of anorexia nervosa developed licorice-induced hypokalemic myopathy. With potassium replacement, high CPK blood level and myopathic signs returned to normal. However, the patient manifested persistent hypokalemia and impaired renal function to concentrate and acidify the urine. Renal biopsy demonstrated intense degeneration and vacuolation of tubules with a normal glomerus which was consistent with hypokalemic nephropathy. Prolonged hypokalemia in anorexia nervosa is sometimes attributed to surreptitious purging or taking diuretics, but it is necessary to check the urine pH, the urine-specific gravity, and the urine potassium level in order to find underlying renal damage even after hypokalemic myopathy is treated successfully. PMID:10349593

  10. [Thyrotoxic hypokalemic periodic paralysis in patients of African descent].

    PubMed

    Maia, Morgana Lima e; Trevisam, Paula Grasiele Carvalho; Minicucci, Marcos; Mazeto, Glaucia M F S; Azevedo, Paula S

    2014-10-01

    Thyrotoxic hypokalemic periodic paralysis (THPP) is an endocrine emergency marked by recurrent attacks of muscle weakness associated with hypokalemia and thyrotoxicosis. Asiatic male patients are most often affected. On the other hand, African descents rarely present this disease. The case described shows an afrodescendant patient with hypokalemia and tetraparesis, whose diagnosis of hyperthyroidism was considered during this crisis. The THPP, although rare, is potentially lethal. Therefore, in cases of flaccid paresis crisis this diagnosis should always be considered, especially if associated with hypokalemia. In this situation, if no previous diagnosis of hyperthyroidism, this should also be regarded. PMID:25372590

  11. Dengue infection presenting as acute hypokalemic quadriparesis.

    PubMed

    Gupta, N; Garg, A; Chhabra, P

    2014-01-01

    Dengue infection is one of the most common viral hemorrhagic fevers seen in the tropical countries, including India. Its presentation varies from an acute self-resolving febrile illness to life-threatening hemorrhagic shock and multiorgan dysfunction leading to death. Neurological presentations are uncommon and limited to case reports only. Most common neurological manifestations being encephalitis, acute inflammatory demyelinating polyradiculoneuropathy, transverse myelitis, and acute disseminated encephalomyelitis.Hypokalemic quadriparesis as a presenting feature of dengue is extremely rare. Here, we report this case of a 33-year-old female, who presented with hypokalemic quadriparesis and was subsequently diagnosed as dengue infection. PMID:25121379

  12. [Hypokalemic periodic paralysis. A case report].

    PubMed

    Areta-Higuera, J D; Algaba-Montes, M; Oviedo-García, A Á

    2014-01-01

    Periodic paralysis is a rare disorder that causes episodes of severe muscle weakness that can be confused with other diseases, including epilepsy or myasthenia gravis. Hyperkalemic and hypokalemic paralysis are included within these diseases, the latter being divided into periodic paralysis (familial, thyrotoxic or sporadic) and non-periodic paralysis. In this regard, we present a case of familial hypokalemic periodic paralysis in an eighteen year-old female who was diagnosed with epilepsy in childhood, as well as a subclinical hypothyroidism (for which she received replacement therapy) months ago. The diagnosis was made by the anamnesis and the confirmation of hypokalemia. PMID:24360869

  13. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. PMID:26876916

  14. Smallpox: a potential agent of bioterrorism.

    PubMed

    Whitley, Richard J

    2003-01-01

    The events of 11 September 2001, in New York City, and subsequent identification of anthrax in the United States Postal System, have generated a new sense of awareness for the potential of biological terrorism, if not warfare. Among those agents identified by the Centers for Disease Control and Prevention as 'Class A Bioterrorist Threats', smallpox is among the most dangerous. The ease of transmission of this agent, the lack of immunity in the population at large to this agent, and rapidity of its spread, if released, all generate significant concern for its deployment. A vaccine directed against smallpox is available but it is also associated with significant adverse events-some of which are life-threatening. Further, no antiviral drug has proven efficacious for therapy of human disease, although one licensed drug, cidofovir, does have in vitro activity. Regardless, heightened awareness should lead to the development of a vaccine without significant adverse events and safe and efficacious antiviral drugs. The availability of a vaccine and antiviral drugs that are safe would significantly remove any major threat of smallpox deployment by a terrorist. PMID:12615298

  15. Potential of immunosuppressive agents in cerebral ischaemia

    PubMed Central

    Gupta, Yogendra Kumar; Chauhan, Anjali

    2011-01-01

    Ischaemic stroke is a disorder involving multiple mechanisms of injury progression including activation of glutamate receptors, release of proinflammatory cytokines, nitric oxide (NO), free oxygen radicals and proteases. Presently, recombinant tissue plasminogen activator (rtPA) is the only drug approved for the management of acute ischaemic stroke. This drug, however, is associated with limitations like narrow therapeutic window and increased risk of intracranial haemorrhage. A large number of therapeutic agents have been tested including N-methly-D-aspartate (NMDA) receptor antagonist, calcium channel blockers and antioxidants for management of stroke, but none has provided significant neuroprotection in clinical trials. Therefore, searching for other potentially effective drugs for ischaemic stroke management becomes important. Immunosuppressive agents with their wide array of mechanisms have potential as neuroprotectants. Corticosteroids, immunophilin ligands, mycophenolate mofetil and minocycline have shown protective effect on neurons by their direct actions or attenuating toxic effects of mediators of inflammation. This review focuses on the current status of corticosteroids, cyclosporine A, FK506, rapamycin, mycophenolate mofetil and minocycline in the experimental models of cerebral ischaemia. PMID:21321416

  16. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control. PMID:23971813

  17. Tocotrienol as a potential anticancer agent.

    PubMed

    Ling, Ming T; Luk, Sze U; Al-Ejeh, Fares; Khanna, Kum K

    2012-02-01

    Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy. PMID:22095072

  18. [Q fever, a potential biowarfare agent].

    PubMed

    Bossi, Philippe; Guihot, Amélie; Bricaire, François

    2003-10-18

    SEVERAL POSSIBLE METHODS OF TRANSFUSION: Q fever is a zoonosis due to Coxiella burnetii. Its interest as a potential biowarfare agent is in its possible transmission by inhalation of sprayed particles. This form of transmission would probably be used: the inhalation of 1 to 10 bacteria could provoke the development of an infection in humans. Another possible method of transmission in the context of a terrorist act would be the intentional introduction of the bacteria into foodstuff. A DISABLING WEAPON: However, C. burnetii has never been used as a biological weapon. The probability that this germ could be used is very low: indeed, the incubation of Q fever is very long, and the majority of the infections is asymptomatic and mortality is low. In fact C. burnetii would more likely be used as a disabling weapon. PMID:14576588

  19. Plants' Metabolites as Potential Antiobesity Agents

    PubMed Central

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research. PMID:22666121

  20. Other potentially useful new injectable anesthetic agents.

    PubMed

    Ilkiw, J E

    1992-03-01

    Ultrashort barbiturates are not ideal injectable anesthetic agents, and new agents continue to be released as investigators pursue the goal of finding a more ideal agent. Of the new injectable agents discussed, propofol seems to be the most promising drug. Propofol should find a place in veterinary practice as an outpatient anesthetic agent because it has a rapid, smooth, and complete recovery even after repeated or continuous administration. Midazolam does not induce anesthesia in healthy, small animals and, as such, can only be used in combination with other injectable agents, such as ketamine or the thiobarbiturates. In our practice, Telazol has found a place in the anesthetic management of feral cats and aggressive dogs, where it is used for heavy sedation or to induce anesthesia. The role of flumazenil, as a reversal agent, in veterinary practice remains to be determined; however, the role in small domestic animals is unlikely to be significant. PMID:1585555

  1. Nigella sativa: A Potential Antiosteoporotic Agent

    PubMed Central

    Shuid, Ahmad Nazrun; Mohamed, Norazlina; Mohamed, Isa Naina; Othman, Faizah; Suhaimi, Farihah; Mohd Ramli, Elvy Suhana; Muhammad, Norliza; Soelaiman, Ima Nirwana

    2012-01-01

    Nigella sativa seeds (NS) has been used traditionally for various illnesses. The most abundant and active component of NS is thymoquinone (TQ). Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies. PMID:22973403

  2. Hypokalemic periodic paralysis. A single fiber electromyographic study.

    PubMed

    De Grandis, D; Fiaschi, A; Tomelleri, G; Orrico, D

    1978-06-01

    The neurophysiological findings obtained with standard electromyography (EMG) and single fiber EMG (SFEMG) in a case of hypokalemic periodic paralysis (HoPP) are reported. During the period between paralytic attacks the only abnormalities consisted of scanty fibrillation potentials and, with SFEMG, a fiber density increase. In the first stage of an induced paralytic attack the most striking feature was decrease in fiber density, slight increase in jitter with several blocks. These results indicate a failure of the membrane surface to propagate an action potential. In some fibers the block is likely to be permanent, thus explaining the decrease in fiber density. The jitter increase is due to a slight abnormality at the synaptic site or to a variation in the propagation velocity of the muscle fiber. PMID:690662

  3. Hypokalemic quadriparesis: an unusual manifestation of leptospirosis.

    PubMed

    K, Mahendran; R, Kannan; D V, Lal; G, Rajiv; K, Rajendran

    2014-01-01

    We report a 46-year-old male who presented with fever and flaccid weakness of all four limbs due to Leptospirosis associated hypokalemia. Acute hypokalemic quadriparesis is an uncommon presentation of leptospirosis, not yet widely recognised. Renal potassium wasting occurs in Leptospirosis and subsequently, the development of hypokalemia leads to paralysis. The patient had kaliuresis due to leptospirosis which improved with antibiotics and potassium replacement. PMID:24596761

  4. Anti-arthritic agents: progress and potential.

    PubMed

    Laev, Sergey S; Salakhutdinov, Nariman F

    2015-07-01

    Osteoarthritis and rheumatoid arthritis are the two most common types of arthritis. Cartilage breakdown is a key feature of both diseases which contributes to the pain and joint deformity experienced by patients. Therefore, anti-arthritis drugs are of great importance. The aim of this review is to present recent progress in studies of various agents against osteoarthritis and rheumatoid arthritis. The structures and activities of anti-arthritic agents, which used in medical practice or are in development, are presented and discussed. The effects and mechanisms of action of opioids, glucocorticoids, non-steroidal anti-inflammatory drugs, disease-modifying anti-rheumatic drugs, natural products derived from plants, nutraceuticals, and a number of new and perspective agents are considered. Various perspective targets for the treatment of osteoarthritis and rheumatoid arthritis are also discussed. Trials of good quality are needed to draw solid conclusions regarding efficacy of many of the studied agents. Unfortunately, to date, there is no pharmacologic agent proven to prevent the progression of both diseases, and there is an urgent need for further development of better anti-arthritic agents. PMID:26014481

  5. Xenon fluorides show potential as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Chernick, C. L.; Shieh, T. C.; Yang, N. C.

    1967-01-01

    Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.

  6. A case of hypokalemic paralysis in a patient with neurogenic diabetes insipidus.

    PubMed

    Nguyen, Frederic N; Kar, Jitesh K; Verduzco-Gutierrez, Monica; Zakaria, Asma

    2014-04-01

    Acute hypokalemic paralysis is characterized by muscle weakness or paralysis secondary to low serum potassium levels. Neurogenic diabetes insipidus (DI) is a condition where the patient excretes large volume of dilute urine due to low levels of antidiuretic hormone. Here, we describe a patient with neurogenic DI who developed hypokalemic paralysis without a prior history of periodic paralysis. A 30-year-old right-handed Hispanic male was admitted for refractory seizures and acute DI after developing a dental abscess. He had a history of pituitary adenoma resection at the age of 13 with subsequent pan-hypopituitarism and was noncompliant with hormonal supplementation. On hospital day 3, he developed sudden onset of quadriplegia with motor strength of 0 of 5 in the upper extremities bilaterally and 1 of 5 in both lower extremities with absent deep tendon reflexes. His routine laboratory studies revealed severe hypokalemia of 1.6 mEq/dL. Nerve Conduction Study (NCS) revealed absent compound motor action potentials (CMAPs) with normal sensory potentials. Electromyography (EMG) did not reveal any abnormal insertional or spontaneous activity. He regained full strength within 36 hours following aggressive correction of the hypokalemia. Repeat NCS showed return of CMAPs in all nerves tested and EMG revealed normal motor units and normal recruitment without myotonic discharges. In patients with central DI with polyuria, hypokalemia can result in sudden paralysis. Hypokalemic paralysis remains an important differential in an acute case of paralysis and early recognition and appropriate management is key. PMID:24707338

  7. Sjögren's syndrome presenting as hypokalemic periodic paralysis.

    PubMed

    Dowd, J E; Lipsky, P E

    1993-12-01

    We describe a 21-year-old Hispanic woman who presented with hypokalemic paralysis as the initial manifestation of Sjögren's syndrome (SS). Our review of the English literature revealed 12 previously reported cases of SS and renal tubular acidosis (RTA). Paralysis often preceded the sicca complex in those patients. Renal function in the patients with hypokalemic paralysis was reduced compared with that in patients who had primary SS and RTA but no history of hypokalemic paralysis (P < 0.002). Hypokalemic periodic paralysis is a rare manifestation of SS. It is seen more often in patients with primary SS, may precede the classic sicca complex, and may serve as a clinical marker for more severe renal disease in patients who have primary SS and RTA. PMID:8250993

  8. Chronic hypokalemic nephropathy: a clinical study.

    PubMed

    Bock, K D; Cremer, W; Werner, U

    1978-01-01

    Description of 23 patients (21 women, 2 men) with an average age of 36.6 (19--68) years, who were hypokalemic during 6.5 years on the average (range 1/2--16 years). The cause of the potassium depletion was malnutrition (anorexia nervosa, vomiting) and/or abuse of laxatives and/or diuretics. With increasing duration of potassium depletion renal function deteriorated; in two cases terminal renal failure developed. Histology of the kidneys (9 cases) showed the picture of chronic abacterial interstitial nephritis. Urinalysis was negative or non-specific. The blood pressure levels were normal or low, hypertensive values being exceptional. Aside of hypokalemia a tendency to hyponatriemia, hypochloremia and metabolic alcalosis was observed, the latter turning into hypokalemic normochloremic acidosis with advancing renal insufficiency. Plasma renin activity and aldosterone concentration or excretion frequently were elevated, but no close correlation was found between these parameters or with the blood pressure. Bacterial infection of the urinary tract occured, if at all, in the late phase and seems to be complication rather than the cause of the kidney disease. The discussion of other possible pathogenetic factors leads to the conclusion that the term "chronic kaliopenic nephropathy" is justified. Some diagnostic and therapeutic consequences are mentioned. PMID:732256

  9. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent. PMID:18066762

  10. Beer constituents as potential cancer chemopreventive agents.

    PubMed

    Gerhäuser, Clarissa

    2005-09-01

    Beer is a complex alcoholic beverage made from barley (malt), hop, water and yeast. Phenolic constituents of beer are derived from malt (70-80%) and hop (20-30%). Structural classes include simple phenols, benzoic- and cinnamic acid derivatives, coumarins, catechins, di-, tri- and oligomeric proanthocyanidins, (prenylated) chalcones and flavonoids as well as alpha- and iso-alpha-acids derived from hop. Compounds belonging to different structural classes have distinct profiles of biological activity in in vitro test systems, and in combination might lead to enhanced effects. Scientific evidence has accumulated over the past 10 years pointing to the cancer preventive potential of selected hop-derived beer constituents, i.e., prenylflavonoids including xanthohumol and isoxanthohumol, and hop bitter acids. Chemopreventive activities observed with these compounds relevant to inhibition of carcinogenesis at the initiation, promotion and progression phases, as well as results from in vivo studies on metabolism, bioavailability and efficacy are summarised in this review. PMID:15953717

  11. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis). PMID:23432005

  12. 1,2-Dialkyl-4-pyrazolidinethiols as potential antiradiation agents.

    PubMed

    Kornet, M J; Daniels, R

    1979-10-01

    The reaction between 3-chloropropylene sulfide and the 1,2-dialkylhydrazines was employed to prepare a series of 1,2-dialkyl-4-pyrazolidinethiols. Evidence is presented to support the structure proposed for the product. These mercaptoheterocycles are related to the beta-mercaptoethylamines and were prepared as potential radiation protective agents. No significant activity was observed. PMID:512875

  13. Sporadic hypokalemic paralysis caused by osmotic diuresis in diabetes mellitus.

    PubMed

    Vishnu, Venugopalan Y; Kattadimmal, Anoop; Rao, Suparna A; Kadhiravan, Tamilarasu

    2014-07-01

    A wide variety of neurological manifestations are known in patients with diabetes mellitus. We describe a 40-year-old man who presented with hypokalemic paralysis. On evaluation, we found that the cause of the hypokalemia was osmotic diuresis induced by marked hyperglycemia due to undiagnosed diabetes mellitus. The patient had an uneventful recovery with potassium replacement, followed by glycemic control with insulin. Barring a few instances of symptomatic hypokalemia in the setting of diabetic emergencies, to our knowledge uncomplicated hyperglycemia has not been reported to result in hypokalemic paralysis. PMID:24472241

  14. Renal tubular acidosis complicated with hypokalemic periodic paralysis.

    PubMed

    Chang, Y C; Huang, C C; Chiou, Y Y; Yu, C Y

    1995-07-01

    Three Chinese girls with hypokalemic periodic paralysis secondary to different types of renal tubular acidosis are presented. One girl has primary distal renal tubular acidosis complicated with nephrocalcinosis. Another has primary Sjögren syndrome with distal renal tubular acidosis, which occurs rarely with hypokalemic periodic paralysis in children. The third has an isolated proximal renal tubular acidosis complicated with multiple organ abnormalities, unilateral carotid artery stenosis, respiratory failure, and consciousness disturbance. The diagnostic evaluation and emergent and prophylactic treatment for these three types of renal tubular acidosis are discussed. PMID:7575850

  15. Thyrotoxic hypokalemic periodic paralysis: An overlooked pathology in western countries.

    PubMed

    Pompeo, Arsenio; Nepa, Amleto; Maddestra, Maurizio; Feliziani, Vincenzo; Genovesi, Nicola

    2007-09-01

    Thyrotoxic hypokalemic periodic paralysis (THPP) is a complication of hyperthyroidism that is mostly diagnosed in Asian populations; consequently, it can be difficult to recognize in western populations. THPP represents an endocrine emergency that can result in respiratory insufficiency, cardiac arrhythmias, and death. Its differential diagnosis from the other more common forms of hypokalemic paralysis is important to avoid inappropriate therapy. Here, we discuss the main pathogenetic hypotheses, clinical features, and therapies of this disease. We also report an example of THPP management in our primary care unit. PMID:17693226

  16. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole). PMID:27270393

  17. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis

    SciTech Connect

    Ptacek, L.J.; Leppert, M.F.; Tawil, R.

    1994-09-01

    Hypokalemic periodic paralysis (hypoKPP) is an autosomal dominant skeletal muscle disorder manifested by episodic weakness associated with low serum potassium. Genetic linkage analysis has localized the hypoKPP gene to chromosome 1q31-q32 near a dihydropyridine receptor (DHP) gene. This receptor functions as a voltage-gated calcium channel and is also critical for excitation-contraction coupling in a voltage-sensitive and calcium-independent manner. We have characterized patient-specific DHP receptor mutations in 11 probands of 33 independent hypoKPP kindreds that occur at one of two adjacent nucleotides within the same codon and predict substitution of a highly conserved arginine in the S4 segment of domain 4 with either histidine or glycine. In one kindred, the mutation arose de novo. Taken together, these data establish the DHP receptor as the hypoKPP gene. We are unaware of any other human diseases presently known to result from DHP receptor mutations.

  18. Polymeric Thioxanthones as Potential Anticancer and Radiotherapy Agents.

    PubMed

    Yilmaz, Gorkem; Guler, Emine; Barlas, Firat Baris; Timur, Suna; Yagci, Yusuf

    2016-07-01

    Thioxanthone (TX) and its derivatives, which are widely used as photoinitiators in UV curing technology, hold promising research interest in biological applications. In particular, the use of TXs as anticancer agent has recently been manifested as an outstanding additional property of this class of molecules. Incorporation of TX molecules into specially designed polymers widens their practical use in such applications. In this study, two water-soluble, biocompatible, and stable polymers, namely poly(vinyl alcohol) and poly(ethylene glycol), possessing TX moieties at the side chains and chain ends, respectively, are prepared and used as anticancer and radiotherapy agents. The findings confirm that both polymers are potential candidates for therapeutic agents as they possess useful features including water-solubility, radiosensitizer effect, and anticancer activity in a polymeric scaffold. PMID:27168378

  19. Modified quaternary ammonium salts as potential antimalarial agents.

    PubMed

    Basilico, Nicoletta; Migotto, Mara; Ilboudo, Denise Patoinewende; Taramelli, Donatella; Stradi, Riccardo; Pini, Elena

    2015-08-01

    A series of new quaternary ammonium salts containing a polyconjugated moiety has been synthesized and characterized; their biological activity as potential antimalarial agents was investigated, as well. All compounds were screened against chloroquine resistant W-2 (CQ-R) and chloroquine sensitive, D-10 (CQ-S) strains of Plasmodium falciparum showing IC50 in the submicromolar range and low toxicity against human endothelial cells. PMID:26081764

  20. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity.

    PubMed

    Gupta, Deepa; Jain, D K

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

  1. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  2. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.

    PubMed

    Thoppil, Roslin J; Bishayee, Anupam

    2011-09-27

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called "isoprenoids") are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  3. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  4. Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents.

    PubMed

    Oronsky, Bryan; Scicinski, Jan; Kim, Michelle M; Cabrales, Pedro; Salacz, Michael E; Carter, Corey A; Oronsky, Neil; Lybeck, Harry; Lybeck, Michelle; Larson, Christopher; Reid, Tony R; Oronsky, Arnold

    2016-01-01

    First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity. PMID:27384589

  5. Recurrent Hypokalemic Periodic Paralysis Unmasks Sjogren Syndrome without Sicca Symptoms.

    PubMed

    Hung, Yao-Min; Huang, Neng-Chyan; Wann, Shue-Ren; Chang, Yun-Te; Wang, Jyh-Seng

    2015-04-01

    Hypokalemic Periodic Paralysis (HPP) may occur as a rare complication of Sjogren Syndrome (SS) and Renal Tubular Acidosis (RTA). A 64-year male patient came with HPP, and was later diagnosed with distal RTA. The patient, who had no xerostomia and xerophthalmia, was diagnosed with primary SS from serologic and histologic findings of minor salivary gland biopsy. The patient recovered after potassium replacement therapy. Renal biopsy was also performed and revealed evidence of tubulointerstitial nephritis. Corticosteroids were administered and there was no recurrence of HPP during a 4-year follow-up period. The case highlights the significance of acute hypokalemia management in emergency department as it can unmask SS even if the SS is not associated with sicca symptoms. Hypokalemic paralysis associated with normal anion gap metabolic acidosis should prompt toward the diagnosis of SS. PMID:25933458

  6. Thyrotoxic hypokalemic periodic paralysis in an African male: a case report.

    PubMed

    Belayneh, Dereje K; Kellerth, Thomas

    2015-02-01

    Thyrotoxic hypokalemic periodic paralysis is a rare manifestation of thyrotoxicosis and is rarely reported in non-Asian populations. A 26-year-old Ethiopian male who presented with recurrent flaccid tetraparesis, hypokalemia, and hyperthyroidism is reported here. Thyroid function should be routinely checked in patients with acute or recurrent hypokalemic paralysis. PMID:25767707

  7. [Thyrotoxic hypokalemic periodic paralysis: report of one case].

    PubMed

    Frantchez, Victoria; Valiño, José; Carracelas, Analía; Dufrechou, Carlos

    2010-11-01

    Thyrotoxic hypokalemic periodic paralysis is characterized by attacks of generalized weakness associated to hypokalemia in patients with hyperthyroidism. We report a 25-year-old man with a history of spontaneously relapsing episodes of muscular weakness, who consulted for a rapidly evolving upper and lower limb paresis. Hypokalemia associated to a primary hyperthyroidism was detected. Treatment with antithyroid Drugs and potassium supplementation reverted symptoms and the episodes of acute muscular weakness did not reappear. PMID:21279257

  8. Interictal conduction slowing in muscle fibers in hypokalemic periodic paralysis.

    PubMed

    Troni, W; Doriguzzi, C; Mongini, T

    1983-11-01

    Conduction velocity in muscle fibers of the short head of biceps brachii was reduced between attacks in all the affected members of a family suffering from hypokalemic periodic paralysis. This finding represents a further evidence of a primary alteration of sarcolemmal function in this disease. Interictal conduction slowing in muscle fibers is consistent with the prevailing pathophysiologic hypothesis, which considers an increased membrane permeability to sodium ions as the fundamental defect underlying all forms of familial periodic paralysis. PMID:6685247

  9. The R900S mutation in CACNA1S associated with hypokalemic periodic paralysis.

    PubMed

    Ke, Qing; He, Fangping; Lu, Lingping; Yu, Ping; Jiang, Yajian; Weng, Chen; Huang, Hui; Yi, Xin; Qi, Ming

    2015-12-01

    Primary hypokalemic periodic paralysis is an autosomal dominant skeletal muscle channelopathy. In the present study, we investigated the genotype and phenotype of a Chinese hypokalemic periodic paralysis family. We used whole-exome next-generation sequencing to identify a mutation in the calcium channel, voltage-dependent, L type, alpha subunit gene (CACNA1S), R900S, which is a rare mutation associated with hypokalemic periodic paralysis. We first present a clinical description of hypokalemic periodic paralysis patients harboring CACNA1SR900S mutations: they were non-responsive to acetazolamide, but combined treatment with triamterene and potassium supplements decreased the frequency of muscle weakness attacks. All male carriers of the R900S mutation experienced such attacks, but all three female carriers were asymptomatic. This study provides further evidence for the phenotypic variation and pharmacogenomics of hypokalemic periodic paralysis. PMID:26433613

  10. Hypokalemic paralyses: a review of the etiologies, pathophysiology, presentation, and therapy.

    PubMed

    Stedwell, R E; Allen, K M; Binder, L S

    1992-03-01

    Acute hypokalemic paralysis is an uncommon cause of acute weakness. Morbidity and mortality associated with unrecognized disease include respiratory failure and death. Hence, it is imperative for physicians to be knowledgeable about the causes of hypokalemic paralysis, and consider them diagnostically. The hypokalemic paralyses represent a heterogeneous group of disorders with a final common pathway presenting as acute weakness and hypokalemia. Most cases are due to familial hypokalemic paralysis; however, sporadic cases are associated with diverse underlying etiologies including thyrotoxic periodic paralysis, barium poisoning, renal tubular acidosis, primary hyperaldosteronism, licorice ingestion, and gastrointestinal potassium losses. The approach to the patient with hypokalemic paralysis includes a vigorous search for the underlying etiology and potassium replacement therapy. Further therapy depends on the etiology of the hypokalemia. Disposition depends on severity of symptoms, degree of hypokalemia, and chronicity of disease. PMID:1586409

  11. Potential Anti-HIV Agents from Marine Resources: An Overview

    PubMed Central

    Vo, Thanh-Sang; Kim, Se-Kwon

    2010-01-01

    Human immunodeficiency virus (HIV) infection causes acquired immune deficiency syndrome (AIDS) and is a global public health issue. Anti-HIV therapy involving chemical drugs has improved the life quality of HIV/AIDS patients. However, emergence of HIV drug resistance, side effects and the necessity for long-term anti-HIV treatment are the main reasons for failure of anti-HIV therapy. Therefore, it is essential to isolate novel anti-HIV therapeutics from natural resources. Recently, a great deal of interest has been expressed regarding marine-derived anti-HIV agents such as phlorotannins, sulfated chitooligosaccharides, sulfated polysaccharides, lectins and bioactive peptides. This contribution presents an overview of anti-HIV therapeutics derived from marine resources and their potential application in HIV therapy. PMID:21339954

  12. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  13. Fetal Globin Gene Inducers: Novel Agents & New Potential

    PubMed Central

    Perrine, Susan P.; Castaneda, Serguei A.; Chui, David H.; Faller, Douglas V.; Berenson, Ronald J.; Fucharoen, Suthat

    2013-01-01

    Inducing expression of endogenous fetal globin (γ-globin) gene expression to 60-70% of alpha globin synthesis produces β-thalassemia trait globin synthetic ratios and can reduce anemia to a mild level. Several classes of therapeutics have induced γ-globin expression in beta thalassemia patients and subsequently raised total hemoglobin levels, demonstrating proof-of-concept of the approach. Butyrate treatment eliminated transfusion requirements in formerly transfusion-dependent patients with treatment for as long as 7 years. However, prior generations were not readily applicable for widespread use. Currently, a novel oral dual-action therapeutic sodium 2,2-dimethylbutyrate is in clinical trials, an oral decitabine formulation is under development, and agents with complementary mechanisms of action can be applied in combined regimens. Identification of 3 major genetic trait loci which modulate clinical severity provides avenues for developing tailored regimens. These refinements offer renewed potential to apply fetal globin induction as a treatment approach in patient-friendly regimens that can be used world-wide. PMID:20712788

  14. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  15. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  16. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  17. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  18. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  19. Hypokalemic paralysis secondary to tenofovir induced fanconi syndrome.

    PubMed

    Ramteke, Vishal V; Deshpande, Rushi V; Srivastava, Om; Wagh, Adinath

    2015-01-01

    Tenofovir induced fanconi syndrome (FS) presenting as hypokalemic paralysis is an extremely rare complication in patients on anti-retroviral therapy. We report a 50-year-old male with acquired immunodeficiency syndrome on tenofovir-based anti-retroviral therapy who presented with acute onset quadriparesis. On evaluation, he was found to have hypokalemia with hypophosphatemia, glucosuria and proteinuria suggesting FS. He regained normal power in limbs over next 12 h following correction of hypokalemia. Ours would be the second reported case in India. PMID:26692618

  20. Hypokalemic paralysis due to thyrotoxicosis accompanied by Gitelman's syndrome.

    PubMed

    Baldane, S; Ipekci, S H; Celik, S; Gundogdu, A; Kebapcilar, L

    2015-01-01

    A 35-year-old male patient was admitted with fatigue and muscle weakness. He had been on methimazole due to thyrotoxicosis for 2 weeks. Laboratory tests showed overt hyperthyroidism and hypokalemia. Potassium replacement was started with an initial diagnosis of thyrotoxic hypokalemic periodic paralysis. Later on, despite the euthyroid condition and potassium chloride treatment, hypokalemia persisted. Further investigations revealed hyperreninemic hyperaldosteronism. The patient was considered to have Gitelman's syndrome (GS) and all genetic analysis was done. A c. 1145C>T, p. Thr382Met homozygote missense mutation located on solute carrier family 12, member gene 3, exon 9 was detected and GS was confirmed. PMID:25838649

  1. Hypokalemic paralysis due to thyrotoxicosis accompanied by Gitelman's syndrome

    PubMed Central

    Baldane, S.; Ipekci, S. H.; Celik, S.; Gundogdu, A.; Kebapcilar, L.

    2015-01-01

    A 35-year-old male patient was admitted with fatigue and muscle weakness. He had been on methimazole due to thyrotoxicosis for 2 weeks. Laboratory tests showed overt hyperthyroidism and hypokalemia. Potassium replacement was started with an initial diagnosis of thyrotoxic hypokalemic periodic paralysis. Later on, despite the euthyroid condition and potassium chloride treatment, hypokalemia persisted. Further investigations revealed hyperreninemic hyperaldosteronism. The patient was considered to have Gitelman's syndrome (GS) and all genetic analysis was done. A c. 1145C>T, p. Thr382Met homozygote missense mutation located on solute carrier family 12, member gene 3, exon 9 was detected and GS was confirmed. PMID:25838649

  2. Tenofovir induced Fanconi syndrome: A rare cause of hypokalemic paralysis.

    PubMed

    Venkatesan, E P; Pranesh, M B; Gnanashanmugam, G; Balasubramaniam, J

    2014-03-01

    We report a 55-year-old female who presented to the emergency department with acute onset quadriparesis. She was diagnosed to have acquired immunodeficiency syndrome 7 years ago and was on tenofovir based anti-retroviral therapy for past 10 months. As the patient also had hypophosphatemia, glucosuria and proteinuria Fanconi syndrome (FS) was suspected. She improved dramatically over next 12 h to regain normal power and also her renal functions improved over next few days. Tenofovir induced FS presenting as hypokalemic paralysis is very rare complication and is the first case reported from India. PMID:24701043

  3. Hypokalemic rhabdomyolysis: an unusual presentation of Sjogren's syndrome

    PubMed Central

    Cherif, Eya; Ben Hassine, Lamia; Kechaou, Ines; Khalfallah, Narjess

    2013-01-01

    Hypokalaemic rhabdomyolysis represents a medical emergency requiring rapid diagnosis and appropriate aetiological treatment. Renal tubular acidosis is a common cause of hypokalemia which can be idiopathic or secondary to systemic disorders such as Sjogren's syndrome. It can remain asymptomatic or manifest with metabolic abnormalities including hypokalemia paralysis, hypocalcaemia and hyperchloremic metabolic acidosis. Rhabdomyolysis presenting with severe hypokalemia as the first manifestation of Sjogren's syndrome is rare. We report a case of a 59-year-old woman who presented to our department with severe weakness of all limbs. Laboratory examination demonstrated hypokalemic rhabdomyolysis caused by distal renal tubular acidosis. Investigations revealed Sjogren's syndrome as the underlying cause of the metabolic disorders. PMID:24165505

  4. Hypokalemic paralysis secondary to tenofovir induced fanconi syndrome

    PubMed Central

    Ramteke, Vishal V.; Deshpande, Rushi V.; Srivastava, Om; Wagh, Adinath

    2015-01-01

    Tenofovir induced fanconi syndrome (FS) presenting as hypokalemic paralysis is an extremely rare complication in patients on anti-retroviral therapy. We report a 50-year-old male with acquired immunodeficiency syndrome on tenofovir-based anti-retroviral therapy who presented with acute onset quadriparesis. On evaluation, he was found to have hypokalemia with hypophosphatemia, glucosuria and proteinuria suggesting FS. He regained normal power in limbs over next 12 h following correction of hypokalemia. Ours would be the second reported case in India. PMID:26692618

  5. Disulfiram attenuates osteoclast differentiation in vitro: a potential antiresorptive agent.

    PubMed

    Ying, Hua; Qin, An; Cheng, Tak S; Pavlos, Nathan J; Rea, Sarah; Dai, Kerong; Zheng, Ming H

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  6. Potential clinical application of interleukin-27 as an antitumor agent

    PubMed Central

    Yoshimoto, Takayuki; Chiba, Yukino; Furusawa, Jun-Ichi; Xu, Mingli; Tsunoda, Ren; Higuchi, Kaname; Mizoguchi, Izuru

    2015-01-01

    Cancer immunotherapies such as sipuleucel-T and ipilimumab are promising new treatments that harness the power of the immune system to fight cancer and achieve long-lasting remission. Interleukin (IL)-27, a member of the IL-12 heterodimeric cytokine family, has pleiotropic functions in the regulation of immune responses with both pro-inflammatory and anti-inflammatory properties. Evidence obtained using a variety of preclinical mouse models indicates that IL-27 possesses potent antitumor activity against various types of tumors through multiple mechanisms without apparent adverse effects. These mechanisms include those mediated not only by CD8+ T cells, natural killer cells and macrophages, but also by antibody-dependent cell-mediated cytotoxicity, antiangiogenesis, direct antiproliferative effects, inhibition of expression of cyclooxygenase-2 and prostaglandin E2, and suppression of epithelial–mesenchymal transition, depending on the characteristics of individual tumors. However, the endogenous role of IL-27 subunits and one of its receptor subunits, WSX-1, in the susceptibility to tumor development after transplantation of tumor cell lines or endogenously arising tumors seems to be more complicated. IL-27 functions as a double-edged sword: IL-27 increases IL-10 production and the expression of programmed death ligand 1 and T-cell immunoglobulin and mucin domain-3, and promotes the generation of regulatory T cells, and IL-27 receptor α singling enhances transformation; IL-27 may augment protumor effects as well. Here, we review both facets of IL-27, antitumor effects and protumor effects, and discuss the potential clinical application of IL-27 as an antitumor agent. PMID:26132605

  7. Disulfiram Attenuates Osteoclast Differentiation In Vitro: A Potential Antiresorptive Agent

    PubMed Central

    Cheng, Tak S.; Pavlos, Nathan J.; Rea, Sarah; Dai, Kerong; Zheng, Ming H.

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  8. Francisella tularensis as a potential agent of bioterrorism?

    PubMed

    Maurin, Max

    2015-02-01

    Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen. PMID:25413334

  9. Episodic weakness and vacuolar myopathy in hypokalemic periodic paralysis.

    PubMed

    Basali, Diana; Prayson, Richard A

    2015-11-01

    We report a 50-year-old woman who presented with a 20 year history of gradually progressive lower extremity weakness, characterized by knee buckling with occasional falls and foot dragging. She also experienced difficulty in lifting her arms above her shoulders. The primary periodic paralyses are rare disorders caused by dysfunctional ion channels in skeletal muscle. The hypokalemic type is generally an autosomal dominant condition, due to missense mutations in the alpha subunits of the skeletal muscle L-type calcium channel genes, CACN1AS, or the skeletal muscle sodium channel gene, SCN4A. The affected patients typically present with episodic weakness. For our patient, the consumption of foods high in carbohydrates seemed to precipitate the episodes of weakness. Her family history was significant for six blood relatives, including three sons and three relatives on the paternal side, who had experienced similar symptoms. A biopsy of the left rectus femoralis muscle showed vacuolar myopathic changes in the scattered muscle fibers, accompanied by occasional degenerating and regenerating muscle fibers. There was no evidence of inflammation on the biopsy. The vacuoles were often associated with increased acid phosphatase staining. An electron microscopic examination showed that the vacuolar changes were due to T-tubule dilation, a characteristic of hypokalemic periodic paralysis. Other metabolic etiologies of vacuolar myopathy, such as acid phosphatase (lysosomal) associated acid maltase deficiency (a glycogen storage disease), need to be considered in the differential diagnosis. PMID:26190219

  10. Dengue-associated hypokalemic paralysis: causal or incidental?

    PubMed

    Malhotra, Hardeep Singh; Garg, Ravindra Kumar

    2014-05-15

    Dengue-associated hypokalemic paralysis is considered an important but under-emphasized neuromuscular complication of dengue virus infection. Review of the published literature reveals that 35 instances of hypokalemic paralysis associated with dengue have been recorded from the Indian subcontinent and all but two, were males. The median age of presentation is 29 years and moderate to severe grade pure motor quadriparesis is precipitated during the phase of defervescence of moderate to high-grade fever. Recovery starts within 12h of potassium supplementation and is usually complete in a couple of days. Redistribution or increased loss of potassium from the body is speculated as the pathophysiological mechanism involved in the causation of hypokalemia. It is not possible to derive the exact etiopathological correlation from the published literature either due to a lack of comprehensive reporting or inadequate work-up of the patients. Curious is the fact that only 35 patients had manifest-paralysis when more than two-thirds affected with the dengue virus exhibit hypokalemia; whether this indicates a genetically mediated channel disorder or an incidental association remains to be seen. PMID:24680561

  11. Occupational exposures to potentially hazardous agents in the petroleum industry.

    PubMed

    Runion, H E

    1988-01-01

    This chapter has been created to acquaint the reader with occupational exposures that are more common in, and somewhat unique to, the petroleum industry. Both highly toxic materials capable of causing acute illness or even death following short-term exposure, and chemical and physical agents that pose risk of chronic and irreversible damage to health during prolonged exposure are addressed. PMID:3043733

  12. Occupational exposures to potentially hazardous agents in the petroleum industry

    SciTech Connect

    Runion, H.E.

    1988-07-01

    This chapter has been created to acquaint the reader with occupational exposures that are more common in, and somewhat unique to, the petroleum industry. Both highly toxic materials capable of causing acute illness or even death following short-term exposure, and chemical and physical agents that pose risk of chronic and irreversible damage to health during prolonged exposure are addressed.

  13. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  14. Synthesis of alpha-methylenebeutyrolactams as potential antitumor agents.

    PubMed

    Kornet, M J

    1979-03-01

    A series of 1-aryl-3-methylene-2-pyrrolidinones was synthesized via a three-step reaction sequence. 1,4-Bis-[N-(3-methylene-2-oxopyrrolidino)]benzene, which can undergo alkylation at two sites, was also prepared. These compounds are related to the known antitumor agents alpha-methylenebutyrolactones. Attempts to prepare bis-alpha-methylenelactams, in which the heterocyclic rings are joined through their nitrogen atoms by an alkylene bridge, were unsuccessful. All of the alpha-methylenelactams were screened in B16 melanocarcinoma and P-388 lymphocytic leukemia tumor systems but failed to show significant activity. PMID:423127

  15. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  16. Monocarboxylate Transporter 1 Inhibitors as Potential Anticancer Agents

    PubMed Central

    2015-01-01

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on α-cyano-4-hydroxycinnamic acid template. Structure–activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth. PMID:26005533

  17. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview

    NASA Astrophysics Data System (ADS)

    Kasiotis, Konstantinos; Tzanetou, Evangelia; Haroutounian, Serkos

    2014-09-01

    Angiogenesis is a mulit-step process by which new blood vessels are formed from preexisting vasculature. It is a key rate limiting factor in tumor growth since new blood vessels are necessary to increase tumor size. In this context it has been shown that anti-angiogenic factors can be used in cancer therapy. Among the plethora of heterocyclic compounds administered as anti-angiogenesis agents, pyrazoles constitute one of the bottlenecks of this category. Currently several pyrazole based compounds are administered or are in Phase II and III trials and new targets emerge. It is highly possible that the advent of the next two decades will lead to the discovery and use of additional pyrazoles whose anti-angiogenic profile will position them in the forefront of the battle of various malignancies. The present review is an attempt to focus on those pyrazoles that arise as anti-angiogenesis agents commenting both on the chemistry and bioactivity that these exhibit aiming to contribute to the perspectives that they hold for future research.

  18. [Primary hypokalemic periodic paralysis. Presentation of 18 cases].

    PubMed

    Ariza-Andraca, C R; Frati-Munari, A C; Ceron, E; Chavez de los Rios, J M; Martinez-Mata, J

    1993-01-01

    The clinical features of 16 males and 2 females with hypokalemic periodic paralysis (HPP) are presented. Five patients had familial HPP, 4 thyrotoxic HPP and 9 sporadic disease. The age of onset ranged from 6 to 42 years. Clinical pictures varied from paraparesis to severe quadriplegia. The disease onset was earlier in familial HPP (p < 0.05) while sporadic cases showed the most severe, albeit shorter paralysis (p < 0.05). On admission, serum potassium levels ranged from 1.5 to 3.3 mEq/L; they did not correlate with the severity of paralysis. Glucose-insulin provocation test was positive in 5/5 patients. Oral potassium chloride and amiloride were useful to prevent paralysis. Contrasting with reports from USA and Europe, in México, HPP is not exceptional, and should be considered in the differential diagnosis of acute paralysis. PMID:7926395

  19. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  20. [Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents].

    PubMed

    Opletalová, V; Sedivý, D

    1999-11-01

    Chalcones and their heterocyclic analogues show various biological effects, e.g. anti-inflammatory, antitumour, antibacterial, antituberculous, antiviral, antiprotozoal, gastroprotective, and others. The present review discusses in greater detail the fungistatic and fungicide properties of these compounds and presents also their chemical structures. The mechanism of antifungal effects of chalcones and their analogues has not been investigated in greater detail. Due to the presence of a reactive ketovinyl moiety in the molecule the compounds of this type are able to react with the thiol groups of enzymes. It cannot be excluded that chalcones interfere with the normal function of the membranes of fungi and moulds. Further investigation of chemical, physical, and biological properties of chalcones and their analogues could lead to the elucidation of the mechanism of their action and finding of effective fungicidal and fungistatic agents in this group of organic substances. PMID:10748740

  1. Biomaterials-Potential nucleation agents in blood and possible implications.

    PubMed

    Rohnke, Marcus; Henss, Anja

    2016-01-01

    Blood, simulated body fluids, and many cell culture media are supersaturated solutions with respect to several calcium phosphates. Therefore biomaterials can act as nucleation agents and evoke heterogeneous nucleation of salts on the surface of immersed biomaterials. Depending on the field of application, this can be either beneficial or disadvantageous. Although nucleation from supersaturated solutions is an old and well-known scientific phenomenon it is not standard to test new developed materials with surface analytical methods for their ability to initiate nucleation in vitro. Therefore, this communication aims to review the mineralization effect and to emphasize the possible negative implications, especially to functionalized bone implants. Surface coatings with proteins, growth factors, and, etc., can become ineffective due to deposition of a dense calcium phosphate layer. In the case of drug loaded implants, drug release might be inhibited. PMID:27316221

  2. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  3. Potential Role of Garcinol as an Anticancer Agent

    PubMed Central

    Saadat, Nadia; Gupta, Smiti V.

    2012-01-01

    Garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Although the fruit has been consumed traditionally over centuries, its biological activities, specifically its anticancer potential is a result of recent scientific investigations. The anticarcinogenic properties of garcinol appear to be moderated via its antioxidative, anti-inflammatory, antiangiogenic, and proapoptotic activities. In addition, garcinol displays effective epigenetic influence by inhibiting histone acetyltransferases (HAT 300) and by possible posttranscriptional modulation by mi RNA profiles involved in carcinogenesis. In vitro as well as some in vivo studies have shown the potential of this compound against several cancers types including breast, colon, pancreatic, and leukemia. Although this is a promising molecule in terms of its anticancer properties, investigations in relevant animal models, and subsequent human trials are warranted in order to fully appreciate and confirm its chemopreventative and/or therapeutic potential. PMID:22745638

  4. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  5. Modified polysaccharides as potential (19)F magnetic resonance contrast agents.

    PubMed

    Krawczyk, Tomasz; Minoshima, Masafumi; Sugihara, Fuminori; Kikuchi, Kazuya

    2016-06-16

    The introduction of 3-aminobenzotrifluoride into partially oxidized alginic acid, dextran, and polygalacturonic acid (10-100 kDa) by means of the imine formation and a subsequent reduction resulted in water-soluble materials containing 1-14% of fluorine. They showed a single or split (19)F NMR signal in a narrow range of -63 to -63.5 ppm. The observed T1 and T2 were approximately 1 and 0.2 s at 400 or 500 MHz instruments, respectively. The samples showed low toxicity and uptake toward the HeLa cells similar to native polysaccharides and were preferentially localized in lysosomes. A tail intravenous injection of 5 mg of modified dextran containing 1% of fluorine revealed that the probe was not trapped in liver, spleen or kidneys, but was quickly cleared with urine. The proposed materials can be used for imaging of the gastrointestinal tract or the genitourinary system and act as a material for more complex (19)F MRI agent synthesis. PMID:27148998

  6. Lycopene: a review of its potential as an anticancer agent.

    PubMed

    Bhuvaneswari, V; Nagini, S

    2005-11-01

    Dietary chemoprevention has emerged as a cost effective approach to control most prevalent chronic diseases including cancer. In particular, tomato and tomato products are recognised to confer a wide range of health benefits. Epidemiological studies have provided evidence that high consumption of tomatoes effectively lowers the risk of reactive oxygen species (ROS)-mediated diseases such as cardiovascular disease and cancer by improving the antioxidant capacity. Tomatoes are rich sources of lycopene, an antioxidant carotenoid reported to be a more stable and potent singlet oxygen quenching agent compared to other carotenoids. In addition to its antioxidant properties, lycopene shows an array of biological effects including cardioprotective, anti-inflammatory, antimutagenic and anticarcinogenic activities. The anticancer activity of lycopene has been demonstrated both in in vitro and in vivo tumour models. The mechanisms underlying the inhibitory effects of lycopene on carcinogenesis could involve ROS scavenging, upregulation of detoxification systems, interference with cell proliferation, induction of gap-junctional communication, inhibition of cell cycle progression and modulation of signal transduction pathways. This review outlines the sources, structure, absorption, metabolism, bioavailability and pharmacological properties of lycopene with special reference to its antioxidant and anticarcinogenic effects. PMID:16305484

  7. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts.

    PubMed

    Alaniz Zanon, M S; Chiotta, M L; Giaj-Merlera, G; Barros, G; Chulze, S

    2013-04-01

    Biocontrol by competitive exclusion has been developed as the most promising means of controlling aflatoxins in peanuts. A 2-year study was carried out to determine the efficacy of an Aspergillus flavus strain as biocontrol agent to reduce aflatoxin production in peanuts under field conditions in Argentina. The competitive strain used was a nontoxigenic A. flavus (AFCHG2) naturally occurring in peanut from Córdoba, Argentina. The inoculum was produced through solid-state fermentation on long grain rice and applied at rate of 50kg inoculum/ha. The incidence of the released strain within the A. flavus communities in soil and peanuts was determined using the shift in the ratio toxigenic:nontoxigenic and VCG analysis. During the 2009/2010 growing season, treatments produced significant reductions in the incidence of toxigenic isolates of A. flavus/Aspergillus parasiticus in soil and peanuts. However, no preharvest aflatoxin contamination was observed. In the 2010/2011 growing season, plants were exposed to late season drought conditions that were optimal for aflatoxin contamination. Significant reductions in aflatoxin levels averaging 71% were detected in treated plots with different inoculation treatments. The results suggest that using the strategy of competitive exclusion A. flavus AFCHG2 can be applied to reduce aflatoxin contamination in Argentinean peanuts. PMID:23454811

  8. Neem components as potential agents for cancer prevention and treatment.

    PubMed

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2014-08-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  9. Thymol and eugenol derivatives as potential antileishmanial agents.

    PubMed

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E; de Andrade, Heitor Franco

    2014-11-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5-10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl-thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis. PMID:25281268

  10. Influence of potentially remineralizing agents on bleached enamel microhardness.

    PubMed

    Borges, Alessandra Bühler; Samezima, Leticia Yumi; Fonseca, Léila Pereira; Yui, Karen Cristina Kazue; Borges, Alexandre Luiz Souto; Torres, Carlos Rocha Gomes

    2009-01-01

    This study investigated the effect of the addition of calcium and fluoride into a 35% hydrogen peroxide gel on enamel surface and subsurface microhardness. Twenty extracted human third molars were sectioned to obtain enamel fragments and they were divided into four groups (n = 20) according to the bleaching treatment. Group 1 received no bleaching procedure (control). Group 2 was treated with a 35% hydrogen peroxide gel (Total Bleach), Groups 3 and 4 were bleached with Total Bleach modified by the addition of sodium fluoride and calcium chloride, respectively. The microhardness of the enamel surface was assessed using a Vickers microdurometer immediately after the bleaching treatment. The specimens were sectioned in the central portion, polished and evaluated to determine the microhardness of the enamel subsurface to a depth of 125 microm, with an interval of 25 microm between measures. There were significant differences among the groups. In terms of surface microhardness, the bleached group exhibited the lowest means, and the calcium-modified bleached group exhibited the highest means. Regarding subsurface microhardness, there were no significant differences among the groups for the depth and interaction factors. The bleached group exhibited the lowest means, and the calcium-modified bleached group presented the highest means. It was concluded that the bleaching treatment with 35% hydrogen peroxide significantly reduced the surface and subsurface microhardness of the enamel, and the addition of fluoride and calcium in the bleaching agent increased the microhardness means of the bleached enamel. PMID:19830975

  11. ZETA-POTENTIAL OF CONCRETE IN PRESENCE OF CHELATING AGENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of concrete surfaces at Nuclear Power Plants (NPP) and reprocessing facilities by radionuclides/heavy metals is a significant and widespread problem throughout the world’s Nuclear Power Industries. The current study of the zeta-potentials (') of concrete particles in the presence of va...

  12. Radioiodinated fenetylline (captagon): A new potential brain imaging agent

    SciTech Connect

    Biersack, H.J.; Klunenberg, H.; Breuel, H.P.; Reske, S.N.; Reichmann, K.; Winkler, C.

    1984-01-01

    Since about 2 years /sup 123/I-labeled iodamphetamines (IMP) and diamines (HIPDM) have been used for scintigraphic brain investigations. As another possibly useful brain imaging agent we studied radioiodine labeled Fenetylline which is metabolized into amphetamine. Thirty wistar rats were injected 5 ..mu..Ci /sup 125/I-IMP and 2 ..mu..Ci /sup 131/I-Fenetylline each simultaneously. The animals were sacrificed 5,10,15,30,60, and 120 min. p.i. The radioactivity content of tissue specimens (brain, cerebellum, liver, kidney, lung, myocardium, muscle) was measured in a well-counter (% dose/g tissue). In 2 dogs sequential cerebral scintigraphy was performed following the injection of 0.5 mCi /sup 131/I-Fenetylline. Three patients underwent brain SPECT after injection of 6.5 mCi /sup 123/I-Fenetylline. The results can be summarized as follows: after 5/10 min. p.i. Fenetylline-uptake in the brain of rats was 1.0/1.3% compared to 1.3/1.9% (IMP). A fast decrease of cerebral Fenetylline concentration was established after 30 (0.2%) and 60 (0.5%) min. The canine and human sequential scintigraphy revealed a rapid cerebral uptake (maximum after 2-10 min.) suggesting that Fenetylline is concentrated in the brain as a function of cerebral blood flow. From the first clinical findings it appears to be likely that the combined use of /sup 123/I labelled IMP and Fenetylline for SPECT may lead to a more differentiated evaluation of cerebral blood flow and metabolism.

  13. New water soluble pyrroloquinoline derivatives as new potential anticancer agents.

    PubMed

    Ferlin, Maria Grazia; Marzano, Christine; Dalla Via, Lisa; Chilin, Adriana; Zagotto, Giuseppe; Guiotto, Adriano; Moro, Stefano

    2005-08-01

    A new class of water soluble 3H-pyrrolo[3,2-f]quinoline derivatives has been synthesized and investigated as potential anticancer drugs. Water solubility profiles have been used to select the most promising derivatives. The novel compound 10, having two (2-diethylamino-ethyl) side chains linked through positions 3N and 9O, presents a suitable water solubility profile, and it was shown to exhibit cell growth inhibitory properties when tested against the in-house panel of cell lines, in particular those obtained from melanoma. PMID:15936202

  14. Potential Effects of Cannabidiol as a Wake-Promoting Agent

    PubMed Central

    Murillo-Rodríguez, Eric; Sarro-Ramírez, Andrea; Sánchez, Daniel; Mijangos-Moreno, Stephanie; Tejeda-Padrón, Alma; Poot-Aké, Alwin; Guzmán, Khalil; Pacheco-Pantoja, Elda; Arias-Carrión, Oscar

    2014-01-01

    Over the last decades, the scientific interest in chemistry and pharmacology of cannabinoids has increased. Most attention has focused on ∆9-tetrahydrocannabinol (∆9-THC) as it is the psychoactive constituent of Cannabis sativa (C. sativa). However, in previous years, the focus of interest in the second plant constituent with non-psychotropic properties, cannabidiol (CBD) has been enhanced. Recently, several groups have investigated the pharmacological properties of CBD with significant findings; furthermore, this compound has raised promising pharmacological properties as a wake-inducing drug. In the current review, we will provide experimental evidence regarding the potential role of CBD as a wake-inducing drug. PMID:24851090

  15. KETAMINE: A POTENTIAL RAPID-ACTING ANTISUICIDAL AGENT?

    PubMed

    Wilkinson, Samuel T; Sanacora, Gerard

    2016-08-01

    Ketamine has attracted widespread attention as a potential rapid-acting antidepressant. There is also considerable interest in its use for the rapid treatment of patients deemed at risk for suicide. Here, we review the available evidence (open-label and randomized controlled trials) that examine the effects of ketamine on suicidal ideation (SI). Overall, data suggest that ketamine has a rapid albeit transient effect in reducing SI, though some studies had mixed results at different time points or using different assessments. Weaknesses to the existing literature include the small sample sizes of the studies, the exclusion of patients with significant SI at baseline from many of the studies, and the potential functional unblinding when participants are randomized to saline as placebo. The evidence supporting the clinical use of ketamine for SI is very preliminary. Although ketamine appears to a promising therapeutic option in a context where there is a great unmet need (i.e., patients at imminent risk of suicide), further controlled trials are needed to allow for meaningful clinical recommendations. PMID:27082101

  16. New inhibitors of glycogen phosphorylase as potential antidiabetic agents.

    PubMed

    Somsák, L; Czifrák, K; Tóth, M; Bokor, E; Chrysina, E D; Alexacou, K-M; Hayes, J M; Tiraidis, C; Lazoura, E; Leonidas, D D; Zographos, S E; Oikonomakos, N G

    2008-01-01

    The protein glycogen phosphorylase has been linked to type 2 diabetes, indicating the importance of this target to human health. Hence, the search for potent and selective inhibitors of this enzyme, which may lead to antihyperglycaemic drugs, has received particular attention. Glycogen phosphorylase is a typical allosteric protein with five different ligand binding sites, thus offering multiple opportunities for modulation of enzyme activity. The present survey is focused on recent new molecules, potential inhibitors of the enzyme. The biological activity can be modified by these molecules through direct binding, allosteric effects or other structural changes. Progress in our understanding of the mechanism of action of these inhibitors has been made by the determination of high-resolution enzyme inhibitor structures (both muscle and liver). The knowledge of the three-dimensional structures of protein-ligand complexes allows analysis of how the ligands interact with the target and has the potential to facilitate structure-based drug design. In this review, the synthesis, structure determination and computational studies of the most recent inhibitors of glycogen phosphorylase at the different binding sites are presented and analyzed. PMID:19075645

  17. Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents.

    PubMed

    Cassady, J M; Baird, W M; Chang, C J

    1990-01-01

    Recent advances in the chemistry of novel bioactive natural products are reported. This research is directed to the exploration of plants with confirmed activity in bioassays designed to detect potential cancer chemotherapeutic and chemopreventive agents. Structural work and chemical studies are reported for several cytotoxic agents from the plants Annona densicoma, Annona reticulata, Claopodium crispifolium, Polytrichum obioense, and Psorospermum febrifugum. Studies are also reported based on development of a mammalian cell culture benzo[a]pyrene metabolism assay for the detection of potential anticarcinogenic agents from natural products. In this study a number of isoflavonoids and flavonoids with antimutagenic activity have been discovered. PMID:2189947

  18. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

    PubMed Central

    Jia, Min; Nie, Yan; Cao, Da-Peng; Xue, Yun-Yun; Wang, Jie-Si; Zhao, Lu; Rahman, Khalid; Zhang, Qiao-Yan; Qin, Lu-Ping

    2012-01-01

    Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease. PMID:23365596

  19. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  20. Nutraceuticals as potential therapeutic agents for colon cancer: a review.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-06-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  1. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  2. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  3. Hypokalemic paralysis as primary presentation of Fanconi syndrome associated with Sjögren syndrome.

    PubMed

    Wang, Chih-Chiang; Shiang, Jeng-Chuan; Huang, Wen-Te; Lin, Shih-Hua

    2010-06-01

    Hypokalemic paralysis is a rare presentation of Fanconi syndrome (FS) caused by Sjögren Syndrome (SS). We describe a 39-year-old man who manifested flaccid paralysis of 4 limbs. Laboratory investigations showed profound hypokalemia (1.6 mmol/L) with renal K wasting, hyperchloremic metabolic acidosis with positive urine anion gap, hypophosphatemia with hyperphosphaturia, hypouricemia with hyperuricosuria, normoglycemic glycosuria, and abnormal serum creatinine concentration 2.2 mg/dL. A thorough survey for the cause of FS revealed that he had xerophthalmia and xerostomia accompanied by high anti-Ro antibody, positive Schirmer test, and delayed saliva excretion on sialoscintigraphy, confirming the diagnosis of SS. Potassium citrate, active vitamin D3, and high phosphate diet for his FS coupled with mycophenolate mofetil for SS resolved clinical symptoms and ameliorated renal function. Early recognition of HP due to the underlying SS-related FS with prompt therapy not only could terminate potentially life-threatening hypokalemia, but also improve renal outcome. PMID:20414123

  4. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD. PMID:22211691

  5. Potential New Agents for the Management of Hyperkalemia.

    PubMed

    Packham, David K; Kosiborod, Mikhail

    2016-02-01

    Hyperkalemia is a common electrolyte disturbance with multiple potential etiologies. It is usually observed in the setting of reduced renal function. Mild to moderate hyperkalemia is usually asymptomatic, but is associated with poor prognosis. When severe, hyperkalemia may cause serious acute cardiac arrhythmias and conduction abnormalities, and may result in sudden death. The rising prevalence of conditions associated with hyperkalemia (heart failure, chronic kidney disease, and diabetes) and broad use of renin-angiotensin-aldosterone system (RAAS) inhibitors and mineralocorticoid receptor antagonists (MRAs), which improve patient outcomes but increase the risk of hyperkalemia, have led to a significant rise in hyperkalemia-related hospitalizations and deaths. Current non-invasive therapies for hyperkalemia either do not remove excess potassium or have poor efficacy and tolerability. There is a clear need for safer, more effective potassium-lowering therapies suitable for both acute and chronic settings. Patiromer sorbitex calcium and sodium zirconium cyclosilicate (ZS-9) are two new potassium-lowering compounds currently in development. Although they have not yet been approved by the US FDA, both have demonstrated efficacy and safety in recent trials. Patiromer sorbitex calcium is a polymer resin and sorbitol complex that binds potassium in exchange for calcium; ZS-9, a non-absorbed, highly selective inorganic cation exchanger, traps potassium in exchange for sodium and hydrogen. This review discusses the merits of both novel drugs and how they may help optimize the future management of patients with hyperkalemia. PMID:26156040

  6. Remineralizing potential of various agents on dental erosion

    PubMed Central

    Somani, Rani; Jaidka, Shipra; Singh, Deepti Jawa; Arora, Vanika

    2014-01-01

    Aim The purpose of this study is to compare the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP, Tooth Mousse) containing and casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF, Tooth Mousse Plus) containing pastes on dental erosion. Materials and methods Thirty permanent non-carious premolars indicated for orthodontic extraction were included in this study and were sectioned in mesiodistal direction vertically. After immersion in the carbonated drink for 14 min, samples were treated with various remineralizing pastes which were CPP-ACP containing paste (Tooth Mousse) and CPP-ACPF containing paste (Tooth Mousse Plus) according to the manufacturer's instructions. Vickers Microhardness was recorded at baseline, after exposure to erosive drink and after treatment with remineralizing pastes. Data obtained was statistically analysed using Student t-test with a level of significance set at p < 0.05. Results CPP-ACP (Tooth Mousse) and CPP-ACP with fluoride (Tooth Mousse Plus) resulted in 30.52% and 38.98% increase in post-erosion microhardness values respectively. The remineralizing potential of CPP-ACP with fluoride containing paste (Tooth Mousse Plus) was significantly better than that of CPP-ACP containing paste (Tooth Mousse) (p < 0.05). Conclusion Casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF, Tooth Mousse Plus) can be recommended to be used in preventing erosive tooth wear from acidic beverages. PMID:25737926

  7. Characterizing potential heart agents with an isolated perfused heart system

    SciTech Connect

    Pendleton, D.B.; Sands, H.; Gallagher, B.M.; Camin, L.L.

    1984-01-01

    The authors have used an isolated perfused heart system for characterizing potential myocardial perfusion radiopharamaceuticals. Rabbit or guinea pig (GP) hearts are removed and perfused through the aorta with a blood-free buffer. Heart rate and ventricular pressure are monitored as indices of viability. Tc-99m-MAA is 96-100% retained in these hearts, and Tc-99m human serum albumin shows less than 5% extraction. Tl-201 is 30-40% extracted. It is known that in-vivo, Tc-99m(dmpe)/sub 2/Cl/sub 2//sup +/ is taken up by rabbit heart but not by GP or human heart. Analogous results are obtained with the isolated perfused heart model, where the complex is extracted well by the isolated rabbit heart (24%) but not by the GP heart (<5%). Values are unchanged if human, rabbit or GP blood is mixed and co-injected with the complex. Tc-99m)dmpe)/sub 3//sup +/ is also taken up by rabbit but not by GP hearts in-vivo. However, isolated perfused hearts of both species extract this complex well (45-52%). Heart uptake is diminished to <7% if the complex is pre-equilibrated with human blood. GP blood produces a moderate inhibition (in GP hearts only) and rabbit blood has no effect. This suggests that a human or GP blood factor may have a significant effect on heart uptake of this complex. Tc-99m(CN-t-butyl)/sub 6//sup +/ is taken up well by both rabbit and GP hearts in-vivo, and is extracted 100% by both isolated perfused hearts. Heart retention remains high (73-75%) in the presence of human blood.

  8. β-Nitrostyrenes as Potential Anti-leishmanial Agents

    PubMed Central

    Shafi, Syed; Afrin, Farhat; Islamuddin, Mohammad; Chouhan, Garima; Ali, Intzar; Naaz, Faatima; Sharma, Kalicharan; Zaman, Mohammad S.

    2016-01-01

    Development of new therapeutic approach to treat leishmaniasis has become a priority. In the present study, the antileishmanial effect of β-nitrostyrenes was investigated against in vitro promastigotes and amastigotes. A series of β-nitrostyrenes have been synthesized by using Henry reaction and were evaluated for their antimicrobial activities by broth microdilution assay and in vitro antileishmanial activities against Leishmania donovani promastigotes by following standard guidelines. The most active compounds were futher evaluated for their in vitro antileishmanial activities against intracellular amastigotes. Among the tested β-nitrostyrenes, compounds 7, 8, 9, 12, and 17 exhibited potential activities (MICs range, 0.25–8 μg/mL) against clinically significant human pathogenic fungi. However, the microbactericidal concentrations (MBCs) and the microfungicidal concentrations (MFCs) were found to be either similar or only two-fold greater than the MICs. Anti-leishmanial results demonstrated that compounds 9, 12, 14, and 18 were found to be most active among the tested samples and exhibited 50% inhibitory concentration (IC50) by 23.40 ± 0.71, 37.83 ± 3.74, 40.50 ± 1.47, 55.66 ± 2.84 nM against L. donovani promastigotes and 30.5 ± 3.42, 21.46 ± 0.96, 26.43 ± 2.71, and 61.63 ± 8.02 nM respectively against intracellular L. donovani promastigotes amastigotes respectively which are comparable with standard AmB (19.60 ± 1.71 nM against promastigotes and 27.83 ± 3.26 nM against amastigotes). Compounds 9, 12, 14, and 18 were found to have potent in vitro leishmanicidal activity against L. donovani and found to be non-toxic against mammalian macrophages even at a concentration of 25 μM. Nitric oxide (NO) estimation studies reveals that these compounds are moderately inducing NO levels.

  9. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent.

    PubMed

    Prieto, M J; Bacigalupe, D; Pardini, O; Amalvy, J I; Venturini, C; Morilla, M J; Romero, E L

    2006-12-01

    The high doses of sulfadiazine (SDZ), used in synergistic combination with pyrimethamine, are mainly responsible for severe side effects and discontinuation of toxoplasmosis treatments. In the search for new strategies that improve the efficacy of treatments with reduced doses of SDZ, we have determined the performance of cationic G4 (DG4) and anionic G4.5 (DG4.5) poly(amidoamine) (PAMAM) dendrimers to act as SDZ nanocarriers. Both dendrimers could efficiently load SDZ (SDZ-DG4 and SDZ-DG4.5) up to a ratio of 30 molecules SDZ per dendrimer molecule. The MTT assay on Vero and J774 cells showed no cytotoxicity for DG4.5 and its SDZ complex incubated between 0.03 and 33 microM of dendrimer concentration. On the other hand, DG4 and its SDZ complex resulted cytotoxic when incubated at dendrimer concentrations higher than 3.3 microM. Finally, complexes and empty dendrimers were in vitro tested against Vero cells infected with RH strain of Toxoplasma gondii along 4h of treatment. For SDZ-DG4.5 and DG4.5 to cause an infection decrease between 25 and 40%, respectively, a dendrimer concentration of 33 microM was required; however, SDZ-DG4 produced the highest infection decrease of 60% at 0.03 microM. These preliminary results, achieved with nanomolar doses of SDZ-DG4 as unique active principle, point to this complex as a suitable potential candidate for antitoxoplasmic therapy. PMID:16920292

  10. Hypochlorous Acid as a Potential Wound Care Agent

    PubMed Central

    Wang, L; Bassiri, M; Najafi, R; Najafi, K; Yang, J; Khosrovi, B; Hwong, W; Barati, E; Belisle, B; Celeri, C; Robson, MC

    2007-01-01

    Objective: Hypochlorous acid (HOCl), a major inorganic bactericidal compound of innate immunity, is effective against a broad range of microorganisms. Owing to its chemical nature, HOCl has never been used as a pharmaceutical drug for treating infection. In this article, we describe the chemical production, stabilization, and biological activity of a pharmaceutically useful formulation of HOCl. Methods: Stabilized HOCl is in the form of a physiologically balanced solution in 0.9% saline at a pH range of 3.5 to 4.0. Chlorine species distribution in solution is a function of pH. In aqueous solution, HOCl is the predominant species at the pH range of 3 to 6. At pH values less than 3.5, the solution exists as a mixture of chlorine in aqueous phase, chlorine gas, trichloride (Cl3−), and HOCl. At pH greater than 5.5, sodium hypochlorite (NaOCl) starts to form and becomes the predominant species in the alkaline pH. To maintain HOCl solution in a stable form, maximize its antimicrobial activities, and minimize undesirable side products, the pH must be maintained at 3.5 to 5. Results: Using this stabilized form of HOCl, the potent antimicrobial activities of HOCl are demonstrated against a wide range of microorganisms. The in vitro cytotoxicity profile in L929 cells and the in vivo safety profile of HOCl in various animal models are described. Conclusion: On the basis of the antimicrobial activity and the lack of animal toxicity, it is predicted that stabilized HOCl has potential pharmaceutical applications in the control of soft tissue infection. PMID:17492050

  11. Water-soluble platinum phthalocyanines as potential antitumor agents.

    PubMed

    Bologna, Giuseppina; Lanuti, Paola; D'Ambrosio, Primiano; Tonucci, Lucia; Pierdomenico, Laura; D'Emilio, Carlo; Celli, Nicola; Marchisio, Marco; d'Alessandro, Nicola; Santavenere, Eugenio; Bressan, Mario; Miscia, Sebastiano

    2014-06-01

    Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 μM) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 μM. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment. PMID:24699848

  12. Role of sodium tungstate as a potential antiplatelet agent

    PubMed Central

    Fernández-Ruiz, Rebeca; Pino, Marc; Hurtado, Begoña; García de Frutos, Pablo; Caballo, Carolina; Escolar, Ginés; Gomis, Ramón; Diaz-Ricart, Maribel

    2015-01-01

    Purpose Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W), a protein tyrosine phosphatase 1B (PTP1B) inhibitor, has been investigated in this study. Methods Wild-type (WT) and PTP1B knockout (PTP1B−/−) mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed. Results In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC) by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001). Results with Na2O4W were similar to those in untreated PTP1B−/− mice (5.0±0.3 mg). Treatment of the PTP1B−/− mice with Na2O4W modified only slightly this response. In human blood, a dose-dependent effect was observed. At 200 μM, closure times in the PFA-100 were prolonged. On denuded vessels, %SC and thrombi formation (%T) decreased with Na2O4W. Neither the aggregating response nor the viscoelastic clot properties were affected. Conclusion Na2O4W decreases consistently the hemostatic capacity of platelets, inhibiting their adhesive and cohesive properties under flow conditions in mice and in human blood, resulting in smaller thrombi. Although Na2O4W may be acting on platelet PTP1B, other potential targets should not be disregarded. PMID:26060394

  13. An unusual case of dengue infection presenting with hypokalemic paralysis with hypomagnesemia.

    PubMed

    Jain, Rajendra Singh; Gupta, Pankaj Kumar; Agrawal, Rakesh; Kumar, Sunil; Khandelwal, Kapil

    2015-08-01

    Neurological manifestations are unusual in dengue fever and can be due to neurotropic effect, systemic complications of dengue infection, or immune mediated. Acute hypokalemic paralysis is a rare systemic complication of dengue infection; however, hypokalemia along with hypomagnesemia has not been reported earlier. We herein report an extremely unusual and probably the first case of dengue infection in a 30-year-old male who presented to us with hypokalemic paralysis along with hypomagnesemia. This case report highlights that hypomagnesemia may be a significant complication in dengue infection. Correction of hypomagnesemia is of paramount importance to avoid refractory hypokalemia leading to severe consequences. PMID:26209406

  14. An unusual case of hypokalemic paralysis associated with primary Sjogren's syndrome.

    PubMed

    Toy, Walton C; Jasin, Hugo E

    2008-06-01

    43-year-old Caucasian female presented with progressive weakness and dyspnea. She was diagnosed with hypokalemic paralysis from a severe distal renal tubular acidosis (RTA). Immunologic work-up showed a strongly positive ANA of 1:640 and positive antibodies to SSA and SSB. Schirmer's test was normal. Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede sicca complaints. The pathology in most cases is a tubulointerstitial nephritis causing among other things, distal RTA, and, rarely, hypokalemic paralysis. Treatment consists of potassium repletion, alkali therapy and corticosteroids. Primary SS should be a differential in premenopausal women with acute weakness and hypokalemia. PMID:18564466

  15. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol‑1 L s‑1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  16. Draft Genome Sequence of Chromobacterium vaccinii, a Potential Biocontrol Agent against Mosquito (Aedes aegypti) Larvae

    PubMed Central

    Vöing, Kristin; Harrison, Alisha

    2015-01-01

    Chromobacterium vaccinii has been isolated only from cranberry bogs in Massachusetts. While it is unknown what role these bacteria play in their natural environments, they hold potential as biological control agents against the larvae of insect pests. Potential virulence genes were identified, including the violacein synthesis pathway, siderophores, and chitinases. PMID:25999572

  17. [Hypokalemic paralysis during pregnancy: a report of two cases].

    PubMed

    Hernández Pacheco, José Antonio; Estrada Altamirano, Ariel; Pérez Borbón, Guadalupe María; Torres Torres, Cutberto

    2009-12-01

    The hypokalemic paralysis is a disease characterized by the development of acute muscular weakness, associated to low levels of blood potassium (< 3.5 meq/L). Here we present two cases: in the first one, a 23 years old woman, with 15.5 weeks of gestation has a cuadriplegia associated to blood potassium level of 1.4 meq/L, diagnosed with distal tubular acidosis; she required mechanical ventilation for respiratory paralysis. The medical profile remits with potassium intravenous replacement and the pregnancy ends with a spontaneous abortion. The second case is a 15 years old woman with 26.5 weeks of pregnancy, who suffers a generalized paralysis with blood potassium of 2.7 meq/L, requiring also mechanical ventilation for respiratory paralysis; the final diagnosis was Barterr syndrome, and the medical profile remited after potassium supplement. Her pregnancy got complicated with a severe preeclampsia, enough reason for interrumpting the pregnancy at 29.1 weeks of gestation. In both cases Guilliain-Barre syndrome was ruled out. PMID:20077884

  18. Cardiac arrhythmias in hypokalemic periodic paralysis: Hypokalemia as only cause?

    PubMed

    Stunnenberg, Bas C; Deinum, Jaap; Links, Thera P; Wilde, Arthur A; Franssen, Hessel; Drost, Gea

    2014-09-01

    It is unknown how often cardiac arrhythmias occur in hypokalemic periodic paralysis (HypoPP) and if they are caused by hypokalemia alone or other factors. This systematic review shows that cardiac arrhythmias were reported in 27 HypoPP patients. Cases were confirmed genetically (13 with an R528H mutation in CACNA1S, 1 an R669H mutation in SCN4A) or had a convincing clinical diagnosis of HypoPP (13 genetically undetermined) if reported prior to the availability of genetic testing. Arrhythmias occurred during severe hypokalemia (11 patients), between attacks at normokalemia (4 patients), were treatment-dependent (2 patients), or unspecified (10 patients). Nine patients died from arrhythmia. Convincing evidence for a pro-arrhythmogenic factor other than hypokalemia is still lacking. The role of cardiac expression of defective skeletal muscle channels in the heart of HypoPP patients remains unclear. Clinicians should be aware of and prevent treatment-induced cardiac arrhythmia in HypoPP. PMID:25088161

  19. Practical aspects in the management of hypokalemic periodic paralysis

    PubMed Central

    Levitt, Jacob O

    2008-01-01

    Management considerations in hypokalemic periodic paralysis include accurate diagnosis, potassium dosage for acute attacks, choice of diuretic for prophylaxis, identification of triggers, creating a safe physical environment, peri-operative measures, and issues in pregnancy. A positive genetic test in the context of symptoms is the gold standard for diagnosis. Potassium chloride is the favored potassium salt given at 0.5–1.0 mEq/kg for acute attacks. The oral route is favored, but if necessary, a mannitol solvent can be used for intravenous administration. Avoidance of or potassium prophylaxis for common triggers, such as rest after exercise, high carbohydrate meals, and sodium, can prevent attacks. Chronically, acetazolamide, dichlorphenamide, or potassium-sparing diuretics decrease attack frequency and severity but are of little value acutely. Potassium, water, and a telephone should always be at a patient's bedside, regardless of the presence of weakness. Perioperatively, the patient's clinical status should be checked frequently. Firm data on the management of periodic paralysis during pregnancy is lacking. Patient support can be found at . PMID:18426576

  20. Potential organ or tumor imaging agents. 32. A triglyceride ester of p-iodophenyl pentadecanoic acid as a potential hepatic imaging agent.

    PubMed

    Schwendner, S W; Weichert, J P; Longino, M A; Gross, M D; Counsell, R E

    1992-08-01

    A triglyceride analog, glycerol-2-palmitoyl-1,3-di-15-(p-iodophenyl)pentadecanoate (DPPG) was synthesized and radiolabeled for evaluation as a potential functional liver scintigraphic agent. Uptake of DPPG was compared in normal, diabetic, tumor-bearing and heparin pretreated rats, revealing differences in uptake and clearance of radioactivity, correlating with hepatic lipase activity of these groups. Similar results were observed by gamma-camera scintigraphy. Comparing the uptake of DPPG with that of its fatty acid component, 15-(p-iodophenyl)pentadecanoic acid (IPPA), revealed that the peak uptake of IPPA in the liver was about half that of DPPG. Based upon these findings, DPPG warrants further study as a hepatic radiodiagnostic agent. PMID:1522018

  1. Hypokalemic paralysis following severe vomiting in a child with intestinal obstruction due to round worms.

    PubMed

    Nagotkar, Leena; Shanbag, Preeti; Shenoy, Prithi

    2010-02-01

    Ascariasis is one of the most common helminthic infestations in humans. Massive infestation can give rise to serious complications such as intestinal obstruction. We present a 4-year-old boy, who presented with acute flaccid quadriparesis due to the hypokalemic alkalosis induced by severe vomiting. Severe vomiting was due to intestinal obstruction caused by round worms. PMID:19502600

  2. Hypokalemic quadriplegia and respiratory arrest revealing primary Sjögren's syndrome.

    PubMed

    Poux, J M; Peyronnet, P; Le Meur, Y; Favereau, J P; Charmes, J P; Leroux-Robert, C

    1992-04-01

    We report a case of hypokalemic flaccid quadriplegia with sudden respiratory arrest in a 38-year-old woman discovered to have distal renal tubular acidosis which lead to the diagnosis of primary Sjögren's syndrome. This case is compared to 8 similar cases previously described in the literature. PMID:1582057

  3. Hypokalemic paralysis as a presenting manifestation of primary Sjögren's syndrome: A report of two cases.

    PubMed

    Khandelwal, Deepak; Bhattacharya, Saptarshi; Khadgawat, Rajesh; Kaur, Satbir; Tandon, Nikhil; Ammini, Ariachery C

    2012-09-01

    Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease characterized by a progressive lymphocytic infiltration of the exocrine glands with varying degrees of systemic involvement. Overt or latent renal tubular acidosis (RTA), caused by tubulointerstitial nephropathy, is a common extraglandular manifestation of pSS. Hypokalemic paralysis is a well known, albeit rare complication of severe distal RTA from any cause. Cases of pSS manifesting for the first time as hypokalemic paralysis caused by distal RTA have been rarely reported. We herein present our experience of two cases, who presented to us for evaluation of hypokalemic paralysis and on work up found evidence of distal RTA, which on further work up found to be secondary to pSS. A high index of suspicion for pSS should be kept in all patients with hypokalemic paralysis. PMID:23087883

  4. Imaging of hemorrhagic fever with renal syndrome: a potential bioterrorism agent of military significance.

    PubMed

    Bui-Mansfield, Liem T; Cressler, Dana K

    2011-11-01

    Hemorrhagic fever with renal syndrome (HFRS) is a potentially fatal infectious disease with worldwide distribution. Its etiologic agents are viruses of the genus Hantavirus of the virus family Bunyaviridae. Hypothetical ease of production and distribution of these agents, with their propensity to incapacitate victims and overwhelm health care resources, lend themselves as significant potential biological agents of terrorism. HFRS has protean clinical manifestations, which may mimic upper respiratory tract infection, nephrolithiasis, and Hantavirus pulmonary syndrome and may delay proper treatment. Sequelae of HFRS, such as hemorrhage, acute renal failure, retroperitoneal edema, pancreatitis, pulmonary edema, and neurologic symptoms, can be detected by different imaging modalities. Medical providers caring for HFRS patients must be aware of its radiologic features, which may help to confirm its clinical diagnosis. In this article, the authors review the epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and complications of HFRS. PMID:22165665

  5. A potentially artifact-free oral contrast agent for gastrointestinal MRI.

    PubMed

    Liebig, T; Stoupis, C; Ros, P R; Ballinger, J R; Briggs, R W

    1993-11-01

    The combination of diamagnetic barium sulfate and superparamagnetic iron oxide (SPIO) in one suspension produces a macroscopic cancellation of positive and negative magnetic susceptibility components that can potentially eliminate susceptibility artifacts even with gradient echo pulse sequences. The relaxation properties that make the SPIO suspension a useful negative contrast agent are retained. PMID:8259066

  6. In vitro and In vivo Studies on Stilbene Analogs as Potential Treatment Agents for Colon Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based upon the potential of resveratrol as a cancer chemopreventive agent, 27 stilbenes analogs were synthesized and tested against colon cancer cell line HT-29. Among these compounds, amino derivative (Z)-4-(3,5-dimethoxystyryl) aniline (4), (Z)-methyl 4-(3,5-dimethoxystyryl) benzoate (6) and (Z)-1...

  7. Search for fungi as potential biological control agents of Echinochloa crus-galli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cockspur dace, Echinochloa crus-galli (family Poaceae), is the most widespread and harmful weed in Russian rice production. Heavy infestations of the weed cause rice-crop losses up to 50 percent. With the purpose of discovering pathogenic fungi as potential agents for biological control of E. crus-g...

  8. Cysteamine-related agents could be potential antidepressants through increasing central BDNF levels.

    PubMed

    Tsai, Shih-Jen

    2006-01-01

    Major depressive disorder (MDD) is a common mental disease, but with an unknown etiology. Antidepressants are the main biological treatment for MDD. However, current antidepressive agents have a slow onset of effect and a substantial proportion of MDD patients do not clinically improve, despite maximal medication. Thus, the exploration for new antidepressants with novel strategies may help to develop faster and more effective antidepressant agents. Studies in the recent decades have demonstrated that antidepressants increase central brain-derived neurotrophic factor (BDNF) levels and activating the BDNF-signaling pathway may play an important role in their therapeutic mechanism. Cysteamine is a natural product of cells and constitutes the terminal region of the CoA molecule. Recent work has found that cysteamine and a related agent, cystamine, have neuroprotective effects in Huntington's disease (HD) mice, through enhancing central BDNF levels. Furthermore, cystamine or cysteamine injection could increase serum BDNF levels in wild-type mice as well as HD mice. Since activation of the BDNF-dependent pathway plays an important role in the mechanism of antidepressant therapeutic action, cystamine or its derivatives could have potential antidepressant therapeutic effects. Among these agents, pantethine may be one of the most promising agents. It is a naturally occurring compound which can be administered orally with negligible side effects, and is metabolized to cysteamine. Further evaluation of the therapeutic and toxic effects of these cysteamine-related antidepressant agents in MDD animal models is needed before any clinical application. PMID:16797865

  9. Intelligent Agents and Their Potential for Future Design and Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Intelligent Agents and Their Potential for Future Design and Synthesis Environment, held at NASA Langley Research Center, Hampton, VA, September 16-17, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, industry and universities. The objectives of the workshop were to assess the status of intelligent agents technology and to identify the potential of software agents for use in future design and synthesis environment. The presentations covered the current status of agent technology and several applications of intelligent software agents. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  10. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  11. New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents.

    PubMed

    Zagotto, G; Supino, R; Favini, E; Moro, S; Palumbo, M

    2000-01-01

    The amino-substituted anthracene-9,10-dione (9,10-anthraquinone) derivatives represent one of the most important classes of potential anticancer agents. To better understand the basic rules governing DNA sequence specificity, we have recently synthesized a new class of D- and L-aminoacyl-anthraquinone derivatives. We have tested these new compounds as cytotoxic agents, and we have correlated their activity with the configuration of the chiral aminoacyl moiety. Molecular modeling studies have been performed to compare the test drugs in terms of steric overlapping. PMID:10755224

  12. General guidelines for medically screening mixed population groups potentially exposed to nerve or vesicant agents

    SciTech Connect

    Watson, A.P.; Munro, N.B.; Sidell, F.R.; Leffingwell, S.S.

    1992-01-01

    A number of state and local planners have requested guidance on screening protocols and have expressed interest in sampling body fluids from exposed or potentially exposed individuals as a means of estimating agent dose. These guidelines have been developed to provide a clear statement that could be used by state and local emergency response personnel in the event of a nerve or vesicant agent incident resulting in off-post contamination; maximum protection from harm is the goal. The assumption is that any population group so exposed would be heterogeneous for age, gender, reproductive status, and state of health.

  13. Novel Hydrogel Material as a Potential Embolic Agent in Embolization Treatments.

    PubMed

    Zhou, Feng; Chen, Liming; An, Qingzhu; Chen, Liang; Wen, Ying; Fang, Fang; Zhu, Wei; Yi, Tao

    2016-01-01

    We report a novel graphene-oxide (GO) enhanced polymer hydrogel (GPH) as a promising embolic agent capable of treating cerebrovascular diseases and malignant tumors, using the trans-catheter arterial embolization (TAE) technique. Simply composed of GO and generation five poly(amidoamine) dendrimers (PAMAM-5), our rheology experiments reveal that GPH exhibits satisfactory mechanical strength, which resist the high pressures of blood flow. Subcutaneous experiments on Sprague-Dawley (SD) rats demonstrate the qualified biocompatibility of GPH. Finally, our in vivo experiments on New Zealand rabbits, which mix GPH with the X-ray absorbing contrast agent, Iohexol, reveal complete embolization of the artery. We also note that GPH shortens embolization time and exhibits low toxicity in follow-up experiments. Altogether, our study demonstrates that GPH has many advantages over the currently used embolic agents and has potential applications in clinical practice. PMID:27561915

  14. Novel Hydrogel Material as a Potential Embolic Agent in Embolization Treatments

    PubMed Central

    Zhou, Feng; Chen, Liming; An, Qingzhu; Chen, Liang; Wen, Ying; Fang, Fang; Zhu, Wei; Yi, Tao

    2016-01-01

    We report a novel graphene-oxide (GO) enhanced polymer hydrogel (GPH) as a promising embolic agent capable of treating cerebrovascular diseases and malignant tumors, using the trans-catheter arterial embolization (TAE) technique. Simply composed of GO and generation five poly(amidoamine) dendrimers (PAMAM-5), our rheology experiments reveal that GPH exhibits satisfactory mechanical strength, which resist the high pressures of blood flow. Subcutaneous experiments on Sprague-Dawley (SD) rats demonstrate the qualified biocompatibility of GPH. Finally, our in vivo experiments on New Zealand rabbits, which mix GPH with the X-ray absorbing contrast agent, Iohexol, reveal complete embolization of the artery. We also note that GPH shortens embolization time and exhibits low toxicity in follow-up experiments. Altogether, our study demonstrates that GPH has many advantages over the currently used embolic agents and has potential applications in clinical practice. PMID:27561915

  15. Functional Hyperbranched Polylysine as Potential Contrast Agent Probes for Magnetic Resonance Imaging.

    PubMed

    Zu, Guangyue; Liu, Min; Zhang, Kunchi; Hong, Shanni; Dong, Jingjin; Cao, Yi; Jiang, Bin; Luo, Liqiang; Pei, Renjun

    2016-06-13

    Researchers have never stopped questing contrast agents with high resolution and safety to overcome the drawbacks of small-molecule contrast agents in clinic. Herein, we reported the synthesis of gadolinium-based hyperbranched polylysine (HBPLL-DTPA-Gd), which was prepared by thermal polymerization of l-lysine via one-step polycondensation. After conjugating with folic acid, its potential application as MRI contrast agent was then evaluated. This contrast agent had no obvious cytotoxicity as verified by WST assay and H&E analysis. Compared to Gd(III)-diethylenetriaminepentaacetic acid (Gd-DTPA) (r1 = 4.3 mM(-1) s(-1)), the FA-HBPLL-DTPA-Gd exhibited much higher longitudinal relaxivity value (r1 = 13.44 mM(-1) s(-1)), up to 3 times higher than Gd-DTPA. The FA-HBPLL-DTPA-Gd showed significant signal intensity enhancement in the tumor region at various time points and provided a long time window for MR examination. The results illustrate that FA-HBPLL-DTPA-Gd will be a potential candidate for tumor-targeted MRI. PMID:27187578

  16. Total synthesis of plagiochin G and derivatives as potential cancer chemopreventive agents

    PubMed Central

    Li, Rui-Juan; Zhao, Yu; Tokuda, Harukuni; Yang, Xiao-Ming; Wang, Yue-Hu; Shi, Qian; Morris-Natschke, Susan L.; Lou, Hong-Xiang; Lee, Kuo-Hsiung

    2014-01-01

    A new and efficient total synthesis has been developed to obtain plagiochin G (22), a macrocyclic bisbibenzyl, and four derivatives. The key 16-membered ring containing biphenyl ether and biaryl units was closed via an intramolecular SNAr reaction. All synthesized macrocyclic bisbibenzyls inhibited Epstein-Barr virus early antigen (EBVEA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells and, thus, are potential cancer chemopreventive agents. PMID:25574060

  17. Hypokalemic periodic paralysis in Sjogren's syndrome secondary to distal renal tubular acidosis.

    PubMed

    Yılmaz, Hakkı; Kaya, Mustafa; Özbek, Mustafa; ÜUreten, Kemal; Safa Yıldırım, İ

    2013-07-01

    We report a 53-year-old Turkish female presented with progressive weakness and mild dyspnea. Laboratory results demonstrated severe hypokalemia with hyperchloremic metabolic acidosis. The urinary anion gap was positive in the presence of acidemia, thus she was diagnosed with hypokalemic paralysis from a severe distal renal tubular acidosis (RTA). Immunologic work-up showed a strongly positive ANA of 1:3,200 and positive antibodies to SSA and SSB. Schirmer's test was abnormal. Autoimmune and other tests revealed Sjögren syndrome as the underlying cause of the distal renal tubular acidosis. Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede sicca complaints. The pathology in most cases is a tubulointerstitial nephritis causing among other things, distal RTA, and, rarely, hypokalemic paralysis. Treatment consists of potassium repletion, alkali therapy, and corticosteroids. Primary SS could be a differential in women with acute weakness and hypokalemia. PMID:22212410

  18. Hypokalemic vacuolar myopathy of chronic alcoholism. A histological and histochemical study.

    PubMed

    Khurana, R; Kalyanaraman, K

    1977-04-01

    Recent reports have emphasized the occurrence of a myopathy in chronic alcoholism associated with hypokalemia. This report of hypokalemic myopathy in a chronic alcoholic, emphasizes the primary myopathic nature of the condition and attributes it to a possible non-specific effect of the hypokalemia on skeletal muscle. It is pointed out, that histological and histochemical changes of muscle in this type of myopathy are indistinguishable from other types of hypokalemic myopathies like periodic paralysis. It is conjectured that in alcoholic myopathy, the underlying disorder might be related to a primary disturbance of potassium metabolism, though in most cases, serum potassium is normal. It is likely that studies aimed at studying total body potassium content and turnover in alcoholic myopathy would help in understanding its pathogenesis and possible relationship to disturbed potassium metabolism. PMID:849704

  19. Massive Retinal Pigment Epithelial Detachment Following Acute Hypokalemic Quadriparesis in Dengue Fever

    PubMed Central

    Goel, Neha; Bhambhwani, Vishaal; Jain, Pooja; Ghosh, Basudeb

    2016-01-01

    Purpose: To describe an unusual retinal manifestation of dengue fever in an endemic region. Case Report: A 35 year old male presenting with acute onset decreased vision in his right eye, was found to have a massive retinal pigment epithelial detachment (PED) extending up to the vascular arcades. He had been diagnosed with acute hypokalemic quadriparesis in dengue fever in the preceding week, which had resolved following treatment. The patient was managed conservatively. At three months follow up, there was spontaneous flattening of the PEDs with improvement in visual acuity. Conclusion: Dengue fever complicated by acute hypokalemic quadriparesis can be associated with PED, which can be large. The condition resolves spontaneously and bears a good prognosis.

  20. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  1. Medicinal plants from Peru: a review of plants as potential agents against cancer.

    PubMed

    Gonzales, Gustavo F; Valerio, Luis G

    2006-09-01

    Natural products have played a significant role in drug discovery and development especially for agents against cancer and infectious disease. An analysis of new and approved drugs for cancer by the United States Food and Drug Administration over the period of 1981-2002 showed that 62% of these cancer drugs were of natural origin. Natural compounds possess highly diverse and complex molecular structures compared to small molecule synthetic drugs and often provide highly specific biological activities likely derived from the rigidity and high number of chiral centers. Ethnotraditional use of plant-derived natural products has been a major source for discovery of potential medicinal agents. A number of native Andean and Amazonian medicines of plant origin are used as traditional medicine in Peru to treat different diseases. Of particular interest in this mini-review are three plant materials endemic to Peru with the common names of Cat's claw (Uncaria tomentosa), Maca (Lepidium meyenii), and Dragon's blood (Croton lechleri) each having been scientifically investigated for a wide range of therapeutic uses including as specific anti-cancer agents as originally discovered from the long history of traditional usage and anecdotal information by local population groups in South America. Against this background, we present an evidence-based analysis of the chemistry, biological properties, and anti-tumor activities for these three plant materials. In addition, this review will discuss areas requiring future study and the inherent limitations in their experimental use as anti-cancer agents. PMID:17017852

  2. Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study

    PubMed Central

    Ghasemian, Zeinab; Shahbazi-Gahrouei, Daryoush; Manouchehri, Sohrab

    2015-01-01

    Background: Magnetic Nanoparticles (MNP) have been used for contrast enhancement in Magnetic Resonance Imaging (MRI). In recent years, research on the use of ferrite nanoparticles in T2 contrast agents has shown a great potential application in MR imaging. In this work, Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4-DMSA magnetic nanoparticles, CZF-MNPs and CZF-MNPs-DMSA, were investigated as MR imaging contrast agents. Methods: Cobalt zinc ferrite nanoparticles and their suitable coating, DMSA, were investigated under in vitro condition. Human prostate cancer cell lines (DU145 and PC3) with bare (uncoated) and coated magnetic nanoparticles were investigated as nano-contrast MR imaging agents. Results: Using T2-weighted MR images identified that signal intensity of bare and coated MNPs was enhanced with increasing concentration of MNPs in water. The values of 1/T2 relaxivity (r2) for bare and coated MNPs were found to be 88.46 and 28.80 (mM−1 s−1), respectively. Conclusion: The results show that bare and coated MNPs are suitable as T2-weighted MR imaging contrast agents. Also, the obtained r2/r1 values (59.3 and 50) for bare and coated MNPs were in agreement with the results of other previous relevant works. PMID:26140183

  3. Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma

    PubMed Central

    Gheeya, Jinesh S.; Chen, Qing-Rong; Benjamin, Christopher D.; Cheuk, Adam T.; Tsang, Patricia; Chung, Joon-Yong; Metaferia, Belhu B.; Badgett, Thomas C.; Johansson, Peter; Wei, Jun S.; Hewitt, Stephen M.

    2009-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite current aggressive therapy, the survival rate for high risk NB remains less than 40%. To identify novel effective chemo-agents against NB, we screened a panel of 96 drugs against two NB cell lines, SK-N-AS and SH-SY5Y. We found 30 compounds that were active against NB cell lines at ≤ 10 µM concentration. More interestingly, 17 compounds are active at ≤ 1 µM concentration, and they act through a wide spectrum of diverse mechanisms such as mitotic inhibition, topoisomerase inhibition, targeting various biological pathways, and unknown mechanisms. The majority of these active compounds also induced caspase 3/7 by more than 2-fold. Of these 17 active compounds against NB cell lines at sub-micromolar concentration, 11 compounds are not currently used to treat NB. Among them, 9 are FDA approved compounds, and 3 agents are undergoing clinical trials for various malignancies. Furthermore, we identified 4 agents active against these NB cell lines that have not yet been tested in the clinical setting. Finally we demonstrated that Cucurbitacin I inhibits neuroblastoma cell growth through inhibition of STAT3 pathway. These drugs thus represent potential novel therapeutic agents for patients with NB, and further validation studies are needed to translate them to the clinic. PMID:19946221

  4. Renal tubular dysfunction presenting as recurrent hypokalemic periodic quadriparesis in systemic lupus erythematosus

    PubMed Central

    Prasad, D.; Agarwal, D.; Malhotra, V.; Beniwal, P.

    2014-01-01

    We report recurrent hypokalemic periodic quadriparesis in a 30-year-old woman. Patient had also symptoms of multiple large and small joint pain, recurrent oral ulceration, photosensitivity and hair loss that were persisting since last 6 months and investigations revealed systemic lupus erythematosus (SLE) with distal tubular acidosis. Our patient was successfully treated with oral potassium chloride, sodium bicarbonate, hydroxychloroquine and a short course of steroids. Thus, tubular dysfunction should be carefully assessed in patients with SLE. PMID:25249723

  5. Mutation analysis of CACNA1S and SCN4A in patients with hypokalemic periodic paralysis.

    PubMed

    Wang, Xiao-Ying; Ren, Bing-Wen; Yong, Zeng-Hua; Xu, Hong-Yan; Fu, Qiu-Xia; Yao, He-Bin

    2015-10-01

    Mutations in CACNA1S (calcium channel, voltage‑dependent, L type, alpha 1S subunit) and SCN4A (sodium channel, voltage‑gated, type IV, alpha subunit) are associated with hypokalemic periodic paralysis (HPP). The aim of the current study was to investigate CACNA1S and SCN4A mutations in patients with HPP. Mutations in CACNA1S and SCN4A were detected in three familial hypokalemic periodic paralysis (FHPP) pedigrees and in two thyrotoxic hypokalemic periodic paralysis (THPP) pedigrees using polymerase chain reaction, DNA sequencing and sequence alignment with GenBank data. A single base mutation from cytosine to guanine at site 1582 was identified in exon 11 of CACNA1S in one FHPP pedigree, resulting in an arginine to glycine (R528G) substitution. A single base mutation from thymine to cytosine at site 2012 was identified in exon 12 of SCN4A in one THPP pedigree, resulting in a phenylalanine to serine (F671S) substitution. No mutations in CACNA1S or SCN4A were identified in the remaining three pedigrees. The present study indicated that CACNA1S and SCN4A mutations are relatively rare in patients with HPP, and further studies are required to determine whether these mutation‑associated substitutions are representative of patients with HPP. PMID:26252573

  6. Evaluation of boronated EGF as a potential delivery agent for BNCT of brain tumors

    SciTech Connect

    Yang, Weilian; Barth, R.F.; Adams, D.M.

    1996-12-31

    The epidermal growth factor receptor (EGFR) gene is often amplified in human glioblastomas, but, reflecting the cellular heterogeneity of these tumors, the frequency of amplification is variable. Since the number of EGFR has been considered as a potential target for the specific delivery of diagnostic and therapeutic agents to brain tumors. Initially, the focus was on using anti-EGFR monoclonal antibodies or their fragments, but within the past few years there has been increasing interest in using EGF based bioconjugates as targeting agents. Recently, we have described a method for the boronation of EGF and have characterized the resulting bioconjugates in vitro. In the present study, we have investigated the potential usefulness of boronated EGF as a delivery agent for neutron capture therapy in rats bearing intracerebral implants of the C6 glioma, which has been transfected with the gene encoding EGFR. Our results indicate that following intratumoral injection, boronated EGF selectivity targeted the transfected EGFR positive C6 glioma, and that the amount of delivered to the tumor exceeded by 3-4 orders of magnitude that which could be delivered by intravenous injection.

  7. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  8. Synthesis and characterization of iodobenzamide analogues: Potential D-2 dopamine receptor imaging agents

    SciTech Connect

    Murphy, R.A.; Kung, H.F.; Kung, M.P.; Billings, J. )

    1990-01-01

    (S)-N-((1-Ethyl-2-pyrrolidinyl)methyl)-2-hydroxy-3-iodo-6- methoxybenzamide (({sup 123}I)IBZM) is a central nervous system (CNS) D-2 dopamine receptor imaging agent. In order to investigate the versatility of this parent structure in specific dopamine receptor localization and the potential for developing new dopamine receptor imaging agents, a series of new iodinated benzamides with fused ring systems, naphthalene (INAP) and benzofuran (IBF), was synthesized and radiolabeled, and the in vivo and in vitro biological properties were characterized. The best analogue of IBZM is IBF (21). The specific binding of ({sup 125}I)IBF (21) with rat striatal tissue preparation was found to be saturable and displayed a Kd of 0.106 {plus minus} 0.015 nM. Competition data of various receptor ligands for ({sup 125}I)IBF (21) binding show the following rank order of potency: spiperone greater than IBF (21) greater than IBZM greater than (+)-butaclamol greater than ({plus minus})-ADTN,6,7 greater than ketanserin greater than SCH-23390 much greater than propranolol. The in vivo biodistribution results confirm that ({sup 125}I)IBF (21) concentrated in the striatal area after iv injection into rats. The study demonstrates that ({sup 123}I)IBF (21) is a potential agent for imaging CNS D-2 dopamine receptors.

  9. Gd(III) complexes intercalated into hydroxy double salts as potential MRI contrast agents.

    PubMed

    Jin, Miao; Spillane, Dominic E M; Geraldes, Carlos F G C; Williams, Gareth R; Bligh, S W Annie

    2015-12-21

    The ion exchange intercalation of two Gd-based magnetic resonance imaging contrast agents into hydroxy double salts (HDSs) is reported. The presence of Gd(3+) diethylenetriaminepentaacetate and Gd(3+) diethylenetriaminepenta(methylenephosphonate) complexes in the HDS lattice after intercalation was confirmed by microwave plasma-atomic emission spectroscopy. The structural aspects of the HDS-Gd composites were studied by X-ray diffraction, with the intercalates having an interlayer spacing of 14.5-18.6 Å. Infrared spectroscopy confirmed the presence of characteristic vibration peaks associated with the Gd(3+) complexes in the intercalation compounds. The proton relaxivities of the Gd(3+) complex-loaded composites were 2 to 5-fold higher in longitudinal relaxivity, and up to 10-fold higher in transverse relaxivity, compared to solutions of the pure complexes. These data demonstrate that the new composites reported here are potentially potent MRI contrast agents. PMID:26568157

  10. Synthesis and evaluation of novel tropane derivatives as potential PET imaging agents for the dopamine transporter

    PubMed Central

    Qiao, Hongwen; Zhu, Lin; Lieberman, Brian P.; Zha, Zhihao; Plössl, Karl; Kung, Hank F.

    2012-01-01

    A novel series of tropane derivatives containing a fluorinated tertiary amino or amide at the 2β position was synthesized, labeled with the positron-emitter fluorine-18 (T1/2 = 109.8 min), and tested as potential in vivo dopamine transporter (DAT) imaging agents. The corresponding chlorinated analogs were prepared and employed as precursors for radiolabeling leading to the fluorine-18-labeled derivatives via a one-step nucleophilic aliphatic substitution reaction. In vitro binding results showed that the 2β-amino compounds 6b, 6d and 7b displayed moderately high affinities to DAT (Ki < 10 nM). Biodistribution studies of [18F]6b and [18F]6d showed that the brain uptakes in rats were low. This is likely due to their low lipophilicities. Further structural modifications of these tropane derivatives will be needed to improve their in vivo properties as DAT imaging agents. PMID:22658558

  11. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents.

    PubMed

    Congiu, Cenzo; Onnis, Valentina

    2013-11-01

    We have designed, synthesized, and evaluated as potential antitumor agents a series of 2-hydroxybenzylidene derivatives of the N-(2-trifluoromethylpiridyn-4-yl)anthranilic acid hydrazide, and some analogues bearing a (2-trifluoromethyl)piridyn-4-ylamino group in 3- or 4-position of benzohydrazide or 4-position of phenylacetohydrazide. Compounds 12e, 13e, 15e, and 16e, bearing a 4-(diethylamino)salicylidene group exhibited potent cytotoxicity, with averaged GI50 values in sub-micromolar range, and a variety of cell selectivity at nanomolar concentrations. The determination of acute toxicity in athymic nudes mice proved some compounds to be non-toxic, making them good candidates for further study as antitumor agents. PMID:24071449

  12. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents.

    PubMed

    Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie

    2016-10-21

    A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD. PMID:27343850

  13. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events

    PubMed Central

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng

    2016-01-01

    Background Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. Objective We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. Methods We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Results Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. Conclusions We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning. PMID:27036325

  14. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage. PMID:25395009

  15. Confirmation of linkage of Hypokalemic periodic paralysis to chromosome 1q31-32: Further evidence supporting CACNL1A3 as a candidate gene

    SciTech Connect

    Lewis, K.; Knouff, C.; Gaskell, P.C.

    1994-09-01

    Hypokalemic periodic paralysis (HOKPP; MIM 170400) is one entity of a series of periodic paralyses characterized by episodic bouts of weakness with onset in the second to third decades. The hypokalemic form is defined by decreased serum potassium during a paralytic attack. HOKPP can occur in both familial and sporadic forms; the familal form is autosomal dominant with reduced penetrance in female gene carriers. Recently, Fontaine et al. have localized HOKPP to 1q31-32 in three multigenerational HOKPP families. The region of sub-localization includes the CACNL1A3 gene, making it a potential candidate for the genetic defect in HOKPP. We have ascertained and sampled 2 large multigenerational HOKPP pedigrees (N = 55 individuals with DNA) for linkage analysis. The families were initially screened for linkage with over 150 marker loci located throughout the genome. Analysis of the chromosome 1 markers D1S412, D1S413 and F13B gave significant evidence for linkage. The peak two-point lod score realized was Z = 4.34 at theta = 0.0 (D1S413). A sex-dependent penetrance of 80% was assumed, although varying the penetrance did not significantly alter the results. There was no evidence for heterogeneity. Multipoint analysis of the data defined the region between D1S238 and D1S245 (which contains the CACNL1A3 gene) as the most likely region (> 1000 odds) for the location of the HOKPP gene. There were no obligate recombinants among males or affected females for the CACNL1A3 (Z = 3.19, theta = 0.0), although several potential non-penetrant females were identified. These studies confirm linkage of HOPKK to chromosome 1 in an independent data set, lend further support of CACNL1A3 as a potential candidate gene, and give evidence for homogeneity in this disease.

  16. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  17. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  18. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents.

    PubMed

    Iwasa, K; Moriyasu, M; Tachibana, Y; Kim, H S; Wataya, Y; Wiegrebe, W; Bastow, K F; Cosentino, L M; Kozuka, M; Lee, K H

    2001-11-01

    Twenty-six simple isoquinolines and 21 benzylisoquinolines were tested for antimicrobial, antimalarial, cytotoxic, and anti-HIV activities. Some simple isoquinoline alkaloids were significantly active in each assay, and may be useful as lead compounds for developing potential chemotherapeutic agents. These compounds include 13 (antimicrobial), 25, 26, and 42 (antimalarial), 13 and 25 (cytotoxic), and 28 and 29 (anti-HIV). A quaternary nitrogen atom of isoquinolium or dihydroisoquinolinium type may contribute to enhanced potency in the first three types of activities. In contrast, anti-HIV activity was found with tetrahydroisoquinoline and 6,7-dihydroxyisoquinolium salts. PMID:11597468

  19. Molecules that Mimic Apolipoprotein A-I: Potential Agents for Treating Atherosclerosis

    PubMed Central

    Leman, Luke J.; Maryanoff, Bruce E.; Ghadiri, M. Reza

    2013-01-01

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL. PMID:24168751

  20. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

    PubMed Central

    Wang, Hao; Ren, Shuang-Xi; He, Ze-Yu; Wang, De-Long; Yan, Xiao-Nan; Feng, Jun-Tao; Zhang, Xing

    2014-01-01

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which led to the improved activities for carabrone and its analogues and further confirmed their potential as antifungal agents. PMID:24619221

  1. Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure.

    PubMed

    Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    Exposure to the vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) causes severe skin injury with delayed blistering. Depending upon the dose and time of their exposure, edema and erythema develop into blisters, ulceration, necrosis, desquamation, and pigmentation changes, which persist weeks and even years after exposure. Research advances have generated data that have started to explain the probable mechanism of action of vesicant-induced skin toxicity; however, despite these advances, effective and targeted therapies are still deficient. This review highlights studies on two SM analogs, 2-chloroethyl ethyl sulfide (CEES) and NM, and CEES- and NM-induced skin injury mouse models that have substantially added to the knowledge on the complex pathways involved in mustard vesicating agent-induced skin injury. Furthermore, employing these mouse models, studies under the National Institutes of Health Countermeasures Against Chemical Threats program have identified the flavanone silibinin as a novel therapeutic intervention with the potential to be developed as an effective countermeasure against skin injury following exposure to mustard vesicating agents. PMID:27326543

  2. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    PubMed

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. PMID:26476351

  3. Mesoporous europo-gadolinosilicate nanoparticles as bimodal medical imaging agents and a potential theranostic platform.

    PubMed

    Tse, Nicholas M K; Kennedy, Danielle F; Kirby, Nigel; Moffat, Bradford A; Muir, Benjamin W; Caruso, Rachel A; Drummond, Calum J

    2013-06-01

    The mesoporous structure of sol-gel prepared gadolinium and europium doped silicate nanoparticles has been found to be highly dependent on the formulated composition, with synthesised samples displaying both disordered and hexagonally ordered mesoporous packing symmetry. The degree of pore ordering within the nanoparticles has a strong correlation with the total lanthanide (Gd(3+) and Eu(3+) ) concentration. The gadolinosilicates are excellent magnetic resonance imaging (MRI) longitudinal (T1 ) agents. The longitudinal relaxivity (r1 ) and transverse (r2 ) relaxivity, a measure of MRI contrast agent efficiency, were up to four times higher than the clinically employed Omniscan (gadodiamide); with r1 up to 20.6 s(-1) mM(-1) and r2 of 66.2 s(-1) mM(-1) compared to 5.53 and 4.64 s(-1) mM(-1) , respectively, for Omniscan. In addition, the europium content of all the samples studied is below the self-quenching limit, which results in a strong luminescence response from the nanoparticles on excitation at 250 nm. The Eu-Gd silicate nanoparticles act as bimodal imaging agents for MRI and luminescence. These mesoporous nanoparticles also have the potential to serve as encapsulation and controlled release matrices for pharmaceuticals. They are therefore a promising multimodal theranostic platform. PMID:23296572

  4. Identification of Aspergillus flavus isolates as potential biocontrol agents of aflatoxin contamination in crops.

    PubMed

    Rosada, L J; Sant'anna, J R; Franco, C C S; Esquissato, G N M; Santos, P A S R; Yajima, J P R S; Ferreira, F D; Machinski, M; Corrêa, B; Castro-Prado, M A A

    2013-06-01

    Aspergillus flavus, a haploid organism found worldwide in a variety of crops, including maize, cottonseed, almond, pistachio, and peanut, causes substantial and recurrent worldwide economic liabilities. This filamentous fungus produces aflatoxins (AFLs) B1 and B2, which are among the most carcinogenic compounds from nature, acutely hepatotoxic and immunosuppressive. Recent efforts to reduce AFL contamination in crops have focused on the use of nonaflatoxigenic A. flavus strains as biological control agents. Such agents are applied to soil to competitively exclude native AFL strains from crops and thereby reduce AFL contamination. Because the possibility of genetic recombination in A. flavus could influence the stability of biocontrol strains with the production of novel AFL phenotypes, this article assesses the diversity of vegetative compatibility reactions in isolates of A. flavus to identify heterokaryon self-incompatible (HSI) strains among nonaflatoxigenic isolates, which would be used as biological controls of AFL contamination in crops. Nitrate nonutilizing (nit) mutants were recovered from 25 A. flavus isolates, and based on vegetative complementation between nit mutants and on the microscopic examination of the number of hyphal fusions, five nonaflatoxigenic (6, 7, 9 to 11) and two nontoxigenic (8 and 12) isolates of A. flavus were phenotypically characterized as HSI. Because the number of hyphal fusions is reduced in HSI strains, impairing both heterokaryon formation and the genetic exchanges with aflatoxigenic strains, the HSI isolates characterized here, especially isolates 8 and 12, are potential agents for reducing AFL contamination in crops. PMID:23726204

  5. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  6. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy.

    PubMed

    González-Vallinas, Margarita; Reglero, Guillermo; Ramírez de Molina, Ana

    2015-01-01

    Cancer remains an important cause of mortality nowadays and, therefore, new therapeutic approaches are still needed. Rosemary (Rosmarinus officinalis L.) has been reported to possess antitumor activities both in vitro and in animal studies. Some of these activities were attributed to its major components, such as carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Initially, the antitumor effects of rosemary were attributed to its antioxidant activity. However, in recent years, a lack of correlation between antioxidant and antitumor effects exerted by rosemary was reported, and different molecular mechanisms were related to its tumor inhibitory properties. Moreover, supported by the U.S. Food and Drug Administration and the European Food and Safety Authority, specific compositions of rosemary extract were demonstrated to be safe for human health and used as antioxidant additive in foods, suggesting the potential easy application of this agent as a complementary approach in cancer therapy. In this review, we aim to summarize the reported anticancer effects of rosemary, the demonstrated molecular mechanisms related to these effects and the interactions between rosemary and currently used anticancer agents. The possibility of using rosemary extract as a complementary agent in cancer therapy in comparison with its isolated components is discussed. PMID:26452641

  7. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma

    PubMed Central

    Shum, Ka-To; Zhou, Jiehua; Rossi, John J.

    2014-01-01

    Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed. PMID:25057429

  8. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  9. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging.

    PubMed

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors. PMID:20220227

  10. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression.

    PubMed

    Wargovich, M J; Jimenez, A; McKee, K; Steele, V E; Velasco, M; Woods, J; Price, R; Gray, K; Kelloff, G J

    2000-06-01

    We assessed the effects of 78 potential chemopreventive agents in the F344 rat using two assays in which the inhibition of carcinogen-induced aberrant crypt foci (ACF) in the colon was the measure of efficacy. In both assays ACF were induced by the carcinogen azoxymethane (AOM) in F344 rats by two sequential weekly injections at a dose of 15 mg/kg. Two weeks after the last AOM injection, animals were evaluated for the number of aberrant crypts detected in methylene blue stained whole mounts of rat colon. In the initiation phase protocol agents were given during the period of AOM administration, whereas in the post-initiation assay the chemopreventive agent was introduced during the last 4 weeks of an 8 week assay, a time when ACF had progressed to multiple crypt clusters. The agents were derived from a priority listing based on reports of chemopreventive activity in the literature and/or efficacy data from in vitro models of carcinogenesis. During the initiation phase carboxyl amidoimidazole, p-chlorphenylacetate, chlorpheniramine maleate, D609, diclofenac, etoperidone, eicosatetraynoic acid, farnesol, ferulic acid, lycopene, meclizine, methionine, phenylhexylisothiocyanate, phenylbutyrate, piroxicam, 9-cis-retinoic acid, S-allylcysteine, taurine, tetracycline and verapamil were strong inhibitors of ACF. During the post-initiation phase aspirin, calcium glucarate, ketoprofen, piroxicam, 9-cis-retinoic acid, retinol and rutin inhibited the outgrowth of ACF into multiple crypt clusters. Based on these data, certain phytochemicals, antihistamines, non-steroidal anti-inflammatory drugs and retinoids show unique preclinical promise for chemoprevention of colon cancer, with the latter two drug classes particularly effective in the post-initiation phase of carcinogenesis. PMID:10837003

  11. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis.

    PubMed

    Grafe, P; Quasthoff, S; Strupp, M; Lehmann-Horn, F

    1990-05-01

    An abnormal ratio between Na+ and K+ conductances seems to be the cause for the depolarization and paralysis of skeletal muscle in primary hypokalemic periodic paralysis. Recently we have shown that the "K+ channel opener" cromakalim hyperpolarizes mammalian skeletal muscle fibers. Now we have studied the effects of this drug on the twitch force of muscle biopsies from normal and diseased human skeletal muscle. Cromakalim had little effect on the twitch force of normal muscle whereas it strongly improved the contraction force of fibers from patients suffering from hypokalemic periodic paralysis. Recordings of intracellular K+ and Cl- activities in human muscle and isolated rat soleus muscle support the view that cromakalim enhances the membrane K+ conductance (gK+). These data indicate that "K+ channel openers" may have a beneficial effect in primary hypokalemic periodic paralysis. PMID:2345562

  12. ASSESSING POTENTIAL OF COLLETOTRICHUM ACUTATUM WILD-TYPE AND AUXOTROPHIC MUTANTS AS BIOLOGICAL FRUIT THINNING AGENTS IN CITRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colletotrichum acutatum, causal agent of postbloom fruit drop of citrus, and two induced C. acutatum mutants (3-3 and 3-2) were tested as potential agents for reducing fruit load on Valencia (Citrus sinensis ) and 'Temple' orange (C.reticulata x C. sinensis). Wild-type C. acutatum (RST) and a C. gl...

  13. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  14. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2009-01-01

    Alzheimer's disease (AD) is a devastating neuro-degenerative disorder characterized by the progressive and irreversible loss of memory followed by complete dementia. Despite the disease's high prevalence and great economic and social burden, an explicative etiology or viable cure is not available. Great effort has been made to better understand the disease's pathogenesis, and to develop more effective therapeutic agents. However, success is greatly hampered by the presence of the blood-brain barrier that limits a large number of potential therapeutics from entering the brain. Nanoparticle-mediated drug delivery is one of the few valuable tools for overcoming this impediment and its application as a potential AD treatment shows promise. In this review, the current studies on nanoparticle delivery of chelation agents as possible therapeutics for AD are discussed because several metals are found excessive in the AD brain and may play a role in the disease development. Specifically, a novel approach involving transport of iron chelation agents into and out of the brain by nanoparticles is highlighted. This approach may provide a safer and more effective means of simultaneously reducing several toxic metals in the AD brain. It may also provide insights into the mechanisms of AD pathophysiology, and prove useful in treating other iron-associated neurodegenerative diseases such as Friedreich's ataxia, Parkinson's disease, Huntington's disease and Hallervorden-Spatz Syndrome. It is important to note that the use of nanoparticle-mediated transport to facilitate toxicant excretion from diseased sites in the body may advance nanoparticle technology, which is currently focused on targeted drug delivery for disease prevention and treatment. The application of nanoparticle-mediated drug transport in the treatment of AD is at its very early stages of development and, therefore, more studies are warranted. PMID:19936278

  15. Potential Anti-HPV and Related Cancer Agents from Marine Resources: An Overview

    PubMed Central

    Wang, Shi-Xin; Zhang, Xiao-Shuang; Guan, Hua-Shi; Wang, Wei

    2014-01-01

    Recently, the studies on the prevention and treatment of human papillomavirus (HPV) which is closely related to the cervical cancer and other genital diseases are attracting more and more attention all over the world. Marine-derived polysaccharides and other bioactive compounds have been shown to possess a variety of anti-HPV and related cancer activities. This paper will review the recent progress in research on the potential anti-HPV and related cancer agents from marine resources. In particular, it will provide an update on the anti-HPV actions of heparinoid polysaccharides and bioactive compounds present in marine organisms, as well as the therapeutic vaccines relating to marine organisms. In addition, the possible mechanisms of anti-HPV actions of marine bioactive compounds and their potential for therapeutic application will also be summarized in detail. PMID:24705500

  16. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview.

    PubMed

    Singh, Rajinder; De, Subrata; Belkheir, Asma

    2013-01-01

    The aim of the present review article is to summarize the available information related to the availability, production, chemical composition, pharmacological activity, and traditional uses of Avena sativa to highlight its potential to contribute to human health. Oats are now cultivated worldwide and form an important dietary staple for the people in number of countries. Several varieties of oats are available. It is a rich source of protein, contains a number of important minerals, lipids, β-glucan, a mixed-linkage polysaccharide, which forms an important part of oat dietary fiber, and also contains various other phytoconstituents like avenanthramides, an indole alkaloid-gramine, flavonoids, flavonolignans, triterpenoid saponins, sterols, and tocols. Traditionally oats have been in use since long and are considered as stimulant, antispasmodic, antitumor, diuretic, and neurotonic. Oat possesses different pharmacological activities like antioxidant, anti-inflammatory, wound healing, immunomodulatory, antidiabetic, anticholesterolaemic, etc. A wide spectrum of biological activities indicates that oat is a potential therapeutic agent. PMID:23072529

  17. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    PubMed

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi. PMID:24310522

  18. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    PubMed Central

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  19. Potential water-quality effects from iron cyanide anticaking agents in road salt

    SciTech Connect

    Paschka, M.G.; Ghosh, R.S.; Dzombak, D.A.

    1999-10-01

    Water-soluble iron cyanide compounds are widely used as anticaking agents in road salt, which creates potential contamination of surface and groundwater with these compounds when the salt dissolves and is washed off roads in runoff. This paper presents a summary of available information on iron cyanide use in road salt and its potential effects on water quality. Also, estimates of total cyanide concentrations in snow-melt runoff from roadways are presented as simple mass-balance calculations. Although available information does not indicate a widespread problem, it also is clear that the water-quality effects of cyanide in road salt have not been examined much. Considering the large, and increasing, volume of road salt used for deicing, studies are needed to determine levels of total and free cyanide in surface and groundwater adjacent to salt storage facilities and along roads with open drainage ditches. Results could be combined with current knowledge of the fate and transport of cyanide to assess water-quality effects of iron cyanide anticaking agents used in road salt.

  20. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes.

    PubMed

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-09-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  1. Potential use of Folate-appended Methyl-β-Cyclodextrin as an Anticancer Agent

    PubMed Central

    Onodera, Risako; Motoyama, Keiichi; Okamatsu, Ayaka; Higashi, Taishi; Arima, Hidetoshi

    2013-01-01

    To obtain a tumor cell-selectivity of methyl-β-cyclodextrin (M-β-CyD), we newly synthesized folate-appended M-β-CyD (FA-M-β-CyD), and evaluated the potential of FA-M-β-CyD as a novel anticancer agent in vitro and in vivo. Potent antitumor activity and cellular association of FA-M-β-CyD were higher than those of M-β-CyD in KB cells, folate receptor (FR)-positive cells. FA-M-β-CyD drastically inhibited the tumor growth after intratumoral or intravenous injection to FR-positive Colon-26 cells-bearing mice. The antitumor activity of FA-M-β-CyD was comparable and superior to that of doxorubicin after both intratumoral and intravenous administrations, respectively, at the same dose, in the tumor-bearing mice. All of the tumor-bearing mice after an intravenous injection of FA-M-β-CyD survived for at least more than 140 days. Importantly, an intravenous administration of FA-M-β-CyD to tumor-bearing mice did not show any significant change in blood chemistry values. These results strongly suggest that FA-M-β-CyD has the potential as a novel anticancer agent. PMID:23346361

  2. Effect of Hypobaric Hypoxia on Cognitive Functions and Potential Therapeutic Agents

    PubMed Central

    MUTHURAJU, Sangu; PATI, Soumya

    2014-01-01

    High altitude (HA), defined as approximately 3000–5000 m, considerably alters physiological and psychological parameters within a few hours. Chronic HA-mediated hypoxia (5000 m) results in permanent neuronal damage to the human brain that persists for one year or longer, even after returning to sea level. At HA, there is a decrease in barometric pressure and a consequential reduction in the partial pressure of oxygen (PO2), an extreme environmental condition to which humans are occasionally exposed. This condition is referred to as hypobaric hypoxia (HBH), which represents the most unfavourable characteristics of HA. HBH causes the disruption of oxygen availability to tissue. However, no review article has explored the impact of HBH on cognitive functions or the potential therapeutic agents for HBH. Therefore, the present review aimed to describe the impact of HBH on both physiological and cognitive functions, specifically learning and memory. Finally, the potential therapeutic agents for the treatment of HBH-induced cognitive impairment are discussed. PMID:25941462

  3. Synthesis and biological evaluation of oxindole linked indolyl-pyrimidine derivatives as potential cytotoxic agents.

    PubMed

    Prajapti, Santosh Kumar; Nagarsenkar, Atulya; Guggilapu, Sravanthi Devi; Gupta, Keshav Kumar; Allakonda, Lingesh; Jeengar, Manish Kumar; Naidu, V G M; Babu, Bathini Nagendra

    2016-07-01

    In our endeavor towards the development of effective cytotoxic agents, a series of oxindole linked indolyl-pyrimidine derivatives were synthesized and characterized by IR, (1)H NMR, (13)C NMR and Mass spectral analysis. All the newly synthesized target compounds were assessed against PA-1 (ovarian), U-87MG (glioblastoma), LnCaP (prostate), and MCF-7 (Breast) cancer cell lines for their cytotoxic potential, with majority of them showing inhibitory activity at low micro-molar concentrations. Significantly, compound 8e was found to be most potent amongst all the tested compounds with an IC50 value of (2.43±0.29μM) on PA-1 cells. The influence of the most active cytotoxic compound 8e on the cell cycle distribution was assessed on the PA-1 cell line, exhibiting a cell cycle arrest at the G2/M phase. Moreover, acridine orange/ethidium bromide staining and annexin V binding assay confirmed that compound 8e can induce cell apoptosis in PA-1 cells. These preliminary results persuade further investigation on the synthesized compounds aiming to the development of potential cytotoxic agents. PMID:27210438

  4. Effect of hypobaric hypoxia on cognitive functions and potential therapeutic agents.

    PubMed

    Muthuraju, Sangu; Pati, Soumya

    2014-12-01

    High altitude (HA), defined as approximately 3000-5000 m, considerably alters physiological and psychological parameters within a few hours. Chronic HA-mediated hypoxia (5000 m) results in permanent neuronal damage to the human brain that persists for one year or longer, even after returning to sea level. At HA, there is a decrease in barometric pressure and a consequential reduction in the partial pressure of oxygen (PO2), an extreme environmental condition to which humans are occasionally exposed. This condition is referred to as hypobaric hypoxia (HBH), which represents the most unfavourable characteristics of HA. HBH causes the disruption of oxygen availability to tissue. However, no review article has explored the impact of HBH on cognitive functions or the potential therapeutic agents for HBH. Therefore, the present review aimed to describe the impact of HBH on both physiological and cognitive functions, specifically learning and memory. Finally, the potential therapeutic agents for the treatment of HBH-induced cognitive impairment are discussed. PMID:25941462

  5. Effect of reducing agents and uncouplers on the electrical potential generated by mitochondrial ATPase activity.

    PubMed

    Encío, I; de Miguel, C; López-Moratalla, N; Santiago, E

    1989-12-01

    Beef heart submitochondrial particles bound to phospholipids impregnated filters generated an electrical potential upon the addition of ATP. The magnitude of the electrical potential reached depended on the phospholipid mixture composition used for filter impregnation, phosphatidylethanolamine being the active component for the electrical potential generation. Uncoupler FCCP (p-trifluoromethoxy carbonyl cyanide phenylhydrazone) inhibited the transmembrane electrical potential generation by diminishing the electrical resistance of the system as a result of its protonophoric action. However, uncouplers 2, 4-dinitrophenol and dicoumarol did not provoke large modifications of the electrical resistance under the conditions of pH and concentration used, and their action varied with the time elapsed after the submitochondrial particles purification, favouring the idea of the uncoupler interaction with a specific site on the membrane. Addition of sodium dithionite resulted in a higher plateau value for the electrical potential consistent with the promoted increase in ATPase activity. The effect of this agent was reversed by the 2,6-dichlorophenol-indophenol added at equivalent concentrations. PMID:2561021

  6. In vitro assays for assessing the potential for copper complexes to function as radiopharmaceutical agents.

    PubMed

    Barnard, P J; Bayly, S R; Holland, J P; Dilworth, J R; Waghorn, P A

    2008-09-01

    A series of chemical in vitro assays are described to provide a rapid initial assessment of the in vivo stability and biological behaviour of potential new copper(II) based radiopharmaceutical agents. Chemical challenges using an excess of cysteine, glutathione (GSH) and histidine, which are models of S- and N-donor molecules found in vivo, are used to provide a measure of the potential for loss of the copper(II) ion from the radiopharmaceutical as a result of ligand dissociation. In addition, thiol containing molecules such as cysteine and GSH provide a redox challenge, whereby the copper(II) complex may be reduced to give a copper(I) species. The stability of the copper(I) species toward oxidation, protonation, and ligand dissociation may be crucial in determining the biodistribution, the biological half-life and excretion mechanisms of a potential radiopharmaceutical. Further evaluation of the redox stability is assessed using the ubiquitous biological reductant ascorbic acid. The relative stability of a complex with respect to ligand dissociation in human serum provides one of the most important experiments assessing the potential of a complex to be used in vivo. Further challenge experiments with serum proteins such as thioredoxin and serum albumin can be used to provide more detailed information on the probable fate of the complex in serum. Evaluation of complex stability and speciation over a range of pH values may also be used to obtain information on potential biodistribution. PMID:18551094

  7. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  8. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    SciTech Connect

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Ammar, David A.; Agarwal, Chapla; Tyagi, Puneet; Kompella, Uday B.; Enzenauer, Robert W.; Petrash, J. Mark; Agarwal, Rajesh

    2012-10-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  9. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications

    PubMed Central

    Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2013-01-01

    The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589

  10. Understanding Virulence in the Brucellae and Francisellae: Towards Efficacious Treatments for Two Potential Biothreat Agents

    SciTech Connect

    Rasley, A; Parsons, D A; El-Etr, S; Roux, C; Tsolis, R

    2009-12-30

    Francisella tularensis, Yersinia pestis and Brucellae species are highly infectious pathogens classified as select agents by the Centers for Disease Control and Prevention (CDC) with the potential for use in bioterrorism attacks. These organisms are known to be facultative intracellular pathogens that preferentially infect human monocytes. As such, understanding how the host responds to infection with these organisms is paramount in detecting and combating human disease. We have compared the ability of fully virulent strains of each pathogen and their non-pathogenic near neighbors to enter and survive inside the human monocytic cell line THP-1 and have quantified the cellular response to infection with the goal of identifying both unique and common host response patterns. We expanded the scope of these studies to include experiments with pathogenic and non-pathogenic strains of Y. pestis, the causative agent of plague. Nonpathogenic strains of each organism were impaired in their ability to survive intracellularly compared with their pathogenic counterparts. Furthermore, infection of THP-1 cells with pathogenic strains of Y. pestis and F. tularensis resulted in marked increases in the secretion of the inflammatory chemokines IL-8, RANTES, and MIP-1{beta}. In contrast, B. melitensis infection failed to elicit any significant increases in a panel of cytokines tested. These differences may underscore distinct strategies in pathogenic mechanisms employed by these pathogens.

  11. Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent.

    PubMed

    Caplan, Stacee Lee; Zheng, Bo; Dawson-Scully, Ken; White, Catherine A; West, Lyndon M

    2016-03-01

    Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new classes of therapeutic agents. Pseudopterosins are group of marine diterpene glycosides that possess an array of potent biological activities in several therapeutic areas. Few studies have examined pseudopterosin effects during cellular stress and, to our knowledge, no studies have explored their ability to protect synaptic function. The present study probes pseudopterosin A (PsA) for its neuromodulatory properties during oxidative stress using the fruit fly, Drosophila melanogaster. We demonstrate that oxidative stress rapidly reduces neuronal activity, resulting in the loss of neurotransmission at a well-characterized invertebrate synapse. PsA mitigates this effect and promotes functional tolerance during oxidative stress by prolonging synaptic transmission in a mechanism that differs from scavenging activity. Furthermore, the distribution of PsA within mammalian biological tissues following single intravenous injection was investigated using a validated bioanalytical method. Comparable exposure of PsA in the mouse brain and plasma indicated good distribution of PsA in the brain, suggesting its potential as a novel neuromodulatory agent. PMID:26978375

  12. Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent

    PubMed Central

    Caplan, Stacee Lee; Zheng, Bo; Dawson-Scully, Ken; White, Catherine A.; West, Lyndon M.

    2016-01-01

    Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new classes of therapeutic agents. Pseudopterosins are group of marine diterpene glycosides that possess an array of potent biological activities in several therapeutic areas. Few studies have examined pseudopterosin effects during cellular stress and, to our knowledge, no studies have explored their ability to protect synaptic function. The present study probes pseudopterosin A (PsA) for its neuromodulatory properties during oxidative stress using the fruit fly, Drosophila melanogaster. We demonstrate that oxidative stress rapidly reduces neuronal activity, resulting in the loss of neurotransmission at a well-characterized invertebrate synapse. PsA mitigates this effect and promotes functional tolerance during oxidative stress by prolonging synaptic transmission in a mechanism that differs from scavenging activity. Furthermore, the distribution of PsA within mammalian biological tissues following single intravenous injection was investigated using a validated bioanalytical method. Comparable exposure of PsA in the mouse brain and plasma indicated good distribution of PsA in the brain, suggesting its potential as a novel neuromodulatory agent. PMID:26978375

  13. Potential Molecular Targets for Narrow-Spectrum Agents to Combat Mycoplasma pneumoniae Infection and Disease

    PubMed Central

    Balish, Mitchell F.; Distelhorst, Steven L.

    2016-01-01

    As Mycoplasma pneumoniae macrolide resistance grows and spreads worldwide, it is becoming more important to develop new drugs to prevent infection or limit disease. Because other mycoplasma species have acquired resistance to other classes of antibiotics, it is reasonable to presume that M. pneumoniae can do the same, so switching to commonly used antibiotics like fluoroquinolones will not result in forms of therapy with long-term utility. Moreover, broad-spectrum antibiotics can have serious consequences for the patient, as these drugs may have severe impacts on the natural microbiota of the individual, compromising the health of the patient either short-term or long-term. Therefore, developing narrow-spectrum antibiotics that effectively target only M. pneumoniae and no more than a small portion of the microbiota is likely to yield impactful, positive results that can be used perhaps indefinitely to combat M. pneumoniae. Development of these agents requires a deep understanding of the basic biology of M. pneumoniae, in many areas deeper than what is currently known. In this review, we discuss potential targets for new, narrow-spectrum agents and both the positive and negative aspects of selecting these targets, which include toxic molecules, metabolic pathways, and attachment and motility. By gathering this information together, we anticipate that it will be easier for researchers to evaluate topics of priority for study of M. pneumoniae. PMID:26941728

  14. A Novel Potential Positron Emission Tomography Imaging Agent for Vesicular Monoamine Transporter Type 2.

    PubMed

    Huang, Zih-Rou; Tsai, Chia-Ling; Huang, Ya-Yao; Shiue, Chyng-Yann; Tzen, Kai-Yuan; Yen, Ruoh-Fang; Hsin, Ling-Wei

    2016-01-01

    In the early 1990s, 9-(+)-11C-dihydrotetrabenazine (9-(+)-11C-DTBZ) was shown to be a useful positron emission tomography (PET) imaging agent for various neurodegenerative disorders. Here, we described the radiosynthesis and evaluation of the 9-(+)-11C-DTBZ analog, 10-(+)-11C-DTBZ, as a vesicular monoamine transporter 2 (VMAT2) imaging agent and compare it with 9-(+)-11C-DTBZ. 10-(+)-11C-DTBZ was obtained by 11C-MeI methylation with its 10 hydroxy precursor in the presence of 5 M NaOH. It had a slightly better average radiochemical yield of 35.3 ± 3.6% (decay-corrected to end of synthesis (EOS)) than did 9-(+)-11C-DTBZ (30.5 ± 2.3%). MicroPET studies showed that 10-(+)-11C-DTBZ had a striatum-to-cerebellum ratio of 3.74 ± 0.21 at 40 min post-injection, while the ratio of 9-(+)-11C-DTBZ was 2.50 ± 0.33. This indicated that 10-(+)-11C-DTBZ has a higher specific uptake in VMAT2-rich brain regions, and 10-(+)-11C-DTBZ may be a potential VMAT2 radioligand. Our experiment is the first study of 10-(+)-11C-DTBZ to include dynamic brain distribution in rat brains. PMID:27612194

  15. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants

    PubMed Central

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva’a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner–Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa’s expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space. PMID:27445461

  16. Design of novel dispirooxindolopyrrolidine and dispirooxindolopyrrolothiazole derivatives as potential antitubercular agents.

    PubMed

    Mhiri, Chourouk; Boudriga, Sarra; Askri, Moheddine; Knorr, Michael; Sriram, Dharmarajan; Yogeeswari, Perumal; Nana, Frédéric; Golz, Christopher; Strohmann, Carsten

    2015-10-01

    With the aim to develop new potent antitubercular agents, a series of novel dispirooxindolopyrrolidines and dispirooxindolopyrrolothiazoles have been synthesized via a three-component 1,3-dipolar cycloaddition of (Z)-3-arylidenebenzofuran-2-ones, substituted isatin derivatives and α-aminoacids. The stereochemistry of the spiroadducts has been confirmed by an X-ray diffraction analysis. All the target heterocycles were evaluated for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv strain and the most active compounds were subjected to cytotoxicity studies against (RAW 264.7) cell lines. Among them, twelve compounds showed potent anti-tubercular activity with MIC ranging from 1.56 to 6.25 μg/mL. In particular dispirooxindolopyrrolothiazole derivatives 5c and 5f were found to be the most active (MIC of 1.56 μg/mL) with a good safety profile (27.53% and 20.74% at 50 μM, respectively). This is the first report demonstrating the benzofuranone oxindole hybrids as potential antimycobacterial agents. PMID:26271585

  17. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent

    PubMed Central

    Thangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa F. N.; Hamed, Maha I.; Sobreira, Tiago J. P.; Hedrick, Victoria E.; Paul, Lake N.; Seleem, Mohamed N.

    2015-01-01

    The rapid rise of bacterial resistance to traditional antibiotics combined with the decline in discovery of novel antibacterial agents has created a global public health crisis. Repurposing existing drugs presents an alternative strategy to potentially expedite the discovery of new antimicrobial drugs. The present study demonstrates that simvastatin, an antihyperlipidemic drug exhibited broad-spectrum antibacterial activity against important Gram-positive (including methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative pathogens (once the barrier imposed by the outer membrane was permeabilized). Proteomics and macromolecular synthesis analyses revealed that simvastatin inhibits multiple biosynthetic pathways and cellular processes in bacteria, including selective interference of bacterial protein synthesis. This property appears to assist in simvastatin’s ability to suppress production of key MRSA toxins (α-hemolysin and Panton-Valentine leucocidin) that impair healing of infected skin wounds. A murine MRSA skin infection experiment confirmed that simvastatin significantly reduces the bacterial burden and inflammatory cytokines in the infected wounds. Additionally, simvastatin exhibits excellent anti-biofilm activity against established staphylococcal biofilms and demonstrates the ability to be combined with topical antimicrobials currently used to treat MRSA skin infections. Collectively the present study lays the foundation for further investigation of repurposing simvastatin as a topical antibacterial agent to treat skin infections. PMID:26553420

  18. An integrated overview on pyrrolizines as potential anti-inflammatory, analgesic and antipyretic agents.

    PubMed

    Gouda, Ahmed M; Abdelazeem, Ahmed H

    2016-05-23

    Despite the existence of huge number of NSAIDs, the quest for safer drugs is still in the focus of several drug discovery programs. Pyrrolizine heterocyclic system is among the privileged scaffolds utilized in this regard. At least one of these pyrrolizines, ketorolac, has reached the market. The current review represents a collective effort to highlight the reported pyrrolizines with anti-inflammatory and analgesic potential and categorize them into eight different classes. Furthermore, the various synthetic approaches, structure-activity relationship as well as metabolic pathways have been discussed. Taken together, this review sets a base for researchers to design and synthesize novel pyrrolizine-based libraries for further development into safer and efficient anti-inflammatory and analgesic agents. PMID:26994693

  19. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents

    PubMed Central

    Qi, Xin; Euynni, Suresh; Sikazwi, Donald; Mateeva, Nelly; Soliman, Karam F.

    2016-01-01

    Various 1,3,4-oxadiazole derivatives have been synthesized and their antiproliferative properties have been studied. The in vitro screening was performed against androgen dependent (LNCaP) and androgen independent (PC-3) prostate cancer cell lines. Most of the compounds showed promising activity. Among them, compounds 2d (IC50 = 0.22 and 1.3 μM) and 2a (IC50 = 8.34 and 2,5 μM) have shown significant activities on PC-3 and LNCaP cell lines respectively. To investigate the mechanism of cell death we performed cell apoptosis staining and cell cycle arrest assay on more sensitive PC-3 cell lines on 2d. The results demonstrated that 2d induced apoptosis and shifted the cells to the sub G0/G1 and S phase. Our study evidently identified the potency of compound 2d as potential anti-prostate cancer agent. PMID:27156770

  20. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    PubMed Central

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  1. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents.

    PubMed

    Mochona, Bereket; Qi, Xin; Euynni, Suresh; Sikazwi, Donald; Mateeva, Nelly; Soliman, Karam F

    2016-06-15

    Various 1,3,4-oxadiazole derivatives have been synthesized and their antiproliferative properties have been studied. The in vitro screening was performed against androgen dependent (LNCaP) and androgen independent (PC-3) prostate cancer cell lines. Most of the compounds showed promising activity. Among them, compounds 2d (IC50=0.22 and 1.3μM) and 2a (IC50=8.34 and 2,5μM) have shown significant activities on PC-3 and LNCaP cell lines respectively. To investigate the mechanism of cell death we performed cell apoptosis staining and cell cycle arrest assay on more sensitive PC-3 cell lines on 2d. The results demonstrated that 2d induced apoptosis and shifted the cells to the sub G0/G1 and S phase. Our study evidently identified the potency of compound 2d as potential anti-prostate cancer agent. PMID:27156770

  2. The potential of antiestrogens as centrally-acting antihostility agents: recent animal data.

    PubMed

    Brain, P F; Simon, V; Hasan, S; Martinez, M; Castano, D

    1988-08-01

    Recent studies suggest that motivations for certain forms of masculine behavior including social aggression are mediated by central estrogen receptors. Two studies using antiestrogens in rodent species were performed. Intact male LH rats were given Tamoxifen or vehicle for 4 or 8 days. The three possible pairings were videotaped for 60 min. Intact male OF1 mice were given CI-680 or vehicle over 25 days. Similar pairings were carried out but some CI-680 or vehicle animals were paired with anosmic opponents. Encounters were videotaped for 10 min. In both experiments evidence was obtained that the antiestrogen markedly reduced time allocated to offense. Any variations in defense were a consequence of the level of attack to which animals were subjected. Neither compound greatly influenced the androgen-dependent sex accessory glands. Antiestrogens consequently have potential as antihostility agents in some forms of attack. PMID:3182180

  3. Design and synthesis of novel 4'-demethyl-4-deoxypodophyllotoxin derivatives as potential anticancer agents.

    PubMed

    Zhu, Xiong; Fu, Junjie; Tang, Yan; Gao, Yuan; Zhang, Shijin; Guo, Qinglong

    2016-02-15

    A group of podophyllotoxin (PPT) derivatives (7a-j) were synthesized by conjugating aryloxyacetanilide moieties to the 4'-hydroxyl of 4'-demethyl-4-deoxypodophyllotoxin (DDPT), and their anticancer activity was evaluated. It was found that the most potent compound 7d inhibited the proliferation of three cancer cell lines with sub to low micromolar IC50 values. Furthermore, it was demonstrated that 7d induced cell cycle arrest in G2/M phase in MGC-803 cells, and regulated the expression of cell cycle check point proteins, such as cyclin A, cyclin B, CDK1, cdc25c, and p21. Finally, 4 mg/kg of 7d reduced the weights and volumes of HepG2 xenografts in mice. Our findings suggest that 7d might be a potential anticancer agent. PMID:26804229

  4. Vibrational spectroscopy of N‧-(Adamantan-2-ylidene)thiophene-2-carbohydrazide, a potential antibacterial agent

    NASA Astrophysics Data System (ADS)

    Gladkov, Lev L.; Gaponenko, Sergey V.; Shabunya-Klyachkovskaya, Elena V.; Shimko, Anna N.; Al-Abdullah, Ebtehal S.; El-Emam, Ali A.

    2014-07-01

    Vibrational states of the newly synthesized molecule N‧-(Adamantan-2-ylidene)thiophene-2-carbohydrazide, a potential antibacterial agent, are examined experimentally for the crystalline phase and analyzed based on quantum chemical modelling of the solitary molecule and of the dimer, and assignment of the observed vibrational frequencies is proposed. Modelling of the title molecule dimer is found to describe better the experimentally observed vibration frequencies for the crystalline phase than calculations performed for a solitary molecule. Contributions from adamantane and thiophene parts within the molecule are identified. Additionally, multiple hydrogen bonds have been revealed both experimentally and computationally, inherent in the crystalline phase contrary to a solitary molecule. The spectroscopic findings correlate with the calculated interatomic distances which were found to change in the dimer versus a single molecule and to correspond better to the X-ray analysis data of the title compound in the crystalline phase.

  5. Microtubule Stabilizing Agents as Potential Treatment for Alzheimer’s Disease and Related Neurodegenerative Tauopathies

    PubMed Central

    Ballatore, Carlo; Brunden, Kurt R.; Huryn, Donna M.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Smith, Amos B.

    2012-01-01

    The microtubule (MT)-associated protein tau, which is highly expressed in the axons of neurons, is an endogenous MT-stabilizing agent that plays an important role in the axonal transport. Loss of MT-stabilizing tau function, caused by misfolding, hyperphosphorylation and sequestration of tau into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences. Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be utilized to compensate for the loss of tau function and to maintain/restore an effective axonal transport. These findings indicate that MT-stabilizing compounds hold considerable promise for the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing compounds. PMID:23020671

  6. Sodium arsenite potentiates the clastogenicity and mutagenicity of DNA cross linking agents

    SciTech Connect

    Lee, T.C.; Lee, K.C.; Tzeng, Y.J.; Huang, R.Y.; Jan, K.Y.

    1986-01-01

    To see if sodium arsenite enhances the clastogenicity and the mutagenicity of DNA crosslinking agents, Chinese hamster ovary (CHO) cells and human skin fibroblasts were exposed to cis-diamminedichloroplatinum (II) (cis-Pt(II)) or 8-methoxypsoralen (8-MOP) plus long-wave ultraviolet light (UVA) and then to sodium arsenite. The results indicate that the clastogenicity of cis-Pt(II) and 8-MOP pllus UVA are enhanced by the post-treatment with sodium arsenite. Chromatid breaks and exchanges are predominantly increased in doubly treated cells. Furthermore, the mutagenicity of cis-Pt(II) at the hypoxanthine-guanine phosphoribosyl transferase locus is also potentiated by sodium arsenite in CHO cells

  7. Chitosan as a potential stabilizing agent for titania nanoparticle dispersions for preparation of multifunctional cotton fabric.

    PubMed

    Goyal, Nidhi; Rastogi, Deepali; Jassal, Manjeet; Agrawal, Ashwini K

    2016-12-10

    Titania (TiO2) nanoparticle dispersions in water were prepared using chitosan (CS) as the stabilizing agent. The dispersion stability was evaluated with respect to storage time, hydrodynamic particle size, and zeta potential. The effect of the molecular weight of CS and presence of non-ionic polymers (poly(vinyl alcohol) and poly(ethylene glycol)) as co-dispersants was investigated. Despite the increase in size of dispersed particles, the long-term storage stability of the dispersions improved with increasing concentration and molecular weight of CS. The TiO2/CS dispersions were applied on cotton fabric and characterized. The presence of CS did not seriously affect the photocatalytic self-cleaning activity (SCA) of TiO2; with CS, a SCA of 89% was achieved compared with a value of 96% without CS. In addition, the TiO2/CS-treated cotton fabrics provided UV protection and significant antimicrobial activity. PMID:27577907

  8. 227Th-EDTMP: a potential therapeutic agent for bone metastasis.

    PubMed

    Washiyama, Kohshin; Amano, Ryohei; Sasaki, Jun; Kinuya, Seigo; Tonami, Norihisa; Shiokawa, Yoshinobu; Mitsugashira, Toshiaki

    2004-10-01

    The biodistribution of 227Th-EDTMP and retention of its daughter nuclide 223Ra were examined. 227Th-EDTMP was found to show high uptake and long-term retention in bone. The clearance of 227Th-EDTMP from blood and soft tissues was rapid and the femur-to-tissue uptake ratios reached more than 100 within 30 min for all tissues except the kidney. Seven and 14 days after injection of 227Th-EDTMP, the retention index of 223Ra in bone showed high values, and the differences between these time points were not significant. Therefore, 227Th-EDTMP is a potential radiotherapeutic agent for bone metastasis. PMID:15464392

  9. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    PubMed Central

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M.; Weaver, Scott C.; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  10. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential.

    PubMed

    Zasloff, Michael; Adams, A Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Weaver, Scott C; Wong, Gerard C L

    2011-09-20

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  11. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.

    1997-01-01

    A class of diagnostic and therapeutic compounds derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g. .sup.99m Tc or .sup.186 Re/.sup.188 Re) or late transition metals (e.g., .sup.105 Rh or .sup.109 Pd). The complexes with these metals .sup.186 Re/.sup.188 Re, .sup.99m Tc and .sup.109 Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g. Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  12. Novel Penicillin Analogues as Potential Antimicrobial Agents; Design, Synthesis and Docking Studies

    PubMed Central

    Ashraf, Zaman; Bais, Abdul; Manir, Md. Maniruzzaman; Niazi, Umar

    2015-01-01

    A number of penicillin derivatives (4a-h) were synthesized by the condensation of 6-amino penicillinic acid (6-APA) with non-steroidal anti-inflammatory drugs as antimicrobial agents. In silico docking study of these analogues was performed against Penicillin Binding Protein (PDBID 1CEF) using AutoDock Tools 1.5.6 in order to investigate the antimicrobial data on structural basis. Penicillin binding proteins function as either transpeptidases or carboxypeptidases and in few cases demonstrate transglycosylase activity in bacteria. The excellent antibacterial potential was depicted by compounds 4c and 4e against Escherichia coli, Staphylococcus epidermidus and Staphylococcus aureus compared to the standard amoxicillin. The most potent penicillin derivative 4e exhibited same activity as standard amoxicillin against S. aureus. In the enzyme inhibitory assay the compound 4e inhibited E. coli MurC with an IC50 value of 12.5 μM. The docking scores of these compounds 4c and 4e also verified their greater antibacterial potential. The results verified the importance of side chain functionalities along with the presence of central penam nucleus. The binding affinities calculated from docking results expressed in the form of binding energies ranges from -7.8 to -9.2kcal/mol. The carboxylic group of penam nucleus in all these compounds is responsible for strong binding with receptor protein with the bond length ranges from 3.4 to 4.4 Ǻ. The results of present work ratify that derivatives 4c and 4e may serve as a structural template for the design and development of potent antimicrobial agents. PMID:26267242

  13. Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent.

    PubMed

    Zhu, Donghua; White, R D; Hardy, Peter A; Weerapreeyakul, Natthida; Sutthanut, Khaetthareeya; Jay, Michael

    2006-04-01

    In this article, we use a nanotemplate engineering approach to prepare biodegradable nanoparticles composed of FDA-approved materials and possessing accessible gadolinium (Gd) atoms and demonstrate their potential as a Magnetic Resonance Imaging (MRI) contrast agent. Nanoparticles containing dimyristoyl phosphoethanolamine diethylene triamine penta acetate (PE-DTPA) were prepared using 3.5 mg of Brij 78, 2.0 mg of emulsifying wax and 0.5 mg of PE-DTPA/ml from a microemulsion precursor. After the addition of GdCl3, the presence of Gd on the surface of nanoparticles was characterized using inductively coupled plasma atomic emission spectroscopy and Scanning Transmission Electron Microscopy (STEM). The in vitro relaxivities of the PE-DTPA-Gd nanoparticles in different media were assessed at different field strengths. The conditional stability constant of Gd binding to the nanoparticles was determined using competitive spectrophotometric titration. Transmetallation kinetics of the gadolinium ion from PE-DTPA-Gd nanoparticles with zinc as the competing ionic was measured using the relaxivity evolution method. Nanoparticles with a diameter of approximately 130 nm possessing surface chelating functions were made from GRAS (Generally Regarded As Safe) materials. STEM demonstrated the uniform distribution of Gd3+ on the surface of the nanoparticles. The thermodynamic binding constant for Gd3+ to the nanoparticles was approximately 10(18) M(-1) and transmetallation studies with Zn2+ yielded kinetic constants K1 and K(-1) of 0.033 and 0.022 1/h, respectively, with an equilibrium constant of 1.5. A payload of approximately 10(5) Gd/nanoparticle was achieved; enhanced relaxivities were observed, including a pH dependence of the transverse relaxivity (r2). Nanoparticles composed of materials that have been demonstrated to be hemocompatible and enzymatically metabolized and possessing accessible Gd ions on their surface induce relaxivities in the bulk water signal that make them

  14. A case of periodic hypokalemic paralysis in a patient with celiac disease.

    PubMed

    Ranjan, Amitabh; Debata, Pradeep K

    2014-06-01

    A 4-year-old male child presented with recurrent episodes of diarrhoea for 6-months, each episode associated with weakness of all four limbs and documented hypokalemia who on examination had some pallor, short stature, flaccid quadriparesis with absent DTR. The patient responded clinically and biochemically to potassium supplement. TTG and Intestinal biopsy confirmed celiac disease. Patient was put on gluten free diet and patient is doing well with no recurrence. We present a case of Recurrent hypokalemic paralysis with previously unsuspected celiac disease who was not in celiac crisis. PMID:25121038

  15. Muscle fiber conduction velocity in the diagnosis of sporadic hypokalemic periodic paralysis.

    PubMed

    Brouwer, O F; Zwarts, M J; Links, T P; Wintzen, A R

    1992-01-01

    A 6-year-old girl presented with episodes of profound muscle weakness since the age of 2 years. On the basis of decreased ictal serum potassium level and lack of metabolic disorder, primary hypokalemic periodic paralysis (HPP) was diagnosed. Both parents and 3 sibs were unaffected clinically. In all of them asymptomatic heterozygosity was very unlikely by the finding of normal muscle fiber conduction velocities, whereas in the patient interictal muscle fiber conduction velocity was lowered. Determination of muscle fiber conduction velocity can be helpful in documenting sporadic occurrence of HPP. PMID:1324813

  16. Enhancing Potentially Plant-Available Lead Concentrations in Contaminated Residential Soils Using a Biodegradable Chelating Agent

    NASA Astrophysics Data System (ADS)

    Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.

    2007-12-01

    Chelation of heavy metals is an important factor in enhancing metal solubility and, hence, metal availability to plants to promote phytoremediation. In the present study, we compared the effects of application of a biodegradable chelating agent, namely, ethylenediaminedisuccinic acid (EDDS) on enhancing plant available form of lead (Pb) in Pb-based paint contaminated residential soils compared to that of a more commonly used, but non-biodegradable chelate, i.e., ethylenediaminetetraacetic acid (EDTA). Development of a successful phytoremediation model for metals such as Pb depends on a thorough understanding of the physical and chemical properties of the soil, along with the optimization of a chelate treatment to mobilize Pb from `unavailable' pools to potentially plant available fraction. In this context, we set out to perform batch incubation experiments to investigate the effectiveness of the two aforementioned chelates in enhancing plant available Pb at four different concentrations (0, 5, 10 and 15 mM/kg soil) and three treatment durations (0, 10 and 30 days). We selected 12 contaminated residential soils from two major metropolitan areas (San Antonio, TX and Baltimore, MD) with varying soil physico-chemical properties - the soils from San Antonio were primarily alkaline and those from Baltimore were typically acidic. Total soil Pb concentrations ranged between 256 mg/kg and 4,182 mg/kg. Our results show that both chelates increased the solubility of Pb, otherwise occluded in the complex soil matrix. For both EDTA and EDDS, the exchangeable concentrations of soil Pb also increased with increase in chelate concentration and incubation time. The most effective treatment was 15 mM chelate kg-1 soil incubated for 30 days, which caused many fold increase in potentially plant available Pb (a combination of the soluble and exchangeable fractions) relative to the unamended controls. Step wise multiple linear regression analysis using chelate-extractable Pb and soil

  17. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer

    PubMed Central

    Bishayee, Anupam; Ahmed, Shamima; Brankov, Nikoleta; Perloff, Marjorie

    2010-01-01

    Breast cancer remains a major cause of death in the United States as well as the rest of the world. In view of the limited treatment options for patients with advanced breast cancer, preventive and novel therapeutic approaches play an important role in combating this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, posses various pharmacological properties. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells as well as anticancer efficacy in preclinical animal models. Numerous triterpenoids have been synthesized by structural modification of natural compounds. Some of these analogs are considered to be the most potent antiinflammatory and anticarcinogenic triterpenoids known. This review examines the potential role of natural triterpenoids and their derivatives in the chemoprevention and treatment of mammary tumors. Both in vitro and in vivo effects of these agents and related molecular mechanisms are presented. Potential challenges and future directions involved in the advancement of these promising compounds in the prevention and therapy of human breast cancer are also identified. PMID:21196213

  18. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    NASA Astrophysics Data System (ADS)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  19. Identification of (-)-epigallocatechin-3-gallate as a potential agent for blocking infection by grass carp reovirus.

    PubMed

    Wang, Hao; Liu, Weisha; Yu, Fei; Lu, Liqun

    2016-04-01

    Grass carp reovirus (GCRV), the representative strain of the species Aquareovirus C, serves as a model for studying the pathogenesis of aquareoviruses. Previously, epigallocatechin gallate (EGCG) was shown to inhibit orthoreovirus infection. The aim of this study was to test its potential in blocking infection by GCRV. We show that adhesion to the CIK (Ctenopharyngodon idellus kidney) cell surface by GCRV particles is inhibited in a dose-dependent manner by EGCG, as well as by a crude extract of green tea. We also evaluated the safety of EGCG and green tea extract using CIK cells, and the results suggest that EGCG is a promising compound that may be developed as a plant-derived small molecular therapeutic agent against grass carp hemorrhagic disease caused by GCRV infection. As the ligand for the 37/67-kDa laminin receptor (LamR), EGCG's blocking effect on GCRV attachment was associated with the binding potential of GCRV particles to LamR, which was inferred from a VOPBA assay. PMID:26758731

  20. Recent developments in L-asparaginase discovery and its potential as anticancer agent.

    PubMed

    Shrivastava, Abhinav; Khan, Abdul Arif; Khurshid, Mohsin; Kalam, Mohd Abul; Jain, Sudhir K; Singhal, Pradeep K

    2016-04-01

    L-Asparaginase (EC3.5.1.1) is an enzyme, which is used for treatment of acute lymphoblastic leukaemia (ALL) and other related blood cancers from a long time. This enzyme selectively hydrolyzes the extracellular amino acid L-asparagine into L-aspartate and ammonia, leading to nutritional deficiencies, protein synthesis inhibition, and ultimately death of lymphoblastic cells by apoptosis. Currently, bacterial asparaginases are used for treatment purpose but offers scepticism due to a number of toxicities, including thrombosis, pancreatitis, hyperglycemia, and hepatotoxicity. Resistance towards bacterial asparaginase is another major disadvantage during cancer management. This situation attracted attention of researchers towards alternative sources of L-asparaginase, including plants and fungi. Present article discusses about potential of L-asparaginase as an anticancer agent, its mechanism of action, and adverse effects related to current asparaginase formulations. This article also provides an outlook for recent developments in L-asparaginase discovery from alternative sources and their potential as a less toxic alternative to current formulations. PMID:25630663

  1. Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents.

    PubMed

    Sashidhara, Koneni V; Rao, K Bhaskara; Singh, Seema; Modukuri, Ram K; Aruna Teja, G; Chandasana, Hardik; Shukla, Shubha; Bhatta, Rabi S

    2014-10-15

    A series of amine substituted 3-phenyl coumarin derivatives were designed and synthesized as potential antidepressant agents. In preliminary screening, all compounds were evaluated in forced swimming test (FST), a model to screen antidepressant activity in rodents. Among the series, compounds 5c and 6a potentially decreased the immobility time by 73.4% and 79.7% at a low dose of 0.5 mg/kg as compared to standard drug fluoxetine (FXT) which reduced the immobility time by 74% at a dose of 20 mg/kg, ip. Additionally, these active compounds also exhibited significant efficacy in tail suspension test (TST) (another model to screen antidepressant compounds). Interestingly, rotarod and locomotor activity tests confirmed that these two compounds do not have any motor impairment effect and neurotoxicity in mice. Our studies demonstrate that the new 3-phenylcoumarin derivatives may serve as a promising antidepressant lead and hence pave the way for further investigation around this chemical space. PMID:25239852

  2. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans. PMID:24102473

  3. Mn-54 DTPA distribution in dogs: Evaluation as a potential NMR contrast agent

    SciTech Connect

    Boudreau, R.J.; Frick, M.P.; Levy, R.M.; Sirr, S.A.; Lund, G.; Loken, M.K.

    1985-05-01

    Several paramagnetic ions are currently being evaluated as potential contrast agents for NMR imaging. To date the most successful of these appears to be Gd-DTPA. The authors recently undertook an investigation into the kinetics of biodistribution of Mn-DTPA to determine if this agent showed any tissue specific uptake, and if so, to optimize the time for imaging. In order to obviate the need for repetitive quantitative NMR imaging they have substituted tracer amounts of Mn-54 for the stable ion. Following intravenous injection into three mongrel dogs, samples of blood, bowel, liver, and pancreas were obtained at 3, 15, 30 and 60 minutes and 2, 4 and 6 hours post-injection. Radioactivity, and thus tissue concentration, was then determined in a gamma counter. Urine was also collected throughout the study. At six hours 58.4 +- 7.1% of the injected dose had been excreted in the urine. Peak liver accumulation occurred within 30 minutes (0.503 +- 0.144% injected dose/gm x kg body weight). The pancreas also showed a relatively high accumulation of tracer (0.247 +- 0.039%/gram x kg body weight) by four hours. The pancreas to liver ratios were highest at six hours (.73). The blood concentration fell very rapidly with little tracer remaining in the blood at one hour. The results of these experiments indicate that a significant portion of the injected material was concentrated by liver and pancreas. Unlike MnCl/sub 2/, most of the Mn-DTPA is excreted in the urine. This excretion is expected to reduce the toxicity of the injected material. These results are being used to establish the optimal protocols for NMR imaging with Mn-DTPA.

  4. A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods

    PubMed Central

    Lee, Ju-Hoon; Bai, Jaewoo; Shin, Hakdong; Kim, Yeran; Park, Bookyung; Heu, Sunggi

    2015-01-01

    Cronobacter sakazakii is an important pathogen that causes high mortality in infants. Due to its occasional antibiotic resistance, a bacteriophage approach might be an alternative effective method for the control of this pathogen. To develop a novel biocontrol agent using bacteriophages, the C. sakazakii-infecting phage CR5 was newly isolated and characterized. Interestingly, this phage exhibited efficient and relatively durable host lysis activity. In addition, a specific gene knockout study and subsequent complementation experiment revealed that this phage infected the host strain using the bacterial flagella. The complete genome sequence analysis of phage CR5 showed that its genome contains 223,989 bp of DNA, including 231 predicted open reading frames (ORFs), and it has a G+C content of 50.06%. The annotated ORFs were classified into six functional groups (structure, packaging, host lysis, DNA manipulation, transcription, and additional functions); no gene was found to be related to virulence or toxin or lysogen formation, but >80% of the predicted ORFs are unknown. In addition, a phage proteomic analysis using SDS-PAGE and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) revealed that seven phage structural proteins are indeed present, supporting the ORF predictions. To verify the potential of this phage as a biocontrol agent against C. sakazakii, it was added to infant formula milk contaminated with a C. sakazakii clinical isolate or food isolate, revealing complete growth inhibition of the isolates by the addition of phage CR5 when the multiplicity of infection (MOI) was 105. PMID:26497465

  5. A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods.

    PubMed

    Lee, Ju-Hoon; Bai, Jaewoo; Shin, Hakdong; Kim, Yeran; Park, Bookyung; Heu, Sunggi; Ryu, Sangryeol

    2016-01-01

    Cronobacter sakazakii is an important pathogen that causes high mortality in infants. Due to its occasional antibiotic resistance, a bacteriophage approach might be an alternative effective method for the control of this pathogen. To develop a novel biocontrol agent using bacteriophages, the C. sakazakii-infecting phage CR5 was newly isolated and characterized. Interestingly, this phage exhibited efficient and relatively durable host lysis activity. In addition, a specific gene knockout study and subsequent complementation experiment revealed that this phage infected the host strain using the bacterial flagella. The complete genome sequence analysis of phage CR5 showed that its genome contains 223,989 bp of DNA, including 231 predicted open reading frames (ORFs), and it has a G+C content of 50.06%. The annotated ORFs were classified into six functional groups (structure, packaging, host lysis, DNA manipulation, transcription, and additional functions); no gene was found to be related to virulence or toxin or lysogen formation, but >80% of the predicted ORFs are unknown. In addition, a phage proteomic analysis using SDS-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revealed that seven phage structural proteins are indeed present, supporting the ORF predictions. To verify the potential of this phage as a biocontrol agent against C. sakazakii, it was added to infant formula milk contaminated with a C. sakazakii clinical isolate or food isolate, revealing complete growth inhibition of the isolates by the addition of phage CR5 when the multiplicity of infection (MOI) was 10(5). PMID:26497465

  6. Idiopathic Generalized Epilepsy and Hypokalemic Periodic Paralysis in a Family of South Indian Descent

    PubMed Central

    Subramanian, Muthiah; Senthil, N.; Sujatha, S.

    2015-01-01

    Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4) and nonsense mutations in voltage gated calcium channels (CACNA1A) have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies. PMID:25893123

  7. Idiopathic generalized epilepsy and hypokalemic periodic paralysis in a family of South Indian descent.

    PubMed

    Subramanian, Muthiah; Senthil, N; Sujatha, S

    2015-01-01

    Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4) and nonsense mutations in voltage gated calcium channels (CACNA1A) have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies. PMID:25893123

  8. Weakness in the Emergency Department: Hypokalemic Periodic Paralysis Induced By Strenuous Physical Activity.

    PubMed

    Dogan, Nurettin Ozgur; Avcu, Nazire; Yaka, Elif; Isikkent, Ali; Durmus, Ugur

    2015-06-01

    Hypokalemic periodic paralysis is a rare but serious disorder that is typically caused by a channelopathy. Thyrotoxicosis, heavy exercise, high carbohydrate meal and some drugs can trigger channelopathy in genetically predisposed individuals. A 33-year-old male patient presented to the emergency department with weakness in the lower extremities. He stated that he had done heavy physical activity during the previous week. The patient exhibited motor weakness in the lower extremities (2/5 strength) during the physical examination. Initial laboratory tests showed a potassium level of 1.89 mEq/L. The initial electrocardiogram demonstrated T wave inversion and prominent U waves. The patient was treated in the emergency department with oral and intravenous potassium. The physical and ECG symptoms resolved within 16 hours of potassium supplementation and biochemical tests showed normal serum potassium levels. The patient was discharged shortly after the resolution of the symptoms. Weakness is an important but nonspecific symptom that may be brought on by a number of underlying physiological processes. Hypokalemic periodic paralysis is a rare disease that may be triggered by heavy physical activity and presents with recurrent admissions due to weakness. PMID:27336072

  9. Rifampin-associated tubulointersititial nephritis and Fanconi syndrome presenting as hypokalemic paralysis

    PubMed Central

    2013-01-01

    Background Rifampin is one of the most important drugs in first-line therapies for tuberculosis. The renal toxicity of rifampin has been reported sporadically and acute tubulointerstitial nephritis (ATIN) is a frequent histological finding. We describe for the first time a case of ATIN and Fanconi syndrome presenting as hypokalemic paralysis, associated with the use of rifampin. Case presentation A 42-year-old man was admitted with sudden-onset lower extremity paralysis and mild renal insufficiency. He had been treated for pulmonary tuberculosis with isoniazid, rifampin, and ethambutol for 2 months. Laboratory tests revealed proteinuria, profound hypokalemia, hyperchloremic metabolic acidosis with a normal anion gap, positive urine anion gap, hypophosphatemia with hyperphosphaturia, hypouricemia with hyperuricosuria, glycosuria with normal serum glucose level, generalized aminoaciduria, and β2-microglobulinuria. A kidney biopsy revealed findings typical of ATIN and focal granular deposits of immunoglubulin A and complement 3 in the glomeruli and tubules. Electron microscopy showed epithelial foot process effacement and electron-dense deposits in the subendothelial and mesangial spaces. Cessation of rifampin resolved the patient’s clinical presentation of Fanconi syndrome, and improved his renal function and proteinuria. Conclusion This case demonstrates that rifampin therapy can be associated with Fanconi syndrome presenting as hypokalemic paralysis, which is a manifestation of ATIN. Kidney function and the markers of proximal tubular injury should be carefully monitored in patients receiving rifampin. PMID:23320835

  10. Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents

    PubMed Central

    Wang, Limin; Zha, Zhihao; Qu, Wenchao; Qiao, Hongwen; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2012-01-01

    Introduction This paper reports the synthesis and labeling of 18F alanine derivatives. We also investigate their biological characteristics as potential tumor imaging agents mediated by alanine-serine-cysteine preferring (ASC) transporter system. Methods Three new 18F alanine derivatives were prepared from corresponding tosylate-precursors through a two-step labelling reaction. In vitro uptake studies to evaluate and to compare these three analogs were carried out in 9L glioma and PC-3 prostate cancer cell lines. Potential transport mechanisms, protein incorporation and stability of 3-(1-[18F]fluoromethyl)-L-alanine (L[18F]FMA) were investigated in 9L glioma cells. Its biodistribution was determined in a rat-bearing 9L tumor model. PET imaging studies were performed on rat bearing 9L glioma tumors and transgenic mouse carrying spontaneous generated M/tomND tumor (mammary gland adenocarcinoma). Results New 18F alanine derivatives were prepared with 7–34% uncorrected radiochemical yields, excellent enantiomeric purity (>99%) and good radiochemical purity (>99%). In vitro uptake of the L-[18F]FMA in 9L glioma and PC-3 prostate cancer cells was higher than those observed for other two alanine derivatives and [18F]FDG in first 1 h. Inhibition of cell uptake studies suggested that L-[18F]FMA uptake in 9L glioma was predominantly via transport system ASC. After entering into cells, L-[18F]FMA remained stable and was not incorporated into protein within 2 h. In vivo biodistribution studies demonstrated that L-[18F]FMA had relatively high uptake in liver and kidney. Tumor uptake was fast, reaching a maximum within 30 min. The tumor-to-muscle, tumor-to-blood and tumor-to-brain ratios at 60 min post injection were 2.2, 1.9 and 3.0, respectively. In PET imaging studies, tumors were visualized with L-[18F]FMA in both 9L rat and transgenic mouse. Conclusion L-[18F]FMA showed promising properties as a PET imaging agent for up-regulated ASC transporter associated with tumor

  11. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high

  12. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.

    PubMed

    Dutt, Vikas; Gupta, Sanjeev; Dabur, Rajesh; Injeti, Elisha; Mittal, Ashwani

    2015-09-01

    Over the last two decades, new insights into the etiology of skeletal muscle wasting/atrophy under diverse clinical settings including denervation, AIDS, cancer, diabetes, and chronic heart failure have been reported in the literature. However, the treatment of skeletal muscle wasting remains an unresolved challenge to this day. About nineteen potential drugs that can regulate loss of muscle mass have been reported in the literature. This paper reviews the mechanisms of action of all these drugs by broadly classifying them into six different categories. Mechanistic data of these drugs illustrate that they regulate skeletal muscle loss either by down-regulating myostatin, cyclooxygenase2, pro-inflammatory cytokines mediated catabolic wasting or by up-regulating cyclic AMP, peroxisome proliferator-activated receptor gamma coactivator-1α, growth hormone/insulin-like growth factor1, phosphatidylinositide 3-kinases/protein kinase B(Akt) mediated anabolic pathways. So far, five major proteolytic systems that regulate loss of muscle mass have been identified, but the majority of these drugs control only two or three proteolytic systems. In addition to their beneficial effect on restoring the muscle loss, many of these drugs show some level of toxicity and unwanted side effects such as dizziness, hypertension, and constipation. Therefore, further research is needed to understand and develop treatment strategies for muscle wasting. For successful management of skeletal muscle wasting either therapeutic agent which regulates all five known proteolytic systems or new molecular targets/proteolytic systems must be identified. PMID:26048279

  13. Plant foods in the management of diabetes mellitus: vegetables as potential hypoglycaemic agents.

    PubMed

    Platel, K; Srinivasan, K

    1997-04-01

    Vegetables are among the numerous plant adjuncts tried for the treatment of diabetes mellitus. A few vegetables that are commonly consumed in India have been claimed to possess antidiabetic potency. In recent years, there has been a renewed interest to screen such plant food materials, for a possible beneficial use. Considerable amount of work has been carried out in this regard with bitter gourd (Momordica charantia) and ivy gourd (Coccinia indica) both in experimental animals and human diabetic subjects. Majority of these studies have documented the beneficial effect of the fruit of bitter gourd and leaf of ivy gourd when administered orally as a single dose. The hypoglycaemic influence is claimed to be mediated through an insulin secretagogue effect or through an influence on enzymes involved in glucose metabolism. The limited number of studies on other vegetables such as cabbage (Brassica oleracia), green leafy vegetables, beans and tubers have shown the beneficial hypoglycaemic influence in both experimental animals and humans. There is scope for more extensive research in this area, especially to examine the long term beneficial effect of dietary vegetables, to identify the active principle, and to understand the mechanism of action, which is at present unclear. Since diet forms the mainstay in the management of diabetes mellitus, there is scope for exploiting the antidiabetic potency of vegetables to the maximum extent. Such plant food adjuncts possessing hypoglycaemic activity appear to hold promise as potential antidiabetic agents. PMID:9188186

  14. Child as change agent. The potential of children to increase healthy food purchasing.

    PubMed

    Wingert, Katherine; Zachary, Drew A; Fox, Monica; Gittelsohn, Joel; Surkan, Pamela J

    2014-10-01

    Shoppers make many food choices while buying groceries. Children frequently accompany caregivers, giving them the potential to influence these choices. We aimed to understand low-income shoppers' perceptions of how children influence caregivers' purchasing decisions and how the supermarket environment could be manipulated to allow children to serve as change agents for healthy food purchasing in a primarily African-American community. We conducted thirty in-depth interviews, five follow-up interviews, one supermarket walk-through interview, and four focus groups with adult supermarket shoppers who were regular caregivers for children under age 16. We conducted one focus group with supermarket employees and one in-depth interview with a supermarket manager. Qualitative data were analyzed using iterative thematic coding and memo writing. Caregivers approached grocery shopping with efforts to save money, prevent waste and purchase healthy food for their families, but described children as promoting unplanned, unhealthy food purchases. This influence was exacerbated by the supermarket environment, which participants found to promote unhealthy options and provide limited opportunities for children to interact with healthier foods. Caregivers' suggestions for promoting healthy purchasing for shoppers with children included manipulating the placement of healthy and unhealthy foods and offering opportunities for children to taste and interact with healthy options. PMID:24996593

  15. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis.

    PubMed

    Zumla, Alimuddin; Rao, Martin; Dodoo, Ernest; Maeurer, Markus

    2016-01-01

    Treatment of multidrug-resistant tuberculosis (MDR-TB) is extremely challenging due to the virulence of the etiologic strains of Mycobacterium tuberculosis (M. tb), the aberrant host immune responses and the diminishing treatment options with TB drugs. New treatment regimens incorporating therapeutics targeting both M. tb and host factors are urgently needed to improve the clinical management outcomes of MDR-TB. Host-directed therapies (HDT) could avert destructive tuberculous lung pathology, facilitate eradication of M. tb, improve survival and prevent long-term functional disability. In this review we (1) discuss the use of HDT for cancer and other infections, drawing parallels and the precedent they set for MDR-TB treatment, (2) highlight preclinical studies of pharmacological agents commonly used in clinical practice which have HDT potential, and (3) outline developments in cellular therapy to promote clinically beneficial immunomodulation to improve treatment outcomes in patients with pulmonary MDR-TB. The use of HDTs as adjuncts to MDR-TB therapy requires urgent evaluation. PMID:27301245

  16. Potential of Submergedly Cultivated Mycelia of Ganoderma spp. as Antioxidant and Antimicrobial Agents.

    PubMed

    Ćilerdžić, Jasmina; Stajic, Mirjana; Vukojevic, Jelena

    2016-01-01

    The study aimed to evaluate the antiradical and antimicrobial (antibacterial and antifungal) potentials of ethanol mycelial extracts of selected Ganoderma species and strains and to define interand intraspecies diversity among Ganoderma species and strains. Ganoderma lucidum strains were good DPPH• scavengers (neutralizing up to 57.12% radicals), contrary to G. applanatum (20.35%) and G. carnosum (17.04%). High correlations between the activities and contents of total phenols in the extracts showed that these compounds were carriers of the activity. Results obtained by both discdiffusion and microdilution methods indicated that the extract of G. lucidum BEOFB 433 was the most potent antibacterial agent that inhibited growth of almost all bacterial species at a concentration of 1.0 mg/mL. Salmonella typhimurium was the most sensitive species to the mycelium extracts. Extracts of G. lucidum BEOFB 431 and BEOFB 434 showed the best antifungal activity since in concentration of 0.5 mg/mL inhibited the growth of Aspergillus glaucus (BEOFB 431) and the growth of A. glaucus and Trichoderma viride (BEOFB 434). Extracts of G. applanatum and G. lucidum BEOFB 431 had the strongest fungicidal effects, with lethal outcomes for A. glaucus and T. viride, respectively, being noted at a concentration of 1.17 mg/mL. Aspergillus niger was proved as the most resistant species. PMID:26420047

  17. Pyrolysis mass spectrometry for distinguishing potential hoax materials from bioterror agents.

    PubMed

    Wilkes, Jon G; Rafii, Fatemeh; Sutherland, John B; Rushing, Larry G; Buzatu, Dan A

    2006-01-01

    Pyrolysis mass spectrometry (PyMS) was investigated as a rapid tool to distinguish potential bioterror hoax materials from samples containing pathogenic bacteria. A pyrolysis time-of-flight (TOF) mass spectrometer equipped with an alternative ionization technique, metastable atom bombardment (MAB), was used to produce sample spectra. These spectra were analyzed by principal component and discriminant analysis for pattern recognition. Materials investigated were two strains of Vibrio parahaemolyticus, one of which produced the tdh toxin, two Salmonella enterica serotypes, a biological mosquito control product containing spores of Bacillus thuringiensis, and several white to off-white powders (which could be used as hoax materials), such as flour, corn starch, methyl cellulose, and xanthan gum. PyMS distinguished bacterial samples from hoax materials. Furthermore, pattern analysis differentiated Vibrios from Salmonellae, Salmonella enterica Anatum from S. enterica Heidelberg, and the two V. parahaemolyticus strains from each other. The B. thuringiensis mixture was distinguished from other bacteria and powders, suggesting that PyMS with pattern recognition may differentiate samples containing pathogens, including Bacillus spp., from nonbiological agents and that it can be a rapid method for detection of bacteria. MS data acquisition took only 7 min for each sample. PMID:16841357

  18. Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer's Disease

    PubMed Central

    Guzior, Natalia; ckowska,, Anna Wię; Panek, Dawid; Malawska, Barbara

    2015-01-01

    Alzheimer’s disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β anti-aggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NO-releasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD. PMID:25386820

  19. Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract

    PubMed Central

    Stefek, Milan

    2011-01-01

    Cataract is one of the earliest secondary complications of diabetes mellitus. The lens is a closed system with limited capability to repair or regenerate itself. Current evidence supports the view that cataractogenesis is a multifactorial process. Mechanisms related to glucose toxicity, namely oxidative stress, processes of non-enzymatic glycation and enhanced polyol pathway significantly contribute to the development of eye lens opacity under conditions of diabetes. There is an urgent need for inexpensive, non-surgical approaches to the treatment of cataract. Recently, considerable attention has been devoted to the search for phytochemical therapeutics. Several pharmacological actions of natural flavonoids may operate in the prevention of cataract since flavonoids are capable of affecting multiple mechanisms or etiological factors responsible for the development of diabetic cataract. In the present paper, natural flavonoids are reviewed as potential agents that could reduce the risk of cataract formation via affecting multiple pathways pertinent to eye lens opacification. In addition, the bioavailability of flavonoids for the lens is considered. PMID:21753902

  20. Diversity-oriented synthesis of α-aminophosphonates: a new class of potential anticancer agents.

    PubMed

    Bhattacharya, Asish K; Raut, Dnyaneshwar S; Rana, Kalpeshkumar C; Polanki, Innaiah K; Khan, Mohd Sajid; Iram, Sana

    2013-08-01

    A small library of structurally diverse α-aminophosphonates has been synthesized by reacting alkyl/aryl aldehydes, alkyl/aryl amines and alkyl/aryl phosphites in one-pot catalyzed by Amberlite-IR 120 resin (acidic). All the synthesized α-aminophosphonates were assayed for their in vitro cytotoxic activities against a panel of five human cancer cell lines including A-549, NCI-H23 (Lung), Colo 320DM (Colon), MG-63 (Bone marrow) and Jurkat (Blood T lymphocytes). Compound 4n having (R)-1-phenylethanamine was found to be the most active amongst all the synthesized α-aminophosphonates against all the five cancer cell lines, most prominent being against Jurkat cell line with an IC50 value of 4 μM. Surprisingly, compound 4o having (S)-1-phenylethanamine was found to be devoid of any cytotoxicity. Our finding suggests that these chemical entities could further serve as interesting template for the design of potential anticancer agents. PMID:23792352

  1. Animals living in polluted environments are potential source of antimicrobials against infectious agents

    PubMed Central

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-01-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations. PMID:23265422

  2. Preparation of Amyloid Immuno-Nanoparticles as Potential MRI Contrast Agents for Alzheimer's Disease Diagnosis.

    PubMed

    Yin, Zhenyu; Yul, Tingting; Xu, Yun

    2015-09-01

    Alzheimer's disease (AD) is the most common form of dementia which is caused by accumulation in the brain of plaques made up of amyloid beta-peptide (Abeta). Research on nanosized systems indicated that nanoparticles (NPs) could pass across the blood-brain barrier (BBB) and improve the visibility of internal body structures in magnetic resonance imaging (MRI), which made it possible to aid the early diagnosis of AD. In this research study we synthesized magnetite nanoparticles by high-temperature solution-phase reaction, transferred into water based on a ligand exchange process and coated with meso-2,3-dimercaptosuccinic (DMSA). Subsequently, the anti-amyloid Abeta immunomagnetic nanoparticles (IMNPs) were prepared by grafting anti-amyloid antibodies on the surface of the DMSA-coated magnetic nanoparticles (MNPs). The enzyme linked immunosorbent assay (ELISA) method was introduced to evaluate the IMNPs activity and conjugation amount of antibodies. The biocompatibility of the IMNPs was tested by colony-forming assay. The results showed that the anti-amyloid Abeta IMNPs were biocompatible and biologically active, as well as effective in enhancing MRI solution, indicating that the IMNPs could be used as potential MRI contrast agents and targeted carriers for AD early diagnosis and therapy. PMID:26716196

  3. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents.

    PubMed

    Chen, Jia-Nian; Wang, Xian-Fu; Li, Ting; Wu, De-Wen; Fu, Xiao-Bo; Zhang, Guang-Ji; Shen, Xing-Can; Wang, Heng-Shan

    2016-01-01

    Through a structure-based molecular hybridization approach, a series of novel quinazolinyl-diaryl urea derivatives were designed, synthesized, and screened for their in vitro antiproliferative activities against three cancer cell lines (HepG2, MGC-803, and A549). Six compounds (7 g, 7 m, 7 o, 8 e, 8 g, and 8 m) showed stronger activity against a certain cell line compared with the positive reference drugs sorafenib and gefitinib. Among the six compounds, 8 g exhibited the strongest activity. In particular, compound 8 g induced A549 apoptosis, arrested cell cycle at the G0/G1 phase, elevated intracellular reactive oxygen species level, and decreased mitochondrial membrane potential. This compound can also effectively regulate the expression of apoptosis- and cell cycle-related proteins, and influence the Raf/MEK/ERK pathway. Molecular docking and structure-activity relationship analyses revealed that it can bind well to the active site of the receptor c-Raf, which was consistent with the biological data. Therefore, compound 8 g may be a potent antitumor agent, representing a promising lead for further optimization. PMID:26560049

  4. N-( sup 18 F)fluoroacetyl-D-glucosamine: A potential agent for cancer diagnosis

    SciTech Connect

    Fujiwara, T.; Kubota, K.; Sato, T.; Matsuzawa, T.; Tada, M.; Iwata, R.; Itoh, M.; Hatazawa, J.; Sato, K.; Fukuda, H. )

    1990-10-01

    Positron labeled substrates such as sugars, amino acids, and nucleosides have been investigated for the in-vivo evaluation of biochemical processes in cancerous tissue. Hexosamines are obligatory structural components of many biologically important macromolecules, including membrane glycoproteins and mucopolysaccharide. We evaluated a new synthesized pharmaceutical, N-({sup 18}F)fluoroacetyl-D-glucosamine ({sup 18}F-FAG), which is a structural analog of N-acetyl-D-glucosamine. C3H/HeMsNRS mice bearing spontaneous hepatomas were used for the tissue distribution study. At 60 min after injection, high uptakes were found in tumor (5.16, mean value of %dose/g), liver (3.71), and kidney (3.27). The tumor uptake of 18F-FAG showed the highest value in all tissue. In the PET study, VX-2 carcinoma of the rabbit was clearly visualized. Our preliminary results suggest that {sup 18}F-FAG has potential as a new agent for tumor imaging.

  5. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative

    PubMed Central

    Chopra, Lipsy; Singh, Gurdeep; Kumar Jena, Kautilya; Sahoo, Debendra K.

    2015-01-01

    The emergence of antibiotic resistant bacteria has led to exploration of alternative therapeutic agents such as ribosomally synthesized bacterial peptides known as bacteriocins. Biofilms, which are microbial communities that cause serious chronic infections, form environments that enhance antimicrobial resistance. Bacteria in biofilm can be upto thousand times more resistant to antibiotics than the same bacteria circulating in a planktonic state. In this study, sonorensin, predicted to belong to the heterocycloanthracin subfamily of bacteriocins, was found to be effectively killing active and non-multiplying cells of both Gram-positive and Gram-negative bacteria. Sonorensin showed marked inhibition activity against biofilm of Staphylococcus aureus. Fluorescence and electron microscopy suggested that growth inhibition occurred because of increased membrane permeability. Low density polyethylene film coated with sonorensin was found to effectively control the growth of food spoilage bacteria like Listeria monocytogenes and S. aureus. The biopreservative effect of sonorensin coated film showing growth inhibition of spoilage bacteria in chicken meat and tomato samples demonstrated the potential of sonorensin as an alternative to current antibiotics/ preservatives. PMID:26292786

  6. Phyllanthus wightianus Müll. Arg.: a potential source for natural antimicrobial agents.

    PubMed

    Natarajan, D; Srinivasan, R; Shivakumar, M S

    2014-01-01

    Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens) and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger) were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6-29 mm) of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm) with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97) and N-hexadecanoic acid (peak area 21.55% RT-21.796) are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine. PMID:24883301

  7. Evaluation of Se-75 BISTAES as a potential articular cartilage imaging agent

    SciTech Connect

    Yu, S.W.K.

    1987-01-01

    The potential of Se-75 bis (..beta..-N,N,N-trimethylamino)-ethyl) selenide diiodide (Se-75 BISTAES) as an articular cartilage imaging agent for the early diagnosis of osteoarthritis was evaluated. The compound was synthesized and the identity was established. The radiochemical purity and stability were determined initially and over a two-month period of storage at three temperatures. The biodistribution of Se-75 BISTAES in rabbits and guinea pigs was studied. A high concentration of radioactivity was found in the knee and shoulder cartilage. The radioactivity in the cartilage was the highest at 15 minutes to one hour post-injection. In rabbits, the highest ratio of radioactivity in the cartilage to the surrounding tissues was about 30. A minimal ratio of 10 is required for nuclear medicine imaging. Nuclear medicine imaging conducted on rabbits demonstrated increased radioactivity in the articular cartilage in the knee and shoulder. The impression from the nuclear medicine images and the findings of the biodistribution study indicated that the route of excretion of Se-75 BISTAES was the urine. The in vitro binding between Se-75 BISTAES and chondroitin sulfate was determined by an equilibrium dialysis technique.

  8. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease.

    PubMed

    Guzior, Natalia; Wieckowska, Anna; Panek, Dawid; Malawska, Barbara

    2015-01-01

    Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β antiaggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NOreleasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD. PMID:25386820

  9. Human recombinant truncated RNASET2, devoid of RNase activity; A potential cancer therapeutic agent.

    PubMed

    Nesiel-Nuttman, Liron; Schwartz, Betty; Shoseyov, Oded

    2014-11-30

    Human RNASET2 has been implicated in antitumorigenic and antiangiogenic activities, independent of its ribonuclease capacities. We constructed a truncated version of human RNASET2, starting at E50 (trT2-50) and devoid of ribonuclease activity. trT2-50 maintained its ability to bind actin and to inhibit angiogenesis and tumorigenesis. trT2-50 binds to cell surface actin and formed a complex with actin in vitro. The antiangiogenic effect of this protein was demonstrated in human umbilical vein endothelial cells (HUVECs) by its ability to arrest tube formation on Matrigel, induced by angiogenic factors. Immunofluorescence staining of HUVECs showed nuclear and cytosolic RNASET2 protein that was no longer detectable inside the cell following trT2-50 treatment. This effect was associated with disruption of the intracellular actin network. trT2-50 co-localized with angiogenin, suggesting that both molecules bind (or compete) for similar cellular epitopes. Moreover, trT2-50 led to a significant inhibition of tumor development. Histological analysis demonstrated abundant necrotic tissue and a substantial loss of endothelial structure in trT2-50-treated tumors. Collectively, the present results indicate that trT2-50, a molecule engineered to be deficient of its catalytic activity, still maintained its actin binding and anticancer-related biological activities. We therefore suggest that trT2-50 may serve as a potential cancer therapeutic agent. PMID:25426551

  10. Human recombinant truncated RNASET2, devoid of RNase activity; A potential cancer therapeutic agent

    PubMed Central

    Nesiel-Nuttman, Liron; Schwartz, Betty; Shoseyov, Oded

    2014-01-01

    Human RNASET2 has been implicated in antitumorigenic and antiangiogenic activities, independent of its ribonuclease capacities. We constructed a truncated version of human RNASET2, starting at E50 (trT2-50) and devoid of ribonuclease activity. trT2-50 maintained its ability to bind actin and to inhibit angiogenesis and tumorigenesis. trT2-50 binds to cell surface actin and formed a complex with actin in vitro. The antiangiogenic effect of this protein was demonstrated in human umbilical vein endothelial cells (HUVECs) by its ability to arrest tube formation on Matrigel, induced by angiogenic factors. Immunofluorescence staining of HUVECs showed nuclear and cytosolic RNASET2 protein that was no longer detectable inside the cell following trT2-50 treatment. This effect was associated with disruption of the intracellular actin network. trT2-50 co-localized with angiogenin, suggesting that both molecules bind (or compete) for similar cellular epitopes. Moreover, trT2-50 led to a significant inhibition of tumor development. Histological analysis demonstrated abundant necrotic tissue and a substantial loss of endothelial structure in trT2-50-treated tumors. Collectively, the present results indicate that trT2-50, a molecule engineered to be deficient of its catalytic activity, still maintained its actin binding and anticancer-related biological activities. We therefore suggest that trT2-50 may serve as a potential cancer therapeutic agent. PMID:25426551

  11. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents.

    PubMed

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguyen Thi Kim

    2016-02-14

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g(-1)). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM(-1) s(-1) and 185.58 mM(-1) s(-1) respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. PMID:26460932

  12. Biorelevant reactions of the potential anti-tumor agent vanadocene dichloride.

    PubMed

    Sanna, Daniele; Serra, Maria; Ugone, Valeria; Manca, Laura; Pirastru, Monica; Buglyó, Péter; Bíró, Linda; Micera, Giovanni; Garribba, Eugenio

    2016-05-01

    The interaction of the potential anti-tumor agent vanadocene dichloride ([Cp2VCl2] or VDC) with some relevant bioligands of the cytosol such as proteins (Hb), amino acids (glycine and histidine), NADH derivatives (NADH, NADPH, NAD(+) and NADP(+)), reductants (GSH and ascorbic acid), phosphates (HPO4(2-), P2O7(4-), cAMP, AMP, ADP and ATP) and carboxylate derivatives (lactate) and its uptake by red blood cells were studied. The results indicated that [Cp2VCl2] transforms at physiological pH into [Cp2V(OH)2] and that only HPO4(2-), P2O7(4-), lactate, ATP and ADP form mixed species with the [Cp2V](2+) moiety replacing the two hydroxide ions. EPR and electronic absorption spectroscopy, agarose gel electrophoresis and spin trapping measurements allow excluding any direct interaction and/or intercalation with DNA and the formation of reactive oxygen species (ROS) in Fenton-like reactions. Uptake experiments by erythrocytes suggested that VDC crosses the membrane and enters inside the cells, whereas 'bare' V(IV) transforms into V(IV)O species with loss of the two cyclopentadienyl rings. This transformation in the cellular environment could be related to the mechanism of action of VDC. PMID:27121101

  13. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

    1997-02-11

    A class of diagnostic and therapeutic compounds are derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g., {sup 99m}Tc or {sup 186}Re/{sup 188}Re) or late transition metals (e.g., {sup 105}Rh or {sup 109}Pd). The complexes with these metals {sup 186}Re/{sup 188}Re, {sup 99m}Tc and {sup 109}Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g., Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  14. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. PMID:27371109

  15. Volatile Organic Compounds from Native Potato-associated Pseudomonas as Potential Anti-oomycete Agents

    PubMed Central

    De Vrieze, Mout; Pandey, Piyush; Bucheli, Thomas D.; Varadarajan, Adithi R.; Ahrens, Christian H.; Weisskopf, Laure; Bailly, Aurélien

    2015-01-01

    The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOCs). Focusing on the potato late blight-causing agent Phytophthora infestans, this work addresses the potential role of the bacterial volatilome in suppressing plant diseases. In a previous study, we isolated and identified a large collection of strains with anti-Phytophthora potential from both the phyllosphere and the rhizosphere of potato. Here we report the characterization and quantification of their emissions of biogenic volatiles, comparing 16 Pseudomonas strains differing in (i) origin of isolation (phyllosphere vs. rhizosphere), (ii) in vitro inhibition of P. infestans growth and sporulation behavior, and (iii) protective effects against late blight on potato leaf disks. We systematically tested the pharmacological inhibitory activity of core and strain-specific single compounds against P. infestans mycelial growth and sporangial behavior in order to identify key effective candidate molecules present in the complex natural VOCs blends. We envisage the plant bacterial microbiome as a reservoir for functional VOCs and establish the basis for finding the primary enzymatic toolset that enables the production of active components of the volatile bouquet in plant-associated bacteria. Comprehension of these functional interspecies interactions will open perspectives for the sustainable control of plant diseases in forthcoming agriculture. PMID:26635763

  16. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents

    PubMed Central

    Al-Balas, Qosay A; Hassan, Mohammad A; Al-Shar’i, Nizar A; Mhaidat, Nizar M; Almaaytah, Ammar M; Al-Mahasneh, Fatima M; Isawi, Israa H

    2016-01-01

    Background The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. Methods Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. Results Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. Conclusion We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps. PMID:27574401

  17. Volatile Organic Compounds from Native Potato-associated Pseudomonas as Potential Anti-oomycete Agents.

    PubMed

    De Vrieze, Mout; Pandey, Piyush; Bucheli, Thomas D; Varadarajan, Adithi R; Ahrens, Christian H; Weisskopf, Laure; Bailly, Aurélien

    2015-01-01

    The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOCs). Focusing on the potato late blight-causing agent Phytophthora infestans, this work addresses the potential role of the bacterial volatilome in suppressing plant diseases. In a previous study, we isolated and identified a large collection of strains with anti-Phytophthora potential from both the phyllosphere and the rhizosphere of potato. Here we report the characterization and quantification of their emissions of biogenic volatiles, comparing 16 Pseudomonas strains differing in (i) origin of isolation (phyllosphere vs. rhizosphere), (ii) in vitro inhibition of P. infestans growth and sporulation behavior, and (iii) protective effects against late blight on potato leaf disks. We systematically tested the pharmacological inhibitory activity of core and strain-specific single compounds against P. infestans mycelial growth and sporangial behavior in order to identify key effective candidate molecules present in the complex natural VOCs blends. We envisage the plant bacterial microbiome as a reservoir for functional VOCs and establish the basis for finding the primary enzymatic toolset that enables the production of active components of the volatile bouquet in plant-associated bacteria. Comprehension of these functional interspecies interactions will open perspectives for the sustainable control of plant diseases in forthcoming agriculture. PMID:26635763

  18. Oligonucleotide n3'-->p5' phosphoramidates and thio-phoshoramidates as potential therapeutic agents.

    PubMed

    Gryaznov, Sergei M

    2010-03-01

    and thus inhibits its activity. This compound is currently in multiple Phase-I and Phase-I/II clinical trials as potential broad-spectrum anticancer agent. PMID:20232321

  19. Characterization and Functionalization of Iron-Oxide Nanoparticles for Use as Potential Agents for Cancer Thermotherapy

    NASA Astrophysics Data System (ADS)

    O'Reilly, Nora

    This thesis presents experimental studies of iron oxide nanoparticle synthesis, functionalization, and intracellular hyperthermal effects on murine macrophages as a model in vitro system. Colloidal suspensions of magnetic nanoparticles (MNPs) are of particular interest in Magnetic Fluid Hyperthermia (MFH). Iron oxide nanoparticles (IONPs) have garnered great interest as economical, biocompatible hyperthermia agents due to their superparamagnetic activity. Here we seek to optimize the synthetic reproducibility and in vitro utilization of IONPs for application in MFH. We compared aqueous synthetic protocols and various protective coating techniques using various analytical techniques and in vitro assays to assess the biocompatibility and feasibility of the various preparations of nanoparticles. Using a co-precipitation of iron salts methodology, iron oxide nanoparticles (IONPs) with an average diameter of 6-8nm were synthesized and stabilized with carboxylates. By performing calorimetry measurements in an oscillating magnetic field (OMF) with a frequency of 500 kHz and field strength of 0.008Tesla the superparamagnetic behavior of these particles was confirmed. To further investigate these IONPs in a biological application, citric acid-stabilized particles, in conjunction with heat generated by these IONPs when exposed to an OMF, were assessed to determine their effects on cell viability in a RAW 267.4 murine macrophage model system. Our results show that 91.5-97% of cells that have ingested IONPs die follow exposure to an OMF. Importantly, neither the IONPs (at applicable concentrations) nor the OMF show cytotoxic effects. These particular particles have promising preliminary results as hyperthermic agents in both the current literature and simple, proof-of-concept experiments in our laboratory setting. We present experimental results for the synthesis, characterization, and utilization of iron oxide nanoparticles in MFH. Our results show that while IONPs have

  20. Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods.

    PubMed

    Loganathan, Karthik; Kumar, Gaurav; Kirthi, Arivarasan Vishnu; Rao, Kokati Venkata Bhaskara; Rahuman, Abdul Abdul

    2013-11-01

    A novel approach to control strategies for integrated blood-feeding parasite management is in high demand, including the use of biological control agents. The present study aims to determine the efficacy of optimized crude extract of actinomycetes strain LK1 as biological control agent against the fourth-instar larvae of Anopheles stephensi and Culex tritaeniorhynchus (Diptera: Culicidae) and adults of Haemaphysalis bispinosa, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), and Hippobosca maculata (Diptera: Hippoboscidae). Antiparasitic activity was optimized using the Plackett-Burman method, and the design was developed using the software Design-Expert version 8.0.7.1. The production of the optimized crude actinomycetes LK1 strain extract was performed using response surface methodology to optimize the process parameters of protease inhibitor activity of marine actinobacteria for the independent variables like pH, temperature, glucose, casein, and NaCl at two levels (-1 and +1). The potential actinomycetes strain was identified as Saccharomonas spp., and the metamodeling surface simulation procedure was followed. It was studied using a computer-generated experimental design, automatic control of simulation experiments, and sequential optimization of the metamodels fitted to a simulation response surface function. The central composite design (CCD) used for the analysis of treatment showed that a second-order polynomial regression model was in good agreement with the experimental results at R (2) = 0.9829 (p < 0.05). The optimized values of the variables for antioxidant production were pH 6.00, glucose 1.3%, casein 0.09%, temperature 31.23 °C, and NaCl 0.10%. The LK1 strain-optimized crude extract was purified using reversed-phase high-pressure liquid chromatography, and the isolated protease inhibitor showed antiparasitic activity. The antiparasitic activity of optimized crude extract of LK1 was tested against larvae of A. stephensi (LC₅₀ = 31.82 ppm

  1. Antitumor Agents 250.† Design and Synthesis of New Curcumin Analogs as Potential Anti-Prostate Cancer Agents

    PubMed Central

    Lin, Li; Shi, Qian; Nyarko, Alexander K.; Bastow, Kenneth F.; Wu, Chin-Chung; Su, Ching-Yuan; Shih, Charles C.-Y; Lee, Kuo-Hsiung

    2008-01-01

    In a continuing study of curcumin analogs as potential drug candidates to treat prostate cancer at both androgen-dependent and androgen-refractory stages, we designed and synthesized over 40 new analogs classified into four series: monophenyl analogs (series A), heterocycle-containing analogs (series B), analogs bearing various substituents on the phenyl rings (series C) and analogs with various linkers (series D). These new compounds were tested for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Antiandrogenic activity was also evaluated in LNCaP cells and PC-3 cells transfected with wild-type androgen receptor. Ten compounds possessed potent cytotoxicity against both LNCaP and PC-3 cells; seven only against LNCaP; and one solely against PC-3. This study established an advanced structure-activity relationship (SAR), and these correlations will guide the further design of new curcumin analogs with better anti-prostate cancer activity. PMID:16789753

  2. Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L (Baby corn)--in vitro studies.

    PubMed

    Patil, N N; Waghmode, M S; Gaikwad, P S; Gajbhiye, M H; Gunjal, A B; Nawani, N N; Kapadnis, B P

    2014-11-01

    The study was undertaken with the aim of exploring novel and beneficial agro activities of rare actinomycetes like Microbispora sp. V2. The antagonistic activity of Microbispora sp. V2 was evaluated as a biocontrol agents against Sclerotium rolfsii, a soil-borne fungal plant pathogen. The methodology performed for evaluation of biocontrol agent was in vitro evaluation assay which comprised of three tests viz., cellophane overlay technique, seed germination test and Thiram (fungicide) tolerance of Microbispora sp. V2. The isolate was found to inhibit the fungal pathogen Sclerotium rolfsii to 91.43% in cellophane assay. In seed germination assay, Microbispora sp. V2 treated seeds resulted in 25.75% increased germination efficiency, as compared to seeds infected by Sclerotium rolfsii. The isolate Microbispora sp. V2 could tolerate 1000 microg mL(-1) of Thiram (fungicide). The in vitro assay studies proved that Microbispora sp. V2 can be used as antifungal antagonist and thus posses' great potential as biocontrol agent against southern blight caused by Sclerotium rolfsii in Zea mays L (Baby corn) which causes large economical losses. PMID:25434111

  3. MATING BIOLOGY OF AUSTROMUSOTIMA CAMPTOZONALE (LEPIDOPTERA: CRAMBIDAE) - A POTENTIAL BIOLOGICAL CONTROL AGENT OF OLD WORLD CLIMBING FERN, LYGODIUM MICROPHYLLUM (SCHIZAEACEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Austromusotima camptozonale (Hampson) is under investigation as a potential biological control agent of Old World Climbing fern, Lygodium microphyllum (Cav.) R. Br., which is a serious invasive weed in southern Florida. Studies were conducted to investigate aspects of the mating biology of A. campto...

  4. Potential biological control agents for management of cogongrass [Imperata cylindrica 15 (Cyperales: Poaceae)] in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  5. Characterization of Novel Diaryl Oxazole-Based Compounds as Potential Agents to Treat Pancreatic Cancer

    PubMed Central

    Shaw, Arthur Y.; Henderson, Meredith C.; Flynn, Gary; Samulitis, Betty; Han, Haiyong; Stratton, Steve P.; Chow, H.-H. Sherry; Hurley, Laurence H.

    2009-01-01

    A series of diaryl- and fluorenone-based analogs of the lead compound UA-62784 [4-(5-(4-methoxyphenyl)oxazol-2-yl)-9H-fluoren-9-one] was synthesized with the intention of improving upon the selective cytotoxicity of UA-62784 against human pancreatic cancer cell lines with a deletion of the tumor suppressor gene deleted in pancreas cancer locus 4 (DPC-4, SMAD-4). Over 80 analogs were synthesized and tested for antitumor activity against pancreatic cancer (PC) cell lines (the PC series). Despite a structural relationship to UA-62784, which inhibits the mitotic kinesin centromere protein E (CENP-E), none of the analogs was selective for DPC-4-deleted pancreatic cancer cell lines. Furthermore, none of the analogs was a potent or selective inhibitor of four different mitotic kinesins (mitotic kinesin-5, CENP-E, mitotic kinesin-like protein-1, and mitotic centromere-associated kinesin). Therefore, other potential mechanisms of action were evaluated. A diaryl oxazole lead analog from this series, PC-046 [5-(4-methoxyphenyl)-2-(3-(3-methoxyphenyl)pyridin-4-yl) oxazole], was shown to potently inhibit several protein kinases that are overexpressed in human pancreatic cancers, including tyrosine receptor kinase B, interleukin-1 receptor-associated kinase-4, and proto-oncogene Pim-1. Cells exposed to PC-046 exhibit a cell cycle block in the S-phase followed by apoptotic death and necrosis. PC-046 effectively reduced MiaPaca-2 tumor growth in severe combined immunodeficiency mice by 80% compared with untreated controls. The plasma half-life was 7.5 h, and cytotoxic drug concentrations of >3 μM were achieved in vivo in mice. The diaryl oxazole series of compounds represent a new chemical class of anticancer agents that inhibit several types of cancer-relevant protein kinases. PMID:19657049

  6. Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents.

    PubMed

    Chakka, Sai Kumar; Kalamuddin, Mohammad; Sundararaman, Srividhya; Wei, Lianhu; Mundra, Sourabh; Mahesh, Radhakrishnan; Malhotra, Pawan; Mohmmed, Asif; Kotra, Lakshmi P

    2015-05-01

    Falcipain-2 is a papain family cysteine protease and an emerging antimalarial drug target. A pseudo-tripeptide scaffold I was designed using in silico screening tools and the three dimensional structures of falcipain-2, falcipain-3, and papain. This scaffold was investigated at four positions, T1, T2, T3, and T3', with various targeted substitutions to understand the structure-activity relationships. Inhibitor synthesis was accomplished by first obtaining the appropriate dipeptide precursors with common structural components. The pyrrolidine moiety introduced interesting rotamers in a number of synthesized molecules, which was confirmed using high-temperature (1)H NMR spectroscopy. Among the synthesized compounds, 61, 62, and 66 inhibited falcipain-2 activity with inhibition constants (Ki) of 1.8 ± 1.1, 0.2 ± 0.1 and 7.0 ± 2.3 μM, respectively. A group of molecules with a pyrrolidine moiety at the T2 position (68, 70, 71, 72, and 73) also potently inhibited falcipain-2 activity (Ki=0.4 ± 0.1, 2.5 ± 0.5, 3.3 ± 1.1, 7.5 ± 1.9, and 4.6 ± 0.7 μM, respectively). Overall, compound 74 exhibited potent anti-parasitic activity (IC₅₀=0.9 ± 0.1 μM), corresponding with its inhibitory activity against falcipain-2, with a Ki of 1.1 ± 0.1 μM. Compounds 62 and 67 inhibited the growth of the drug resistant parasite Dd2 with better efficacy, and compound 74 exhibited a 7- to 12-fold higher potency against Dd2 and MCamp isolates, than the laboratory strain (3D7). These data suggest that this novel series of compounds should be further investigated as potential antimalarial agents. PMID:25840796

  7. Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses

    PubMed Central

    Villegas-Rosales, Paula M; Méndez-Tenorio, Alfonso; Ortega-Soto, Elizabeth; Barrón, Blanca L

    2012-01-01

    Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. PMID:22829722

  8. Photoactive metal carbonyl complexes as potential agents for targeted CO delivery.

    PubMed

    Gonzales, Margarita A; Mascharak, Pradip K

    2014-04-01

    The surprising discovery of carbon monoxide (CO) as a signaling molecule in mammalian physiology has recently raised interest in this toxic gas among researchers in biochemical and pharmaceutical community. CO is endogenously produced mainly from catabolism of heme by the enzyme heme oxygenase (HO) and participates in a myriad of anti-inflammatory, anti-proliferative, and vasoregulatory pathways. In animal models, low doses of CO have exhibited beneficial effects in suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. The salutary effects of CO have naturally drawn attention of the pharmaceutical industry for its use as a cytoprotective agent. Safety-related concerns of the use of this noxious gas have prompted research in the area of syntheses of CO-releasing molecules (CORMs) and to date, several metal carbonyls (metal complexes of CO) have been employed as CORMs in promoting prolonged (and safe) delivery of low doses of CO to cellular targets. Because many carbonyl complexes release CO upon illumination, investigators have recently began to explore the possibility of "controlled CO delivery" through the use of light. During the past few years, a number of photoactive CORMs or "photoCORMs" have been synthesized that release CO upon illumination with UV or visible light. The utility of these photoCORMs in CO delivery has also been confirmed. Novel design principles for isolation of photoCORMs have started to appear in recent reports. Scrutiny of the literature reveals the emergence of a new exciting area of drug development in such efforts. The potential of photoCORMs as CO-donating pharmaceuticals along with a brief overview of the physiological roles of CO is presented in this review. PMID:24287103

  9. Pharmacological characterization of a novel gastrodin derivative as a potential anti-migraine agent.

    PubMed

    Wang, Ping-Han; Zhao, Li-Xue; Wan, Jing-Yu; Zhang, Liang; Mao, Xiao-Na; Long, Fang-Yi; Zhang, Shuang; Chen, Chu; Du, Jun-Rong

    2016-03-01

    Migraine is a highly prevalent neurovascular disorder in the brain. An optimal therapy for migraine has not yet been developed. Gastrodin (Gas), the main effective constitute from Gastrodiae Rhizoma (Tianma in Chinese), has been indicated for migraine treatment and prophylaxis more than 30 years, with demonstrated safety. However, Gas is a phenolic glycoside, with relatively low concentrations and weak efficacy in the central nervous system. To develop more effective anti-migraine agents, we synthesized a novel Gas derivative (Gas-D). In the present study, comparative pharmacodynamic evaluations of Gas and Gas-D were performed in a model of nitroglycerin (NTG)-induced migraine in rats and the hot-plate test in mice. Following behavioral testing in this migraine model, external jugular vein blood and the trigeminal nucleus caudalis (TNC) were collected to analyze plasma nitric oxide (NO) and calcitonin gene-related peptide (CGRP) concentrations and c-Fos expression in the TNC. The acute oral toxicity of Gas and Gas-D was also examined. We found that Gas-D had potent anti-migraine effects, likely attributable to inhibition of both trigeminal nerve activation at central sites and the peripheral release of CGRP following NO scavenging. Additionally, Gas-D exerted significant anti-nociceptive effect in response to thermal pain compared with Gas. Furthermore, a single dose of 2.048 g/kg Gas or Gas-D presented no acute oral toxicity in mice. Altogether, the potent anti-migraine and anti-hyperalgesic effects of Gas-D suggest that it might be a potentially novel drug candidate for migraine treatment or prophylaxis. PMID:26704993

  10. Monascus Pigment Rubropunctatin: A Potential Dual Agent for Cancer Chemotherapy and Phototherapy.

    PubMed

    Zheng, Yunquan; Zhang, Yun; Chen, Deshan; Chen, Haijun; Lin, Ling; Zheng, Chengzhuo; Guo, Yanghao

    2016-03-30

    The Monascus pigment, rubropunctatin, was extracted and purified from red mold rice (RMR), and its cytotoxic activities against human cervical carcinoma HeLa cells were studied under the conditions with or without light irradiation. The IC50 value of rubropunctatin against HeLa cells in the dark was 93.71 ± 1.96 μM (24 h), while the cytotoxic activity was enhanced more than 3 times (IC50 = 24.02 ± 2.17 μM) under light irradiation (halogen lamp, 500 W; wavelength, 597-622 nm; and fluence rate, 15 mW cm(-2), for 30 min). However, the IC50 value of rubropunctatin against the immortalized human cervical epithelial H8 cells was more than 300 μM, even under light irradiation, indicating that rubropunctatin has a favorable selectivity index (SI). Treatment of HeLa cells with rubropunctatin in the dark or under light irradiation resulted in a dose-dependent apoptosis, as validated by the increase in the percentage of cells in the sub-G1 phase and phosphatidylserine externalization, and the inductive effect on HeLa cell apoptosis was boosted by the light irradiation. In addition, treatment with rubropunctatin alone or under light irradiation was found to induce apoptosis in HeLa cells via the mitochondrial pathway, including loss of mitochondrial membrane potential, activation of caspase-3, caspase-8, and caspase-9, and increase of the level of intracellular reactive oxygen species (ROS). It was suggested that rubropunctatin could be a promising natural dual anticancer agent for photodynamic therapy and chemotherapy. PMID:26953890

  11. Life-threatening hypokalemic paralysis in a young bodybuilder.

    PubMed

    Cheung, Kitty K T; So, Wing-Yee; Kong, Alice P S; Ma, Ronald C W; Chow, Francis C C

    2014-01-01

    We report a case of life-threatening hypokalemia in a 28-year-old bodybuilder who presented with sudden onset bilateral lower limbs paralysis few days after his bodybuilding competition. His electrocardiogram (ECG) showed typical u-waves due to severe hypokalemia (serum potassium 1.6 mmol/L, reference range (RR) 3.5-5.0 mmol/L). He was admitted to the intensive care unit (ICU) and was treated with potassium replacement. The patient later admitted that he had exposed himself to weight loss agents of unknown nature, purchased online, and large carbohydrate loads in preparation for the competition. He made a full recovery after a few days and discharged himself from the hospital against medical advice. The severe hypokalemia was thought to be caused by several mechanisms to be discussed in this report. With the ever rising number of new fitness centers recently, the ease of online purchasing of almost any drug, and the increasing numbers of youngsters getting into the bodybuilding arena, clinicians should be able to recognize the possible causes of sudden severe hypokalemia in these patients in order to revert the pathophysiology. PMID:24660073

  12. Systemic lupus erythematosus with distal renal tubular acidosis presenting as hypokalemic paralysis with respiratory failure.

    PubMed

    Koul, Parvaiz Ahmad; Wahid, Abdul; Shah, Bashir Ahmad

    2003-01-01

    An eighteen-year-old woman presented with hypokalemic respiratory failure. She was found to have distal renal tubular acidosis (dRTA) as the underlying cause for hypokalemia. This was treated successfully, and no apparent etiology for the dRTA was discovered. Three years later she presented with full-blown picture of systemic lupus erythematosus (SLE) together with features of persistent dRTA complicated, this time, with bilateral renal calculi and nephrocalcinosis. It is very likely that the dRTA was an early feature that preceded the other markers of SLE. The moral of this case is that patients with dRTA should be followed-up carefully as a primary cause for the dRTA may show up in-due-course and to monitor the treatment so as to prevent long-term complications of the RTA. PMID:18209445

  13. A 20-year-old Chinese man with recurrent hypokalemic periodic paralysis and delayed diagnosis.

    PubMed

    Naqi, Muniba; Bhatt, Vijaya Raj; Pant, Shradha; Shrestha, Rajesh; Tadros, Michael; Murukutla, Srujitha; Rothman, Jeffrey

    2012-01-01

    Periodic paralysis in the setting of hypokalemia can be the result of several underlying conditions, requiring systematic evaluation. Thyrotoxic periodic paralysis (TPP), a curable cause of hypokalemic periodic paralysis, can often be the first manifestation of thyrotoxicosis. Because the signs and symptoms of thyrotoxicosis can be subtle and clouded by the clinical distress of the patient, the diagnosis of the underlying metabolic disorder can be overlooked. The authors report a case of TPP in a young Chinese man in whom the diagnosis of thyrotoxicosis was initially missed. This case illustrates the lack of awareness of TPP among many physicians, delay in the diagnosis of TPP and the importance of performing thyroid function testing in all cases of periodic paralysis. PMID:22665461

  14. Recurrent Attacks of Hypokalemic Quadriparesis: An Unusual Presentation of Primary Sjögren Syndrome.

    PubMed

    Seirafian, Shiva; Shafie, Mohammad; Abedini, Amin; Pakzad, Bahram; Roomizadeh, Peyman

    2016-01-01

    We herein report the case of a 64-year old woman with recurrent attacks of hypokalemic quadriparesis which resulted from distal renal tubular acidosis (dRTA) secondary to Sjögren syndrome. The patient presented with sudden onset quadriparesis. A physical examination showed symmetric weakness of all four limbs. Severe hypokalemia (1.8 mEq/L), accompanied by normal anion gap metabolic acidosis, a positive urine anion gap and an inappropriately high urine pH pointed toward the diagnosis of dRTA. Further investigations disclosed primary Sjögren syndrome, which had not previously been recognized. On the basis of the current report and a review of the literature we suggest investigating the possibility of Sjögren syndrome in all patients with clinically unexplained dRTA. PMID:27374687

  15. Balancing stealth and echogenic properties in an ultrasound contrast agent with drug delivery potential.

    PubMed

    Jablonowski, Lauren J; Alfego, David; Andorko, James I; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2016-10-01

    Contrast agents are currently being modified to combine diagnostic and therapeutic capabilities. For ultrasound (US) imaging with polymeric contrast agents, it is necessary to modify the shell to create "stealth" microbubbles but without these modifications sacrificing the agent's ability to interact with the focused US beam. We hypothesize that addition of the classic immune shielding molecule polyethylene glycol (PEG) to a polylactide (PLA) microbubble shell will affect the acoustic and physical properties of the resulting agents. In an effort to determine the best formulation to achieve a balance between stealth and acoustic activity, we compared two PEGylation techniques; addition of increasing amounts of PEG-PLA copolymer and employing incorporation of a PEG lipid (LipidPEG) into the shell. Loss of acoustic enhancement occurred in a dose-dependent manner for both types of PEGylated agents (loss of signal occurred at >5 wt% PEG-PLA and >1 wt% LipidPEG), while immune activation was also reduced in a dose-dependent manner for the PEG-PLA agents. This study shows that the balance between acoustic behavior and improved immune avoidance was scalable and successful to different degrees with both PEGylation methods, and was best achieved using for PEG-PLA at 5 wt% and for LipidPEG at 1 wt%. Studies are ongoing to evaluate the best method for the targeting and drug delivery capabilities of these agents for applications in cancer treatment. This study represents the basis for understanding the consequences of making modifications to the native polymeric shell. PMID:27388945

  16. Hypokalemic paralysis in a middle-aged female with classic Bartter syndrome.

    PubMed

    Chiang, Wen-Fang; Lin, Shih-Hung; Chan, Jenq-Shyong; Lin, Shih-Hua

    2014-02-01

    Inherited classic Bartter syndrome (cBS) is an autosomal recessive renal tubular disorder resulting from inactivating mutations in the asolateral chloride channel (C1C-Kb) and usually presents in early infancy or childhood with mild to moderate hypokalemia. Profound hypokalemic paralysis in patients with cBS is extremely rare, especially in middle age. A 45-year-old Chinese female patient was referred for evaluation of chronic severe hypokalemia despite regular K+ supplementation (1 mmol/kg/d). She had had two episodes of muscle paralysis due to severe hypokalemia (K+ 1.9 - 2.1 mmol/l) in the past 3 years. She denied vomiting, diarrhea, or the use of laxatives or diuretics. Her blood pressure was normal. Biochemical studies showed hypokalemia (K+ 2.5 mmol/l) with renal potassium wasting, metabolic alkalosis (HCO3- 32 mmol/l), normomagnesemia (Mg2+ 0.8 mmol/l), hypercalciuria (calcium to creatinine ratio 0.5 mmol/mmol; normal < 0.22 mmol/mol), high plasma renin activity, but normal plasma aldosterone concentration. Abdominal sonography revealed neither renal stones nor nephrocalcinosis. Acquired causes of cBS such as autoimmune disease and drugs were all excluded. Molecular analysis of the CLCNKB gene, encoding ClC-Kb, and SLC12A3, encoding the thiazide-sensitive sodium chloride cotransporter (NCC), revealed compound heterozygous mutations in CLCNKB (L335P and G470E) inherited from her parents; her SLC12A3 was normal. These two mutations were not identified in 100 healthy subjects. Her plasma K+ concentration rose to 3 - 3.5 mmol/l after the addition of spironolactone. Inherited cBS may present with hypokalemic paralysis and should be considered in adult patients with hypokalemia and metabolic alkalosis. PMID:22854165

  17. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents

    PubMed Central

    Carreira, Monica; Calvo-Sanjuán, Rubén; Sanaú, Mercedes; Marzo, Isabel; Contel, María

    2012-01-01

    The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC6H4 (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd2(dba)3 affords the orthopalladated dimer [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S2CNMe2 (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C12H6N2(C6H4SO3Na)2 (5)); [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC6H4SO3Na)3 (6); P(3-Pyridyl)3 (7)) and, [Pd(C6H4(C(O)N=TPA)-2}(TPA)2Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) and [Pd{C6H4(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin. PMID:23066172

  18. The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice.

    PubMed

    Shimizu, Takafumi; Lin, Fengqiu; Hasegawa, Morifumi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2012-01-01

    Sakuranetin, the major flavonoid phytoalexin in rice, can be induced by ultraviolet (UV) irradiation, treatment with CuCl 2 or jasmonic acid (JA), or phytopathogenic infection. In addition to sakuranetin's biological significance on disease resistance in rice, its broad bioactivities have recently been described. Results from these studies have shown that sakuranetin is a useful compound as a plant antibiotic and a potential pharmaceutical agent. Sakuranetin is biosynthesized from naringenin, a precursor of sakuranetin, by naringenin 7-O-methyltransferase (NOMT), but the relevant gene has not yet been identified in rice. Recently, we identified the OsNOMT gene, which is involved in the final step of sakuranetin biosynthesis in rice. In previous studies, OsNOMT was purified to apparent homogeneity from UV-treated wild-type rice leaves; however, the purified protein, termed OsCOMT1, exhibited caffeic acid 3-O-methyltransferase (COMT) activity, but not NOMT activity. Based on the analysis of an oscomt1 T-DNA tagged mutant, we determined that OsCOMT1 did not contribute to sakuranetin production in rice in vivo. Therefore, we took advantage of the oscomt1 mutant to purify OsNOMT. A crude protein preparation from UV-treated oscomt1 leaves was subjected to three sequential purification steps resulting in a 400-fold purification from the crude enzyme preparation with a minor band at an apparent molecular mass of 40 kDa in the purest enzyme preparation. Matrix-assisted laser desorption/ionization time of flight/time of flight analysis showed that the 40 kDa protein band included two O-methyltransferase-like proteins, but one of the proteins encoded by Os12g0240900 exhibited clear NOMT activity; thus, this gene was designated OsNOMT. Gene expression was induced by treatment with jasmonic acid in rice leaves prior to sakuranetin accumulation, and the recombinant protein showed reasonable kinetic properties to NOMT. Identification of the OsNOMT gene enables the production of

  19. 99Tcm-LL1: a potential new bone marrow imaging agent.

    PubMed

    Juweid, M; Dunn, R M; Sharkey, R M; Rubin, A D; Hansen, H J; Goldenberg, D M

    1997-02-01

    LL1, a monoclonal antibody (MAb) to HLA Class-II-like antigen (li determinant) on the surface of B-lymphocytes, monocytes and histiocytes, was evaluated as an agent for bone marrow imaging. Six patients with diverse diseases (non-Hodgkin's lymphoma, n = 2; multiple myeloma, n = 1; polycythaemia vera, n = 1; lung cancer, n = 1; breast cancer, n = 1) were given low protein doses (< 1 mg) of 99Tcm (30 mCi) labelled Fab' of LL1. 99Tcm-sulphur colloid (SC) imaging was performed in three patients for comparison. Both planar and single photon emission tomographic images were acquired using Sopha gamma cameras. As early as 2 h post-MAb injection, excellent bone marrow images were achieved in all patients, demonstrating both normal or hyperproliferative marrow, as well as 'cold' bone marrow abnormalities such as radiation defects or cancer metastases. Similar to SC, relatively high uptake of LL1 was found in the liver and spleen. However, the bone marrow-to-liver and -spleen uptake ratios were approximately 19-fold higher (0.75 vs 0.04) and 6-fold higher (1.23 vs 0.22), respectively, with LL1 than with SC. The higher bone marrow uptake allowed clearly superior visualization of the thoracic spine when compared to SC. The mean T1/2 of blood and whole-body clearance were 0.4 and 66 h, respectively. The highest radiation absorbed doses (in cGy mCi-1) were observed in the spleen (0.47 +/- 0.24), kidneys (0.25 +/- 0.09) and liver (0.14 +/- 0.04). The bone marrow dose was only 0.05 +/- 0.02 cGy mCi-1. These results indicate that bone marrow imaging with 99Tcm-LL1 is feasible, and that LL1 may be a suitable alternative to SC because of better visualization of the lower thoracic spine. Potential applications include the improved detection of bone marrow metastases of solid tumours and the assessment of haematological disorders. PMID:9076770

  20. Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis.

    PubMed

    Mi, Wentao; Rybalchenko, Volodymyr; Cannon, Stephen C

    2014-08-01

    Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K(+). Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K(+) during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K(+), yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na(+) current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na(+) was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼ 10 µS/cm(2) or 1% of the total resting conductance. Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na(+) current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na(+) current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced

  1. Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis

    PubMed Central

    Mi, Wentao; Rybalchenko, Volodymyr

    2014-01-01

    Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K+. Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K+ during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K+, yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na+ current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na+ was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼10 µS/cm2 or 1% of the total resting conductance. Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na+ current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na+ current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced excitability of affected

  2. Potential of Pest and Host Phenological Data in the Attribution of Regional Forest Disturbance Detection Maps According to Causal Agent

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William

    2014-01-01

    Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.

  3. POTENTIAL OF ENTOMOPATHOGENIC FUNGI AS BIOLOGICAL CONTROL AGENTS AGAINST THE FORMOSAN SUBTERRANEAN TERMITE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tolerance, pathogenicity and transmission studies of the fungi Metarhizium and Beauveria, show that biological control agents can enhance termite treatment flexibility. Subterranean termites cause significant damage to wood structures and trees, especially in the Gulf of Mexico region of the United ...

  4. Synthesis and biological evaluation of novel gigantol derivatives as potential agents in prevention of diabetic cataract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a continuation of our efforts directed towards the development of natural anti-diabetic cataract agents, gigantol was isolated from Herba dendrobii and was found to inhibit both aldose reductase (AR) and inducible nitric oxide synthase (iNOS) activity, which play a significant role in the develop...

  5. Anticholinesterase (DFP) toxicity antagonism by chronic donepezil: a potential nerve agent treatment.

    PubMed

    Janowsky, David S; Davis, John M; Overstreet, David H

    2005-08-01

    Animal studies exploring the antagonism of irreversible cholinesterase inhibitors (i.e. nerve agents) such as soman and sarin have shown that pretreatment with the reversible centrally acting cholinesterase inhibitor, physostigmine, alone or in conjunction with the centrally acting anticholinergic drug, scopolamine, antagonizes the lethality and toxicity of these agents. This study evaluated the effects of pretreatment with the oral cholinesterase inhibitor and anti-Alzheimer's agent, donepezil (Aricept) on the hypokinetic, hypothermic and diarrhea-inducing effects of the irreversible long-acting cholinesterase inhibitor, diisopropylfluorophosphate (DFP) in adult Sprague-Dawley rats. Donepezil (2 mg/kg), given acutely (30 min pretreatment) or chronically (10 daily treatments), significantly antagonized the hypothermia, hypoactivity and diarrhea induced by DFP (1.25 mg/kg) administration. The effects were most prominent 4 and 6 h after the injection of DFP and some protection was observed even when the last treatment of the chronic donepezil protocol was given 24 h before the DFP injection. Although these phenomena are not the same as lethality, they may be parallel phenomena, and our results may have therapeutic implications for the treatment of nerve agent toxicity. PMID:16054679

  6. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors.

    PubMed

    Li, Kun; Li, Ying; Zhou, Di; Fan, Yinbo; Guo, Hongye; Ma, Tianyi; Wen, Jiachen; Liu, Dan; Zhao, Linxiang

    2016-04-15

    In this work, a series of quinoline derivatives were designed and synthesized as antitumor agents. Most quinolines showed potent anti-proliferative activity against human prostatic cancer PC-3 cell line. Among which, 9d, 9f and 9g were the most effective compounds with GI50 values of 2.60, 2.81 and 1.29μM, respectively. Structure-activity relationship analysis indicated that the secondary amine linked quinoline and pyridine ring played an important role in the anti-proliferative effects. Mechanistic studies revealed that 9g was a potential Pim-1 kinase inhibitor with abilities of cell cycle arrest and apoptosis induction. Considering of the increased activity of Pim-1 in prostate cancer, such compounds have potential to be developed as anti-prostate cancer agents. PMID:26979485

  7. Microtubule S-glutathionylation as a potential approach for antimitotic agents

    PubMed Central

    2012-01-01

    Background Microtubules have been one of the most effective targets for the development of anticancer agents. Cancer cells treated by these agents are characterized by cell arrest at G2/M phase. Microtubule-targeting drugs are, therefore, referred to as antimitotic agents. However, the clinical application of the current antimitotic drugs is hampered by emerging drug resistance which is the major cause of cancer treatment failure. The clinical success of antimitotic drugs and emerging drug resistance has prompted a search for new antimitotic agents, especially those with novel mechanisms of action. The aim of this study was to determine whether microtubules can be S-glutathionylated in cancer cells and whether the glutathionylation will lead to microtubule dysfunction and cell growth inhibition. The study will determine whether microtubule S-glutathionylation can be a novel approach for antimitotic agents. Methods 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino)phenyl carbamoylsulfanyl]propionic acid (2-AAPA) was used as a tool to induce microtubule S-glutathionylation. UACC-62 cells, a human melanoma cell line, were used as a cancer cell model. A pull-down assay with glutathione S-transferase (GST)-agarose beads followed by Western blot analysis was employed to confirm microtubule S-glutathionylation. Immunofluorescence microscopy using a mouse monoclonal anti-α-tubulin-FITC was used to study the effect of the S-glutathionylation on microtubule function; mainly polymerization and depolymerization. Flow cytometry was employed to examine the effect of the S-glutathionylation on cell cycle distribution and apoptosis. Cell morphological change was followed through the use of a Zeiss AXIO Observer A1 microscope. Cancer cell growth inhibition by 2-AAPA was investigated with ten human cancer cell lines. Results Our investigation demonstrated that cell morphology was changed and microtubules were S-glutathionylated in the presence of 2-AAPA in UACC

  8. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina.

    PubMed

    Alaniz Zanon, María Silvina; Barros, Germán Gustavo; Chulze, Sofía Noemí

    2016-08-16

    Biological control is one of the most promising strategies for preventing aflatoxin contamination in peanuts at field stage. A population of 46 native Aspergillus flavus nonaflatoxin producers were analysed based on phenotypic, physiological and genetic characteristics. Thirty-three isolates were characterized as L strain morphotype, 3 isolates as S strain morphotype, and 10 isolates did not produce sclerotia. Only 11 of 46 non-aflatoxigenic isolates did not produce cyclopiazonic acid. The vegetative compatibility group (VCG) diversity index for the population was 0.37. For field trials we selected the non-aflatoxigenic A. flavus AR27, AR100G and AFCHG2 strains. The efficacy of single and mixed inocula as potential biocontrol agents in Northern Argentina was evaluated through a 2-year study (2014-2015). During the 2014 peanut growing season, most of the treatments reduced the incidence of aflatoxigenic strains in both soil and peanut kernel samples, and no aflatoxin was detected in kernels. During the 2015 growing season, there was a reduction of aflatoxigenic strains in kernel samples from the plots treated with the potential biocontrol agents. Reductions of aflatoxin contamination between 78.36% and 89.55% were observed in treated plots in comparison with the un-inoculated control plots. This study provides the first data on aflatoxin biocontrol based on competitive exclusion in the peanut growing region of Northern Argentina, and proposes bioproducts with potential use as biocontrol agents. PMID:27220011

  9. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents

    NASA Astrophysics Data System (ADS)

    Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie

    2016-03-01

    A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.

  10. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    SciTech Connect

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-11

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  11. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents.

    PubMed

    Zhang, Xiao-Fei; Sun, Rong-Qin; Jia, Yi-Fan; Chen, Qing; Tu, Rong-Fu; Li, Ke-Ke; Zhang, Xiao-Dong; Du, Run-Lei; Cao, Ri-Hui

    2016-01-01

    A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a-g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment. PMID:27625151

  12. Synthesis and biological evaluation of a fluorescent analog of phenytoin as a potential inhibitor of neuropathic pain and imaging agent

    PubMed Central

    Walls, Thomas H.; Grindrod, Scott C.; Beraud, Dawn; Zhang, Li; Baheti, Aparna R.; Dakshanamurthy, Sivanesan; Patel, Manoj K.; Brown, Milton L.; MacArthur, Linda H.

    2013-01-01

    Here we report on a novel fluorescent analog of phenytoin as a potential inhibitor of neuropathic pain with potential use as an imaging agent. Compound 2 incorporated a heptyl side chain and dansyl moiety onto the parent compound phenytoin and produced greater displacement of BTX from sodium channels and greater functional blockade with greatly reduced toxicity. Compound 2 reduced mechano-allodynia in a rat model of neuropathic pain and was visualized ex vivo in sensory neuron axons with two-photon microscopy. These results suggest a promising strategy for developing novel sodium channel inhibitors with imaging capabilities. PMID:22863530

  13. Clinical Signs of Radiologic Pneumonia in Under-Five Hypokalemic Diarrheal Children Admitted to an Urban Hospital in Bangladesh

    PubMed Central

    Chisti, Mohammod Jobayer; Salam, Mohammed Abdus; Ashraf, Hasan; Faruque, Abu S. G.; Bardhan, Pradip Kumar; Das, Sumon Kumar; Shahunja, K. M.; Shahid, Abu S. M. S. B.; Ahmed, Tahmeed

    2013-01-01

    Background Clinical signs of pneumonia are often veiled in under-five diarrheal children presenting with hypokalemia, making clinical diagnosis of pneumonia very difficult in such population. However, there is no published report that describes the influences of hypokalemia on the clinical signs of pneumonia in diarrheal children. Our objective was to assess the influences of hypokalemia, and their outcome in such children. Methods We prospectively enrolled all under-five diarrheal children (n = 180) admitted to the Special Care Ward of the Dhaka Hospital of icddr,b from September-December 2007 with radiological pneumonia who also had their serum potassium estimated. We compared the clinical features and outcome of the diarrheal children having pneumonia with (cases = 55) and without hypokalemia (controls = 125). Results The case-fatality among the cases was 2 times higher compared to the controls, but the difference was not statistically significant (p = 0.202). In logistic regression analysis, after adjusting for potential confounders such as age of the patient, clinical dehydration, severe wasting, abnormally sleepy, lower chest wall in-drawing, nasal flaring and inability to drink on admission, under-five diarrheal children with pneumonia who presented with nutritional edema had 3 times more risk to have hypokalemia compared to those without nutritional edema (OR = 2.76, 95% CI = 1.01–7.51) and these hypokalemic children were 64% less likely to present with fast breathing (OR = 0.36, 95% CI = 0.17–0.74). Conclusion and significance The results of our analysis are simple but may have great public health implications and underscore the importance of diligent assessment for pneumonia in under-five diarrheal children having risk of hypokalemia as in children with nutritional edema even in absence of fast breathing, a useful sign of pneumonia. This may help for early initiation of first dose of parental antibiotics along with

  14. Synthesis and Biological Evaluation of Novel Gigantol Derivatives as Potential Agents in Prevention of Diabetic Cataract.

    PubMed

    Wu, Jie; Lu, Chuanjun; Li, Xue; Fang, Hua; Wan, Wencheng; Yang, Qiaohong; Sun, Xiaosheng; Wang, Meiling; Hu, Xiaohong; Chen, C-Y Oliver; Wei, Xiaoyong

    2015-01-01

    As a continuation of our efforts directed towards the development of natural anti-diabetic cataract agents, gigantol was isolated from Herba dendrobii and was found to inhibit both aldose reductase (AR) and inducible nitric oxide synthase (iNOS) activity, which play a significant role in the development and progression of diabetic cataracts. To improve its bioefficacy and facilitate use as a therapeutic agent, gigantol (compound 14f) and a series of novel analogs were designed and synthesized. Analogs were formulated to have different substituents on the phenyl ring (compounds 4, 5, 8, 14a-e), substitute the phenyl ring with a larger steric hindrance ring (compounds 10, 17c) or modify the carbon chain (compounds 17a, 17b, 21, 23, 25). All of the analogs were tested for their effect on AR and iNOS activities and on D-galactose-induced apoptosis in cultured human lens epithelial cells. Compounds 5, 10, 14a, 14b, 14d, 14e, 14f, 17b, 17c, 23, and 25 inhibited AR activity, with IC50 values ranging from 5.02 to 288.8 μM. Compounds 5, 10, 14b, and 14f inhibited iNOS activity with IC50 ranging from 432.6 to 1188.7 μM. Compounds 5, 8, 10, 14b, 14f, and 17c protected the cells from D-galactose induced apoptosis with viability ranging from 55.2 to 76.26%. Of gigantol and its analogs, compound 10 showed the greatest bioefficacy and is warranted to be developed as a therapeutic agent for diabetic cataracts. PMID:26517726

  15. Synthesis and Biological Evaluation of Novel Gigantol Derivatives as Potential Agents in Prevention of Diabetic Cataract

    PubMed Central

    Li, Xue; Fang, Hua; Wan, Wencheng; Yang, Qiaohong; Sun, Xiaosheng; Wang, Meiling; Hu, Xiaohong; Chen, C.-Y. Oliver; Wei, Xiaoyong

    2015-01-01

    As a continuation of our efforts directed towards the development of natural anti-diabetic cataract agents, gigantol was isolated from Herba dendrobii and was found to inhibit both aldose reductase (AR) and inducible nitric oxide synthase (iNOS) activity, which play a significant role in the development and progression of diabetic cataracts. To improve its bioefficacy and facilitate use as a therapeutic agent, gigantol (compound 14f) and a series of novel analogs were designed and synthesized. Analogs were formulated to have different substituents on the phenyl ring (compounds 4, 5, 8, 14a-e), substitute the phenyl ring with a larger steric hindrance ring (compounds 10, 17c) or modify the carbon chain (compounds 17a, 17b, 21, 23, 25). All of the analogs were tested for their effect on AR and iNOS activities and on D-galactose-induced apoptosis in cultured human lens epithelial cells. Compounds 5, 10, 14a, 14b, 14d, 14e, 14f, 17b, 17c, 23, and 25 inhibited AR activity, with IC50 values ranging from 5.02 to 288.8 μM. Compounds 5, 10, 14b, and 14f inhibited iNOS activity with IC50 ranging from 432.6 to 1188.7 μM. Compounds 5, 8, 10, 14b, 14f, and 17c protected the cells from D-galactose induced apoptosis with viability ranging from 55.2 to 76.26%. Of gigantol and its analogs, compound 10 showed the greatest bioefficacy and is warranted to be developed as a therapeutic agent for diabetic cataracts. PMID:26517726

  16. Tunable release of chemotherapeutic and vascular disrupting agents from injectable fiber fragments potentiates combination chemotherapy.

    PubMed

    Luo, Xiaoming; Xu, Guisen; Wei, Jiaojun; Chen, Maohua; Zhang, Hong; Li, Xiaohong

    2016-06-15

    Cancer progression and metastasis relies much on vasculature networks in tumor microenvironment, and the combination treatment with chemotherapeutic drugs and vascular disrupting agents represents apparent clinical benefits. In the current study, fiber fragments with loadings of hydroxycamptothecin (HCPT) or combretastatin A-4 (CA4) were proposed for tumor inhibition and blood vessel disruption after local administration in tumors. To address challenges in balancing the disruption of tumor vessels and intratumoral uptake of chemotherapeutic agents, this study is focus on release tuning of HCPT and CA4 from the fiber fragment mixtures. Hydroxypropyl-β-cyclodextrin (HPCD) was blended at ratios from 0 to 10% into CA4-loaded fiber fragments (Fc) to modulate CA4 release durations from 0.5 to 24days, and HCPT-loaded fiber fragments (Fh) indicated a sustained release for over 35days. In vitro cytotoxicity tests indicated a sequential inhibition on the endothelial and tumor cell growth, and the growth inhibition of tumor cells was more significant after treatment with mixtures of Fh and Fc containing 2% HPCD (Fc2) than that of other mixtures. In an orthotopic breast tumor model, compared with those of free CA4, or Fc with a fast or slow release of CA4, Fh/Fc mixtures with CA4 release durations from 2 to 12days indicated a lower tumor growth rate, a prolonged animal survival, a lower vessel density in tumors, and a less significant tumor metastasis. In addition, the tumor cell proliferation rate, hypoxia-inducible factor-1α expression within tumors, and the number of surface metastatic nodules in lungs were significantly lower after treatment with Fh/Fc2 mixtures with a CA4 release duration of 5days than those of other mixtures. It demonstrates the advantages of fiber fragment mixtures in independently modulating the release of multiple drugs and the essential role of release tuning of chemotherapeutic drugs and vascular disrupting agents in improving the therapeutic

  17. Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent

    PubMed Central

    Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.

    2009-01-01

    There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150

  18. Synthesis, analysis and biological evaluation of novel indolquinonecryptolepine analogues as potential anti-tumour agents.

    PubMed

    Le Gresley, A; Gudivaka, V; Carrington, S; Sinclair, A; Brown, J E

    2016-03-21

    A small library of cryptolepine analogues were synthesised incorporating halogens and/or nitrogen containing side chains to optimise their interaction with the sugar-phosphate backbone of DNA to give improved binding, interfering with topoisomerase II hence enhancing cytotoxicity. Cell viability, DNA binding and Topoisomerase II inhibition is discussed for these compounds. Fluorescence microscopy was used to investigate the uptake of the synthesised cryptolepines into the nucleus. We report the synthesis and anti-cancer biological evaluation of nine novel cryptolepine analogues, which have greater cytotoxicity than the parent compound and are important lead compounds in the development of novel potent and selective indoloquinone anti-neoplastic agents. PMID:26893255

  19. Glycans in pathogenic bacteria – potential for targeted covalent therapeutics and imaging agents

    PubMed Central

    Tra, Van N.; Dube, Danielle H.

    2014-01-01

    A substantial obstacle to the existing treatment of bacterial diseases is the lack of specific probes that can be used to diagnose and treat pathogenic bacteria in a selective manner while leaving the microbiome largely intact. To tackle this problem, there is an urgent need to develop pathogen-specific therapeutics and diagnostics. Here, we describe recent evidence that indicates distinctive glycans found exclusively on pathogenic bacteria could form the basis of targeted therapeutic and diagnostic strategies. In particular, we highlight the use of metabolic oligosaccharide engineering to covalently deliver therapeutics and imaging agents to bacterial glycans. PMID:24647371

  20. Lepidopterans as Potential Agents for the Biological Control of the Invasive Plant, Miconia calvescens

    PubMed Central

    Morais, Elisangela G.F.; Picanço, Marcelo C.; Semeão, Altair A.; Barreto, Robert W.; Rosado, Jander F.; Martins, Julio C.

    2012-01-01

    This work investigated eight species of Lepidoptera associated with Miconia calvescens DC. (Myrtales: Melastomataceae) in Brazil, including six defoliators, Salbia lotanalis Druce (Lepidoptera: Pyralidae), Druentia inscita Schaus (Mimallonidae), Antiblemma leucocyma Hampson (Noctuidae), three Limacodidae species, a fruit borer Carposina cardinata Meyrick (Carposinidae), and a damager of flowers Pleuroprucha rudimentaria Guenée (Geometridae). Based on host specificity and the damage caused to plants, S. lotanalis and D. inscita are the most promising species for biological control of M. calvescens. Furthermore, if C. cardinata and P. rudimentaria have host specificity in future tests, these caterpillars could also be considered as appropriate biocontrol agents. PMID:22938203

  1. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  2. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  3. Gadolinium(III) Complexes with N-Alkyl-N-methylglucamine Surfactants Incorporated into Liposomes as Potential MRI Contrast Agents

    PubMed Central

    Silva, Simone Rodrigues; Duarte, Érica Correia; Ramos, Guilherme Santos; Kock, Flávio Vinícius Crizóstomo; Andrade, Fabiana Diuk; Frézard, Frédéric; Colnago, Luiz Alberto; Demicheli, Cynthia

    2015-01-01

    Complexes of gadolinium(III) with N-octanoyl-N-methylglucamine (L8) and N-decanoyl-N-methylglucamine (L10) with 1 : 2 stoichiometry were synthesized and characterized by elemental analysis, electrospray ionization-tandem mass spectrometry (ESI-MS), infrared (IR) spectroscopy, and molar conductivity measurements. The transverse (r2) and longitudinal (r1) relaxivity protons were measured at 20 MHz and compared with those of the commercial contrasts. These complexes were incorporated in liposomes, resulting in the increase of the vesicle zeta potential. Both the free and liposome-incorporated gadolinium complexes showed high relaxation effectiveness, compared to commercial contrast agent gadopentetate dimeglumine (Magnevist). The high relaxivity of these complexes was attributed to the molecular rotation that occurs more slowly, because of the elevated molecular weight and incorporation in liposomes. The results establish that these paramagnetic complexes are highly potent contrast agents, making them excellent candidates for various applications in molecular MR imaging. PMID:26347596

  4. Clinical Features and Laboratory Diagnosis of Infection with the Potential Bioterrorism Agents Burkholderia Mallei and Burkholderia Pseudomallei

    PubMed Central

    Gilad, Jacob; Schwartz, David; Amsalem, Yoram

    2007-01-01

    Burkholderia mallei and Burkholderia pseudomallei are the causative organisms of Glanders and Melioidosis, respectively. Although now rare in Western countries, both organisms have recently gained much interest because of their unique potential as bioterrorism agents. These organisms are less familiar to medical and laboratory personnel than other select bioterrorism bacterial agents and thus heightened awareness of Glanders and Melioidosis is crucial in order to enable adequate emergency preparedness and response to deliberate release of B. mallei and B. pseudomallei. The microbiological diagnosis of both species in the clinical laboratory is complicated. This paper reviews the various challenges and pitfalls associated with the diagnosis of Melioidosis and Glanders in the clinical setting, with emphasis on the role of sentinel laboratories. PMID:23675037

  5. Design, Synthesis, and Biological Evaluation of Potential Prodrugs Related to the Experimental Anticancer Agent Indotecan (LMP400).

    PubMed

    Lv, Peng-Cheng; Elsayed, Mohamed S A; Agama, Keli; Marchand, Christophe; Pommier, Yves; Cushman, Mark

    2016-05-26

    Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents with two compounds in clinical trials. Recent metabolism studies of indotecan (LMP400) led to the discovery of the biologically active 2-hydroxylated analogue and 3-hydroxylated metabolite, thus providing strategically placed functional groups for the preparation of a variety of potential ester prodrugs of these two compounds. The current study details the design and synthesis of two series of indenoisoquinoline prodrugs, and it also reveals how substituents on the O-2 and O-3 positions of the A ring, which are next to the cleaved DNA strand in the drug-DNA-Top1 ternary cleavage complex, affect Top1 inhibitory activity and cytotoxicity. Many of the indenoisoquinoline prodrugs were very potent antiproliferative agents with GI50 values below 10 nM in a variety of human cancer cell lines. PMID:27097152

  6. N,N-dimethylhexadecyl carboxymethyl chitosan as a potential carrier agent for rotenone.

    PubMed

    Kamari, A; Aljafree, N F A; Yusoff, S N M

    2016-07-01

    In this study, an amphiphilic chitosan derivative namely N,N-dimethylhexadecyl carboxymethyl chitosan (DCMC) was synthesised and applied for the first time as a carrier agent for rotenone. The physical and chemical properties of DCMC were characterised by using Fourier Transform Infrared Spectrometer (FTIR), Proton Nuclear Magnetic Resonance Spectrometer ((1)H NMR), CHN-O Elemental Analyser, Thermogravimetric Analyser (TGA) and Differential Scanning Calorimeter (DSC). DCMC was soluble in acidic (except pH 4), neutral and basic media with percent of transmittance (%T) values ranged from 67.2 to 99.4%. The critical micelle concentration (CMC) was determined as 0.095mg/mL. Transmission Electron Microscopy (TEM) analysis confirmed that DCMC has formed self-aggregates and exhibited spherical shape with the size of 65.5-137.0nm. The encapsulation efficiency (EE) and loading capacity (LC) of DCMC micelles with different weight ratios (DCMC:rotenone; 5:1, 50:1 and 100:1) were determined by using High Performance Liquid Chromatography (HPLC). The weight ratio of 100:1 gave the best EE with the value of more than 95.0%. DCMC micelles performed an excellent ability to control the release of rotenone, of which 99.0% of rotenone was released within 48h. Overall, DCMC has several key features to be an effective carrier agent for pesticide formulations. PMID:27041651

  7. Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of Alzheimer's disease.

    PubMed

    Zhou, An; Wu, Hongfei; Pan, Jian; Wang, Xuncui; Li, Jiaming; Wu, Zeyu; Hui, Ailing

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder characterized by memory loss, language impairment, personality changes and intellectual decline. Taking into account the key pathological features of AD, such as low levels of acetylcholine, beta-amyloid (Aβ) aggregation, oxidative stress and dyshomeostasis of biometals, a new series of paeonol derivatives 5a-5d merging three different functions, i.e., antioxidant, anti-acetylcholinesterase (AChE) activity, metal chelating agents for AD treatment have been synthesized and characterized. Biological assays revealed that compared with paeonol (309.7 μM), 5a-5d had a lower DPPH IC50 value (142.8-191.6 μM). 5a-5d could significantly inhibit hydrogen peroxide-induced neuronal PC12 cell death assessed by MTT assay in the concentration range of 5-40 μM. AChE activity was effectively inhibited by 5a-5d, with IC50 values in the range of 0.61-7.04 μM. 5a-5d also exhibited good metal-chelating ability. All the above results suggested that paeonol derivatives may be promising multifunctional agents for AD treatment. PMID:25594344

  8. New candidate therapeutic agents for endometrial cancer: potential for clinical practice (review).

    PubMed

    Umene, Kiyoko; Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Nogami, Yuya; Tsuji, Kosuke; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Yamagami, Wataru; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2013-03-01

    Cases of endometrial cancer have increased in recent years, but the prognosis of patients with this disease has also been improved by combined modality therapy with surgery, radiotherapy and chemotherapy. However, the development of new therapy is required from the perspectives of conservation of fertility and efficacy for recurrent and intractable cancer. New candidate therapeutic agents for endometrial cancer include fourth-generation progestins for inhibition of growth and differentiation of endometrial glands; metformin for reduction of hTERT expression in the endometrium and inhibition of the mTOR pathway by activation of AMPK, with consequent inhibition of the cell cycle; mTOR inhibitors for supressing growth of cancer cells by G1 cell cycle arrest; microRNAs involved in the molecular mechanisms of oncogenesis and progression; and HDAC inhibitors that block the growth of cancer cells by transcriptional elevation of tumor-suppressor genes, cell cycle arrest and induction of apoptosis. In this study, we review the background and early clinical evidence for these agents as new therapeutic candidates for endometrial cancer. PMID:23291663

  9. Functionality study of santalin as tyrosinase inhibitor: A potential depigmentation agent.

    PubMed

    Hridya, Hemachandran; Amrita, Anantharaman; Mohan, Sankari; Gopalakrishnan, Mohan; Dakshinamurthy, Thirumal Kumar; Doss, George Priya; Siva, Ramamoorthy

    2016-05-01

    Excessive melanin production leads to hyperpigmentation disorders which results in distressing aesthetic values. Though there are some synthetic depigmentation agents available it has been reported to possess cytotoxic and mutagenic effects. Hence there is a need for the development of safe and non toxic natural tyrosinase inhibitors. Here we report the role of santalin, the chief constituent of Pterocarpus santalinus in inhibition of tyrosinase and melanin synthesis. Santalin inhibited tyrosinase activity dose dependently. Inhibitory kinetic studies revealed mixed type of inhibition with reversible mechanism. Santalin was found to interact with the fluorophore amino acid residue of tyrosinase. Analysis of circular dichroism spectra showed the binding of santalin to tyrosinase which induced the loss of secondary helical structure. Molecular docking result suggested that santalin interact with the catalytic core of tyrosinase through strong hydrogen and hydrophobic bonding. The results of in vitro studies showed santalin inhibited melanogenesis through down regulation of MITF, tyrosinase, TRP-1 and TRP-2 without any cytotoxic effects towards B16F0 melanoma cells. Therefore, our results suggested that santalin possesses anti-tyrosinase activity, which could be utilized as a safe depigmentation agent in the cosmetic field for the treatment of hyperpigmentation disorder. PMID:26828288

  10. Histamine, a vasoactive agent with vascular disrupting potential, improves tumour response by enhancing local drug delivery

    PubMed Central

    Brunstein, F; Rens, J; van Tiel, S T; Eggermont, A M M; ten Hagen, T L M

    2006-01-01

    Tumour necrosis factor (TNF)-based isolated limb perfusion (ILP) is an approved and registered treatment for sarcomas confined to the limbs in Europe since 1998, with limb salvage indexes of 76%. TNF improves drug distribution in solid tumours and secondarily destroys the tumour-associated vasculature (TAV). Here we explore the synergistic antitumour effect of another vasoactive agent, histamine (Hi), in doxorubicin (DXR)-based ILP and evaluate its antivascular effects on TAV. We used our well-established rat ILP model for in vivo studies looking at tumour response, drug distribution and effects on tumour vessels. In vitro studies explored drug interactions at cellular level on tumour cells (BN-175) and Human umbilical vein endothelial cells (HUVEC). There was a 17% partial response and a 50% arrest in tumour growth when Hi was combined to DXR, without important side effects, against 100% progressive disease with DXR alone and 29% arrest in tumour growth for Hi alone. Histology documented an increased DXR leakage in tumour tissue combined to a destruction of the TAV, when Hi was added to the ILP. In vitro no synergy between the drugs was observed. In conclusion, Hi is a vasoactive drug, targeting primarily the TAV and synergises with different chemotherapeutic agents. PMID:17106443

  11. Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents

    PubMed Central

    Jung, Yujin; Yun, Hye Jeong; Min, Hye-Young; Lee, Ho Jin; Pham, Phuong Chi; Moon, Jayoung; Kwon, Dah In; Lim, Bumhee; Suh, Young-Ger; Lee, Jeeyeon; Lee, Ho-Young

    2015-01-01

    The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents. PMID:26515601

  12. Synthesis and Evaluation of Ester Derivatives of 10-Hydroxycanthin-6-one as Potential Antimicrobial Agents.

    PubMed

    Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru

    2016-01-01

    As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents. PMID:27007362

  13. Thyrotoxic hypokalemic periodic paralysis is a rare but potentially fatal emergency: case report and literature review.

    PubMed

    Gómez-Torres, Jeisa Y; Bravo-Llerena, Wilfredo E; Reyes-Ortiz, Luis M; Valderrábano-Wagner, Rodrigo J; Mariano-Mejías, Victor; Brunet-Rodríguez, Héctor; Lemos-Ramírez, Juan C

    2011-01-01

    We report a case of a 39 year-old Asian man in whom profound lower limb paralysis, along with severe hypokalemia and electrocardiographic changes, were the presenting features of Graves' disease (GD)-related thyrotoxicosis. Rapid recognition and management of the disorder were the key factors to avoid fatal hypokalemia-induced cardiac arrhythmias and promptly restore patient's capacity to ambulate. PMID:22111475

  14. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents.

    PubMed

    Qin, Mingze; Yan, Shuang; Wang, Lei; Zhang, Haotian; Zhao, Yanfang; Wu, Shasha; Wu, Di; Gong, Ping

    2016-06-10

    Herein, we report a novel series of diaryl urea derivatives bearing a triazole moiety, from which potent antitumor agents have been identified. With a modified triazole, most compounds showed high level activity in both cellular and enzymatic assays, accompanied with a suitable ClogD7.4 value. The most active compound, 13i, effectively suppressed proliferation of HT-29, H460 and MDA-MB-231 cancer cells, with IC50 values of 0.90, 0.85 and 1.54 μM, respectively. Compound 13i also exhibited significant inhibition of tyrosine kinases including c-Kit, RET and FLT3. Furthermore, compound 13i could obviously induce apoptosis of HT-29 cells in a concentration-dependent manner. The study of structure-activity relationships also revealed that a hydrophilic tail at the 4-position of the triazole was crucial for high activity of the compound. PMID:26991938

  15. Potentials and limits for the use of ozone as a fish disease control agent

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Nelson, Nancy C.; Yasutake, Wm. T.

    1979-01-01

    Ozone and chlorine inactivation curves were determined in three types of freshwater at 20 C for the destruction of the fish pathogens Aeromonas salmonicida the etiologic agent of furunculosis, and Yersinia ruckeri the enteric redmouth bacterium (ERM). Ozone and chlorine inactivation curves were also obtained in the same water types at 10 C for the fish pathogenic viruses infectious hematopoietic necrosis (IHNV), and infectious pancreatic necrosis (IPNV). Acute toxicity tests using the rainbow trout as a representative salmonid revealed that ozone was highly toxic at the dose levels used. Partial chronic (3. mo.) testing revealed that ozone exposure at 2 μg/L causes only minimal physiological changes, none of which would be expected to compromise biological function.

  16. Potent and Orally Bioavailable Antiplatelet Agent, PLD-301, with the Potential of Overcoming Clopidogrel Resistance

    PubMed Central

    Chen, Jingyu; Wang, Michael Zhiyan

    2016-01-01

    PLD-301, a phosphate prodrug of clopidogrel thiolactone discovered by Prelude Pharmaceuticals with the aim to overcome clopidogrel resistance, was evaluated for its in vivo inhibitory effect on ADP-induced platelet aggregation in rats. The potency of PLD-301 was similar to that of prasugrel, but much higher than that of clopidogrel. The results of pharmacokinetic analysis showed that the oral bioavailability of clopidogrel thiolactone converted from PLD-301 was 4- to 5-fold higher than that of the one converted from clopidogrel, suggesting that in comparison with clopidogrel, lower doses of PLD-301 could be used clinically. In summary, PLD-301 presents a potent and orally bioavailable antiplatelet agent that might have some advantages over clopidogrel, such as overcoming clopidogrel resistance for CYP2C19-allele loss-of-function carriers, and lowering dose-related toxicity due to a much lower effective dose.

  17. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: a hypothesis.

    PubMed

    Ortega-Ramirez, Luis Alberto; Rodriguez-Garcia, Isela; Leyva, Juan Manuel; Cruz-Valenzuela, Manuel Reynaldo; Silva-Espinoza, Brenda Adriana; Gonzalez-Aguilar, Gustavo A; Siddiqui, Wasim; Ayala-Zavala, Jesus Fernando

    2014-02-01

    Many food preservation strategies can be used for the control of microbial spoilage and oxidation; however, these quality problems are not yet controlled adequately. Although synthetic antimicrobial and antioxidant agents are approved in many countries, the use of natural safe and effective preservatives is a demand of food consumers and producers. This paper proposes medicinal plants, traditionally used to treat health disorders and prevent diseases, as a source of bioactive compounds having food additive properties. Medicinal plants are rich in terpenes and phenolic compounds that present antimicrobial and antioxidant properties; in addition, the literature revealed that these bioactive compounds extracted from other plants have been effective in food systems. In this context, the present hypothesis paper states that bioactive molecules extracted from medicinal plants can be used as antimicrobial and antioxidant additives in the food industry. PMID:24446991

  18. Assessment of oligogalacturonide from citrus pectin as a potential antibacterial agent against foodborne pathogens.

    PubMed

    Wu, Ming-Chang; Li, Hui-chin; Wu, Po-Hua; Huang, Ping-Hsiu; Wang, Yuh-Tai

    2014-08-01

    Foodborne diseases are an important public health problem in the world. The bacterial resistance against presently used antibiotics is becoming a public health issue; hence, the discovery of new antimicrobial agents from natural sources attracts a lot of attention. Antibacterial activities of oligogalacturonide from commercial microbial pectic enzyme (CPE) treated citrus pectin, which exhibits antioxidant and antitumor activities, against 4 foodborne pathogens including Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Pseudomonas aeruginosa was assessed. Pectin hydrolysates from CPE hydrolysis exhibited antibacterial activities. However, no antibacterial activity of pectin was observed. Citrus oligogalacturonide from 24-h hydrolysis exhibited bactericidal effect against all selected foodborne pathogens and displayed minimal inhibitory concentration at 37.5 μg/mL for P. aeruginosa, L. monocytogenes, and S. Typhimurium, and at 150.0 μg/mL for S. aureus. PMID:25048440

  19. Novel hederagenin-triazolyl derivatives as potential anti-cancer agents.

    PubMed

    Rodríguez-Hernández, Diego; Demuner, Antonio J; Barbosa, Luiz C A; Heller, Lucie; Csuk, René

    2016-06-10

    A series of novel aryl-1H-1,2,3-triazol-4-yl methylester and amide derivatives of the natural product hederagenin was synthesized aiming to develop new antitumor agents, using Huisgen 1,3-dipolar cycloaddition reactions, with yields between 35% and 95%. The structures of all derivatives (2-31) were confirmed by MS, IR, (1)H NMR and (13)C NMR spectroscopic data. The cytotoxic activities of all compounds were screened against a panel of six human cancer cell lines using SRB assay. It was found that most of the compounds displayed higher levels of antitumor activities as compared to parent hederagenin. Compounds 4, 8 and 15 were the most potent against all human cancer cell lines. Furthermore, compound 11 was the most cytotoxic against cell HT29 showing EC50 = 1.6 μM and a selectivity index of 5.4. PMID:27017553

  20. Potential new approaches for the development of brain imaging agents for single-photon applications

    SciTech Connect

    Knapp, F.F. Jr.; Srivastava, P.C.

    1984-01-01

    This paper describes new strategies for the brain-specific delivery of radionuclides that can be used to evaluate regional cerebral perfusion by single photon imaging techniques. A description of several examples of interesting new strategies that have recently been reported is presented. A new approach at this institution for the brain-specific delivery of radioiodinated iodophenylalkyl-substituted dihyronicotinamide systems is described which shows good brain uptake and retention in preliminary studies in rats. Following transport into the brain these agents appear to undergo facile intracerebral oxidation to the quaternized analogues which do not recross the intact blood-brain barrier and so are effectively trapped in the brain. 49 refs., 9 figs., 1 tab.

  1. Novel capsaicin analogues as potential anticancer agents: synthesis, biological evaluation, and in silico approach.

    PubMed

    Damião, Mariana C F C B; Pasqualoto, Kerly F M; Ferreira, Adilson K; Teixeira, Sarah F; Azevedo, Ricardo A; Barbuto, José A M; Palace-Berl, Fanny; Franchi-Junior, Gilberto C; Nowill, Alexandre E; Tavares, Maurício T; Parise-Filho, Roberto

    2014-12-01

    A novel class of benzo[d][1,3]dioxol-5-ylmethyl alkyl/aryl amide and ester analogues of capsaicin were designed, synthesized, and evaluated for their cytotoxic activity against human and murine cancer cell lines (B16F10, SK-MEL-28, NCI-H1299, NCI-H460, SK-BR-3, and MDA-MB-231) and human lung fibroblasts (MRC-5). Three compounds (5f, 6c, and 6e) selectively inhibited the growth of aggressive cancer cells in the micromolar (µM) range. Furthermore, an exploratory data analysis pointed at the topological and electronic molecular properties as responsible for the discrimination process regarding the set of investigated compounds. The findings suggest that the applied designing strategy, besides providing more potent analogues, indicates the aryl amides and esters as well as the alkyl esters as interesting scaffolds to design and develop novel anticancer agents. PMID:25283529

  2. Complete Genome Sequence Analysis of Two Pseudomonas plecoglossicida Phages, Potential Therapeutic Agents

    PubMed Central

    Yasuike, Motoshige; Nakamura, Yoji; Shigenobu, Yuya; Fujiwara, Atushi; Sano, Motohiko; Nakai, Toshihiro

    2014-01-01

    Pseudomonas plecoglossicida is a lethal pathogen of ayu (Plecoglossus altivelis) in Japan and is responsible for substantial economic costs to ayu culture. Previously, we demonstrated the efficacy of phage therapy against P. plecoglossicida infection using two lytic phages (PPpW-3 and PPpW-4) (S. C. Park, I. Shimamura, M. Fukunaga, K. Mori, and T. Nakai, Appl Environ Microbiol 66:1416–1422, 2000, http://dx.doi.org/10.1128/AEM.66.4.1416-1422.2000; S. C. Park and T. Nakai, Dis Aquat Org 53:33–39, 2003, http://dx.doi.org/10.3354/dao053033). In the present study, the complete genome sequences of these therapeutic P. plecoglossicida phages were determined and analyzed for deleterious factors as therapeutic agents. The genome of PPpW-3 (myovirus) consisted of 43,564 bp with a GC content of 61.1% and 66 predicted open reading frames (ORFs). Approximately half of the genes were similar to the genes of the Escherichia coli phage vB_EcoM_ECO1230-10 (myovirus). The genome of PPpW-4 (podovirus) consisted of 41,386 bp with a GC content of 56.8% and 50 predicted ORFs. More than 70% of the genes were similar to the genes of Pseudomonas fluorescens phage ϕIBB-PF7A and Pseudomonas putida phage ϕ15 (podoviruses). The whole-genome analysis revealed that no known virulence genes were present in PPpW-3 and PPpW-4. An integrase gene was found in PPpW-3, but other factors used for lysogeny were not confirmed. The PCR detection of phage genes in phage-resistant variants provided no evidence of lysogenic activity in PPpW-3 and PPpW-4. We conclude that these two lytic phages qualify as therapeutic agents. PMID:25416766

  3. Complete genome sequence analysis of two Pseudomonas plecoglossicida phages, potential therapeutic agents.

    PubMed

    Kawato, Yasuhiko; Yasuike, Motoshige; Nakamura, Yoji; Shigenobu, Yuya; Fujiwara, Atushi; Sano, Motohiko; Nakai, Toshihiro

    2015-02-01

    Pseudomonas plecoglossicida is a lethal pathogen of ayu (Plecoglossus altivelis) in Japan and is responsible for substantial economic costs to ayu culture. Previously, we demonstrated the efficacy of phage therapy against P. plecoglossicida infection using two lytic phages (PPpW-3 and PPpW-4) (S. C. Park, I. Shimamura, M. Fukunaga, K. Mori, and T. Nakai, Appl Environ Microbiol 66:1416-1422, 2000, http://dx.doi.org/10.1128/AEM.66.4.1416-1422.2000; S. C. Park and T. Nakai, Dis Aquat Org 53:33-39, 2003, http://dx.doi.org/10.3354/dao053033). In the present study, the complete genome sequences of these therapeutic P. plecoglossicida phages were determined and analyzed for deleterious factors as therapeutic agents. The genome of PPpW-3 (myovirus) consisted of 43,564 bp with a GC content of 61.1% and 66 predicted open reading frames (ORFs). Approximately half of the genes were similar to the genes of the Escherichia coli phage vB_EcoM_ECO1230-10 (myovirus). The genome of PPpW-4 (podovirus) consisted of 41,386 bp with a GC content of 56.8% and 50 predicted ORFs. More than 70% of the genes were similar to the genes of Pseudomonas fluorescens phage ϕIBB-PF7A and Pseudomonas putida phage ϕ15 (podoviruses). The whole-genome analysis revealed that no known virulence genes were present in PPpW-3 and PPpW-4. An integrase gene was found in PPpW-3, but other factors used for lysogeny were not confirmed. The PCR detection of phage genes in phage-resistant variants provided no evidence of lysogenic activity in PPpW-3 and PPpW-4. We conclude that these two lytic phages qualify as therapeutic agents. PMID:25416766

  4. Potentiating effects of caffeine on teratogenicity of alkylating agents in mice

    SciTech Connect

    Fujii, T.; Nakatsuka, T.

    1983-08-01

    Teratogenic to subteratogenic doses of x-ray, mitomycin C, MNNG, thio-TEPA, cyclophosphamide, and chlorambucil were administered to pregnant ICR mice together with caffeine at doses of 12.5, 25, or 50 mg/kg on day 11 of gestation. Fetuses were examined for gross malformations on day 18 of gestation. The teratogenicity of mitomycin C was significantly potentiated by caffeine at a dose as low as 12.5 mg/kg. The teratogenicity of chlorambucil was also significantly potentiated by caffeine at 50 mg/kg, but similar potentiation was not observed for x-ray, MNNG, thio-TEPA, and cyclophosphamide.

  5. Tert-butyl benzoquinone: mechanism of biofilm eradication and potential for use as a topical antibiofilm agent

    PubMed Central

    Ooi, N.; Eady, E. A.; Cove, J. H.; O'Neill, A. J.

    2016-01-01

    Objectives Tert-butyl benzoquinone (TBBQ) is the oxidation product of tert-butyl hydroquinone (TBHQ), an antimicrobial food additive with >40 years of safe use. TBBQ displays potent activity against Staphylococcus aureus biofilms in vitro. Here, we report on studies to further explore the action of TBBQ on staphylococcal biofilms, and provide a preliminary preclinical assessment of its potential for use as a topical treatment for staphylococcal infections involving a biofilm component. Methods The antibacterial properties of TBBQ were assessed against staphylococci growing in planktonic culture and as biofilms in the Calgary Biofilm Device. Established assays were employed to measure the effects of TBBQ on biofilm structure and bacterial membranes, and to assess resistance potential. A living-skin equivalent was used to evaluate the effects of TBBQ on human skin. Results TBBQ eradicated biofilms of S. aureus and other staphylococcal species at concentrations ≤64 mg/L. In contrast to other redox-active agents exhibiting activity against biofilms, TBBQ did not cause substantial destructuring of the biofilm matrix; instead, the antibiofilm activity of the compound was attributed to its ability to kill slow- and non-growing cells via membrane perturbation. TBBQ acted synergistically with gentamicin, did not damage a living-skin equivalent following topical application and exhibited low resistance potential. Conclusions The ability of TBBQ to eradicate biofilms appears to result from its ability to kill bacteria regardless of growth state. Preliminary evaluation suggests that TBBQ represents a promising candidate for development as a topical antibiofilm agent. PMID:27121399

  6. Synthesis and in vitro evaluation of 4-substituted furano[3,2-c] tetrahydroquinolines as potential anti-cancer agents.

    PubMed

    Chen, Can; Zingales, Sarah; Wang, Ting; Yuan, Mingyong; Wang, Dan; Cai, Lulu; Jiang, Qinglin

    2016-10-01

    A convenient and mild method for the synthesis of substituted furano [3,2-c]tetrahydroquinoline derivatives was developed, using the multi-component Povarov reaction. Of the synthesized tetrahydroquinoline derivatives, compound 10a displayed the greatest cellular proliferation inhibitory activities with IC50 values of 2.5-16.7 μmol/l. In addition, 10a induced murine C6 glioma cell apoptosis in a dose-dependent manner by up-regulating the expression of Bax, caspase-3, and caspase-9, and by down-regulating Bcl-2. Our findings suggest that these novel compounds have potential as therapeutic agents via inducing mitochondrial apoptosis. PMID:26207511

  7. Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease.

    PubMed

    Bajda, Marek; Jończyk, Jakub; Malawska, Barbara; Czarnecka, Kamila; Girek, Małgorzata; Olszewska, Paulina; Sikora, Joanna; Mikiciuk-Olasik, Elżbieta; Skibiński, Robert; Gumieniczek, Anna; Szymański, Paweł

    2015-09-01

    A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 4-dimethylaminobenzoic acid moiety was synthesized and tested towards inhibition of cholinesterases and amyloid β aggregation. Target compounds were designed as dual binding site cholinesterase inhibitors able to bind to both the catalytic and the peripheral site of the enzyme and therefore potentially endowed with other properties. The obtained derivatives were very potent inhibitors of both cholinesterases (EeAChE, EqBChE) with IC50 values ranging from sub-nanomolar to nanomolar range, and the inhibitory potency of the most promising agents was higher than that of the reference drugs (rivastigmine and tacrine). The kinetic studies of the most active compound 3a revealed competitive type of AChE inhibition. Moreover, all target compounds were more potent inhibitors of human AChE than tacrine with the most active compound 3b (IC50 = 19 nM). Compound 3a was also tested and displayed inhibitory potency against AChE-induced Aβ 1-42 aggregation (80.6% and 91.3% at 50 μM and 100 μM screening concentration, respectively). Moreover, cytotoxicity assay performed on A549 cells did not indicate toxicity of this agent. Compound 3a is a promising candidate for further development of novel multi-functional agents in the therapy of AD. PMID:26242241

  8. Anti-Heparanase Aptamers as Potential Diagnostic and Therapeutic Agents for Oral Cancer

    PubMed Central

    Silva, Dilson; Cortez, Celia M.; McKenzie, Edward A.; Bitu, Carolina C.; Salo, Sirpa; Nurmenniemi, Sini; Nyberg, Pia; Risteli, Juha; deAlmeida, Carlos E. B.; Brenchley, Paul E. C.; Salo, Tuula; Missailidis, Sotiris

    2014-01-01

    Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the presence of human serum, making it a potential candidate for both diagnostic and therapeutic use. PMID:25295847

  9. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents.

    PubMed

    Grover, Gaurav; Kini, Suvarna G

    2006-02-01

    In continuation of our work on synthesis of biheterocycles carrying the biodynamic heterocyclic systems at position 3, a series of new nalidixic acid derivatives having quinazolones moiety were synthesised to achieve enhanced biological activity and wide spectrum of activity. Nalidixic acid was first converted into its acid chloride using thionyl chloride as an acylating agent at laboratory temperature. Later it was converted to methyl ester. Nalidixoyl chloride formed vigorously reacts with methanol to give a methyl ester of nalidixic acid. The ester on addition of hydrazine hydrate furnished nalidixic acid hydrazide. Appropriate anthranilic acid was refluxed with acetic anhydride to form Benzoxazine/Acetanthranil. 5-iodo-derivative of anthranilic acid was prepared and also utilised to obtain 6-iodo-Benzoxazine/Acetanthranil. Also, 6-nitro-Benzoxazine/Acetanthranil was obtained by nitration of acetanthranil using conc. H(2)SO(4) and fuming HNO(3). Equimolar proportions of the appropriate synthesised acetanthranils and nalidixic acid hydrazide in the presence of ethanol were refluxed to synthesise quinazolones. Elemental analysis and IR spectra confirmed nalidixic acid hydrazide formation. The structures of the compounds obtained have been established on the basis of Spectral (IR, (1)H NMR and mass) data. The current study also involves in vitro antimicrobial screening (using Agar dilution and Punch well diffusion method) of synthesised quinazolone derivatives bearing nalidixic acid moiety on randomly collected microbial strains. The derivatives Ga (NAH), Gb (QN) and Gd (NiQNA) showed marked inhibitory activity against enteric pathogen like Aeromonas hydrophila, a causative agent of diarrhoea in both children as well as adults. Among the respiratory pathogens included in study, derivative Gd (NiQNA) was found to be active against Streptococcus pyogenes. No significant inhibitory activity was seen by any of synthesised derivatives against Coagulase negative

  10. Iodine-induced thyrotoxic hypokalemic paralysis after ingestion of Salicornia herbace.

    PubMed

    Yun, Seong Eun; Kang, Yeojin; Bae, Eun Jin; Hwang, Kyungo; Jang, Ha Nee; Cho, Hyun Seop; Chang, Se-Ho; Park, Dong Jun

    2014-04-01

    A 56-year-old Korean man visited to emergency room due to paroxysmal flaccid paralysis in his lower extremities. There was no family or personal history of periodic paralysis. His initial potassium levels were 1.8 mmol/L. The patient had been taking Salicornia herbacea for the treatment of diabetes and hypertension. Results of a thyroid function test were as follows: T3 = 130.40 ng/dL, TSH = 0.06 mIU/L, and free T4 = 1.73 ng/dL. A thyroid scan exhibited a decreased uptake (0.6%). His symptoms clearly improved and serum potassium levels increased to 4.4 mmol/L by intravenous infusion of only 40 mmol of potassium chloride. Eight months after the discontinuation of only Salicornia herbacea, the patient's thyroid function tests were normalized. Large amounts of iodine can induce hypokalemic thyrotoxic paralysis and it may be necessary to inquire about the ingestion of iatrogenic iodine compounds, such as Salicornia herbacea. PMID:24344747

  11. [Hypokalemic paralysis: the first presentation of primary Sjögren's syndrome].

    PubMed

    Martinho, Aurélia L; Capela, Andreia; Duarte, Fernanda

    2012-01-01

    The Sjögren's syndrome is a systemic autoimmune disorder characterized by chronic inflammation of the exocrine glands with extraglandular manifestations in up to 25% patients. Renal involvement occurs in 18.4-67% of cases, with tubulointerstitial nephritis being the most frequent pathology. We present the case of a 37 year-old woman admitted because of generalized grade 2 muscle weakness which developed over a week. We detected: hypokalemia, rhabdomyolysis, urinary pH 6.5, proteinuria and metabolic acidemia. The laboratory tests suggestive of distal renal tubular acidosis with hypokalaemia led to the diagnosis of lymphoplasmocytic tubulointerstitial nephritis, which was confirmed by renal biopsy, and to a clinical suspicion of Sjögren's syndrome. Primary Sjögren's syndrome was diagnosed in this patient based on the following criteria: xerophthalmia, xerostomia, sialadenitis, positive anti-SSA and anti-SSB antibodies, and absence of criteria for lupus and rheumatoid arthritis. During hospitalization, the patient developed deep vein thrombosis. Tests showed positive antiphospholipid antibodies and the diagnosis of secondary antiphospholipid syndrome was made. She was treated with potassium, bicarbonate, steroids, ramipril and warfarin. The authors wish to highlight the extraglandular manifestations and in particular the rarity of hypokalemic paralysis as the presenting manifestation of primary Sjögren's syndrome. PMID:22985924

  12. Hypokalemic periodic paralysis; two different genes responsible for similar clinical manifestations.

    PubMed

    Kim, Hunmin; Hwang, Hee; Cheong, Hae Il; Park, Hye Won

    2011-11-01

    Primary hypokalemic periodic paralysis (HOKPP) is an autosomal dominant disorder manifesting as recurrent periodic flaccid paralysis and concomitant hypokalemia. HOKPP is divided into type 1 and type 2 based on the causative gene. Although 2 different ion channels have been identified as the molecular genetic cause of HOKPP, the clinical manifestations between the 2 groups are similar. We report the cases of 2 patients with HOKPP who both presented with typical clinical manifestations, but with mutations in 2 different genes (CACNA1Sp.Arg528His and SCN4A p.Arg672His). Despite the similar clinical manifestations, there were differences in the response to acetazolamide treatment between certain genotypes of SCN4A mutations and CACNA1S mutations. We identified p.Arg672His in the SCN4A gene of patient 2 immediately after the first attack through a molecular genetic testing strategy. Molecular genetic diagnosis is important for genetic counseling and selecting preventive treatment. PMID:22253645

  13. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair. PMID:27574685

  14. Preclinical evaluation of perifosine as a potential promising anti-rhabdomyosarcoma agent.

    PubMed

    Shen, Jie; Hong, Yue; Zhao, Qiong; Zhang, Jian-Li

    2016-01-01

    Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer that arises from the skeletal muscle. Recent studies have identified an important role of AKT signaling in RMS progression. In the current study, we investigated the activity of perifosine, an oral alkylphospholipid AKT inhibitor, against human RMS cells (RD and Rh-30 lines) both in vivo and in vitro, and studied the underlying mechanisms. We showed that perifosine significantly inhibited RMS cell growth in concentration- and time-dependent manners. Meanwhile, perifosine induced dramatic apoptosis in RMS cells. At the signaling level, perifosine blocked AKT activation, while inducing reactive oxygen species (ROS) production as well as JNK and P38 phosphorylations in RMS cells. Restoring AKT activation by introducing a constitutively active-AKT (CA-AKT) only alleviated (not abolished) perifosine-induced cytotoxicity in RD cells. Yet, the ROS scavenger N-acetyl cysteine (NAC) as well as pharmacological inhibitors against JNK (SP-600125) or P38 (SB-203580) suppressed perifosine-induced cytotoxicity in RMS cells. Thus, perifosine induces growth inhibition and apoptosis in RMS cells through mechanisms more than just blocking AKT. In vivo, oral administration of perifosine significantly inhibited growth of Rh-30 xenografts in severe combined immunodeficient (SCID) mice. Our data indicate that perifosine might be further investigated as a promising anti-RMS agent. PMID:26269112

  15. The preliminary evaluation of Mn DTPA as a potential contrast agent for nuclear magnetic resonance imaging.

    PubMed

    Boudreau, R J; Frick, M P; Levey, R M; Lund, G; Sirr, S A; Loken, M K

    1986-01-01

    The pharmacokinetics of 54Mn administered as Mn-diethylenetriamine pentaacetic acid (DTPA) are being investigated to determine if tissue-specific uptake of manganese could be observed while increasing urinary excretion. This chelation and increased excretion should reduce toxicity. In order to obviate the need for repetitive quantitative nuclear magnetic resonance imaging (NMR) we have substituted tracer amounts of a radioisotope of manganese, Mn-54, for the stable ion. By 6 hours, 58 +/- 7% of the injected dose had been excreted in the urine. Peak liver accumulation occurred within 30 minutes (0.50 +/- 0.14% injected dose/g X kg body weight). The pancreas also showed a relatively high accumulation of tracer (0.25 +/- 0.04%/g X kg body weight), reaching a peak at 4 hours. The pancreas to liver ratios were highest at 6 hours (0.7). There was also a substantial accumulation of the manganese in bile. The blood concentration fell very rapidly with little tracer remaining in the blood at 1 hour. Based on these pharmacokinetics, imaging experiments were conducted before, immediately after, and 9 or 24 hours postinjection. These images showed enhanced kidneys and, later (at 9 hours), an excellent parenchymal-collecting system differentiation. The gallbladder was negatively enhanced. The liver showed either increased or decreased signal strength relative to skeletal muscle depending on the pulse sequence used. We conclude that Mn++, administered as Mn-DTPA, merits further investigation as an NMR contrast agent. PMID:3451753

  16. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli

    PubMed Central

    Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; da Costa, Elaine Sobral; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  17. Nrf2 activity as a potential biomarker for the pan-epigenetic anticancer agent, RRx-001

    PubMed Central

    Ning, Shoucheng; Sekar, Thillai Veerapazham; Scicinski, Jan; Oronsky, Bryan; Peehl, Donna M.; Knox, Susan J.; Paulmurugan, Ramasamy

    2015-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulatory transcription factor that plays an important role in the antioxidant response pathway against anticancer drug-induced cytotoxic effects. RRx-001 is a new anticancer agent that generates reactive oxygen and nitrogen species, and leads to epigenetic alterations in cancer cells. Here we report the RRx-001 mediated nuclear translocation of Nrf2 and the activation of expression of its downstream enzymes HO-1 and NQO1 in tumor cells. Inhibition of intrinsic Nrf2 expression by Nrf2-specific siRNA increased cell sensitivity to RRx-001. Molecular imaging of tumor cells co-expressing pARE-Firefly luciferase and pCMV-Renilla luciferase-mRFP in vitro and in vivo in mice revealed that RRx-001 significantly increased ARE-FLUC signal in cells in a dose- and time-dependent manner, suggesting that RRx-001 is an effective activator of the Nrf2-ARE signaling pathway. The pre-treatment level of ARE-FLUC signal in cells, reflecting basal activity of Nrf2, negatively correlated with the tumor response to RRx-001. The results support the concept that RRx-001 activates Nrf2-ARE antioxidant signaling pathways in tumor cells. Hence measurement of Nrf2-mediated activation of downstream target genes through ARE signaling may constitute a useful molecular biomarker for the early prediction of response to RRx-001 treatment, and thereby guide therapeutic decision-making. PMID:26280276

  18. The potential role of antiplatelet agents in modulating inflammatory markers in atherothrombosis.

    PubMed

    Yeh, E T H; Khan, B V

    2006-11-01

    Atherothrombosis is the process that links atherosclerotic lesion development with unpredictable and life-threatening ischemic vascular events such as angina, myocardial infarction, transient ischemic attack, and stroke. Atherothrombosis is triggered when an unstable atherosclerotic lesion is ruptured, leading to platelet activation and thrombus formation. Inflammatory mediators are responsible for lesion instability leading to rupture, and in recent years atherothrombosis and its underlying condition of atherosclerosis have come to be recognized as manifestations of inflammatory disease. Inflammatory mediators may therefore serve as early markers of atherothrombosis. Measurement of early markers may be used to predict future ischemic events and improve risk stratification in patients following diagnosis of atherothrombotic disease. In addition, detection of such markers may help to optimize the use of current therapies to manage atherothrombosis. Molecules that may serve as early markers of atherothrombotic disease include C-reactive protein, CD40 ligand, myeloperoxidase, pregnancy-associated plasma protein and plasminogen activator inhibitor-1. Early indications are that levels of these markers are influenced by therapies currently in use in the treatment of atherothrombotic conditions, including antiplatelet agents. Ongoing studies will provide further insight into routine assessment of inflammatory markers as a guide to the management of patients with atherothrombosis. PMID:16961584

  19. Psoralea glandulosa as a Potential Source of Anticancer Agents for Melanoma Treatment

    PubMed Central

    Madrid, Alejandro; Cardile, Venera; González, César; Montenegro, Ivan; Villena, Joan; Caggia, Silvia; Graziano, Adriana; Russo, Alessandra

    2015-01-01

    With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells. PMID:25860949

  20. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    PubMed

    Einsfeldt, Karen; Baptista, Isis Cavalcante; Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; Costa, Elaine Sobral da; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  1. EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials.

    PubMed

    Juda, Marek; Paprota, Katarzyna; Jałoza, Dariusz; Malm, Anna; Rybojad, Paweł; Goździuk, Kazimierz

    2008-01-01

    Polichloride vinyl (PCV) is a widely used thermoplastic polymer, also in the production of medical devices. In the present study we assess the influence of EDTA in vitro on the biofilm structure formed by Staphylococcus epidermidis isolates on PCV biomaterials (Nelaton and Thorax catheters). The 6 strains of S. epidermidis were isolated from nasopharynx of hospitalised patients. It was found that all isolates were able to form the biofilm on both PCV biomaterials, irrespective of adhesion properties (cell surface properties, ability to slime production, minimal time needed for adhesion). The EDTA showed bacteriostatic effect against planktonic cells of the isolates (MIC = 0.25-0.5 mmol/l; MBC = 10.0- >25.0 mmol/l; MBC/MIC = 20, 30, 40, >50). The adhesion process and also formation of the biofilm was inhibited by EDTA at concentrations 1.0-2.0 mmol/l (2-8 x MIC). The eradication of the mature biofilm was achieved at 2.0-4.0 mmol/l EDTA (4-8 x MIC ) for two strains, while for the other four isolates, concentration of EDTA needed for eradication effect was >32 mmol/l (> 128 x MIC ). Data obtained in this paper suggest that EDTA may be regarded as a useful agent preventing formation of the S. epidermidis biofilm on PCV biomaterials. PMID:19118444

  2. Purification of an antifungal endochitinase from a potential biocontrol Agent Streptomyces griseus.

    PubMed

    Rabeeth, M; Anitha, A; Srikanth, Geetha

    2011-08-15

    Streptomyces griseus (MTCC 9723) is a chitinolytic bacterium isolated from prawn cultivated pond soil of Peddapuram Village; East Godavari District was studied in detailed. Chitinase (EC 3.2.1.14) was extracted from the culture filtrate of Streptomyces griseus and purified by ammonium sulfate precipitation, DEAE-cellulose ionexchange chromatography, Sephadex G-100 and Sephadex G-200 gel filtration chromatography. The molecular mass of the purified chitinase was estimated to be 34, 32 kDa by SDS gel electrophoresis and confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 6.0 and at 40 degrees C. The enzyme was stable from pH 5-9 and up to 20-50 degrees C. The chitinase exhibited Km and Vmax values of 400 mg and 180 IU mL(-1) for colloidal chitin. Among the metals and inhibitors that were tested, the Hg+, Hg2+ and P-chloromercuribenzoic acid completely inhibited the chitinase activity at 1 mM concentration. The purified chitinase showed high activity on colloidal chitin, chitobiose, and chitooligosaccharide. An in vitro assay proved that the crude chitinase, actively growing cells of S. griseus having antifungal activity against all studied fungal pathogen. This result implies that characteristics of S. griseus producing endochitinase made them suitable for biotechnological purpose such as for degradation of chitin containing waste and it might be a promising biocontrol agent for plant pathogens. PMID:22545353

  3. Aptamer-conjugated, fluorescent gold nanorods as potential cancer theradiagnostic agents.

    PubMed

    Gallina, Maria Elena; Zhou, Yu; Johnson, Christopher J; Harris-Birtill, David; Singh, Mohan; Zhao, Hailin; Ma, Daqing; Cass, Tony; Elson, Daniel S

    2016-02-01

    GNRs are emerging as a new class of probes for theradiagnostic applications thanks to their unique optical properties. However, the achievement of proper nanoconstructs requires the synthesis of highly pure GNRs with well-defined aspect ratio (AR), in addition to extensive surface chemistry modification to provide them with active targeting and, possibly, multifunctionality. In this work, we refined the method of the seed mediated growth and developed a robust procedure for the fabrication of GNRs with specific AR. We also revealed and characterized unexplored aging phenomena that follow the synthesis and consistently alter GNRs' final AR. Such advances appreciably improved the feasibility of GNRs fabrication and offered useful insights on the growth mechanism. We next produced fluorescent, biocompatible, aptamer-conjugated GNRs by performing ligand exchange followed by bioconjugation to anti-cancer oligonucleotide AS1411. In vitro studies showed that our nanoconstructs selectively target cancer cells while showing negligible cytotoxicity. As a result, our aptamer-conjugated GNRs constitute ideal cancer-selective multifunctional probes and promising candidates as photothermal therapy agents. PMID:26652380

  4. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

    PubMed Central

    Beneduzi, Anelise; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2012-01-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems. PMID:23411488

  5. Synthesis and screening of ursolic acid-benzylidine derivatives as potential anti-cancer agents.

    PubMed

    Dar, Bilal Ahmad; Lone, Ali Mohd; Shah, Wajaht Amin; Qurishi, Mushtaq Ahmad

    2016-03-23

    Ursolic acid present abundantly in plant kingdom is a well-known compound with various promising biological activities including, anti-cancer, anti-inflammatory, hepatoprotective, antiallergic and anti-HIV properties. Herein, a library of ursolic acid-benzylidine derivatives have been designed and synthesized using Claisen Schmidt condensation of ursolic acid with various aromatic aldehydes in an attempt to develop potent antitumor agents. The compounds were evaluated against a panel of four human carcinoma cell lines including, A-549 (lung), MCF-7 (breast), HCT-116 (colon), THP-1 (leukemia) and a normal human epithelial cell line (FR-2). The results from MTT assay revealed that all the compounds displayed high level of antitumor activities compared with the triazole analogs (previously reported) and the parent ursolic acid. However, compound 3b, the most active derivative was subjected to mechanistic studies to understand the underlying mechanism. The results revealed that compound 3b induced apoptosis in HCT-116 cell lines, arrest cell cycle in the G1 phase, caused accumulation of cytochrome c in the cytosol and increased the expression levels of caspase-9 and caspase-3 proteins. Therefore, compound 3b induces apoptosis in HCT-116 cells through mitochondrial pathway. PMID:26854375

  6. 75 FR 43184 - Transport of Laboratory Personnel Potentially Exposed to Infectious Agents From Fort Detrick...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... the Federal Register (73 FR 35145) announcing its intent to prepare the NIH Transportation EIS and... Register on May 22, 2009 (74 FR 24006). The formal comment period for the Draft NIH Transportation EIS.... Potential impacts on air quality and noise levels are all within government standards (Federal, state,...

  7. Heterapoderopsis bicallosicollis (Coleoptera: Attelabidae): A Potential Biological Control Agent for Triadeca sebifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to China, Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae), is an invasive plant in the southeastern United States of America. The leaf-rolling weevil, Apoderus bicallosicollis Voss is a common herbivore attacking the plant in China. To evaluate its potential as a biological contr...

  8. Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity.

    PubMed

    Csajbók, Eva; Bányai, István; Vander Elst, Luce; Muller, Robert N; Zhou, Wuzong; Peters, Joop A

    2005-08-01

    The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. PMID:15929138

  9. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics. PMID:25445515

  10. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii.

    PubMed

    Goffré, D; Folgarait, P J

    2015-09-01

    Many leaf-cutter ant species are well known pests in Latin America, including species of the genera Acromyrmex and Atta. An environmentally friendly strategy to reduce the number of leafcutter ants and avoid indiscriminate use of chemical pesticides is biological control. In this work we evaluated the effectiveness of a strain of the entomopathogen Purpureocillium lilacinum, against worker ants from six Acromyrmex lundii field colonies, after immersions in pure suspensions at a concentration of 1×10(6)conidiaml(-1). Survival of ants treated with P. lilacinum was significantly lower than that recorded in controls, and median lethal time (LT50) was 6-7days. P. lilacinum was responsible for 85.6% (80.6-89.7) of the mortality in inoculated ants, in which we found that the percentage of other entomopathogens that naturally infected ants decreased also, suggesting a good competitive capability of the fungus. Horizontal transmission to non-inoculated ants was also evidenced, given that 58.5% (41.9-64.2) of them died because of P. lilacinum. Moreover, we tested pathogenicity for three concentrations of this strain (1.0×10(4), 10(6) and 10(8)conidiaml(-1)) and found a significantly faster mortality of ants and greater median percentage of infection at 10(8)conidiaml(-1) of P. lilacinum. CL50 value was 2.8×10(5)conidiaml(-1). We thus propose the use of P. lilacinum as a biological control agent of leafcutter ants in crops and plantations. PMID:26205173

  11. Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Al-Dosari, Mohammed S; Ragab, Fatma A; Al-Mishari, Abdullah A; Almoqbil, Abdulaziz N

    2016-06-01

    As a part of ongoing studies in developing new anticancer agents, novel 1,2-dihydropyridine 4, thienopyridine 5, isoquinolines 6-20, acrylamide 21, thiazolidine 22, thiazoles 23-29 and thiophenes 33-35 bearing a biologically active quinoline nucleus were synthesized. The structure of newly synthesized compounds was confirmed on the basis of elemental analyses and spectral data. All the newly synthesized compounds were evaluated for their cytotoxic activity against the breast cancer cell line MCF7. 2,3-Dihydrothiazole-5-carboxamides 27, 25, 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (34), 1,2-dihydroisoquinoline-7-carbonitrile (7), 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (35), 1,2-dihydroisoquinoline-7-carbonitrile (6), 2-cyano-3-(dimethylamino)-N-(quinolin-3-yl)acrylamide (21), 1,2-dihydroisoquinoline-7-carbonitriles (11) and (8) exhibited higher activity (IC50 values of 27-45 μmol L-1) compared to doxorubicin (IC50 47.9 μmol L-1). LQ quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (12), 2-thioxo-2,3-dihydrothiazole-5-carboxamide (28) and quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (15) show activity comparable to doxorubicin, while (quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (9), 2,3-dihydrothiazole-5-carboxamide (24), thieno [3,4-c] pyridine-4(5H)-one (5), cyclopenta[b]thiophene-3-carboxamide (33) and (quinolin-3-yl)-6-stryl-1,2-dihydroisoquinoline-7-carbonitrile (10) exhibited moderate activity, lower than doxorubicin. PMID:27279061

  12. Potential spawn induction and suppression agents in Caribbean Acropora cervicornis corals of the Florida Keys

    PubMed Central

    Than, John T.

    2016-01-01

    The enhanced ability to direct sexual reproduction may lead to improved restoration outcomes for Acropora cervicornis. Gravid fragments of A. cervicornis were maintained in a laboratory for two sequential trials in the seven days prior to natural spawning in the Florida Keys. Ten replicates of five chemicals known to affect spawning in various invertebrate taxa were tested. Hydrogen peroxide at 2 mM (70%) and L-5-hydroxytryptophan (5-HTP) at 5 (40%) and 20 µM (30%) induced spawning within 15.4 h, 38.8 h and 26.9 h of dosing at or above the rate of release of the control (30%) within 14.6 h. Serotonin acetate monohydrate at 1 µM (20%) and 10 µM (20%), naloxone hydrochloride dihydrate at 0.01 µM (10%) and potassium phosphate monobasic at 0.25 µM (0%) induced spawning at rates less than the control. Although the greatest number of fragments spawned using hydrogen peroxide, it was with 100% mortality. There was a significantly higher induction rate closer to natural spawn (Trial 2) compared with Trial 1 and no genotype effect. Mechanisms of action causing gamete release were not elucidated. In Caribbean staghorn corals, 5-HTP shows promise as a spawning induction agent if administered within 72 h of natural spawn and it will not result in excessive mortality. Phosphate chemicals may inhibit spawning. This is the first study of its kind on Caribbean acroporid corals and may offer an important conservation tool for biologists currently charged with restoring the imperiled Acropora reefs of the Florida Keys. PMID:27168990

  13. Manganese(II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents.

    PubMed

    Oliveira, Carolina G; da S Maia, Pedro Ivo; Souza, Paula C; Pavan, Fernando R; Leite, Clarice Q F; Viana, Rommel B; Batista, Alzir A; Nascimento, Otaciro R; Deflon, Victor M

    2014-03-01

    Through a systematic variation on the structure of a series of manganese complexes derived from 2-acetylpyridine-N(4)-R-thiosemicarbazones (Hatc-R), structural features have been investigated with the aim of obtaining complexes with potent anti-Mycobacterium tuberculosis activity. The analytical methods used for characterization included FTIR, EPR, UV-visible, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. Density functional theory (DFT) calculations were performed in order to evaluate the contribution of the thiosemicarbazonate ligands on the charge distribution of the complexes by changing the peripheral groups as well as to verify the Mn-donor atoms bond dissociation predisposition. The results obtained are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral complexes of the type [Mn(atc-R)2], paramagnetic in the extension of 5 unpaired electrons, whose EPR spectra are consistent for manganese(II). The electrochemical analyses show two nearly reversible processes, which are influenced by the peripheral substituent groups at the N4 position of the atc-R(1-) ligands. The minimal inhibitory concentration (MIC) of these compounds against M. tuberculosis as well as their in vitro cytotoxicity on VERO and J774A.1 cells (IC50) was determined in order to find their selectivity index (SI) (SI=IC50/MIC). The results evidenced that the compounds described here can be considered as promising anti-M. tuberculosis agents, with SI values comparable or better than some commercial drugs available for the tuberculosis treatment. PMID:24188534

  14. Potential spawn induction and suppression agents in Caribbean Acropora cervicornis corals of the Florida Keys.

    PubMed

    Flint, Mark; Than, John T

    2016-01-01

    The enhanced ability to direct sexual reproduction may lead to improved restoration outcomes for Acropora cervicornis. Gravid fragments of A. cervicornis were maintained in a laboratory for two sequential trials in the seven days prior to natural spawning in the Florida Keys. Ten replicates of five chemicals known to affect spawning in various invertebrate taxa were tested. Hydrogen peroxide at 2 mM (70%) and L-5-hydroxytryptophan (5-HTP) at 5 (40%) and 20 µM (30%) induced spawning within 15.4 h, 38.8 h and 26.9 h of dosing at or above the rate of release of the control (30%) within 14.6 h. Serotonin acetate monohydrate at 1 µM (20%) and 10 µM (20%), naloxone hydrochloride dihydrate at 0.01 µM (10%) and potassium phosphate monobasic at 0.25 µM (0%) induced spawning at rates less than the control. Although the greatest number of fragments spawned using hydrogen peroxide, it was with 100% mortality. There was a significantly higher induction rate closer to natural spawn (Trial 2) compared with Trial 1 and no genotype effect. Mechanisms of action causing gamete release were not elucidated. In Caribbean staghorn corals, 5-HTP shows promise as a spawning induction agent if administered within 72 h of natural spawn and it will not result in excessive mortality. Phosphate chemicals may inhibit spawning. This is the first study of its kind on Caribbean acroporid corals and may offer an important conservation tool for biologists currently charged with restoring the imperiled Acropora reefs of the Florida Keys. PMID:27168990

  15. Synthesis and characterization of a new retinoic acid ECPIRM as potential chemotherapeutic agent for human cutaneous squamous carcinoma.

    PubMed

    Zhang, Mengli; Tao, Yue; Ma, Pengcheng; Wang, Dechuan; He, Chundi; Cao, Yuping; Wei, Jun; Li, Lingjun; Tao, Lei

    2015-01-01

    Cutaneous squamous cell carcinoma (CSCC) is one of the most common cancers worldwide, requiring effective therapeutic interventions. Retinoids are important chemopreventive and therapeutic agents for a variety of human cancers including CSCC. In this study we synthesized a novel retinoic derivative N-(4-ethoxycarbonylphenyl) isoretinamide (ECPIRM) and evaluated its biological activities and possible mechanisms in human cutaneous squamous cell lines. ECPIRM had better inhibitory effect on the proliferation of squamous carcinoma cells SCL-1 and colo-16, compared with All-trans retinoic acid and 13-cis retinoic acid. ECPIRM had less toxicity to normal keratinocyte cell line HaCaT. Mechanistically, ECPIRM induced G1 cell cycle arrest in SCL-1 cells, via the downregulation of CDK2, CDK4, cycling D1 and cyclin E expression and upregulation of p21. In addition, these effects were at least partially due to the inhibition of JNK/ ERK-AP-1 signaling pathway by ECPIRM. Importantly, these effects of ECPIRM are independent of the classical retinoid receptor pathway, suggesting that the novel compound will have less side-effects in chemotherapy. These findings demonstrate that ECPIRM is a potential inhibitor of MPAK-AP-1 pathway, and is a potential therapeutic agent against CSCC. PMID:25991427

  16. Dropwort (Filipendula hexapetala Gilib.): potential role as antioxidant and antimicrobial agent

    PubMed Central

    Katanic, Jelena; Mihailovic, Vladimir; Stankovic, Nevena; Boroja, Tatjana; Mladenovic, Milan; Solujic, Slavica; Stankovic, Milan S.; Vrvic, Miroslav M.

    2015-01-01

    The aim of this study was to investigate the antioxidant activity of the methanolic extracts of Filipendula hexapetala Gilib. aerial parts (FHA) and roots (FHR) and their potential in different model systems, as well as antimicrobial activity. According to this, a number of assays were employed to evaluate the antioxidant and antimicrobial potential of F. hexapetala extracts. In addition, the antioxidant activity assays in different model systems were carried out, as well as pH, thermal and gastrointestinal stability studies. The phenolic compounds contents in FHA and FHR were also determined. The results showed that F. hexapetala extracts had considerable antioxidant activity in vitro and a great stability in different conditions. The extracts exhibited antimicrobial activity against most of the tested bacterial and fungal species. Also, the extracts contain high level of phenolic compounds, especially aerial parts extract. PMID:26417349

  17. Mycophenolic Acid and Its Derivatives as Potential Chemotherapeutic Agents Targeting Inosine Monophosphate Dehydrogenase in Trypanosoma congolense.

    PubMed

    Suganuma, Keisuke; Sarwono, Albertus Eka Yudistira; Mitsuhashi, Shinya; Jąkalski, Marcin; Okada, Tadashi; Nthatisi, Molefe; Yamagishi, Junya; Ubukata, Makoto; Inoue, Noboru

    2016-07-01

    This study aimed to evaluate the trypanocidal activity of mycophenolic acid (MPA) and its derivatives for Trypanosoma congolense The proliferation of T. congolense was completely inhibited by adding <1 μM MPA and its derivatives. In addition, the IMP dehydrogenase in T. congolense was molecularly characterized as the target of these compounds. The results suggest that MPA and its derivatives have the potential to be new candidates as novel trypanocidal drugs. PMID:27139487

  18. Marine macro- and microalgae as potential agents for the prevention of asthma: hyperresponsiveness and inflammatory subjects.

    PubMed

    Senevirathne, Mahinda; Kim, Se-Kwon

    2011-01-01

    Asthma is a variable disease and various factors are affected to increase the asthmatic symptoms and level of asthma control. It is believed that the cause for this disease is a combination of genetic and environmental factors. Numerous medications are available at present to treat this disease but it has been failed to control number of incidences successfully. Hence, recently many researchers have paid their interest to identify potential drugs from marine-based resources such as marine algae. In vitro and in vivo experiments have been conducted with extracts or compounds from algae and found that they showed significant activities against asthma. Accordingly, many marine macro- and microalgae have been reported to have potential to ameliorate the effect of asthma. However, detailed studies are needed in relation to identify the molecular mechanism of this disease to apply those marine resources against asthma effectively. In this chapter, an attempt has been taken to discuss the potential antiasthmatic activity of marine macro- and microalgae. PMID:22054955

  19. Sugar-borate esters--potential chemical agents in prostate cancer chemoprevention.

    PubMed

    Scorei, Romulus Ion; Popa, Radu

    2013-07-01

    The potential value of sugar-borate esters (SBEs) in the chemo-preventive therapy of prostate cancer has been reviewed. We propose that SBEs act as boron (B) vehicles, increasing the concentration of borate inside cancer cells relative to normal cells. Increased intracellular concentration of borate activates borate transporters, but also leads to growth inhibition and apoptosis. The effects of SBEs on normal cells are less dramatic because SBEs are naturally-occurring biochemicals, common and abundant in some fruits and vegetables, and also because borate dissociated from SBEs in natural diet doses is easily exported from normal cells. Cancer cell lines that over-express sugar transporters or under-express borate export are potential targets for SBE-based therapy. With regard to efficiency against cancer cells and drug preparation requirements, trigonal cis-diol boric monoesters will be one of the most effective class of SBEs. Because negative correlation exists between borate intake and the incidence of prostate cancer, and because most cancer cells overexpress sugar transporters, SBEs are proposed as a potential chemopreventive avenue in the fight against primary and recurrent prostate cancer. PMID:23293883

  20. Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning

    SciTech Connect

    Auerbach, Scott S.; Shah, Ruchir R.; Mav, Deepak; Smith, Cynthia S.; Walker, Nigel J.; Vallant, Molly K.; Boorman, Gary A.; Irwin, Richard D.

    2010-03-15

    Identification of carcinogenic activity is the primary goal of the 2-year bioassay. The expense of these studies limits the number of chemicals that can be studied and therefore chemicals need to be prioritized based on a variety of parameters. We have developed an ensemble of support vector machine classification models based on male F344 rat liver gene expression following 2, 14 or 90 days of exposure to a collection of hepatocarcinogens (aflatoxin B1, 1-amino-2,4-dibromoanthraquinone, N-nitrosodimethylamine, methyleugenol) and non-hepatocarcinogens (acetaminophen, ascorbic acid, tryptophan). Seven models were generated based on individual exposure durations (2, 14 or 90 days) or a combination of exposures (2 + 14, 2 + 90, 14 + 90 and 2 + 14 + 90 days). All sets of data, with the exception of one yielded models with 0% cross-validation error. Independent validation of the models was performed using expression data from the liver of rats exposed at 2 dose levels to a collection of alkenylbenzene flavoring agents. Depending on the model used and the exposure duration of the test data, independent validation error rates ranged from 47% to 10%. The variable with the most notable effect on independent validation accuracy was exposure duration of the alkenylbenzene test data. All models generally exhibited improved performance as the exposure duration of the alkenylbenzene data increased. The models differentiated between hepatocarcinogenic (estragole and safrole) and non-hepatocarcinogenic (anethole, eugenol and isoeugenol) alkenylbenzenes previously studied in a carcinogenicity bioassay. In the case of safrole the models correctly differentiated between carcinogenic and non-carcinogenic dose levels. The models predict that two alkenylbenzenes not previously assessed in a carcinogenicity bioassay, myristicin and isosafrole, would be weakly hepatocarcinogenic if studied at a dose level of 2 mmol/kg bw/day for 2 years in male F344 rats; therefore suggesting that these

  1. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents.

    PubMed

    Preti, Delia; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-07-01

    Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD. PMID:25821194

  2. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review.

    PubMed

    Owusu-Ansah, Amma; Choi, Sung Hee; Petrosiute, Agne; Letterio, John J; Huang, Alex Yee-Chen

    2015-03-01

    Sickle cell disease (SCD) is an inherited disorder of hemoglobin in which the abnormal hemoglobin S polymerizes when deoxygenated. This polymerization of hemoglobin S not only results in hemolysis and vasoocclusion but also precipitates inflammation, oxidative stress and chronic organ dysfunction. Oxidative stress is increasingly recognized as an important intermediate in these pathophysiological processes and is therefore an important target for therapeutic intervention. The transcription factor nuclear erythroid derived-2 related factor 2 (Nrf2) controls the expression of anti-oxidant enzymes and is emerging as a protein whose function can be exploited with therapeutic intent. This review article is focused on triterpenoids that activate Nrf2, and their potential for reducing oxidative stress in SCD as an approach to prevent organ dysfunction associated with this disease. A brief overview of oxidative stress in the clinical context of SCD is accompanied by a discussion of several pathophysiological mechanisms contributing to oxidative stress. Finally, these mechanisms are then related to current management strategies in SCD that are either utilized currently or under evaluation. The article concludes with a perspective on the potential of the various therapeutic interventions to reduce oxidative stress and morbidity associated with SCD. PMID:25511620

  3. Wheat enolase demonstrates potential as a non-toxic cryopreservation agent for liver and pancreatic cells.

    PubMed

    Grondin, Mélanie; Chow-Shi-Yée, Mélanie; Ouellet, François; Averill-Bates, Diana A

    2015-05-01

    Cryopreservation is essential for long-term storage of cells and tissues, which can be used for clinical applications such as drug toxicity testing, human transplantation, reproductive, regenerative and transfusion medicine. It requires use of cryoprotectants (e.g. dimethyl disulfoxide (DMSO), glycerol) that protect cells and tissues from dehydration and damage caused by formation of intracellular ice during freezing. As an alternative to these cytotoxic cryoprotectants, we are developing new technology using natural substances produced by plants that survive freezing conditions. We previously showed that soluble protein extracts such as wheat protein extract (WPE) prepared from winter wheat plants can substitute for DMSO as a cryoprotectant for certain mammalian cell types. To identify novel cryoactive proteins, WPE was separated using different chromatographic procedures and cryoactive fractions were analyzed by mass spectrometry. The analysis revealed enolase as a potential wheat protein candidate. A recombinant enolase protein was prepared and was able to successfully cryopreserve rat hepatocytes and insulin-secreting INS832/13 pancreatic cells. Post-thaw cells had high viability and levels of metabolic activities. Cryopreserved cells were plateable and had good adherence and morphological properties. These results indicate that individual plant proteins such as enolase have promising potential as new, non-toxic technology for cryopreservation protocols used for clinical applications. PMID:25740431

  4. Inhibition of endothelial cell functions by novel potential cancer chemopreventive agents.

    PubMed

    Bertl, Elisabeth; Becker, Hans; Eicher, Theophil; Herhaus, Christian; Kapadia, Govind; Bartsch, Helmut; Gerhäuser, Clarissa

    2004-12-01

    Endothelial cells (EC) play a major role in tumor-induced neovascularization and bridge the gap between a microtumor and growth factors such as nutrients and oxygen supply required for expansion. Immortalized human microvascular endothelial cells (HMEC-1) were utilized to assess anti-endothelial effects of 10 novel potential cancer chemopreventive compounds from various sources that we have investigated previously in a human in vitro anti-angiogenic assay. These include the monoacylphloroglucinol isoaspidinol B, 1,2,5,7-tetrahydroxy-anthraquinone, peracetylated carnosic acid (PCA), isoxanthohumol, 2,2',4'-trimethoxychalcone, 3'-bromo-2,4-dimethoxychalcone as well as four synthetic derivatives of lunularic acid, a bibenzyl found in mosses [Int. J. Cancer Prev. 1 (2004) 47]. EC proliferation was inhibited with half-maximal inhibitory concentrations from 0.3 to 49.6muM, whereas EC migration was affected by most compounds at sub-micromolar concentrations. PCA and the bibenzyl derivative EC 1004 potently prevented differentiation of HMEC-1 into tubule-like structures. Overall, our data indicate that inhibition of endothelial cell function contributes to various extents to the chemopreventive or anti-angiogenic potential of these lead compounds. PMID:15522231

  5. Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer.

    PubMed

    Zhou, Qin; Ji, Ming; Zhou, Jie; Jin, Jing; Xue, Nina; Chen, Ju; Xu, Bailing; Chen, Xiaoguang

    2016-05-01

    Poly (ADP-ribose) polymerases (PARPs) facilitate repairing of cancer cell DNA damage as a mean to promote cancer proliferation and metastasis. Inhibitors of PARPs which interfering DNA repair, in context of defects in other DNA repair mechanisms, can thus be potentially exploited to inhibit or even kill cancer cells. However, nondiscriminatory inhibition of PARPs, such as PARP2, may lead to undesired consequences. Here, we demonstrated the design and development of the Zj6413 as a potent and selective PARP1 catalytic inhibitor. It trapped PARP1/2 at damaged sites of DNA. As expected, the Zj6413 showed notable anti-tumor activity against breast cancer gene (BRCA) deficient triple negative breast cancers (TNBCs). Zj6413 treated breast cancers (BCs) showed an elevated level of DNA damage evidenced by the accumulation of γ-H2AX foci and DNA damaged related proteins. Zj6413 also induced G2/M arrest and cell death in the MX-1, MDA-MB-453 BC cells, exerted chemo-sensitizing effect on BRCA proficient cancer cells and potentiated Temozolomide (TMZ)'s cytotoxicity in MX-1 xenograft tumors mice. In conclusion, our study provided evidence that a new PARP inhibitor strongly inhibited the catalytic activity of PARPs, trapped them on nicked DNA and damaged the cancer cells, eventually inhibiting the growth of breast tumor cells in vitro and in vivo. PMID:26920250

  6. New antibacterial agents: Hybrid bioisoster derivatives as potential E. coli FabH inhibitors.

    PubMed

    Segretti, Natanael D; Serafim, Ricardo A M; Segretti, Mariana C F; Miyata, Marcelo; Coelho, Fernando R; Augusto, Ohara; Ferreira, Elizabeth I

    2016-08-15

    The development of resistance to antibiotics by microorganisms is a major problem for the treatment of bacterial infections worldwide, and therefore, it is imperative to study new scaffolds that are potentially useful in the development of new antibiotics. In this regard, we propose the design, synthesis and biological evaluation of hybrid sulfonylhydrazone bioisosters/furoxans with potential antibacterial (Escherichia coli) activity. The most active compound of the series, (E)-3-methyl-4-((2-tosylhydrazono)methyl)-1,2,5-oxadiazole 2-oxide, with a MIC=0.36μM, was not cytotoxic when tested on Vero cells (IC50>100μM). To complement the in vitro screening, we also studied the interaction of the test compounds with β-ketoacyl acyl carrier protein synthase (FabH), the target for the parent compounds, and we observed three important hydrogen-bonding interactions with two important active site residues in the catalytic site of the enzyme, providing complementary evidence to support the target of the new hybrid molecules. PMID:27426865

  7. Redox-active compounds with a history of human use: antistaphylococcal action and potential for repurposing as topical antibiofilm agents

    PubMed Central

    Ooi, N.; Eady, E. A.; Cove, J. H.; O'Neill, A. J.

    2015-01-01

    Objectives To investigate the antistaphylococcal/antibiofilm activity and mode of action (MOA) of a panel of redox-active (RA) compounds with a history of human use and to provide a preliminary preclinical assessment of their potential for topical treatment of staphylococcal infections, including those involving a biofilm component. Methods Antistaphylococcal activity was evaluated by broth microdilution and by time–kill studies with growing and slow- or non-growing cells. The antibiofilm activity of RA compounds, alone and in combination with established antibacterial agents, was assessed using the Calgary Biofilm Device. Established assays were used to examine the membrane-perturbing effects of RA compounds, to measure penetration into biofilms and physical disruption of biofilms and to assess resistance potential. A living skin equivalent model was used to assess the effects of RA compounds on human skin. Results All 15 RA compounds tested displayed antistaphylococcal activity against planktonic cultures (MIC 0.25–128 mg/L) and 7 eradicated staphylococcal biofilms (minimum biofilm eradication concentration 4–256 mg/L). The MOA of all compounds involved perturbation of the bacterial membrane, whilst selected compounds with antibiofilm activity caused destructuring of the biofilm matrix. The two most promising agents [celastrol and nordihydroguaiaretic acid (NDGA)] in respect of antibacterial potency and selective toxicity against bacterial membranes acted synergistically with gentamicin against biofilms, did not damage artificial skin following topical application and exhibited low resistance potential. Conclusions In contrast to established antibacterial drugs, some RA compounds are capable of eradicating staphylococcal biofilms. Of these, celastrol and NDGA represent particularly attractive candidates for development as topical antistaphylococcal biofilm treatments. PMID:25368206

  8. Agent based modeling of the effects of potential treatments over the blood-brain barrier in multiple sclerosis.

    PubMed

    Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2015-12-01

    Multiple sclerosis is a disease of the central nervous system that involves the destruction of the insulating sheath of axons, causing severe disabilities. Since the etiology of the disease is not yet fully understood, the use of novel techniques that may help to understand the disease, to suggest potential therapies and to test the effects of candidate treatments is highly advisable. To this end we developed an agent based model that demonstrated its ability to reproduce the typical oscillatory behavior observed in the most common form of multiple sclerosis, relapsing-remitting multiple sclerosis. The model has then been used to test the potential beneficial effects of vitamin D over the disease. Many scientific studies underlined the importance of the blood-brain barrier and of the mechanisms that influence its permeability on the development of the disease. In the present paper we further extend our previously developed model with a mechanism that mimics the blood-brain barrier behavior. The goal of our work is to suggest the best strategies to follow for developing new potential treatments that intervene in the blood-brain barrier. Results suggest that the best treatments should potentially prevent the opening of the blood-brain barrier, as treatments that help in recovering the blood-brain barrier functionality could be less effective. PMID:26343337

  9. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection

    PubMed Central

    Swaminathan, Sanjay; Dai, Lue; Lane, H. Clifford; Imamichi, Tomozumi

    2013-01-01

    Interleukin 27 (IL-27) is an immunomodulatory cytokine with important roles in both the innate and adaptive immune systems. In the last five years, the addition of exogenous IL-27 to primary cell cultures has been demonstrated to decrease HIV-1 replication in a number of cell types including peripheral blood mononuclear cells (PBMCs), CD4+ T cells, macrophages and dendritic cells. These in-vitro findings suggest that IL-27 may have therapeutic value in the setting of HIV-1 infection. In this review, we describe the current knowledge of the biology of IL-27, its effects primarily on HIV-1 replication but also in other viral infections and explore its potential role as a therapeutic cytokine for the treatment of patients with HIV-1 infection. PMID:23962745

  10. Design, synthesis and biological evaluation of C6-modified celastrol derivatives as potential antitumor agents.

    PubMed

    Tang, Kaiyong; Huang, Qingqing; Zeng, Jafeng; Wu, Guangming; Huang, Jinwen; Pan, Junfang; Lu, Wei

    2014-01-01

    New six C6-celastrol derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activities against nine human cancer cell lines (BGC-823, H4, Bel7402, H522, Colo 205, HepG2 and MDA-MB-468). The results showed that most of the compounds displayed potent inhibition against BGC823, H4, and Bel7402, with IC50s of 1.84-0.39 μM. The best compound NST001A was tested in an in vivo antitumor assay on nude mice bearing Colo 205 xenografts, and showed significant inhibition of tumor growth at low concentrations. Therefore, celastrol C-6 derivatives are potential drug candidates for treating cancer. PMID:25025148

  11. Synthesis and Cytotoxic Evaluation of Monocarbonyl Analogs of Curcumin as Potential Anti‐Tumor Agents

    PubMed Central

    Pan, Zheer; Chen, Chengwei; Zhou, Yeli; Xu, Feng

    2016-01-01

    Abstract Preclinical Research A series of mono‐carbonyl curcumin analogs with different substituents at the 4/4’‐position of the phenyl group were synthesized and screened for in vitro cytotoxicity against a panel of human cancer cell lines using a methyl thiazolyl tetrazolium assay. Several of the curcumin analogs, especially B114, exhibited a wide‐spectrum of anti‐tumor properties in all tested cell lines, indicating their potential in as anti‐cancer lead compounds. Further toxicity testing in the NRK‐52E kidney cell line revealed that the analogs A111, A113, and B114 had comparable or higher safety than curcumin. These data suggested that the introduction of appropriate substituents in the 4/4’‐positions could be a promising approach for curcumin‐based drug design. Drug Dev Res 77 : 43–49, 2016. © 2016 Wiley Periodicals, Inc. PMID:26846154

  12. X-ray photoelectron spectroscopy of potential technetium-based organ imaging agents

    SciTech Connect

    Thompson, M.; Nunn, A.D.; Treher, E.N.

    1986-12-01

    Technetium-99 3d binding energies were measured for a set of 12 compounds which included model species and several potential radiopharmaceuticals. The range of compounds from the free metal to the technetium(VII) valence state gave a span of 4.9 eV. Anionic and coordinated halogen was distinguished in the chlorine 2p and bromine 3d spectra of a number of phosphine complexes. Similar spectra of two dioxime complexes indicated significantly more electron density on the halogen than is the case for a coordinated species. The result is indicative of weakening of the metal-chlorine bond. Analogous spectra were obtained when bromine was substituted for chlorine. The boron 1s binding energy for boronic acid present in the dioxime complexes was in agreement with the proposed oxygen population on the boron atom.

  13. Livestock as a potential biological control agent for an invasive wetland plant

    PubMed Central

    Mozdzer, Thomas; Angelini, Christine; Brundage, Jennifer E.; Esselink, Peter; Bakker, Jan P.; Gedan, Keryn B.; van de Koppel, Johan; Baldwin, Andrew H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6,000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species. PMID:25276502

  14. Cyclin-dependent kinases inhibitors as potential anticancer, antineurodegenerative, antiviral and antiparasitic agents.

    PubMed

    Meijer, Laurent

    2000-04-01

    Cyclin-dependent kinases (CDKs) play a key role in the cell division cycle, in neuronal functions, in transcription and in apoptosis. Intensive screening with these kinases as targets has lead to the identification of highly selective and potent small - molecule inhibitors. Co-crystallization with CDK2 shows that these flat heterocyclic hydrophobic compounds bind through two or three hydrogen bonds with the side chains of two amino acids located in the ATP-binding pocket of the kinase. These inhibitors are anti-proliferative; they arrest cells in G1 and in G2/M phase. Furthermore they facilitate or even trigger apoptosis in proliferating cells while they protect neuronal cells and thymocytes from apoptosis. The potential use of these inhibitors is being extensively evaluated for cancer chemotherapy and also in other therapeutic areas: neurology (Alzheimer's disease), cardiovascular (restenosis, angiogenesis), nephrology (glomerulonephritis), parasitology (Plasmodium, Trypanosoma, Toxoplasma, etc.) and virology (cytomegalovirus, HIV, herpes virus). Copyright 2000 Harcourt Publishers Ltd. PMID:11498372

  15. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications.

    PubMed

    Elosta, Abdulhakim; Ghous, Tahseen; Ahmed, Nessar

    2012-03-01

    Diabetes mellitus is characterised by hyperglycaemia, lipidaemia and oxidative stress and predisposes affected individuals to long-term complications afflicting the eyes, skin, kidneys, nerves and blood vessels. Increased protein glycation and the subsequent build-up of tissue advanced glycation endproducts (AGEs) contribute towards the pathogenesis of diabetic complications. Protein glycation is accompanied by generation of free radicals through autoxidation of glucose and glycated proteins and via interaction of AGEs with their cell surface receptors (referred to as RAGE). Glycationderived free radicals can damage proteins, lipids and nucleic acids and contribute towards oxidative stress in diabetes. There is interest in compounds with anti-glycation activity as they may offer therapeutic potential in delaying or preventing the onset of diabetic complications. Although many different compounds are under study, only a few have successfully entered clinical trials but none have yet been approved for clinical use. Whilst the search for new synthetic inhibitors of glycation continues, little attention has been paid to anti-glycation compounds from natural sources. In the last few decades the traditional system of medicine has become a topic of global interest. Various studies have indicated that dietary supplementation with combined anti-glycation and antioxidant nutrients may be a safe and simple complement to traditional therapies targeting diabetic complications. Data for forty two plants/constituents studied for anti-glycation activity is presented in this review and some commonly used medicinal plants that possess anti-glycation activity are discussed in detail including their active ingredients, mechanism of action and therapeutic potential. PMID:22268395

  16. Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy.

    PubMed

    Clement, Omoshile O; Freeman, Clive M; Hartmann, Rolf W; Handratta, Venkatesh D; Vasaitis, Tadas S; Brodie, Angela M H; Njar, Vincent C O

    2003-06-01

    We report here a molecular modeling investigation of steroidal and nonsteroidal inhibitors of human cytochrome P450 17alpha-hydroxylase-17,20-lyase (CYP17). Using the pharmacophore perception technique, we have generated common-feature pharmacophore model(s) to explain the putative binding requirements for two classes of human CYP17 inhibitors. Common chemical features in the steroid and nonsteroid human CYP17 enzyme inhibitors, as deduced by the Catalyst/HipHop program, are one to two hydrogen bond acceptors (HBAs) and three hydrophobic groups. For azole-steroidal ligands, the 3beta-OH group of ring A and the N-3 of the azole ring attached to ring D at C-17 act as hydrogen bond acceptors. A model that permits hydrogen bond interaction between the azole functionality on ring D and the enzyme is consistent with experimental deductions for type II CYP17 inhibitors where a sixth ligating atom interacts with Fe(II) of heme. In general, pharmacophore models derived for steroid and nonsteroidal compounds bear striking similarities to all azole sites mapping the HBA functionality and to three hydrophobic features describing the hydrophobic interactions between the ligands and the enzyme. Using the pharmacophore model derived for azole-steroidal inhibitors as a 3D search query against several 3D multiconformational Catalyst formatted databases, we identified several steroidal compounds with potential inhibition of this enzyme. Biological testing of some of these compounds show low to high inhibitory potency against the human CYP17 enzyme. This shows the potential of our pharmacophore model in identifying new and potent CYP17 inhibitors. Further refinement of the model is in progress with a view to identifying and optimizing new leads. PMID:12773039

  17. A Review of Potential Harmful Interactions between Anticoagulant/Antiplatelet Agents and Chinese Herbal Medicines

    PubMed Central

    Tsai, Hsin-Hui; Lin, Hsiang-Wen; Lu, Ying-Hung; Chen, Yi-Ling; Mahady, Gail B.

    2013-01-01

    Background The risks attributed to drug-herb interactions, even when known, are often ignored or underestimated, especially for those involving anti-clotting drugs and Chinese medicines. The aim of this study was to structurally search and evaluate the existing evidence-based data associated with potential drug interactions between anticoagulant/antiplatelet drugs and Chinese herbal medicines (CHMs) and evaluate the documented mechanisms, consequences, and/or severity of interactions. Methodology and Findings Information related to anticoagulant/antiplatelet drug-CHM interactions was retrieved from eight interaction-based textbooks, four web resources and available primary biomedical literature. The primary literature searches were conducted in English and/or Chinese from January 2000 through December 2011 using the secondary databases (e.g., PubMed, Airiti Library, China Journal full-text database). The search terms included the corresponding medical subject headings and key words. Herbs or natural products not used as a single entity CHM or in Chinese Medicinal Prescriptions were excluded from further review. The corresponding mechanisms and severity ratings of interactions were retrieved using MicroMedex®, Lexicomp® and Natural Medicines Comprehensive Database®. Finally, we found 90 single entity CHMs contributed to 306 documented drug-CHM interactions. A total of 194 (63.4%) interactions were verified for its evidence describing possible mechanisms and severity. Of them, 155 interactions (79.9%) were attributable to pharmacodynamic interactions, and almost all were rated as moderate to severe interactions. The major consequences of these interactions were increased bleeding risks due to the additive anticoagulant or antiplatelet effects of the CHMs, specifically danshen, dong quai, ginger, ginkgo, licorice, and turmeric. Conclusions/Significance Conventional anticoagulants and antiplatelet drugs were documented to have harmful interactions with some commonly

  18. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents.

    PubMed

    Rashid, Umer; Sultana, Riffat; Shaheen, Nargis; Hassan, Syed Fahad; Yaqoob, Farhana; Ahmad, Muhammad Jawad; Iftikhar, Fatima; Sultana, Nighat; Asghar, Saba; Yasinzai, Masoom; Ansari, Farzana Latif; Qureshi, Naveeda Akhter

    2016-06-10

    In an attempt to explore novel and more potent antileishmanial compounds to diversify the current inhibitors, we pursued a medicinal chemistry-driven strategy to synthesize novel scaffolds with common pharmacophoric features of dihydropyrimidine and chalcone as current investigational antileishmanial compounds. Based on the reported X-ray structure of Pteridine reductase 1 (PTR1) from Leishmania major, we have designed a number of dihydropyrimidine-based derivatives to make specific interactions in PTR1 active site. Our lead compound 8i has shown potent in vitro antileishmanial activity against promastigotes of L. Major and Leishmania donovani with IC50 value of 0.47 μg/ml and 1.5 μg/ml respectively. The excellent in vitro activity conclusively revealed that our lead compound is efficient enough to eradicate both visceral and topical leishmaniasis. In addition, docking analysis and in silico ADMET predictions were also carried out. Predicted molecular properties supported our experimental analysis that these compounds have potential to eradicate both visceral and topical leishmaniasis. PMID:27017551

  19. Optimization of a Novel Series of Ataxia-Telangiectasia Mutated Kinase Inhibitors as Potential Radiosensitizing Agents.

    PubMed

    Min, Jaeki; Guo, Kexiao; Suryadevara, Praveen K; Zhu, Fangyi; Holbrook, Gloria; Chen, Yizhe; Feau, Clementine; Young, Brandon M; Lemoff, Andrew; Connelly, Michele C; Kastan, Michael B; Guy, R Kiplin

    2016-01-28

    We previously reported a novel inhibitor of the ataxia-telangiectasia mutated (ATM) kinase, which is a target for novel radiosensitizing drugs. While our initial lead, compound 4, was relatively potent and nontoxic, it exhibited poor stability to oxidative metabolism and relatively poor selectivity against other kinases. The current study focused on balancing potency and selectivity with metabolic stability through structural modification to the metabolized site on the quinazoline core. We performed extensive structure-activity and structure-property relationship studies on this quinazoline ATM kinase inhibitor in order to identify structural variants with enhanced selectivity and metabolic stability. We show that, while the C-7-methoxy group is essential for potency, replacing the C-6-methoxy group considerably improves metabolic stability without affecting potency. Promising analogues 20, 27g, and 27n were selected based on in vitro pharmacology and evaluated in murine pharmacokinetic and tolerability studies. Compound 27g possessed significantly improve pharmacokinetics relative to that of 4. Compound 27g was also significantly more selective against other kinases than 4. Therefore, 27g is a good candidate for further development as a potential radiosensitizer. PMID:26632965

  20. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent

    PubMed Central

    Baradaran, Ali; Yusoff, Khatijah; Shafee, Norazizah; Rahim, Raha Abdul

    2016-01-01

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells. PMID:26918060

  1. Synthesis and Evaluation of Novel Triterpene Analogues of Ursolic Acid as Potential Antidiabetic Agent

    PubMed Central

    Wu, Panpan; Zheng, Jie; Huang, Tianming; Li, Dianmeng; Hu, Qingqing; Cheng, Anming; Jiang, Zhengyun; Jiao, Luoying; Zhao, Suqing; Zhang, Kun

    2015-01-01

    Ursolic acid (UA) is a naturally bioactive compound that possesses potential anti-diabetic activity. The relatively safe and effective molecule intrigued us to further explore and to improve its anti-diabetic activity. In the present study, a series of novel UA analogues was synthesized and their structures were characterized. Their bioactivities against the α-glucosidase from baker's yeast were determined in vitro. The results suggested that most of the analogues exhibited significant inhibitory activity, especially analogues 8b and 9b with the IC50 values of 1.27 ± 0.27 μM (8b) and 1.28 ± 0.27 μM (9b), which were lower than the other analogues and the positive control. The molecular docking and 2D-QSAR studies were carried out to prove that the C-3 hydroxyl could interact with the hydrophobic region of the active pocket and form hydrogen bonds to increase the binding affinity of ligand and the homology modelling protein. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from UA analogues. PMID:26406581

  2. Benzylpiperidine-Linked Diarylthiazoles as Potential Anti-Alzheimer's Agents: Synthesis and Biological Evaluation.

    PubMed

    Shidore, Mahesh; Machhi, Jatin; Shingala, Kaushik; Murumkar, Prashant; Sharma, Mayank Kumar; Agrawal, Neetesh; Tripathi, Ashutosh; Parikh, Zalak; Pillai, Prakash; Yadav, Mange Ram

    2016-06-23

    A novel series of hybrid molecules were designed and synthesized by fusing the pharmacophoric features of cholinesterase inhibitor donepezil and diarylthiazole as potential multitarget-directed ligands for the treatment of Alzheimer's disease (AD). The compounds showed significant in vitro anticholinesterase (anti-ChE) activity, the most potent compound (44) among them showing the highest activity (IC50 value of 0.30 ± 0.01 μM) for AChE and (1.84 ± 0.03 μM) for BuChE. Compound 44 showed mixed inhibition of AChE in the enzyme kinetic studies. Some compounds exhibited moderate to high inhibition of AChE-induced Aβ1-42 aggregation and noticeable in vitro antioxidant and antiapoptotic properties. Compound 44 showed significant in vivo anti-ChE and antioxidant activities. Furthermore, compound 44 demonstrated in vivo neuroprotection by decreasing Aβ1-42-induced toxicity by attenuating abnormal levels of Aβ1-42, p-Tau, cleaved caspase-3, and cleaved PARP proteins. Compound 44 exhibited good oral absorption and was well tolerated up to 2000 mg/kg, po, dose without showing toxic effects. PMID:27253679

  3. Radioiodinated aza-diphenylacetylenes as potential SPECT imaging agents for β-amyloid plaque detection

    PubMed Central

    Qu, Wenchao; Kung, Mei-Ping; Hou, Catherine; Jin, Lee-Way; Kung, Hank F.

    2007-01-01

    Two new iodinated fluoro- and hydroxy-pegylated aza-diphenylacetylene derivatives, 1 and 2, targeting β-amyloid (Aβ) plaques have been successfully prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [125I]IMPY (6-iodo-2-(4′-dimethylamino-)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (Ki = 9.2 and 16.8 nM for 1 and 2, respectively). Brain penetrations of the corresponding radioiodinated ligands, evaluated in the normal mice, showed good initial brain penetrations (3.55 and 5.67% ID/g for [125I]1 and [125I]2 at 2 min post-injection). The washout from normal mice brain was relatively fast (0.33 and 0.91% ID/g at 2 hr post-injection). The specific binding of these radioiodinated ligands to β-amyloid plaques was clearly demonstrated using film autoradiography of AD brain sections. Taken together, these preliminary results strongly suggest that these novel iodinated aza-diphenylacetylenes may be potentially useful for imaging Aβ plaques in the living human brain. PMID:17502139

  4. Recombinant l-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent.

    PubMed

    Babich, Olga O; Pokrovsky, Vadim S; Anisimova, Natalia Yu; Sokolov, Nikolai N; Prosekov, Alexander Yu

    2013-01-01

    The recombinant producer strain expressing Rhodosporidium toruloides l-phenylalanine ammonia lyase (PAL) has been obtained, and a purification procedure of PAL has been developed. The purified enzyme, PAL, has the following biochemical and catalytic characteristics: Km for l-Phe of 0.49 mM, pH optimum at 8.5, and temperature optimum at 50°C. PAL exhibited a significant cytotoxic effect toward the following cell lines: MCF7 (IC50 = 1.97 U/mL), DU145 (IC50 = 7.3 U/mL), which are comparable with E. coli l-asparaginase type-II cytotoxicity in vitro. Administration of PAL (200-400 U/kg) to L5178y-bearing mice for five times (a total dose of 1000-2000 U/kg) was well tolerated and showed the increase of life span (ILS) = 12-16%, P < 0.05. Data obtained suggest that PAL from R. toruloides has a potential for cancer treatment. PMID:23718781

  5. Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia.

    PubMed

    Yuan, Yun; Fang, Ming; Wu, Chun-Yun; Ling, Eng-Ang

    2016-09-01

    The cerebral ischemia is one of the most common diseases in the central nervous system that causes progressive disability or even death. In this connection, the inflammatory response mediated by the activated microglia is believed to play a central role in this pathogenesis. In the event of brain injury, activated microglia can clear the cellular debris and invading pathogens, release neurotrophic factors, etc., but in chronic activation microglia may cause neuronal death through the release of excessive inflammatory mediators. Therefore, suppression of microglial over-reaction and microglia-mediated neuroinflammation is deemed to be a therapeutic strategy of choice for cerebral ischemic damage. In the search for potential herbal extracts that are endowed with the property in suppressing the microglial activation and amelioration of neuroinflammation, attention has recently been drawn to scutellarin, a Chinese herbal extract. Here, we review the roles of activated microglia and the effects of scutellarin on activated microglia in pathological conditions especially in ischemic stroke. We have further extended the investigation with special reference to the effects of scutellarin on Notch signaling, one of the several signaling pathways known to be involved in microglial activation. Furthermore, in light of our recent experimental evidence that activated microglia can regulate astrogliosis, an interglial "cross-talk" that was amplified by scutellarin, it is suggested that in designing of a more effective therapeutic strategy for clinical management of cerebral ischemia both glial types should be considered collectively. PMID:27103430

  6. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease

    PubMed Central

    Barreto, George E.; Iarkov, Alexander; Moran, Valentina Echeverria

    2015-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which is characterized by neuroinflammation, dopaminergic neuronal cell death and motor dysfunction, and for which there are no proven effective treatments. The negative correlation between tobacco consumption and PD suggests that tobacco-derived compounds can be beneficial against PD. Nicotine, the more studied alkaloid derived from tobacco, is considered to be responsible for the beneficial behavioral and neurological effects of tobacco use in PD. However, several metabolites of nicotine, such as cotinine, also increase in the brain after nicotine administration. The effect of nicotine and some of its derivatives on dopaminergic neurons viability, neuroinflammation, and motor and memory functions, have been investigated using cellular and rodent models of PD. Current evidence shows that nicotine, and some of its derivatives diminish oxidative stress and neuroinflammation in the brain and improve synaptic plasticity and neuronal survival of dopaminergic neurons. In vivo these effects resulted in improvements in mood, motor skills and memory in subjects suffering from PD pathology. In this review, we discuss the potential benefits of nicotine and its derivatives for treating PD. PMID:25620929

  7. Phenylpropiophenone derivatives as potential anticancer agents: synthesis, biological evaluation and quantitative structure-activity relationship study.

    PubMed

    Ivković, Branka M; Nikolic, Katarina; Ilić, Bojana B; Žižak, Željko S; Novaković, Radmila B; Čudina, Olivera A; Vladimirov, Sote M

    2013-05-01

    Series of twelve chalcone and propafenone derivatives has been synthesized and evaluated for anticancer activities against HeLa, Fem-X, PC-3, MCF-7, LS174 and K562 cell lines. The 2D-QSAR and 3D-QSAR studies were performed for all compounds with cytotoxic activities against each cancer cell line. Partial least squares (PLS) regression has been applied for selection of the most relevant molecular descriptors and QSAR models building. Predictive potentials of the created 2D-QSAR and 3D-QSAR models for each cell line were compared, by use of leave-one-out cross-validation and external validation, and optimal QSAR models for each cancer cell line were selected. The QSAR studies have selected the most significant molecular descriptors and pharmacophores of the chalcone and propafenone derivatives and proposed structures of novel chalcone and propafenone derivatives with enhanced anticancer activity on the HeLa, Fem-X, PC-3, MCF-7, LS174 and K562 cells. PMID:23501110

  8. Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents.

    PubMed

    Alasmary, Fatmah A S; Snelling, Anna M; Zain, Mohammed E; Alafeefy, Ahmed M; Awaad, Amani S; Karodia, Nazira

    2015-01-01

    A library of 53 benzimidazole derivatives, with substituents at positions 1, 2 and 5, were synthesized and screened against a series of reference strains of bacteria and fungi of medical relevance. The SAR analyses of the most promising results showed that the antimicrobial activity of the compounds depended on the substituents attached to the bicyclic heterocycle. In particular, some compounds displayed antibacterial activity against two methicillin-resistant Staphylococcus aureus (MRSA) strains with minimum inhibitory concentrations (MICs) comparable to the widely-used drug ciprofloxacin. The compounds have some common features; three possess 5-halo substituents; two are derivatives of (S)-2-ethanaminebenzimidazole; and the others are derivatives of one 2-(chloromethyl)-1H-benzo[d]imidazole and (1H-benzo[d]imidazol-2-yl)methanethiol. The results from the antifungal screening were also very interesting: 23 compounds exhibited potent fungicidal activity against the selected fungal strains. They displayed equivalent or greater potency in their MIC values than amphotericin B. The 5-halobenzimidazole derivatives could be considered promising broad-spectrum antimicrobial candidates that deserve further study for potential therapeutic applications. PMID:26307956

  9. Exploring a natural MDR reversal agent: potential of medicinal food supplement Nerium oleander leaf distillate

    PubMed Central

    Kars, Meltem Demirel; Gündüz, Ufuk; Üney, Kamil; Baş, Ahmet Levent

    2013-01-01

    Objective To investigate the molecular effects of Nerium oleander leaf distillate on paclitaxel and vincristine resistant (MCF-7/Pac and MCF-7/Vinc) cells and sensitive (MCF-7/S) cell lines. Methods Nerium oleander (N. oleander) leaf extract was obtained by hydrodistillation method. The toxicological effects of N. oleander distillate, previously suggested as medicinal food supplement, on drug resistant cells were evaluated by XTT tests. MDR modulation potential of the plant material was evaluated by flow cytometry and fluorescent microscopy. Paclitaxel and vincristine were applied to the sublines in combination with N. oleander distillate. Results Fractional inhibitory indices show that N. oleander distillate did not increase the antiproliferative effects of anticancer drugs. N. oleander treatment in to MCF-7/Pac and MCF-7/Vinc did not inhibit P-gp activity and MDR1 gene expression level. Conclusions As a result it may be suggested that although N. oleander distillate has some medicinal effects as food supplement it may not be suitable as an MDR modulator for drug resistant breast cancer cells. PMID:23905023

  10. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders.

    PubMed

    Bahia, Malkeet Singh; Kaur, Maninder; Silakari, Pragati; Silakari, Om

    2015-06-01

    The various cells of innate immune system quickly counter-attack invading pathogens, and mount up "first line" defense through their trans-membrane receptors including Toll-like receptors (TLRs) and interleukin receptors (IL-Rs) that result in the secretion of pro-inflammatory cytokines. Albeit such inflammatory responses are beneficial in pathological conditions, their overstimulation may cause severe inflammatory damage; thus, make this defense system a "double edged sword". IRAK-4 has been evaluated as an indispensable element of IL-Rs and TLR pathways that can regulate the abnormal levels of cytokines, and therefore could be employed to manage immune- and inflammation-related disorders. Historically, the identification of selective and potent inhibitors has been challenging; thus, a limited number of small molecule IRAK-4 inhibitors are available in literature. Recently, IRAK-4 achieved great attention, when Ligand® pharmaceutical and Nimbus Discovery® reported the beneficial potentials of IRAK-4 inhibitors in the pre-clinical evaluation for various inflammatory- and immune-related disorders, but not limited to, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, gout, asthma and cancer. PMID:25728511

  11. Synthesis and Evaluation of Novel Triterpene Analogues of Ursolic Acid as Potential Antidiabetic Agent.

    PubMed

    Wu, Panpan; Zheng, Jie; Huang, Tianming; Li, Dianmeng; Hu, Qingqing; Cheng, Anming; Jiang, Zhengyun; Jiao, Luoying; Zhao, Suqing; Zhang, Kun

    2015-01-01

    Ursolic acid (UA) is a naturally bioactive compound that possesses potential anti-diabetic activity. The relatively safe and effective molecule intrigued us to further explore and to improve its anti-diabetic activity. In the present study, a series of novel UA analogues was synthesized and their structures were characterized. Their bioactivities against the α-glucosidase from baker's yeast were determined in vitro. The results suggested that most of the analogues exhibited significant inhibitory activity, especially analogues 8b and 9b with the IC50 values of 1.27 ± 0.27 μM (8b) and 1.28 ± 0.27 μM (9b), which were lower than the other analogues and the positive control. The molecular docking and 2D-QSAR studies were carried out to prove that the C-3 hydroxyl could interact with the hydrophobic region of the active pocket and form hydrogen bonds to increase the binding affinity of ligand and the homology modelling protein. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from UA analogues. PMID:26406581

  12. Brominated and radioiodinated derivatives of methylphenidate (MP): Potential imaging agents for the dopamine (DA) transporter

    SciTech Connect

    Pan, D.; Gatley, S.J.; Dewey, S.L.

    1994-05-01

    MP (Ritalin) is a psychomotor stimulant used in the treatment of attention-deficit hyperactivity disorder. The therapeutic properties of MP are thought to be mediated by its binding to a site on the DA transporter, resulting in inhibition of DA reuptake and enhanced levels of synaptic dopamine. MP also inhibits reuptake of norepinephrine (NE) in vitro. MP has two chiral centers, but its pharmacological activity is believed due solely to the d-threo isomer. We have found that d,l-threo-C-11 MP has favorable properties for PET studies, and therefore examined the effects of incorporating halogen atoms into the phenyl ring of MP, with a view to preparing C-11 and I-123 MP analogs as potential PET/SPECT tracers. We synthesized the 2-, 3- and 4-bromo MP analogs from the corresponding bromophenylacetonitriles by modification of the original synthesis of MP. In in vitro binding assays all three d,l-threo bromo compounds had higher affinities than MP for DA transporter sites labeled with tritiated WIN 35,428 (3->4-, 2->MP). They also showed high activity with NE reuptake sites labeled with tritiated nisoxetine. They were active in vivo as demonstrated by inhibition of heart uptake of tritiated NE in the mouse, and elevation of striatal extracellular DA (microdialysis) and stimulation of locomotor activity in the rat.

  13. Conjugation of Uridine with Oleanolic Acid Derivatives as Potential Antitumor Agents.

    PubMed

    Cheng, Ke-Guang; Su, Chun-Hua; Huang, Jia-Yan; Liu, Jun; Zheng, Yuan-Ting; Chen, Zhen-Feng

    2016-09-01

    According to fused two bioactive moieties together by bonds covalently and available as a new single hybrid entity known as pharmacophore hybridization, a total of 10 targeted uridine-oleanolic acid hybrids were synthesized. Most of these hybrids showed excellent proliferation inhibition against tested Hep-G2, A549, BGC-823, MCF-7, and PC-3 tumor cell lines (IC50 < 8 μm), even with some IC50 values under 0.1 μm. The detection of cytotoxicity selectivity revealed that hybrids 5 and 18 exhibited low cytotoxicity toward normal human liver cell HL-7702. Further studies revealed that selected hybrid 5 could induce apoptosis in Hep-G2 cells through the investigation of acridine orange/ethidium bromide, Hoechst 33258 fluorescence stainings, and annexin V/propidium iodide assay. It was also found that hybrid 5 could induce mitochondrial membrane potential disruption, arrest Hep-G2 cell line at G1 phase, and activate effector caspase-3/9 to trigger cell apoptosis. PMID:26990000

  14. Advancements in Non-steroidal Antiandrogens as Potential Therapeutic Agents for the Treatment of Prostate Cancer.

    PubMed

    Kaur, Paranjeet; Khatik, Gopal L

    2016-01-01

    Prostate cancer (PCa) is a leading cause of death in men worldwide. The main reason for the progression of prostate cancer is identified as over activation of androgen receptor (AR) through androgens. Its development can be diagnosed by monitoring the prostate specific antigen (PSA). Treatment of PCa includes prostatectomy, radiotherapy, and chemotherapy, among them chemotherapy is normally employed in early and advanced prostate cancer. Chemotherapy mainly includes two classes of drugs which are steroidal and non-steroidal antiandrogens. The non-steroidal classes of compounds are preferred over steroidal because they are relatively safe, cost effective and diverse. Non-steroidal drugs are commonly used for the treatment of PCa, however these drugs are associated with serious side effects and acquired resistance. So researchers are working in the direction to develop better analogue which can address the issue related to resistant type of prostate cancer. This review discusses the advancement in the non-steroidal antiandrogens which offers a better potential in the treatment of prostate cancer. PMID:26776222

  15. Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents$

    PubMed Central

    Magesh, Sadagopan; Chen, Yu; Hu, Longqin

    2012-01-01

    Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress and xenobiotic damage. Activation of Nrf2 signaling induces the transcriptional regulation of ARE-dependent expression of various detoxifying and antioxidant defense enzymes and proteins. Keap1-Nrf2-ARE signaling has become an attractive target for the prevention and treatment of oxidative stress-related diseases and conditions including cancer, neurodegenerative, cardiovascular, metabolic and inflammatory diseases. Over the last few decades, numerous Nrf2 inducers have been developed and some of them are currently undergoing clinical trials. Recently, over-activation of Nrf2 has been implicated in cancer progression as well as in drug resistance to cancer chemotherapy. Thus, Nrf2 inhibitors could potentially be used to improve the effectiveness of cancer therapy. Herein, we review the signaling mechanism of Keap1-Nrf2-ARE pathway, its disease relevance, and currently known classes of small molecule modulators. We also discuss several aspects of Keap1-Nrf2 interaction, Nrf2-based peptide inhibitor design, and the screening assays currently used for the discovery of direct inhibitors of Keap1-Nrf2 interaction. PMID:22549716

  16. Synthesis and characterization of novel organocobaloximes as potential catecholase and antimicrobial activity agents.

    PubMed

    Erdem-Tuncmen, Mukadder; Karipcin, Fatma; Sariboga, Bahtiyar

    2013-10-01

    An asymmetric, potentially bidentate dioxime ligand (H₂L) was formed by condensation of 4-biphenylchloroglyoxime and napthyl-1-amine. Two equivalents of H₂L were reacted with CoCl₂  · 6H₂O under appropriate conditions with deprotonation of the dioxime ligand. A series of new organocobaloxime derivatives of the type [CoR(HL)₂Py], [CoRL₂PyB₂F₄], and [CoRL₂Py(Cu(phen))₂] (H₂L = 4-(napthyl-1-amino)biphenylglyoxime; phen = 1,10-phenathroline; R = izopropyl and benzyl; Py = pyridine) were synthesized. The products were characterized by elemental analysis, molar conductance, FT-IR, ¹H NMR, and magnetic susceptibility measurements. Catecholase-like activity properties of all complexes were also studied. All complexes are catalysts for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-1,2-benzoquinone in methanol. Antimicrobial activity studies of H₂L and the six complexes were carried out on standard strains (human pathogenic) of bacteria (Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Bacillus cereus, Enterococcus faecalis, Streptococcus pneumoniae, Listeria monocytogenes, Bacillus subtilis, Escherichia coli, Pseudominas aeruginosa, Salmonella typhi) and the yeast Candida albicans. The compounds showed a significant inhibition of the growth of the Gram-positive bacteria tested. Among the tested microorganisms, S. aureus was the most sensitive strain, especially to H₂L and its complexes. PMID:24003018

  17. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  18. Solid-phase synthesis of libraries of ethynylated aminosteroid derivatives as potential antileukemic agents.

    PubMed

    Talbot, Amélie; Maltais, René; Kenmogne, Lucie Carolle; Roy, Jenny; Poirier, Donald

    2016-03-01

    Steroids possessing an ethynyl group at position 17α (tertiary alcohols) are well known to be more stable than their non-ethynyl analogs (secondary alcohols). To facilitate the development of new drugs with better metabolic stability, we developed a new diethylsilyl acetylenic linker allowing us to rapidly synthesize libraries of ethynylated steroid derivatives using a solid-phase strategy. To illustrate its usefulness, this linker was used to expand the molecular diversity of a lead compound having a hydroxy acetylenic pattern and to potentially find new compounds with interesting cytotoxic activity against leukemia cell lines. Herein, we report the chemical synthesis and the characterization of three libraries of ethynylated aminosteroid derivatives using the diethylacetylenic linker. We discuss their antiproliferative activities obtained in 2 leukemia cell lines (HL-60 and Jurkat), which results provided new structure-activity relationships. We also identified a new promising aminosteroid derivative with an azetidine moiety (compound B1) inhibiting 60% and 75% of HL-60 and Jurkat cell proliferation, respectively, at 1 μM. More generally, these results validate the use of a diethylsilyl acetylenic linker for researchers interested in generating libraries of alcohol derivatives with better stability and drug profile. PMID:26742630

  19. Boric acid: a potential chemoprotective agent against aflatoxin b1 toxicity in human blood

    PubMed Central

    Geyikoglu, Fatime

    2010-01-01

    Aflatoxin B1 is the most potent pulmonary and hepatic carcinogen. Since the eradication of Aflatoxin B1 contamination in agricultural products has been difficult, the use of natural or synthetic free radical scavengers could be a potential chemopreventive strategy. Boric acid is the major component of industry and its antioxidant role has recently been reported. The present study assessed, for the first time, the effectiveness of boric acid following exposure to Aflatoxin B1 on human whole blood cultures. The biochemical characterizations of glutathione and some enzymes have been carried out in erythrocytes. Alterations in malondialdehyde level were determined as an index of oxidative stress. The sister-chromatid exchange and micronucleus tests were performed to assess DNA damages in lymphocytes. Aflatoxin B1 treatment significantly reduced the activities of antioxidants by increasing malondialdehyde level (30.53 and 51.43%) of blood, whereas, the boric acid led to an increased resistance of DNA to oxidative damage induced by Aflatoxin B1 in comparison with control values (P < 0.05). In conclusion, the support of boric acid was especially useful in Aflatoxin-toxicated blood. Thus the risk on tissue targeting of Aflatoxin B1 could be reduced ensuring early recovery from its toxicity. PMID:20431944

  20. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents.

    PubMed

    Abed, Dhulfiqar Ali; Goldstein, Melanie; Albanyan, Haifa; Jin, Huijuan; Hu, Longqin

    2015-07-01

    The Keap1-Nrf2-ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1-Nrf2 protein-protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1-Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1-Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1-Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions. PMID:26579458

  1. Potentiation activity of multiple antibacterial agents by Salvianolate from the Chinese medicine Danshen against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Liu, Qing-Qing; Han, Jun; Zuo, Guo-Ying; Wang, Gen-Chun; Tang, Hua-Shu

    2016-05-01

    Salvianolate (SAL) is a prescribed medicine from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It has been widely used in treatment of coronary and other diseases with significant effects. The in vitro antimicrobial activities of SAL against infectious pathogens were assayed and its combined effects on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA) with ten antibiotics were evaluated. Susceptibility to each agent alone was tested using a broth microdilution method, and the chequerboard and time-kill experiments were used for the combined activities. The results showed MIC was 128-256 mg/L for SAL used alone against MRSA. Significant synergies were observed for SAL/Ampicillin (Fosfomycin, Erythromycin, Piperacillin-tazobactam or Clindamycin) combination against over half of the isolates, with their MICs reduced by times of dilution (TOD) to 4-32 (FICIs 0.375-0.5), respectively. SAL/AMP combination showed the best combined effect of synergy on bacteriostatic and bactericidal activities, while SAL/AMK combination reversed the resistance of MRSA to AMK. The results demonstrated that SAL enhanced widely the in vitro anti-MRSA efficacy of the ten antibacterial agents, which had potential for combinatory therapy of patients infected with MRSA and warrants further investigations. PMID:26639445

  2. A case of ecological specialization in ladybirds: Iberorhyzobius rondensis (Coleoptera: Coccinellidae), potential biocontrol agent of Matsucoccus feytaudi (Hemiptera: Matsucoccidae).

    PubMed

    Tavares, C; Jactel, H; van Halder, I; Mendel, Z; Branco, M

    2014-06-01

    Specialization is an important attribute of a biological control agent. The maritime pine bast scale, Matsucoccus feytaudi Ducasse (Hemiptera Matsucoccidae), is an invasive species in Southeast France and the North of Italy. Iberorhyzobius rondensis Eizaguirre (Coleoptera: Coccinellidae), is a recently described ladybird species. Both adults and larvae are predaceous, feeding on egg masses of M. feytaudi, and are strongly attracted to M. feytaudi's sex pheromone. To evaluate the potential of I. rondensis as a biocontrol agent of the scale, we studied its niche breadth and prey range with emphasis on pine forests and hemipterans as tested prey. In this study, I. rondensis was found to achieve complete development only when fed on M. feytaudi egg masses (92.9% survival) and an artificial prey: eggs of Ephestia kuehniella Zeller (27.6% survival). From the 2nd instar onwards, complete development could be achieved using other prey species, although larvae had significantly higher mortality and slower development. In choice tests, M. feytaudi was the preferred prey. Surveys of the ladybird populations in the Iberian Peninsula revealed that it was found exclusively on Pinus pinaster Aiton, the sole host of M. feytaudi. The unusual specialization of I. rondensis, among other predaceous ladybirds, makes it an appropriate candidate for classical biological control of M. feytaudi. PMID:24666751

  3. A prospective randomized evaluator-blinded trial of two potential wound healing agents for the treatment of venous stasis ulcers.

    PubMed

    Bishop, J B; Phillips, L G; Mustoe, T A; VanderZee, A J; Wiersema, L; Roach, D E; Heggers, J P; Hill, D P; Taylor, E L; Robson, M C

    1992-08-01

    Chronic wounds such as venous stasis ulcers have become a socioeconomic problem. Even with successful initial management, the recurrence rate approaches 70%. With the advent of new wound healing agents, nonoperative attempts to heal these wounds appear indicated. This study reports a prospective randomized evaluator-blinded trial comparing two potential wound healing agents to an inert vehicle placebo. Eighty-six evaluable patients completed the trial. Silver sulfadiazine 1% in a cream proved to statistically reduce the ulcer size compared with a biologically active tripeptide copper complex 0.4% cream formulation or the placebo. There was no difference between the latter two treatments. Silver sulfadiazine has been shown to allow keratinocyte replication and to have antiinflammatory properties. In this trial its antibacterial action was not used since all ulcers had comparable bacterial levels (less than or equal to 10(5)/gm of tissue) before treatment. These results suggest that the silver sulfadiazine cream used in this study may facilitate healing in wounds healing largely by the process of epithelialization. PMID:1495150

  4. Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases

    PubMed Central

    Aggarwal, Bharat B.; Harikumar, Kuzhuvelil B.

    2009-01-01

    Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that the this activity of turmeric is due to curcumin, a diferuloylmethane. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various pro-inflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further. PMID:18662800

  5. Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: In vitro and in vivo studies as potential anticancer agents.

    PubMed

    Gurrapu, Shirisha; Jonnalagadda, Sravan K; Alam, Mohammad A; Ronayne, Conor T; Nelson, Grady L; Solano, Lucas N; Lueth, Erica A; Drewes, Lester R; Mereddy, Venkatram R

    2016-07-15

    Novel N,N-dialkyl carboxy coumarins have been synthesized as potential anticancer agents via inhibition of monocarboxylate transporter 1 (MCT1). These coumarin carboxylic acids have been evaluated for their in vitro MCT1 inhibition, MTT cancer cell viability, bidirectional Caco-2 cell permeability, and stability in human and liver microsomes. These results indicate that one of the lead candidate compounds 4a has good absorption, metabolic stability, and a low drug efflux ratio. Systemic toxicity studies with lead compound 4a in healthy mice demonstrate that this inhibitor is well tolerated based on zero animal mortality and normal body weight gains compared to the control group. In vivo tumor growth inhibition studies in mice show that the candidate compound 4a exhibits significant single agent activity in MCT1 expressing GL261-luc2 syngraft model but doesn't show significant activity in MCT4 expressing MDA-MB-231 xenograft model, indicating the selectivity of 4a for MCT1 expressing tumors. PMID:27241692

  6. Potential of high-Z contrast agents in clinical contrast-enhanced computed tomography

    SciTech Connect

    Nowak, Tristan; Hupfer, Martin; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2011-12-15

    Purpose: Currently, only iodine- and barium-based contrast media (CM) are used in clinical contrast-enhanced computed tomography (CE-CT). High-Z metals would produce a higher contrast at equal mass density for the x-ray spectra used in clinical CT. Using such materials might allow for significant dose reductions in CE-CT. The purpose of this study was to quantify the potential for dose reduction when using CM based on heavy metals. Methods: The contrast-to-noise ratio weighted by dose (CNRD) was determined as a function of scan protocol by means of measurements and simulations on a clinical CT scanner. For simulations, water cylinders with diameters 160, 320, 480, and 640 mm were used to cover a broad range of patient sizes. Measurements were conducted with 160 and 320 mm water-equivalent plastic cylinders. A central bore of 13 mm diameter was present in all phantoms. The tube voltage was varied from 80 to 140 kV for measurements and from 60 to 180 kV for simulations. Additional tin filtration of thicknesses 0.4, 0.8, and 1.2 mm was applied in the simulation to evaluate a range of spectral hardness. The bore was filled with a mixture of water and 10 mg/ml of pure iodine, holmium, gadolinium, ytterbium, osmium, tungsten, gold, and bismuth for the simulations and with aqueous solutions of ytterbium, tungsten, gold, and bismuth salts as well as Iopromid containing 10 mg/ml of the pure materials for the measurements. CNRDs were compared to iodine at phantom size-dependent reference voltages for all high-Z materials and the resulting dose reduction was calculated for equal contrast-to-noise ratio. Results: Dose reduction potentials strongly depended on phantom size, spectral hardness, and tube voltage. Depending on the added filtration, a dose reduction of 19%-60% could be reached at 80 kV with gadolinium for the 160 mm phantom, 52%-69% at 100 kV with holmium for the 320 mm phantom, 62%-78% with 120 kV for hafnium and the 480 mm phantom and 74%-86% with 140 kV for gold

  7. Biodistribution and Stability Studies of [18F]Fluoroethylrhodamine B, a Potential PET Myocardial Perfusion Agent

    PubMed Central

    Gottumukkala, Vijay; Heinrich, Tobias K.; Baker, Amanda; Dunning, Patricia; Fahey, Frederick H; Treves, S. Ted; Packard, Alan B.

    2010-01-01

    Introduction Fluorine-18-labeled rhodamine B was developed as a potential PET tracer for the evaluation of myocardial perfusion, but preliminary studies in mice showed no accumulation in the heart suggesting that it was rapidly hydrolyzed in vivo in mice. A study was, therefore, undertaken to further evaluate this hypothesis. Methods [18F]Fluoroethylrhodamine B was equilibrated for 2 h at 37 °C in human, rat and mouse serum and in PBS. Samples were removed periodically and assayed by HPLC. Based on the results of the stability study, microPET imaging and a biodistribution study were carried out in rats. Results In vitro stability studies demonstrated that [18F]fluoroethylrhodamine B much more stable in rat and human sera than in mouse serum. After 2 h, the compound was >80% intact in rat serum but <30% intact in mouse serum. The microPET imaging and biodistribution studies in rats confirmed this result showing high and persistent tracer accumulation in the myocardium compared with the absence of uptake by the myocardium in mice thereby validating our original hypothesis that 18F-labeled rhodamines should accumulate in the heart. Conclusions [18F]Fluoroethyl rhodamine B is more stable in rat and human sera than it is in mouse serum. This improved stability is demonstrated by the high uptake of the tracer in the rat heart in comparison to the absence of visible uptake in the mouse heart. These observations suggest that 18F-labeled rhodamines are promising candidates for more extensive evaluation as PET tracers for the evaluation of myocardial perfusion. PMID:20346876

  8. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy.

    PubMed

    Penon, Oriol; Marín, María J; Amabilino, David B; Russell, David A; Pérez-García, Lluïsa

    2016-01-15

    The preparation of novel porphyrin derivatives and their immobilization onto iron oxide nanoparticles to build up suitable nanotools for potential use in photodynamic therapy (PDT) has been explored. To achieve this purpose, a zinc porphyrin derivative, ZnPR-COOH, has been synthesized, characterized at the molecular level and immobilized onto previously synthesized iron oxide nanoparticles covered with oleylamine. The novel nanosystem (ZnPR-IONP) has been thoroughly characterized by a variety of techniques such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoloectron spectroscopy (XPS) and transmission electron microscopy (TEM). In order to probe the capability of the photosensitizer for PDT, the singlet oxygen production of both ZnPR-IONP and the free ligand ZnPR-COOH have been quantified by measuring the decay in absorption of the anthracene derivative 9,10-anthracenedipropionic acid (ADPA), showing an important increase on singlet oxygen production when the porphyrin is incorporated onto the IONP (ZnPR-IONP). On the other hand, the porphyrin derivative PR-TRIS3OH, incorporating several polar groups (TRIS), was synthesized and immobilized with the intention of obtaining water soluble nanosystems (PR-TRIS-IONP). When the singlet oxygen production ability was evaluated, the values obtained were similar to ZnPR-COOH/ZnPR-IONP, again much higher in the case of the nanoparticles PR-TRIS-IONP, with more than a twofold increase. The efficient singlet oxygen production of PR-TRIS-IONP together with their water solubility, points to the great promise that these new nanotools represent for PDT. PMID:26454374

  9. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    PubMed

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  10. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging

    PubMed Central

    2012-01-01

    The purpose of this study was to evaluate dendrimer-entrapped gold nanoparticles [Au DENPs] as a molecular imaging [MI] probe for computed tomography [CT]. Au DENPs were prepared by complexing AuCl4- ions with amine-terminated generation 5 poly(amidoamine) [G5.NH2] dendrimers. Resulting particles were sized using transmission electron microscopy. Serial dilutions (0.001 to 0.1 M) of either Au DENPs or iohexol were scanned by CT in vitro. Based on these results, Au DENPs were injected into mice, either subcutaneously (10 μL, 0.007 to 0.02 M) or intravenously (300 μL, 0.2 M), after which the mice were imaged by micro-CT or a standard mammography unit. Au DENPs prepared using G5.NH2 dendrimers as templates are quite uniform and have a size range of 2 to 4 nm. At Au concentrations above 0.01 M, the CT value of Au DENPs was higher than that of iohexol. A 10-μL subcutaneous dose of Au DENPs with [Au] ≥ 0.009 M could be detected by micro-CT. The vascular system could be imaged 5 and 20 min after injection of Au DENPs into the tail vein, and the urinary system could be imaged after 60 min. At comparable time points, the vascular system could not be imaged using iohexol, and the urinary system was imaged only indistinctly. Findings from this study suggested that Au DENPs prepared using G5.NH2 dendrimers as templates have good X-ray attenuation and a substantial circulation time. As their abundant surface amine groups have the ability to bind to a range of biological molecules, Au DENPs have the potential to be a useful MI probe for CT. PMID:22429280

  11. S-equol: a potential nonhormonal agent for menopause-related symptom relief.

    PubMed

    Utian, Wulf H; Jones, Michelle; Setchell, Kenneth D R

    2015-03-01

    Many women suffering from vasomotor symptoms (VMS) are now seeking nonpharmaceutical treatments for symptom relief. Recently, S-equol, an intestinal bacterial metabolite of the soybean isoflavone daidzein has received attention for its ability to alleviate VMS and provide other important health benefits to menopausal women. S-equol is found in very few foods and only in traces. About 50% of Asians and 25% of non-Asians host the intestinal bacteria that convert daidzein into S-equol. Clinical trials that evaluated the efficacy of an S-equol-containing product found that VMS were alleviated but these trials were limited in scope and primarily involved Japanese women for whom hot flashes are a minor complaint. The only trial in the United States evaluating hot flashes found symptoms were significantly reduced by S-equol, but the study lacked a placebo group, although it did include a positive control. The daily dose of S-equol used in most trials was 10 mg, and because the half-life of S-equol is 7-10 hours, to maximize efficacy, it was taken twice daily. Subanalysis of epidemiologic studies suggests that equol producers are more likely to benefit from soyfood consumption than nonproducers with respect to both cardiovascular disease and osteoporosis, although the data are inconsistent. The limited safety data for S-equol do not suggest cause for concern, especially with regard to its effects on breast and endometrial tissue. Further studies are needed before definitive conclusions of its effectiveness for VMS can be made, but the preliminary evidence warrants clinicians discussing the potential of S-equol for the alleviation of VMS with patients. PMID:25692726

  12. Multi-Functional Roles of Chitosan as a Potential Protective Agent against Obesity

    PubMed Central

    Walsh, Ann M.; Sweeney, Torres; Bahar, Bojlul; O’Doherty, John V.

    2013-01-01

    Chitosan, a natural polysaccharide comprising copolymers of glucosamine and N-acetylglucosamine, has been shown to have anti-obesity properties. Two experiments (Exp. 1 and Exp. 2) were performed to determine the role of chitosan on dietary intake, body weight gain, and fat deposition in a pig model, as well as identifying potential mechanisms underlying the anti-obesity effect of chitosan. In Exp. 1, the nutrient digestibility experiment, 16 pigs (n = 4/treatment) were randomly allocated to one of four dietary treatments as follows: 1) basal diet; 2) basal diet plus 300 ppm chitosan; 3) basal diet plus 600 ppm chitosan; 4) basal diet plus 1200 ppm chitosan. The main observation was that crude fat digestibility was lower in the 1200 ppm chitosan group when compared with the control group (P<0.05). In Exp. 2, a total of 80 pigs (n = 20/treatment) were offered identical dietary treatments to that offered to animals in Exp. 1. Blood samples were collected on day 0, day 35 and at the end of the experiment (day 57). Animals offered diets containing 1200 ppm chitosan had a lower daily dietary intake (P<0.001) and body weight gain (P<0.001) from day 35 to 57 when compared with all the other treatment groups. Animals offered diets containing 1200 ppm chitosan had a significantly lower final body weight (P<0.01) when compared with all the other treatment groups. The decreased dietary intake observed in the 1200 ppm chitosan group was associated with increased serum leptin concentrations (P<0.001) and a decrease in serum C-reactive protein (CRP) concentrations (P<0.05). In conclusion, the results of this study highlight novel endocrine mechanisms involving the modulation of serum leptin and CRP concentrations by which chitosan exhibits anti-obesity properties in vivo. PMID:23342013

  13. Fundamental Host Range of Leptoypha hospita (Hemiptera: Tingidae), a Potential Biological Control Agent of Chinese Privet.

    PubMed

    Zhang, Yanzhuo; Hanula, James L; Horn, Scott; Jones, Cera; Kristine Braman, S; Sun, Jianghua

    2016-08-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et Poor, was evaluated on the basis of adult feeding and oviposition, combined oviposition-nymphal development no-choice tests, nymphal development no-choice tests, multiple generation comparison on Forestiera pubescens Nutt. and L. sinense no-choice tests, and multiple-choice tests with 45 plant species in 13 families. No-choice tests showed that the host range of L. hospita was restricted to the tribe Oleeae. In adult feeding and oviposition no-choice tests, the bug fed and oviposited significantly more on Chinese privet than all other test plant species except for three native Forestiera spp., two nonnative Syringa spp., and another exotic Ligustrum sp. Among those, only F. pubescens supported complete development in numbers comparable to Chinese privet. However, when reared for multiple generations lace bugs reared on F. pubescens were smaller and had lower fecundity than those reared on L. sinense, suggesting F. pubescens is not an optimal host. In multiple-choice tests, L. hospita displayed a strong preference for feeding and ovipositing on Chinese privet over other test plant species, with the exception of the closely related nonnative Syringa spp. and its congenic species Ligustrum vulgare. The results of this study suggest that the risk to nontarget plant species in North America is minimal, and L. hospita would be a promising candidate for Chinese privet biological control. PMID:27325627

  14. Novel amphiphilic cationic porphyrin and its Ag(II) complex as potential anticancer agents

    PubMed Central

    Tovmasyan, Artak; Babayan, Nelli; Poghosyan, David; Margaryan, Kristine; Harutyunyan, Boris; Grigoryan, Rusanna; Sarkisyan, Natalia; Spasojevic, Ivan; Mamyan, Suren; Sahakyan, Lida; Aroutiounian, Rouben; Ghazaryan, Robert; Gasparyan, Gennadi

    2015-01-01

    In the present study we have synthesized a novel amphiphilic porphyrin and its Ag(II) complex through modification of water-soluble porphyrinic structure in order to increase its lipophilicity and in turn pharmacological potency. New cationic non-symmetrical meso-substituted porphyrins were characterized by UV–visible, electrospray ionization mass spectrometry (ESI-MS), 1H NMR techniques, lipophilicity (thin-layer chromatographic retention factor, Rf), and elemental analysis. The key toxicological profile (i.e. cytotoxicity and cell line-(cancer type-) specificity; genotoxicity; cell cycle effects) of amphiphilic Ag porphyrin was studied in human normal and cancer cell lines of various tissue origins and compared with its water-soluble analog. Structural modification of the molecule from water-soluble to amphiphilic resulted in a certain increase in the cytotoxicity and a decrease in cell line-specificity. Importantly, Ag(II) porphyrin showed less toxicity to normal cells and greater toxicity to their cancerous counterparts as compared to cisplatin. The amphiphilic complex was also not genotoxic and demonstrated a slight cytostatic effect via the cell cycle delay due to the prolongation of S-phase. As expected, the performed structural modification affected also the photocytotoxic activity of metal-free amphiphilic porphyrin. The ligand tested on cancer cell line revealed a dramatic (more than 70-fold) amplification of its phototoxic activity as compared to its water-soluble tetracationic metal-free analog. The compound combines low dark cytotoxicity with 5 fold stronger phototoxicity relative to Chlorin e6 and could be considered as a potential photosensitizer for further development in photodynamic therapy. PMID:25086237

  15. Hypokalemic myopathy associated with primary aldosteronism and glycyrrhizine-induced pseudoaldosteronism.

    PubMed

    Ishikawa, S; Saito, T; Okada, K; Atsumi, T; Kuzuya, T

    1985-12-01

    Enzymatic and histological features of muscular disorders associated with primary aldosteronism and glycyrrhizine-induced pseudoaldosteronism were studied. Among 10 patients with primary aldosteronism and 3 patients with pseudoaldosteronism, 5 patients were admitted to our hospital because of muscular weakness. The serum potassium (K) level was 1.86 +/- 0.21 mEq/l in a myopathy group on admission, a value significantly less than that of the 2.74 +/- 0.10 mEq/l in a non-myopathy group (p less than 0.01). Serum creatine phosphokinase (CPK), glutamate-oxyloacetate transaminase (GOT), and lactate dehydrogenase (LDH) were increased in the myopathy group compared to the non-myopathy group; serum CPK was 1412.6 +/- 902.6 vs. 22.8 +/- 5.0 mU/ml, serum GOT was 186.4 +/- 75.3 vs. 24.2 +/- 5.4 mU/ml (p less than 0.05), and serum LDH was 1133.4 +/- 377.3 vs. 387.6 +/- 42.5 mU/ml (p less than 0.05) in the groups with and without myopathy. Analysis of CPK isozymes revealed that the MM type exceeded 95%. The elevated serum CPK, GOT and LDH rapidly decreased to the normal range and muscular strength completely improved within 6 to 13 days after hospitalization, when the serum K level remained below than normal. Light microscopic finding of damaged muscle showed the diffuse necrosis and vacuolization of muscle fibers. Electron microscopic study clearly demonstrated complete dissolution of myofilaments with disappearance of sarcoplasmic reticulum and T-tubules in the necrotic muscle fibers. These results indicate that muscular lesions may occur in primary aldosteronism and pseudoaldosteronism when the serum K level is decreased to below 2.0 mEq/l. This myopathy is not periodic paralysis but hypokalemic myopathy. The mechanism by which K deficiency causes muscular damage remains unknown. PMID:3914413

  16. Optimization and Evaluation of 5-Styryl-Oxathiazol-2-one Mycobacterium tuberculosis Proteasome Inhibitors as Potential Antitubercular Agents

    PubMed Central

    Russo, Francesco; Gising, Johan; Åkerbladh, Linda; Roos, Annette K; Naworyta, Agata; Mowbray, Sherry L; Sokolowski, Anders; Henderson, Ian; Alling, Torey; Bailey, Mai A; Files, Megan; Parish, Tanya; Karlén, Anders; Larhed, Mats

    2015-01-01

    This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure–activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs. PMID:26246997

  17. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. PMID:26344594

  18. Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents.

    PubMed

    Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He

    2016-06-01

    A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. PMID:27117429

  19. Raman, infrared and DFT studies of N‧-(adamantan-2-ylidene)benzohydrazide, a potential antibacterial agent

    NASA Astrophysics Data System (ADS)

    Shundalau, Maksim B.; Al-Abdullah, Ebtehal S.; Shabunya-Klyachkovskaya, Elena V.; Hlinisty, Anton V.; Al-Deeb, Omar A.; El-Emam, Ali A.; Gaponenko, Sergey V.

    2016-07-01

    The Raman and Fourier transform infrared spectra of the N‧-(adamantan-2-ylidene)benzohydrazide molecule (C17H20N2O), a potential antibacterial agent, were examined in the ranges of 3500-300 cm-1 and 3500-650 cm-1, respectively. The density functional theory calculations were performed for the geometric structures and vibrational spectra for the two conformers (cis- and trans-) and for the dimer of the title molecule. On the basis of full geometry optimization at the B3LYP/cc-pVDZ level of the theory, the equilibrium configurations were determined; Raman and IR vibrational spectra were calculated and compared with the experimental ones. The experimental vibrational Raman and infrared spectra were interpreted. The calculations for the trans-conformer were found to describe better the experimentally observed vibrational modes for the crystalline phase than the calculations which were performed for the cis-conformer and for the dimer.

  20. NNZ-2566, a novel analog of (1-3) IGF-1, as a potential therapeutic agent for fragile X syndrome.

    PubMed

    Deacon, Robert M J; Glass, Larry; Snape, Mike; Hurley, Michael J; Altimiras, Francisco J; Biekofsky, Rodolfo R; Cogram, Patricia

    2015-03-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, and many agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. In the present work, a novel pharmacological approach for FXS is investigated. NNZ-2566, a synthetic analog of a naturally occurring neurotrophic peptide derived from insulin-like growth factor-1 (IGF-1), was administered to fmr1 knockout mice correcting learning and memory deficits, abnormal hyperactivity and social interaction, normalizing aberrant dendritic spine density, overactive ERK and Akt signaling, and macroorchidism. Altogether, our results indicate a unique disease-modifying potential for NNZ-2566 in FXS. Most importantly, the present data implicate the IGF-1 molecular pathway in the pathogenesis of FXS. A clinical trial is under way to ascertain whether these findings translate into clinical effects in FXS patients. PMID:25613838

  1. Honey – a potential agent against Porphyromonas gingivalis: an in vitro study

    PubMed Central

    2014-01-01

    Background Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. Methods One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. Results 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 – 20 mg/l, and for propolis 20 mg/l – 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. Conclusions Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component. PMID:24666777

  2. Rhodomyrtone as a potential anti-proliferative and apoptosis inducing agent in HaCaT keratinocyte cells.

    PubMed

    Chorachoo, Julalak; Saeloh, Dennapa; Srichana, Teerapol; Amnuaikit, Thanaporn; Musthafa, Khadar Syed; Sretrirutchai, Somporn; Voravuthikunchai, Supayang P

    2016-02-01

    Psoriasis is a skin disease associated with hyperproliferation and abnormal differentiation of keratinocytes. Available approaches using synthetic drugs for the treatment of severe psoriasis may cause side effects. Alternatively, plant-derived compounds are now receiving much attention as alternative candidates for the treatment of psoriasis. In this study, the effects of rhodomyrtone, a bioactive plant extract isolated from Rhodomyrtus tomentosa leaves on the proliferation, growth arrest, and apoptosis of HaCaT keratinocytes were investigated. Percentage anti-proliferative activity of rhodomyrtone on HaCaT cells at concentrations of 2-32µg/ml after 24, 48, and 72h ranged from 13.62-61.61%, 50.59-80.16%, and 61.82-85.34%, respectively. In a scratch assay, rhodomyrtone at 2 and 4µg/ml significantly delayed closure of a wound by up to 61.78%, and 71.65%, respectively, after 24h incubation. HaCaT keratinocytes treated with rhodomyrtone showed chromatin condensation and fragmentation of nuclei when stained with Hoechst 33342. This indicated that rhodomyrtone induced apoptosis in the keratinocytes. In addition, flow cytometric analysis demonstrated an increase in the percentage of apoptosis of keratinocytes after treatment with rhodomyrtone at 2-32µg/ml from 1.2-10%, 8.2-35.4%, and 21.0-77.8% after 24, 48, and 72h, respectively, compared with the control. To further develop the compound as a potential anti-psoriasis agent, a rhodomyrtone formulation was prepared and subjected to skin irritation tests in rabbits. The formulation caused no skin irritation including such as erythema and edema. The results indicated that rhodomyrtone had the potential as a promising candidate for further development as a natural anti-psoriasis agent. PMID:26687635

  3. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    PubMed Central

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or

  4. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  5. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  6. Spectroscopic and electronic structure calculation of a potential antibacterial agent incorporating pyrido-dipyrimidine-dione moiety using first principles

    NASA Astrophysics Data System (ADS)

    Fatma, Shaheen; Bishnoi, Abha; Singh, Vineeta; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Pathak, Shilendra; Srivastava, Ruchi; Prasad, Onkar; Sinha, Leena

    2016-04-01

    Quantum chemical calculations of geometrical structure, energy and vibrational wavenumbers of a novel functionalized pyrido-pyrimidine compound (a prospective antibacterial agent), chemically known as 6-Methyl,13,14,15-Trihydro-14-(4-Nitrophenyl)pyrido[1,2-a:1‧,2‧-a‧] pyrido[2″,3″-d:6″,5″-d‧]dipyrimidine-13,15-dione (C24H16N6O4), were carried out, using B3LYP/6311++G(d,p) method. Comprehensive interpretation of the infrared and Raman spectra of the compound under study is based on potential energy distribution. A good coherence between experimental and theoretical wavenumbers shows the preciseness of the assignments. NLO properties like the dipole moment, polarizability, first static hyperpolarizability and molecular electrostatic potential surface have been calculated to get a better cognizance of the properties of the title compound. Molecular docking results reveal that the title compound exhibit inhibitory activity against Staphylococcus aureus.

  7. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives

    PubMed Central

    Beg, Sarwar; Swain, Suryakanta; Hasan, Hameed; Barkat, M Abul; Hussain, Md Sarfaraz

    2011-01-01

    Many synthetic drugs reported to be used for the treatment of inflammatory disorders are of least interest now a days due to their potential side effects and serious adverse effects and as they are found to be highly unsafe for human assistance. Since the last few decades, herbal drugs have regained their popularity in treatment against several human ailments. Herbals containing anti-inflammatory activity (AIA) are topics of immense interest due to the absence of several problems in them, which are associated with synthetic preparations. The primary objective of this review is to provide a deep overview of the recently explored anti-inflammatory agents belonging to various classes of phytoconstituents like alkaloids, glycosides, terpenoids, steroids, polyphenolic compounds, and also the compounds isolated from plants of marine origin, algae and fungi. Also, it enlists a distended view on potential interactions between herbals and synthetic preparations, related adverse effects and clinical trials done on herbals for exploring their AIA. The basic aim of this review is to give updated knowledge regarding plants which will be valuable for the scientists working in the field of anti-inflammatory natural chemistry. PMID:22279370

  8. Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents

    PubMed Central

    Montanaro, Gabriele; Bertinaria, Massimo; Rolando, Barbara; Fruttero, Roberta; Lucas, Christopher D.; Dorward, David A.; Rossi, Adriano G.; Megson, Ian L.; Gasco, Alberto

    2013-01-01

    Neutrophils play a pivotal role in the pathophysiology of multiple human inflammatory diseases. Novel pharmacological strategies which drive neutrophils to undergo programmed cell death (apoptosis) have been shown to facilitate the resolution of inflammation. Both the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine and nitric oxide (NO) have been shown to enhance apoptosis of neutrophils and possess pro-resolution of inflammation properties. In order to search for new multi-target pro-resolution derivatives, here we describe the design, synthesis and investigation of the biological potential of a small series of hybrid compounds obtained by conjugating R-roscovitine with two different NO-donor moieties (compounds 2, 9a, 9c). The synthesized compounds were tested as potential pro-resolution agents, with their ability to promote human neutrophil apoptosis evaluated. Both compound 9a and 9c showed an increased pro-apoptotic activity when compared with either R-roscovitine or structurally related compounds devoid of the ability to release NO (des-NO analogues). Inhibition of either NO-synthase or soluble guanylate cyclase did not affect the induction of apoptosis by the R-roscovitine derivatives, similar to that reported for other classes of NO-donors. In contrast the NO scavenger PTIO prevented the enhanced apoptosis seen with compound 9a over R-roscovitine. These data show that novel compounds such as CDKi–NO-donor hybrids may have additive pro-resolution of inflammation effects. PMID:23394865

  9. Synthesis and Biological Evaluation of Novel N-phenyl-5-carboxamidyl Isoxazoles as Potential Chemotherapeutic Agents for Colon Cancer.

    PubMed

    Shaw, Jiajiu; Chen, Ben; Bourgault, Jean P; Jiang, Hao; Kumar, Narendra; Mishra, Jayshree; Valeriote, Frederick A; Media, Joe; Bobbitt, Kevin; Pietraszkiewicz, Halina; Edelstein, Matthew; Andreana, Peter R

    2012-01-01

    A new series of isoxazole derivatives, N-phenyl-5-carboxamidyl isoxazoles, was investigated for their anticancer activity with solid tumor selectivity. Six N-phenyl-5-carboxamidylisoxazoles were chemically synthesized and evaluated by the in vitro disk-diffusion assay and IC50 cytotoxicity determination. The results showed that one of the derivatives, compound 3, N-(4-chlorophenyl)-5-carboxamidyl isoxazole, was the most active against colon 38 and CT-26 mouse colon tumor cells with an IC50 of 2.5 μg/mL for both cell lines. Western blot analysis showed that compound 3 significantly down-regulated the expression of phosphorylated STAT3 in both human and mouse colon cancer cells indicating that the mechanism of action for compound 3 may involve the inhibition of JAK3/STAT3 signaling pathways. Flow cytometric analysis with Annexin V staining showed that the death induced by compound 3 is mediated through cell necrosis and not apoptotic pathway. In summary, our results show that compound 3 is a new N-phenyl-5-carboxamidyl isoxazole with potential anticancer activity. Compound 3 inhibits the phosphorylation of STAT3, a novel target for chemotherapeutic drugs, and is worthy of further investigation as a potential chemotherapeutic agent for treating colon cancer. PMID:25285182

  10. Rapid, potentially automatable, method extract biomarkers for HPLC/ESI/MS/MS to detect and identify BW agents

    SciTech Connect

    White, D.C. |; Burkhalter, R.S.; Smith, C.; Whitaker, K.W.

    1997-12-31

    The program proposes to concentrate on the rapid recovery of signature biomarkers based on automated high-pressure, high-temperature solvent extraction (ASE) and/or supercritical fluid extraction (SFE) to produce lipids, nucleic acids and proteins sequentially concentrated and purified in minutes with yields especially from microeukaryotes, Gram-positive bacteria and spores. Lipids are extracted in higher proportions greater than classical one-phase, room temperature solvent extraction without major changes in lipid composition. High performance liquid chromatography (HPLC) with or without derivatization, electrospray ionization (ESI) and highly specific detection by mass spectrometry (MS) particularly with (MS){sup n} provides the detection, identification and because the signature lipid biomarkers are both phenotypic as well as genotypic biomarkers, insights into potential infectivity of BW agents. Feasibility has been demonstrated with detection, identification, and determination of infectious potential of Cryptosporidium parvum at the sensitivity of a single oocyst (which is unculturable in vitro) and accurate identification and prediction, pathogenicity, and drug-resistance of Mycobacteria spp.

  11. Caspase-3 short hairpin RNAs: a potential therapeutic agent in neurodegeneration of aluminum-exposed animal model.

    PubMed

    Zhang, Qinli; Li, Na; Jiao, Xia; Qin, Xiujun; Kaur, Ramanjit; Lu, Xiaoting; Song, Jing; Wang, Linping; Wang, Junming; Niu, Qiao

    2014-01-01

    There is abundant evidence supporting the role of caspases in the development of neurodegenerative disease, including Alzheimer's disease (AD). Therefore, regulating the activity of caspases has been considered as a therapeutic target. However, all the efforts on AD therapy using pan-caspase inhibitors have failed because of uncontrolled adverse effects. Alternatively, the specific knockdown of caspase-3 gene through RNA interference (RNAi) could serve as a future potential therapeutic strategy. The aim of the present study is to down-regulate the expression of caspase-3 gene using lentiviral vector-mediated caspase-3 short hairpin RNA (LV-Caspase-3 shRNA). The effect of LV-Caspase-3 shRNA on apoptosis induced by aluminum (Al) was investigated in primary cultured cortical neurons and validated in C57BL/6J mice. The results indicated an increase in apoptosis and caspase-3 expression in primary cultured neurons and the cortex ofmice exposed to Al, which could be down-regulated by LV-Caspase-3 shRNA. Furthermore, LV-Caspase-3 shRNA reduced neural cell death and improved learning and memory in C57BL/6J mice treated with Al. Our results suggest that LV-caspase-3 shRNA is a potential therapeutic agent to prevent neurodegeneration and cognitive dysfunction in aluminum- exposed animal models. The findings provide a rational gene therapy strategy for AD. PMID:25387335

  12. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-05-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments. PMID:11359688

  13. Inhibitory potential of three zinc chelating agents against the proteolytic, hemorrhagic, and myotoxic activities of Echis carinatus venom.

    PubMed

    Nanjaraj Urs, Ankanahalli N; Yariswamy, Manjunath; Ramakrishnan, Chandrasekaran; Joshi, Vikram; Suvilesh, Kanve Nagaraj; Savitha, Mysore Natarajan; Velmurugan, Devadasan; Vishwanath, Bannikuppe Sannanayak

    2015-01-01

    Viperbites undeniably cause local manifestations such as hemorrhage and myotoxicity involving substantial degradation of extracellular matrix (ECM) at the site of envenomation and lead to progressive tissue damage and necrosis. The principle toxin responsible is attributed to snake venom metalloproteases (SVMPs). Treatment of such progressive tissue damage induced by SVMPs has become a challenging task for researchers and medical practitioners who are in quest of SVMPs inhibitors. In this study, we have evaluated the inhibitory potential of three specific zinc (Zn(2+)) chelating agents; N,N,N',N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN), diethylene triamine pentaacetic acid (DTPA), tetraethyl thiuram disulfide (TTD) on Echis carinatus venom (ECV) induced hemorrhage and myotoxicity. Amongst them, TPEN has high affinity for Zn(2+) and revealed potent inhibition of ECV metalloproteases (ECVMPs) in vitro (IC50: 6.7 μM) compared to DTPA and TTD. The specificity of TPEN towards Zn(2+) was confirmed by spectral and docking studies. Further, TPEN, DTPA, and TTD completely blocked the hemorrhagic and myotoxic activities of ECV in a dose dependent manner upon co-injection; whereas, only TPEN successfully neutralized hemorrhage and myotoxicity following independent injection. Histological examinations revealed that TPEN effectively prevents degradation of dermis and basement membrane surrounding the blood vessels in mouse skin sections. TPEN also prevents muscle necrosis and accumulation of inflammatory cells at the site of ECV injections. In conclusion, a high degree of structural and functional homology between mammalian MMPs and SVMPs suggests that specific Zn(2+) chelators currently in clinical practice could be potent first aid therapeutic agents in snakebite management, particularly for local tissue damage. PMID:25447774

  14. Efficacy of a novel mucolytic agent on pseudomyxoma peritonei mucin, with potential for treatment through peritoneal catheters.

    PubMed

    Akhter, Javed; Pillai, Krishna; Chua, Terence C; Alzarin, Naeef; Morris, David Lawson

    2014-01-01

    Compared to current treatment for pseudomyxoma peritonei (PMP), the extraction of solubilised mucin through peritoneal catheter can be minimally invasive. However, mucin has variable appearance that may influence mucolysis. Hence, we investigated the mucolysis of 36 mucin samples with a novel agent. Using visual inspection and hardness index, PMP mucin was classified into three grades. The mucin pathological category was identified from patient record. Subsequently, the dissolution of the samples was tested. For in vitro, 1 g of mucin was treated to the mucolytic agent in 10 ml TRIS buffer at 37 deg. Celsius for 3 hours, with weighing of residual mucin. Control treatment was similar but received TRIS buffer. For in vivo, 2 g of implanted intra-peritoneal mucin in nude rats was treated to mucolytic (2 X 500 ul/24 hr, over 48 hours, plus another treatment before sacrifice at 56 hours, with weighing of residual mucin. Controls were treated but only with TRIS buffer. Six animals were used for each mucin grade (3 mucolytic treated & and 3 controls). Grades of mucin were soft mucin (62%), semi hard (20%) and hard mucin (18%). Diffuse peritoneal adenomucinosis had 50% of soft mucin and peritoneal mucinous carcinoma had 11% (P = 0.0382). In vitro and in vivo absolute disintegration was 100% for soft, 57.38% and 48.67% for semi hard, 50% and 28.67% for hard mucin. Majority of mucin were soft with complete disintegration, the rest showed variable disintegration, suggesting that the mucolytic has potential for treating PMP. PMID:25232491

  15. Benefits of a European Project on Diagnostics of Highly Pathogenic Agents and Assessment of Potential “Dual Use” Issues

    PubMed Central

    Grunow, Roland; Ippolito, G.; Jacob, D.; Sauer, U.; Rohleder, A.; Di Caro, A.; Iacovino, R.

    2014-01-01

    Quality assurance exercises and networking on the detection of highly infectious pathogens (QUANDHIP) is a joint action initiative set up in 2011 that has successfully unified the primary objectives of the European Network on Highly Pathogenic Bacteria (ENHPB) and of P4-laboratories (ENP4-Lab) both of which aimed to improve the efficiency, effectiveness, and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries. The specific objectives and achievements include the initiation and establishment of a recognized and acceptable quality assurance scheme, including practical external quality assurance exercises, comprising living agents, that aims to improve laboratory performance, accuracy, and detection capabilities in support of patient management and public health responses; recognized training schemes for diagnostics and handling of highly pathogenic agents; international repositories comprising highly pathogenic bacteria and viruses for the development of standardized reference material; a standardized and transparent Biosafety and Biosecurity strategy protecting healthcare personnel and the community in dealing with high consequence pathogens; the design and organization of response capabilities dealing with cross-border events with highly infectious pathogens including the consideration of diagnostic capabilities of individual European laboratories. The project tackled several sensitive issues regarding Biosafety, Biosecurity and “dual use” concerns. The article will give an overview of the project outcomes and discuss the assessment of potential “dual use” issues. PMID:25426479

  16. Efficacy of a novel mucolytic agent on pseudomyxoma peritonei mucin, with potential for treatment through peritoneal catheters

    PubMed Central

    Akhter, Javed; Pillai, Krishna; Chua, Terence C; Alzarin, Naeef; Morris, David Lawson

    2014-01-01

    Compared to current treatment for pseudomyxoma peritonei (PMP), the extraction of solubilised mucin through peritoneal catheter can be minimally invasive. However, mucin has variable appearance that may influence mucolysis. Hence, we investigated the mucolysis of 36 mucin samples with a novel agent. Using visual inspection and hardness index, PMP mucin was classified into three grades. The mucin pathological category was identified from patient record. Subsequently, the dissolution of the samples was tested. For in vitro, 1 g of mucin was treated to the mucolytic agent in 10 ml TRIS buffer at 37 deg. Celsius for 3 hours, with weighing of residual mucin. Control treatment was similar but received TRIS buffer. For in vivo, 2 g of implanted intra-peritoneal mucin in nude rats was treated to mucolytic (2 X 500 ul/24 hr, over 48 hours, plus another treatment before sacrifice at 56 hours, with weighing of residual mucin. Controls were treated but only with TRIS buffer. Six animals were used for each mucin grade (3 mucolytic treated & and 3 controls). Grades of mucin were soft mucin (62%), semi hard (20%) and hard mucin (18%). Diffuse peritoneal adenomucinosis had 50% of soft mucin and peritoneal mucinous carcinoma had 11% (P = 0.0382). In vitro and in vivo absolute disintegration was 100% for soft, 57.38% and 48.67% for semi hard, 50% and 28.67% for hard mucin. Majority of mucin were soft with complete disintegration, the rest showed variable disintegration, suggesting that the mucolytic has potential for treating PMP. PMID:25232491

  17. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed Central

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-01-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments. PMID:11359688

  18. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents

    PubMed Central

    Abdel-Rahman, Sherif Z.

    2014-01-01

    The O 6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O 6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18–119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29–97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents. PMID:24163400

  19. Synthesis, Characterization, and Evaluation of cis-Diphenyl Pyridineamine Platinum(II) Complexes as Potential Anti-Breast Cancer Agents

    PubMed Central

    Guevara, Priscilla; Ramirez, Verenice; Metta-Magaña, Alejandro J.; Villagrán, Dino; Varela-Ramirez, Armando; Das, Siddhartha; Nuñez, Jose E.

    2015-01-01

    Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16% and 47%. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin. When tested for biological activity, compounds 13 and 14 were found to inhibit the growth of MCF 7 and MDA-MB-231 cells (IC50s 1 ± 0.4 μM and 1 ± 0.2 μM for 13 and 14, respectively, and IC50 7.5 ± 1.3 μM for compound 13 and 1 ± 0.3 μM for compound 14). Incidentally, these doses were found to be lower than cisplatin doses (IC50 5 ± 0.7 μM for MCF 7 and 10 ± 1.1 μM for MDA-MB-231). Similar to cisplatin, 13 and 14 interacted with DNA and induced apoptosis. However, unlike cisplatin, they blocked the migration of MDA-MB-231 cells suggesting that in addition to apoptotic and DNA-binding capabilities, these compounds are useful in blocking the metastatic migration of breast cancer cells. To delineate the mechanism of action, computer-aided analyses (DFT calculations) were conducted for compound 13. Results indicate that in vivo, the pyridineamine ligands are likely to dissociate from the complex, forming a platinum DNA adduct with anti-proliferative activity. These results suggest that complexes 13 and 14 hold promise as potential anti-cancer agents. PMID:24737042

  20. Non-carrier-added 186, 188Re labeled 17a-ethynylestradiol : a potential breast cancer imaging and therapy agent

    SciTech Connect

    Fassbender, M. E.; Phillips, Dennis R.; Peterson, E. J.; Ott, K. C.; Arterburn, J. B.

    2001-01-01

    Receptor-targeted radiopharmaceuticals constitute potential agents for the diagnosis and therapy of cancer. Breast cancer is the most prevalent form of diagnosed cancer in women in the United States, and it accounts for the second highest number of cases of cancer fatalities (1). In Approximately two-thirds of the breast tumors, estrogen and progesterone steroid hormone receptors can be found. Such tumors can often be treated successfully with anti-estrogen hormone therapy (2). Hence, the ability to determine the estrogen receptor (ER) contend of the breast tumor is essential for making the most appropriate choice of treatment for the patient. Along with this diagnostic aspect, steroid-based radiopharmaceuticals with high specific activity offer an encouraging prospect for therapeutic applications: {sup 186,188}Re labeled steroids binding to receptors expressed by cancer cells appear to be potential agents for the irradiation of small to medium-sized tumors. {sup 186}Re has been regarded as an ideal radionuclide for radiotherapy due to its appropriate half-live of 90 h and {beta}-energy of 1.07 MeV. Moreover, the {gamma}-emission of 137 keV that allows in vivo imaging while in therapy is an additional bonus. {sup 188}Re is obtained from a {sup 188}W/{sup 188}Re radionuclide generator system, representing an advantage for availability at radiopharmacy laboratory by daily elution. In addition, {sup 188}Re emits high energy beta particles with an average energy of 769 keV, and the emission of the 155 keV allows simultaneous imaging for biodistribution evaluation in vivo. In order to avoid competitive saturation of the binding sites of the ligand receptor, Re labeled steroids with high specific activity are required, and the removal of all excess unlabeled ligands is mandatory. {sup 188}Re is eluted from a {sup 188}W/{sup 188}Re generator produced and provided by Oak Ridge National Laboratory (3). This paper outlines the solid phase-supported preparation of an n

  1. Cyclin-dependent kinase inhibitor drugs as potential novel anti-inflammatory and pro-resolution agents

    PubMed Central

    Leitch, AE; Haslett, C; Rossi, AG

    2009-01-01

    The cyclin-dependent kinase inhibitor (CDKi) drugs such as R-roscovitine have emerged as potential anti-inflammatory, pharmacological agents that can influence the resolution of inflammation. Usually, once an inciting inflammatory stimulus has been eliminated, resolution proceeds by prompt, safe removal of dominant inflammatory cells. This is accomplished by programmed cell death (apoptosis) of prominent effector, inflammatory cells typified by the neutrophil. Apoptosis of neutrophils ensures that toxic neutrophil granule contents are securely packaged in apoptotic bodies and expedites phagocytosis by professional phagocytes such as macrophages. A panel of CDKi drugs have been shown to promote neutrophil apoptosis in a concentration- and time-dependent manner and the archetypal CDKi drug, R-roscovitine, overrides the anti-apoptotic effects of powerful survival factors [including lipopolysaccharide (LPS) and granulocyte macrophage-colony stimulating factor (GM-CSF)]. Inflammatory cell longevity and survival signalling is integral to the inflammatory process and any putative anti-inflammatory agent must unravel a complex web of redundancy in order to be effective. CDKi drugs have also been demonstrated to have significant effects on other cell types including lymphocytes and fibroblasts indicating that they may have pleiotropic anti-inflammatory, pro-resolution activity. In keeping with this, CDKi drugs like R-roscovitine have been reported to be efficacious in resolving established animal models of neutrophil-dominant and lymphocyte-driven inflammation. However, the mechanism of action behind these powerful effects has not yet been fully elucidated. CDKs play an integral role in the regulation of the cell cycle but are also recognized as participants in processes such as apoptosis and transcriptional regulation. Neutrophils have functional CDKs, are transcriptionally active and demonstrate augmented apoptosis in response to CDKi drugs, while lymphocyte proliferation

  2. In Vitro Metabolism and Drug-Drug Interaction Potential of UTL-5g, a Novel Chemo- and Radioprotective Agent

    PubMed Central

    Wu, Jianmei; Shaw, Jiajiu; Dubaisi, Sarah; Valeriote, Frederick

    2014-01-01

    N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemo- and radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3-carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the metabolism and drug interaction potential of UTL-5g in humans. The kinetics of UTL-5g hydrolysis was determined in human liver microsomes (HLM) and recombinant human carboxylesterases (hCE1b and hCE2). The potential of UTL-5g and its metabolites for competitive inhibition and time-dependent inhibition of microsomal cytochrome P450 (P450) was examined in HLM. UTL-5g hydrolysis to ISOX and DCA in HLM were NADPH-independent, with a maximum rate of reaction (Vmax) of 11.1 nmol/min per mg and substrate affinity (Km) of 41.6 µM. Both hCE1b and hCE2 effectively catalyzed UTL-5g hydrolysis, but hCE2 exhibited ∼30-fold higher catalytic efficiency (Vmax/Km) than hCE1b. UTL-5g and DCA competitively inhibited microsomal CYP1A2, CYP2B6, and CYP2C19 (IC50 values <50 µM), and exhibited time-dependent inhibition of microsomal CYP1A2 with the inactivation efficiency (kinact/KI) of 0.68 and 0.51 minute−1·mM−1, respectively. ISOX did not inhibit or inactivate any tested microsomal P450. In conclusion, hCE1b and hCE2 play a key role in the bioactivation of UTL-5g. Factors influencing carboxylesterase activities may have a significant impact on the pharmacological and therapeutic effects of UTL-5g. UTL-5g has the potential to inhibit P450-mediated metabolism through competitive inhibition or time-dependent inhibition. Caution is particularly needed for potential drug interactions involving competitive inhibition or time-dependent inhibition of CYP1A2 in the future clinical development of UTL-5g. PMID:25249693

  3. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    SciTech Connect

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long; Bao, Jin-ku

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  4. Reproductive Requirements and Life Cycle of Iberorhyzobius rondensis (Coleoptera: Coccinellidae), Potential Biological Control Agent of Matsucoccus feytaudi (Hemiptera: Matsucoccidae).

    PubMed

    Tavares, C; Jactel, H; van Halder, I; Branco, M

    2015-06-01

    Several pine bast scales (Hemiptera: Matsucoccidae) are important pests of pine trees in the Northern Hemisphere. Some species are invasive and cause significant economic and environmental impacts. Such is the case with Matsucoccus feytaudi Ducasse, an invasive pest of maritime pine forests in Southeastern France, Italy, and Corsica. The ladybird Iberorhyzobius rondensis (Eizaguirre) is a recently described species that is endemic to the Iberian Peninsula and is a potential candidate for the biological control of M. feytaudi. However, little is known of the biology of I. rondensis. As part of the risk assessment study for a classical biological control program, the phenology and reproductive mechanisms of the beetle were analyzed. I. rondensis is univoltine and is seasonally synchronized with the phenology of the prey M. feytaudi, which is also univoltine. An obligatory reproductive diapause of 5-6 mo and the need to feed on the eggs of the prey to begin oviposition emerged as the two primary mechanisms that assure life cycle synchronization of the ladybird with its prey. Female fecundity was also higher when the ladybirds were fed M. feytaudi eggs. Life cycle synchronization with M. feytaudi and reproduction triggered by consumption of prey eggs indicate that I. rondensis is a promising biological control agent of the pine bast scale. PMID:26313991

  5. Exposure to the Riot Control Agent CS and Potential Health Effects: A Systematic Review of the Evidence

    PubMed Central

    Dimitroglou, Yiannis; Rachiotis, George; Hadjichristodoulou, Christos

    2015-01-01

    o-Chlorobenzylidene malononitrile (CS) is one of the most extensively used riot control agents. Our aim was to conduct a systematic review of the potential health effects related to CS exposure. We searched for papers in English between 1991 and 2014. Thirty five (35) studies (25 case reports, seven descriptive studies and three analytical studies) were included in the review. In the twenty five case reports/series 90 cases of exposure to CS and their clinical effects are presented. Their mean age was 25.7 years and 62.0% were males. In addition, 61% of the cases described dermal, 40% respiratory, 57% ocular clinical effects. Life threatening situations as well as long-term health effects were found and were related with exposure to confined/enclosed space. Descriptive and analytical studies have shown attack rates ranging from 12% to 40%. Subjects who were sprayed by the police more often needed special treatment and reported adverse health effects. Apart from transient clinical effects, CS could have lasting and serious effects on human health. Better surveillance of the subjects exposed to CS and completion of cohort studies among exposed populations will illuminate the spectrum of the health effects of exposure to CS. PMID:25633030

  6. The potential of a fluorescent-based approach for bioassay of antifungal agents against chili anthracnose disease in Thailand.

    PubMed

    Chutrakul, Chanikul; Khaokhajorn, Pratoomporn; Auncharoen, Patchanee; Boonruengprapa, Tanapong; Mongkolporn, Orarat

    2013-01-01

    Severe chili anthracnose disease in Thailand is caused by Colletotrichum gloeosporioides and C. capsici. To discover anti-anthracnose substances we developed an efficient dual-fluorescent labeling bioassay based on a microdilution approach. Indicator strains used in the assay were constructed by integrating synthetic green fluorescent protein (sGFP) and Discosoma sp. red fluorescent protein (DsRedExp) genes into the genomes of C. gloeosporioides or C. capsici respectively. Survival of co-spore cultures in the presence of inhibitors was determined by the expression levels of these fluorescent proteins. This developed assay has high potential for utilization in the investigation of selective inhibition activity to either one of the pathogens as well as the broad-range inhibitory effect against both pathogens. The value of using the dual-fluorescent assay is rapid, reliable, and consistent identification of anti-anthracnose agents. Most of all, the assay enables the identification of specific inhibitors under the co-cultivation condition. PMID:23391904

  7. Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics

    PubMed Central

    Goytia, Maira M.; Donnelly, Paul S.; Schembri, Mark A.; Shafer, William M.

    2015-01-01

    There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen. PMID:26239980

  8. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer

    PubMed Central

    Heo, Tae-Hwe; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine with known multiple functions in immune regulation, inflammation, and oncogenesis. Binding of IL-6 to the IL-6 receptor (IL-6R) induces homodimerization and recruitment of glycoprotein 130 (gp130), which leads to activation of downstream signaling. Emerging evidence suggests that high levels of IL-6 are correlated with poor prognosis in breast cancer patients. IL-6 appears to play a critical role in the growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSCs), and drug resistance of BCSCs, making anti–IL-6/IL-6R/gp130 therapies promising options for the treatment and prevention of breast cancers. However, preclinical and clinical studies of the applications of anti–IL-6/IL-6R/gp130 therapy in breast cancers are limited. In this review, we summarize the structures, preclinical and clinical studies, mechanisms of action of chemical and biological blockers that directly bind to IL-6, IL-6R, or gp130, and the potential clinical applications of these pharmacological agents as breast cancer therapies. PMID:26840088

  9. Synthesis, physicochemical characterization, and biological activities of new carnosine derivatives stable in human serum as potential neuroprotective agents.

    PubMed

    Bertinaria, Massimo; Rolando, Barbara; Giorgis, Marta; Montanaro, Gabriele; Guglielmo, Stefano; Buonsanti, M Federica; Carabelli, Valentina; Gavello, Daniela; Daniele, Pier Giuseppe; Fruttero, Roberta; Gasco, Alberto

    2011-01-27

    The synthesis and the physicochemical and biological characterization of a series of carnosine amides bearing on the amido group alkyl substituents endowed with different lipophilicity are described. All synthesized products display carnosine-like properties differentiating from the lead for their high serum stability. They are able to complex Cu(2+) ions at physiological pH with the same stoichiometry as carnosine. The newly synthesized compounds display highly significant copper ion sequestering ability and are capable of protecting LDL from oxidation catalyzed by Cu(2+) ions, the most active compounds being the most hydrophilic ones. All the synthesized amides show quite potent carnosine-like HNE quenching activity; in particular, 7d, the member of the series selected for this kind of study, is able to cross the blood-brain barrier (BBB) and to protect primary mouse hippocampal neurons against HNE-induced death. These products can be considered metabolically stable analogues of carnosine and are worthy of additional investigation as potential neuroprotective agents. PMID:21182325

  10. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    SciTech Connect

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  11. In vitro characterization of 211 At-labeled antibody A33--a potential therapeutic agent against metastatic colorectal carcinoma.

    PubMed

    Almqvist, Ylva; Orlova, Anna; Sjöström, Anna; Jensen, Holger J; Lundqvist, Hans; Sundin, Anders; Tolmachev, Vladimir

    2005-10-01

    The humanized antibody A33 binds to the A33 antigen, expressed in 95% of primary and metastatic colorectal carcinomas. The restricted pattern of expression in normal tissue makes this antigen a possible target for radioimmunotherapy of colorectal micrometastases. In this study, the A33 antibody was labeled with the therapeutic nuclide (211)At using N-succinimidyl para-(tri-methylstannyl)benzoate (SPMB). The in vitro characteristics of the (211)At-benzoate-A33 conjugate ((211)At-A33) were investigated and found to be similar to those of (125)I-benzoate-A33 ((125)I-A33) in different assays. Both conjugates bound with high affinity to SW1222 cells (K(d) = 1.7 +/- 0.2 nM, and 1.8 +/- 0.1 nM for (211)At-A33 and (125)I-A33, respectively), and both showed good intracellular retention (70% of the radioactivity was still cell associated after 20 hours). The cytotoxic effect of (211)At-A33 was also confirmed. After incubation with (211)At-A33, SW1222 cells had a survival of approximately 0.3% when exposed to some 150 decays per cell (DPC). The cytotoxic effect was found to be dose-dependent, as cells exposed to only 56 DPC had a survival of approximately 5%. The (211)At-A33 conjugate shows promise as a potential radioimmunotherapy agent for treatment of micrometastases originating from colorectal carcinoma. PMID:16248767

  12. Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics.

    PubMed

    Djoko, Karrera Y; Goytia, Maira M; Donnelly, Paul S; Schembri, Mark A; Shafer, William M; McEwan, Alastair G

    2015-10-01

    There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen. PMID:26239980

  13. 1-Piperazinylphthalazines as potential VEGFR-2 inhibitors and anticancer agents: Synthesis and in vitro biological evaluation.

    PubMed

    Abou-Seri, Sahar M; Eldehna, Wagdy M; Ali, Mamdouh M; Abou El Ella, Dalal A

    2016-01-01

    In our endeavor towards the development of effective VEGFR-2 inhibitors, three novel series of phthalazine derivatives based on 1-piperazinyl-4-arylphthalazine scaffold were synthesized. All the newly prepared phthalazines 16a-k, 18a-e and 21a-g were evaluated in vitro for their inhibitory activity against VEGFR-2. In particular, compounds 16k and 21d potently inhibited VEGFR-2 at sub-micromolar IC50 values 0.35 ± 0.03 and 0.40 ± 0.04 μM, respectively. Moreover, seventeen selected compounds 16c-e, 16g, 16h, 16j, 16k, 18c-e and 21a-g were evaluated for their in vitro anticancer activity according to US-NCI protocol, where compounds 16k and 21d proved to be the most potent anticancer agents. While, compound 16k exhibited potent broad spectrum anticancer activity with full panel GI50 (MG-MID) value of 3.62 μM, compound 21d showed high selectivity toward leukemia and prostate cancer subpanels [subpanel GI50 (MG-MID) 3.51 and 5.15 μM, respectively]. Molecular docking of compounds16k and 21d into VEGFR-2 active site was performed to explore their potential binding mode. PMID:26590508

  14. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells

    PubMed Central

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in “personalized” therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  15. FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells.

    PubMed

    Zheng, Yanhong; Tang, Yunlan; Bao, Zhirong; Wang, Hui; Ren, Feng; Guo, Mingxiong; Quan, Hong; Jiang, Changzhong

    2015-01-01

    Nanomaterials have an advantage in "personalized" therapy, which is the ultimate goal of tumor treatment. In order to investigate the potential ability of FePt nanoparticles (NPs) in the diagnosis and chemoradiotherapy treatment of malignant tumors, superparamagnetic, monodispersed FePt (~3 nm) alloy NPs were synthesized, using cysteamine as a capping agent. The NPs were characterized by means of X-ray diffraction; transmission electron microscopy, Physical Property Measurement System, and Fourier transform infrared spectroscopy. The cytotoxicity of FePt NPs on Vero cells was assessed using an MTT assay, and tumor cell proliferation inhibited by individual FePt NPs and FePt NPs combined with X-ray beams were also collected using MTT assays; HeLa human cancer cell lines were used as in vitro models. Further confirmation of the combined effect of FePt NPs and X-rays was verified using HeLa cells, after which, the cellular uptake of FePt NPs was captured by transmission electron microscopy. The results indicated that the growth of HeLa cells was significantly inhibited by FePt NPs in a concentration-dependent manner, and the growth was significantly more inhibited by FePt NPs combined with a series of X-ray beam doses; the individual NPs did not display any remarkable cytotoxicity on Vero cells at a concentration <250 μg/mL. Meanwhile, the FePt NPs showed negative/positive contrast enhancement for MRI/CT molecule imaging at the end of the study. Therefore, the combined results implied that FePt NPs might potentially serve as a promising nanoprobe for the integration of tumor diagnosis and chemoradiotherapy. PMID:26604740

  16. Enhanced gastric retention of solid resin beads as a marker for emetic potential of agents in rats.

    PubMed

    Ando, Kentaro; Takagi, Kan; Tsubone, Hirokazu

    2012-01-01

    Whereas nausea and emesis are burdensome side effects that lead to poor treatment compliance especially in chemotherapy, it is difficult to predict the emetic potential of agents in rats and mice because rodents do not vomit. We examined the effect of emetics on gastric retention and role of serotonin (5-hydroxytryptamine, 5-HT)3 receptor in chemotherapeutic-induced enhancement of gastric retention in rats. The gastric retention of solid material was determined using resin beads, which were suitable to beads made with metals or glasses in size, hardness and weight. Each rat was orally given distilled water (0.5 ml/rat) containing 40 resin beads via a plastic feeding tube. The stomach was removed at 1 hr post-dose and cut along the greater curvature under carbon dioxide anesthesia. Beads were given immediately after administration of the drugs except with cisplatin, when there was a 1 hr delay. Cancer chemotherapeutics including cisplatin(0.1-3 mg/kg i.v.) and doxorubicin(0.3-10 mg/kg i.v.) and a nauseant, copper sulfate(1-30 mg/kg p.o.) enhanced gastric retention of beads. Ondansetron, a 5-HT3 receptor antagonist, dose-dependently antagonized the enhanced gastric retention by cisplatin and doxorubicin. The copper sulfate-induced enhancement was also reversed by ondansetron. Our results suggest that 5-HT3 receptors mediate the cancer chemotherapeutic-enhanced gastric retention of solid material in rats. This implicates that the gastric retention of solid material is a useful marker to predict the potential of compounds to induce nausea and/or emesis in non-vomiting rodents. PMID:22687994

  17. Hypokalemic paralysis and osteomalacia secondary to renal tubular acidosis in a case with primary Sjögren's syndrome.

    PubMed

    Kawashima, Masanori; Amano, Tetsuki; Morita, Yoshitaka; Yamamura, Masahiro; Makino, Hirofumi

    2006-01-01

    A 39-year-old Japanese woman was admitted to our hospital for severe weakness owing to potassium deficiency caused by type 1 renal tubular acidosis (RTA1). Sicca complex, serological tests, and lip biopsy revealed that she had Sjögren's syndrome (SS). Acidosis was corrected by alkali supplement treatment. She also had an impaired renal function with proteinuria, and high absorbance on Ga scintigram was recognized in both kidneys. She was taking warfarin potassium after aortic valve substitution due to aortic regurgitation, therefore renal biopsy was not performed. Prednisone (20 mg/day) was administered for renal inflammation. One month later, she suffered severe chest wall pains with some local tender points over the costae of both sides, which was presumed to be due to pseudo-fractures based on osteomalacia. Hypokalemic paralysis and osteomalacia should be taken into consideration in the diagnosis of SS with RTA1. PMID:16622725

  18. Single Agents with Designed Combination Chemotherapy Potential: Synthesis and Evaluation of Substituted Pyrimido[4,5-b]indoles as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents

    PubMed Central

    Gangjee, Aleem; Zaware, Nilesh; Raghavan, Sudhir; Ihnat, Michael; Shenoy, Satyendra; Kisliuk, Roy L.

    2010-01-01

    Combinations of antiangiogenic agents (AAs) with cytotoxic agents have shown significant promise and several such clinical trials are currently underway. We have designed, synthesized and evaluated two compounds that each inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) and platelet derived growth factor receptor-beta (PDGFR-β) for antiangiogenic effects and also inhibit human thymidylate synthase (hTS) for cytotoxic effects in single agents. The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate benzenethiols. The inhibitory potency of both these single agents against VEGFR-2, PDGFR-β and hTS is better than or close to standards. In a COLO-205 xenograft mouse model one of the analogs significantly decreased tumor growth (TGI = 76% at 35 mg/kg), liver metastases and tumor blood vessels compared to a standard drug and to control and thus demonstrated potent tumor growth inhibition, inhibition of metastasis and antiangiogenic effects in vivo. These compounds afford combination chemotherapeutic potential in single agents. PMID:20092323

  19. Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations.

    PubMed

    Sokolov, Stanislav; Scheuer, Todd; Catterall, William A

    2010-08-01

    Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge-carrying arginine residues in skeletal muscle Na(V)1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only approximately 1% of central pore current, but substitution of guanidine for sodium in the extracellular solution increases their size by 13- +/- 2-fold. Ethylguanidine is permeant through the R666G gating pore at physiological membrane potentials but blocks the gating pore at hyperpolarized potentials. Guanidine is also highly permeant through the proton-selective gating pore formed by the mutant R666H. Gating pore current conducted by the R666G mutant is blocked by divalent cations such as Ba(2+) and Zn(2+) in a voltage-dependent manner. The affinity for voltage-dependent block of gating pore current by Ba(2+) and Zn(2+) is increased at more negative holding potentials. The apparent dissociation constant (K(d)) values for Zn(2+) block for test pulses to -160 mV are 650 +/- 150 microM, 360 +/- 70 microM, and 95.6 +/- 11 microM at holding potentials of 0 mV, -80 mV, and -120 mV, respectively. Gating pore current is blocked by trivalent cations, but in a nearly voltage-independent manner, with an apparent K(d) for Gd(3+) of 238 +/- 14 microM at -80 mV. To test whether these periodic paralyses might be treated by blocking gating pore current, we screened several aromatic and aliphatic guanidine derivatives and found that 1-(2,4-xylyl)guanidinium can block gating pore current in the millimolar concentration range without affecting normal Na(V)1.4 channel function. Together, our results demonstrate unique permeability of guanidine through Na(V)1.4 gating pores, define voltage-dependent and voltage-independent block by divalent and trivalent cations, respectively, and provide initial support for the concept that guanidine-based gating pore blockers

  20. THE POTENTIAL OF THE ENDOPHYTIC FUNGUS, MUSCODOR ALBUS, AS A BIO-CONTROL AGENT AGAINST ECONOMICALLY IMPORTANT PLANT PARASITIC NEMATODES OF VEGETABLE CROPS IN WASHINGTON STATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Muscodor albus produces a mixture of antimicrobial volatile organic chemicals with activity against post-harvest disease causing organisms, insect pests of harvested fruit and tubers, and soil-borne disease causing agents and plant parasitic nematodes. M. albus was tested for its potenti...

  1. Behavioral and antioxidant activity of a tosylbenz[g]indolamine derivative. A proposed better profile for a potential antipsychotic agent

    PubMed Central

    Zika, Chara A; Nicolaou, Ioannis; Gavalas, Antonis; Rekatas, George V; Tani, Ekaterini; Demopoulos, Vassilis J

    2004-01-01

    Background Tardive dyskinesia (TD) is a major limitation of older antipsychotics. Newer antipsychotics have various other side effects such as weight gain, hyperglycemia, etc. In a previous study we have shown that an indolamine molecule expresses a moderate binding affinity at the dopamine D2 and serotonin 5-HT1A receptors in in vitro competition binding assays. In the present work, we tested its p-toluenesulfonyl derivative (TPBIA) for behavioral effects in rats, related to interactions with central dopamine receptors and its antioxidant activity. Methods Adult male Fischer-344 rats grouped as: i) Untreated rats: TPBIA was administered i.p. in various doses ii) Apomorphine-treated rats: were treated with apomorphine (1 mg kg-1, i.p.) 10 min after the administration of TPBIA. Afterwards the rats were placed individually in the activity cage and their motor behaviour was recorded for the next 30 min The antioxidant potential of TPBIA was investigated in the model of in vitro non enzymatic lipid peroxidation. Results i) In non-pretreated rats, TPBIA reduces the activity by 39 and 82% respectively, ii) In apomorphine pretreated rats, TPBIA reverses the hyperactivity and stereotype behaviour induced by apomorphine. Also TPBIA completely inhibits the peroxidation of rat liver microsome preparations at concentrations of 0.5, 0.25 and 0.1 mM. Conclusion TPBIA exerts dopamine antagonistic activity in the central nervous system. In addition, its antioxidant effect is a desirable property, since TD has been partially attributed, to oxidative stress. Further research is needed to test whether TPBIA may be used as an antipsychotic agent. PMID:14711381

  2. siRNA Against KIR3DL1 as a Potential Gene Therapeutic Agent in Controlling HIV-1 Infection

    PubMed Central

    Fu, Geng-Feng; Pan, Ji-Cheng; Lin, Nan; Hu, Hai-Yang; Tang, Wei-Ming; Xu, Jin-Shui; Wang, Xiao-Liang; Xu, Xiao-Qin; Qiu, Tao; Liu, Xiao-Yan; Chen, Guo-Hong; Mahapatra, Tanmay; Huan, Xi-Ping

    2014-01-01

    Abstract Objectives: The aim of this study was to develop a small interfering RNA (siRNA) against the expression of KIR3DL1 receptor on natural killer (NK) cells, in order to promote the ability of NK cells to destroy human immunodeficiency virus (HIV)-infected cells and thus prevent failure of siRNA therapy targeting human immunodeficiency virus type 1 (HIV-1) virus among HIV-1 infected patients in vitro. Methods: A siRNA targeting KIR3DL1 was synthesized and then modified with cholesterol, methylene, and sulfate. The inhibitory action of the siRNAs on primary cultured NK cells was detected. The amount of IFN-γ and TNF-α secretions in NK cells was measured. The intended functions of NK cells in vitro were analyzed by CFSE and PI methods. Results: There were no significant differences in inhibiting the expression of KIR3DL1 on NK cells between the modified and unmodified siRNAs, while inhibition by each of them differed significantly from controls. The amount of IFN-γ and TNF-α secretions in the NK cells was abundant due to unsuccessful expression of KIR3DL1 on NK cells, which further promoted function of the NK cells. Conclusion: The siRNA against KIR3DL1 could enhance the ability of the NK cells to kill the HIV-1 infected cells in vitro and successfully prevented the failure of siRNA therapy targeting the HIV-1 virus. Therefore, it can act as a potential gene therapeutic agent among HIV-1 infected people. PMID:24834927

  3. Synthesis, uptake mechanism characterization and biological evaluation of 18F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents

    PubMed Central

    Wang, Limin; Qu, Wenchao; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2010-01-01

    Introduction Amino acids based tracers represent a promising class of tumor metabolic imaging agents with successful clinical applications. Two new phenylalanine derivatives, p-(2-[18F]fluoroethyl)-L-phenylalanine (FEP, [18F]2) and p-(3-[18F]fluoropropyl)-L-phenylalanine (FPP, [18F]3) were synthesized and evaluated in comparison to clinically utilized O-(2-[18F]fluoroethyl)-L-tyrosine (FET, [18F]1). Methods FEP ([18F]2) and FPP ([18F]3) were successfully synthesized by a rapid and efficient two-step nucleophilic fluorination of tosylate precursors and deprotection reaction. In vitro cell uptake studies were carried out in 9L glioma cells. In vivo studies, 9L tumor xenografts were implanted in Fisher 344 rats. Results FEP ([18F]2) and FPP ([18F]3) could be efficiently labeled within 90 min with good enantiomeric purity (>95%), good yield (11–37%) and high specific activity (21–69 GBq/μmol). Cell uptake studies showed FEP had higher uptake than FPP as well as reference ligand FET ([18F]1). Uptake mechanism studies suggested that FEP is a selective substrate for system L and prefers its subtype LAT1. In vivo biodistribution studies demonstrated FEP had specific accumulation in tumor cells and tumor to background ratio reached 1.45 at 60 min. Small animal PET imaging studies showed FEP was comparable to FET for imaging rats bearing 9L tumor model. FEP had high uptake in 9L tumor compared to surrounding tissue and was quickly excreted through urinary tract. Conclusion Biological evaluations indicate that FEP ([18F]2) is a potential useful tracer for tumor imaging with PET. PMID:21220129

  4. Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential T1 Theranostic Magnetic Resonance Imaging Agent.

    PubMed

    Kang, Min-Kyoung; Lee, Gang Ho; Jung, Ki-Hye; Jung, Jae-Chang; Kim, Hee-Kyung; Kim, Yeon-Hee; Lee, Jongmin; Ryeom, Hun-Kyu; Kim, Tae-Jeong; Chang, Yongmin

    2016-05-01

    This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B. PMID:27305813

  5. α-Santalol, a skin cancer chemopreventive agent with potential to target various pathways involved in photocarcinogenesis.

    PubMed

    Santha, Sreevidya; Dwivedi, Chandradhar

    2013-01-01

    This study is designed to investigate the chemopreventive effect and molecular mechanisms of α-santalol on UVB-induced skin tumor development in SKH-1 hairless mouse, a widely used model for human photocarcinogenesis. A dose of UVB radiation (30 mJ cm(-2) day(-1)) that is in the range of human sunlight exposure was used for the initiation and promotion of tumor. Topical treatment of mice with α-santalol (10%, wt/vol in acetone) caused reduction in tumor incidence, multiplicity and volume. In our study, the anticarcinogenic action of α-santalol against UVB-induced photocarcinogenesis was found to be associated with inhibition of inflammation and epidermal cell proliferation, cell cycle arrest and induction of apoptosis. α-Santalol pretreatment strongly inhibited UVB-induced epidermal hyperplasia and thickness of the epidermis, expression of proliferation and inflammation markers proliferating cell nuclear antigen (PCNA), Ki-67 and cyclooxygenase 2 (Cox-2). Significant decrease in the expression of cyclins A, B1, D1 and D2 and cyclin-dependent kinases (Cdk)s Cdk1 (Cdc2), Cdk2, Cdk4 and Cdk6 and an upregulated expression of cyclin-dependent kinase (CDK) inhibitor Cip1/p21 were found in α-santalol pretreated group. Furthermore, an elevated level of cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in α-santalol-treated group. Our data suggested that α-santalol is a safer and promising skin cancer chemopreventive agent with potential to target various pathways involved in photocarcinogenesis. PMID:23480292

  6. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes.

    PubMed

    Jacobs, Helen; Gray, Simon N; Crump, David H

    2003-01-01

    The efficacies of three nematophagous fungi, Paecilomyces lilacinus, Plectosphaerella cucumerina and Pochonia chlamydosporia, for controlling potato cyst nematodes (PCN) as part of an Integrated Pest Management (IPM) regime were studied. The compatibility of the nematophagous fungi with commonly used chemical pesticides and their ability to compete with the soil fungi Rhizoctonia solani, Chaetomium globosum, Fusarium oxysporum, Penicillium bilaii and Trichoderma harzianum were tested in vitro. Paecilomyces lilacinus was the most successful competitor when the ability to grow and inhibit growth of an opposing colony at both 10 and 20 degrees C was considered. P. lilacinus also showed potential for control of the soil-borne fungal pathogen R. solani, releasing a diffusable substance in vitro which inhibited its growth and caused morphological abnormalities in its hyphae. Pochonia chlamydosporia was least susceptible to growth inhibition by other fungi at 20 degrees in vitro, but the isolate tested did not grow at 10 degrees. Plectosphaerella cucumerina was a poor saprophytic competitor. Radial growth of Paecilomyces lilacinus and Plectosphaerella cucumerina was slowed, but not prevented, when grown on potato dextrose agar incorporating the fungicides fenpiclonil and tolclofos-methyl, and was not inhibited by the addition of pencycuron or the nematicide oxamyl. Radial growth of Pochonia chlamydosporia was partially inhibited by all the chemical pesticides tested. The efficacy of Paecilomyces lilacinus as a control agent for R. solani was further investigated in situ. Treatment with P. lilacinus significantly reduced the symptoms of Rhizoctonia disease on potato stems in a pot trial. The effectiveness of P. lilacinus and P. cucumerina against PCN was also tested in situ. Three application methods were compared; incorporating the fungi into alginate pellets, Terra-Green inoculated with the fungi and applying conidia directly to the tubers. Both formulations containing P

  7. Host plant oviposition preference of Ceratapion basicorne (Coleoptera:Apionidae), a potential biological control agent of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceratapion basicorne (Coleoptera: Apionidae) is a weevil native to Europe and western Asia that is being evaluated as a prospective classical biological control agent of Centaurea solstitialis (yellow starthistle) in the United States. Choice oviposition experiments were conducted under laboratory ...

  8. Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors

    PubMed Central

    Barth, Rolf F; Wu, Gong; Meisen, W Hans; Nakkula, Robin J; Yang, Weilian; Huo, Tianyao; Kellough, David A; Kaumaya, Pravin; Turro, Claudia; Agius, Lawrence M; Kaur, Balveen

    2016-01-01

    The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux®) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt) employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic) convection-enhanced delivery (CED) to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP382-Pt and PEP455-Pt bioconjugates were cytotoxic in vitro and, based on this, a pilot study was initiated using PEP455-Pt. The end point for this study was tumor size at 6 weeks following tumor cell implantation and 4 weeks following ic CED of PEP455-Pt to F98 glioma-bearing rats. Neuropathologic examination revealed that five of seven rats were either tumor-free or only had microscopic tumors at 42 days following tumor implantation compared to a mean survival time of 20.5 and 26.3 days for untreated controls. In conclusion, we have succeeded in reformatting the

  9. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    PubMed Central

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    . Conclusion This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents. PMID:22334779

  10. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.

    PubMed

    Seo, Yu Seon; Cha, Song-Hyun; Yoon, Hye-Ran; Kang, Young-Hwa; Park, Youmie

    2015-04-01

    The sustainable synthesis of gold nanoparticles from gold ions was conducted with caffeic acid as a green reducing agent. The formation of gold nanoparticles was confirmed by spectroscopic and microscopic methods. Spherical nanoparticles with an average diameter of 29.99 ± 7.43 nm were observed in high- resolution transmission electron microscopy and atomic force microscopy images. The newly prepared gold nanoparticles exhibited catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. This system enables the preparation of green catalysts using plant natural products as reducing agents, which fulfills the growing need for sustainability initiatives. PMID:25973494

  11. Repositioning of Endonuclear Receptors Binders as Potential Antibacterial and Antifungal Agents. Eptyloxìm: A Potential and Novel Gyrase B and Cytochrome Cyp51 Inhibitor.

    PubMed

    Carrieri, Antonio; L'Abbate, Maria; Di Chicco, Mariangela; Rosato, Antonio; Carbonara, Giuseppe; Fracchiolla, Giuseppe

    2016-09-01

    A novel class of antibacterial and antifungal agents is here identified by means of dockings and virtual screening techniques. Biological data proved the initial effort, formulated on the structure similarity of nuclear receptors binders with known quinolones or thiazole derivatives, to reposition PPARs agonists as likely bacterial type II topoisomerases inhibitors. PMID:27546036

  12. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of pore forming agents.

    PubMed

    Selvakumaran, Suguna; Muhamad, Ida Idayu; Abd Razak, Saiful Izwan

    2016-01-01

    Floating hydrogels were prepared from kappa carrageenan containing CaCO3 and NaHCO3 as pore forming agents. The effects of CaCO3 and NaHCO3 on hydrogel characterizations were investigated and compared. Amoxicillin trihydrate was used as a model drug. Characterizations of the hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). As pore forming agents concentration increases, the porosity (%) and floating properties increased. NaHCO3 incorporated hydrogels showed higher porosity with shorter floating lag time (FLT) than CaCO3. Hydrogel which contained CaCO3 exhibited better gel stability over the control and NaHCO3 containing gel. Incorporation of CaCO3 into kappa carrageenan hydrogel showed smoother surface gels compared to those produced with NaHCO3. CaCO3 also showed higher drug entrapment efficiency and sustained drug release profile than NaHCO3. The results of these studies showed that, CaCO3 is an effective pore forming agents in κC hydrogels preparation as compare to NaHCO3. Thus, CaCO3 can be an excellent pore forming agent for an effective floating drug delivery system. PMID:26453870

  13. Phenology and temperature-dependent development of Ceutorhynchus assimilis, a potential biological control agent for Lepidium draba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heart-podded hoary cress (Lepidium draba) is an alien weed that has invaded rangeland in the northwestern USA. A host race (i;e; host-specific biotype) of the weevil, Ceutorhynchus assimilis, is being evaluated as a prospective biological control agent. This biotype is only known from southern Eur...

  14. Potentiation of cytotoxicity by 3-aminobenzamide in DNA repair-deficient human tumor cell lines following exposure to methylating agents or anti-neoplastic drugs.

    PubMed

    Babich, M A; Day, R S

    1988-04-01

    We studied the potentiation by 3-aminobenzamide (3AB) of killing of nine human cell lines exposed to alkylating agents. Cell lines included normal, transformed and DNA repair-proficient and -deficient phenotypes. 3AB potentiated cell killing by the methylating agents methylmethanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in all lines tested. The degree of potentiation ranged from 1.7- to 3.8-fold, based on the LD99. The average potentiation observed with MMS (2.7-fold) was greater than with MNNG (2.2-fold). On average the potentiation of MMS and MNNG killing of repair-deficient Mer- lines (2.4-fold) was similar to that of repair-proficient Mer+ lines. The degree of 3AB potentiation of MNNG killing (2.0-fold) was similar in Mer+ Rem- lines and in Mer+ Rem+ lines. Mer+ Rem+, Mer+ Rem-, Mer- Rem+, and Mer- Rem- strains all appeared proficient in a 3AB-sensitive DNA repair pathway. Within experimental error, 20 mM 3AB did not inhibit the removal of the MNNG-induced methylpurines 7-methylguanine, O6-methylguanine and 3-methyladenine from the DNA of repair-proficient Mer+ Rem+ HT29 cells, consistent with evidence that 3AB inhibits the ligation step of excision repair. 3AB potentiated cell killing by the bifunctional alkylating agents 1-(2-chlorethyl)-1-nitrosourea or busulfan, two anti-neoplastic drugs, by only 0.9- to 1.5-fold. These drugs therefore produce DNA damage which is not efficiently repaired by the pathways that repair methylated bases. PMID:3356063

  15. 1α,25-Dihydroxyvitamin D3-3β-bromoacetate, a potential cancer therapeutic agent: synthesis and molecular mechanism of action

    PubMed Central

    Ray, Rahul; Lambert, James R.

    2011-01-01

    Synthesis of 1α,25-dihydroxyvitamin D3-3β-bromoacetate (1,25(OH)2D3-3-BE), a potential anti-cancer agent is presented. We also report that mechanism of action of 1,25(OH)2D3-3-BE may involve reduction of its catabolism, as evidenced by the reduced and delayed expression of 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) gene in cellular assays. PMID:21392983

  16. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables.

    PubMed

    Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen

    2013-11-27

    A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin. PMID:24215568

  17. 18-Methoxycoronaridine, a potential anti-obesity agent, does not produce a conditioned taste aversion in rats.

    PubMed

    Taraschenko, Olga D; Maisonneuve, Isabelle M; Glick, Stanley D

    2010-09-01

    18-Methoxycoronaridine (18-MC), a selective antagonist of alpha3beta4 nicotinic receptors, has been shown to reduce the self-administration of several drugs of abuse. Recently, this agent has also been shown to attenuate sucrose reward, decrease sucrose intake and prevent the development of sucrose-induced obesity in rats. The present experiments were designed to determine whether the latter effect was due to an 18-MC-induced conditioned taste aversion to sucrose. Both 18-MC (20mg/ kg, i.p.) and control agent, lithium chloride (100mg/kg, i.p.), reduced sucrose intake 24h after association with sucrose; however, only lithium chloride reduced sucrose intake 72h later. Consistent with previous data, 18-MC appears to have proactive effect for 24h and it does not induce a conditioned taste aversion. PMID:20457177

  18. Synthesis and evaluation of gallocyanine dyes as potential agents for the treatment of Alzheimer's disease and related neurodegenerative tauopathies.

    PubMed

    Mpousis, Spyros; Thysiadis, Savvas; Avramidis, Nicolaos; Katsamakas, Sotirios; Efthimiopoulos, Spiros; Sarli, Vasiliki

    2016-01-27

    In search of safe and effective anti-Alzheimer disease agents a series of gallocyanine dyes have been synthesized and evaluated for their ability to inhibit LRPs/DKK1 interactions. Modulation of the interactions between LRPS and DKK1, regulate Wnt signaling pathway and affect Tau phosphorylation. The current efforts resulted in the identification of potent DKK1 inhibitors which are able to inhibit prostaglandin J2-induced tau phosphorylation at serine 396. PMID:26629858

  19. Design, synthesis and evaluation of redox radiopharmaceuticals: a potential new approach for the development of brain imaging agents

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.

    1986-01-01

    The fabrication and complete evaluation are described of a dihydropyridine in equilibrium pyridinium salt type redox system for the delivery of radioiodinated agents to the brain. The pivotal intermediate, N-succinimidyl (1-methylpyridinium iodide)-3-carboxylate was prepared by condensation of nicotinic acid and N-hydroxysuccinimide in the presence of dicyclohexylcarbodimide, followed by quaternization of III with methyl iodide. Tissue distribution studies of /sup 125/I-labeled 4-iodoaniline and the redox agents were performed in rats. (/sup 125/I)Iodoaniline initially showed moderate (0.58% dose/gm) brain uptake with subsequent release of the radioactivity from the brain. (/sup 125/I)Iodoaniline, when coupled to a dihydropyridine carrier showed higher uptake and retention in the brain. The (/sup 125/I)iodophenylethyl analogue showed uptake and retention in the brain to be very similar. Apparently the lipophilic agents cross the blood-brain barrier and are oxidized (quaternized) within the brain. The blood-brain barrier then prevents their release resulting in high uptake and retention in the brain and high brain:blood ratios. 11 refs., 3 figs.

  20. Exclusion of linkage between hypokalemic periodic paralysis and a candidate region in 1q31-32 suggests genetic heterogeneity

    SciTech Connect

    Sillen, A.; Wadelius, C.; Gustabson, K.H.

    1994-09-01

    Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant disease with attacks of paralysis of varying severity. The attacks occur at intervals of days to years in otherwise healthy people combined with hypokalemia during attacks. The paralysis attacks are precipitated by a number of different factors, like carbohydrate-rich meals, cold, exercise and mental stress. Recently linkage for HOKPP was shown for chromosome 1q31-32 and the disease was mapped between D1S413 and D1S249. The gene for the calcium channel alfa1-subunit (CACNL 1A3) maps to this interval and in two families no recombination was found between a polymorphism in the CACNL 1A3 gene and the disease. This gene is therefore considered to be a candidate for HOKPP. The analysis of a large Danish family excludes linkage to this region and to the CACNL 1A3 gene. In each direction from D1S413, 18.8 cM could be excluded and for D1S249, 14.9 cM. The present study clearly excludes the possibility that the gene causing HOKPP in a large Danish family is located in the region 1q31-32. This result shows that HOKPP is a heterogenous disease, with only one mapped gene so far.

  1. [A case of primary aldosteronism presenting hypokalemic myopathy induced by benidipine hydrochloride; a dihydropyridine calcium channel blocker].

    PubMed

    Sugawara, H; Shiraiwa, H; Otsuka, M; Ueki, A

    2000-05-01

    We report a 46-year-old man with primary aldosteronism presenting hypokalemia, periodic paralysis and hypokalemic myopathy whose clinical course paralleled with the dosage of benidipine hydrochloride, a dihydropyridine calcium channel blocker (DHP-CCB), administered for the treatment of hypertension. To see relations between DHP-CCB and episodes of motor weakness in patients with primary aldosteronism, we surveyed retrospectively the history of motor weakness and anti-hypertensive drugs in 14 consecutive cases with primary aldosteronism in our institute. Five patients out of 11 cases (45.5%) who had received DHP-CCB experienced muscle weakness, however, the rest of three patients receiving other anti-hypertensive drug had not experienced weakness. Though, less attention has been paid as thiazide diuretics, it is reported that DHP-CCB also induces hypokalemia through several mechanisms. However, the occurrence of motor weakness by DHP-CCB is very rare. Our results show that primary aldosteronism should be taken into account when we encounter patients manifesting episodic motor weakness by the use of DHP-CCB. PMID:11002726

  2. Managing potential drug-drug interactions between gastric acid-reducing agents and antiretroviral therapy: experience from a large HIV-positive cohort.

    PubMed

    Lewis, J M; Stott, K E; Monnery, D; Seden, K; Beeching, N J; Chaponda, M; Khoo, S; Beadsworth, M B J

    2016-02-01

    Drug-drug interactions between antiretroviral therapy and other drugs are well described. Gastric acid-reducing agents are one such class. However, few data exist regarding the frequency of and indications for prescription, nor risk assessment in the setting of an HIV cohort receiving antiretroviral therapy. To assess prevalence of prescription of gastric acid-reducing agents and drug-drug interaction within a UK HIV cohort, we reviewed patient records for the whole cohort, assessing demographic data, frequency and reason for prescription of gastric acid-reducing therapy. Furthermore, we noted potential drug-drug interaction and whether risk had been documented and mitigated. Of 701 patients on antiretroviral therapy, 67 (9.6%) were prescribed gastric acid-reducing therapy. Of these, the majority (59/67 [88.1%]) were prescribed proton pump inhibitors. We identified four potential drug-drug interactions, which were appropriately managed by temporally separating the administration of gastric acid-reducing agent and antiretroviral therapy, and all four of these patients remained virally suppressed. Gastric acid-reducing therapy, in particular proton pump inhibitor therapy, appears common in patients prescribed antiretroviral therapy. Whilst there remains a paucity of published data, our findings are comparable to those in other European cohorts. Pharmacovigilance of drug-drug interactions in HIV-positive patients is vital. Education of patients and staff, and accurate data-gathering tools, will enhance patient safety. PMID:25721922

  3. Indomethacin/ibuprofen-like anti-inflammatory agents selectively potentiate the gamma-aminobutyric acid-antagonistic effects of several norfloxacin-like quinolone antibacterial agents on [35S]t-butylbicyclophosphorothionate binding.

    PubMed

    Squires, R F; Saederup, E

    1993-05-01

    Four piperazinoquinolone antibacterial drugs (norfloxacin, ciprofloxacin, enoxacin, and pipemidic acid), known to be gamma-aminobutyric acid (GABA) antagonists, fully reversed the inhibitory effect of GABA on [35S]t-butylbicyclophosphorothionate ([35S] TBPS) binding to rat brain membranes in vitro. Twelve indomethacin/ibuprofen-like arylalkanoic acid (AAA) anti-inflammatory drugs alone had no effect on [35S]TBPS binding, or on its inhibition by GABA, but potentiated the GABA-antagonistic effects of the four quinolones. Felbinac (4-biphenylacetic acid) was most potent in this respect (EC50 = 110 nM, together with 5 microM norfloxacin), followed by flurbiprofen > anirolac > metiazinic acid > tolmetin = ketoprofen = fenbufen = indomethacin > fenoprofen > ibuprofen = (+)-naproxen = sulindac. Other anti-inflammatory analgesic drugs, including aspirin, diclofenac, diflunisal, meclofenamic acid, mefenamic acid, nambumetone, phenacetin, piroxicam, and phenylbutazone, failed to potentiate the GABA-antagonistic effect of norfloxacin. Felbinac (1 microM) increased the GABA-antagonistic potencies of norfloxacin and enoxacin about 26-fold, while increasing those of ciprofloxacin and pipemidic acid 7-fold and 2.3-fold, respectively. Using subsaturating concentrations of the four quinolones, concentration-response curves for felbinac yielded EC50 values ranging from 110 nM with 5 microM norfloxacin to 1.3 microM with 100 microM pipemidic acid. Three other piperazinoquinolone antibacterial agents (amifloxacin, difloxacin, and fleroxacin) and four nonpiperazinoquinolone anti-bacterial agents (oxolinic acid, cinoxacin, nalidixic acid, and piromidic acid) were much weaker GABA antagonists and were not significantly potentiated by felbinac. All other known GABAA receptor blockers tested, including R 5135, pitrazepin, bicuculline, SR 95531, strychnine, D-tubocurarine, thebaine, securinine, theophylline, and caffeine, were not potentiated by felbinac. Our results suggest that

  4. Neoadjuvant and conversion treatment of patients with colorectal liver metastasis: the potential role of bevacizumab and other antiangiogenic agents.

    PubMed

    García-Alfonso, Pilar; Ferrer, Ana; Gil, Silvia; Dueñas, Rosario; Pérez, María Teresa; Molina, Raquel; Capdevila, Jaume; Safont, María José; Castañón, Carmen; Cano, Juana María; Lara, Ricardo

    2015-12-01

    More than 50 % of patients with colorectal cancer develop liver metastases. Surgical resection is the only available treatment that improves survival in patients with colorectal liver metastases (CRLM). New antiangiogenic targeted therapies, such as bevacizumab, aflibercept, and regorafenib, in combination with neoadjuvant and conversion chemotherapy may lead to improved response rates in this population of patients and increase the proportion of patients eligible for surgical resection. The present review discusses the available data for antiangiogenic targeted agents in this setting. One of these therapies, bevacizumab, which targets the vascular endothelial growth factor (VEGF) has demonstrated good results in this setting. In patients with initially unresectable CRLM, the combination of 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) plus bevacizumab has led to high response and resection rates. This combination is also effective for patients with unresectable CRLM. Moreover, the addition of bevacizumab to chemotherapy in the neoadjuvant setting of liver metastasis has a higher impact on pathological response rate. This drug also has a manageable safety profile, and according to recent data, bevacizumab may protect against the sinusoidal dilation provoked in the liver by certain cytotoxic agents. In phase II trials, antiangiogenic therapy has demonstrated benefits in the presurgical treatment of CRLM and may represent a new treatment pathway for these patients. PMID:25752908

  5. N-(/sup 11/C)-methyl-p-substituted phentermine analogs as potential brain blood flow agents for positron tomography

    SciTech Connect

    Kizuka, H.; Elmaleh, D.R.; Boudreaux, G.J.; Anderton, K.D.; Strauss, H.W.; Ackerman, R.H.; Brownell, G.L.

    1984-01-01

    The addition of a methyl group to the ..cap alpha..-position of amphetamine increases both the lipophilicity of the agent and its resistance to metabolism by monoamine oxidase. In addition, since tritium substituted phenteramine analog studies suggested that the p-halo phentermines had a greater concentration in the brain and prolonged retention time, the authors evaluated the biological behavior of positron labeled ..cap alpha..-methylamphetamine (phenteramine) in rats, dogs and monkeys. The N-(/sup 11/C) methyl analogs of p-chloro (I) and p-fluoro (II) phentermines were prepared by methylation of their primary amines using /sup 11/Ch/sub 3/I. Biodistribution studies in rats shows brain uptake is in the range of 1% dose/gr at 5 and 15 min for both agents. The activity in blood and eyes is low. Sequential images of the dogs' brain over 1 hour revealed a clearance of <15%. Images of the monkey brain were also obtained using a MGH positron camera PCR-I.

  6. Non-Lethal Control of the Cariogenic Potential of an Agent-Based Model for Dental Plaque

    PubMed Central

    Head, David A.; Marsh, Phil D.; Devine, Deirdre A.

    2014-01-01

    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments. PMID:25144538

  7. NIR and visible investigation of some potential SERS-active substrates for studying antitumour agent all- trans retinoic acid

    NASA Astrophysics Data System (ADS)

    Beljebbar, A.; Sockalingum, G. D.; Morjani, H.; Angiboust, J. F.; Manfait, M.

    1997-01-01

    Red and near-infrared excited Fourier transform surface-enhanced Raman spectra of an anticancer agent, all- trans retinoic acid (ATRA), adsorbed on gold island films are reported. Best results have been obtained with plates 80 Å and 40 Å thick respectively in the red and near-infrared and at concentrations of 10 -5 and 5 × 10 -6 M with a spinning system. The use of near-infrared laser excitation with low photon energy, allows us to overcome the problems of isomerisation when the sample is exposed for a long time to the laser radiation. Comparison between the Raman and SERS spectra in the visible shows that the adsorption on the surface does not perturb the structure of ATRA and confirms the long range enhancement of the island films with this type of molecule. Spectral data show that while gold island films and colloids are appropriate substrates for use with red excitation, silver and gold colloids as well as gold island films exhibit satisfactory enhancement levels in the near-infrared. This study will in the future allow us to choose the appropriate system that will serve to investigate the interaction of ATRA with its target in vitro and the effect of this differentiating agent in human leukaemia cell lines such as K562 and HL60.

  8. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque.

    PubMed

    Head, David A; Marsh, Phil D; Devine, Deirdre A

    2014-01-01

    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments. PMID:25144538

  9. Profilin potentiates chemotherapeutic agents mediated cell death via suppression of NF-κB and upregulation of p53.

    PubMed

    Zaidi, Adeel H; Raviprakash, Nune; Mokhamatam, Raveendra B; Gupta, Pankaj; Manna, Sunil K

    2016-04-01

    The molecular mechanism by which Profilin acts as a tumor suppressor is still unclear. Several chemotherapeutic agents, used till date either have unfavorable side effects or acquired resistance in tumor cells. Our findings show that Profilin enhances cell death mediated by several chemotherapeutic-agents. The activation of NF-κB and its dependent genes, mediated by paclitaxel and vinblastine, was completely inhibited in Profilin overexpressing cells. This inhibition was due to the Profilin mediated attenuation of IκBα degradation, thereby preventing p65 nuclear translocation and low NF-κB DNA binding activity.Moreover, Profilin increases level of p53 in the presence of known inducers, such as doxorubicin, vinblastine, and benzofuran. This increased p53 level leads to enhanced cell death as indicated by activation of caspases 3, 8, 9, which results in cleavage of PARP.Furthermore, knocking down of p53 in Profilin overexpressing cells leads to decreased cell death. Ectopic expression of Profilin in HCT116 p53 knock out cells showed lesser cell death as compared to the HCT116 p53 wild type cells. For the first time, we provide evidences, which suggest that Profilin synergizes with chemotherapeutic drugs to induce tumor cell death by regulating NF-κB and p53. Thus, modulation of Profilin may be a useful strategy for effective combination therapy. PMID:26842845

  10. Imatinib Analogs as Potential Agents for PET Imaging of Bcr-Abl/c-KIT Expression at a Kinase Level

    PubMed Central

    Peng, Zhenghong; Maxwell, David S.; Sun, Duoli; Bhanu Prasad, Basvoju A.; Pal, Ashutosh; Wang, Shimei; Balatoni, Julius; Ghosh, Pradip; Lim, Seok T.; Volgin, Andrei; Shavrin, Aleksander; Alauddin, Mian M.; Gelovani, Juri G.; Bornmann, William G.

    2014-01-01

    We synthesized two series of imatinib mesylate (STI-571) analogs to develop a Bcr-Abl and c-KIT receptor-specific labeling agent for positron emission tomography (PET) imaging to measure Bcr-Abl and c-KIT expression levels in a mouse model. The methods of molecular modeling, synthesis of STI-571 and its analogs, in vitro kinase assays, and radiolabeling are described. Molecular modeling revealed that these analogs bind the same Bcr-Abl and c-KIT binding sites as those bound by STI-571. The analogs potently inhibit the tyrosine kinase activity of Bcr-Abl and c-KIT, similarly to STI-571. [18F]-labeled STI-571 was prepared with high specific activity (75 GBq/μmol) by nucleophilic displacement and an average radiochemical yield of 12%. [131I]-labeled STI-571 was prepared with high purity (>95%) and an average radiochemical yield of 23%. The uptake rates of [18F]-STI-571 in K562 cells expressing Abl and in U87WT cells overexpressing c-KIT were significantly higher than those in the U87 cell and could be inhibited by STI-71 (confirming the specificity of uptake). PET scans of K562 and U87WT tumor-bearing mice with [18F]-STI-571 as a contrast agent showed visible tumor uptake and tumor-to-non-target contrast. PMID:24280068

  11. Wonder world of phages: potential biocontrol agents safeguarding biosphere and health of animals and humans- current scenario and perspectives.

    PubMed

    Tiwari, Ruchi; Chakraborty, Sandip; Dhama, Kuldeep; Wani, Mohd Yaqoob; Kumar, Amit; Kapoor, Sanjay

    2014-02-01

    Darwin's theory of natural selection and concept of survival of fittest of Wallace is a universal truth which derives the force of life among all live entities on this biosphere. Issues regarding food safety along with increased drug resistance and emerging zoonotic infections have proved that multidisciplinary efforts are in demand for human and animal welfare. This has led to development of various novel therapies the list of which remains incomplete without mentioning about phages. Homologous and non-homologous recombination along with point mutation and addition of new genes play role in their evolution. The rapid emergence of the antibiotic resistant strains of bacteria have created keen interest in finding necessary alternatives to check microbial infections and there comes the importance of phages. Phages kill the bacteria either by lysis or by releasing holins. Bacteriophages; the viruses that live on bacteria are nowadays considered as the best biocontrol agents. They are used as replacers of antibiotics; food industry promoter; guard of aquatic life as well as of plants; pre-slaughter treatment agents; Generally Recognized As Safe (GRAS) food additives; Typing agent of bacteria; active tool of super bug therapy; in post harvest crops and food and during post infection and also to combat intracellular pathogens viz. Mycobacteria and Mycoplasma. Cyanophages/phycophages are particularly useful in controlling blooms produced by various genera of algae and cyanobacteria. By performing centrifugation studies and based on electron microscopy certain virus like particles containing ds RNA have been confirmed as mycophages. They are well proven as threat to pathogenic fungi (both fungal hyphae and yeast). Those that infect yeasts are called zymophages. Virophages have exquisite specificity for their viral host, hence can extensively be used for genetic studies and can also act as evolutionary link. After the discovery of very first virophage till now, a total of 3

  12. Anesthetic agents modulate ECoG potentiation after spreading depression, and insulin-induced hypoglycemia does not modify this effect.

    PubMed

    de Souza, Thays Kallyne Marinho; E Silva-Gondim, Mariana Barros; Rodrigues, Marcelo Cairrão Araújo; Guedes, Rubem Carlos Araújo

    2015-04-10

    Cortical spreading depression (CSD) is characterized by reversible reduction of spontaneous and evoked electrical activity of the cerebral cortex. Experimental evidence suggests that CSD may modulate neural excitability and synaptic activity, with possible implications for long-term potentiation. Systemic factors like anesthetics and insulin-induced hypoglycemia can influence CSD propagation. In this study, we examined whether the post-CSD ECoG potentiation can be modulated by anesthetics and insulin-induced hypoglycemia. We found that awake adult rats displayed increased ECoG potentiation after CSD, as compared with rats under urethane+chloralose anesthesia or tribromoethanol anesthesia. In anesthetized rats, insulin-induced hypoglycemia did not modulate ECoG potentiation. Comparison of two cortical recording regions in awake rats revealed a similarly significant (p<0.05) potentiation effect in both regions, whereas in the anesthetized groups the potentiation was significant only in the recording region nearer to the stimulating point. Our data suggest that urethane+chloralose and tribromoethanol anesthesia modulate the post-CSD potentiation of spontaneous electrical activity in the adult rat cortex, and insulin-induced hypoglycemia does not modify this effect. Data may help to gain a better understanding of excitability-dependent mechanisms underlying CSD-related neurological diseases. PMID:25681772

  13. Synthesis, in vitro, and in vivo evaluation of novel functionalized quaternary ammonium curcuminoids as potential anti-cancer agents.

    PubMed

    Solano, Lucas N; Nelson, Grady L; Ronayne, Conor T; Lueth, Erica A; Foxley, Melissa A; Jonnalagadda, Sravan K; Gurrapu, Shirisha; Mereddy, Venkatram R

    2015-12-15

    Novel functionalized quaternary ammonium curcuminoids have been synthesized from piperazinyl curcuminoids and Baylis-Hillman reaction derived allyl bromides. These molecules are found to be highly water soluble with increased cytotoxicity compared to native curcumin against three cancer cell lines MIAPaCa-2, MDA-MB-231, and 4T1. Preliminary in vivo toxicity evaluation of a representative curcuminoid 5a in healthy mice indicates that this molecule is well tolerated based on normal body weight gains compared to control group. Furthermore, the efficacy of 5a has been tested in a pancreatic cancer xenograft model of MIAPaCa-2 and has been found to exhibit good tumor growth inhibition as a single agent and also in combination with clinical pancreatic cancer drug gemcitabine. PMID:26561365

  14. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach

    PubMed Central

    Zhao, Li-Ming; Ma, Feng-Yan; Jin, Hai-Shan; Zheng, Shilong; Zhong, Qiu; Wang, Guangdi

    2016-01-01

    A series of hydroxyanthraquinones having an alkylating N-mustard pharmacophore at 1′-position were synthesized via a bioisostere approach to evaluate their cytotoxicity against four tumor cell lines (MDA-MB-231, HeLa, MCF-7 and A549). These compounds displayed significant in vitro cytotoxicity against MDA-MB-231 and MCF-7 cells, reflecting the excellent selectivity for the human breast cancer. Among them, compound 5k was the most cytotoxic with IC50 value of 0.263 nM and is more potent than DXR (IC50 = 0.294 nM) in inhibiting the growth of MCF-7 cells. The excellent cytotoxicity and good selectivity of compound 5k suggest that it could be a promising lead for further design and development of anticancer agents, especially for breast cancer. PMID:26291039

  15. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia.

    PubMed

    Casula, Maria F; Conca, Erika; Bakaimi, Ioanna; Sathya, Ayyappan; Materia, Maria Elena; Casu, Alberto; Falqui, Andrea; Sogne, Elisa; Pellegrino, Teresa; Kanaras, Antonios G

    2016-06-22

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. PMID:27282828

  16. Design, synthesis and evaluation of 2-deoxy-2-iodovinyl-branched carbohydrates as potential brain imaging agents

    SciTech Connect

    Goodman, M.M.; Callahan, A.P.; Knapp, F.F. Jr.

    1986-01-01

    Radioiodinated carbohydrates such as 2-deoxy-2-iodo-D-glucose and 3-deoxy-3-iodo-D-glucose undergo facile chemical or in vivo deiodination which precludes their use as radiotracers of glucose metabolism in tissues. To overcome the problems resulting from in vivo deiodination, we explored the concept of stabilizing radioiodide on a model carbohydrate, (E)-C-3-iodovinyl-D-allose (10) as an iodovinyl moiety. This agent did not exhibit brain specificity but showed low in vivo deiodination which demonstrated for the first time that radioiodide can be stabilized on a carbohydrate. The goal of this study was to develop a deoxy-branched carbohydrate with radioiodide stabilized as a vinyliodide with the objective of achieving high brain uptake. 10 refs., 1 fig., 1 tab.

  17. Therapeutic potential and critical analysis of trastuzumab and bevacizumab in combination with different chemotherapeutic agents against metastatic breast/colorectal cancer affecting various endpoints.

    PubMed

    Wahid, Mohd; Mandal, Raju K; Dar, Sajad A; Jawed, Arshad; Lohani, Mohtashim; Areeshi, Mohammad Y; Akhter, Naseem; Haque, Shafiul

    2016-08-01

    Researchers are working day and night across the globe to eradicate or at least lessen the menace of cancer faced by the mankind. The two very frequently occurring cancers faced by the human beings are metastatic breast cancer and metastatic colorectal cancer. The various chemotherapeutic agents like anthracycline, cyclophosphamide, paclitaxel, irinotecan, fluorouracil and leucovorin etc., have been used impressively for long. But the obstinate character of metastatic breast cancer and metastatic colorectal cancer needs more to tackle the threat. So, the scientists found the use of monoclonal antibodies trastuzumab (Herceptin(®)) and bevacizumab (Avastin(®)) for the same. The current study critically investigates the therapeutic potential of trastuzumab and bevacizumab in combination with various chemotherapeutic agents against metastatic breast cancer and metastatic colorectal cancer. To the best of our knowledge, this is the very first critical analysis showing percent wise increase in various positive endpoints like median time to disease progression, median survival, and progression free survival etc. for the treatment of metastatic breast/colorectal cancer using trastuzumab and bevacizumab in combination with different chemotherapeutic agents and provides the rational for the success and failure of the selected monoclonal antibodies. PMID:27357488

  18. G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status.

    PubMed

    Agarwal, Pallavi; Jackson, Stephen P

    2016-10-01

    Cancer cells often exhibit altered epigenetic signatures that can misregulate genes involved in processes such as transcription, proliferation, apoptosis and DNA repair. As regulation of chromatin structure is crucial for DNA repair processes, and both DNA repair and epigenetic controls are deregulated in many cancers, we speculated that simultaneously targeting both might provide new opportunities for cancer therapy. Here, we describe a focused screen that profiled small-molecule inhibitors targeting epigenetic regulators in combination with DNA double-strand break (DSB) inducing agents. We identify UNC0638, a catalytic inhibitor of histone lysine N-methyl-transferase G9a, as hypersensitising tumour cells to low doses of DSB-inducing agents without affecting the growth of the non-tumorigenic cells tested. Similar effects are also observed with another, structurally distinct, G9a inhibitor A-366. We also show that small-molecule inhibition of G9a or siRNA-mediated G9a depletion induces tumour cell death under low DNA damage conditions by impairing DSB repair in a p53 independent manner. Furthermore, we establish that G9a promotes DNA non-homologous end-joining in response to DSB-inducing genotoxic stress. This study thus highlights the potential for using G9a inhibitors as anti-cancer therapeutic agents in combination with DSB-inducing chemotherapeutic drugs such as etoposide. PMID:27431310

  19. Inhibition of platelet aggregation by vanilloid-like agents is not mediated by transient receptor potential vanilloid-1 channels or cannabinoid receptors.

    PubMed

    Almaghrabi, Safa; Geraghty, Dominic; Ahuja, Kiran; Adams, Murray

    2016-06-01

    Vanilloid-like agents, including capsaicin, N-arachidonoyl-dopamine and N-oleoyldopamine inhibit platelet aggregation, however little is known about the precise mechanism(s) of action. The authors have previously shown that blocking of the capsaicin receptor, transient receptor potential vanilloid-1 (TRPV1), does not interfere with capsaicin action during adenosine diphosphate (ADP)-induced aggregation. This research is extended to investigate the effect of these vanilloid-like-agents on platelet count, and to test whether the effect of these agents is mediated through TRPV1 and/or cannabinoid (CB1 and CB2) receptors in the presence of other agonists, including collagen and arachidonic acid. Incubation of platelets with each of the individual vanilloids, or with receptor antagonists of TRPV1 (SB452533), CB1 (AM251) and CB2 (AM630), for up to 2 h did not significantly affect the platelet count. Similarly, the effect of individual vanilloids on the inhibition of platelet aggregation was not significantly different in the presence of receptor agonists compared to control, irrespective of the agonist used, suggesting that the inhibitory effect of vanilloids on platelet aggregation is independent of TRPV1, CB1 and CB2 receptors. Further research on the antiplatelet activity of vanilloids should focus on mechanisms other than those associated with vanilloid receptors. PMID:26991025

  20. A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere.

    PubMed

    van Overbeek, Leo S; Cassidy, Mike; Kozdroj, Jacek; Trevors, Jack T; van Elsas, Jan D

    2002-01-01

    Ralstonia solanacearum biovar 2, the causative agent of brown rot in potato, has been responsible for large crop losses in Northwest Europe during the last decade. Knowledge on the ecological behaviour of R. solanacearum and its antagonists is required to develop sound procedures for its control and eradication in infested fields.A polyphasic approach was used to study the invasion of plants by a selected R. solanacearum biovar 2 strain, denoted 1609, either or not in combination with the antagonistic strains Pseudomonas corrugata IDV1 and P. fluorescens UA5-40. Thus, this study combined plating (spread and drop plate methods), reporter gene technology (gfp mutants) and serological (imunofluorescence colony staining [IFC]) and molecular techniques (fluorescent in situ hybridization [FISH], PCR with R. solanacearum specific primers and PCR-DGGE on plant DNA extracts). The behaviour of R. solanacearum 1609 and the two control strains was studied in bulk and (tomato) rhizosphere soil and the rhizoplane and stems of tomato plants. The results showed that an interaction between the pathogen and the control strains at the root surface was likely. In particular, R. solanacearum 1609 CFU numbers were significantly reduced on tomato roots treated with P. corrugata IDV1(chr:gfp1) cells as compared to those on untreated roots. Concomitant with the presence of P. corrugata IDV1(chr:gfp1), plant invasion by the pathogen was hampered, but not abolished.PCR-DGGE analyses of the tomato rhizoplane supported the evidence for antagonistic activity against the pathogen; as only weak R. solanacearum 1609 specific bands were detected in profiles derived from mixed systems versus strong bands in profiles from systems containing only the pathogen. Using FISH, a difference in root colonization was demonstrated between the pathogen and one of the two antagonists, i.e. P. corrugata IDV1(chr:gfp1); R. solanacearum strain 1609 was clearly detected in the vascular cylinder of tomato plants