Science.gov

Sample records for potential molecular dynamics

  1. Molecular potentials and relaxation dynamics

    SciTech Connect

    Karo, A.M.

    1981-03-27

    The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. As an example, recent calculations of the chi/sup 1/..sigma../sup +/ and a/sup 3/..sigma../sup +/ states of LiH, NaH, KH, RbH, and CsH and the chi/sup 2/..sigma../sup +/ states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, highly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm/sup -1/ over most of the potential curves) with the difference curves being considerably more accurate.

  2. Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D Peter; Marrink, Siewert J

    2013-08-13

    Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules. To improve the stability and accuracy of coarse-grained molecular dynamics simulations, we propose two approaches. The first makes use of improved forms for the angle potentials: the restricted bending (ReB) potential prevents torsion angles from visiting unstable or unphysical configurations and the combined bending-torsion (CBT) potential smoothly flattens the interactions when such configurations are sampled. In the second approach, dummy-assisted dihedral (DAD), the torsion potential is applied differently: instead of acting directly on the beads, it acts on virtual beads, bound to the real ones. For simple geometrical reasons, the unstable region is excluded from the accessible conformational space. The benefits of the new approaches are demonstrated in simulations of polyethylene glycol (PEG), polystyrene (PS), and polypeptide molecules described by the MARTINI coarse-grained force field. The new potentials are implemented in an in-house version of the Gromacs package, publicly available. PMID:26584087

  3. Molecular dynamics simulations of solutions at constant chemical potential

    NASA Astrophysics Data System (ADS)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  4. Molecular dynamics simulations of solutions at constant chemical potential.

    PubMed

    Perego, C; Salvalaglio, M; Parrinello, M

    2015-04-14

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (C?MD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C?MD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers. PMID:25877568

  5. Ridge-based bias potentials to accelerate molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Penghao; Duncan, Juliana; Zhang, Liang; Henkelman, Graeme

    2015-12-01

    An effective way to accelerate rare events in molecular dynamics simulations is to apply a bias potential which destabilizes minima without biasing the transitions between stable states. This approach, called hyperdynamics, is limited by our ability to construct general bias potentials without having to understand the reaction mechanisms available to the system, a priori. Current bias potentials are typically constructed in terms of a metric which quantifies the distance that a trajectory deviates from the reactant state minimum. Such metrics include detection of negative curvatures of the potential, an energy increase, or deviations in bond lengths from the minimum. When one of these properties exceeds a critical value, the bias potentials are constructed to approach zero. A problem common to each of these schemes is that their effectiveness decreases rapidly with system size. We attribute this problem to a diminishing volume defined by the metrics around a reactant minimum as compared to the total volume of the reactant state basin. In this work, we mitigate the dimensionality scaling problem by constructing bias potentials that are based upon the distance to the boundary of the reactant basin. This distance is quantified in two ways: (i) by following the minimum mode direction to the reactant boundary and (ii) by training a machine learning algorithm to give an analytic expression for the boundary to which the distance can be calculated. Both of these ridge-based bias potentials are demonstrated to scale qualitatively better with dimensionality than the existing methods. We attribute this improvement to a greater filling fraction of the reactant state using the ridge-based bias potentials as compared to the standard potentials.

  6. Ridge-based bias potentials to accelerate molecular dynamics.

    PubMed

    Xiao, Penghao; Duncan, Juliana; Zhang, Liang; Henkelman, Graeme

    2015-12-28

    An effective way to accelerate rare events in molecular dynamics simulations is to apply a bias potential which destabilizes minima without biasing the transitions between stable states. This approach, called hyperdynamics, is limited by our ability to construct general bias potentials without having to understand the reaction mechanisms available to the system, a priori. Current bias potentials are typically constructed in terms of a metric which quantifies the distance that a trajectory deviates from the reactant state minimum. Such metrics include detection of negative curvatures of the potential, an energy increase, or deviations in bond lengths from the minimum. When one of these properties exceeds a critical value, the bias potentials are constructed to approach zero. A problem common to each of these schemes is that their effectiveness decreases rapidly with system size. We attribute this problem to a diminishing volume defined by the metrics around a reactant minimum as compared to the total volume of the reactant state basin. In this work, we mitigate the dimensionality scaling problem by constructing bias potentials that are based upon the distance to the boundary of the reactant basin. This distance is quantified in two ways: (i) by following the minimum mode direction to the reactant boundary and (ii) by training a machine learning algorithm to give an analytic expression for the boundary to which the distance can be calculated. Both of these ridge-based bias potentials are demonstrated to scale qualitatively better with dimensionality than the existing methods. We attribute this improvement to a greater filling fraction of the reactant state using the ridge-based bias potentials as compared to the standard potentials. PMID:26723648

  7. Molecular Dynamics Simulation of ZnS using Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Khan, M. Ajmal; Sultan, Badriah S. A.; Bouarissa, Nadir; Wahab, M. A.

    2011-10-01

    Constant temperature molecular dynamics simulations have been performed on ZnS at different temperatures ranging from 300 K to 1400 K with the objective of establishing and validating the temperature dependent structural and thermodynamic properties. The simulations were carried out in canonical ensemble (NVT) using Lennard-Jones pair potential. Radial distribution functions have been calculated. RDF peaks are found to be broadened and decrease in heights with increasing temperature, reflecting enhanced atomic motions. Energy temperature graph does not show any break, however a break in the specific heat curve and a ? type transformation are observed indicating second order phase transformation. Mean Square Displacement (MSD) for Zn and S atoms separately have been measured and almost identical graph were obtained. The MSD curve exhibits the existence of maximum disorderness at 1100 K and 1400 K which indicates phase transformations around them.

  8. ERRATUM: A `magnetic' interatomic potential for molecular dynamics simulations.

    NASA Astrophysics Data System (ADS)

    L, Dudarev S.; M, Derlet P.

    2007-06-01

    Our colleagues pointed out that the format of numerical values given in table 3 of our paper may cause confusion and lead to an error in the numerical implementation of the potential. Below we list the values given in table 3 of our original paper, this time using conventional decimal notations. These values correspond to the same choice of parameter ?c=1. Please see the pdf for table 3

  9. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  10. Inelastic Neutron Scattering and Molecular Dynamics Determination of the Interaction Potential in Liquid CD4

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Sampoli, M.; Venturi, G.; Bafile, U.; Barocchi, F.

    2007-10-01

    Anisotropic interactions of liquid CD4 are studied in detail by comparison of inelastic neutron Brillouin scattering data with molecular dynamics simulations using up to four different models of the methane site-site potential. We demonstrate that the experimental dynamic structure factor S(Q,?) acts as a highly discriminating quantity for possible interaction schemes. In particular, the Q evolution of the spectra enables a selective probing of the short- and medium-range features of the anisotropic potentials. We show that the preferential configuration of methane dimers at liquid densities can thus be discerned by analyzing the orientation-dependent model potential curves, in light of the experimental and simulation results.

  11. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules. PMID:26827207

  12. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.

  13. Molecular dynamics in lipid bilayers. Anisotropic diffusion in an odd restoring potential.

    PubMed Central

    Alam, T M

    1993-01-01

    Recent 2H nuclear magnetic resonance spin relaxation studies have questioned the influence of restoring potential parity on the description of lipid or molecular reorientational dynamics. In biomembranes the polar head groups of lipid and sterol constituents are expected to associate with the aqueous interface; therefore, realistic descriptions of molecular reorientation in bilayer systems should use an odd restoring potential. The multiexponential correlation functions and related spectral density functions for small-step anisotropic diffusion in a pseudo-restoring potential of the form U(beta) = -lambda cos beta are evaluated as a function of molecular ordering . From analysis of these results the single exponential approximation used in previous investigations is found to overestimate the decay rate at lower order, but is reliable for > 0.6. The exception to this trend is the decay constant for the G11 (omega; t) correlation function, which is not accurately portrayed by the first-order approximations. A second-order single exponential approximation is presented, and is shown to be equivalent to the weighted sum of the multidecay constants. In general, the potential parity is found to have only minor effects on the spin relaxation rates obtained to describe molecular reorientation in lipid bilayers. PMID:8369401

  14. Molecular dynamics simulation of plastocyanin potential energy fluctuations: 1/ f noise

    NASA Astrophysics Data System (ADS)

    Bizzarri, Anna Rita; Cannistraro, Salvatore

    Molecular dynamics simulations of plastocyanin, an electron transfer copper containing protein involved in the photosynthetic process, have been performed in both the hydrated and dry state. An analysis of the potential energy fluctuations during a 500 ps dynamical evolution of the macromolecule reveals the presence of a 1/ f? noise in the related spectral density. Such a phenomenon is shown to persist in a wide temperature range (from 100 to 300 K) for both the systems. The occurrence of 1/ f? noise, which can be traced back to the existence, in protein systems, of thermally activated processes, seems to be a peculiarity of the dynamical behaviour of proteins. An analysis of the temperature dependence of the ? exponent allowed us to extract information about the distribution of the conformational energy barriers and its dependence on the hydration level.

  15. An ab initio molecular dynamics analysis of lignin as a potential antioxidant for hydrocarbons.

    PubMed

    Pan, Tongyan; Cheng, Cheng

    2015-11-01

    Lignins are complex phenolic polymers with limited industrial uses. To identify new applications of lignins, this study aims to evaluate the conifer alcohol lignin as a potential antioxidant for hydrocarbons, using the petroleum asphalt as an example. Using the ab initio molecular dynamics (AIMD) method, the evaluation is accomplished by tracking the generation of critical species in a lignin-asphalt mixture under a simulated oxidative condition. The generation of new species was detected using nuclear magnetic resonance and four analytical methods including density of states analysis, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses, bonding and energy level analysis, and electrostatic potential energy analysis. Results of the analyses show that the chemical radicals of carbon, nitrogen and sulfur generated in the oxidation process could enhance the agglomeration and/or decomposition tendency of asphalt. The effectiveness of lignins as an antioxidant depends on their chemical compositions. Lignins with a HOMO-LUMO gap larger than the HOMO-LUMO gap of the hydrocarbon system to be protected, such as the conifer alcohol lignin to protect petroleum asphalt as was studied in this work, do not demonstrate beneficial anti-oxidation capacity. Lignins, however, may be effective oxidants for hydrocarbon systems with a larger HOMO-LUMO gap. In addition, lignins may contain more polar sites than the hydrocarbons to be protected; thus the lignins' hydrophobicity and compatibility with the host hydrocarbons need to be well evaluated. The developed AIMD model provides a useful tool for developing antioxidants for generic hydrocarbons. PMID:26562413

  16. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    PubMed

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms. PMID:24905883

  17. Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials

    SciTech Connect

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2014-09-01

    The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated by a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.

  18. Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfeng; Millett, Paul C.; Tonks, Michael R.; Bai, Xian-Ming; Biner, S. Bulent

    2014-09-01

    The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the <1 0 0> symmetrical tilt ?5 and the <1 1 0> symmetrical tilt ?3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core-shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The ?3 boundary was found to be more prone to fracture than the ?5 one, indicated by a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.

  19. Improvement in Empirical Potential Functions for Increasing the Utility of Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Yamashita, Takefumi

    Accurate modeling of potential functions is critical for realistic molecular dynamics (MD) simulations. In this study, improvement in potential functions is discussed by revisiting the multistate empirical valence bond (MS-EVB) method and the FUJI force field. The MS-EVB method enables simulation of dynamic chemical reactions in various situations. In this study, excess protons in water under shear were investigated by combining the MS-EVB method with the non-equilibrium MD technique. It was found that the orientation of the hydronium-like moiety is considerably more anisotropic under shear than that of the water molecule. Separately, the FUJI force field includes main-chain torsional parameters carefully derived on the basis of high-level ab initio calculations. To further demonstrate that the use of the FUJI force field improves the accuracy of MD results beyond previously reported examples, the conformational distribution of the Ala dipeptide was investigated. The results obtained using the FUJI force field agreed more closely with the experimental results than those obtained using other standard force fields. Interestingly, the MD trajectories with the FUJI force field undergo the Y conformation more frequently than those with other popular force fields. Furthermore, it was found that the choice of force field affects the structures of an antigen-antibody complex obtained using MD simulations. These improvements in the force fields essentially extend the range of applications for the MD simulation method.

  20. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.

    PubMed

    Gapsys, Vytautas; Seeliger, Daniel; de Groot, Bert L

    2012-07-10

    The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations. PMID:26588970

  1. Molecular dynamics simulation study reveals potential substrate entry path into ?-secretase/presenilin-1.

    PubMed

    Kong, Ren; Chang, Shan; Xia, Weiming; Wong, Stephen T C

    2015-08-01

    Presenilin 1 (PS1) is the catalytic unit of ?-secretase which cleaves more than one hundred substrates. Among them, amyloid precursor protein (APP) and Notch are notable for their pivotal role in the pathogenesis of Alzheimer's disease (AD) and certain types of cancer. The hydrolysis process occurring inside the hydrophobic lipid bilayer remains unclear. With the aim to understand the mechanism of intramembrane proteolysis by ?-secretase, we constructed a homology model of human PS1 and performed molecular dynamics simulation in explicit membrane phospholipids with different components. During the simulation, TM9 was found to exhibit a high level of flexibility that involved in "gate-open" movement of TM2 and TM6, and thus partially exposed the catalytic residues. The highly conserved PALP motif acts as an anchor to mediate the conformation changes of TM6 induced by TM9. Moreover, direct interactions were observed between 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and the active site of ?-secretase, indicating that the lipid molecules have the potential to modulate ?-secretase by contacting with the catalytic residues, i.e., ASP 257 and ASP 385 of PS1. The intermediate states indicate a potential substrate penetration pathway through the interface of TM2 and TM6, which may be induced by changes of TM9. To our knowledge, this is the first molecular simulation study that reveals dynamic behavior of the human PS1 structure in the lipid bilayer and provides insight into the substrate entry path for subsequent intramembrane hydrolysis, which is critical information required for new strategy development of ?-secretase modulators to alleviate devastating AD. PMID:26142917

  2. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials.

    PubMed

    Qian, Hu-Jun; van Duin, Adri C T; Morokuma, Keiji; Irle, Stephan

    2011-07-12

    The dynamic fullerene self-assembly process during benzene combustion was studied using classical Reactive Force Field (ReaxFF) nonequilibrium molecular dynamics (MD) simulations. In order to drive the combustion process, the hydrogen to carbon (H/C) ratio was gradually reduced during the course of the MD simulations. Target temperatures of 2500 and 3000 K were maintained by using a Berendsen thermostat. Simulation conditions and hydrogen removal strategies were chosen to match closely a previous quantum chemical MD (QM/MD) study based on the density-functional tight-binding (DFTB) potential ( Saha et al. ACS Nano 2009 , 3 , 2241 ) to allow a comparison between the two different potentials. Twenty trajectories were computed at each target temperature, and hydrocarbon cluster size, CxHy composition, average carbon cluster curvature, carbon hybridization type, and ring count statistics were recorded as a function of time. Similarly as in the QM/MD simulations, only giant fullerene cages in the range from 155 to 212 carbon atoms self-assembled, and no C60 cages were observed. The most notable difference concerned the time required for completing cage self-assembly: Depending on temperature, it takes between 50 and 150 ps in DFTB/MD simulations but never less than 100 ps and frequently several 100s ps in ReaxFF/MD simulations. In the present system, the computational cost of ReaxFF/MD is about 1 order of magnitude lower than that of the corresponding DFTB/MD. Overall, the ReaxFF/MD simulations method paints a qualitatively similar picture of fullerene formation in benzene combustion when compared to direct MD simulations based on the DFTB potential. PMID:26606475

  3. Molecular dynamics modeling using ab initio interatomic potentials for thermal properties of Ni-rich alloys

    SciTech Connect

    Mei, J.; Cooper, B.R.; Hao, Y.G.; Scoy, F.L. Van

    1994-12-31

    Molecular dynamics simulations have been performed to study thermal expansions of Ni-rich (fcc structure) Ni/Cr alloys (which serve as the basis for practical superalloy systems). This has been done using ab initio interatomic potentials with no experimental input. The coefficient of thermal expansion (CTE) as a function of temperature has been calculated. By admixing Re and Me atoms into fee Ni and the fee alloy system Ni/Cr, additive effects on the thermal expansion have been predicted. While addition of Cr lowers the CTE of Ni, and moderate addition of Mo lowers the CTE of Ni over a wide temperature range, moderate addition of Re raises the CTE of both Ni and Ni/Cr alloys over a significant temperature range. An explanation for the contrasting effect of additive Re on the CTE, based on a one-dimensional atomic chain model, is that the trade-off, between atomic volume effects increasing the CTE over that of pure Ni and pair-potential effects (exemplified by the Grueneisen parameter) decreasing the CTE from that of pure nickel, changes for Re compared to Cr and Mo.

  4. Structure and polarization properties of water: Molecular dynamics with a nonadditive intermolecular potential

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2012-05-01

    The temperature and density dependence of the structure and polarization properties of bulk water were systematically investigated using the ab initio MCYna potential [Li , J. Chem. Phys.JCPSA60021-960610.1063/1.2786449 127, 154509 (2007)], which includes nonadditive contributions to intermolecular interactions. Molecular dynamics simulations were conducted for isochores of 1, 0.8, and 0.6 g/cm3 and temperatures from 278 to 750 K. Special attention was paid to the structural change of water in the range from the normal boiling point to supercritical temperatures. At temperatures below the normal boiling temperature, water exhibits a tetrahedral structure along the 0.8 and 0.6 g/cm3 isochores. A significant collapse of the hydrogen bonding network was observed at temperatures of 450, 550, and 650 K. The MCYna potential was able to successfully reproduce the experimental dielectric constant. The dielectric constant and average dipole moments decrease with increasing temperature and decreasing density due to weakened polarization. A comparison is also made with SPC-based models.

  5. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  6. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  7. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics.

    PubMed

    Cheng, Jun; Sulpizi, Marialore; Sprik, Michiel

    2009-10-21

    The density functional theory based molecular dynamics (DFTMD) method for the computation of redox free energies presented in previous publications and the more recent modification for computation of acidity constants are reviewed. The method uses a half reaction scheme based on reversible insertion/removal of electrons and protons. The proton insertion is assisted by restraining potentials acting as chaperones. The procedure for relating the calculated deprotonation free energies to Brnsted acidities (pK(a)) and the oxidation free energies to electrode potentials with respect to the normal hydrogen electrode is discussed in some detail. The method is validated in an application to the reduction of aqueous 1,4-benzoquinone. The conversion of hydroquinone to quinone can take place via a number of alternative pathways consisting of combinations of acid dissociations, oxidations, or dehydrogenations. The free energy changes of all elementary steps (ten in total) are computed. The accuracy of the calculations is assessed by comparing the energies of different pathways for the same reaction (Hess's law) and by comparison to experiment. This two-sided test enables us to separate the errors related with the restrictions on length and time scales accessible to DFTMD from the errors introduced by the DFT approximation. It is found that the DFT approximation is the main source of error for oxidation free energies. PMID:20568869

  8. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.

    PubMed

    Fensin, Saryu J; Olmsted, David; Buta, Dorel; Asta, Mark; Karma, Alain; Hoyt, J J

    2010-03-01

    We describe a molecular-dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain coalescence in solidification. The method is applied in a comparative study of (i) a Sigma9115120 degrees twist and (ii) a Sigma9110{411} symmetric tilt boundary in a classical embedded-atom model of elemental Ni. Although both boundaries feature highly disordered structures near the melting point, the nature of the temperature dependence of the width of the disordered regions in these boundaries is qualitatively different. The former boundary displays behavior consistent with a logarithmically diverging premelted layer thickness as the melting temperature is approached from below, while the latter displays behavior featuring a finite grain-boundary width at the melting point. It is demonstrated that both types of behavior can be quantitatively described within a sharp-interface thermodynamic formalism involving a width-dependent interfacial free energy, referred to as the disjoining potential. The disjoining potential for boundary (i) is calculated to display a monotonic exponential dependence on width, while that of boundary (ii) features a weak attractive minimum. The results of this work are discussed in relation to recent simulation and theoretical studies of the thermodynamic forces underlying grain-boundary premelting. PMID:20365741

  9. Structure and polarization properties of water: molecular dynamics with a nonadditive intermolecular potential.

    PubMed

    Shvab, I; Sadus, Richard J

    2012-05-01

    The temperature and density dependence of the structure and polarization properties of bulk water were systematically investigated using the ab initio MCYna potential [Li et al., J. Chem. Phys. 127, 154509 (2007)], which includes nonadditive contributions to intermolecular interactions. Molecular dynamics simulations were conducted for isochores of 1, 0.8, and 0.6 g/cm^{3} and temperatures from 278 to 750 K. Special attention was paid to the structural change of water in the range from the normal boiling point to supercritical temperatures. At temperatures below the normal boiling temperature, water exhibits a tetrahedral structure along the 0.8 and 0.6 g/cm^{3} isochores. A significant collapse of the hydrogen bonding network was observed at temperatures of 450, 550, and 650 K. The MCYna potential was able to successfully reproduce the experimental dielectric constant. The dielectric constant and average dipole moments decrease with increasing temperature and decreasing density due to weakened polarization. A comparison is also made with SPC-based models. PMID:23004769

  10. Implementing molecular dynamics on hybrid high performance computers—Three-body potentials

    NASA Astrophysics Data System (ADS)

    Brown, W. Michael; Yamada, Masako

    2013-12-01

    The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to use accelerators efficiently to improve the performance of molecular dynamics (MD) codes employing pairwise potential energy models, little is reported in the literature for models that include many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algorithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.

  11. Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials

    SciTech Connect

    Brown, W Michael; Yamada, Masako

    2013-01-01

    The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that include many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.

  12. Docking based virtual screening and molecular dynamics study to identify potential monoacylglycerol lipase inhibitors.

    PubMed

    Afzal, Obaid; Kumar, Suresh; Kumar, Rajiv; Firoz, Ahmad; Jaggi, Manu; Bawa, Sandhya

    2014-08-15

    Monoacylglycerol lipase (MAGL) is one of the key enzymes of the endocannabinoid system (ECS). It hydrolyzes one of the major endocannabinoid, 2-arachidonoylglycerol (2-AG), an endogenous full agonist at G protein coupled cannabinoid receptors CB1 and CB2. Numerous studies showed that MGL inhibitors are potentially useful for the treatment of pain, inflammation, cancer and CNS disorders. These provocative findings suggested that pharmacological inhibition of MAGL function may confer significant therapeutic benefits. In this study, we presented hybrid ligand and structure-based approaches to obtain a novel set of virtual leads as MAGL inhibitors. The constraints used in this study, were Glide score, binding free energy estimates and ADME properties to screen the ZINC database, containing approximately 21 million compounds. A total of seven virtual hits were obtained, which showed significant binding affinity towards MAGL protein. Ligand, ZINC24092691 was employed in complex form with the protein MAGL, for molecular dynamics simulation study, because of its excellent glide score, binding free energy and ADME properties. The RMSD of ZINC24092691 was observed to stay at 0.1 nm (1 ) in most of the trajectories, which further confirmed its ability to inhibit the protein MAGL. The hits were then evaluated for their ability to inhibit human MAGL. The compound ZINC24092691 displayed the noteworthy inhibitory activity reducing MAGL activity to 21.15% at 100 nM concentration, with an IC50 value of 10 nM. PMID:25011912

  13. Development of EEM based siliconwater and silicawater wall potentials for non-reactive molecular dynamics simulations

    SciTech Connect

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluidsolid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate watersilicon and watersilica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a siliconwater contact angle of 129, a quartzwater contact angle of 0, and a cristobalitewater contact angle of 40, which are in reasonable agreement with experimental values.

  14. Introduction to Accelerated Molecular Dynamics

    SciTech Connect

    Perez, Danny

    2012-07-10

    Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

  15. Molecular Dynamics Simulation of Argon, Krypton, and Xenon Using Two-Body and Three-Body Intermolecular Potentials.

    PubMed

    Goharshadi, Elaheh K; Abbaspour, Mohsen

    2006-07-01

    We have performed the molecular dynamics simulation to obtain energy and pressure of argon, krypton, and xenon at different temperatures using a HFD-like potential which has been obtained with an inversion of viscosity data at zero pressure. The contribution of three-body dispersion resulting from third-order triple-dipole interactions has been computed using an accurate simple relation between two-body and three-body interactions developed by Marcelli and Sadus. Our results indicate that this simple three-body potential which was originally used in conjunction with the BFW potential is also valid when used with the HFD-like potential. This appears to support the conjecture that the relationship is independent of the two-body potential. The energy and pressure obtained are in good overall agreement with the experiment, especially for argon. A comparison of our simulated results with HMSA and ODS integral equations and a molecular simulation have been also included. PMID:26633051

  16. An interatomic potential model for molecular dynamics simulation of silicon etching by Br{sup +}-containing plasmas

    SciTech Connect

    Ohta, H.; Iwakawa, A.; Eriguchi, K.; Ono, K.

    2008-10-01

    An interatomic potential model for Si-Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br{sup +}-containing plasmas such as HBr and Br{sub 2} plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger-Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br{sup +} beam.

  17. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mollica, Luca; Decherchi, Sergio; Zia, Syeda Rehana; Gaspari, Roberto; Cavalli, Andrea; Rocchia, Walter

    2015-06-01

    Drug discovery is expensive and high-risk. Its main reasons of failure are lack of efficacy and toxicity of a drug candidate. Binding affinity for the biological target has been usually considered one of the most relevant figures of merit to judge a drug candidate along with bioavailability, selectivity and metabolic properties, which could depend on off-target interactions. Nevertheless, affinity does not always satisfactorily correlate with in vivo drug efficacy. It is indeed becoming increasingly evident that the time a drug spends in contact with its target (aka residence time) can be a more reliable figure of merit. Experimental kinetic measurements are operatively limited by the cost and the time needed to synthesize compounds to be tested, to express and purify the target, and to setup the assays. We present here a simple and efficient molecular-dynamics-based computational approach to prioritize compounds according to their residence time. We devised a multiple-replica scaled molecular dynamics protocol with suitably defined harmonic restraints to accelerate the unbinding events while preserving the native fold. Ligands are ranked according to the mean observed scaled unbinding time. The approach, trivially parallel and easily implementable, was validated against experimental information available on biological systems of pharmacological relevance.

  18. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations

    PubMed Central

    Mollica, Luca; Decherchi, Sergio; Zia, Syeda Rehana; Gaspari, Roberto; Cavalli, Andrea; Rocchia, Walter

    2015-01-01

    Drug discovery is expensive and high-risk. Its main reasons of failure are lack of efficacy and toxicity of a drug candidate. Binding affinity for the biological target has been usually considered one of the most relevant figures of merit to judge a drug candidate along with bioavailability, selectivity and metabolic properties, which could depend on off-target interactions. Nevertheless, affinity does not always satisfactorily correlate with in vivo drug efficacy. It is indeed becoming increasingly evident that the time a drug spends in contact with its target (aka residence time) can be a more reliable figure of merit. Experimental kinetic measurements are operatively limited by the cost and the time needed to synthesize compounds to be tested, to express and purify the target, and to setup the assays. We present here a simple and efficient molecular-dynamics-based computational approach to prioritize compounds according to their residence time. We devised a multiple-replica scaled molecular dynamics protocol with suitably defined harmonic restraints to accelerate the unbinding events while preserving the native fold. Ligands are ranked according to the mean observed scaled unbinding time. The approach, trivially parallel and easily implementable, was validated against experimental information available on biological systems of pharmacological relevance. PMID:26103621

  19. Pharmacophore modeling, in silico screening, molecular docking and molecular dynamics approaches for potential alpha-delta bungarotoxin-4 inhibitors discovery

    PubMed Central

    Kumar, R. Barani; Suresh, M. Xavier; Priya, B. Shanmuga

    2015-01-01

    Background: The alpha-delta bungartoxin-4 (α-δ-Bgt-4) is a potent neurotoxin produced by highly venomous snake species, Bungarus caeruleus, mainly targeting neuronal acetylcholine receptors (nAchRs) and producing adverse biological malfunctions leading to respiratory paralysis and mortality. Objective: In this study, we predicted the three-dimensional structure of α-δ-Bgt-4 using homology modeling and investigated the conformational changes and the key residues responsible for nAchRs inhibiting activity. Materials and Methods: From the selected plants, which are traditionally used for snake bites, the active compounds are taken and performed molecular interaction studies and also used for modern techniques like pharmacophore modeling and mapping and absorption, distribution, metabolism, elimination and toxicity analysis which may increase the possibility of success. Results: Moreover, 100's of drug-like compounds were retrieved and analyzed through computational virtual screening and allowed for pharmacokinetic profiling, molecular docking and dynamics simulation. Conclusion: Finally the top five drug-like compounds having competing level of inhibition toward α-δ-Bgt-4 toxin were suggested based on their interaction with α-δ-Bgt-4 toxin. PMID:26109766

  20. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  1. Inelastic Neutron Scattering and Molecular Dynamics Determination of the Interaction Potential in Liquid CD{sub 4}

    SciTech Connect

    Guarini, E.; Barocchi, F.

    2007-10-19

    Anisotropic interactions of liquid CD{sub 4} are studied in detail by comparison of inelastic neutron Brillouin scattering data with molecular dynamics simulations using up to four different models of the methane site-site potential. We demonstrate that the experimental dynamic structure factor S(Q,{omega}) acts as a highly discriminating quantity for possible interaction schemes. In particular, the Q evolution of the spectra enables a selective probing of the short- and medium-range features of the anisotropic potentials. We show that the preferential configuration of methane dimers at liquid densities can thus be discerned by analyzing the orientation-dependent model potential curves, in light of the experimental and simulation results.

  2. Momentum-dependent potentials: Towards the molecular dynamics of fermionlike classical particles

    SciTech Connect

    Cordero, P. ); Hernandez, E.S. )

    1995-03-01

    We investigate classical Hamiltonian models for particles interacting with steep differential repulsive barriers both in coordinate and momentum space. The final aim is to define a classical system of many particles behaving as fermions in many respects. In this paper we examine the appearance of the phase portrait of one- or two-particle systems to skim the essential features that would later be transcribed to the basic rules of a molecular dynamics algorithm. One of the remarkable properties of the phase portrait is the flow from states that start far away with a wide range of momentum towards a narrow region in momentum---a virtual locking of momentum---in the vicinity of the steepest part of the barrier in momentum space. The central ideas are developed through two examples in one and two dimensions.

  3. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sabli?, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  4. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2015-10-01

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.

  5. The inherent dynamics of a molecular liquid: geodesic pathways through the potential energy landscape of a liquid of linear molecules.

    PubMed

    Jacobson, Daniel; Stratt, Richard M

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation-molecules largely thread their way through narrow channels available in the potential energy landscape. PMID:24811642

  6. Molecular dynamics simulations.

    PubMed

    Lindahl, Erik

    2015-01-01

    Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform ?s-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation. PMID:25330956

  7. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger-Weber potential and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhu, Liyan; Cai, Yongqing; Zhang, Gang; Li, Baowen

    2015-06-01

    A Stillinger-Weber interatomic potential is parameterized for phosphorene. It well reproduces the crystal structure, cohesive energy, and phonon dispersion predicted by first-principles calculations. The thermal conductivity of phosphorene is explored by equilibrium molecular dynamics simulations adopting the optimal set of potential parameters. At room temperature, the intrinsic thermal conductivities along zigzag and armchair directions are about 152.7 and 33.0 W/mK, respectively, with a large anisotropy ratio of five. The remarkably directional dependence of thermal conductivity in phosphorene, consistent with previous reports, is mainly due to the strong anisotropy of phonon group velocities, and weak anisotropy of phonon lifetimes as revealed by lattice dynamics calculations. Moreover, the effective phonon mean free paths at zigzag and armchair directions are about 141.4 and 43.4 nm, respectively.

  8. Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abs da Cruz, Carolina; Chantrenne, Patrice; Gomes de Aguiar Veiga, Roberto; Perez, Michel; Kleber, Xavier

    2013-01-01

    Thermal contact conductance of metal-dielectric systems is a key parameter that has to be taken into account for the design and reliability of nanostructured microelectronic systems. This paper aims to predict this value for Si-Cu interfaces using molecular dynamics simulations. To achieve this goal, a modified embedded atom method interatomic potential for Si-Cu system has been set based upon previous MEAM potentials for pure Cu and pure Si. The Si-Cu cross potential is determined by fitting key properties of the alloy to results obtained by ab initio calculations. It has been further evaluated by comparing the structure and energies of Cu dimmers in bulk Si and CumSin clusters to ab initio calculations. The comparison between MD and ab initio calculation also concerns the energy barrier of Cu migration along the (110) channel in bulk Si. Using this interatomic potential, non equilibrium molecular dynamics has been performed to calculate the thermal contact conductance of a Si-Cu interface at different temperature level. The results obtained are in line with previous experimental results for different kind of interfaces. This confirms that the temperature variation of the thermal conductance might not find its origin in the electron-phonon interactions at the interface nor in the quantification of the energy of the vibration modes. The diffuse mismatch model is also used in order to discuss these results.

  9. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential

    SciTech Connect

    Bauchy, M.

    2014-07-14

    We study a calcium aluminosilicate glass of composition (SiO{sub 2}){sub 0.60}(Al{sub 2}O{sub 3}){sub 0.10}(CaO){sub 0.30} by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.

  10. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.

    PubMed

    Patel, Sandeep A; Brooks, Charles L

    2006-05-28

    We present results addressing properties of a polarizable force field for hexane based on the fluctuating charge (FQ) formalism and developed in conjunction with the Chemistry at Harvard Molecular Mechanics (CHARMM) potential function. Properties of bulk neat hexane, its liquid-vapor interface, and its interface with a polarizable water model (TIP4P-FQ) are discussed. The FQ model is compared to a recently modified alkane model, C27r, also based on the CHARMM potential energy function. With respect to bulk properties, both models predict bulk density within 1%; the FQ model predicts the liquid vaporization enthalpy within 2%, while the C27r force field underestimates the property by roughly 20% (and in this sense reflects the quality of the C27r force field across the spectrum of linear and branched alkanes). The FQ hexane model realistically captures the dielectric properties of the bulk in terms of a dielectric constant of 1.94, in excellent agreement with experimental values in the range of 1.9-2.02. This behavior is also in conformity with a recent polarizable alkane model based on Drude oscillators. Furthermore, the bulk dielectric is essentially captured in the infinite frequency, or optical, dielectric contribution. The FQ model is in this respect a more realistic force field for modeling lipid bilayer interiors for which most current state-of-the-art force fields do not accurately capture the dielectric environment. The molecular polarizability of the FQ model is 11.79 A3, in good agreement with the range of experimental and ab initio values. In contrast to FQ models of polar solvents such as alcohols and water, there was no need to scale gas-phase polarizabilities in order to avoid polarization catastrophes in the pure bulk. In terms of the liquid-vapor and liquid-liquid interfaces, the FQ model displays a rich orientational structure of alkane and water in the respective interfacial systems, in general conforming with earlier simulation studies of such interfaces. The FQ force field shows a marked deviation in the interfacial dipole potentials computed from the charge densities averaged over simulation trajectories. At the liquid-vapor interface, the FQ model predicts a potential drop of -178.71 mV in contrast to the C27r estimate of -433.80 mV. For the hexane-water interface, the FQ force field predicts a dipole potential drop of -379.40 mV in contrast to the C27r value of -105.42 mV. Although the surface dipole potential predicted by the FQ model is roughly 3.5 times that predicted by the C27r potential, it is consistent with reported experimental potentials across solvated lipid bilayers in the range of 400-600 mV. PMID:16774363

  11. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  12. Molecular dynamics simulation of electron-ion temperature relaxation in dense hydrogen: A scheme of truncated Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Dai, Jiayu; Kang, Dongdong; Zhao, Zengxiu; Yuan, Jianmin; Zhao, Xueqing

    2014-12-01

    Molecular dynamics (MD) simulations are performed to investigate the temperature relaxation between electrons and ions in a fully ionized, dense hydrogen plasma. We used HM (J. P. Hansen and I. R. McDonald) potential and introduced a truncated Coulomb interaction, which can avoid Coulomb catastrophe by choosing an appropriate cutting radius. The calculated results are compared with those from theoretical models (LS, GMS, BPS), whose applicability is also discussed. The effect of the interaction between ions and electrons on the temperature relaxation process is also investigated in the strong collision region. Finally, we discuss the effect of exchange interaction of electrons to the temperature relaxation.

  13. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE PAGESBeta

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  14. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    SciTech Connect

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.

  15. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Pereira, Luiz Felipe C.; Wang, Hui-Qiong; Zheng, Jin-Cheng; Donadio, Davide; Harju, Ari

    2015-09-01

    We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows Newton's third law can be found without referring to any partition of the potential. Based on this force formula, a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from the stress-based formula derived from two-body potential. We validate our formulation numerically on various systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the simulation are examined.

  16. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  17. Glass Formation of n-Butanol: Coarse-grained Molecular Dynamics Simulations Using Gay-Berne Potential Model

    NASA Astrophysics Data System (ADS)

    Xie, Gui-long; Zhang, Yong-hong; Huang, Shi-ping

    2012-04-01

    Using coarse-grained molecular dynamics simulations based on Gay-Berne potential model, we have simulated the cooling process of liquid n-butanol. A new set of GB parameters are obtained by fitting the results of density functional theory calculations. The simulations are carried out in the range of 290-50 K with temperature decrements of 10 K. The cooling characteristics are determined on the basis of the variations of the density, the potential energy and orientational order parameter with temperature, whose slopes all show discontinuity. Both the radial distribution function curves and the second-rank orientational correlation function curves exhibit splitting in the second peak. Using the discontinuous change of these thermodynamic and structure properties, we obtain the glass transition at an estimate of temperature Tg=12010 K, which is in good agreement with experimental results 1101 K.

  18. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravelo, R.; Germann, T. C.; Guerrero, O.; An, Q.; Holian, B. L.

    2013-10-01

    We report on large-scale nonequilibrium molecular dynamics simulations of shock wave compression in tantalum single crystals. Two new embedded atom method interatomic potentials of Ta have been developed and optimized by fitting to experimental and density functional theory data. The potentials reproduce the isothermal equation of state of Ta up to 300 GPa. We examined the nature of the plastic deformation and elastic limits as functions of crystal orientation. Shock waves along (100), (110), and (111) exhibit elastic-plastic two-wave structures. Plastic deformation in shock compression along (110) is due primarily to the formation of twins that nucleate at the shock front. The strain-rate dependence of the flow stress is found to be orientation dependent, with (110) shocks exhibiting the weaker dependence. Premelting at a temperature much below that of thermodynamic melting at the shock front is observed in all three directions for shock pressures above about 180 GPa.

  19. Chemical Potential of Triethylene Glycol Adsorbed on Surfaces Relevant to Gas Transport and Processing - Studies Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Olsen, R.; Sjblom, S.; Leirvik, K. N.; Kuznetsova, T.

    2014-12-01

    Natural gas will inevitably contain trace amounts of water and other impurities during different stages of processing and transport. Glycols, such as triethylene glycol (TEG), will in many cases follow the water. The glycol contents of the gas can originate from preceding glycol-drying units or it can be a residue from the direct injection of glycols used to prevent hydrate formation. Thus, it is important to know how glycol contents will affect the different paths leading to hydrate formation. Glycols may in some cases dominate the condensed water phase. If this occurs, it will lead to the well-documented shift in the hydrate stability curve, due to the altered activity of the water. A great deal of information on the molecular path of a glycol through the system can be obtained from calculating the chemical potential. Due to difficulties in measuring interfacial chemical potentials, these often need to be estimated using theoretical tools. We used molecular dynamics (MD) to study how TEG behaves in the vicinity of mineral surfaces such as calcite and hematite. Many methods exist for estimating chemical potentials based on MD trajectories. These include techniques such as free energy perturbation theory (FEP) and thermodynamic integration (TI). Such methods require sufficient sampling of configurations where free energy is to be estimated. Thus, it can be difficult to estimate chemical potentials on surfaces. There are several methods to circumvent this problem, such as blue moon sampling and umbrella sampling. These have been considered and the most important have been used to estimate chemical potentials of TEG adsorbed on the mineral surfaces. The resulting chemical potentials were compared to the chemical potential of TEG in bulk water, which was estimated using temperature thermodynamic integration.

  20. Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride

    NASA Astrophysics Data System (ADS)

    Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro; Rino, José Pedro; CollaboratoryAdvanced Computing; Simulations

    2011-02-01

    An effective interatomic interaction potential for AlN is proposed. The potential consists of two-body and three-body covalent interactions. The two-body potential includes steric repulsions due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms, charge-induced dipole-interactions due to the electronic polarizability of ions, and induced dipole-dipole (van der Waals) interactions. The covalent characters of the Al-N-Al and N-Al-N bonds are described by the three-body potential. The proposed three-body interaction potential is a modification of the Stillinger-Weber form proposed to describe Si. Using the molecular dynamics method, the interaction potential is used to study structural, elastic, and dynamical properties of crystalline and amorphous states of AlN for several densities and temperatures. The structural energy for wurtzite (2H) structure has the lowest energy, followed zinc-blende and rock-salt (RS) structures. The pressure for the structural transformation from wurtzite-to-RS from the common tangent is found to be 24 GPa. For AlN in the wurtzite phase, our computed elastic constants (C11, C12, C13, C33, C44, and C66), melting temperature, vibrational density-of-states, and specific heat agree well with the experiments. Predictions are made for the elastic constant as a function of density for the crystalline and amorphous phase. Structural correlations, such as pair distribution function and neutron and x-ray static structure factors are calculated for the amorphous and liquid state.

  1. Interaction potential for aluminum nitride: a molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride

    SciTech Connect

    Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro; Rino, Jose Pedro

    2011-01-01

    An effective interatomic interaction potential for AlN is proposed. The potential consists of two-body and three-body covalent interactions. The two-body potential includes steric repulsions due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms, charge-induced dipole-interactions due to the electronic polarizability of ions, and induced dipoledipole (van der Waals) interactions. The covalent characters of the AlNAl and NAlN bonds are described by the three-body potential. The proposed three-body interaction potential is a modification of the StillingerWeber form proposed to describe Si. Using the molecular dynamics method, the interaction potential is used to study structural, elastic, and dynamical properties of crystalline and amorphous states of AlN for several densities and temperatures. The structural energy for wurtzite (2H) structure has the lowest energy, followed zinc-blende and rock-salt (RS) structures. The pressure for the structural transformation from wurtzite-to-RS from the common tangent is found to be 24 GPa. For AlN in the wurtzite phase, our computed elastic constants ( C{sub 11} , C{sub 12} , C{sub 13} , C{sub 33} , C{sub 44} , and C{sub 66} ), melting temperature, vibrational density-of-states, and specific heat agree well with the experiments. Predictions are made for the elastic constant as a function of density for the crystalline and amorphous phase. Structural correlations, such as pair distribution function and neutron and x-ray static structure factors are calculated for the amorphous and liquid state.

  2. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Rajasekaran, G.; Parashar, Avinash

    2016-02-01

    In this article, molecular dynamics based simulations were carried out to study the tensile behaviour of boron nitride nanosheets (BNNSs). Four different sets of Tersoff potential parameters were used in the simulations for estimating the interatomic interactions between boron and nitrogen atoms. Modifications were incorporated in the Tersoff cut-off function to improve the accuracy of results with respect to fracture stress, fracture strain and Young’s modulus. In this study, the original cut-off function was optimised in such a way that small and large cut-off distances were made equal, and hence a single cut-off distance was used with all sets of Tersoff potential parameters. The single value of cut-off distance for the Tersoff potential was chosen after analysing the potential energy and bond forces experienced by boron and nitrogen atoms subjected to bond stretching. The simulations performed with the optimised cut-off function help in identifying the Tersoff potential parameters that reproduce the experimentally evaluated mechanical behaviour of BNNSs.

  3. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study.

    PubMed

    Kumar, Rajesh; Rajasekaran, G; Parashar, Avinash

    2016-02-26

    In this article, molecular dynamics based simulations were carried out to study the tensile behaviour of boron nitride nanosheets (BNNSs). Four different sets of Tersoff potential parameters were used in the simulations for estimating the interatomic interactions between boron and nitrogen atoms. Modifications were incorporated in the Tersoff cut-off function to improve the accuracy of results with respect to fracture stress, fracture strain and Young's modulus. In this study, the original cut-off function was optimised in such a way that small and large cut-off distances were made equal, and hence a single cut-off distance was used with all sets of Tersoff potential parameters. The single value of cut-off distance for the Tersoff potential was chosen after analysing the potential energy and bond forces experienced by boron and nitrogen atoms subjected to bond stretching. The simulations performed with the optimised cut-off function help in identifying the Tersoff potential parameters that reproduce the experimentally evaluated mechanical behaviour of BNNSs. PMID:26820110

  4. Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery.

    PubMed

    Hwang, Swan; Thangapandian, Sundarapandian; Lee, Keun Woo

    2013-01-01

    The sonic hedgehog (Shh) signaling pathway is necessary for a variety of development and differentiation during embryogenesis as well as maintenance and renascence of diverse adult tissues. However, an abnormal activation of the signaling pathway is related to various cancers. In this pathway, the Shh signaling transduction is facilitated by binding of Shh to its receptor protein, Ptch. In this study, we modeled the 3D structure of functionally important key loop peptides of Ptch based on homologous proteins. Using this loop model, the molecular interactions between the structural components present in the pseudo-active site of Shh and key residues of Ptch was investigated in atomic level through molecular dynamics (MD) simulations. For the purpose of developing inhibitor candidates of the Shh signaling pathway, the Shh pseudo-active site of this interface region was selected as a target to block the direct binding between Shh and Ptch. Two different structure-based pharmacophore models were generated considering the key loop of Ptch and known inhibitor-induced conformational changes of the Shh through MD simulations. Finally two hit compounds were retrieved through a series of virtual screening combined with molecular docking simulations and we propose two hit compounds as potential inhibitory lead candidates to block the Shh signaling pathway based on their strong interactions to receptor or inhibitor induced conformations of the Shh. PMID:23935859

  5. CO2 isolated line shapes by classical molecular dynamics simulations: influence of the intermolecular potential and comparison with new measurements.

    PubMed

    Larcher, G; Tran, H; Schwell, M; Chelin, P; Landsheere, X; Hartmann, J-M; Hu, S-M

    2014-02-28

    Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 ?m and 0.8 ?m regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines. PMID:24588170

  6. CO2 isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements

    NASA Astrophysics Data System (ADS)

    Larcher, G.; Tran, H.; Schwell, M.; Chelin, P.; Landsheere, X.; Hartmann, J.-M.; Hu, S.-M.

    2014-02-01

    Room temperature absorption spectra of various transitions of pure CO2 have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 ?m and 0.8 ?m regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO2 lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO2 transitions are almost independent of the rotational quantum number of the considered lines.

  7. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    SciTech Connect

    Fu, Yao E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  8. Modelling self trapping and trap mutation in tungsten using DFT and Molecular Dynamics with an empirical potential based on DFT

    NASA Astrophysics Data System (ADS)

    Boisse, J.; Domain, C.; Becquart, C. S.

    2014-12-01

    Density Functional Theory calculations and Molecular Dynamics with a recently developed potential for W-He were used to evaluate the thermal stability of helium-vacancy clusters (nHe.mv) as well as pure interstitial helium clusters in tungsten. The stability of such objects results from a competitive process between thermal emission of vacancies, self interstitial atoms (SIAs) and helium, depending on the helium-to-vacancy ratio in mixed clusters or helium number in pure interstitial helium clusters. We investigated in particular the thermodynamics and kinetics of self trapping and trap mutation, i.e. the emission of one SIA along with the creation of one vacancy from a vacancy-helium or pure helium object.

  9. Energetics and diffusional properties of He in BCC Mo: an empirical potential for molecular dynamics simulations

    SciTech Connect

    Yongfeng Zhang; Paul C. Millett; Michael Tonks

    2011-10-01

    This paper presents an interatomic potential for modeling of He defects and bubbles in body-centered-cubic (BCC) Mo. We utilize three existing framework: the Finnis-Sinclair (FS) potential for Mo-Mo, the Effective-Medium-Theory (EMT) for He-Mo, and the Hartree-Fock-Dispersion (HFD) potential for He-He interactions. The energetics of He defects and the diffusivity of He interstitial givens by the present potential agree well with ab initio calculations and experimental measurements. Furthermore, in agreement with theoretical prediction, it is shown that the introduction of He gas suppresses the surface diffusivity of BCC Mo, which decays exponentially with increasing He pressure acting on the free surface. The decay constant, with is correlated with the characteristic interaction volume for He-Mo, is close to the atomic volume of BCC Mo. This suppression effect is important to understand the mobility of small gas bubbles.

  10. Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis.

    PubMed

    Kumar, Akhil; Roy, Sudeep; Tripathi, Shubhandra; Sharma, Ashok

    2016-02-01

    Beta-site APP cleaving enzyme1 (BACE1) catalyzes the rate determining step in the generation of Aβ peptide and is widely considered as a potential therapeutic drug target for Alzheimer's disease (AD). Active site of BACE1 contains catalytic aspartic (Asp) dyad and flap. Asp dyad cleaves the substrate amyloid precursor protein with the help of flap. Currently, there are no marketed drugs available against BACE1 and existing inhibitors are mostly pseudopeptide or synthetic derivatives. There is a need to search for a potent inhibitor with natural scaffold interacting with flap and Asp dyad. This study screens the natural database InterBioScreen, followed by three-dimensional (3D) QSAR pharmacophore modeling, mapping, in silico ADME/T predictions to find the potential BACE1 inhibitors. Further, molecular dynamics of selected inhibitors were performed to observe the dynamic structure of protein after ligand binding. All conformations and the residues of binding region were stable but the flap adopted a closed conformation after binding with the ligand. Bond oligosaccharide interacted with the flap as well as catalytic dyad via hydrogen bond throughout the simulation. This led to stabilize the flap in closed conformation and restricted the entry of substrate. Carbohydrates have been earlier used in the treatment of AD because of their low toxicity, high efficiency, good biocompatibility, and easy permeability through the blood-brain barrier. Our finding will be helpful in identify the potential leads to design novel BACE1 inhibitors for AD therapy. PMID:25707809

  11. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. III. Discontinuous potentials.

    PubMed

    Uline, Mark J; Corti, David S

    2008-07-01

    Based on the approach of Gruhn and Monson [Phys. Rev. E 63, 061106 (2001)], we present a new method for deriving the collisions dynamics for particles that interact via discontinuous potentials. By invoking the conservation of the extended Hamiltonian, we generate molecular dynamics (MD) algorithms for simulating the hard-sphere and square-well fluids within the isothermal-isobaric (NpT) ensemble. Consistent with the recent rigorous reformulation of the NpT ensemble partition function, the equations of motion impose a constant external pressure via the introduction of a shell particle of known mass [M. J. Uline and D. S. Corti, J. Chem. Phys. 123, 164101 (2005); 123, 164102 (2005)], which serves to define uniquely the volume of the system. The particles are also connected to a temperature reservoir through the use of a chain of Nose-Hoover thermostats, the properties of which are not affected by a hard-sphere or square-well collision. By using the Liouville operator formalism and the Trotter expansion theorem to integrate the equations of motion, the update of the thermostat variables can be decoupled from the update of the positions of the particles and the momentum changes upon a collision. Hence, once the appropriate collision dynamics for the isobaric-isenthalpic (NpH) equations of motion is known, the adaptation of the algorithm to the NpT ensemble is straightforward. Results of MD simulations for the pure component square-well fluid are presented and serve to validate our algorithm. Finally, since the mass of the shell particle is known, the system itself, and not a piston of arbitrary mass, controls the time scales for internal pressure and volume fluctuations. We therefore consider the influence of the shell particle algorithm on the dynamics of the square-well fluid. PMID:18624470

  12. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha

    2015-01-01

    The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho) inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho’s structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO) as a template in MODELLER (v 9.10). The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics) 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9) and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial) database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds – ZINC24934545 and ZINC72319544 – that showed high binding affinity among 2,829 drug analogs that bind with key active-site residues; these residues are considered for protein-ligand binding and unbinding pathways via steered molecular dynamics simulations. Arg215 in the model plays an important role in the stability of the protein-ligand complex via a hydrogen bonding interaction by aromatic-π contacts, and the ADMET (absorption, distribution, metabolism, and excretion) analysis of best leads indicate nontoxic in nature with good potential for drug development. PMID:25848225

  13. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M.

    PubMed

    Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha

    2015-01-01

    The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho) inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho's structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO) as a template in MODELLER (v 9.10). The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics) 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9) and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial) database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds - ZINC24934545 and ZINC72319544 - that showed high binding affinity among 2,829 drug analogs that bind with key active-site residues; these residues are considered for protein-ligand binding and unbinding pathways via steered molecular dynamics simulations. Arg215 in the model plays an important role in the stability of the protein-ligand complex via a hydrogen bonding interaction by aromatic-π contacts, and the ADMET (absorption, distribution, metabolism, and excretion) analysis of best leads indicate nontoxic in nature with good potential for drug development. PMID:25848225

  14. Softened electrostatic molecular potentials.

    PubMed

    Besal, Emili; Carb-Dorca, Ramon

    2013-02-01

    Electrostatic molecular potentials (EMPs) are studied from two points of view. First, a softened EMP (SEMP) approach is proposed, consisting in the substitution of a positive point charge as the entity with which an electronic density function (DF) interacts electrostatically to generate a classical EMP for a Gaussian charge distribution. Second, the performance of this SEMP approach under the Atomic Shell Approximation (ASA) is described and compared with classical EMP at the same ASA level. Several sample applications are presented to describe the general features of this new method of studying electrostatic interactions in molecules. The net result is a family of SEMPs that encompass EMPs as special cases but do not possess their infinite discontinuities. The features of SEMPs are quite similar to those of EMPs distant from nuclei, and the absence of infinity values makes them good candidates to be employed in molecular similarity calculations. PMID:23220280

  15. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  16. Molecular dynamics simulation of liquid N2O4?2NO2 by orientation-sensitive pairwise potential. III. Reaction dynamics

    NASA Astrophysics Data System (ADS)

    Kat?, Toshiko

    2004-01-01

    The dissociation and association dynamics of N2O4?2NO2 in liquid state are studied by classical molecular dynamics simulations of reactive liquid NO2. An OSPP+LJ potential between NO2 molecules, which is a sum of an orientation-sensitive pairwise potential (OSPP) between N-N atoms proposed in Paper I [J. Chem. Phys. 115, 10852 (2001)] and Lennard-Jones potentials between N-O and O-O atoms, has been used in the simulation. The reaction dynamics is studied as a function of well depth De and anisotropy factors of the OSPP potential: A? (0?A??1) for the rocking angle and A? (0?A??0.5) for the torsional angle of relative NO2-NO2 orientation. The lifetime ?D of initially prepared NO2 dimers is found to increase as De increases, A? increases, and A? decreases. Dissociation and association dynamics are studied in detail around the extreme limit of pure NO2-dimer liquid: De=0.1210-18 J, A?=0.5, and A?=0.1, which has been found to reproduce both the observed liquid phase equilibrium properties and Raman band shapes of the dissociation mode very well. The dissociation dynamics from microscopic reaction trajectories is compared with the potential of the mean force (PMF) as a function of the N-N distance R. The PMF of reactive liquid NO2 shows a transition state barrier at R=2.3-2.5 , and NO2-trimer structure is found to be formed at the barrier. Two types of dissociation of the NO2 dimerthe dissociation by collisional activation of the reactive mode to cross the dissociation limit and the NO2-mediated dissociation via bond transferare studied. The latter needs less free energy and is found to be much more probable. The dissociation trajectories and PMF in reactive liquid NO2 are compared with those of a reactive NO2 pair in inert solvent N2O4.

  17. Molecular dynamics of liquid butane

    NASA Astrophysics Data System (ADS)

    Toxvaerd, Sren

    1988-09-01

    Molecular dynamics simulations have been used to investigate the sensitivity of liquid butane to different intra- and intermolecular potential functions. The calculations show that the thermodynamic data and the self-diffusion constant for liquid butane at room temperature are only weakly dependent on the intramolecular rotational potential. Calculations of pressure and distribution functions for systems with and without intermolecular attractive forces show that there is an increased orientational ordering in systems with purely repulsive forces. This effect must be included in perturbation theories for these molecular systems.

  18. Molecular dynamics study of hydrogen atom recombination over silica, based on a new analytical DFT potential energy surface

    NASA Astrophysics Data System (ADS)

    Gamallo, P.; Rutigliano, M.; Orlandini, S.; Cacciatore, M.; Says, R.

    2012-11-01

    A new analytical potential energy surface (PES) based on new density functional theory data is constructed for the interaction of atomic hydrogen with both a clean and an H-preadsorbed ?-cristobalite (001) surface. For the atomic interaction, six adsorption sites have been considered, the Si site (T1') being the most stable one. The PES was developed as a sum of pairwise atom-atom interactions between the gas-phase hydrogen atoms and the Si and O atoms of the ?-cristobalite surface. A preliminary molecular dynamics semiclassical study of the different heterogeneous processes (e.g., H2 formation via Eley-Rideal reaction, H adsorption) that occur when H collides with an H-preadsorbed ?-cristobalite (001) surface was carried out. The calculations were performed for collisional energy in the range (0.06 ? Ekin ? 3.0 eV), normal incidence and a surface temperature Tsurf = 1000 K. The recombination probability reaches its maximum value of approximately 0.1 for collisional energies in the range 0.3 ? Ekin ? 0.8 eV. The H2 molecules are formed in medium-lying vibrational levels, while the energy exchanged with the surface in the recombination process is very low.

  19. A Mechanism for Ion Transport Across the Water/Dichloromethane Interface: A Molecular Dynamics Study Using Polarizable Potential Models

    SciTech Connect

    Dang, Liem X.)

    2001-02-01

    In this work, we used molecular dynamics techniques and mean force approaches to compute the ion transfer free energy for the water/dichloromethane liquid-liquid interface. We used polarizable potential models to describe the interactions among the species, and both forward and reverse directions were carried out to estimate the error bar of the computed free energy results. Based on the results of our calculations, we have proposed a mechanism that describes the transport of a chlorine ion across the interface. The computed ion transfer free energy is 14 & No.177; 2 kcal/mol, which is in reasonable agreement with the experimentally reported value of 10 kcal/mol. A smooth transition from the aqueous phase to the non-aqueous phase on the free energy profile clearly indicates that the ion transfer mechanism is a nonactivated process. The computed hydration number for the chlorine ion indicates that some water molecules are associated with the ion inside the non-aqueous phase. This result is in excellent agreement with the experimental interpretation of the ion transfer mechanism reported recently by Osakai et al. (J. Phys. Chem. 1997, 101, 8341).

  20. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitins noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50? distances; that conformational selection can take place within surface-to-surface distances of 10 to 40? i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  1. Molecular dynamics simulations with many-body potentials on multiple GPUs—The implementation, package and performance

    NASA Astrophysics Data System (ADS)

    Hou, Qing; Li, Min; Zhou, Yulu; Cui, Jiechao; Cui, Zhenguo; Wang, Jun

    2013-09-01

    Molecular dynamics (MD) is an important research tool extensively applied in materials science. Running MD on a graphics processing unit (GPU) is an attractive new approach for accelerating MD simulations. Currently, GPU implementations of MD usually run in a one-host-process-one-GPU (OHPOG) scheme. This scheme may pose a limitation on the system size that an implementation can handle due to the small device memory relative to the host memory. In this paper, we present a one-host-process-multiple-GPU (OHPMG) implementation of MD with embedded-atom-model or semi-empirical tight-binding many-body potentials. Because more device memory is available in an OHPMG process, the system size that can be handled is increased to a few million or more atoms. In comparison with the serial CPU implementation, in which Newton's third law is applied to improve the computational efficiency, our OHPMG implementation has achieved a 28.9x-86.0x speedup in double precision, depending on the system size, the cut-off ranges and the number of GPUs. The implementation can also handle a group of small simulation boxes in one run by combining the small boxes into a large box. This approach greatly improves the GPU computing efficiency when a large number of MD simulations for small boxes are needed for statistical purposes.

  2. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding.

    PubMed

    Abriata, Luciano A; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin's noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50? distances; that conformational selection can take place within surface-to-surface distances of 10 to 40? i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  3. Molecular Dynamics of Acetylcholinesterase

    SciTech Connect

    Shen, T Y.; Tai, Kaihsu; Henchman, Richard H.; Mccammon, Andy

    2002-06-01

    Molecular dynamics simulations are leading to a deeper understanding of the activity of the enzyme acetylcholinesterase. Simulations have shown how breathing motions in the enzyme facilitate the displacement of substrate from the surface of the enzyme to the buried active site. The most recent work points to the complex and spatially extensive nature of such motions and suggests possible modes of regulation of the activity of the enzyme.

  4. Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2016-02-23

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role in the pharmaceutical industry for lead identification and optimization. In the current study, we analysed the binding preferences and inhibitory activity of HIV-integrase inhibitors using pharmacoinformatics. A set of 30 compounds were selected as the training set of a total 540 molecules for pharmacophore model generation. The final model was validated by statistical parameters and further used for virtual screening. The best mapped model (R = 0.940, RMSD = 2.847, Q(2) = 0.912, se = 0.498, Rpred(2) = 0.847 and rm(test)(2) = 0.636) explained that two hydrogen bond acceptor and one aromatic ring features were crucial for the inhibition of HIV-integrase. From virtual screening, initial hits were sorted using a number of parameters and finally two compounds were proposed as promising HIV-integrase inhibitors. Drug-likeness properties of the final screened compounds were compared to FDA approved HIV-integrase inhibitors. HIV-integrase structure in complex with the most active and final screened compounds were subjected to 50 ns molecular dynamics (MD) simulation studies to check comparative stability of the complexes. The study suggested that the screened compounds might be promising HIV-integrase inhibitors. The new chemical entities obtained from the NCI database will be subjected to experimental studies to confirm potential inhibition of HIV integrase. PMID:26809073

  5. Molecular electrostatic potentials by systematic molecular fragmentation

    SciTech Connect

    Reid, David M.; Collins, Michael A.

    2013-11-14

    A simple method is presented for estimating the molecular electrostatic potential in and around molecules using systematic molecular fragmentation. This approach estimates the potential directly from the electron density. The accuracy of the method is established for a set of organic molecules and ions. The utility of the approach is demonstrated by estimating the binding energy of a water molecule in an internal cavity in the protein ubiquitin.

  6. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  7. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  8. Molecular dynamics simulation of benzene

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2016-03-01

    Intermolecular potentials and a few models of intermolecular interaction in liquid benzene are tested by Molecular Dynamics (MD) simulations. The repulsive part of the Lennard-Jones 12-6 (LJ 12-6) potential is too hard, which yields incorrect results. The exp-6 potential with a too hard repulsive term is also often used. Therefore, we took an expa-6 potential with a small Gaussian correction plus electrostatic interactions. This allows to modify the curvature of the potential. The MD simulations are carried out in the temperature range 280-352 K under normal pressure and at experimental density. The Rayleigh scattering of depolarized light is used for comparison. The results of MD simulations are comparable with the experimental values.

  9. Using a hydrophobic contact potential to evaluate native and near-native folds generated by molecular dynamics simulations.

    PubMed

    Huang, E S; Subbiah, S; Tsai, J; Levitt, M

    1996-04-01

    There are several knowledge-based energy functions that can distinguish the native fold from a pool of grossly misfolded decoys for a given sequence of amino acids. These decoys, which are typically generated by mounting, or "threading", the sequence onto the backbones of unrelated protein structures, tend to be non-compact and quite different from the native structure: the root-mean-squared (RMS) deviations from the native are commonly in the range of 15 to 20 angstroms. Effective energy functions should also demonstrate a similar recognition capability when presented with compact decoys that depart only slightly in conformation from the correct structure (i.e. those with RMS deviations of approximately 5 angstroms or less). Recently, we developed a simple yet powerful method for native fold recognition based on the tendency for native folds to form hydrophobic cores. Our energy measure, which we call the hydrophobic fitness score, is challenged to recognize the native fold from 2000 near-native structures generated for each of five small monomeric proteins. First, 1000 conformations for each protein were generated by molecular dynamics simulation at room temperature. The average RMS deviation of this set of 5000 was 1.5 angstroms. A total of 323 decoys had energies lower than native; however, none of these had RMS deviations greater than 2 angstroms. Another 1000 structures were generated for each at high temperature, in which a greater range of conformational space was explored (4.3 angstroms RMS deviation). Out of this set, only seven decoys were misrecognized. The hydrophobic fitness energy of a conformation is strongly dependent upon the RMS deviation. On average our potential yields energy values which are lowest for the population of structures generated at room temperature, intermediate for those produced at high temperature and highest for those constructed by threading methods. In general, the lowest energy decoy conformations have backbones very close to native structure. The possible utility of our method for screening backbone candidates for the purpose of modelling by side-chain packing optimization is discussed. PMID:8648635

  10. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two winning videos in a competition held at the meeting of the American Physical Society's Division of Fluid Dynamics, held in Atlanta, Georgia, in November 1994. Of great interest was the result that in every shock there were a few high-speed precursor particles racing ahead of the shock, carrying information about its impending arrival. Most recently, Dr. Woo has been applying molecular dynamics techniques to the problem of determining the drag produced by the space station truss structure as it flies through the thin residual atmosphere of low-Earth orbit. This problem is made difficult by the complex structure of the truss and by the extreme supersonic nature of the flow. A fully filled section of the truss has already been examined, and drag predictions have been made. Molecular dynamics techniques promise to make realistic drag calculations possible even for very complex partially filled truss segments flying at arbitrary angles.

  11. Molecular dynamics simulations

    SciTech Connect

    Alder, B.J.

    1985-07-01

    The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs.

  12. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies

    PubMed Central

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment. PMID:26252490

  13. Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis.

    PubMed

    Torres, Rodrigo; Swift, Robert V; Chim, Nicholas; Wheatley, Nicole; Lan, Benson; Atwood, Brian R; Pujol, Cline; Sankaran, Banu; Bliska, James B; Amaro, Rommie E; Goulding, Celia W

    2011-01-01

    Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the role of RipA in this unique virulence pathway. PMID:21966419

  14. Configurational constant pressure molecular dynamics

    NASA Astrophysics Data System (ADS)

    Braga, Carlos; Travis, Karl P.

    2006-03-01

    We propose two new algorithms for generating isothermal-isobaric molecular dynamics. The algorithms are based on an extended phase space dynamics where two extra degrees of freedom, representing the thermostat and the barostat, are included. These new methods adopt a totally different approach towards molecular dynamics simulation in the isothermal-isobaric ensemble. They are fully configurational in the sense that only the particle positions are required in the control of the system temperature and pressure. Following on from the works of Delhommelle and Evans [Mol. Phys., 99, 1825 (2001)] and of Braga and Travis [J. Chem. Phys., 123, 134101 (2005)] concerning configurational canonical dynamics, these new algorithms can be seen as a natural extension to the isothermal-isobaric ensemble. We have validated both of our new configurational isothermal-isobaric schemes by conducting molecular dynamics simulations of a Lennard-Jones fluid and comparing the static and dynamic properties for a single state point. We find that both schemes generate similar results compared with schemes which use kinetic temperature and pressure control. We have also monitored the response of the system to a series of isothermal compressions and isobaric quenches. We find that the configurational schemes performed at least as well as the kinetic based scheme in bringing the system temperature and pressure into line with the set point values of these variables. These new methods will potentially play a significant role in simulations where the calculation of the kinetic temperature and pressure can be problematic. A well known example resides in the field of nonequilibrium simulations where the kinetic temperature and pressure require a knowledge of the streaming velocity of the fluid in order to calculate the true peculiar velocities (or momenta) that enter into their definitions. These are completely avoided by using our configurational thermostats and barostats, since these are independent of momenta. By extending the analysis of Kusnezov et al. [Ann. Phys., 204, 155 (1990)] in order to derive a set of generalized Nos-Hoover equations of motion which can generate isothermal-isobaric dynamics in a number of different ways, we are able to show that both of our new configurational barostats and Hoover's kinetic isothermal-isobaric scheme are special cases of this more general set of equations. This generalization can be very powerful in generating constant pressure dynamics for a variety of systems.

  15. Scalable Molecular Dynamics with NAMD

    PubMed Central

    Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus

    2008-01-01

    NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654

  16. Multisurface Adiabatic Reactive Molecular Dynamics.

    PubMed

    Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus

    2014-04-01

    Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356

  17. Reactive molecular dynamics simulations of shocked PETN

    NASA Astrophysics Data System (ADS)

    Budzien, Joanne; Thompson, Aidan P.; Zybin, Sergey V.

    2008-03-01

    We have performed molecular dynamics simulations of PETN crystals subjected to shock along the [100] direction. Using the reactive forcefield, ReaxFF, and the molecular dynamics code, GRASP, allows us to track the chemical reactions that occur as both a function of time and position. By simulating larger systems, we can observe the formation of both primary and secondary products to make comparisons with experiments. Composition profiles of these products will be shown along with profiles of stress, temperature, and potential energy.

  18. Molecular dynamics simulation of planar elongational flow in a nematic liquid crystal based on the Gay-Berne potential.

    PubMed

    Sarman, Sten; Laaksonen, Aatto

    2015-02-01

    Molecular dynamics simulations of planar elongational flow in a nematic liquid crystal model system based on the Gay-Berne fluid were undertaken by applying the SLLOD equations of motion with an elongational velocity field or strain rate. In order to facilitate the simulation, Kraynik-Reinelt periodic boundary conditions allowing arbitrarily long simulations were used. A Lagrangian constraint algorithm was utilized to fix the director at different angles relative to the elongation direction, so that the various pressure tensor elements could be calculated as a function of this angle. This made it possible to obtain accurate values of the shear viscosities which were found to agree with results previously obtained by shear flow simulations. The torque needed to fix the director at various angles relative to the elongation direction was evaluated in order to determine the stable orientation of the director, where this torque is equal to zero. This orientation was found to be parallel to the elongation direction. It was also noted that the irreversible entropy production was minimal when the director attained this orientation. Since the simulated system was rather large and fairly long simulation runs were undertaken it was also possible to study the cross coupling between the strain rate and the order tensor. It turned out to be very weak at low strain rates but at higher strain rates it could lead to break down of the liquid crystalline order. PMID:25523414

  19. A method to calculate redox potentials relative to the normal hydrogen electrode in nonaqueous solution by using density functional theory-based molecular dynamics.

    PubMed

    Jono, Ryota; Tateyama, Yoshitaka; Yamashita, Koichi

    2015-10-28

    We demonstrate the redox potential calculation relative to the normal hydrogen electrode (NHE) in nonaqueous solution using a density functional theory-based molecular dynamics (DFT-MD) simulation. The calculation of the NHE in nonaqueous solution consists of two processes: the first step is the equilibrated simulation for a proton in nonaqueous solution to determine the space for inserting a proton in solution, and the second step is the thermodynamic integration method to calculate the solvation energy of the proton in the nonaqueous solution. In this work, we apply the method for a cation and an anion, i.e., copper(ii)/copper(i) and iodine/iodide in acetonitrile solution, and show that the errors in the calculated redox potential from experiments are within 0.21 V. PMID:26412242

  20. Communication: Rate coefficients of the H + CH4 ? H2 + CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface.

    PubMed

    Meng, Qingyong; Chen, Jun; Zhang, Dong H

    2015-09-14

    The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li et al., J. Chem. Phys. 142, 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300?K ? T ? 1000?K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures. PMID:26373990

  1. On quantum potential dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Sheldon; Struyve, Ward

    2015-01-01

    Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave functionthe quantum potentialtogether with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.

  2. Discrete Molecular Dynamics Simulation of Biomolecules

    NASA Astrophysics Data System (ADS)

    Ding, Feng

    2011-10-01

    Discrete molecular dynamics (DMD) simulation of hard spheres was the first implementation of molecular dynamics (MD) in history. DMD simulations are computationally more efficient than continuous MD simulations due to simplified interaction potentials. However, also due to these simplified potentials, DMD has often been associated with coarse-grained modeling, and hence continuous MD has become the dominant approach used to study the internal dynamics of biomolecules. With the recent advances in DMD methodology, including the development of high-resolution models for biomolecules and approaches to increase DMD efficiency, DMD simulations are emerging as an important tool in the field of molecular modeling, including the study of protein folding, protein misfolding and aggregation, and protein engineering. Recently, DMD methodology has been applied to modeling RNA folding and protein-ligand recognition. With these improvements to DMD methodology and the continuous increase in available computational power, we expect a growing role of DMD simulations in our understanding of biology.

  3. Nanoindentation of Zr by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lu (???), Zizhe; Chernatynskiy, Aleksandr; Noordhoek, Mark J.; Sinnott, Susan B.; Phillpot, Simon R.

    2015-12-01

    Molecular dynamics simulations of nanoindentation are used to study the deformation behaviors of single crystal Zr for four different surface orientations. The comparison of results for two different potentials, an embedded atom method potential and a charged optimized many body potential, reveals the influence of stable and unstable stacking fault energy on dislocation behaviors under nanoindentation. The load-displacement curve, hardness and deformation behaviors of the various surface orientations Zr are compared and the elastic and plastic deformation behaviors are analyzed.

  4. Identification of Novel Potential β-N-Acetyl-D-Hexosaminidase Inhibitors by Virtual Screening, Molecular Dynamics Simulation and MM-PBSA Calculations

    PubMed Central

    Liu, Jianling; Liu, Mengmeng; Yao, Yao; Wang, Jinan; Li, Yan; Li, Guohui; Wang, Yonghua

    2012-01-01

    Chitinolytic β-N-acetyl-d-hexosaminidases, as a class of chitin hydrolysis enzyme in insects, are a potential species-specific target for developing environmentally-friendly pesticides. Until now, pesticides targeting chitinolytic β-N-acetyl-d-hexosaminidase have not been developed. This study demonstrates a combination of different theoretical methods for investigating the key structural features of this enzyme responsible for pesticide inhibition, thus allowing for the discovery of novel small molecule inhibitors. Firstly, based on the currently reported crystal structure of this protein (OfHex1.pdb), we conducted a pre-screening of a drug-like compound database with 8 × 106 compounds by using the expanded pesticide-likeness criteria, followed by docking-based screening, obtaining 5 top-ranked compounds with favorable docking conformation into OfHex1. Secondly, molecular docking and molecular dynamics simulations are performed for the five complexes and demonstrate that one main hydrophobic pocket formed by residues Trp424, Trp448 and Trp524, which is significant for stabilization of the ligand–receptor complex, and key residues Asp477 and Trp490, are respectively responsible for forming hydrogen-bonding and π–π stacking interactions with the ligands. Finally, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis indicates that van der Waals interactions are the main driving force for the inhibitor binding that agrees with the fact that the binding pocket of OfHex1 is mainly composed of hydrophobic residues. These results suggest that screening the ZINC database can maximize the identification of potential OfHex1 inhibitors and the computational protocol will be valuable for screening potential inhibitors of the binding mode, which is useful for the future rational design of novel, potent OfHex1-specific pesticides. PMID:22605995

  5. Semiclassical guided optimal control of molecular dynamics

    SciTech Connect

    Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.

    2005-10-15

    An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.

  6. CO{sub 2} isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements

    SciTech Connect

    Larcher, G.; Tran, H. Schwell, M.; Chelin, P.; Landsheere, X.; Hartmann, J.-M.; Hu, S.-M.

    2014-02-28

    Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 ?m and 0.8 ?m regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.

  7. Quantum Tunneling in Testosterone 6β-Hydroxylation by Cytochrome P450: Reaction Dynamics Calculations Employing Multiconfiguration Molecular-Mechanical Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lin, Hai

    2009-05-01

    Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.

  8. Critical and phase-equilibrium properties of an ab initio based potential model of methanol and 1-propanol using two-phase molecular dynamics simulations.

    PubMed

    Patel, Sonal; Wilding, W Vincent; Rowley, Richard L

    2011-12-21

    Two-phase molecular dynamics simulations employing a Monte Carlo volume sampling method were performed using an ab initio based force field model parameterized to reproduce quantum-mechanical dimer energies for methanol and 1-propanol at temperatures approaching the critical temperature. The intermolecular potential models were used to obtain the binodal vapor-liquid phase dome at temperatures to within about 10 K of the critical temperature. The efficacy of two all-atom, site-site pair potential models, developed solely from the energy landscape obtained from high-level ab initio pair interactions, was tested for the first time. The first model was regressed from the ab initio landscape without point charges using a modified Morse potential to model the complete interactions; the second model included point charges to separate Coulombic and dispersion interactions. Both models produced equivalent phase domes and critical loci. The model results for the critical temperature, density, and pressure, in addition to the sub-critical equilibrium vapor and liquid densities and vapor pressures, are compared to experimental data. The model's critical temperature for methanol is 77 K too high while that for 1-propanol is 80 K too low, but the critical densities are in good agreement. These differences are likely attributable to the lack of multi-body interactions in the true pair potential models used here. PMID:22191893

  9. Critical and phase-equilibrium properties of an ab initio based potential model of methanol and 1-propanol using two-phase molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patel, Sonal; Wilding, W. Vincent; Rowley, Richard L.

    2011-12-01

    Two-phase molecular dynamics simulations employing a Monte Carlo volume sampling method were performed using an ab initio based force field model parameterized to reproduce quantum-mechanical dimer energies for methanol and 1-propanol at temperatures approaching the critical temperature. The intermolecular potential models were used to obtain the binodal vapor-liquid phase dome at temperatures to within about 10 K of the critical temperature. The efficacy of two all-atom, site-site pair potential models, developed solely from the energy landscape obtained from high-level ab initio pair interactions, was tested for the first time. The first model was regressed from the ab initio landscape without point charges using a modified Morse potential to model the complete interactions; the second model included point charges to separate Coulombic and dispersion interactions. Both models produced equivalent phase domes and critical loci. The model results for the critical temperature, density, and pressure, in addition to the sub-critical equilibrium vapor and liquid densities and vapor pressures, are compared to experimental data. The model's critical temperature for methanol is 77 K too high while that for 1-propanol is 80 K too low, but the critical densities are in good agreement. These differences are likely attributable to the lack of multi-body interactions in the true pair potential models used here.

  10. GAS PHASE MOLECULAR DYNAMICS

    SciTech Connect

    SEARS,T.J.; HALL,G.E.; PRESES,J.M.; WESTON,R.E.,JR.

    1999-06-09

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution, high-sensitivity, laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule. The work of group members Fockenberg and Muckerman is described in separate abstracts of this volume.

  11. Gas Phase Molecular Dynamics

    SciTech Connect

    Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

    1999-05-21

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.

  12. Molecular dynamics simulation of liquid N2O4?2NO2 by orientation-sensitive pairwise potential. I. Chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Kat?, Toshiko; Hayashi, Soichi; Machida, Katsunosuke

    2001-12-01

    This paper, the first of a series of papers, examines equilibrium properties of N2O4?NO2 in liquid state by classical molecular dynamics simulations of liquid NO2. An ab initio MO calculation has been carried out to elucidate NO2-NO2 potential, and an orientation-sensitive pairwise potential (OSPP), which can reproduce highly anisotropic character of covalent bonding between N-N, has been formulated. The OSPP potential is parameterized by the well depth De and by two anisotropy factors: A? (0?A??1) the anisotropy factor for the rocking angle between NN bond and ONO direction, and A? (0?A??1) for torsional angle of the two NO2 about NN bond. The reactive liquid N2O4 is modeled as liquid NO2 which interacts with the OSPP potential between N-N atoms and Lennard-Jones potentials between N-O and O-O atoms. Equilibrium properties were found to be very sensitive to the well depth De and anisotropy factors of OSPP. The population of more than the NO2 dimer (3-mer, 4-mer,) is considerable when anisotropy factors of the NN bond are small. On the other hand, the equilibrium liquid N2O4?2NO2 is formed, that is, most NO2 form monomer or dimer and the population of more than 3-mer is very small when A?+A??0.4-0.5. In simulated liquid NO2/N2O4, concentration of N2O4 is found to increase as De increases, A? increases, and A? decreases. The equilibrium constant for the dissociation reaction has been derived by computing the potential of mean force as a function of the N-N distance rc (the reaction coordinate). The OSPP potential for De=0.1210-18 J, A?=0.5 and A?=0.1 is found to reproduce the observed liquid phase equilibrium properties fairly well.

  13. How reliable is the ReaxFF Potential for Describing the Structure of Alkanethiols on Gold? A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Vasumathi, V.; Cordeiro, Maria Natalia D. S.

    2014-03-01

    The structures of self-assembled monolayers (SAMs) of short (methyl) and long (hexyl) chain alkyl thiols on the clean gold (111) surface were modelled using for the Au-S interactions either the reactive ReaxFF potential or the well known non-reactive Morse potential, while for the Au-Au interactions either the ReaxFF potential or an embedded-atom method (EAM). Analysis of the MD trajectories of possible SAM structures suggests that disordering of interfacial Au atoms is definitely driven by the gold-sulphur interactions. Our MD results reveal a novel structure where two methanethiol molecules are bound to a gold adatom that has been lifted from the surface at 300 K, and the same kind of RS-Au-SR motif was also observed for hexanethiol at 600 K but not at 300 K. What is more, the above motif is only observed for the reactive ReaxFF potential. Moreover, these results are in clear agreement with recent experiments and more costly first principles-based MD simulations. These findings strongly support the use of reactive potentials such as ReaxFF for gathering an accurate description of Au-S interactions in inexpensive classical MD simulations.

  14. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  15. Surface Electrostatic Potential and Water Orientation in the presence of Sodium Octanoate Dilute Monolayers Studied by Means of Molecular Dynamics Simulations.

    PubMed

    Bernardino, Kalil; de Moura, André F

    2015-10-13

    A series of atomistic molecular dynamics simulations were performed in the present investigation to assess the spontaneous formation of surfactant monolayers of sodium octanoate at the water-vacuum interface. The surfactant surface coverage increased until a saturation threshold was achieved, after which any further surfactant addition led to the formation of micellar aggregates within the solution. The saturated films were not densely packed, as might be expected for short-chained surfactants, and all films regardless of the surface coverage presented surfactant molecules with the same ordering pattern, namely, with the ionic heads toward the aqueous solution and the tails lying nearly parallel to the interface. The major contributions to the electrostatic surface potential came from the charged heads and the counterion distribution, which nearly canceled out each other. The balance between the oppositely charged ions rendered the electrostatic contributions from water meaningful, amounting to ca. 10% of the contributions arising from the ionic species. And even the aliphatic tails, whose atoms bear relatively small partial atomic charges as compared to the polar molecules and molecular fragments, contributed with ca. 20% of the total electrostatic surface potential of the systems under investigation. Although the aliphatic tails were not so orderly arranged as in a compact film, the C-H bonds assumed a preferential orientation, leading to an increased contribution to the electrostatic properties of the interface. The most prominent feature arising from the partitioning of the electrostatic potential into individual contributions was the long-range ordering of the water molecules. This ordering of the water molecules produced a repulsive dipole-dipole interaction between the two interfaces, which increased with the surface coverage. Only for a water layer wider than 10 nm was true bulk behavior observed, and the repulsive dipole-dipole interaction faded away. PMID:26393372

  16. Molecular dynamics investigation of nanoscale cavitation dynamics

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Keblinski, Pawel

    2014-12-01

    We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches 90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is 20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

  17. Molecular dynamics simulations of weak detonations.

    PubMed

    Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie

    2011-12-01

    Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal. PMID:22304055

  18. MOLECULAR PACKING AND NPT-MOLECULAR DYNAMICS INVESTIGATION OF THE TRANSFERABILITY OF THE RDX INTERMOLECULAR POTENTIAL TO 2,4,6,8,1O,12- HEXANITROHEXAAZAISOWURTZITANE (HNIW)

    EPA Science Inventory

    We have explored the degree to which an intermolecular potential for the explosive hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) is transferable for predictions of crystal structures (within the approximation of rigid molecules) of a similar chemical system,in this case, polymo...

  19. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential

    NASA Astrophysics Data System (ADS)

    Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng

    2015-12-01

    To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06016h

  20. Molecular dynamic theories in chromatography.

    PubMed

    Felinger, Attila

    2008-03-14

    The molecular dynamic model of chromatography is a microscopic model that consists of two fundamental processes: (i) the random migration of the molecules in the mobile phase, and (ii) the random adsorption-desorption of molecules on the stationary phase. The diffusion and drift of the molecules in the mobile phase is usually described with a simple one-dimensional random walk. The adsorption-desorption process is modeled most of the time by a Poisson process that assumes exponential sojourn times of the molecules in both the mobile and the stationary phases. The molecular dynamic model of chromatography can simply be used to characterize the chromatographic process on heterogeneous stationary phases. It has been applied to reversed phase, chiral, size-exclusion, and ion-exchange separations. PMID:18199443

  1. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  2. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  3. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential.

    PubMed

    Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng

    2015-12-23

    To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. PMID:26658834

  4. Ion Permeation through a Narrow Channel: Using Gramicidin to Ascertain All-Atom Molecular Dynamics Potential of Mean Force Methodology and Biomolecular Force Fields

    PubMed Central

    Allen, Toby W.; Andersen, Olaf S.; Roux, Benoit

    2006-01-01

    We investigate methods for extracting the potential of mean force (PMF) governing ion permeation from molecular dynamics simulations (MD) using gramicidin A as a prototypical narrow ion channel. It is possible to obtain well-converged meaningful PMFs using all-atom MD, which predict experimental observables within order-of-magnitude agreement with experimental results. This was possible by careful attention to issues of statistical convergence of the PMF, finite size effects, and lipid hydrocarbon chain polarizability. When comparing the modern all-atom force fields of CHARMM27 and AMBER94, we found that a fairly consistent picture emerges, and that both AMBER94 and CHARMM27 predict observables that are in semiquantitative agreement with both the experimental conductance and dissociation coefficient. Even small changes in the force field, however, result in significant changes in permeation energetics. Furthermore, the full two-dimensional free-energy surface describing permeation reveals the location and magnitude of the central barrier and the location of two binding sites for K+ ion permeation near the channel entrancei.e., an inner site on-axis and an outer site off-axis. We conclude that the MD-PMF approach is a powerful tool for understanding and predicting the function of narrow ion channels in a manner that is consistent with the atomic and thermally fluctuating nature of proteins. PMID:16500984

  5. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.

    PubMed

    Simon, Aude; Iftner, Christophe; Mascetti, Jolle; Spiegelman, Fernand

    2015-03-19

    The present theoretical study aims at investigating the effects of an argon matrix on the structures, energetics, dynamics, and infrared (IR) spectra of small water clusters (H2O)n (n = 1-6). The potential energy surface is obtained from a hybrid self-consistent charge density functional-based tight binding/force-field approach (SCC-DFTB/FF) in which the water clusters are treated at the SCC-DFTB level and the matrix is modeled at the FF level by a cluster consisting of ?340 Ar atoms with a face centered cubic (fcc) structure, namely (H2O)n/Ar. With respect to a pure FF scheme, this allows a quantum description of the molecular system embedded in the matrix, along with all-atom geometry optimization and molecular dynamics (MD) simulations of the (H2O)n/Ar system. Finite-temperature IR spectra are derived from the MD simulations. The SCC-DFTB/FF scheme is first benchmarked on (H2O)Arn clusters against correlated wave function results and DFT calculations performed in the present work, and against FF data available in the literature. Regarding (H2O)n/Ar systems, the geometries of the water clusters are found to adapt to the fcc environment, possibly leading to intermolecular distortion and matrix perturbation. Several energetical quantities are estimated to characterize the water clusters in the matrix. In the particular case of the water hexamer, substitution and insertion energies for the prism, bag, and cage are found to be lower than that for the 6-member ring isomer. Finite-temperature MD simulations show that the water monomer has a quasifree rotation motion at 13 K, in agreement with experimental data. In the case of the water dimer, the only large-amplitude motion is a distortion-rotation intermolecular motion, whereas only vibration motions around the nuclei equilibrium positions are observed for clusters with larger sizes. Regarding the IR spectra, we find that the matrix environment leads to redshifts of the stretching modes and almost no shift of the bending modes. This is in agreement with experimental data. Furthermore, in the case of the water monomer and dimer, the magnitudes of the computed shifts are in fair agreement with the experimental values. The complex case of the water hexamer, which presents several low-energy isomers, is discussed. PMID:25650885

  6. Molecular Multipole Potential Energy Functions for Water.

    PubMed

    Tan, Ming-Liang; Tran, Kelly N; Pickard, Frank C; Simmonett, Andrew C; Brooks, Bernard R; Ichiye, Toshiko

    2016-03-01

    Water is the most common liquid on this planet, with many unique properties that make it essential for life as we know it. These properties must arise from features in the charge distribution of a water molecule, so it is essential to capture these features in potential energy functions for water to reproduce its liquid state properties in computer simulations. Recently, models that utilize a multipole expansion located on a single site in the water molecule, or "molecular multipole models", have been shown to rival and even surpass site models with up to five sites in reproducing both the electrostatic potential around a molecule and a variety of liquid state properties in simulations. However, despite decades of work using multipoles, confusion still remains about how to truncate the multipole expansions efficiently and accurately. This is particularly important when using molecular multipole expansions to describe water molecules in the liquid state, where the short-range interactions must be accurate, because the higher order multipoles of a water molecule are large. Here, truncation schemes designed for a recent efficient algorithm for multipoles in molecular dynamics simulations are assessed for how well they reproduce results for a simple three-site model of water when the multipole moments and Lennard-Jones parameters of that model are used. In addition, the multipole analysis indicates that site models that do not account for out-of-plane electron density overestimate the stability of a non-hydrogen-bonded conformation, leading to serious consequences for the simulated liquid. PMID:26562223

  7. Evaluating thermodynamic integration performance of the new amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors.

    PubMed

    Su, Pin-Chih; Johnson, Michael E

    2016-04-01

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. © 2015 Wiley Periodicals, Inc. PMID:26666582

  8. Rheology via nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G.

    1982-10-01

    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference.

  9. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    PubMed Central

    Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.

    2012-01-01

    It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924

  10. Molecular Dynamics Simulations of Polymers

    NASA Astrophysics Data System (ADS)

    Han, Jie

    1995-01-01

    Molecular dynamics (MD) simulations have been undertaken in this work to explore structures and properties of polyethylene (PE), polyisobutylene (PIB), atactic polypropylene (aPP) and atactic polystyrene (aPS). This work has not only demonstrated the reliability of MD simulations by comparing results with available experiments, but more importantly has revealed structure-property relationships on a molecular level for these selected polymers. Structures of these amorphous polymers were characterized by radial distribution functions (RDFs) or scattering profiles, and properties of the polymers studied were pressure-volume -temperature (PVT) equation of state, enthalpy, cohesive energy, the diffusion coefficient of methane in the polymer, and glass transition temperature. Good agreement was found for these structures and properties between simulation and experiment. More importantly, the scientific understanding of structure-property relationships was established on a molecular level. In the order of aPP (PE), PIB and aPS, with the chain surface separation or free volume decreasing, the density increases and the diffusion coefficient decreases. Therefore, the effects of changes or modifications in the chemical structure of monomer molecules (substituting pendent hydrogen with methyl or phenyl) on polymeric materials performance were attributed to the effects of molecular chain structure on packing structure, which, in turn, affects the properties of these polymers. Local chain dynamics and relaxation have been studied for bulk PE and aPS. Cooperative transitions occur at second-neighbor bonds for PE, and first-neighbor bonds for aPS due to the role of side groups. The activation energy is a single torsional barrier for overall conformational transitions, and is single torsional barrier plus locally "trapped" barrier for relaxation. Temperature dependence is Arrhenius for transition time, and is WLF for relaxation time. The mean correlation times derived from orientational autocorrelation functions of PS-d_3 were found to agree with NMR measurements.

  11. Better, Cheaper, Faster Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.

  12. Molecular dynamics of polymer growth

    NASA Astrophysics Data System (ADS)

    Akkermans, Reinier L. C.; Toxvaerd, Søren; Briels, W. J.

    1998-08-01

    The irreversible polymerization of a monomer liquid has been studied by molecular-dynamics simulation in two and three dimensions. The growth process is studied under good solvent conditions in the dilute regime and up to semidilute and concentrated regimes. In the dilute regime we observe a reaction limitation due to trapping of the growing centers, which is more pronounced in the lower dimension. At higher concentrations the presence of other chains decreases the monomer mobility and reaction rate. Conformational properties are studied by scaling analysis of end-to-end and gyration radii. A crossover from swollen conformations towards screened conformations is observed as growth proceeds.

  13. Viscosity calculations at molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kirova, E. M.; Norman, G. E.

    2015-11-01

    Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data.

  14. Molecular dynamics simulations of dipolar dusty plasmas

    SciTech Connect

    Hammerberg, J.E.; Holian, B.L.; Murillo, M.S.; Winske, D.

    1998-12-31

    The authors use molecular dynamics (MD) simulation methods to investigate dusty plasma crystal structure in an external potential, with the grains subject to both a spherically symmetric Debye-Hueckel potential and a cylindrically symmetric dipole interaction. The dipole contribution models the experimentally important effects of ion flow or intrinsic grain polarization. They find that the addition of a small dipole term changes the crystal structure from bct to one in which the grains are aligned vertically, consistent with experiments as well as recent theoretical calculations.

  15. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities. PMID:24932136

  16. Radiation in molecular dynamic simulations

    SciTech Connect

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  17. The "Collisions Cube" Molecular Dynamics Simulator.

    ERIC Educational Resources Information Center

    Nash, John J.; Smith, Paul E.

    1995-01-01

    Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)

  18. Dynamic molecules: molecular dynamics for everyone. An internet-based access to molecular dynamic simulations: basic concepts.

    PubMed

    Frank, Martin; Gutbrod, Peter; Hassayoun, Chokri; von Der Lieth, Claus-W

    2003-10-01

    Molecular dynamics is a rapidly developing field of science and has become an established tool for studying the dynamic behavior of biomolecules. Although several high quality programs for performing molecular dynamic simulations are freely available, only well-trained scientists are currently able to make use of the broad scientific potential that molecular dynamic simulations offer to gain insight into structural questions at an atomic level. The "Dynamic Molecules" approach is the first internet portal that provides an interactive access to set up, perform and analyze molecular dynamic simulations. It is completely based on standard web technologies and uses only publicly available software. The aim is to open molecular dynamics techniques to a broader range of users including undergraduate students, teachers and scientists outside the bioinformatics field. The time-limiting factors are the availability of free capacity on the computing server to run the simulations and the time required to transport the history file through the internet for the animation mode. The interactive access mode of the portal is acceptable for animations of molecules having up to about 500 atoms. PMID:12908101

  19. Molecular mechanism of CO2 and SO2 molecules binding to the air/liquid interface of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid: A Molecular dynamics study with polarizable potential models

    SciTech Connect

    Wick, Collin D.; Chang, Tsun-Mei; Dang, Liem X.

    2010-11-25

    Molecular dynamics simulations with many-body interactions were carried out to understand the bulk and interfacial absorption of gases in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). A new polarizable molecular model was developed for BMIMBF4, which was found to give the correct liquid density, but also had good agreement with experiment for its surface tension and X-ray reflectivity. The potential of mean force of CO2 and SO2 were calculated across the air-BMIMBF4 interface, and the bulk free energies were calculated with the free energy perturbation method. A new polarizable model was also developed for CO2. The air-BMIMBF4 interface had enhanced BMIM density, which was mostly related to its butyl group, followed by enhanced BF4 density a few angstroms towards the liquid bulk. The density profiles were observed to exhibit oscillations between high BMIM and BF4 density, indicating the presence of surface layering induced by the interface. The potential of mean force for CO2 and SO2 showed more negative free energies in regions of enhanced BF4 density, while more positive free energies in regions of high BMIM density. Moreover, these gases showed free energy minimums at the interface, where the BMIM alkyl groups were found to be most prevalent. Our results show the importance of ionic liquid interfacial ordering for understanding gas solvation in them. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. A concurrent multiscale micromorphic molecular dynamics

    SciTech Connect

    Li, Shaofan Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.

  1. Potential formulation of sleep dynamics

    NASA Astrophysics Data System (ADS)

    Phillips, A. J. K.; Robinson, P. A.

    2009-02-01

    A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.

  2. Molecular dynamics in drug design.

    PubMed

    Zhao, Hongtao; Caflisch, Amedeo

    2015-02-16

    Molecular dynamics (MD) simulations are useful tools for structure-based drug design. We review recent publications in which explicit solvent MD was used at the initial or final stages of high-throughput docking campaigns. In some cases, MD simulations of the protein target have been carried out before docking to generate a conformer of the protein which differs from the available crystal structure(s). Furthermore, MD runs have been performed after docking to assess the predicted binding modes of the top ranking compounds as final filter in silico or to guide chemical synthesis for hit optimization. We present examples of in silico discoveries of tyrosine kinase inhibitors and bromodomain antagonists whose binding mode was predicted by automated docking and further corroborated by MD simulations with final validation by X-ray crystallography. PMID:25108504

  3. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material. PMID:26262672

  4. Molecular-dynamics simulations of martensitic transformations

    NASA Astrophysics Data System (ADS)

    Entel, Peter; Kadau, Kai; Meyer, Ralf; Crisan, Voicu; Ebert, Hubert; Germann, Timothy C.; Lomdahl, Peter S.; Holian, Brad Lee

    Martensitic transformations in nonmagnetic and magnetic transition-metal alloys have been studied by molecular-dynamics simulations using semi-empirical model potentials. In addition ab initio total energy calculations have been used to discuss the energy barrier between the different crystal structures and the minimal energy required for nucleation. The calculated mixing energies are a reliable tool to check the overall tendency for segregation of the alloys. Results of simulations for the bcc-fcc transition in Ni-Al, Al-Cu-Zn and Fe-Ni alloys are discussed.

  5. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  6. Molecular Reaction Dynamics and Solvation.

    NASA Astrophysics Data System (ADS)

    Kim, Seong Keun

    A potential energy surface was constructed for the triatomic molecule Li_2H using a semiempirical method akin to the diatomics-in-molecules theory. Valence bond configurations were chosen to include the major ionic contributions in the ground state potential energy. Quasiclassical trajectories were run on this potential energy surface. The results of these calculations are shown to be generally in accord with the experimental investigations of analogous reactions of H atoms with bigger alkali dimer molecules. Certain aspects of chemical reaction dynamics which have been largely overlooked were examined. These involve correlations of vector properties in chemical reactions. Specifically, the strong correlation between orbital and rotational angular momenta in the product channel of this reaction was shown to be the reason for a seemingly contradictory set of distributions of different angles. Gas phase solvation of nucleic acid base molecules was studied using clusters produced by supersonic expansion. Relative stabilities of the species with different numbers of solvent molecules were studied by varying the expansion conditions. The ionization potentials were measured as a function of the number of solvent molecules. Rather distinct effects of hydration were observed for the ionization potentials of adenine and thymine.

  7. Application of optimal prediction to molecular dynamics

    SciTech Connect

    Barber IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  8. Anomalous molecular dynamics in the vicinity of a conical intersection

    NASA Astrophysics Data System (ADS)

    Larson, J.; Nour Ghassemi, E.; Larson, .

    2013-02-01

    Conical intersections between molecular electronic potential energy surfaces can greatly affect molecular dynamics and chemical properties. Molecular gauge theory is capable of explaining many of these often unexpected phenomena deriving from the physics of the conical intersection. Here we will give an example of anomalous dynamics in the paradigm E ? Jahn-Teller model, which does not allow for a simple explanation in terms of standard molecular gauge theory. By introducing a dual gauge theory, we unwind this surprising behavior by identifying it with an intrinsic spin Hall effect. Thus, this work link knowledge of condensed-matter theories with non-adiabatic molecular dynamics. Furthermore, via ab initio calculations of potential energy surfaces, the findings are as well demonstrated to appear in a realistic system such as the Li3 molecule.

  9. RedMD--reduced molecular dynamics package.

    PubMed

    Grecki, Adam; Szypowski, Marcin; D?ugosz, Maciej; Trylska, Joanna

    2009-11-15

    We developed a software package (RedMD) to perform molecular dynamics simulations and normal mode analysis of reduced models of proteins, nucleic acids, and their complexes. With RedMD one can perform molecular dynamics simulations in a microcanonical ensemble, with Berendsen and Langevin thermostats, and with Brownian dynamics. We provide force field and topology generators which are based on the one-bead per residue/nucleotide elastic network model and its extensions. The user can change the force field parameters with the command line options that are passed to generators. Also, the generators can be modified, for example, to add new potential energy functions. Normal mode analysis tool is available for elastic or anisotropic network models. The program is written in C and C++ languages and the structure/topology of a molecule is based on an XML format. OpenMP technology for shared-memory architectures was used for code parallelization. The code is distributed under GNU public licence and available at http://bionano.icm.edu.pl/software/. PMID:19247989

  10. Langevin stabilization of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Izaguirre, Jesús A.; Catarello, Daniel P.; Wozniak, Justin M.; Skeel, Robert D.

    2001-02-01

    In this paper we show the possibility of using very mild stochastic damping to stabilize long time step integrators for Newtonian molecular dynamics. More specifically, stable and accurate integrations are obtained for damping coefficients that are only a few percent of the natural decay rate of processes of interest, such as the velocity autocorrelation function. Two new multiple time stepping integrators, Langevin Molly (LM) and Brünger-Brooks-Karplus-Molly (BBK-M), are introduced in this paper. Both use the mollified impulse method for the Newtonian term. LM uses a discretization of the Langevin equation that is exact for the constant force, and BBK-M uses the popular Brünger-Brooks-Karplus integrator (BBK). These integrators, along with an extrapolative method called LN, are evaluated across a wide range of damping coefficient values. When large damping coefficients are used, as one would for the implicit modeling of solvent molecules, the method LN is superior, with LM closely following. However, with mild damping of 0.2 ps-1, LM produces the best results, allowing long time steps of 14 fs in simulations containing explicitly modeled flexible water. With BBK-M and the same damping coefficient, time steps of 12 fs are possible for the same system. Similar results are obtained for a solvated protein-DNA simulation of estrogen receptor ER with estrogen response element ERE. A parallel version of BBK-M runs nearly three times faster than the Verlet-I/r-RESPA (reversible reference system propagator algorithm) when using the largest stable time step on each one, and it also parallelizes well. The computation of diffusion coefficients for flexible water and ER/ERE shows that when mild damping of up to 0.2 ps-1 is used the dynamics are not significantly distorted.

  11. Molecular Heterogeneity in Glioblastoma: Potential Clinical Implications

    PubMed Central

    Parker, Nicole Renee; Khong, Peter; Parkinson, Jonathon Fergus; Howell, Viive Maarika; Wheeler, Helen Ruth

    2015-01-01

    Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed. PMID:25785247

  12. Dynamical Localization in Molecular Systems.

    NASA Astrophysics Data System (ADS)

    Wang, Xidi

    In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems. In particular, we study in detail the quadratic Takeno model, where the number of vibrational excitations is no longer conserved. We study the general dynamics of the system by probing the nonlinear dispersion relation with special local mode trial solutions. Our results show that, in general, the total energy favors energy localization, i.e. as time evolves, the excitations evolve into local modes, and the amplitudes of the local modes grow in time (contrary to the linear phonon picture). There is a maximum energy lowering of the excitations before the phenomenon of "bond breaking" occurs. This maximum energy lowering is about 5 percent of the bare vibron energy for the quadratic Takeno model. Our results are confirmed by numerical simulations.

  13. Molecular dynamics of liquid lead near its melting point

    SciTech Connect

    Khusnutdinov, R. M.; Mokshin, A. V. Yul'met'ev, R. M.

    2009-03-15

    The molecular dynamics of liquid lead is simulated at T = 613 K using the following three models of an interparticle interaction potential: the Dzugutov pair potential and two multiparticle potentials (the 'glue' potential and the Gupta potential). One of the purposes of this work is to determine the optimal model potential of the interatomic interaction in liquid lead. The calculated structural static and dynamic characteristics are compared with the experimental data on X-ray and neutron scattering. On the whole, all three model potentials adequately reproduce the experimental data. The calculations using the Dzugutov pair potential are found to reproduce the structural properties and dynamics of liquid lead on the nanoscale best of all. The role of a multiparticle contribution to the glue and Gupta potentials is studied, and its effect on the dynamic properties of liquid lead in nanoregions is revealed. In particular, the neglect of this contribution is shown to noticeably decrease the acoustic-mode frequency.

  14. Molecular dynamics in amorphous ergocalciferol

    NASA Astrophysics Data System (ADS)

    Mohamed, Sahra; Thayyil, M. Shahin; Capaccioli, S.

    2014-04-01

    While developing new pharmaceutical products based on drug substances in their amorphous form, the molecular mobility of amorphous active ingredients have to be characterized in detail. The molecular mobility in the supercooled liquid and glassy states of ergocalciferol is studied using broadband dielectric spectroscopy over wide frequency and temperature ranges. Dielectric studies revealed a number of relaxation process of different molecular origin.

  15. Using Molecular Dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

    DOE PAGESBeta

    Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-03-25

    Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show thatmore » the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.« less

  16. Using Molecular Dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

    SciTech Connect

    Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-03-25

    Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show that the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.

  17. Molecular dynamics simulations of sonoluminescence

    NASA Astrophysics Data System (ADS)

    Bass, Alexander

    Molecular Dynamics (MD) techniques are uniquely suited for simulating sonoluminescing bubbles, thanks to the bubbles' small size. Unlike hydrodynamic methods, MD does not assume local thermodynamic equilibrium, neither does it require knowledge of equation of state and transport properties at high pressures and temperatures. Full-scale MD simulations of experimentally observable bubbles, however, are still too expensive computationally. A symmetry reduction technique that makes use of the bubble's spherical symmetry is proposed. This technique is shown to be capable of manifold reduction of the machine time required to simulate a bubble collapse, while the few artifacts introduced by it are carefully analyzed. The model developed is then applied to a variety of experimentally observed bubbles, in particular to a class of "extreme" bubbles with collapse ratios of around 25:1. It is shown that different noble gases exhibit vastly different behaviors under such conditions, largely explained by the difference in the speed of sound at a given temperature. Heavier gases generate strong shock waves and reach much higher temperatures than lighter gases. However if a small amount of lighter gas is added to the heavier gas, the two gases will segregate, often completely, during the final stage of the collapse, resulting in the lighter gas being trapped in the center of the bubble and heating up to temperatures by several orders of magnitude exceeding those attained with the lighter gas alone. While the simulations presented in this work constitute an approach to a well defined mathematical problem they have been carried out with goal of gaining insight into a real phenomenon: light emission from a rapidly collapsing bubble of gas. In this process---sonoluminescence---acoustic energy density concentrates by at least 12 orders of magnitude to generate picosecond flashes of ultraviolet light. The simulations in this dissertation are aimed at explaining and predicting the experimental parameters which could lead to even greater levels of energy focusing in these bubbly systems.

  18. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Turi, Lszl

    2014-05-01

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of the non-cavity type model. Relaxation associated with cavity collapse presents, however, unique dynamical signatures.

  19. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    SciTech Connect

    Turi, László

    2014-05-28

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of the non-cavity type model. Relaxation associated with cavity collapse presents, however, unique dynamical signatures.

  20. Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Guo, Qian; Chung, Pil Seung; Chen, Haigang; Jhon, Myung S.

    2006-04-01

    Molecular rheology of perfluoropolyether (PFPE) systems is particularly important in designing effective lubricants that control the friction and wear in tribological applications. Using the coarse-grained, bead-spring model, equilibrium molecular dynamics based on the Langevin equation in a quiescent flow was first employed to examine the nanostructure of PFPE. Further, by integrating the modified Langevin equation and imposing the Lees-Edwards boundary condition, nonequilibrium molecular dynamics of steady shear was investigated. We observe that the shear viscosity of PFPE system depends strongly on molecular architecture (e.g., molecular weight and endgroup functionality) and external conditions (e.g., temperature and shear rate). Our study of the flow activation energy/entropy and their correlations with nanostructure visualization showed that the PFPE structure was substantially modified.

  1. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics

    SciTech Connect

    Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.

    2015-05-21

    We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

  2. Molecular dynamics studies of superionic conductors

    SciTech Connect

    Rahman, A.; Vashishta, P.

    1980-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. Our model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input; in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features which can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in super-ionic conductors. For ..cap alpha..-AgI, among the structural properties we have studied are: partial pair correlation functions, mean square displacements of iodines, cation density maps, Havens ratio, etc. The dynamical properties examined include cation self-diffusion, nature of cation jumps, bias in successive jumps, velocity auto correlation functions, current-current correlation functions. In CuI, we have examined the microscopic nature of ..gamma --> cap alpha.. transition. It is found that at about 700 K the copper ions undergo an order-disorder transformation leading to a specific heat anomaly. The nature of the first-order transition and its precursor effects are also analyzed. In AgI the ..cap alpha.. reversible ..beta.. transition is studied. In our model, upon heating ..beta..-AgI, the iodines undergo hcp..-->..bcc transformation and the silver ions become mobile, whereas the reverse transformation is observed on cooling ..cap alpha..-AgI.

  3. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Ko?a, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  4. Oxidation modeling by means of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Soontrapa, Chaiyod

    Oxidation modeling is normally engineered to study systems at macroscopic scales, mostly in analytical forms based on diffusion theories. The associated time scale is usually in months, days, or minutes, and the length scale is in the order of microns. In this dissertation, oxidation modeling is performed at atomistic scale with the time and length scales in picoseconds and angstroms, respectively, using molecular dynamics. Molecular dynamics simulations generate trajectories of each atom or particle in a system according to the laws of physics. Studying oxidations under the atomistic point of view can offer new insights on atomic behaviors and influencing factors in oxidation mechanisms. This dissertation focuses on modeling dynamic behaviors of liquid lead, oxygen, and iron. Lead is used as a coolant in nuclear reactors due to its excellent physical properties such as high boiling point and neutron transparency. Nevertheless, liquid lead is very corrosive to iron, the main structural material in reactors. As lead diffuses along grain boundaries and other faults in iron crystals, iron lattices become brittle. In addition, oxygen dissolving in liquid lead causes another problem. Too much oxygen promotes undesired compound formations of lead oxide, typically known as slags, which hinder the coolant flow. However, when only traces of oxygen are present in this lead-iron system, protective iron oxide layers form and help preventing further ingress of liquid lead. This dissertation provides a new approach in modeling oxidations, using the Generalized Reduced Gradient (GRG) method in minimizing the potential energy of a metal/metal oxide system. The approach is then applied to model iron oxidation in the form of magnetite. Finally, a system consisting of liquid lead, iron, and oxygen is studied under several scenarios.

  5. Ab initio non-adiabatic molecular dynamics.

    PubMed

    Tapavicza, Enrico; Bellchambers, Gregory D; Vincent, Jordan C; Furche, Filipp

    2013-11-14

    Adiabatic nuclear potential energy surfaces (PESs) defined via the Born-Oppenheimer (BO) approximation are a fundamental concept underlying chemical reactivity theory. For a wide range of excited-state phenomena such as radiationless decay, energy and charge transfer, and photochemical reactions, the BO approximation breaks down due to strong couplings between two or more BO PESs. Non-adiabatic molecular dynamics (NAMD) is the method of choice to model these processes. We review new developments in quantum-classical dynamics, analytical derivative methods, and time-dependent density functional theory (TDDFT) which have lead to a dramatic expansion of the scope of ab initio NAMD simulations for molecular systems in recent years. We focus on atom-centered Gaussian basis sets allowing highly efficient simulations for molecules and clusters, especially in conjunction with hybrid density functionals. Using analytical derivative techniques, forces and derivative couplings can be obtained with machine precision in a given basis set, which is crucial for accurate and stable dynamics. We illustrate the performance of surface-hopping TDDFT for photochemical reactions of the lowest singlet excited states of cyclohexadiene, several vitamin D derivatives, and a bicyclic cyclobutene. With few exceptions, the calculated quantum yields and excited state lifetimes agree qualitatively with experiment. For systems with ?50 atoms, the present Turbomole implementation allows NAMD simulations with 0.2-0.4 ns total simulation time using hybrid density functionals and polarized double zeta valence basis sets on medium-size compute clusters. We close by discussing open problems and future directions. PMID:24068257

  6. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  7. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  8. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  9. Thermal transpiration: A molecular dynamics study

    SciTech Connect

    T, Joe Francis; Sathian, Sarith P.

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  10. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (ESTSC)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  11. Acoustically induced dynamic potential dots

    NASA Astrophysics Data System (ADS)

    Stotz, J. A. H.; Alsina, F.; Hey, R.; Santos, P. V.

    2005-02-01

    Mobile potential dots (dynamic dots, DDs) formed by surface acoustic waves (SAWs) are used to transport photogenerated electrons and holes in GaAs quantum wells (QWs). We investigate the interaction between the transported carriers and microscopic trap centers in the QW plane using spatially and time-resolved photoluminescence (PL) spectroscopy. The carriers recombine at the trap site emitting short (width ?0.6 ns) light pulses at a repetition rate corresponding to the SAW frequency. The dependence of the PL intensity from the traps on the number of carriers transported per DD n exhibits a well-defined, distinct plateau for n in the range from 5-20, which is attributed to the emission of a well-defined number of photons.

  12. Laser Coulomb explosion imaging of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bocharova, Irina A.

    2009-11-01

    The goal of this dissertation project was to study the dynamics of nuclear motion in diatomic (H2, N2, O2, CO) and triatomic (CO2) molecules initiated by the ionization and/or excitation of these molecules with near-IR few-cycle laser pulses. This dynamics includes vibrational and rotational motion on the electronic potential surfaces of the molecules and their molecular ions. The experimental techniques used included the pump-probe approach, laser Coulomb explosion imaging and the COLTRIMS technique. The results are presented in four chapters. A study of rotational and vibrational nuclear dynamics in H2 and D2 molecules and ions initiated by 8 fs near-IR pulses is presented in Chapter 4. Transient alignment of the neutral molecules was observed and simulated; rotational frequency components contributing to the rotational wavepacket dynamics were recovered. Chapter 5 is dedicated to revealing the contribution of excited dissociative states of D2+ ions to the process of fragmentation by electron recollision. It was shown that it is possible to isolate the process of resonant excitation and estimate the individual contributions of the 2Sigmau+ and 2? u states. In Chapter 6 the subject of investigation is the nuclear dynamics of N2, O2 and CO molecules initiated by ionization of a neutral molecule by a short intense laser pulse. It was shown that the kinetic energy release of the Coulomb explosion fragments, measured as a function of the delay time between pump and probe pulses, reveals the behavior of nuclear wave packet evolution on electronic states of the molecular ions. It was shown that information on the dissociation and excitation pathways can be extracted from the experimental spectra and the relative contributions of particular electronic states can be estimated. Chapter 7 is focused on studying the fragmentation of CO2 following the interaction of this molecule with the laser field. The most important result of this study was that it presented direct experimental evidence of charge-resonant enhanced ionization (CREI), a phenomenon well-studied for diatomic molecules and predicted theoretically for triatomic molecules. The critical internuclear distance, the relevant ionic charge state and a pair of charge-resonant states responsible for the CREI were also found.

  13. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  14. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  15. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  16. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martnez, Todd J.; The PULSE Institute, Stanford University, Stanford, California 94305; SLAC National Accelerator Laboratory, Menlo Park, California 94025 ; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  17. ``Ideal glassformers'' vs ``ideal glasses'': Studies of crystal-free routes to the glassy state by ``potential tuning'' molecular dynamics, and laboratory calorimetry

    NASA Astrophysics Data System (ADS)

    Kapko, Vitaliy; Zhao, Zuofeng; Matyushov, Dmitry V.; Austen Angell, C.

    2013-03-01

    The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and/or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972), 10.1016/0022-3093(72)90269-4] - and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010), 10.1103/Physics.3.37] that some object shapes find little advantage in self-assembly to ordered structures - meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506; A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004), 10.1126/science.1093010] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003), 10.1103/PhysRevE.67.051301] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005), 10.1103/PhysRevLett.94.215701] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981), 10.1063/1.441483] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence of "ideal glassformers" - single or multicomponent liquids that vitrify before ever becoming metastable with respect to crystals. We find evidence that "ideal glassformer" systems might also be highly fragile systems, approaching the "ideal glass" condition. We link this to the high "volume fragility" behavior observed in recent hard dumbbell studies at similar length/diameter ratios [R. Zhang and K. S. Schweitzer, J. Chem. Phys. 133, 104902 (2010), 10.1063/1.3483601]. The discussion suggests some unusual systems for laboratory study. Using differential scanning calorimetry detection of fusion points Tm, liquidus temperatures Tl, and glass transition temperatures Tg, we describe a system that would seem incapable of crystallizing before glass transition, i.e., an "ideal glassformer." The existence of crystal-free routes to the glassy state will eliminate precrystalline fluctuations as a source of the dynamic heterogeneities that are generally considered important in the discussion of the "glassy state problem [P. W. Anderson, Science 267, 1615 (1995), 10.1126/science.267.5204.1615-e]."

  18. Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín

    2010-12-01

    Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to choose include Euler (if only for demonstration purposes), Verlet and Velocity Verlet, Leapfrog and Beeman, among others. Electrostatic forces are treated as another potential function, by default using the plug-in implementing the Ewald summation method. Program summaryProgram title: LPMD Catalogue identifier: AEHG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 509 490 No. of bytes in distributed program, including test data, etc.: 6 814 754 Distribution format: tar.gz Programming language: C++ Computer: 32-bit and 64-bit workstation Operating system: UNIX RAM: Minimum 1024 bytes Classification: 7.7 External routines: zlib, OpenGL Nature of problem: Study of Statistical Mechanics and Thermodynamics of condensed matter systems, as well as kinetics of non-equilibrium processes in the same systems. Solution method: Equilibrium and non-equilibrium molecular dynamics method, Monte Carlo methods. Restrictions: Rigid molecules are not supported. Polarizable atoms and chemical bonds (proteins) either. Unusual features: The program is able to change the temperature of the simulation cell, the pressure, cut regions of the cell, color the atoms by properties, even during the simulation. It is also possible to fix the positions and/or velocity of groups of atoms. Visualization of atoms and some physical properties during the simulation. Additional comments: The program does not only perform molecular dynamics and Monte Carlo simulations, it is also able to filter and manipulate atomic configurations, read and write different file formats, convert between them, evaluate different structural and dynamical properties. Running time: 50 seconds on a 1000-step simulation of 4000 argon atoms, running on a single 2.67 GHz Intel processor.

  19. Molecular dynamics investigations of protein volumetric properties and electronic dynamics

    NASA Astrophysics Data System (ADS)

    Lockwood, Daren Mackay

    Several theoretical and molecular dynamics investigations. of chemical and biological processes in solution are described. First, a statistical mechanical methodology is developed for evaluating excess volumetric properties of solvation. This methodology makes it possible to analyze volumetric properties in terms of the hydration shell model of solvation. The usefulness of the maximum entropy method for dealing with simulations with which significant statistical error is associated is explored. Second, this methodology is used to isolate additive contributions to the partial molar compressibilities of alcohols in aqueous solution. The magnitude of methyl and hydroxyl group contributions for methanol and ethanol are found to be the same for both solutes within statistical error. Further, the effect of each functional group on the solvent is found to be localized in the vicinity of that functional group, explaining the apparent independence of functional group contributions observed experimentally by other workers. For the potential functions employed, compressibilities calculated via classical molecular dynamics simulations are in best agreement with experiments performed at temperatures higher than those at which the simulations are performed. Finally , the effect of electronic decoherence on electron transfer rates in blue copper proteins is investigated. Electronic decoherence occurs as nuclear trajectories corresponding to alternative electronic states diverge from one another, and higher decoherence rates correspond to reduced direct electron transfer rates. A very short characteristic decoherence time of 2.4 fs is obtained for direct electron transfer between metal centers in ruthenated azurin. Protons in the aqueous solvent molecules have a large effect on the decoherence rate, underscoring the importance of treating the solvent molecules explicitly.

  20. Nonequilibrium molecular dynamics simulations of aluminum oxynitride

    NASA Astrophysics Data System (ADS)

    Weingarten, N. Scott; Batyrev, Iskander G.; Rice, Betsy M.

    2012-03-01

    Aluminum oxynitride, or AlON, is a polycrystalline ceramic material, whose transparency and high strength make it a potentially useful material for many structural engineering applications. The structure of AlON is cubic spinel, with anions forming a close-packed structure, and aluminum atoms occupying the tetrahedral and octahedral interstitial sites, with one site remaining vacant. However, the location of the vacancy is not unique, nor are the positions of the nitrogen atoms, which replace oxygen atoms in the close-packed structure. We have developed an interatomic potential based on the Buckingham model for use in classical molecular dynamics (MD) simulations of AlON. Using this model, and crystal structures determined from first principles calculations, we have calculated a number of material properties and we compare these to experimental values. We present the results of nonequilibrium MD simulations of single crystal AlON under applied tension, with a discussion of the yield and failure mechanisms of this material.

  1. Molecular dynamic simulation of Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Kien, P. H.; Hung, P. K.; Thao, N. T.

    2015-11-01

    Fe nanoparticles have been investigated by means of molecular dynamics simulation. The nucleation and crystal growth is analyzed through the potential energy and number of different types of atoms. The simulation shows that when the amorphous sample is annealed at 900 K, it is crystallized into bcc phase. We found that as the crystal cluster has a size larger than some critical value, the mean potential energy of different types of atoms decreases in following orders: amorphous-atom → surface-crystal atom → crystal-atom. As a result, the crystal cluster is stable and tends to have a nearly spherical shape. Further, it was shown that small nuclei form frequently in the core and rarely in the surface area. After a long annealing time a cluster expands and reaches the critical radius. Then this cluster grows exponentially with times. The fully crystallized sample consists of the core with crystalline structure and surface shell with amorphous porous structure. The Fe nanoparticle has a number of polymorphs which are stable upon annealing at 300 K. We have analyzed the pair radial distribution function (PRDF) for obtained polymorphs. We found that as the fraction of crystal-atoms is less than 0.18, the PRDF is like those of amorphous metal. However, the left sub-peak is higher than right sub-peak when the fraction of crystal-atoms is less than 0.05.

  2. Structure and dynamics of layered molecular assemblies

    NASA Astrophysics Data System (ADS)

    Horne, Jennifer Conrad

    This dissertation focuses on the goal of understanding and controlling layered material properties from a molecular perspective. With this understanding, materials can be synthetically tailored to exhibit predetermined bulk properties. This investigation describes the optical response of a family of metal-phosphonate (MP) monolayers and multilayers, materials that are potentially useful because the films are easy to synthesize and are chemically and thermally stable. MP films have shown potential in a variety of chemical sensing and optical applications, and in this dissertation, the suitability of MP films for optical information storage is explored For this application, the extent of photonic energy transport within and between optically active layers is an important factor in determining the stability and specificity of optical modifications made to a material. Intralayer and interlayer energy transport processes can be studied selectively in MP films because the composition, and thus the properties, of each layer are controlled synthetically. It was determined by fluorescence relaxation dynamics in conjunction with atomic force microscopy (AFM) that the substrate and layer morphologies are key factors in determining the layer optical and physical properties. The initial MP layers in a multilayer are structurally heterogeneous, characterized by randomly distributed islands that are ~50 A in diameter. The population dynamics measured for these layers are non-exponential, chromophore concentration-independent, and identical for two different chromophores. The data is explained in the context of an excitation hopping model in a system where the surface is characterized by islands of aggregated chromophores as well as non-aggregated monomers. Within a MP monolayer, the dynamics are dominated by intra-island excitation hopping. Forster (dipolar) energy transfer between the energetically overlapped chromophores does not play a significant role in determining the relaxation dynamics of these systems, as the islands are separated by distances greater than the critical distance required for this process. Investigation of the interlayer energy transfer behavior revealed that transport between adjacent chromophore layers is precluded by the spatial modulation of the dielectric response of the MP film. These results are important for understanding the morphological, structural, and optical properties that will be useful for the incorporation of layered organic materials in future technologies.

  3. Trillion-atom molecular dynamics becomes a reality

    SciTech Connect

    Kadau, Kai; Germann, Timothy C

    2008-01-01

    By utilizing the molecular dynamics code SPaSM on Livermore's BlueGene/L architecture, consisting of 212 992 IBM PowerPC440 700 MHz processors, a molecular dynamics simulation was run with one trillion atoms. To demonstrate the practicality and future potential of such ultra large-scale simulations, the onset of the mechanical shear instability occurring in a system of Lennard-Jones particles arranged in a simple cubic lattice was simulated. The evolution of the instability was analyzed on-the-fly using the in-house developed massively parallel graphical object-rendering code MD{_}render.

  4. Molecular dynamics simulations of local field factors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Tu, Yaoquan; Tian, He; gren, Hans

    2007-07-01

    In the present work, the authors evaluate a scheme based on molecular dynamics to derive local field factors. These are given without any assumption of a cavity by fitting the Langevin functions to the order parameters obtained from the molecular dynamics simulations. The local field factors so obtained, with the detailed chromophore-solvent interactions and solvent structures taken into account, are much smaller than those calculated from the conventional Onsager and Lorentz models. A numerical demonstration is given for two typical organic chromophore molecules, p-nitroaniline and p-nitro-N,N-dimethylaniline dissolved in chloroform.

  5. Molecular Dynamics Simulations of Glycoproteins using CHARMM

    PubMed Central

    Mallajosyula, Sairam S.; Jo, Sunhwan; Im, Wonpil; MacKerell, Alexander D.

    2015-01-01

    Summary Molecular dynamics simulations are an effective tool to study the structure, dynamics, and thermodynamics of carbohydrates and proteins. However, the simulations of heterogeneous glycoprotein systems have been limited due to the lack of appropriate molecular force field parameters describing the linkage between the carbohydrate and the protein regions as well as the tools to prepare these systems for modeling studies. In this work we outline the recent developments in the CHARMM carbohydrate force field to treat glycoproteins and describe in detail the step-by-step procedures involved in building glycoprotein geometries using the recently developed CHARMM-GUI Glycan Reader. PMID:25753723

  6. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H +C2H6 reaction

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arindam; Zhao, Yan; Lin, Hai; Truhlar, Donald G.

    2006-01-01

    This article presents a multifaceted study of the reaction H +C2H6?H2+C2H5 and three of its deuterium-substituted isotopologs. First we present high-level electronic structure calculations by the W1, G3SX, MCG3-MPWB, CBS-APNO, and MC-QCISD/3 methods that lead to a best estimate of the barrier height of 11.80.5kcal/mol. Then we obtain a specific reaction parameter for the MPW density functional in order that it reproduces the best estimate of the barrier height; this yields the MPW54 functional. The MPW54 functional, as well as the MPW60 functional that was previously parametrized for the H +CH4 reaction, is used with canonical variational theory with small-curvature tunneling to calculate the rate constants for all four ethane reactions from 200 to 2000 K. The final MPW54 calculations are based on curvilinear-coordinate generalized-normal-mode analysis along the reaction path, and they include scaled frequencies and an anharmonic C-C bond torsion. They agree with experiment within 31% for 467-826 K except for a 38% deviation at 748 K; the results for the isotopologs are predictions since these rate constants have never been measured. The kinetic isotope effects (KIEs) are analyzed to reveal the contributions from subsets of vibrational partition functions and from tunneling, which conspire to yield a nonmonotonic temperature dependence for one of the KIEs. The stationary points and reaction-path potential of the MPW54 potential-energy surface are then used to parametrize a new kind of analytical potential-energy surface that combines a semiempirical valence bond formalism for the reactive part of the molecule with a standard molecular mechanics force field for the rest; this may be considered to be either an extension of molecular mechanics to treat a reactive potential-energy surface or a new kind of combined quantum-mechanical/molecular mechanical (QM/MM) method in which the QM part is semiempirical valence bond theory; that is, the new potential-energy surface is a combined valence bond molecular mechanics (CVBMM) surface. Rate constants calculated with the CVBMM surface agree with the MPW54 rate constants within 12% for 534-2000 K and within 23% for 200-491 K. The full CVBMM potential-energy surface is now available for use in variety of dynamics calculations, and it provides a prototype for developing CVBMM potential-energy surfaces for other reactions.

  7. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture. PMID:25361284

  8. Molecular Scale Dynamics of Large Ring Polymers

    NASA Astrophysics Data System (ADS)

    Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.

    2014-10-01

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  9. Numerical methods for molecular dynamics

    SciTech Connect

    Skeel, R.D.

    1991-01-01

    This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.

  10. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the wall force penetration region at different flow conditions. Shear stress results are utilized to calculate the tangential momentum accommodation coefficient (TMAC) between argon gas and FCC walls. The TMAC value is shown to he independent of the now properties and Knudsen number in all simulations. Velocity profiles show distinct deviations from the kinetic theory based solutions inside the wall force penetration depth, while they match the linearized Boltzmann equation solution outside these zones. Afterwards, surface effects are studied as a function of the surface-gas potential strength ratio (epsilon wf/epsilonff) for the shear driven argon gas flows in the early transition and tree molecular flow regimes. Results show that increased epsilonwf/epsilon ff results in increased gas density, leading towards monolayer adsorption on surfaces. The near wall velocity profile shows reduced gas slip, and eventually velocity stick with increased epsilonwf/epsilon ff. Similarly, using MD predicted shear stress values and kinetic theory, TMAC are calculated as a function of epsilonwf/epsilon ff and TMAC values are shown to be independent of the Knudsen number. Results indicate emergence of the wall force field penetration depth as an additional length scale for gas flows in nano-channels, breaking the dynamic similarity between rarefied and nano-scale gas flows solely based on the Knudsen and Mach numbers.

  11. Reaction dynamics in polyatomic molecular systems

    SciTech Connect

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  12. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses. PMID:19290336

  13. Liquid Jet Cavitation via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ashurst, W. T.

    1997-11-01

    A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).

  14. Molecular dynamics simulation of semi-flexible mesogens

    NASA Astrophysics Data System (ADS)

    Wilson, M. R.

    Molecular dynamics simulations are reported for systems of semi-flexible model mesogens composed of seven tangential hard spheres. The simulations employ the 'rattling spheres' approach whereby atomic sites are constrained to lie within narrow potential wells, with free-flight molecular dynamics occurring in between elastic collisions of spheres. The phase diagams of four systems with different bonding constraints have been studied. It is found that the addition of a small amount of molecular flexibility to the chains of hard spheres increases the density at which the isotropic to nematic phase transition takes place. Too much flexibility however destroys the nematic phase completely. At high density the most rigid of the systems forms a smectic-A phase and there is strong evidence for ordering within the smectic layers themselves at densities near the fluid-solid transition. There is also evidence that increasing molecular flexibility pushes the formation of the solid phase to higher densities. Calculation of equivalent molecular moment of inertia spheroids and mean molecular lengths indicate that significant changes in shape occur with density. For the most flexible chain studied molecules become noticeably 'shorter' and 'fatter' as density is increased. The reverse occurs for chains which form a nematic phase. Model molecules become 'longer' and 'thinner' as density is increased within the nematic phase. These effects are attributed to a strong coupling between internal molecular structure and molecular environment. Results are also reported for the order parameters, radial distribution functions, structure factors and single-particle structural data for the systems studied.

  15. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure

    PubMed Central

    Garcia-Garibay, Miguel A.

    2005-01-01

    Crystalline molecular machines represent an exciting new branch of crystal engineering and materials science with important implications to nanotechnology. Crystalline molecular machines are crystals built with molecules that are structurally programmed to respond collectively to mechanic, electric, magnetic, or photonic stimuli to fulfill specific functions. One of the main challenges in their construction derives from the picometric precision required for their mechanic operation within the close-packed, self-assembled environment of crystalline solids. In this article, we outline some of the general guidelines for their design and apply them for the construction of molecular crystals with units intended to emulate macroscopic gyroscopes and compasses. Recent advances in the preparation, crystallization, and dynamic characterization of these interesting systems offer a foothold to the possibilities and help highlight some avenues for future experimentation. PMID:16046543

  16. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  17. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar; Mandziuk, Margaret; Skeel, Robert D.; Srinivas, K.

    1998-02-01

    The intriguing phenomenon of resonance, a pronounced integrator-induced corruption of a system's dynamics, is examined for simple molecular systems subject to the classical equations of motion. This source of timestep limitation is not well appreciated in general, and certainly analyses of resonance patterns have been few in connection to biomolecular dynamics. Yet resonances are present in the commonly used Verlet integrator, in symplectic implicit schemes, and also limit the scope of current multiple-timestep methods that are formulated as symplectic and reversible. The only general remedy to date has been to reduce the timestep. For this purpose, we derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as useful guidelines in practice for biomolecular simulations. We also devise closely related symplectic implicit schemes for which the limitation on the discretization stepsize is much less severe. Specifically, we design methods to remove third-order, or both the third- and fourth-order, resonances. These severe low-order resonances can lead to instability or very large energies. Our tests on two simple molecular problems (Morse and Lennard-Jones potentials), as well as a 22-atom molecule, N-acetylalanyl-N '-methylamide, confirm this prediction; our methods can delay resonances so that they occur only at larger timesteps (EW method) or are essentially removed (LIM2 method). Although stable for large timesteps by this approach, trajectories show large energy fluctuations, perhaps due to the coupling with other factors that induce instability in complex nonlinear systems. Thus, the methods developed here may be more useful for conformational sampling of biomolecular structures. The analysis presented here for the blocked alanine model emphasizes that one-dimensional analysis of resonances can be applied to a more complex, multimode system to analyze resonance behavior, but that resonance due to frequency coupling is more complex to pinpoint. More generally, instability, apparently due to numerically induced resonances, has been observed in the application of the implicit midpoint scheme to vibrating structures and could be expected also in the simulation of nonlinear wave phenomena; in such applications it is adequate not to resolve the highest frequency modes, so the proposed methods could be very useful.

  18. NVU dynamics. III. Simulating molecules at constant potential energy

    NASA Astrophysics Data System (ADS)

    Ingebrigtsen, Trond S.; Dyre, Jeppe C.

    2012-12-01

    This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011), 10.1063/1.3623585; T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104102 (2011), 10.1063/1.3623586], a numerical algorithm for simulating geodesic motion of atomic systems was developed and tested against standard algorithms. The conclusion was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results identical to those of Nosé-Hoover NVT dynamics. Since Nosé-Hoover NVT dynamics is known to give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics becomes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems.

  19. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Li, Jiu-Kai; Tian, Xiao-Feng

    2010-03-01

    Molecular dynamics simulations are performed with the recently developed empirical interaction potential by Morelon et al. Thermodynamics properties of solid UO2 that have been assessed include melt point, density, enthalpy, heat capacity, lattice parameter variation with temperature, mean-square-displacement and diffusion coefficients of oxygen ion. The results are compared with the data in literature and it is suggested that the rigid ionic potential provides perfect results below the superionic range. The data showing thermodynamics properties will become unacceptable when the temperature is higher than 2500 K. Compared with the previous empirical potentials, the empirical potential developed by Morelon et al. improves the agreement of these data with the recommend ones.

  20. Polar solvation dynamics of lysozyme from molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2012-05-01

    The solvation dynamics of a protein are believed to be sensitive to its secondary structures. We have explored such sensitivity in this article by performing room temperature molecular dynamics simulation of an aqueous solution of lysozyme. Nonuniform long-time relaxation patterns of the solvation time correlation function for different segments of the protein have been observed. It is found that relatively slower long-time solvation components of the α-helices and β-sheets of the protein are correlated with lower exposure of their polar probe residues to bulk solvent and hence stronger interactions with the dynamically restricted surface water molecules. These findings can be verified by appropriate experimental studies.

  1. Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: molecular dynamics study of a pair of methane molecules in water at various temperatures.

    PubMed

    Sobolewski, Emil; Makowski, Mariusz; Oldziej, Stanislaw; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2009-09-01

    By means of molecular dynamics simulations of a pair of methane molecules in a TIP3P periodic water box with the NVT scheme at six temperatures and, additionally, the NPT scheme at three temperatures ranging from T = 283 to 373 K, we determined the potential of mean force (PMF) of pairs of interacting methane molecules in water as functions of distance between the methane molecules. The PMFs converge to a single baseline only for r> 11 A at all temperatures. The curves of the dimensionless PMF obtained at different temperatures with the NVT scheme overlap almost perfectly in the region of the contact minimum and still very well in the regions of the desolvation maximum and the solvent-separated minimum, which suggests that the temperature-dependent hydrophobic interaction potentials at constant volume in united-residue force fields can be obtained by scaling the respective dimensionless potentials by RT, R being the universal gas constant. For the dimensionless potentials of mean force obtained with the NPT scheme, the depth of the contact minimum increases, whereas the height of the desolvation maximum and the depth of the solvent-separated minimum decrease with temperature, in agreement with results reported in the literature. PMID:19556395

  2. Shell-model molecular dynamics calculations of modified silicate glasses

    NASA Astrophysics Data System (ADS)

    Tilocca, Antonio; de Leeuw, Nora H.; Cormack, Alastair N.

    2006-03-01

    Molecular dynamics simulations of pure silica, sodium silicate, and soda-lime silicate glasses have been carried out using a developed potential that includes polarization effects through the shell model (SM). The potential has been validated using available experimental and ab initio structural data, such as density, radial and angular distributions, coordination environments, and network connectivity. In addition, Car-Parrinello molecular dynamics simulations of the soda-lime silicate glass have been carried out to obtain reference data for this system. The performances of the SM and of a rigid-ion potential have been compared with experimental and ab initio data, showing that the inclusion of polarization effects improves the description of the intertetrahedral structure and of the local environment surrounding modifier Na and Ca cations; significant improvements are also obtained in the Qn distribution of the sodium silicate glass. This shows that the inclusion of polarization effects in the potential, even at the approximate level of the shell model, is essential for a reliable modeling of modified bulk glasses. Moreover, the accurate reproduction of the glass density and the direct representation of polarization effects are important requisites that should enable the application of the potential to molecular dynamics simulations of modified glass surfaces.

  3. Combined molecular dynamics-spin dynamics simulations of bcc iron

    SciTech Connect

    Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg

    2014-01-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  4. Combined molecular dynamics-spin dynamics simulations of bcc iron

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Landau, David P.; Nicholson, Don M.; Stocks, G. Malcolm; Eisenbach, Markus; Yin, Junqi; Brown, Gregory

    2014-03-01

    Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.

  5. Exciton dynamics in perturbed vibronic molecular aggregates.

    PubMed

    Brüning, C; Wehner, J; Hausner, J; Wenzel, M; Engel, V

    2016-07-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  6. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  7. Dynamical quenching of tunneling in molecular magnets

    NASA Astrophysics Data System (ADS)

    Jos Santander, Mara; Nunez, Alvaro S.; Roldn-Molina, A.; Troncoso, Roberto E.

    2015-12-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrdinger's equation.

  8. Rational Prediction with Molecular Dynamics for Hit Identification

    PubMed Central

    Nichols, Sara E; Swift, Robert V; Amaro, Rommie E

    2012-01-01

    Although the motions of proteins are fundamental for their function, for pragmatic reasons, the consideration of protein elasticity has traditionally been neglected in drug discovery and design. This review details protein motion, its relevance to biomolecular interactions and how it can be sampled using molecular dynamics simulations. Within this context, two major areas of research in structure-based prediction that can benefit from considering protein flexibility, binding site detection and molecular docking, are discussed. Basic classification metrics and statistical analysis techniques, which can facilitate performance analysis, are also reviewed. With hardware and software advances, molecular dynamics in combination with traditional structure-based prediction methods can potentially reduce the time and costs involved in the hit identification pipeline. PMID:23110535

  9. Molecular dynamics simulation of layered double hydroxides

    SciTech Connect

    KALINICHEV,ANDREY G.; WANG,JIANWEI; KIRKPATRICK,R. JAMES; CYGAN,RANDALL T.

    2000-05-19

    The interlayer structure and the dynamics of Cl{sup {minus}} ions and H{sub 2}O molecules in the interlayer space of two typical LDH [Layered Double Hydroxide] phases were investigated by molecular dynamics computer simulations. The simulations of hydrocalumite, [Ca{sub 2}Al(OH){sub 6}]Cl{center_dot}2H{sub 2}O reveal significant dynamic disorder in the orientations of interlayer water molecules. The hydration energy of hydrotalcite, [Mg{sub 2}Al(0H){sub 6}]Cl{center_dot}nH{sub 2}O, is found to have a minimum at approximately n = 2, in good agreement with experiment. The calculated diffusion coefficient of Cl{sup {minus}} as an outer-sphere surface complex is almost three times that of inner-sphere Cl{sup {minus}}, but is still about an order of magnitude less than that of Cl{sup {minus}} in bulk solution. The simulations demonstrate unique capabilities of combined NMR and molecular dynamics studies to understand the structure and dynamics of surface and interlayer species in mineral/water systems.

  10. Random Matrix Theory in molecular dynamics analysis.

    PubMed

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. PMID:25237718

  11. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  12. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  13. Molecular Dynamics Simulation of Disordered Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2004-02-27

    The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.

  14. Polyoxymethylene: The Hessian biased force field for molecular dynamics simulations

    SciTech Connect

    Dasgupta, S.; Goddard, W.A. III ); Smith, K.A. )

    1993-10-21

    A vibrationally accurate force field (MSXX) is developed for molecular dynamics simulations of polyoxymethylene polymers (-(-OCH[sub 2]-)-). This force field is developed using the biased Hessian with singular value decomposition method (BH/SVD) applied to dimethyl ether and dimethoxymethane. The resultant force field contains parameters that are needed for molecular dynamics simulations of polyoxymethylene. Charges are derived using the electrostatic potential derived point charge calculations. The full ab initio (HF/6-31g**) torsional potential energy surface is fit using a Fourier series expansion to accommodate the [open quotes]anomeric[close quotes] effect in dimethoxymethane. The forcefield was applied to studies of tri- and tetramethoxymethane and is being applied to studies of the polymers. 31 refs., 6 figs., 18 tabs.

  15. Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.

    NASA Astrophysics Data System (ADS)

    Fidelis, Krzysztof Andrzej

    1990-08-01

    The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.

  16. Dynamic Maintenance and Visualization of Molecular Surfaces

    SciTech Connect

    Bajaj, C L; Pascucci, V; Shamir, A; Holt, R J; Netravali, A N

    2004-12-16

    Molecular surface computations are often necessary in order to perform synthetic drug design. A critical step in this process is the computation and update of an exact boundary representation for the molecular surface (e.g. the Lee-Richards surface). In this paper they introduce efficient techniques for computing a molecular surface boundary representation as a set of NURBS (non-uniform rational B-splines) patches. This representation introduces for molecules the same geometric data structure used in the solid modeling community and enables immediate access to a wide range of modeling operations and techniques. Furthermore, this allows the use of any general solid modeling or visualization system as a molecular modeling interface. However, using such a representation in a molecular modeling environment raises several efficiency and update constraints, especially in a dynamic setting. For example, changes in the probe radius result in both geometric and topological changes to the set of patches. The techniques provide the option of trading accuracy of the representation for the efficiency of the computation, while still tracking the changes in the set of patches. In particular, they discuss two main classes of dynamic updates: one that keeps the topology of the molecular configuration fixed, and a more complicated case where the topology may be updated continuously. In general the generated output surface is represented in a format that can be loaded into standard solid modeling systems. It can also be directly triangulated or rendered, possibly at different levels of resolution, by a standard graphics library such as OpenGL without any additional effort.

  17. Molecular dynamics extended for fluctuating networks: application to water.

    PubMed

    Kashmirian, Jennifer M; Uhlherr, Alfred; Dorin, Alan; Green, David G

    2012-06-01

    Molecular simulation models are increasingly important tools in efforts to understand the role that water plays in biochemical processes. However, existing models of water have limited capacity to deal with the characteristics of hydrogen bond networks. This article proposes a new fluctuating network (FN) algorithm as an extension of the standard molecular dynamics algorithm. The new algorithm allows for the simulation of a molecular system based on an underlying network, such as the hydrogen bond network in water. This algorithm distinguishes strong from weak network connections, applying a potential that best describes the specific connection behavior. We model liquid water with this new technique using a single-site, isotropic, short-range potential. We successfully reproduce liquid water's signature molecular spacing (as represented by the radial distribution function) and characterize its dynamic properties including the exponential hydrogen bond lifetime distribution, diffusion rate, and average hydrogen bonds per molecule. The FN algorithm allows exploration of the behavior of networked systems where explicit coordination limits are required. As such it could also be used to model covalent interactions, reaction dynamics, and applied to simulation of cellular networks. PMID:22457060

  18. A random rotor molecule: Vibrational analysis and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.

    2012-12-01

    Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4??-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2?-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.

  19. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  20. Electron and molecular dynamics: Penning ionization and molecular charge transport

    NASA Astrophysics Data System (ADS)

    Madison, Tamika Arlene

    An understanding of fundamental reaction dynamics is an important problem in chemistry. In this work, experimental and theoretical methods are combined to study the dynamics of fundamental chemical reactions. Molecular collision and dissociation dynamics are explored with the Penning ionization of amides, while charge transfer reactions are examined with charge transport in organic thin film devices. Mass spectra from the Penning ionization of formamide by He*, Ne*, and Ar* were measured using molecular beam experiments. When compared to 70eV electron ionization spectra, the He* and Ne* spectra show higher yields of fragments resulting from C--N and C--H bond cleavage, while the Ar* spectrum only shows the molecular ion, H-atom elimination, and decarbonylation. The differences in yields and observed fragments are attributed to the differences in the dynamics of the two ionization methods. Fragmentation in the Ar* spectrum was analyzed using quantum chemistry and RRKM calculations. Calculated yields for the Ar* spectrum are in excellent agreement with experiment and show that 15% and 50% of the yields for decarbonylation and H-atom elimination respectively are attributed to tunneling. The effects of defects, traps, and electrostatic interactions on charge transport in imperfect organic field effect transistors were studied using course-grained Monte Carlo simulations with explicit introduction of defect and traps. The simulations show that electrostatic interactions dramatically affect the field and carrier concentration dependence of charge transport in the presence of a significant number of defects. The simulations also show that while charge transport decreases linearly as a function of neutral defect concentration, it is roughly unaffected by charged defect concentration. In addition, the trap concentration dependence on charge transport is shown to be sensitive to the distribution of trap sites. Finally, density functional theory calculations were used to study how charge localization affects the orbital energies of positively charged bithiophene clusters. These calculations show that the charge delocalizes over at least seven molecules, is more likely to localize on "tilted" molecules due to polarization effects, and affects molecules anisotropically. These results suggest that models for charge transport in organic semiconductors should be modified to account for charge delocalization and intermolecular interactions.

  1. A molecular dynamics investigation of rapid fracture mechanics

    NASA Astrophysics Data System (ADS)

    Abraham, Farid F.; Brodbeck, Dominique; Rudge, William E.; Xu, Xiaopeng

    1997-09-01

    Dynamic fracture is investigated for two-dimensional notched solids under tension using million atom systems. Brittle material and ductile material are modeled through the choice of interatomic potential functions which are Lennard-Jones and embedded-atom potentials, respectively. Numerical calculations are carried out on the IBN SP parallel computer and molecular dynamics is implemented using a spatial-decomposition algorithm. Many recent laboratory findings occur in our simulation experiments. A detailed comparison between laboratory and computer experiments is presented, and microscopic processes are identified. For rapid brittle fracture, the dynamic instability of the crack growth is observed as the crack velocity approaches one-third of the Rayleigh wave speed. At higher crack velocity, the crack either follows a wavy path or branches and the anisotropy due to the large deformation at the crack tip plays the governing role in determining the crack path. Limited comparison of rapid brittle fracture process with the rapid ductile fracture process is made.

  2. Local Refinements in Classical Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Fackeldey, Konstantin; Weber, Marcus

    2014-03-01

    Quantum mechanics provide a detailed description of the physical and chemical behavior of molecules. However, with increasing size of the system the complexity rises exponentially, which is prohibitive for efficient dynamical simulation. In contrast, classical molecular dynamics procure a coarser description by using less degrees of freedom. Thus, it seems natural to seek for an adequate trade-off between accurateness and computational feasibility in the simulation of molecules. Here, we propose a novel method, which combines classical molecular simulations with quantum mechanics for molecular systems. For this we decompose the state space of the respective molecule into subsets, by employing a meshfree partition of unity. We show, that this partition allows us to localize an empirical force field and to run locally constrained classical trajectories. Within each subset, we compute the energy on the quantum level for a fixed number of spatial states (ab initio points). With these energy values from the ab initio points we have a local scattered data problem, which can be solved by the moving least squares method.

  3. A molecular dynamics simulation of the plastic phase of hexachloroethane

    NASA Astrophysics Data System (ADS)

    Criado, A.; Muñoz, A.

    A molecular dynamics simulation of the plastic phase of the pseudo-octahedral molecule C2Cl6 has been carried out using a 6-exp potential model taken from the literature. A plastic phase has been found for a temperature range which is in good agreement with experiment. The calculated thermal averages of the centre of mass displacements and the orientational cubic harmonics are also in good agreement with the experimental values. The calculated atomic orientational probability distribution shows maxima along the [100] and [111] directions for the Cl and C atoms, respectively, and the distribution is isotropic over a wide angular range about the maxima. An analysis of the instantaneous molecular positions shows that the molecules have a larger probability of rotating, and perform sudden reorientations around the [100] crystal directions. It has been found that the molecular C-C axis plays no important role in the molecular dynamics, which is identical to what is found for the plastic phase of the octahedral molecule SF6. A search has been made for the formation of linear clusters of molecules as suggested in the literature but these do not appear in the simulation. A correlated repulsion between molecules and their next-nearest neighbours has been found so that the molecules avoid close contacts of the chlorine atoms along the [100] directions by performing rotations about the [110] crystal directions. The single-molecule rotational potential is calculated and compared with the experimental one, showing that the potential energy barrier for molecular rotations about the [100] directions is considerably lower than for the [110] and [111] rotations. The single-molecule dynamics are also studied and the translational power spectrum reveals a strong translational-rotational coupling whereas the rotational spectrum shows an isotropic rotational diffusion behaviour. The molecules are found to librate around ideal positions for an average residence time of 5·4 ps between consecutive reorientational jumps.

  4. DYNAMICAL ANALYSIS OF HIGHLY EXCITED MOLECULAR SPECTRA

    SciTech Connect

    Michael E. Kellman

    2005-06-17

    Spectra and internal dynamics of highly excited molecules are essential to understanding processes of fundamental importance for combustion, including intramolecular energy transfer and isomerization reactions. The goal of our program is to develop new theoretical tools to unravel information about intramolecular dynamics encoded in highly excited experimental spectra. We want to understand the formations of ''new vibrational modes'' when the ordinary normal modes picture breaks down in highly excited vibrations. We use bifurcation analysis of semiclassical versions of the effective Hamiltonians used by spectroscopists to fit complex experimental spectra. Specific molecular systems are of interest for their relevance to combustion and the availability of high-quality experimental data. Because of its immense importance in combustion, the isomerizing acetylene/vinylidene system has been the object of long-standing experimental and theoretical research. We have made significant progress in systematically understanding the bending dynamics of the acetylene system. We have begun to make progress on extending our methodology to the full bend-stretch vibrational degrees of freedom, including dynamics with multiple wells and above barrier motion, and time-dependent dynamics. For this, development of our previous methods using spectroscopic fitting Hamiltonians is needed, for example, for systems with multiple barriers.

  5. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).

  6. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  7. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  8. Molecular dynamics study of polyethylene extension

    NASA Astrophysics Data System (ADS)

    Melker, Alexander I.; Soloviev, Dmitri V.

    1999-05-01

    Molecular dynamics study of polyethylene extension is presented. The simulations were made using a model of a polyethylene globule containing 500 carbon and 1002 hydrogen atoms, which represents a small part of a bulk polymer specimen. The main objective of this work was to analyze the macromolecule structure evolution as well as to obtain stress- strain diagrams for the process. It is found that the stress- strain diagrams consist of three parts. The first part is due to deformation annealing, the second part is associated with work-hardening and the third one is connected with formation of an oriented structure. On the basis of the structure changes a molecular theory of deformation is suggested.

  9. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent.

    PubMed

    Naine, S Jemimah; Devi, C Subathra; Mohanasrinivasan, V; Doss, C George Priya; Kumar, D Thirumal

    2016-03-01

    The main aim of the current study is to explore the bioactive potential of Streptomyces sp. VITJS8 isolated from the marine saltern. The cultural, biochemical, and morphological studies were performed to acquire the characteristic features of the potent isolate VITJS8. The 16Sr DNA sequencing was performed to investigate the phylogenetic relationship between the Streptomyces genera. The structure of the compound was elucidated by gas chromatography-mass spectrometry (GC-MS), infra-red (IR), and ultra-violet (UV) spectroscopic data analysis. The GC-MS showed the retention time at 22.39 with a single peak indicating the purity of the active compound, and the molecular formula was established as C14H9ONCl2 based on the peak at m/z 277 [M](+). Furthermore, separated by high-performance liquid chromatography (HPLC), their retention time (t r) 2.761 was observed with the absorption maxima at 310 nm. The active compound showed effective inhibitory potential against four clinical pathogens at 500 μg/mL. The antioxidant activity was found effective at the IC50 value of 500 μg/mL with 90 % inhibition. The 3-(4,5-dimethylthiazol-2-yl)-2,5-ditetrazolium bromide (MTT) assay revealed the cytotoxicity against HepG2 cells at IC50 of 250 μg/mL. The progression of apoptosis was evidenced by morphological changes by nuclear staining. The DNA fragmentation pattern was observed at 250 μg/mL concentration. Based on flow cytometric analysis, it was evident that the compound was effective in inhibiting the sub-G0/G1 phase of cell cycle. The in vitro findings were also supported by the binding mode molecular docking studies. The active compound revealed minimum binding energy of -7.84 and showed good affinity towards the active region of topoisomerase-2α that could be considered as a suitable inhibitor. Lastly, we performed 30 ns molecular dynamic simulation analysis using GROMACS to aid in better designing of anticancer drugs. Simulation result of root mean square deviation (RMSD) analysis showed that protein-ligand complex reaches equilibration state around 10 ns that illustrates the docked complex is stable. We propose the possible mechanism of sesquiterpenes to play a significant role in antitumor cascade. Hence, our studies open up a new facet for a potent drug as an anticancer agent. PMID:26590587

  10. Molecular Dynamics: New Frontier in Personalized Medicine.

    PubMed

    Sneha, P; George Priya Doss, C

    2016-01-01

    The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine. PMID:26827606

  11. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  12. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Y.T.

    1987-03-01

    Purpose of this research project is two-fold: (1) to elucidate detailed dynamics of simple elementary reactions which are theoretically important and to unravel the mechanism of complex chemical reactions or photo chemical processes which play an important role in many macroscopic processes and (2) to determine the energetics of polyatomic free radicals using microscopic experimental methods. Most of the information is derived from measurement of the product fragment translational energy and angular distributions using unique molecular beam apparati designed for these purposes.

  13. Molecular dynamics simulations of dense plasmas

    SciTech Connect

    Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  14. Heterogeneous nucleation of bubbles by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suh, Donguk; Nakamura, Mitsuki; Yasuoka, Kenji

    2015-12-01

    A homogeneous liquid system and a heterogeneous system with an impurity inserted inside it were used for investigation of bubble nucleation by molecular dynamics simulation. A constant particle number, volume, and temperature ensemble was used. The systems with the impurities showed an overall increase in bubble formation, which is consistent with previous studies. The shape of the impurities was changed to see if there was any direct influence on the bubble nucleation rate. With the limited number of systems investigated, the occurrence of a shape effect was inconclusive. As observed in previous heterogeneous nucleation studies with walls, the bubble initially forms remotely from the impurity and remains at some distance from the seed.

  15. Extended Lagrangian quantum molecular dynamics simulations of shock-induced chemistry in hydrocarbons

    SciTech Connect

    Sanville, Edward J; Bock, Nicolas; Challacombe, William M; Cawkwell, Marc J; Niklasson, Anders M N; Dattelbaum, Dana M; Sheffield, Stephen; Sewell, Thomas D

    2010-01-01

    A set of interatomic potentials for hydrocarbons that are based upon the self-consistent charge transfer tight-binding approximation to density functional theory have been developed and implemented into the quantum molecular dynamics code ''LATTE''. The interatomic potentials exhibit an outstanding level of transferability and have been applied in molecular dynamics simulations of tert-butylacetylene under thermodynamic conditions that correspond to its single-shock Hugoniot. We have achieved precise conservation of the total energy during microcanonical molecular dynamics trajectories under incomplete convergence via the extended Lagrangian Born-Oppenheimer molecular dynamics formalism. In good agreement with the results of a series of flyer-plate impact experiments, our SCC-TB molecular dynamics simulations show that tert-butylactylene molecules polymerize at shock pressures around 6.1 GPa.

  16. Molecular dynamics simulation of threshold displacement energies in zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.

    2009-10-15

    Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.

  17. Molecular dynamics simulation of hydration in myoglobin

    SciTech Connect

    Gu, Wei; Schoenborn, B.P.

    1995-09-01

    This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After salvation of the protein, energy minimization and equilibration of the system, 50 pico seconds of Newtonian dynamics was performed. This data showed that only 4 water molecules are continously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water.

  18. Molecular dynamics simulation of hydration in myoglobin

    SciTech Connect

    Gu, W.; Schoenborn, B.P.

    1995-12-01

    This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After solvation of the protein, energy minimization and equilibration of the system, 50 ps of Newtonian dynamics was performed. These data showed that only 4 water molecules are continuously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water.

  19. Potential energy surfaces and reaction dynamics of polyatomic molecules

    SciTech Connect

    Chang, Yan-Tyng

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  20. Particle dynamics in a virtual harmonic potential

    NASA Astrophysics Data System (ADS)

    Gavrilov, Mom?ilo; Jun, Yonggun; Bechhoefer, John

    2013-09-01

    Feedback traps can create arbitrary virtual potentials for exploring the dynamics of small Brownian particles. In a feedback trap, the particle position is measured periodically and, after each measurement, one applies the force that would be produced by the gradient of the "virtual potential," at the particle location. Virtual potentials differ from real ones in that the feedback loop introduces dynamical effects not present in ordinary potentials. These dynamical effects are caused by small time scales associated with the feedback, including the delay between the measurement of a particle's position and the feedback response, the feedback response that is applied for a finite update time, and the finite camera exposure from integrating motion. Here, we characterize the relevant experimental parameters and compare to theory the observed power spectra and variance for a particle in a virtual harmonic potential. We show that deviations from the dynamics expected of a continuous potential are measured by the ratio of these small time scales to the relaxation time scale of the virtual potential.

  1. Annihilation of craters: Molecular dynamic simulations on a silver surface

    SciTech Connect

    Henriksson, K. O. E.; Nordlund, K.; Keinonen, J.

    2007-12-15

    The ability of silver cluster ions containing 13 atoms to fill in a preexisting crater with a radius of about 28 A ring on a silver (001) target has been investigated using molecular dynamics simulations and the molecular-dynamics-Monte Carlo corrected effective medium potential. The largest lateral distance r between crater and ion was about three times the radius of the preexisting crater, namely, 75 A ring . The results reveal that when r<20 A ring and r>60 A ring the preexisting crater is partially filled in, and for other distances there is a net growth of the crater. The lattice damage created by the cluster ions, the total sputtering yield, the cluster sputtering yield, and simulated transmission electron microscopy images of the irradiated targets are also presented.

  2. Combining molecular dynamics with mesoscopic Green's function reaction dynamics simulations

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Bolhuis, Peter G.; ten Wolde, Pieter Rein

    2015-12-01

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.

  3. Shock induced phase transition of water: Molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  4. Molecular Dynamics Simulations of Hydrophobic Residues

    NASA Astrophysics Data System (ADS)

    Caballero, Diego; Zhou, Alice; Regan, Lynne; O'Hern, Corey

    2013-03-01

    Molecular recognition and protein-protein interactions are involved in important biological processes. However, despite recent improvements in computational methods for protein design, we still lack a predictive understanding of protein structure and interactions. To begin to address these shortcomings, we performed molecular dynamics simulations of hydrophobic residues modeled as hard spheres with stereo-chemical constraints initially at high temperature, and then quenched to low temperature to obtain local energy minima. We find that there is a range of quench rates over which the probabilities of side-chain dihedral angles for hydrophobic residues match the probabilities obtained for known protein structures. In addition, we predict the side-chain dihedral angle propensities in the core region of the proteins T4, ROP, and several mutants. These studies serve as a first step in developing the ability to quantitatively rank the energies of designed protein constructs. The success of these studies suggests that only hard-sphere dynamics with geometrical constraints are needed for accurate protein structure prediction in hydrophobic cavities and binding interfaces. NSF Grant PHY-1019147

  5. Multiple branched adaptive steered molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ozer, Gungor; Keyes, Thomas; Quirk, Stephen; Hernandez, Rigoberto

    2014-08-01

    Steered molecular dynamics, SMD, [S. Park and K. Schulten, J. Chem. Phys. 120, 5946 (2004)] combined with Jarzynski's equality has been used widely in generating free energy profiles for various biological problems, e.g., protein folding and ligand binding. However, the calculated averages are generally dominated by "rare events" from the ensemble of nonequilibrium trajectories. The recently proposed adaptive steered molecular dynamics, ASMD, introduced a new idea for selecting important events and eliminating the non-contributing trajectories, thus decreasing the overall computation needed. ASMD was shown to reduce the number of trajectories needed by a factor of 10 in a benchmarking study of decaalanine stretching. Here we propose a novel, highly efficient "multiple branching" (MB) version, MB-ASMD, which obtains a more complete enhanced sampling of the important trajectories, while still eliminating non-contributing segments. Compared to selecting a single configuration in ASMD, MB-ASMD offers to select multiple configurations at each segment along the reaction coordinate based on the distribution of work trajectories. We show that MB-ASMD has all benefits of ASMD such as faster convergence of the PMF even when pulling 1000 times faster than the reversible limit while greatly reducing the probability of getting trapped in a non-significant path. We also analyze the hydrogen bond breaking within the decaalanine peptide as we force the helix into a random coil and confirm ASMD results with less noise in the numerical averages.

  6. MDLab: a molecular dynamics simulation prototyping environment.

    PubMed

    Cickovski, Trevor; Chatterjee, Santanu; Wenger, Jacob; Sweet, Christopher R; Izaguirre, Jess A

    2010-05-01

    Molecular dynamics (MD) simulation involves solving Newton's equations of motion for a system of atoms, by calculating forces and updating atomic positions and velocities over a timestep Deltat. Despite the large amount of computing power currently available, the timescale of MD simulations is limited by both the small timestep required for propagation, and the expensive algorithm for computing pairwise forces. These issues are currently addressed through the development of efficient simulation methods, some of which make acceptable approximations and as a result can afford larger timesteps. We present MDLab, a development environment for MD simulations built with Python which facilitates prototyping, testing, and debugging of these methods. MDLab provides constructs which allow the development of propagators, force calculators, and high level sampling protocols that run several instances of molecular dynamics. For computationally demanding sampling protocols which require testing on large biomolecules, MDL includes an interface to the OpenMM libraries of Friedrichs et al. which execute on graphical processing units (GPUs) and achieve considerable speedup over execution on the CPU. As an example of an interesting high level method developed in MDLab, we present a parallel implementation of the On-The-Fly string method of Maragliano and Vanden-Eijnden. MDLab is available at http://mdlab.sourceforge.net. PMID:19882726

  7. Exact dynamic properties of molecular motors

    NASA Astrophysics Data System (ADS)

    Boon, N. J.; Hoyle, R. B.

    2012-08-01

    Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.

  8. Assembly dynamics of two-? sheets revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xu, Weixin; Ping, Jiang; Li, Weifeng; Mu, Yuguang

    2009-04-01

    The assembly dynamics of two ? sheets with different initial separation distances are explored by multiple all-atom molecular dynamics simulations with the presence of explicit water solvent. The ? sheet is composed of seven identical peptides in an antiparallel fashion. The peptide sequence is the 20-29 segment of human Islet amyloid polypeptide. Our simulations show that the assembly occurs not only in the lateral direction but also along the longitudinal direction, which provides a new insight into the assembly pathway at the early stage of fibril elongation. Based on Poisson-Boltzmann free energy analysis and quasiharmonic configuration entropy estimation, the entropic contribution is found to play an important role in the longitudinal assembly. Moreover, a possible oligomeric state with cyclic form is suggested based on one assembly model found in the simulations, illustrating the polymorphic nature of aggregation of the amyloidogenic peptide.

  9. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor Yuan T. Lee & Professor George Schatz. Professor Lee’s research has been based on the development & use of advanced chemical kinetics & molecular beams to investigate & manipulate the behavior of fundamental chemical reactions. Lee’s work has been recognized by many awards, including the Nobel Prize for Chemistry in 1986, as well as Sloan Fellow, Dreyfus Scholar, Fellowship in the American Academy of Arts & Sciences, Fellowship in the American Physical Society, Guggenheim Fellow, Member National Academy of Sciences, Member Academia Sinica, E.O. Lawrence Award, Miller Professor, Berkeley, Fairchild Distinguished Scholar, Harrison Howe Award, Peter Debye Award, & the National Medal of Science. Lee also has served as the President of the Academia Sinica in Taiwan (ROC). Professor Schatz’s research group is interested in using theory & computation to describe physical phenomena in a broad range of applications relevant to chemistry, physics, biology & engineering. Among the types of applications that we interested are: optical properties of nanoparticles & nanoparticle assemblies; using theory to model polymer properties; DNA structure, thermodynamics & dynamics; modeling self assembly & nanopatterning; & gas phase reaction dynamics. Among his many awards & distinctions have been appointment as an Alfred P. Sloan Research Fellow, Camille & Henry Dreyfus Teacher-Scholar, the Fresenius Award, Fellow of the American Physical Society, the Max Planck Research Award, Fellowship in the American Association for the Advancement of Science, & election to the International Academy of Quantum Molecular Sciences & the American Academy of Arts & Sciences. Dr Schatz is also lauded for his highly successful work as Editor for the Journal of Physical Chemistry. We requested $10,000 from DOE in support of this meeting. The money was distributed widely among the student & post doctoral fellows & some used to attract the very best scientists in the field. The organizers were committed to encouraging women & minorities as well as encourage the field of Chemical Physics in scientifically developing countries. For example, it has been a tradition of the DMC meeting to offer of order 40 scholarships for students & postdocs to defray registration & travel costs. The benefits of increased graduate student & post doctoral attendance at the meeting cannot be over emphasized. First, these young scientists have the opportunity to present their work by means of the poster session & to a gathering of experts in their field. Secondly the limited size of the meeting allows student & young postdocs to meet & interact directly with experts in their area, to network with their peers at other institutions & become aware of career opportunities. Graduate students & post doctoral fellows are the life blood of our field. Support of their attendance at this & other similar meetings will ensure a continued flow of young talent into many areas of research represented by the DMC meeting & important to DOE.

  10. Dynamic transitions in molecular dynamics simulations of supercooled silicon

    NASA Astrophysics Data System (ADS)

    Mei, Xiaojun; Eapen, Jacob

    2013-04-01

    Two dynamic transitions or crossovers, one at a low temperature (T* ≈ 1006 K) and the other at a high temperature (T0 ≈ 1384 K), are shown to emerge in supercooled liquid silicon using molecular dynamics simulations. The high-temperature transition (T0) marks the decoupling of stress, density, and energy relaxation mechanisms. At the low-temperature transition (T*), depending on the cooling rate, supercooled silicon can either undergo a high-density-liquid to low-density-liquid (HDL-LDL) phase transition or experience an HDL-HDL crossover. Dynamically heterogeneous domains that emerge with supercooling become prominent across the HDL-HDL transition at 1006 K, with well-separated mobile and immobile regions. Interestingly, across the HDL-LDL transition, the most mobile atoms form large prominent aggregates while the least mobile atoms get spatially dispersed akin to that in a crystalline state. The attendant partial return to spatial uniformity with the HDL-LDL phase transition indicates a dynamic mechanism for relieving the frustration in supercooled states.

  11. Thermal Transport in Carbon Nanotubes using Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    We will present results of thermal transport phenomena in Carbon Nanotube (CNT) structures. CNTs have many interesting physical properties, and have the potential for device applications. Specifically, CNTs are robust materials with high thermal conductance and excellent electrical conduction properties. A review of electrical and thermal conduction of the structures will be discussed. The research requires analytical analysis as well as simulation. The major thrust of this study is the usage of the molecular dynamics (MD) simulator, LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). A significant investigation using the LAMMPS code is conducted on the existing Beowulf Computing Cluster at BSU. NanoHUB, an open online resource to the entire nanotechnology community developed by the researchers of Purdue University, is used for further supplementary resources. Results will include the time-dependence of temperature, kinetic energy, potential energy, heat flux correlation, and heat conduction.

  12. Strong field dynamics and control of molecular dissociation

    NASA Astrophysics Data System (ADS)

    Nichols, Sarah Roxanna

    Ultrafast lasers allow for the investigation of chemical reactions on their own natural time scale, much as a strobe light allows the visualization of rapid motion on a camera. The strong electric fields of amplified ultrafast lasers can be used not only to observe a chemical reaction, but also to control it. In this thesis, we present observations of molecular dissociation dynamics and evidence of control in several small molecules. We begin with a discussion of alignment dynamics, whereby field-free alignment is initiated in a sample of gas-phase molecules prior to ionization and dissociation. This enhances the ionization effectiveness of subsequent laser pulses, particularly for diatomic molecules such as N2 and O2, as the molecular axis can be aligned with the laser polarization. We continue with a discussion of dissociation dynamics in a family of small molecules, focusing on halogen-substituted methanes (halomethanes). Halomethanes are small enough to allow for detailed electronic structure calculations, while being large enough to be chemically relevant and offer opportunities for selective dissociation. We find that dissociation in halomethanes is controlled by the development of transient ionic resonances, which can be accessed by a weak probe pulse following the ionizing pump pulse. These dynamic resonances create strong oscillatory behavior in the experimental ion yields, which can be modeled by wave packet calculations on ab initio potential energy surfaces. We find excellent quantitative agreement between the calculations and the experimental measurements, yielding a detailed understanding of the dissociation dynamics of some members of the halomethane family, including CH2BrI. Ongoing work focuses on better understanding differences between members of the molecular family. This understanding may have implications for control and dissociation dynamics in larger, more complicated molecules.

  13. Heterogeneous dynamics of ionic liquids from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Habasaki, J.; Ngai, K. L.

    2008-11-01

    Molecular dynamics simulations have been performed to study the complex and heterogeneous dynamics of ions in ionic liquids. The dynamics of cations and anions in 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3) are characterized by van Hove functions and the corresponding intermediate scattering functions Fs(k,t) and elucidated by the trajectories augmented by the use of singular spectrum analysis (SSA). Several time regions are found in the mean squared displacement of the ions. Change in the slope in a plot of the diffusion coefficient against temperature is found at around 410K in the simulation. Heterogeneous dynamics with the presence of both localized ions and fast ions capable of successive jumps were observed at long time scales in the self-part of the van Hove functions and in the trajectories. Non-Gaussian dynamics are evidenced by the self-part of the van Hove functions and wave number dependence of Fs(k,t) and characterized as Lvy flights. Successive motion of some ions can continue even after several nanoseconds at 370K, which is longer than the onset time of diffusive motion, tdif. Structure of the long time dynamics of fast ions is clarified by the phase space plot of the successive motion using the denoised data by SSA. The continual dynamics are shown to have a long term memory, and therefore local structure is not enough to explain the heterogeneity. The motion connecting localized regions at about 370K is jumplike, but there is no typical one due to local structural changes during jump motion. With the local motion, mutual diffusion between cation and anion occurs. On decreasing temperature, mutual diffusion is suppressed, which results in slowing down of the dynamics. This "mixing effect of cation and anion" is compared with the "mixed alkali effect" found in the ionics in the ionically conducting glasses, where the interception of paths by different alkali metal ions causes the large reduction in the dynamics [J. Habasaki and K. L. Ngai, Phys. Chem. Chem. Phys. 9, 4673 (2007), and references herein]. Although a similar mechanism of the slowing down is observed, strong coupling of the motion of cation and anion prevents complete interception unless deeply supercooled, and this explains the wide temperature region of the existence of the liquid and supercooled liquid states in the ionic liquid.

  14. Atomistic molecular dynamic simulations of multiferroics.

    PubMed

    Wang, Dawei; Weerasinghe, Jeevaka; Bellaiche, L

    2012-08-10

    A first-principles-based approach is developed to simulate dynamical properties, including complex permittivity and permeability in the GHz-THz range, of multiferroics at finite temperatures. It includes both structural degrees of freedom and magnetic moments as dynamic variables in Newtonian and Landau-Lifshitz-Gilbert (LLG) equations within molecular dynamics, respectively, with the couplings between these variables being incorporated. The use of a damping coefficient and of the fluctuation field in the LLG equations is required to obtain equilibrated magnetic properties at any temperature. No electromagnon is found in the spin-canted structure of BiFeO3. On the other hand, two magnons with very different frequencies are predicted via the use of this method. The smallest-in-frequency magnon corresponds to oscillations of the weak ferromagnetic vector in the basal plane being perpendicular to the polarization while the second magnon corresponds to magnetic dipoles going in and out of this basal plane. The large value of the frequency of this second magnon is caused by static couplings between magnetic dipoles with electric dipoles and oxygen octahedra tiltings. PMID:23006300

  15. Molecular understanding of mutagenicity using potential energy methods

    SciTech Connect

    Broyde, S.; Shapiro, R.

    1992-07-01

    Our objective, has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by 2-aminofluorene and its N-acetyl derivative, 2-acetylaminofluorene (AAF). The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence, for example by the formation of hairpin loops in appropriate sequences, but it may be enhanced greatly after covalent modification by a mutagenic substance. We use computational methods and have been able to incorporate the first data from NMR studies in our calculations. Computational approaches are important because x-ray and spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. The specific methods that we employ are minimized potential energy calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations, with full solvent and salt, of the important static structures are carried out with the program AMBER; this yields mobile views in a medium that mimics the natural aqueous environment of the cell as well as can be done with current available computing resources.

  16. Molecular profiling of gliomas: potential therapeutic implications.

    PubMed

    Alentorn, Agusti; Duran-Pea, Alberto; Pingle, Sandeep C; Piccioni, David E; Idbaih, Ahmed; Kesari, Santosh

    2015-08-01

    Gliomas are the most common primary malignant brain tumor. Over the last decade, significant advances have been made in the molecular characterization of this tumor group, identifying predictive biomarkers or molecular actionable targets, and paving the way to molecular-based targeted therapies. This personalized therapeutic approach is effective and illustrated in the present review. Among many molecular abnormalities, BRAF mutation and mTOR activation in pilocytic astrocytomas and subependymal giant cell astrocytomas are actionable targets sensitive to vemurafenib and everolimus, respectively. Chromosome arms 1p/19q co-deletion and IDH mutational status are pivotal in driving delivery of early procarbazine, lomustine and vincristine chemotherapy in anaplastic oligodendroglial tumors. Although consensus to assess MGMT promoter methylation is not reached yet, it may be useful in predicting resistance to temozolomide in elderly patients. PMID:26118895

  17. A multiscale molecular dynamics allowing macroscale mechanical loads

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Li, Shaofan

    2015-06-01

    We proposed a novel multiscale molecular-dynamics model in order to apply macroscale boundary conditions to microscale molecular systems, which is difficult for classical molecular dynamics. Unlike in statistical mechanics, in which macroscale quantities such as temperature and pressure are collected from molecular information, the proposed approach is a reversed procedure to find optimal molecular states when macroscale conditions such as traction are enforced. The model is originated from Parrinello-Rahman molecular dynamics but extends it to solve finite-size, inhomogeneous molecular-dynamics problems by generalizing the representative volume element to a material point in continuum mechanics. An example of compressing a nickel nanowire is presented to demonstrate the capacity of the method to simulate localized phase transition in a finite-size molecular system, which validates the effectiveness of the method.

  18. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  19. Modeling DNA structures: molecular mechanics and molecular dynamics.

    PubMed

    von Kitzing, E

    1992-01-01

    Model building studies may be used to supplement structurally low resolution experimental data with detailed three-dimensional hypothetical atomic models. Because of the strong relation between structure and function in biological molecules such models may give a consistent, integral view of a wealth of experimental data. In most cases such models will predict the outcome of certain experiments. The outcome of these experiments will often either confirm the model may be used for further refinement or even demand a major revision of the model. Coordinates obtained from X-ray fiber diffraction data or in special cases single-crystal data may provide the elements for DNA or RNA model building. Local and nonlocal optimization may be used to refine these structures and to evaluate their statistical significance as estimated by a chosen force field. Appreciable progress using nonlocal optimization procedures can only be expected if the dimensionality of the problem can be reduced sufficiently to the relevant degrees of freedom. Taking advantage of structural symmetries may critically improve the convergence while refining the target molecule or its building blocks. Monte Carlo and molecular dynamics methods allow one to calculate averaged quantities. In addition, molecular dynamics provides time evolutions of certain averages. During the simulation of certain physical properties of molecules a huge amount of data will be generated. They will provide many answers, but these answers may not always apply to the original question. So what type of questions will be reliably answered by a force field? Relatively safe answers concern the local geometry of the molecules. If a conformation leads to strong distortions of bond distances or angles or to close van der Waals contacts, this conformation can safely be rejected. Optimizing such unfavorable structures energetically may lead to structures showing how to avoid such distortions. More difficult are energetical questions: which of two conformers is more stable, or what is the free energy of the substrate in the active site? One cannot always be sure that the force field provides the correct answer. Therefore, one should pose only those questions which can be checked experimentally. Because of the many possible answers, the experiment may benefit by starting with a choice proposed by the simulation. The application of this procedure to curved DNA and the DNA four-way junction was successful. PMID:1406320

  20. Studying functional dynamics in bio-molecules using accelerated molecular dynamics.

    PubMed

    Markwick, Phineus R L; McCammon, J Andrew

    2011-12-01

    Many biologically important processes such as enzyme catalysis, signal transduction, ligand binding and allosteric regulation occur on the micro- to millisecond time-scale. Despite the sustained and rapid increase in available computational power and the development of efficient simulation algorithms, molecular dynamics (MD) simulations of proteins and bio-machines are generally limited to time-scales of tens to hundreds of nano-seconds. In this perspective article we present a comprehensive review of Accelerated Molecular Dynamics (AMD), an extended biased potential molecular dynamics approach that allows for the efficient study of bio-molecular systems up to time-scales several orders of magnitude greater than those accessible using standard classical MD methods, whilst still maintaining a fully atomistic representation of the system. Compared to many other approaches, AMD affords efficient enhanced conformational space sampling without any a priori understanding of the underlying free energy surface, nor does it require the specific prior definition of a reaction coordinate or a set of collective variables. Successful applications of the AMD method, including the study of slow time-scale functional dynamics in folded proteins and the conformational behavior of natively unstructured proteins are discussed and an outline of the different variants and extensions to the standard AMD approach is presented. PMID:22015376

  1. Molecular mechanism of gas adsorption into ionic liquids: A molecular dynamics study

    SciTech Connect

    Dang, Liem X.; Chang, Tsun-Mei

    2012-01-19

    Room temperature ionic liquids (RTILs) have been shown to be versatile and tunable solvents that can be used in many chemical applications. In this study, we developed a dynamical, molecular-scale picture of the gas dissolution and interfacial processes in RTILs using molecular simulations. These simulations can provide the free energies associated with transporting a gas solute across various RTIL interfaces and physical insights into the interfacial properties and transport molecular mechanism of gas sorption processes. For CO2 sorption, the features in the potential of mean force (PMF) of CO2 using both polarizable and non-polarizable force fields are similar qualitatively. However, we observed some quantitative differences, and we describe the causes of these differences in this paper. We also show the significant impact of ionic-liquid chemical structures on the gas sorption process, and we discuss their influence on the H2O transport mechanism.

  2. Ion Mobility Analysis of Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Wyttenbach, Thomas; Pierson, Nicholas A.; Clemmer, David E.; Bowers, Michael T.

    2014-04-01

    The combination of mass spectrometry and ion mobility spectrometry (IMS) employing a temperature-variable drift cell or a drift tube divided into sections to make IMS-IMS experiments possible allows information to be obtained about the molecular dynamics of polyatomic ions in the absence of a solvent. The experiments allow the investigation of structural changes of both activated and native ion populations on a timescale of 1&-100 ms. Five different systems representing small and large, polar and nonpolar molecules, as well as noncovalent assemblies, are discussed in detail: a dinucleotide, a sodiated polyethylene glycol chain, the peptide bradykinin, the protein ubiquitin, and two types of peptide oligomers. Barriers to conformational interconversion can be obtained in favorable cases. In other cases, solution-like native structures can be observed, but care must be taken in the experimental protocols. The power of theoretical modeling is demonstrated.

  3. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    PubMed

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied. PMID:26220273

  4. Discrete molecular dynamics simulations of peptide aggregation

    NASA Astrophysics Data System (ADS)

    Peng, S.; Ding, F.; Urbanc, B.; Buldyrev, S. V.; Cruz, L.; Stanley, H. E.; Dokholyan, N. V.

    2004-04-01

    We study the aggregation of peptides using the discrete molecular dynamics simulations. Specifically, at temperatures above the ?-helix melting temperature of a single peptide, the model peptides aggregate into a multilayer parallel ?-sheet structure. This structure has an interstrand distance of 4.8 and an intersheet distance of 10 , which agree with experimental observations. Our model explains these results as follows: hydrogen-bond interactions give rise to the interstrand spacing in ? sheets, while G? interactions between side chains make ? strands parallel to each other and allow ? sheets to pack into layers. An important feature of our results is that the aggregates contain free edges, which may allow for further aggregation of model peptides to form elongated fibrils.

  5. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G.

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  6. Extended Lagrangian free energy molecular dynamics.

    PubMed

    Niklasson, Anders M N; Steneteg, Peter; Bock, Nicolas

    2011-10-28

    Extended free energy Lagrangians are proposed for first principles molecular dynamics simulations at finite electronic temperatures for plane-wave pseudopotential and local orbital density matrix-based calculations. Thanks to the extended Lagrangian description, the electronic degrees of freedom can be integrated by stable geometric schemes that conserve the free energy. For the local orbital representations both the nuclear and electronic forces have simple and numerically efficient expressions that are well suited for reduced complexity calculations. A rapidly converging recursive Fermi operator expansion method that does not require the calculation of eigenvalues and eigenfunctions for the construction of the fractionally occupied density matrix is discussed. An efficient expression for the Pulay force that is valid also for density matrices with fractional occupation occurring at finite electronic temperatures is also demonstrated. PMID:22047232

  7. Molecular interferometer to decode attosecond electronnuclear dynamics

    PubMed Central

    Palacios, Alicia; Gonzlez-Castrillo, Alberto; Martn, Fernando

    2014-01-01

    Understanding the coupled electronic and nuclear dynamics in molecules by using pumpprobe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses. PMID:24591647

  8. Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water.

    PubMed

    Abel, Stéphane; Dupradeau, François-Yves; Marchi, Massimo

    2012-11-13

    We present the first comparative molecular dynamics investigation for a dodecylphosphocholine (DPC) micelle performed in condensed phase using the CHARMM36, GROMOS53A6, GROMOS54A7, and GROMOS53A6/Berger force fields and a set of parameters developed anew. Our potential consists of newly derived RESP atomic charges, which are associated with the Amber99SB force field developed for proteins. This new potential is expressly designed for simulations of peptides and transmembrane proteins in a micellar environment. To validate this new ensemble, molecular dynamics simulations of a DPC micelle composed of 54 monomers were carried out in explicit water using a "self-assembling" approach. Characteristic micellar properties such as aggregation kinetic, volume, size, shape, surface area, internal structure, surfactant conformation, and hydration were thoroughly examined and compared with experiments. Derived RESP charge values combined with parameters taken from Amber99SB reproduce reasonably well important structural properties and experimental data compared to the other tested force fields. However, the headgroup and alkyl chain conformations or the micelle hydration simulated with the Amber99SB force field display some differences. In particular, we show that Amber99SB slightly overestimates the trans population of the alkyl Csp(3)-Csp(3)-Csp(3)-Csp(3) dihedral angle (i.e., CCCC) and reduces the flexibility of the DPC alkyl chain. In agreement with experiments and previously published studies, the DPC micelle shows a slightly ellipsoidal shape with a radius of gyration of ∼17 Å for the different potentials evaluated. The surface of contact between the DPC headgroup and water molecules represents between 70% and 80% of the total micelle surface independently of the force field considered. Finally, molecular dynamics simulations show that water molecules form various hydrogen-bond patterns with the surfactant headgroup, as noted previously for phospholipids with a phosphatidylcholine headgroup. PMID:26605618

  9. Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.

    2007-01-01

    The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.

  10. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  11. Model interaction potentials for selenium from ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Varshneya, Arun K.

    2005-06-01

    We develop model interaction potentials for elemental selenium based on ab initio molecular simulations and cluster expansion theory. Our potentials are used in classical Monte Carlo simulations to characterize the structure of selenium glass.

  12. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    SciTech Connect

    Mugnai, Mauro L.; Elber, Ron

    2015-01-07

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  13. Molecular Dynamics Study of Shock-Induced Chemistry in Anthracene

    NASA Astrophysics Data System (ADS)

    Elert, M. L.; Zybin, S. V.; White, C. T.

    2004-07-01

    Molecular dynamics simulations employing a reactive empirical bond-order (REBO) potential are used to investigate shock-induced chemical reactions in anthracene. Previous studies have shown that the dominant shock-induced reaction for smaller unsaturated hydrocarbons is polymerization, but fragmentation and pyrolysis are expected to be more prevalent for larger molecules. In agreement with recent experimental results, it is found that dimerization is the dominant chemical reaction in anthracene subjected to shock above a threshold strength. In addition, anthracene exhibits significant anisotropy in the solid phase, leading to orientation dependence of shock-induced chemistry in this material.

  14. Higher-order symplectic Born-Oppenheimer molecular dynamics

    SciTech Connect

    Niklasson, Anders; Bock, Nicolas; Challacombe, Matt; Odell, Anders; Delin, Anna; Johansson, Borje

    2009-01-01

    The extended Lagrangian formulation of time-reversible Born-Oppenheimer molecular dynamics (TR-BOMD) enables the use of geometric integrators in the propagation of both the nuclear and the electronic degrees of freedom on the Born-Oppenheimer potential energy surface. Different symplectic integrators up to the 6th order have been adapted and optimized to TR-BOMD in the framework of ab initio self-consistent-field theory. It is shown how the accuracy can be significantly improved compared to a conventional Verlet integration at the same level of computational cost, in particular for the case of very high accuracy requirements.

  15. Elastic behavior of carbon nanocoils: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zaeri, Mohammad Mahdi; Ziaei-Rad, Saeed

    2015-11-01

    Elastic behavior of carbon nanocoils is investigated through molecular dynamics simulations. In particular, spring constants of various nanocoils are derived. To do so, first a geometric model is prepared with the aid of finite element mesh generator. Then applying AIREBO potential, the model is simulated under tensile loading. Using the obtained deformation data, the spring constant is calculated. In order to study the effect of structural parameters, change of elastic properties with helix diameter as well as tube diameter is examined. The results are compared to those obtained via other methods reported in literature.

  16. Shock compression and spallation of tantalum: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; An, Q.; Ravelo, R.; Germann, T. C.; Tonks, D. L.; Goddard, W. A., III

    2011-06-01

    We perform large-scale molecular dynamics simulations of shock wave compression and spallation of Ta single crystals with different potentials including embedded-atom method (EAM), first-principles-based EAM (qEAM) and reactive forcefield (ReaxFF). Shock loading is applied along < 100 > , < 110 > and < 111 > . Hugoniot states are obtained from direct shock or Hugoniostat simulations. Anisotropic behaviors are observed in plasticity (including twinning) during compression/tension and in spallation. We present detailed analysis of dislocations, twins and void nucleation and growth, and their implications for the mechanisms of plasticity and spall damage in Ta.

  17. Molecular dynamics simulations of water-methanol mixtures

    NASA Astrophysics Data System (ADS)

    Plinks, G.; Hawlicka, E.; Heinzinger, K.

    1991-12-01

    Molecular dynamics simulations of two water-methanol mixtures with methanol mole fractions of 0.1 and 0.9 at room temperature have been performed. The interaction potentials are based on flexible three-site models for water and methanol. The structural changes relative to the pure solvents are demonstrated with the help of radial distribution functions and the geometrical arrangement of nearest-neighbor molecules. Differences in thermodynamic properties and in hydrogen bonding between the two mixtures and relative to the pure liquids are discussed.

  18. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  19. Molecular dynamics simulation in virus research

    PubMed Central

    Ode, Hirotaka; Nakashima, Masaaki; Kitamura, Shingo; Sugiura, Wataru; Sato, Hironori

    2012-01-01

    Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virushost interactions and evolution, and present future perspectives on this technique. PMID:22833741

  20. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  1. Molecular Dynamics Simulations of Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey

    2014-03-01

    Polyelectrolytes are polymers with ionizable groups. In polar solvents, these groups dissociate releasing counterions into solution and leaving uncompensated charges on the polymer backbone. Examples of polyelectrolytes include biopolymers such as DNA and RNA, and synthetic polymers such as poly(styrene sulfonate) and poly(acrylic acids). In this talk I will discuss recent molecular dynamics simulations of static and dynamic properties of polyelectrolyte solutions. These simulations show that in dilute and semidilute polyelectrolyte solutions the electrostatic induced chain persistence length scales with the solution ionic strength as I - 1 / 2. This dependence of the chain persistence length is due to counterion condensation on the polymer backbone. In dilute polyelectrolyte solutions the chain size decreases with increasing the salt concentration as R ~ I- 1 / 5. This is in agreement with the scaling of the chain persistence length on the solution ionic strength, lp ~ I- 1 / 2. In semidilute solution regime at low salt concentrations the chain size decreases with increasing polymer concentration, R ~ cp-1 / 4 . While at high salt concentrations one observes a weaker dependence of the chain size on the solution ionic strength, R ~ I- 1 / 8. Analysis of the simulation data throughout the studied salt and polymer concentration ranges shows that there exist general scaling relations between multiple quantities X (I) in salt solutions and corresponding quantities X (I0) in salt-free solutions, X (I) = X (I0) (I /I0) ? . The exponent ? = -1/2 for chain persistence length lp , ? = 1/4 for solution correlation length, ? = -1/5 and ? = -1/8 for chain size R in dilute and semidilute solution regimes respectively. Furthermore, the analysis of the spectrum and of the relaxation times of Rouse modes confirms existence of the single length scale (correlation length) that controls both static and dynamic properties of semidilute polyelectrolyte solutions. These findings confirm predictions of the scaling model of polyelectrolyte solutions. NSF DMR-1004576.

  2. GAS-PHASE MOLECULAR DYNAMICS: VIBRATIONAL DYNAMICS OF POLYATOMIC MOLECULES

    SciTech Connect

    MUCKERMAN,J.T.

    1999-06-09

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions and properties of short-lived chemical intermediates. High-resolution, high-sensitivity, laser absorption methods are augmented by high-temperature, flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in radicals involved in chemical systems. The experimental work is supported by theoretical studies using time-dependent quantum wavepacket calculations, which provide insight into energy flow among the vibrational modes of polyatomic molecules and interference effects in multiple-surface dynamics.

  3. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  4. Internal coordinate molecular dynamics: a foundation for multiscale dynamics.

    PubMed

    Vaidehi, Nagarajan; Jain, Abhinandan

    2015-01-29

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  5. Deformation processes in polycrystalline Zr by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Zizhe; Noordhoek, Mark J.; Chernatynskiy, Aleksandr; Sinnott, Susan B.; Phillpot, Simon R.

    2015-07-01

    Molecular dynamics simulation is used to characterize the deformation behavior of polycrystalline Zr. The predictions of two different potentials, an embedded atom method potential and a charge optimized many body potential are compared. The experimentally observed prismatic dislocations, pyramidal dislocations and twinning behaviors are produced in the simulations of [ 1 1 2 bar 0 ] and [0 0 0 1] textured structures and in fully 3D structure simulations. The relationship between the generalized stacking fault energy and the mechanical properties is discussed. In particular we find that the different shapes of the generalized stacking-fault energy curve for the two different interatomic descriptions of Zr have a significant effect on the deformation mechanisms. The deformation behavior of Zr is compared with analogous simulations of deformation of polycrystalline Mg.

  6. Molecular Dynamics Simulation of Tatb-Like Explosive

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, F. A.; Dremov, V. V.; Derbenev, I. V.; Karavaev, A. V.; Soulard, L.

    2007-12-01

    A modification of REBO potential has been proposed for the molecular dynamics simulation of a TATB-like condensed explosive whose molecule initially consists of four different atoms. TATB-like means bulk properties of initial state and parameters at CJ point similar to those of real TATB. Parameters of the potential are subdivided into two groups that are responsible for CJ parameters and reaction zone width. The possibility of formation of intermediate detonation products allows variation of reaction zone characteristics without changing CJ parameters. Provided are a number of test MD calculations on the thermodynamic properties of both the original explosive and detonation products, parameters at CJ point, reactions rates and reaction zone width as dependent upon the potential parameters as well as the evaluation of critical diameter. Mechanism of the detonation initiation proper to heterogeneous explosives has been investigated.

  7. Combining Optimal Control Theory and Molecular Dynamics for Protein Folding

    PubMed Central

    Arkun, Yaman; Gur, Mert

    2012-01-01

    A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages. PMID:22238629

  8. Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Rakesh, L.

    2009-09-01

    Surfactants like materials can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. A typical case study will be demonstrated using DPD simulation to model the distribution of anti-inflammatory drug molecules. Computer simulation is a convenient approach to understand drug distribution and solubility concepts without much wastage and costly experiments in the laboratory. Often in molecular dynamics (MD) the atoms are represented explicitly and the equation of motion as described by Newtonian dynamics is integrated explicitly. MD has been used to study spontaneous formation of micelles by hydrophobic molecules with amphiphilic head groups in bulk water, as well as stability of pre-configured micelles and membranes. DPD is a state-of the- art mesoscale simulation, it is a more recent molecular dynamics technique, originally developed for simulating complex fluids but lately also applied to membrane dynamics, hemodynamic in biomedical applications. Such fluids pervade industrial research from paints to pharmaceuticals and from cosmetics to the controlled release of drugs. Dissipative particle dynamics (DPD) can provide structural and dynamic properties of fluids in equilibrium, under shear or confined to narrow cavities, at length- and time-scales beyond the scope of traditional atomistic molecular dynamics simulation methods. Mesoscopic particles are used to represent clusters of molecules. The interaction conserves mass and momentum and as a consequence the dynamics is consistent with Navier-Stokes equations. In addition to the conservative forces, stochastic drive and dissipation is introduced to represent internal degrees of freedom in the mesoscopic particles. In this research, an initial study is being conducted using the aqueous solubilization of the nonsteroidal, anti-inflammatory drug is studied theoretically in micellar solution of nonionic (dodecyl hexa(ethylene oxide), C12E6) surfactants possessing the hydrocarbon "tail" and their hydrophilic head groups. We find that, for the surfactants, the aqueous solubility of anti-inflammatory molecules increases linearly with increasing surfactant concentration. In particular, we observed a 10-fold increase in the solubility of anti-inflammatory drugs relative to that in the aqueous buffer upon the addition of 100 mM dodecyltrimethyl ammonium bromide -DTAB.

  9. Laser-induced perturbation into molecular dynamics localized in neuronal cell

    NASA Astrophysics Data System (ADS)

    Hosokawa, Chie; Takeda, Naoko; Kudoh, Suguru N.; Taguchi, Takahisa

    2015-03-01

    Molecular dynamics at synaptic terminals in neuronal cells is essential for synaptic plasticity and subsequent modulation of cellular functions in a neuronal network. For realizing artificial control of living neuronal network, we demonstrate laser-induced perturbation into molecular dynamics in the neuronal cells. The optical trapping of cellular molecules such as synaptic vesicles or neural cell adhesion molecules labeled with quantum dots was evaluated by fluorescence imaging and fluorescence correlation spectroscopy. The trapping and assembling dynamics was revealed that the molecular motion was constrained at the focal spot of a focused laser beam due to optical trapping force. Our method has a potential to manipulate synaptic transmission at single synapse level.

  10. (Molecular understanding of mutagenicity using potential energy methods)

    SciTech Connect

    Broyde, S.

    1990-01-01

    The objective of our work has been, for many year, to elucidate on a molecular level at atomic resolution the structures of DNAs modified by highly mutagenic polycyclic aromatic amines and hydrocarbons, and their less mutagenic chemically related analogs and unmodified DNAs, as controls. The ultimate purpose of this undertaking is to obtain an understanding of the relationship DNA structures and mutagenicity. Our methods for elucidating structures are computational, but we keep in close contact with experimental developments, and have, very recently, been able to incorporate the first experimental information from NMR studies by other workers in our calculations. The specific computational methods we employ are minimized potential energy calculations using the torsion angle space program DUPLEX, developed and written by Dr. Brain Hingerty to yield static views. Molecular dynamics simulations of the important static structures with full solvation and salt are carried out with the program AMBER; this yields mobile views in a milieu that best mimics the natural environment of the cell. In addition, we have been developing new strategies for searching conformation space and building DNA duplexes from favored subunit structures. 30 refs., 12 figs.

  11. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

    PubMed Central

    2015-01-01

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and ironsulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of proteinwater interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance. PMID:24955078

  12. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field.

    PubMed

    Pabis, Anna; Geronimo, Inacrist; York, Darrin M; Paneth, Piotr

    2014-06-10

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron-sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein-water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance. PMID:24955078

  13. Molecular dynamics simulation of radiation damage cascades in diamond

    NASA Astrophysics Data System (ADS)

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-01

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  14. Molecular Dynamics Simulation on Stability of Insulin on Graphene

    NASA Astrophysics Data System (ADS)

    Liang, Li-jun; Wang, Qi; Wu, Tao; Shen, Jia-wei; Kang, Yu

    2009-12-01

    The adsorption dynamics of a model protein (the human insulin) onto graphene surfaces with different sizes was investigated by molecular dynamics simulations. During the adsorption, it has different effect on the stability of the model protein in the fixed and non-fixed graphene systems. The tertiary structure of the protein was destroyed or partially destroyed, and graphene surfaces shows the selective protection for some ?-helices in non-fixed systems but not in fixed systems by reason of the flexibility of graphene. As indicated by the interaction energy curve and trajectory animation, the conformation and orientation selection of the protein were induced by the properties and the texture of graphene surfaces. The knowledge of protein adsorption on graphene surfaces would be helpful to better understand stability of protein on graphene surfaces and facilitate potential applications of graphene in biotechnology.

  15. How Dynamic Visualization Technology Can Support Molecular Reasoning

    ERIC Educational Resources Information Center

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and

  16. Comparative molecular field analysis and molecular dynamics studies of ?/? hydrolase domain containing 6 (ABHD6) inhibitors.

    PubMed

    Kaczor, Agnieszka A; Targowska-Duda, Katarzyna M; Patel, Jayendra Z; Laitinen, Tuomo; Parkkari, Teija; Adams, Yahaya; Nevalainen, Tapio J; Poso, Antti

    2015-10-01

    The endocannabinoid system remains an attractive molecular target for pharmacological intervention due to its roles in the central nervous system in learning, thinking, emotional function, regulation of food intake or pain sensation, as well as in the peripheral nervous system, where it modulates the action of cardiovascular, immune, metabolic or reproductive function. ?/? hydrolase domain containing 6 (ABHD6)--an enzyme forming part of the endocannabinoid system--is a newly discovered post-genomic protein acting as a 2-AG (2-arachidonoylglycerol) serine hydrolase. We have recently reported a series of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. Here, we present comparative molecular field analysis (CoMFA) and molecular dynamics studies of these compounds. First, we performed a homology modeling study of ABHD6 based on the assumption that the catalytic triad of ABHD6 comprises Ser148-His306-Asp 278 and the oxyanion hole is formed by Met149 and Phe80. A total of 42 compounds was docked to the homology model using the Glide module from the Schrdinger suite of software and the selected docking poses were used for CoMFA alignment. A model with the following statistics was obtained: R(2) = 0.98, Q(2) = 0.55. In order to study the molecular interactions of the inhibitors with ABHD6 in detail, molecular dynamics was performed with the Desmond program. It was found that, during the simulations, the hydrogen bond between the inhibitor carbonyl group and the main chain of Phe80 is weakened, whereas a new hydrogen bond with the side chain of Ser148 is formed, facilitating the possible formation of a covalent bond. Graphical Abstract Left-right: Docking pose of 1 in the binding pocket of ?/? hydrolase domain containing 6 (ABHD6) selected for molecular alignment; CoMFA steric and electrostatic contour fields; changes in potential energy of the complex during simulations for the complex of 6 and ABHD6. PMID:26350245

  17. ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems.

    PubMed

    Niethammer, Christoph; Becker, Stefan; Bernreuther, Martin; Buchholz, Martin; Eckhardt, Wolfgang; Heinecke, Alexander; Werth, Stephan; Bungartz, Hans-Joachim; Glass, Colin W; Hasse, Hans; Vrabec, Jadran; Horsch, Martin

    2014-10-14

    The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales that were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, such as fluids at interfaces, as well as nonequilibrium molecular dynamics simulation of heat and mass transfer. PMID:26588142

  18. Structures of polycyclic aromatic hydrocarbon adducts by molecular mechanics and molecular dynamics simulations

    SciTech Connect

    Singh, S.B.

    1992-01-01

    The structures of the adducts of (+)- and (-)trans-7,8,dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo (a)pyrene (anti-BPDE) formed by trans addition to N[sup 2] of guanine have been of great interest because the high biological activity of BPDE in mammalian mutagenesis and tumorigenesis has been attributed to the predominant (+)-adduct, while the (-)-adduct is inactive. Molecular mechanics and dynamics calculations have been employed to elucidate the structural difference between this mirror image adduct pair in a duplex dodecamer, d(5' GCGCGCG-(BPDE)CGCGC3') [center dot] d(5'GCGCGCGCGCGC3'). Minimized potential energy calculations using the program DUPLEX were employed to locate starting structures for the dynamics. Three types of structures were found in the energy minimized conformation space searches for each enantiomer: pyrenyl moiety in the minor groove of a Watson-Crick base paired B-DNA duplex, pyrenyl moiety in the major groove of a B-DNA duplex with syn guanine and Hoogsteen base pairs at the modification site, and intercalation type structures. The minor groove structure is energetically preferred for the (+) enantiomer while both minor groove and major groove structures are favored and of comparable energy in the (-) enantiomer. These energy-minimized duplex dodecamers, as well as an unmodified B-DNA control of the same sequence, were subjected to 100 ps molecular dynamics simulations with solvent and salt with the program AMBER. The duplex dodecamer, d(CGCGAATTCGCG)[sub 2], was subjected to a similar simulation using the crystal structure as starting coordinates. Detailed analysis of the dynamic evolution of the conformational and the helical parameters of all the dodecamer simulations were carried out with Molecular Dynamics Analysis Toolchest.

  19. Event-Driven Molecular Dynamics Simulations of Protein Mixtures

    NASA Astrophysics Data System (ADS)

    Cyran, Marek A.

    The structure of liquids is central to their thermodynamic properties and is described in a probabilistic manner. The structure is a consequence of the forces between the molecules and may be investigated with the use of many techniques. One of these techniques is the use of computer simulation, and in particular the techniques are called Monte Carlo Statistical Thermodynamic simulation, and Molecular Dynamics. In this thesis we construct a program that is capable of carrying out Event-Driven Molecular Dynamics simulation of mixtures of particles that have stepwise constant pair potential energies. We have implemented our simulation for the case of square-well particles that have a hard impenetrable core surrounded by a attractive potential well. Such mixtures are important for understanding the behavior of biological macromolecules at the high concentrations that occur in living cells. To test our implementation we have compared the resulting pair correlation functions with those that result from Monte Carlo simulations. While these pair correlation functions are in rather close agreement there remain discrepancies that remain to be resolved.

  20. Molecular-Dynamics Study Melting Aluminum at High Pressures

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.; Kozlova, S. A.

    The dependence of the melting temperature versus the pressure under static conditions and under shock-wave compression of aluminum was calculated by molecular-dynamic modeling technique. The Morse potential and EAM potential (embedded atom method) was used for the interatomic interaction for the solid and liquid phases of aluminum. The calculations show a change of crystal structure of aluminum close to the melting range static compression and compression in the shock wave. Melting point was determined by analysis of the radial distribution function and the standard deviation of the atoms with the visualization of crystal structure. The results of molecular dynamics calculations are consistent with experimental data on the compressibility of the shock wave up to 200 GPa. Static melting results are consistent across the field of experimental data up to 30 GPa. A short-term compression in the shock wave, accompanied by the increase of entropy can be leads to overheating nonequilibrium substances. Under these conditions, the melting temperature under static and shock compression may be different from each other. However, the calculations showed on pressure in the shock wave 122 GPa aluminum melting occurs at temperatures close to the melting temperature in static conditions.

  1. Atomistic Molecular Dynamics Simulations of the Electrical Double

    NASA Astrophysics Data System (ADS)

    Li, Zifeng; Milner, Scott; Fichthorn, Kristen

    2015-03-01

    The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.

  2. Statistical coarse-graining of molecular dynamics into peridynamics.

    SciTech Connect

    Silling, Stewart Andrew; Lehoucq, Richard B.

    2007-10-01

    This paper describes an elegant statistical coarse-graining of molecular dynamics at finite temperature into peridynamics, a continuum theory. Peridynamics is an efficient alternative to molecular dynamics enabling dynamics at larger length and time scales. In direct analogy with molecular dynamics, peridynamics uses a nonlocal model of force and does not employ stress/strain relationships germane to classical continuum mechanics. In contrast with classical continuum mechanics, the peridynamic representation of a system of linear springs and masses is shown to have the same dispersion relation as the original spring-mass system.

  3. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus. PMID:24694369

  4. Dynamics, flexibility, and allostery in molecular chaperonins.

    PubMed

    Skjrven, Lars; Cuellar, Jorge; Martinez, Aurora; Valpuesta, Jos Mara

    2015-09-14

    The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements. PMID:26140986

  5. Molecular Dynamics Study of Helicobacter pylori Urease

    PubMed Central

    2015-01-01

    Helicobacter pylori have been implicated in an array of gastrointestinal disorders including, but not limited to, gastric and duodenal ulcers and adenocarcinoma. This bacterium utilizes an enzyme, urease, to produce copious amounts of ammonia through urea hydrolysis in order to survive the harsh acidic conditions of the stomach. Molecular dynamics (MD) studies on the H. pylori urease enzyme have been employed in order to study structural features of this enzyme that may shed light on the hydrolysis mechanism. A total of 400 ns of MD simulation time were collected and analyzed in this study. A wide-open flap state previously observed in MD simulations on Klebsiella aerogenes [Roberts et al. J. Am. Chem. Soc.2012, 134, 9934] urease has been identified in the H. pylori enzyme that has yet to be experimentally observed. Critical distances between residues on the flap, contact points in the closed state, and the separation between the active site Ni2+ ions and the critical histidine ?322 residue were used to characterize flap motion. An additional flap in the active site was elaborated upon that we postulate may serve as an exit conduit for hydrolysis products. Finally we discuss the internal hollow cavity and present analysis of the distribution of sodium ions over the course of the simulation. PMID:24839409

  6. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  7. Molecular Dynamics Simulations of Ferroelectric Phase Transitions

    NASA Astrophysics Data System (ADS)

    Yu, Rici; Krakauer, Henry

    1997-03-01

    Based on an analysis of the wavevector dependence of the lattice instabilities in KNbO_3, we proposed a real-space chain-like instability and a scenario of sequential freezing out or onset of coherence of these instabilities, which qualitatively explains the sequence of observed temperature-dependent ferroelectric phases.(R. Yu and H. Krakauer, Phys. Rev. Lett. 74), 4067 (1995). We suggested that this chain-like instability should also be found in BaTiO_3, and this has been subsequently confirmed by Ghosez et al.(P. Ghosez et al.), Proc. 4th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, to be published We will present molecular dynamics simulations on BaTiO_3, using effective Hamiltonians constructed from first-principles calculations,(W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. Lett. 73), 1861 (1994). that reproduce the essential features of diffuse x-ray scattering measurements in the cubic, tetragonal, orthorhombic, and rhombohedral phases. The good agreement supports the interpretation of real-space chain-formation. Simulations for KNbO3 may also be reported.

  8. Fractal and complex network analyses of protein molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Wu; Liu, Jin-Long; Yu, Zu-Guo; Zhao, Zhi-Qin; Anh, Vo

    2014-12-01

    Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2) of MF-DFA on the time series, exponent λ of the exponential degree distribution and fractal dimension dB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between (from MF-DFA on time series) and of the converted HVGs for different energy, pressure and volume.

  9. Molecular dynamics of histone H1.

    PubMed

    Flanagan, Thomas W; Brown, David T

    2016-03-01

    The H1 or linker histones bind dynamically to chromatin in living cells via a process that involves transient association with the nucleosome near the DNA entry/exit site followed by dissociation, translocation to a new location, and rebinding. The mean residency time of H1 on any given nucleosome is about a minute, which is much shorter than that of most core histones but considerably longer than that of most other chromatin-binding proteins, including transcription factors. Here we review recent advances in understanding the kinetic pathway of H1 binding and how it relates to linker histone structure and function. We also describe potential mechanisms by which the dynamic binding of H1 might contribute directly to the regulation of gene expression and discuss several situations for which there is experimental evidence to support these mechanisms. Finally, we review the evidence for the participation of linker histone chaperones in mediating H1 exchange. This article is part of a Special Issue entitled: Histone H1, edited by Dr. Albert Jordan. PMID:26454113

  10. Accelerated molecular dynamics methods: introduction and recent developments

    SciTech Connect

    Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny; Shim, Y; Amar, J G

    2009-01-01

    A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.

  11. Isomorphic phase transformation in shocked cerium using molecular dynamics

    SciTech Connect

    Dupont, Virginie; Germann, Timothy C; Chen, Shao - Ping

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  12. Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Shuai-chuang; Liang, Xin-gang; Xu, Xiang-hua; Ohara, Taku

    2009-01-01

    The thermal conductivity of silicon nanowires was predicted using the nonequilibrium molecular dynamics method using the Stillinger-Weber potential model and the Nose-Hoover thermostat. The dependence of the thermal conductivity on the wire length, cross-sectional area, and temperature was investigated. The surface along the longitudinal direction was set as a free boundary with potential boundaries in the other directions. The cross-sectional areas of the nanowires ranged from about 5 to 19 nm2 with lengths ranging from 6 to 54 nm. The thermal conductivity dependence on temperature agrees well with the experimental results. The reciprocal of the thermal conductivity was found to be linearly related to the nanowire length. These results quantitatively show that decreasing the cross-sectional area reduces the phonon mean free path in nanowires.

  13. On-the-fly free energy parameterization via temperature accelerated molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abrams, Cameron F.; Vanden-Eijnden, Eric

    2012-09-01

    We discuss a method for parametric calculation of free energy functions in arbitrary collective variables using molecular simulations. The method uses a variant of temperature accelerated molecular dynamics to evolve on-the-fly the parameters of the free energy function to their optimum values by minimization of a cumulative gradient error. We illustrate how the method performs using simple examples and discuss its application in the derivation of effective pairwise potentials for multiscale molecular simulations.

  14. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.

    PubMed

    Graziani, F R; Bauer, J D; Murillo, M S

    2014-09-01

    Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations. PMID:25314544

  15. Molecular dynamics, monte carlo simulations, and langevin dynamics: a computational review.

    PubMed

    Paquet, Eric; Viktor, Herna L

    2015-01-01

    Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262

  16. Ionization dynamics of aminopyridine dimer: a direct ab initio molecular dynamics (MD) study.

    PubMed

    Tachikawa, Hiroto; Fukuzumi, Takahiro

    2011-04-01

    The ionization dynamics of an aminopyridine dimer (AP)(2) has been investigated by means of the direct ab initio molecular dynamics (MD) method. It was found that the reaction process was composed of three steps after the vertical ionization of (AP)(2): dimer approach, proton transfer and energy relaxation. The timescales of these processes were 50-100, 10-20, and 200 fs, respectively. The timescale of the dimer approach was dependent on the initial separation between AP(+) and AP. After the ionization, AP approached gradually the ionized AP(+). The proton of AP(+) was transferred to AP at the nearest intermolecular distance, while the potential energy was quickly dropped according to the proton transfer. The energy relaxation of the dimer cation was significantly faster than that of the monomer cation. The mechanism of ionization dynamics of (AP)(2) was discussed on the basis of the theoretical results. PMID:21327276

  17. Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu; Wang, Bing-Shen; Rabczuk, Timon

    2014-03-01

    We study the phonon modes in single-walled MoS2 nanotubes via lattice dynamics calculation and molecular dynamics simulation. The phonon spectra for tubes of arbitrary chiralities are calculated from a dynamical matrix constructed by the combination of an empirical potential with the conserved helical quantum numbers (?, n). In particular, we show that the frequency (?) of the radial breathing mode is inversely proportional to the tube diameter (d) as ? = 665.3/d cm-1. The eigenvectors of the twenty lowest-frequency phonon modes are illustrated. Based on these eigenvectors, we demonstrate that the radial breathing oscillation is initially disturbed by phonon modes of three-fold symmetry, then eventually the tube is squashed by modes of two-fold symmetry . Our study provides fundamental knowledge for further investigations of the thermal and mechanical properties of MoS2 nanotubes.

  18. Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation.

    PubMed

    Jiang, Jin-Wu; Wang, Bing-Shen; Rabczuk, Timon

    2014-03-14

    We study the phonon modes in single-walled MoS? nanotubes via lattice dynamics calculation and molecular dynamics simulation. The phonon spectra for tubes of arbitrary chiralities are calculated from a dynamical matrix constructed by the combination of an empirical potential with the conserved helical quantum numbers (?, n). In particular, we show that the frequency (?) of the radial breathing mode is inversely proportional to the tube diameter (d) as ? = 665.3/d cm?. The eigenvectors of the twenty lowest-frequency phonon modes are illustrated. Based on these eigenvectors, we demonstrate that the radial breathing oscillation is initially disturbed by phonon modes of three-fold symmetry, then eventually the tube is squashed by modes of two-fold symmetry . Our study provides fundamental knowledge for further investigations of the thermal and mechanical properties of MoS? nanotubes. PMID:24531058

  19. Effect of temperature on structural and dynamic properties of liquid silver - A study in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Banuelos, E. U.; Amarillas, A. P.

    2004-02-01

    In this work we studied the temperature-induced changes in the structural and dynamical properties of liquid Ag using molecular dynamics (DM) computer simulation. The atomic interactions are modeled through a semiempirical potential function which incorporates n-body effects and is based on the second moments approximation of the density of states of a tight-binding Hamiltonian. The caloric curve was used to calculate the latent heat of fusion and the pair distribution function, g(r), was calculated from a set of atomic configurations collected at several time-steps. The dynamical properties are studied through the velocity autocorrelation function and the mean-square displacement. The self-diffusion coefficient and its behavior with the temperature, obtained from our simulations, shows the typical behavior of the simple liquids. Our results are compared to available experimental data.

  20. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review

    PubMed Central

    Paquet, Eric; Viktor, Herna L.

    2015-01-01

    Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262

  1. Thermodynamic, dynamic, and structural anomalies for shoulderlike potentials.

    PubMed

    Barraz, Ney M; Salcedo, Evy; Barbosa, Marcia C

    2009-09-01

    Using molecular dynamic simulations we study a family of continuous core-softened potentials consisting of a hard core, a shoulder at closest distances, and an attractive well at further distance. The repulsive shoulder and the well distances represent two length scales. We show that if the first scale, the shoulder, is repulsive or has a small well, the potential has a region in the pressure-temperature phase diagram with density, diffusion, and structural anomalies. However, if the closest scale becomes a deep well, the regions in the pressure-temperature phase diagram where the three anomalies are present shrink and disappear. This result helps in defining two length scales potentials that exhibit anomalies. PMID:19739858

  2. Electron momentum spectroscopy of 1-butene: a theoretical analysis using molecular dynamics and molecular quantum similarity.

    PubMed

    Shojaei, S H Reza; Vandenbussche, Jelle; Deleuze, Michael S; Bultinck, Patrick

    2013-09-01

    The results of experimental studies of the valence electronic structure of 1-butene by means of electron momentum spectroscopy (EMS) have been reinterpreted on the basis of molecular dynamical simulations in conjunction with the classical MM3 force field. The computed atomic trajectories demonstrate the importance of thermally induced nuclear dynamics in the electronic neutral ground state, in the form of significant deviations from stationary points on the potential energy surface and considerable variations of the C-C-C-C dihedral angle. These motions are found to have a considerable influence on the computed spectral bands and outer-valence electron momentum distributions. Euclidean distances between spherically averaged electron momentum densities confirm that thermally induced nuclear motions need to be fully taken into account for a consistent interpretation of the results of EMS experiments on conformationally flexible molecules. PMID:23902590

  3. Nanotube nanoscience: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Omata, Yasuaki; Yamagami, Yuichiro; Tadano, Kotaro; Miyake, Takashi; Saito, Susumu

    2005-11-01

    Carbon nanotubes, fullerenes, and other nanostructured carbon materials are now the most important material phases in the field of nanoscience and nanotechnology. We study the structural stabilities and the interconversion of carbon nanotubes and various other carbon nanostructured phases at elevated temperatures as well as under high pressure using the molecular dynamics method combined with a newly parametrized transferable tight-binding model. The model can deal with not only sp2 and sp3 covalent bonds but also the interaction between sp2 layers, which plays an important role in the structural and electronic properties of carbon nanostructured materials. It is found that, during a thermal transformation process of carbon nanotubes with C60 fullerenes trapped inside into double-walled carbon nanotubes, the outer carbon-nanotube wall is chemically active and forms covalent bonds with inner carbon atoms, and that most vacancies on the initially imperfect outer tube wall are eventually filled with atoms migrated from inner fullerenes. It is also found that external pressure of about 20 GPa induces a variety of structural transformations in carbon nanostructures. On the other hand, pressure of 30 GPa or higher usually results in sp3-rich amorphous carbon materials. Finally, the rotational interlayer friction force in double-walled carbon nanotubes is studied for the system of (4,4)@(9,9), and the torque of the friction force per unit area acting on each nanotube of the system is found to be as small as 9.710-4 N/m. This small value indicates the importance of carbon nanostuctured materials not only for nanoelectronics but also for nanometer-scale machines in the future.

  4. Dynamic Aspects of Cochlear Microphonic Potentials

    NASA Astrophysics Data System (ADS)

    Meenderink, Sebastiaan W. F.; van der Heijden, Marcel

    2011-11-01

    Cochlear microphonic potentials were recorded from the Mongolian gerbil in response to low-frequency auditory stimuli. Provided that contamination of the potentials by the phase-locked neurophonic is avoided, these recordings can be interpreted "as if recorded from a single outer hair cell". It is found that the instantaneous I/O-curves resemble the well-known Boltzmann activation curve. The dynamic aspect of the I/O-curves does reveal hysteresis and a level-dependent gain that is not observed in static measures of these curves. We explore a model that simulates CM generation from hair cell populations, but find it inadequate to reproduce the data. Rather, there seem to be fast, adaptive mechanisms probably at the level of the transduction channels themselves.

  5. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Laghaei, Rozita; Mousseau, Normand

    2010-04-01

    Expansion of polyglutamine (polyQ) beyond the pathogenic threshold (35-40 Gln) is associated with several neurodegenerative diseases including Huntington's disease, several forms of spinocerebellar ataxias and spinobulbar muscular atrophy. To determine the structure of polyglutamine aggregates we perform replica-exchange molecular dynamics simulations coupled with the optimized potential for effective peptide forcefield. Using a range of temperatures from 250 to 700 K, we study the aggregation kinetics of the polyglutamine monomer and dimer with chain lengths from 30 to 50 residues. All monomers show a similar structural change at the same temperature from α-helical structure to random coil, without indication of any significant β-strand. For dimers, by contrast, starting from random structures, we observe spontaneous formation of antiparallel β-sheets and triangular and circular β-helical structures for polyglutamine with 40 residues in a 400 ns 50 temperature replica-exchange molecular dynamics simulation (total integrated time 20 μs). This ˜32 Å diameter structure reorganizes further into a tight antiparallel double-stranded ˜22 Å nanotube with 22 residues per turn close to Perutz' model for amyloid fibers as water-filled nanotubes. This diversity of structures suggests the existence of polymorphism for polyglutamine with possibly different pathways leading to the formation of toxic oligomers and to fibrils.

  6. Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways.

    PubMed

    Wang, Lee-Ping; McGibbon, Robert T; Pande, Vijay S; Martinez, Todd J

    2016-02-01

    We describe a flexible and broadly applicable energy refinement method, "nebterpolation," for identifying and characterizing the reaction events in a molecular dynamics (MD) simulation. The new method is applicable to ab initio simulations with hundreds of atoms containing complex and multimolecular reaction events. A key aspect of nebterpolation is smoothing of the reactive MD trajectory in internal coordinates to initiate the search for the reaction path on the potential energy surface. We apply nebterpolation to analyze the reaction events in an ab initio nanoreactor simulation that discovers new molecules and mechanisms, including a C-C coupling pathway for glycolaldehyde synthesis. We find that the new method, which incorporates information from the MD trajectory that connects reactants with products, produces a dramatically distinct set of minimum energy paths compared to existing approaches that start from information for the reaction end points alone. The energy refinement method described here represents a key component of an emerging simulation paradigm where molecular dynamics simulations are applied to discover the possible reaction mechanisms. PMID:26683346

  7. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations.

    PubMed

    Laghaei, Rozita; Mousseau, Normand

    2010-04-28

    Expansion of polyglutamine (polyQ) beyond the pathogenic threshold (35-40 Gln) is associated with several neurodegenerative diseases including Huntington's disease, several forms of spinocerebellar ataxias and spinobulbar muscular atrophy. To determine the structure of polyglutamine aggregates we perform replica-exchange molecular dynamics simulations coupled with the optimized potential for effective peptide forcefield. Using a range of temperatures from 250 to 700 K, we study the aggregation kinetics of the polyglutamine monomer and dimer with chain lengths from 30 to 50 residues. All monomers show a similar structural change at the same temperature from alpha-helical structure to random coil, without indication of any significant beta-strand. For dimers, by contrast, starting from random structures, we observe spontaneous formation of antiparallel beta-sheets and triangular and circular beta-helical structures for polyglutamine with 40 residues in a 400 ns 50 temperature replica-exchange molecular dynamics simulation (total integrated time 20 micros). This approximately 32 A diameter structure reorganizes further into a tight antiparallel double-stranded approximately 22 A nanotube with 22 residues per turn close to Perutz' model for amyloid fibers as water-filled nanotubes. This diversity of structures suggests the existence of polymorphism for polyglutamine with possibly different pathways leading to the formation of toxic oligomers and to fibrils. PMID:20441310

  8. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    SciTech Connect

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-12-12

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  9. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    SciTech Connect

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  10. Solvation dynamics of Hoechst 33258 in water: an equilibrium and nonequilibrium molecular dynamics study.

    PubMed

    Furse, Kristina E; Lindquist, Beth A; Corcelli, Steven A

    2008-03-13

    Integrated within an appropriate theoretical framework, molecular dynamics (MD) simulations are a powerful tool to complement experimental studies of solvation dynamics. Together, experiment, theory, and simulation have provided substantial insight into the dynamic behavior of polar solvents. MD investigations of solvation dynamics are especially valuable when applied to the heterogeneous environments found in biological systems, where the calculated response of the environment to the electrostatic perturbation of the probe molecule can easily be decomposed by component (e.g., aqueous solvent, biomolecule, ions), greatly aiding the molecular-level interpretation of experiments. A comprehensive equilibrium and nonequilibrium MD study of the solvation dynamics of the fluorescent dye Hoechst 33258 (H33258) in aqueous solution is presented. Many fluorescent probes employed in experimental studies of solvation dynamics in biological systems, such as the DNA minor groove binder H33258, have inherently more conformational flexibility than prototypical fused-ring chromophores. The role of solute flexibility was investigated by developing a fully flexible force-field for the H33258 molecule and by simulating its solvation response. While the timescales for the total solvation response calculated using both rigid (0.16 and 1.3 ps) and flexible (0.17 and 1.4 ps) models of the probe closely matched the experimentally measured solvation response (0.2 and 1.2 ps), there were subtle differences in the response profiles, including the presence of significant oscillations for the flexible probe. A decomposition of the total response of the flexible probe revealed that the aqueous solvent was responsible for the overall decay, while the oscillations result from fluctuations in the electrostatic terms in the solute intramolecular potential energy. A comparison of equilibrium and nonequilibrium approaches for the calculation of the solvation response confirmed that the solvation dynamics of H33258 in water is well-described by linear response theory for both rigid and flexible models of the probe. PMID:18271577

  11. Disappearing inflaton potential via heavy field dynamics

    NASA Astrophysics Data System (ADS)

    Kitajima, Naoya; Takahashi, Fuminobu

    2016-02-01

    We propose a possibility that the inflaton potential is significantly modified after inflation due to heavy field dynamics. During inflation such a heavy scalar field may be stabilized at a value deviated from the low-energy minimum. In extreme cases, the inflaton potential vanishes and the inflaton becomes almost massless at some time after inflation. Such transition of the inflaton potential has interesting implications for primordial density perturbations, reheating, creation of unwanted relics, dark radiation, and experimental search for light degrees of freedom. To be concrete, we consider a chaotic inflation in supergravity where the inflaton mass parameter is promoted to a modulus field, finding that the inflaton becomes stable after the transition and contributes to dark matter. Another example is a hilltop inflation (also called new inflation) by the MSSM Higgs field which acquires a large expectation value just after inflation, but it returns to the origin after the transition and finally rolls down to the electroweak vacuum. Interestingly, the smallness of the electroweak scale compared to the Planck scale is directly related to the flatness of the inflaton potential.

  12. Enhanced molecular dynamics sampling of drug target conformations.

    PubMed

    Rodriguez-Bussey, Isela G; Doshi, Urmi; Hamelberg, Donald

    2016-01-01

    Computational docking and virtual screening are two main important methods employed in structure-based drug design. Unlike the traditional approach that allows docking of a flexible ligand against a handful of receptor structures, receptor flexibility has now been appreciated and increasingly incorporated in computer-aided docking. Using a diverse set of receptor conformations increases the chances of finding potential drugs and inhibitors. Molecular dynamics (MD) is greatly useful to generate various receptor conformations. However, the diversity of the structures of the receptor, which is usually much larger than the ligand, depends on the sampling efficiency of MD. Enhanced sampling methods based on accelerated molecular dynamics (aMD) can alleviate the sampling limitation of conventional MD and aid in representation of the phase space to a much greater extent. RaMD-db, a variant of aMD that applies boost potential to the rotatable dihedrals and non-bonded diffusive degrees of freedom has been proven to reproduce the equilibrium properties more accurately and efficiently than aMD. Here, we discuss recent advances in the aMD methodology and review the applicability of RaMD-db as an enhanced sampling method. RaMD-db is shown to be able to generate a broad distribution of structures of a drug target, Cyclophilin A. These structures that have never been observed previously in very long conventional MD can be further used for structure-based computer-aided drug discovery, and docking, and thus, in the identification and design of potential novel inhibitors. PMID:26352326

  13. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  14. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    SciTech Connect

    Schiferl, S.K.

    1985-02-01

    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.

  15. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  16. Nonlocalized cluster dynamics and nuclear molecular structure

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Funaki, Yasuro; Horiuchi, Hisashi; Ren, Zhongzhou; Rpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi

    2014-03-01

    A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter ``B" in the Tohsaki-Horiuchi-Schuck-Rpke (THSR) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in 20Ne which have been considered as a typical manifestation of localized clustering are discussed. An as-yet-unexplained puzzling feature of the THSR wave function, namely that after angular-momentum projection for two-cluster systems the prolate THSR wave function is almost 100% equivalent to an oblate THSR wave function, is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2?, 3?, and 16O+?, are all well described by a single THSR wave function. It is shown for the case of linear-chain states with 2- and 3? clusters, as well as for the 16O+? system, that localization is entirely of kinematical origin, that is, attributable to the intercluster Pauli repulsion. It is concluded that this feature is general for nuclear cluster states.

  17. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action.

    PubMed

    Ariga, Katsuhiko; Li, Junbai; Fei, Jinbo; Ji, Qingmin; Hill, Jonathan P

    2016-02-01

    Objects in all dimensions are subject to translational dynamism and dynamic mutual interactions, and the ability to exert control over these events is one of the keys to the synthesis of functional materials. For the development of materials with truly dynamic functionalities, a paradigm shift from "nanotechnology" to "nanoarchitectonics" is proposed, with the aim of design and preparation of functional materials through dynamic harmonization of atomic-/molecular-level manipulation and control, chemical nanofabrication, self-organization, and field-controlled organization. Here, various examples of dynamic functional materials are presented from the atom/molecular-level to macroscopic dimensions. These systems, including atomic switches, molecular machines, molecular shuttles, motional crystals, metal-organic frameworks, layered assemblies, gels, supramolecular assemblies of biomaterials, DNA origami, hollow silica capsules, and mesoporous materials, are described according to their various dynamic functions, which include short-term plasticity, long-term potentiation, molecular manipulation, switchable catalysis, self-healing properties, supramolecular chirality, morphological control, drug storage and release, light-harvesting, mechanochemical transduction, molecular tuning molecular recognition, hand-operated nanotechnology. PMID:26436552

  18. Large nonadiabatic quantum molecular dynamics simulations on parallel computers

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Ohmura, Satoshi; Mou, Weiwei; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2013-01-01

    We have implemented a quantum molecular dynamics simulation incorporating nonadiabatic electronic transitions on massively parallel computers to study photoexcitation dynamics of electrons and ions. The nonadiabatic quantum molecular dynamics (NAQMD) simulation is based on Casida's linear response time-dependent density functional theory to describe electronic excited states and Tully's fewest-switches surface hopping approach to describe nonadiabatic electron-ion dynamics. To enable large NAQMD simulations, a series of techniques are employed for efficiently calculating long-range exact exchange correction and excited-state forces. The simulation program is parallelized using hybrid spatial and band decomposition, and is tested for various materials.

  19. Study of the dynamical potential barriers in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2013-10-01

    The nucleus-nucleus interaction potentials for the fusion reactions 16O + 208Pb, 64Ni + 64Ni, 58Ni + 58Ni and 16O + 154Sm are extracted from the improved isospin-dependent quantum molecular dynamics model. The shell correction effects are discussed. The negative shell correction energies lower potential barriers of a certain reaction. The incident energy dependence of the potential barrier is investigated for each system. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier is also discussed for the system 16O + 154Sm. The fusion cross sections that correspond to the equatorial orientation of 154Sm are very low in sub-barrier region because of the high fusion barriers and the shallow potential pockets.

  20. Dynamic magnetic resonance line shapes in a symmetric threefold potential

    NASA Astrophysics Data System (ADS)

    Zamir, S.; Poupko, R.; Luz, Z.; Alexander, S.

    1991-05-01

    A method for calculation of dynamic nuclear magnetic resonance (NMR) line shapes of molecules undergoing reorientation diffusion about a single rotation axis in a symmetric threefold potential is developed using the general theory of Freed. The method is used to calculate deuterium NMR spectra of molecules undergoing reorientational diffusion in a model potential of the form V(?)=-V0 cos 3?, as a function of the diffusion constant DR, and the potential strength V0. It is found that for V0 smaller than kT the resulting line shapes are very similar to those obtained in a potential-free diffusion. When V0>kT the uneven distribution of the molecules and the hindering effect of the potential barrier have significant effects on the line shape. In this region two distinct motional effects of the diffusion process are observed: (i) At low DR values molecular diffusion within the potential wells results in averaging of the local distribution and consequently to line narrowing. (ii) At sufficiently high DR values diffusion between the potential wells results in lifetime broadening effects similar to those observed in jump processes. Relations between the diffusion constants and the discrete jump rates are discussed.

  1. Multiscale molecular dynamics using the matched interface and boundary method

    SciTech Connect

    Geng Weihua; Wei, G.W.

    2011-01-20

    The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.

  2. Enhanced molecular dynamics for simulating porous interphase layers in batteries.

    SciTech Connect

    Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan

    2009-10-01

    Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.

  3. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over several simulation timesteps. One MD application described here highlights the utility of including long range contributions to Lennard-Jones potential in constant pressure simulations. Another application shows the time dependence of long range forces in a multiple time step MD simulation.

  4. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS

    SciTech Connect

    Swanson, Jessica

    2011-08-31

    This is the final progress report for Award DE-SC0004920, entitled 'Characterizing coupled charge transport with multi scale molecular dynamics'. The technical abstract will be provided in the uploaded report.

  5. Surface Diffusion of Single Polymer Chain Using Molecular Dynamics SIMULATION*

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel; Kumar, Sanat; Granick, Steve

    2004-05-01

    Results of recent experiments on polymer chains adsorbed from dilute solution at solid-liquid interface show the power scaling law dependence of the chain diffusivity, D, as a function of the degree of polymerization, N, D N^3/2. By contrast, DNA molecules bound to fluid cationic lipid bilayers follows Rouse dynamics with D N^1. We used molecular dynamics simulations to gain an understanding of these dissimilar scaling behaviors. Our model systems contain chains comprised of N monomers connected by anharmonic springs described by the finite extendible nonlinear elastic, FENE potential, embedded into a solvent of N=1 monomers. Two types of simulations we performed: (i) the chain is confined to two dimensions, (ii) the three dimensional chain in the solvent is confined between two solids plates. With randomly placed impenetrable obstacles on the surface, the diffusion of 2D chains exhibits, D N^3/2 behavior, when the chain radius of gyration, Rg, is larger than half the distance between obstacles, and D N^1 for shorter chains. In the presence of an athermal solvent, the scaling exponent is 0.75 due to hydrodynamic forces, for the two-dimensional system. We will also discuss the nature of dynamic adsorption transition and effects of hydrodynamics forces on chain diffusion for the three-dimensional simulations.

  6. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

    PubMed Central

    Johnston, Jennifer M.

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  7. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods.

    PubMed

    Johnston, Jennifer M; Filizola, Marta

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  8. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  9. Structure of Hexafluoroisopropanol-Water Mixtures by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Toshio; Imura, Shinya; Kai, Tadashi; Yoshida, Koji

    2013-02-01

    The structure of aqueous mixtures of 1,1,1,3,3,3-hexafluoro-propane-2-ol (HFIP) has been investigated at an alcohol mole fraction (xHFIP) of 0.1, 0.2, and 0.4 by molecular dynamics (MD) simulation. The simulated pair correlation functions were compared with those obtained by empirical potential structure refinement (EPSR) modelling combined with neutron diffraction with isotopic substitution experiment. It is demonstrated that microheterogeneities of HFIP and water clusters occur at xHFIP = 0.1 and 0.2 and that the tetrahedral-like structure of water is mostly disrupted at xHFIP = 0.4. The evolution of the microscopic structure of the water-water, alcohol-water, and alcohol-alcohol pairs with alcohol concentration is revealed in terms of pair correlation functions and discussed from the standpoint of hydrophilic and hydrophobic hydration.

  10. Erbium Implantation in Silica Studied by Molecular Dynamics Simulations

    SciTech Connect

    Du, Jincheng; Corrales, Louis R.

    2007-02-01

    Defect formation induced by erbium implantation in silica glass and cristobalite was studied using molecular dynamics simulations employing a partial charge model in combination with the ZBL potential. The results show that the number of displaced atoms generated at the same PKA energy is similar in silica and cristobalite but the number of coordination defects created is much lower in the cristobalite than in silica glass. In both cases, the erbium ion is able to create an optimal coordination environment at the end of the collision cascade. Subsequent thermal annealing causes the relaxation of the silicon oxygen network structure along with a reduction of silicon and oxygen defects. This research is supported by the Divisions of Materials Sciences and Engineering and Chemical Science, Office of Basic Energy Sciences, U.S. Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  11. Molecular dynamics simulations of the surface tension of ionic liquids

    NASA Astrophysics Data System (ADS)

    Gonzlez-Melchor, Minerva; Bresme, Fernando; Alejandre, Jos

    2005-03-01

    We report molecular dynamics computer simulations of the surface tension and interfacial thickness of ionic liquid-vapor interfaces modeled with a soft core primitive model potential. We find that the surface tension shows an anomalous oscillatory behavior with interfacial area. This observation is discussed in terms of finite size effects introduced by the periodic boundary conditions employed in computer simulations. Otherwise we show that the thickness of the liquid-vapor interface increases with surface area as predicted by the capillary wave theory. Data on the surface tension of size-asymmetric ionic liquids are reported and compared with experimental data of molten salts. Our data suggest that the surface tensions of size-asymmetric ionic liquids do not follow a corresponding states law.

  12. Predicting large area surface reconstructions using molecular dynamics methods

    NASA Astrophysics Data System (ADS)

    Grochola, Gregory; Snook, Ian K.; Russo, Salvy P.

    2014-02-01

    In this paper we discuss a new simulation method that can be used to predict preferred surface reconstructions of model systems by Molecular Dynamics (MD). The method overcomes the limitations imposed by periodic boundary conditions for finite boundary MD simulations which can normally prevent reconstructions. By simulating only the reconstructed surface layer and by removing the periodic boundary effects and the free energy barriers to reconstruction, the method allows surfaces to reconstruct to a preferred structure. We test the method on three types of surfaces: (i) the Au(100) and Pt(100) hexagonally reconstructed surface, (ii) the Au(111) herringbone surfaces, and (iii) the triangularly reconstructed Ag surface layer on a Pt(111) substrate and find the method readily finds lower surface energy reconstructions as preferred by the potential.

  13. Vectorization for Molecular Dynamics on Intel Xeon Phi Corpocessors

    NASA Astrophysics Data System (ADS)

    Yi, Hongsuk

    2014-03-01

    Many modern processors are capable of exploiting data-level parallelism through the use of single instruction multiple data (SIMD) execution. The new Intel Xeon Phi coprocessor supports 512 bit vector registers for the high performance computing. In this paper, we have developed a hierarchical parallelization scheme for accelerated molecular dynamics simulations with the Terfoff potentials for covalent bond solid crystals on Intel Xeon Phi coprocessor systems. The scheme exploits multi-level parallelism computing. We combine thread-level parallelism using a tightly coupled thread-level and task-level parallelism with 512-bit vector register. The simulation results show that the parallel performance of SIMD implementations on Xeon Phi is apparently superior to their x86 CPU architecture.

  14. Molecular Dynamics Simulation of MgSiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Lin-xiang, Zhou; L, Zhou X.; J, Hardy R.; Xin, Xu; X, Xu

    1998-06-01

    Using molecular dynamics to simulate MgSiO3 perovskite is performed to investigate its phase transitions and superionicity. These simulations has used parameter-free Gordon-Kim potentials and a novel technique to monitor the motion of ions which clearly demonstrates the sublattice melting of ions O2- and the rotations of SiO6 octahedra. MgSiO3 has to undergo a few of phase transitions, then enter into the cubic phase. In particular, there is a transitional phase between orthorhombic phase and cubic phase. There are a superionic phase and the cubic phase in magnesium-rich silicate perovskite. This superionic phase occurs after the onset of cubic phase before the melting point. The onset temparature Tc for superionicity is about 200-700 K below the melting point Tm, Tc / Tm similar 0.92.

  15. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    PubMed Central

    Mugnai, Mauro L.; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide. PMID:25573551

  16. Thermal conductivity of penta-graphene from molecular dynamics study.

    PubMed

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-10-21

    Using classical equilibrium molecular dynamics simulations and applying the original Tersoff interatomic potential, we study the thermal transport property of the latest two dimensional carbon allotrope, penta-graphene. It is predicted that its room-temperature thermal conductivity is about 167 W/mK, which is much lower than that of graphene. With normal mode decomposition, the accumulated thermal conductivity with respect to phonon frequency and mean free path is analyzed. It is found that the acoustic phonons make a contribution of about 90% to the thermal conductivity, and phonons with mean free paths larger than 100 nm make a contribution over 50%. We demonstrate that the remarkably lower thermal conductivity of penta-graphene compared with graphene results from the lower phonon group velocities and fewer collective phonon excitations. Our study highlights the importance of structure-property relationship and provides better understanding of thermal transport property and valuable insight into thermal management of penta-graphene. PMID:26493918

  17. Thermal conductivity of penta-graphene from molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-10-01

    Using classical equilibrium molecular dynamics simulations and applying the original Tersoff interatomic potential, we study the thermal transport property of the latest two dimensional carbon allotrope, penta-graphene. It is predicted that its room-temperature thermal conductivity is about 167 W/mK, which is much lower than that of graphene. With normal mode decomposition, the accumulated thermal conductivity with respect to phonon frequency and mean free path is analyzed. It is found that the acoustic phonons make a contribution of about 90% to the thermal conductivity, and phonons with mean free paths larger than 100 nm make a contribution over 50%. We demonstrate that the remarkably lower thermal conductivity of penta-graphene compared with graphene results from the lower phonon group velocities and fewer collective phonon excitations. Our study highlights the importance of structure-property relationship and provides better understanding of thermal transport property and valuable insight into thermal management of penta-graphene.

  18. Molecular Dynamics Simulations of Temperature Equilibration in Dense Hydrogen

    SciTech Connect

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M; Benedict, L; Hau-Riege, S; Langdon, A; London, R

    2008-02-14

    The temperature equilibration rate in dense hydrogen (for both T{sub i} > T{sub e} and T{sub i} < T{sub e}) has been calculated with large-scale molecular dynamics simulations for temperatures between 10 and 300 eV and densities between 10{sup 20}/cc to 10{sup 24}/cc. Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L {approx}> 1, Brown-Preston-Singleton [Brown et al., Phys. Rep. 410, 237 (2005)] with the sub-leading corrections and the fit of Gericke-Murillo-Schlanges [Gericke et al., PRE 65, 036418 (2003)] to the T-matrix evaluation of the collision operator, agrees with the MD data to within the error bars of the simulation. For more strongly-coupled plasmas where L {approx}< 1, our numerical results are consistent with the fit of Gericke-Murillo-Schlanges.

  19. Surface properties of water clusters: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zakharov Elena, Viktor V.; Brodskaya Aatto Laaksonen, N.

    1998-10-01

    Radial local densities, local energies per molecule, orientational distribution functions, normal component of the pressure tensor and other surface properties of water are calculated, based on molecular dynamics simulations of water clusters at 300K. Three different water models are evaluated: the rigid five-site ST2 and four-site TIP4P models; and the three-site SPC/E model, which is made flexible with respect to the angle bending. The size of the clusters is varied from 64 to 1000 water molecules. It is concluded that surface properties are highly sensitive to the choice of potential model. On the basis of the dependence of the work of cluster formation on the cluster size, the influence of the water model on the surface tension of the plane surface is discussed. None of the three models considered gives a proper value for the surface tension of water at room temperature.

  20. Molecular dynamics simulation of dislocations in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Fossati, Paul; Van Brutzel, Laurent; Devincre, Benot

    2013-11-01

    The plasticity of the fluorite structure in UO2 is investigated with molecular dynamics simulation and empirical potential. The stacking fault energies and the dislocation core structures with Burgers vector a2<110> are systematically calculated. All dislocation core structures show a significant increase of the oxygen sub-lattice disorder at temperatures higher than 1500 K. The threshold stress for dislocation glide is found to decrease with increasing temperature but its values is always very high, several GPa at 0 K and several hundred of MPa at 2000 K. A relation between the dislocation mobility dependence with temperature and the increase of the oxygen sub-lattice disorder in the dislocation cores is established.

  1. Effective interactions in molecular dynamics simulations of lysozyme solutions

    NASA Astrophysics Data System (ADS)

    Pellicane, Giuseppe; Sarkisov, Lev

    2014-09-01

    In this article we explore a problem of effective interactions between two rotationally restrained lysozyme molecules forming a crystal contact in aqueous solution. We perform non-equilibrium molecular dynamics simulations in order to estimate the interaction energy as a function of the distance between the two proteins obtained from direct application of the Jarzynski equality (JE), and compare it with that calculated by means of another non-equilibrium approach (Forward-Reverse method) and constrained force methods. The performance of the JE equality when applied to solvated protein interactions is discussed. All of the equilibrium and non-equilibrium methods show clear evidence that the potentials of mean force (PMF) are short-ranged, do not exceed few kTs, and that there is an accumulation of anions in the presence of hydrophobic surfaces.

  2. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  3. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  4. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.

    1994-12-01

    This report describes the use of shared memory emulation with DOLIB (Distributed Object Library) to simplify parallel programming on the Intel Paragon. A molecular dynamics application is used as an example to illustrate the use of the DOLIB shared memory library. SOTON-PAR, a parallel molecular dynamics code with explicit message-passing using a Lennard-Jones 6-12 potential, is rewritten using DOLIB primitives. The resulting code has no explicit message primitives and resembles a serial code. The new code can perform dynamic load balancing and achieves better performance than the original parallel code with explicit message-passing.

  5. Atomistic molecular dynamics simulations of shock compressed quartz.

    PubMed

    Farrow, M R; Probert, M I J

    2011-07-28

    Atomistic non-equilibrium molecular dynamics simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer, and van Santen [Phys. Rev. B 43, 5068 (1991)] to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geometry optimised system of a polar slab in a three-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under representative pressure conditions of the Earth core, but unsuitable for high-pressure shock wave simulations. We also find that the BKS potential incorrectly prefers the ?-quartz phase over the ?-quartz phase at zero-temperature, and that there is a ? ? ? phase-transition at 6 GPa. PMID:21806139

  6. Elucidation of molecular dynamics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  7. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  8. Attosecond molecular dynamics: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Lépine, Franck; Ivanov, Misha Y.; Vrakking, Marc J. J.

    2014-03-01

    The emerging application of attosecond techniques to molecular systems allows the role of electronic coherence in the control of chemical reactions to be investigated. Prompt ionization of molecules by an attosecond pulse may induce charge migration across a molecular structure on attosecond to few-femtosecond timescales, thereby possibly determining the subsequent relaxation pathways that a molecule may take. We discuss how proposals for this 'charge-directed reactivity' fit within the current understanding of quantum control and review the current state of the art of attosecond molecular science. Specifically, we review the role of electronic coherence and coupling of the electronic and nuclear degrees of freedom in high-harmonic spectroscopy and in the first attosecond pump-probe experiments on molecular systems.

  9. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  10. Are molecular markers useful predictors of adaptive potential?

    PubMed

    Mittell, Elizabeth A; Nakagawa, Shinichi; Hadfield, Jarrod D

    2015-08-01

    Estimates of molecular genetic variation are often used as a cheap and simple surrogate for a population's adaptive potential, yet empirical evidence suggests they are unlikely to be a valid proxy. However, this evidence is based on molecular genetic variation poorly predicting estimates of adaptive potential rather than how well it predicts true values. As a consequence, the relationship has been systematically underestimated and the precision with which it could be measured severely overstated. By collating a large database, and using suitable statistical methods, we obtain a 95% upper bound of 0.26 for the proportion of variance in quantitative genetic variation explained by molecular diversity. The relationship is probably too weak to be useful, but this conclusion must be taken as provisional: less noisy estimates of quantitative genetic variation are required. In contrast, and perhaps surprisingly, current sampling strategies appear sufficient for characterising a population's molecular genetic variation at comparable markers. PMID:25989024

  11. Molecular wave-packet dynamics on laser-controlled transition states

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Gärttner, Martin; Cörlin, Philipp; Sperl, Alexander; Schönwald, Michael; Mizuno, Tomoya; Sansone, Giuseppe; Senftleben, Arne; Ullrich, Joachim; Feuerstein, Bernold; Pfeifer, Thomas; Moshammer, Robert

    2016-01-01

    We present a kinematically complete and time-resolved study of the dissociation dynamics of H2+ using ultrashort extreme-ultraviolet and near-infrared laser pulses. The reaction kinematics can be controlled by varying the time delay between the two pulses. We demonstrate that a time-dependent laser-dressed potential-energy curve enables the control of the nuclear motion. The dynamics is well reproduced by intuitive semiclassical trajectories on a time-dependent potential curve. From this most fundamental scenario we gain insight in the underlying mechanisms which may be applied as design principles for molecular quantum control, particularly for ultrafast molecular reactions involving the motion of protons.

  12. Studying pressure denaturation of a protein by molecular dynamics simulations.

    PubMed

    Sarupria, Sapna; Ghosh, Tuhin; Garca, Angel E; Garde, Shekhar

    2010-05-15

    Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies. PMID:20146357

  13. EDITORIAL: 18th European Conference on Dynamics of Molecular Systems 18th European Conference on Dynamics of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    2011-08-01

    This special section of Comments on Atomic, Molecular and Optical Physics (CAMOP) in Physica Scripta collects some of the papers that have been presented at the 18th European Conference on Dynamics of Molecular Systems MOLEC 2010 held in September 2010 in Curia, Portugal, as part of a series of biennial MOLEC conferences. This started in 1976 in Trento, Italy, and has continued, visiting 17 cities in 11 countries, namely Denmark, The Netherlands, Israel, France, Italy, Germany, Czech Republic, Spain, United Kingdom, Turkey and Russia. Following the MOLEC tradition, the scientific programme of the Curia meeting focused on experimental and theoretical studies of molecular interactions, collision dynamics, spectroscopy, and related fields. It included invited speakers from 22 countries, who were asked to summarize the problems reported in their presentations with the objective of revealing the current thinking of leading researchers in atomic, molecular and optical physics. It is hoped that their authoritative contributions presented in this CAMOP special section will also appeal to non-specialists through their clear and broad introductions to the field as well as references to the accessible literature. This CAMOP special section comprises ten contributions, which cover theoretical studies on the electronic structure of molecules and clusters as well as dynamics of elastic, inelastic and reactive encounters between atoms, molecules, ions, clusters and surfaces. Specifically, it includes electronic structure calculations using the traditional coupled-cluster method (Barreto et al 028111), the electron-attached equation-of-motion coupled cluster method (Hansen et al 028110), the diffusion Monte Carlo method (Lpez-Durn et al 028107) and the path-integral Monte Carlo method (Barragn et al 028109). The contributions on molecular dynamics include on-the-fly quasi-classical trajectories on a five-atom molecule (Yu 028104), quantum reaction dynamics on triatomics (Bovino et al 028103, and Hankel et al 028102) and statistical reaction dynamics using a model based on the long-range interaction potential (McCarroll 028106). A contribution on gas-surface interactions is also included (Sahoo et al 028105) as well as first-principles ab initio calculations to explore the hydrogen-graphene interaction (Irving et al 028108). These articles reflect the recent progress made in this field and constructively build on work described in the previous three MOLEC special sections of CAMOP published in Physica Scripta. I thank, on behalf of the scientific organizing committee of MOLEC, all the authors who contributed and Physica Scripta for providing a platform for the publication of this special section dedicated to MOLEC 2010. A special thanks goes to the CAMOP Editor, Harold Linarz, for the excellent guidance in handling the editorial work. I hope that the articles catalyze the attention of the readers towards the topics covered and contribute in attracting them to attend MOLEC 2012 in Oxford, UK.

  14. A molecular dynamics study of a steric multipole model of liquid crystal molecular geometry

    NASA Astrophysics Data System (ADS)

    Neal, M. P.; Parker, A. J.; Care, C. M.

    We report results from a series of molecular dynamics simulations designed to study the phase behaviour of model rod-like liquid crystal molecules with different geometries interacting via the Gay-Berne potential. Following the classification of molecular geometry in terms of a multipole expansion in steric asymmetry, two models have been studied in detail: a zigzag model defined as a steric quadrupole and a triangle model defined as a longitudinal steric dipole, and comparison has been made with a cylindrical model. Results from the NVE ensemble indicate that the model steric quadrupole delays the temperature of onset of the nematic phase. Extensive simulations in the NPT ensemble demonstrate a similar trend in the temperature of onset of the smectic B phase, with a lower temperature of onset observed with the steric quadrupole than the steric dipole. Local antiparallel steric ordering within a layer was observed with the model steric dipole in the crystal B phase but not with the model steric quadrupole. This structure is in agreement with experimental results and with the prediction of the generalized molecular asymmetry model. The steric quadrupole demonstrated a rippled structure through the smectic B phase, increasing in amplitude and wavelength sufficiently to tilt molecules along a wave with respect to the system director as the system was cooled. This structure was almost absent in the final crystal structure simulated. The ensemble also allowed comparison with experiment and agreement, scaled with respect to the single-site Gay-Berne mesogen, was found to be good.

  15. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  16. The Art of Molecular Dynamics Simulation (by D. C. Rapaport)

    NASA Astrophysics Data System (ADS)

    Molner, Stephen P.

    1999-02-01

    Cambridge University Press: New York, 1996. 400 pp. ISBN 0 521 44561 2. $74.95. This book describes the extremely powerful techniques of molecular dynamics simulation. The techniques involve solving the classical many-body problems in contexts relevant to the study of matter at the atomic level. The method allows the prediction of static and dynamics properties of substances directly from the underlying interactions between molecules. This is, of course, a very broad subject and the author has adopted a dual approach in that the text is partly tutorial and also contains a large number of computer programs for practical use. Rapaport has adopted the attitude of trying the simplest method first. Atoms are modeled as point particles interacting through point potentials. Molecules are represented by atoms with orientation dependent forces, or as extended structures each containing several interaction sites. The molecules may be rigid, flexible, or somewhere in between, and if there are internal degrees of freedom there will be internal forces as well. The intent of the book is not to discuss the design of molecular models, but rather to make use of existing models, and from a pedagogical viewpoint the simpler the model the better. The aim of the book is to demonstrate the general methodology of molecular dynamics simulation by example, not to review the large body of literature covering the many different kinds of models developed for specific applications. The text is partly tutorial, but also contains a large number of computer programs for practical use. This volume will serve as an introduction to the subject for beginners and as a reference manual for the more experienced practitioner. The material covers a wide range of practical methods and real applications and is organized as a series of case studies. The typical case study includes a summary of the theoretical background used for the formulation of the computational approach. That is described by either a complete program listing or a series of modifications or additions to a program from an earlier case study. The initial conditions of the model, organization of the input and output, accuracy, convergence, and efficiency are also addressed for each case and, of course, the results of the computation are given and discussed. The book begins with the simplest case of basic molecular dynamics, a sift-disk fluid. The development is discussed in considerable depth to set the tone of the work. Later chapters extend the basic model in various directions, deal with various types of measurements, improve the computational methods, and introduce new models for more complex problems. These chapters also discuss the methodology for simulating monatomic systems and focus on measuring the thermodynamic and structural properties of systems in equilibrium. Consideration is given to the dynamical properties of equilibrium systems, including transport coefficients and the correlation functions that characterize space- and time-dependent properties. Chapters are devoted to the study of systems under constant temperature and pressure and the dynamics of rigid systems. It is difficult to cover all aspects of such a broad topic as the subject of this book; and the author has not attempted an exhaustive or encyclopedic coverage, but has produced an excellent introduction to the subject. The publisher has made the implementation of the numerous programs essentially painless by making them available via browser and the World Wide Web. The easy availability of the software, written in C, was welcomed by this old Fortran programmer. It is to be hoped that this service is representative of a trend in technical publishing. Overall this work is a pleasure to read and study and would be a valuable addition to the library of both the beginner and the experienced practitioner of the art.

  17. Ultrafast dynamics in the power stroke of a molecular rotary motor

    NASA Astrophysics Data System (ADS)

    Conyard, Jamie; Addison, Kiri; Heisler, Ismael A.; Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.

    2012-07-01

    Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step, which provides power to the motor. Ultimately, controlling the efficiency of molecular motors requires a detailed picture of the molecular dynamics on the excited-state potential energy surface. Here, we characterize the primary events that follow photon absorption by a unidirectional molecular motor using ultrafast fluorescence up-conversion measurements with sub 50 fs time resolution. We observe an extraordinarily fast initial relaxation out of the Franck-Condon region that suggests a barrierless reaction coordinate. This fast molecular motion is shown to be accompanied by the excitation of coherent excited-state structural motion. The implications of these observations for manipulating motor efficiency are discussed.

  18. Molecular and chemical engineering of bacteriophages for potential medical applications.

    PubMed

    Hodyra, Katarzyna; D?browska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology. PMID:25048831

  19. Molecular Dynamics Simulation for the Dynamics and Kinetics of Folding Peptides in the Gas Phase.

    PubMed

    Litinas, Iraklis; Koutselos, Andreas D

    2015-12-31

    The conformations of flexible molecular species, such as oligomers and oligopeptides, and their interconversion in the gas phase have been probed by ion mobility spectrometry measurements. The ion motion is interpreted through the calculation of effective cross sections in the case of stable conformations of the macromolecules. However, when the molecular structures transform to each other as the ions collide with gas atoms during their flight through the drift tube, the introduction of an average cross section is required. To provide a direct way for the reproduction of the ion motion, we employ a nonequilibrium molecular dynamics simulation method and consider a molecular model that consists of two connected stiff cylindrical bodies interacting through an intramolecular model potential. With this procedure we have calculated the ion mobility as a function of temperature for a prototype peptide that converts between a helical and an extended globular form. The results are in good agreement with ion mobility spectrometry data confirming that an angular vibration coordinate can be used for the interpretation of the shifting of the drift-time distributions at high temperatures. The approach produces mean kinetic energies as well as various combined distributions of the ion degrees of freedom. It is easily applied to flexible macromolecular ions and can be extended to include additional degrees of freedom. PMID:26641107

  20. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  1. Reactive Molecular Dynamics Simulations at the Petascale (Invited)

    NASA Astrophysics Data System (ADS)

    Nakano, A.

    2013-12-01

    We are developing a divide-conquer-recombine algorithmic framework into a metascalable (or 'design once, scale on new architectures') parallelization scheme to perform large spatiotemporal-scale reactive molecular dynamics simulations. The scheme has achieved parallel efficiency well over 0.9 on 786,432 IBM BlueGene/Q processors for 8.5 trillion-atom molecular dynamics and 1.9 trillion electronic degrees-of-freedom quantum molecular dynamics in the framework of density functional theory. Simulation results reveal intricate interplay between photoexcitation, mechanics, flow, and chemical reactions at the nanoscale. Specifically, we will discuss atomistic mechanisms of: (1) rapid hydrogen production from water using metallic alloy nanoparticles; (2) molecular control of charge transfer, charge recombination, and singlet fission for efficient solar cells; and (3) mechanically enhanced reaction kinetics in nanobubbles and nanojets.

  2. Finding Conformational Transition Pathways from Discrete Molecular Dynamics Simulations.

    PubMed

    Sfriso, Pedro; Emperador, Agusti; Orellana, Laura; Hospital, Adam; Gelp, Josep Lluis; Orozco, Modesto

    2012-11-13

    We present a new method for estimating pathways for conformational transitions in macromolecules from the use of discrete molecular dynamics and biasing techniques based on a combination of essential dynamics and Maxwell-Demon sampling techniques. The method can work with high efficiency at different levels of resolution, including the atomistic one, and can help to define initial pathways for further exploration by means of more accurate atomistic molecular dynamics simulations. The method is implemented in a freely available Web-based application accessible at http://mmb.irbbarcelona.org/MDdMD . PMID:26605625

  3. Interfacial Molecular Searching Using Forager Dynamics

    NASA Astrophysics Data System (ADS)

    Monserud, Jon H.; Schwartz, Daniel K.

    2016-03-01

    Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ˜10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.

  4. Phonon properties of graphene derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Koukaras, Emmanuel N.; Kalosakas, George; Galiotis, Costas; Papagelis, Konstantinos

    2015-08-01

    A method that utilises atomic trajectories and velocities from molecular dynamics simulations has been suitably adapted and employed for the implicit calculation of the phonon dispersion curves of graphene. Classical potentials widely used in the literature were employed. Their performance was assessed for each individual phonon branch and the overall phonon dispersion, using available inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, accounts for anharmonic effects and non-bonding interactions with a general environment, and it is applicable under finite temperatures. The temperature dependence of the phonon dispersion curves has been examined with emphasis on the doubly degenerate Raman active ?-E2g phonon at the zone centre, where experimental results are available. The potentials used show diverse behaviour. The Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, and gives a first-order temperature coefficient of ??=?-0.05?cm-1/K for the ?-E2g shift in agreement with reported experimental values.

  5. Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations

    PubMed Central

    Khalili-Araghi, Fatemeh; Ziervogel, Brigitte; Gumbart, James C.

    2013-01-01

    A computational method is developed to allow molecular dynamics simulations of biomembrane systems under realistic ionic gradients and asymmetric salt concentrations while maintaining the conventional periodic boundary conditions required to minimize finite-size effects in an all-atom explicit solvent representation. The method, which consists of introducing a nonperiodic energy step acting on the ionic species at the edge of the simulation cell, is first tested with illustrative applications to a simple membrane slab model and a phospholipid membrane bilayer. The nonperiodic energy-step method is then used to calculate the reversal potential of the bacterial porin OmpF, a large cation-specific ?-barrel channel, by simulating the I-V curve under an asymmetric 10:1 KCl concentration gradient. The calculated reversal potential of 28.6 mV is found to be in excellent agreement with the values of 2627 mV measured from lipid bilayer experiments, thereby demonstrating that the method allows realistic simulations of nonequilibrium membrane transport with quantitative accuracy. As a final example, the pore domain of Kv1.2, a highly selective voltage-activated K+ channel, is simulated in a lipid bilayer under conditions that recreate, for the first time, the physiological K+ and Na+ concentration gradients and the electrostatic potential difference of living cells. PMID:24081985

  6. Computations of Standard Binding Free Energies with Molecular Dynamics Simulations

    PubMed Central

    Deng, Yuqing; Roux, Benot

    2013-01-01

    An increasing number of studies have reported computations of the absolute binding free energy of small ligands to proteins using molecular dynamics (MD) simulations with results that are in good agreement with experiments. This encouraging progress suggests that physics-based approaches hold the promise of making important contributions to the process of drug discovery and optimization in the near future. Two types of approaches are principally used to compute binding free energies with MD simulations. The most widely known are based on alchemical free energy methods, in which the interaction of the ligand with its surrounding are progressively switched off. An alternative method is to use a potential of mean force (PMF), in which the ligand is physically separated from the protein receptor. For both of these computational approaches, restraining potentials affecting the translational, rotational and conformational freedom of the ligand and protein may be activated and released during the simulations to aid convergence and improve the sampling. Such restraining potentials add bias to the simulations, but their effects can be rigorously removed to yield a binding free energy that is properly unbiased with respect to the standard state. A review of recent results is presented. Examples of computations with T4-lysozyme mutants, FKBP12, SH2 domain, and cytochrome P450 are discussed and compared. Differences in computational methods are discussed and remaining difficulties and challenges are highlighted. PMID:19146384

  7. Phonon properties of graphene derived from molecular dynamics simulations

    PubMed Central

    Koukaras, Emmanuel N.; Kalosakas, George; Galiotis, Costas; Papagelis, Konstantinos

    2015-01-01

    A method that utilises atomic trajectories and velocities from molecular dynamics simulations has been suitably adapted and employed for the implicit calculation of the phonon dispersion curves of graphene. Classical potentials widely used in the literature were employed. Their performance was assessed for each individual phonon branch and the overall phonon dispersion, using available inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, accounts for anharmonic effects and non-bonding interactions with a general environment, and it is applicable under finite temperatures. The temperature dependence of the phonon dispersion curves has been examined with emphasis on the doubly degenerate Raman active Γ-E2g phonon at the zone centre, where experimental results are available. The potentials used show diverse behaviour. The Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, and gives a first-order temperature coefficient of χ = −0.05 cm−1/K for the Γ-E2g shift in agreement with reported experimental values. PMID:26316252

  8. Molecular Dynamics Study of Thermal Properties of Intermetallic Alloys

    NASA Astrophysics Data System (ADS)

    Kart, H. H.; Tomak, Mehmet; a?in, Tahr

    2006-07-01

    Molecular dynamics simulations of bulk copper, gold pure metals and their ordered intermetallics alloys of Cu3Au(L12) and CuAu3(L12) have been carried out between above 0 K and below the their melting points of the materials for predicting their temperature-dependent thermophysical properties. The effects of temperature and concentration on the physical properties such as enthalpy, volume, heat capacity, thermal expansion and density of CuxAu1-x are studied. Especially, temperature-dependent polynomial functions of enthalpy, volume and density are obtained. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used in the constant enthalpy-constant pressure ensemble (HPN) and constant pressure-constant temperature ensemble (TPN). Three important properties such as the coefficient of thermal volume expansion, heat capcity and density are correctly found to increase with temperature. Q-SC potential parameter results are usually closer to experimental values than the ones predicted from SC potential parameters.

  9. Molecular dynamics study of the mechanical loss in amorphous pure and doped silica

    SciTech Connect

    Hamdan, Rashid; Trinastic, Jonathan P.; Cheng, H. P.

    2014-08-07

    Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions.

  10. Molecular dynamics study of the mechanical loss in amorphous pure and doped silica.

    PubMed

    Hamdan, Rashid; Trinastic, Jonathan P; Cheng, H P

    2014-08-01

    Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions. PMID:25106591

  11. Dynamics of molecular superrotors in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  12. Comparing Molecular Dynamics Models for Electrolyte Solutions in Nanochannels

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan; Templeton, Jeremy

    2012-11-01

    In electrolyte modelling, it is common to simplify the solvent using the three-component model (3CM), i.e. a single-site, chargeless Lennard-Jones atom as the solvent component. To account for the dielectric nature of typical solvents, a relative permittivity value is applied to all Coulombic interactions, thus weakening ion-ion interactions as if each ion is surrounded by a solvation shell. Fluid Density Functional Theory, Monte Carlo simulation, and molecular dynamics (MD) simulation all commonly employ the 3CM to facilitate calculations, but the consequences are not well characterized. We used MD to compare the 3CM electrolyte to a molecular solvent model (MSM) where the solvent is a three-site H2O) molecule. Special care was taken to compare cases with the same thermodynamic state by having a quantifiable reference state, and cases covered a range of applied surface charge in a nanochannel configuration. At a glance, the two models give qualitatively similar density profiles. However, we find that many profile features, physical quantities such as electric field and potential, as well as ionic packing structure near the surface evolve quite differently as the load is varied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the USDoE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Molecular dynamics of the water liquid-vapor interface.

    PubMed

    Wilson, M A; Pohorille, A; Pratt, L R

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K. PMID:11539733

  14. Unfixed cryosections of striated muscle to study dynamic molecular events.

    PubMed Central

    Ménétret, J F; Craig, R

    1994-01-01

    The structures of the actin and myosin filaments of striated muscle have been studied extensively in the past by sectioning of fixed specimens. However, chemical fixation alters molecular details and prevents biochemically induced structural changes. To overcome these problems, we investigate here the potential of cryosectioning unfixed muscle. In cryosections of relaxed, unfixed specimens, individual myosin filaments displayed the characteristic helical organization of detached cross-bridges, but the filament lattice had disintegrated. To preserve both the filament lattice and the molecular structure of the filaments, we decided to section unfixed rigor muscle, stabilized by actomyosin cross-bridges. The best sections showed periodic, angled cross-bridges attached to actin and their Fourier transforms displayed layer lines similar to those in x-ray diffraction patterns of rigor muscle. To preserve relaxed filaments in their original lattice, unfixed sections of rigor muscle were picked up on a grid and relaxed before negative staining. The myosin and actin filaments showed the characteristic helical arrangements of detached cross-bridges and actin subunits, and Fourier transforms were similar to x-ray patterns of relaxed muscle. We conclude that the rigor structure of muscle and the ability of the filament lattice to undergo the rigor-relaxed transformation can be preserved in unfixed cryosections. In the future, it should be possible to carry out dynamic studies of active sacromeres by cryo-electron microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:7819493

  15. Characterizing hydrophobicity at the nanoscale: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Dibyendu; Choudhury, Niharendu

    2012-06-01

    We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water.

  16. Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.

    PubMed

    Bandyopadhyay, Dibyendu; Choudhury, Niharendu

    2012-06-14

    We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water. PMID:22713055

  17. Exploring Multiple Binding Modes Using Confined Replica Exchange Molecular Dynamics.

    PubMed

    Anselmi, Massimiliano; Pisabarro, M Teresa

    2015-08-11

    Molecular docking is extensively applied to determine the position of a ligand on its receptor despite the rather poor correspondence between docking scores and experimental binding affinities found in several studies, especially for systems structurally unrelated with those used in the scoring functions' training sets. Here, we present a method for the prediction of binding modes and binding free energies, which uses replica exchange molecular dynamics in combination with a receptor-shaped piecewise potential, confining the ligand in the proximity of the receptor surface and limiting the accessible conformational space of interest. We assess our methodology with a set of protein receptor-ligand test cases. In every case studied, the method is able to locate the ligand on the experimentally known receptor binding site, and it gives as output the binding free energy. The added value of our approach with respect to other available methods is that it quickly performs a conformational space search, providing a set of bound (or unbound) configurations, which can be used to determine phenomenological structural and energetic properties of an experimental binding state as a result of contributions provided by diversified multiple binding poses. PMID:26574471

  18. Molecular dynamics simulation of pervaporation in zeolite membranes

    NASA Astrophysics Data System (ADS)

    Jia, W.; Murad, S.

    The pervaporation separation of liquid mixtures of water/ethanol and water/methanol using three zeolite (Silicalite, NaA and Chabazite) membranes has been examined using the method of molecular dynamics. The main goal of this study was to identify intermolecular interactions between water, methanol, ethanol and the membrane surface that play a critical role in the separations. This would then allow better membranes to be designed more efficiently and systematically than the trial-and-error procedures often being used. Our simulations correctly exhibited all the qualitative experimental observations for these systems, including the hydrophobic or hydrophilic behaviour of zeolite membranes. The simulations showed that, for Silicalite zeolite, the separation is strongly influenced by the selective adsorption of ethanol. The separation factor, as a consequence, increases almost exponentially as the ethanol composition decreases. For ethanol dehydration in NaA and Chabazite, pore size was found to play a very important role in the separation; very high separation factors were therefore possible. Simulations were also used to investigate the effect of pore structure, feed compositions and operating conditions on the pervaporation efficiency. Finally, our simulations also demonstrated that molecular simulations could serve as a useful screening tool to determine the suitability of a membrane for potential pervaporation separation applications. Simulations can cost only a small fraction of an experiment, and can therefore be used to design experiments most likely to be successful.

  19. Ab Initio Interactive Molecular Dynamics on Graphical Processing Units (GPUs).

    PubMed

    Luehr, Nathan; Jin, Alex G B; Martnez, Todd J

    2015-10-13

    A virtual molecular modeling kit is developed based on GPU-enabled interactive ab initio molecular dynamics (MD). The code uses the TeraChem and VMD programs with a modified IMD interface. Optimization of the GPU accelerated TeraChem program specifically for small molecular systems is discussed, and a robust multiple time step integrator is employed to accurately integrate strong user-supplied pulling forces. Smooth and responsive visualization techniques are developed to allow interactive manipulation at minimum simulation rates below five MD steps per second. Representative calculations at the Hartree-Fock level of theory are demonstrated for molecular systems containing up to a few dozen atoms. PMID:26574246

  20. Coupled thermal and electromagnetic induced decomposition in the molecular explosive ?HMX; a reactive molecular dynamics study.

    PubMed

    Wood, Mitchell A; van Duin, Adri C T; Strachan, Alejandro

    2014-02-01

    We use molecular dynamics simulations with the reactive potential ReaxFF to investigate the initial reactions and subsequent decomposition in the high-energy-density material ?-HMX excited thermally and via electric fields at various frequencies. We focus on the role of insult type and strength on the energy increase for initial decomposition and onset of exothermic chemistry. We find both of these energies increase with the increasing rate of energy input and plateau as the processes become athermal for high loading rates. We also find that the energy increase required for exothermic reactions and, to a lesser extent, that for initial chemical reactions depend on the insult type. Decomposition can be induced with relatively weak insults if the appropriate modes are targeted but increasing anharmonicities during heating lead to fast energy transfer and equilibration between modes that limit the effect of loading type. PMID:24400687

  1. GROMACS: A message-passing parallel molecular dynamics implementation

    NASA Astrophysics Data System (ADS)

    Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R.

    1995-09-01

    A parallel message-passing implementation of a molecular dynamics (MD) program that is useful for bio(macro)molecules in aqueous environment is described. The software has been developed for a custom-designed 32-processor ring GROMACS (GROningen MAchine for Chemical Simulation) with communication to and from left and right neighbours, but can run on any parallel system onto which a a ring of processors can be mapped and which supports PVM-like block send and receive calls. The GROMACS software consists of a preprocessor, a parallel MD and energy minimization program that can use an arbitrary number of processors (including one), an optional monitor, and several analysis tools. The programs are written in ANSI C and available by ftp (information: gromacs@chem.rug.nl). The functionality is based on the GROMOS (GROningen MOlecular Simulation) package (van Gunsteren and Berendsen, 1987; BIOMOS B.V., Nijenborgh 4, 9747 AG Groningen). Conversion programs between GROMOS and GROMACS formats are included. The MD program can handle rectangular periodic boundary conditions with temperature and pressure scaling. The interactions that can be handled without modification are variable non-bonded pair interactions with Coulomb and Lennard-Jones or Buckingham potentials, using a twin-range cut-off based on charge groups, and fixed bonded interactions of either harmonic or constraint type for bonds and bond angles and either periodic or cosine power series interactions for dihedral angles. Special forces can be added to groups of particles (for non-equilibrium dynamics or for position restraining) or between particles (for distance restraints). The parallelism is based on particle decomposition. Interprocessor communication is largely limited to position and force distribution over the ring once per time step.

  2. The Study on the Gas Permeabilities of the ETHYLENE/1-HEXENE Copolymer by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Sizhu; Yi, Jun; Zhang, Lishu; Zhang, Liqun; Mark, James E.

    In this research, molecular dynamics(MD) simulations were used to study the transport properties of small gas molecules in poly(ethylene-co-1-hexene) copolymer. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) forcefield was applied. The diffusion coefficients were obtained from MD (NVT ensemble). The results indicated that the diffusion coefficient of oxygen increased with increasing 1-hexene content in copolymer membrane.

  3. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    SciTech Connect

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  4. Vehicle bridge interaction dynamics and potential applications

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Lin, C. W.

    2005-06-01

    The dynamic interaction between a moving vehicle and the sustaining bridge is studied. By the method of modal superposition, closed-form solutions are obtained for the vertical responses of both the bridge and moving vehicle, assuming the vehicle/bridge mass ratio to be small. For both the bridge and vehicle responses, it is confirmed that rather accurate solutions can be obtained by considering only the first mode. The displacement, velocity, and acceleration of the bridge are governed at different extents by two sets of frequencies, i.e., the driving frequency of the vehicle and natural frequencies of the bridge. From the spectrum for the bridge displacement, the vehicle speeds can be shown to be associated with some low-frequency pikes. On the other hand, the vehicle responses are governed by five distinct frequencies that appear as driving frequencies, vehicle frequency, and bridge frequencies with shift. From the vehicle's acceleration spectrum, the first bridge frequency (with shift) is shown to have rather high visibility and can be easily identified. The effects of damping of the vehicle and bridge are evaluated in the numerical studies. Potential applications of the present results, as well as further researches required, are also indicated in the paper.

  5. VUV studies of molecular photofragmentation dynamics

    SciTech Connect

    White, M.G.

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  6. Molecular classification of hepatocellular carcinoma: potential therapeutic implications

    PubMed Central

    Goossens, Nicolas; Sun, Xiaochen; Hoshida, Yujin

    2015-01-01

    Genomic profiling of hepatocellular carcinoma (HCC) tumors has elucidated recurrent molecular aberrations common or specific to disease etiology, patient race or geographic regions, allowing the classification of HCC tumors into subclasses sharing similar molecular and clinical characteristics. Previously reported transcriptome-based molecular subclasses have highlighted several common themes. Aggressive tumors are characterized by TP53 inactivation mutations and activation of pro-oncogenic signaling pathways, and further subclassified according to expression of stemness markers. The stemness marker-negative aggressive tumors display preferential TGF-? activation. Another group of less aggressive tumors contains a subclass characterized by CTNNB1 mutations accompanied with overexpression of liver-specific WNT targets such as GLUL. Molecular therapies selectively targeting features of the HCC subclasses have suggested their utility in enriching potential responders in clinical trials and guiding therapeutic decision-making for HCC patients. PMID:26617981

  7. Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber

    SciTech Connect

    Luchko, T.; Simmerling, C.; Gusarov, S.; Roe, D.R., Case, D.A.; Tuszynski, J.; Kovalenko, A.

    2010-02-01

    We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package and is illustrated here on alanine-dipeptide and protein-G.

  8. Mixtures of protic ionic liquids and molecular cosolvents: a molecular dynamics simulation.

    PubMed

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3](-) anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3](-) in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures. PMID:24908021

  9. Mixtures of protic ionic liquids and molecular cosolvents: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Docampo-Álvarez, Borja; Gómez-González, Víctor; Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R.; Cabeza, Óscar; Gallego, Luis J.; Varela, Luis M.

    2014-06-01

    In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3]- anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3]- in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.

  10. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH

    EPA Science Inventory

    Gordon Research Conference: Mammalian Gametogenesis and Embryogenesis
    New London, CT, July 1-6, 2000

    Molecular Analysis of Human Spermatozoa:
    Potential for Infertility Research

    David Miller 1, David Dix2, Robert Reid 3, Stephen A Krawetz 3
    1Reproductive ...

  11. The use of molecular dynamics for the thermodynamic properties of simple and transition metals

    SciTech Connect

    Straub, G.K.

    1987-04-01

    The technique of computer simulation of the molecular dynamics in metallic systems to calculate thermodynamic properties is discussed. The nature of a metal as determined by its electronic structure is used to determine the total adiabatic potential. The effective screened ion-ion interaction can then be used in a molecular dynamics simulation. The method for the construction of a molecular dynamics ensemble, its relation to the canonical ensemble, and the definition of thermodynamic functions from the Helmholtz free energy is given. The method for the analysis of the molecular dynamics results from quasiharmonic lattice dynamics and the decomposition in terms of harmonic and anharmonic contributions is given for solids. For fluid phase metals, procedures for calculating the thermodynamics and determining the constant of entropy are presented. The solid-fluid phase boundary as a function of pressure and temperature is determined using the results of molecular dynamics. Throughout, examples and results for metallic sodium are used. The treatment of the transition metal electronic d-states in terms of an effective pair-wise interaction is also discussed and the phonon dispersion curves of Al, Ni, and Cu are calculated.

  12. Self Diffusion in Nano Filled Polymer Melts: a Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Desai, Tapan; Keblinski, Pawel

    2003-03-01

    SELF DIFFUSION IN NANO FILLED POLYMER MELTS: A MOLECULAR DYNAMICS SIMULATION STUDY* T. G. Desai,P. Keblinski, Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY. Using molecular dynamics simulations, we studied the dynamics of the polymeric systems containing immobile and analytically smooth spherical nanoparticles. Each chain consisted of N monomers connected by an anharmonic springs described by the finite extendible nonlinear elastic, FENE potential. The system comprises of 3nanoparticles and the rest by freely rotating but not overlapping chains. The longest chain studied has a Radius of gyration equal to particle size radius and comparable to inter-particle distance. There is no effect on the structural characteristics such as Radius of gyration or end to end distance due to the nanoparticles. Diffusion of polymeric chains is not affected by the presence of either attractive or repulsive nanoparticles. In all cases Rouse dynamics is observed for short chains with a crossover to reptation dynamics for longer chains.

  13. Accelerated Molecular Dynamics and Protein Conformational Change: A Theoretical and Practical Guide Using a Membrane Embedded Model Neurotransmitter Transporter

    PubMed Central

    Gedeon, Patrick C.; Thomas, James R.; Madura, Jeffry D.

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis. PMID:25330967

  14. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture, at neutral condition, the exterior residues folding back into interior would necessarily lead to higher entropy and equivalently lower free energy and thereby is energetically favored. As one decreases the pH condition of PAMAM dendrimers, the constituent residues would carry positive charges. The resultant inter-residue Coulomb repulsion would naturally result in conformational evolution. We found from CVSANS analysis that when dendrimers are charged by different acids, this conformational evolution is not the same. For dendrimers charged by DCl, the mass is seen to relocate from molecular interior to periphery. Nevertheless, those acidified by D 2SO4 exhibit surprisingly minor structural change under variation of molecular charge. To explain the above observation, we performed MD simulations and calculated the excess free energy of Cl- and SO 42- counterions. The binding between sulfate ions and charged amines of PAMAM dendrimers are found to be much stronger than the case for chlorides. This more energetic binding would serve as better screening effect among charged residues. Consequently, electrostatic repulsion triggered outstretching tendency is effectively diminished. In order to make direct comparison between MD simulations and neutron scattering experiments, we proposed and implemented a rigorous method, which incorporates the contribution from those invasive water molecules, to calculate scattering functions of a single PAMAM dendrimer using equilibrium MD trajectories. The bridge between neutron scattering experiments and MD simulation is successfully established. Aside from structural comparisons between MD simulations and experiments, we utilized MD simulation to decipher the previously reported QENS experimental observation that the segmental dynamics of PAMAM dendrimer would enhance with increasing molecular charge. We pursued the mechanism from the perspective of hydrocarbon component of dendrimer and solvent (water) interaction as a form similar to hydrogen bonding. It is found that the population of this bonding would increase and the corresponding relaxation would slow down as molecular charge increases. We perceive that through more and longer interaction between penetrating water molecules and polymeric part of dendrimer, the dynamics of latter could be enhanced.

  15. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  16. A molecular dynamic study of water/methane/propane

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Guo, Yong; Yang, Ye; Kozielski, Karen

    2009-02-01

    We present a molecular dynamic simulation for water/methane/propane. The simulation is performed in a constant NPT ensemble at a temperature of 240 K and a pressure of 300 bar. The simulation is analysed to calculate the propensity for hydrogen bond formation, potential energy, number density profile and radial distribution function. Compared with the binary system (water/methane), relatively slight changes in hydrogen bond number and potential energy for the ternary system (water/methane/propane) indicate that the presence of propane retards the rate of hydrate growth. It is interesting to observe that propane, which is also of hydrophobic nature as methane, does not promote the formation of hydrate, but is rather driven out of the middle aqueous region. No hydrate formation was observed even after all of the propane had been driven out of the water film. We suggest that the size of water clusters and hydrogen bond network is likely to be disrupted by propane molecules, hindering the growth of the nuclei to the critical size required for sustained growth. The presence of the propane might also affect the net flux of methane into the aqueous phase, which is critical for hydrate formation.

  17. Molecular dynamics simulations of ionic concentration gradients across model bilayers

    NASA Astrophysics Data System (ADS)

    Sachs, Jonathan N.; Petrache, Horia I.; Zuckerman, Daniel M.; Woolf, Thomas B.

    2003-01-01

    To model a concentration gradient across a biomembrane, we have performed all-atom molecular dynamics simulations of NaCl solutions separated by two oppositely charged plates. We have employed the recently formulated three-dimensional Ewald summation with correction (EW3DC) technique for calculations of long-range electrostatics in two-dimensionally periodic systems, allowing for different salt concentrations on the two sides of the plates. Six simulations were run, varying the salt concentrations and plate surface charge density in a biologically relevant range. The simulations reveal well-defined, atomic-level asymmetries between the two sides: distinct translational and rotational orderings of water molecules; differing ion residency times; a clear wetting layer adjacent only to the negative plate; and marked differences in charge density/potential profiles which reflect the microscopic behavior. These phenomena, which may play important roles in membrane and ion channel physiology, result primarily from the electrostatics and asymmetry of water molecules, and not from the salt ions. In order to establish that EW3DC can accurately capture fundamental electrostatic interactions important to asymmetric biomembrane systems, the CHARMM force-field (with the corrected Ewald sum) has been used. Comparison of the results with previously published simulations of electrolyte near charged surfaces, which employed different force-fields, shows the robustness of the CHARMM potential and gives confidence in future all-atom bilayer simulations using EW3DC and CHARMM.

  18. Molecular dynamics simulations of simple monatomic amorphous nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Odagaki, T.

    2008-03-01

    Monatomic amorphous nanoparticles were studied in a spherical model containing different numbers of atoms ranging from 1189 to 9093 by using molecular dynamics method under nonperiodic boundary conditions. We use the double-well interaction pair potential developed by Engel and Trebin, and amorphous nanoparticles were obtained by cooling from the melts. The structural properties of nanoparticles were studied via radial distribution function, mean atomic distances, coordination number, and bond-angle distributions. In addition, we also analyzed local order in nanoparticles by using the technique proposed by Honeycutt and Andersen, and we found the existence of icosahedral order in the system. We found strong size effects on the static properties of nanoparticles. Aging effects on the structure of nanoparticles were also observed and discussed. The radial atomic density profile of nanoparticles was found and discussed. On the other hand, the surface and core structures of nanoparticles were studied in detail. Moreover, we found the size dependence of several quantities such as the glass transition temperature (Tg) , the potential energy, and surface energies of nanoparticles. The mean-squared displacement of atoms was discussed.

  19. Molecular Dynamics Study of the Photodesorption of CO Ice.

    PubMed

    van Hemert, Marc C; Takahashi, Junko; van Dishoeck, Ewine F

    2015-06-18

    Photodesorption of CO ice is suggested to be the main process that maintains a measurable amount of gaseous CO in cold interstellar clouds. A classical molecular dynamics simulation is used to gain insight into the underlying mechanism. Site-site pair potentials were developed on the basis of ab initio calculations for the ground and excited nonrigid CO dimer. Both amorphous and crystalline CO clusters were created and characterized by their densities, expansion coefficients, binding energies, specific heats, and radial distribution functions. Selected CO molecules were electronically excited with 8.7-9.5 eV photons. CO returns to the ground state after a finite lifetime on the excited potential surface. Two desorption mechanisms are found: (1) direct desorption where excited CO itself is released from the cluster after landing on the ground state in an unfavorable orientation; (2) "kick-out" desorption where excited CO kicks out a neighboring CO molecule. These findings are in accord with laboratory experiments. Little dependence on size of the cluster, excitation energy and temperature in the 6-18 K range was found. The predicted photodesorption probability is 4.0 10(-3) molecules photon(-1), smaller by a factor of 3-11 than that given by experiments. PMID:26010083

  20. Combining Molecular Dynamics and Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios

    2015-03-01

    The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction. In collaboration with: G. Kolesov, D. Vinichenko, G. Tritsaris, C.M. Friend, Departments of Physics and of Chemistry and Chemical Biology.

  1. Structure and Dynamics of Magnetized Dark Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Li, P. S.; McKee, C. F.; Klein, R. I.

    2015-03-01

    Massive infrared dark clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The supersonic, turbulent nature of molecular clouds in the presence of magnetic fields poses a great challenge in understanding the structure and dynamics of magnetized molecular clouds and the star formation therein. Using the high-order radiation-magneto-hydrodynamic adaptive mesh refinement (AMR) code ORION2 (Li et al. 2012), we perform a large-scale driven-turbulence simulation to reveal the 3D filamentary structure and dynamical state of a highly supersonic (thermal Mach number = 10) and strongly magnetized (plasma ?=0.02) massive infrared dark molecular cloud. With the high resolution afforded by AMR, we follow the dynamical evolution of the cloud in order to understand the roles of strong magnetic fields, turbulence, and self-gravity in shaping the cloud and in the formation of dense cores.

  2. Molecular dynamics insights into human aquaporin 2 water channel.

    PubMed

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney. PMID:26489820

  3. Molecular dynamics study of atomic displacements in disordered solid alloys

    NASA Astrophysics Data System (ADS)

    Puzyrev, Yevgeniy S.

    The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.

  4. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2 generated in mats could have represented a very important new source of electrons and energy - but one that could not be harnessed without substantial adaptation to the highly variable chemistry of the mat surface. In addition, the emergent chemistry of anaerobic communities is often highly dependent on ambient hydrogen concentrations, so that incorporation of these communities into photosynthetic mats could have significantly affected the composition and flux of reduced "biosignature' gases to the environment.

  5. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J.

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2 <111 > {110 } edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  6. Relaxation dynamics in glass forming liquids with related molecular structures

    NASA Astrophysics Data System (ADS)

    Chen, Zeming; Bi, Dongyang; Liu, Riping; Tian, Yongjun; Wang, Li-Min; Ngai, Kia L.

    2012-11-01

    The relaxation dynamics of a series of molecular liquids with modified structures from aldehyde with a fixed number of carbon atoms is studied. Structural modification is made by introducing oxygen into the main chain, or by incorporating end group moieties such as ethyl, acrylate, methacrylate and dihydroxyl. Broadband dielectric measurements were performed on the glass-formers. The experimental results emphasize the importance of intermolecular interactions and molecular rigidity in determining the kinetic fragility and non-exponential parameters of the structural ?-relaxation.

  7. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, LiYa; Wang, FengChao; Yang, FuQian; Wu, HengAn

    2014-11-01

    A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

  8. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT

    PubMed Central

    Kirmizialtin, Serdal; Hennelly, Scott P.; Schug, Alexander; Onuchic, Jose N.; Sanbonmatsu, Karissa Y.

    2016-01-01

    Integration and calibration of molecular dynamics simulations with experimental data remains a challenging endeavor. We have developed a novel method to integrate chemical probing experiments with molecular simulations of RNA molecules by using a native structure-based model. Selective 2’-hydroxyl acylation by primer extension (SHAPE) characterizes the mobility of each residue in the RNA. Our method, SHAPE-FIT, automatically optimizes the potential parameters of the forcefield according to measured reactivities from SHAPE. The optimized parameter set allows simulations of dynamics highly consistent with SHAPE probing experiments. Such atomistic simulations, thoroughly grounded in experiment, can open a new window on RNA structure-function relations. PMID:25726467

  9. Mitochondrial dynamics: molecular mechanisms and the role in the heart.

    PubMed

    Jazbutyte, V

    2010-04-01

    Mitochondria are dynamic organelles which actively move along the cytoskeleton within the cell, change their shape and undergo fusion and fission. The heart is a metabolically active organ with high energy demands and rich in mitochondria. Mitochondria not only supply the heart with the high energy compound, adenosine triphosphate (ATP), but also actively participate in cell signaling and apoptotic events and communicate with the cytosol. Recent advantages in molecular biology and imaging techniques helped to study mitochondrial dynamics directly in the cell and under real time conditions. In this review, I will briefly summarize current knowledge about molecular machinery mediating mitochondrial fusion/ fission, its link to apoptosis and cardiovascular disease. PMID:20440252

  10. Ab initio molecular dynamics study of topological defects in polymers

    NASA Astrophysics Data System (ADS)

    Klein, Michael L.; Saitta, Antonino Marco

    2001-03-01

    The behavior of topological defects in polyethylene such as entanglements and knots has been studied by means of first-principles molecular dynamics. Previous results within the single-chain approximation have been extended to computationally demanding bulk-like environments, where chain rupture phenomena prove to be essentially intra-chain processes. Further simulations performed with classical molecular dynamics show that the stress field is very long-ranged in the axial direction of the polymer crystal, and that it profoundly affects the topology and the geometry of the first two shells of neighboring chains.

  11. Replica exchange molecular dynamics simulations of amyloid peptide aggregation

    NASA Astrophysics Data System (ADS)

    Cecchini, M.; Rao, F.; Seeber, M.; Caflisch, A.

    2004-12-01

    The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the ?-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides.

  12. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-01

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces. PMID:23039583

  13. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services. PMID:25849093

  14. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  15. Numerical methods for molecular dynamics. Progress report

    SciTech Connect

    Skeel, R.D.

    1991-12-31

    This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.

  16. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking.

    PubMed

    Li, Qing; Huang, Xiaoqiang; Zhu, Yushan

    2014-07-01

    Optimization to identify the global minimum energy conformation sequence in in silico enzyme design is computationally non-deterministic polynomial-time (NP)-hard, with the search time growing exponentially as the number of design sites increases. This drawback forces the modeling of protein-ligand systems to adopt discrete amino acid rotamers and ligand conformers, as well as continuum solvent treatment of the environment; however, such compromises produce large numbers of false positives in sequence selection. In this report, cephalosporin acylase, which catalyzes the hydrolytic reaction of cephalosporin C to 7-aminocephalosporanic acid, was used to investigate the dynamic features of active-site-transition-state complex structures using molecular dynamics (MD) simulations to potentially eliminate false positives. The molecular docking between cephalosporin C and wild type acylase N176 and its eight mutants showed that the rate-limiting step in the hydrolytic reaction of cephalosporin C is the acylation process. MD simulations of the active-site-transition-state complex structures of the acylation processes for N176 and its eight mutants showed that the geometrical constraints between catalytic residues and small molecule transition states are always well maintained during the 20ns simulation for mutants with higher activities, and more hydrogen bonds between binding residues and functional groups of the ligand side chain in the active pocket are formed for mutants with higher activities. The conformations of the ligand transition states were changed greatly after the simulation. This indicates that the hydrogen bond network between the ligand and protein could be improved to enhance the activity of cephalosporin C acylase in subsequent design. PMID:24935111

  17. Shapiro like steps reveals molecular nanomagnets' spin dynamics

    NASA Astrophysics Data System (ADS)

    Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid

    2015-09-01

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet's spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  18. Molecular dynamics simulation studies of liquid crystalline materials

    NASA Astrophysics Data System (ADS)

    Tian, Pu

    Molecular dynamics (MD) simulation studies of the phase behavior, the response to an applied field of nematic liquid crystalline (LC) materials and interactions of nanoparticles in isotropic mesogenic materials are presented in this work. Molecular models used include the rigid bead-necklace model and soft spherocylinders. Free energy calculations applying thermodynamic integration and the Gibbs-Duhem integration method were used to establish the (T, P) phase diagram of the repulsive bead-necklace model, subsequently the Gibbs-Duhem integration method was further utilized to investigate the influence of attractive interactions on the phase behavior of the bead-necklace model. Analysis of order and thermodynamics of LC phase transitions (Isotropic-Nematic transition and Nematic-Smectic A transition) demonstrate that this simple model can capture the basic physics of liquid crystalline phases, and good agreement with experimental results is obtained. Further addition of chemical details to this multiple interaction sites model is much easier than to the idealized models (Gay-Berne, Spherocylinders) while the computation cost increase with respect to these idealized models is minimal. With a mean field representation of field-molecules interaction, MD simulation studies of the switching behavior of nematic LC, which is the basis of many LC devices, were performed. The switching mechanisms were explained in terms of the compromise between the elastic energy and field-molecules interactions. Qualitative agreement with experiments confirmed the validity of the mean field approximation. Finally, using the standard umbrella sampling technique and MD simulations, the potential of mean force between two nanoparticles in solvent of spherocylinders is calculated. It is found that while dispersed nanoparticles will delay the Isotropic-Nematics transition to higher density (lower temperature), they can induce local ordering fluctuations (within a few molecular lengths of the solvent rods), which are different from natural paranematic fluctuations by faster decay with respect to distance and broader distribution of local ordering. Apart from the expected short ranged nanoparticle interactions due to molecular packing effects, the above mentioned induced fluctuations will cause long range repulsions, a novel interaction being discovered and characterized for the first time.

  19. Input File Creation for the Molecular Dynamics Program LAMMPS.

    Energy Science and Technology Software Center (ESTSC)

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  20. Electron trapping in amorphous silicon: A quantum molecular dynamics study

    SciTech Connect

    Yang, Lin H.; Kalia, R.K.; Vashishta, P.

    1990-12-01

    Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.

  1. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  2. Free energy calculations using dual-level Born-Oppenheimer molecular dynamics

    SciTech Connect

    Retegan, Marius; Martins-Costa, Marilia; Ruiz-Lopez, Manuel F.

    2010-08-14

    We describe an efficient and accurate method to compute free energy changes in complex chemical systems that cannot be described through classical molecular dynamics simulations, examples of which are chemical and photochemical reactions in solution, enzymes, interfaces, etc. It is based on the use of dual-level Born-Oppenheimer molecular dynamics simulations. A low-level quantum mechanical method is employed to calculate the potential of mean force through the umbrella sampling technique. Then, a high-level quantum mechanical method is used to estimate a free energy correction on selected points of the reaction coordinate using perturbation theory. The precision of the results is comparable to that of ab initio molecular dynamics methods such as the Car-Parrinello approach but the computational cost is much lower, roughly by two to three orders of magnitude. The method is illustrated by discussing the association free energy of simple organometallic compounds, although the field of application is very broad.

  3. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution.

    PubMed

    Förderer, Moritz; Georgiev, Tihomir; Mosqueira, Matias; Fink, Rainer H A; Vogel, Martin

    2016-02-01

    Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions. PMID:26977360

  4. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution

    PubMed Central

    Förderer, Moritz; Georgiev, Tihomir; Mosqueira, Matias; Fink, Rainer H. A.; Vogel, Martin

    2016-01-01

    Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions. PMID:26977360

  5. Molecular dynamics calculations of melting rates with a novel order parameter: The diatomic Pa3 crystal

    NASA Astrophysics Data System (ADS)

    Tepper, H. L.; Scheinhardt-Engels, S. M.; Briels, W. J.

    2003-05-01

    A method is presented to design order parameters that can be used as discriminator in two-phase crystal-liquid molecular dynamics simulations. The proposed methodology is an extension to molecular crystal structures of a previously introduced discriminator for the atomic fcc environment [Phys. Rev. Lett. 79, 5074 (1997)] and can be readily applied to any crystal structure with both translational and orientational order. As an example, the discriminator is applied to the molecular Pa3 environment and subsequently used to study crystal melting rates with a diatomic carbon dioxide potential. The system's melting temperature proves to be below the roughening transition which is exemplified by faceted growth. The dynamically corrected melting rates are easily fitted to a rate law for two-dimensional nucleation and growth from which the melting temperature is deduced. The feasibility of the method for the example system holds promise for more extensive microscopic investigations of molecular crystal growth and melting.

  6. Diagnosis of inflammatory bowel disease: Potential role of molecular biometrics.

    PubMed

    M'Koma, Amosy E

    2014-11-27

    Accurate diagnosis of predominantly colonic inflammatory bowel disease (IBD) is not possible in 30% of patients. For decades, scientists have worked to find a solution to improve diagnostic accuracy for IBD, encompassing Crohn's colitis and ulcerative colitis. Evaluating protein patterns in surgical pathology colectomy specimens of colonic mucosal and submucosal compartments, individually, has potential for diagnostic medicine by identifying integrally independent, phenotype-specific cellular and molecular characteristics. Mass spectrometry (MS) and imaging (I) MS are analytical technologies that directly measure molecular species in clinical specimens, contributing to the in-depth understanding of biological molecules. The biometric-system complexity and functional diversity is well suited to proteomic and diagnostic studies. The direct analysis of cells and tissues by Matrix-Assisted-Laser Desorption/Ionization (MALDI) MS/IMS has relevant medical diagnostic potential. MALDI-MS/IMS detection generates molecular signatures obtained from specific cell types within tissue sections. Herein discussed is a perspective on the use of MALDI-MS/IMS and bioinformatics technologies for detection of molecular-biometric patterns and identification of differentiating proteins. I also discuss a perspective on the global challenge of transferring technologies to clinical laboratories dealing with IBD issues. The significance of serologic-immunometric advances is also discussed. PMID:25429322

  7. Diagnosis of inflammatory bowel disease: Potential role of molecular biometrics

    PubMed Central

    MKoma, Amosy E

    2014-01-01

    Accurate diagnosis of predominantly colonic inflammatory bowel disease (IBD) is not possible in 30% of patients. For decades, scientists have worked to find a solution to improve diagnostic accuracy for IBD, encompassing Crohns colitis and ulcerative colitis. Evaluating protein patterns in surgical pathology colectomy specimens of colonic mucosal and submucosal compartments, individually, has potential for diagnostic medicine by identifying integrally independent, phenotype-specific cellular and molecular characteristics. Mass spectrometry (MS) and imaging (I) MS are analytical technologies that directly measure molecular species in clinical specimens, contributing to the in-depth understanding of biological molecules. The biometric-system complexity and functional diversity is well suited to proteomic and diagnostic studies. The direct analysis of cells and tissues by Matrix-Assisted-Laser Desorption/Ionization (MALDI) MS/IMS has relevant medical diagnostic potential. MALDI-MS/IMS detection generates molecular signatures obtained from specific cell types within tissue sections. Herein discussed is a perspective on the use of MALDI-MS/IMS and bioinformatics technologies for detection of molecular-biometric patterns and identification of differentiating proteins. I also discuss a perspective on the global challenge of transferring technologies to clinical laboratories dealing with IBD issues. The significance of serologic-immunometric advances is also discussed. PMID:25429322

  8. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis

    PubMed Central

    Feng, Yaoyu; Xiao, Lihua

    2011-01-01

    Summary: Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination. PMID:21233509

  9. Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nose-Hoover dynamics

    SciTech Connect

    Holian, B.L.; Voter, A.F.; Ravelo, R.

    1995-09-01

    The Nose-Hoover thermostat, which is often used in the hope of modifying molecular dynamics trajectories in order to achieve canonical-ensemble averages, has hidden in it a Toda ``demon,`` which can give rise to unwanted, noncanonical undulations in the instantaneous kinetic temperature. We show how these long-lived oscillations arise from insufficient coupling of the thermostat to the atoms, and give straightforward, practical procedures for avoiding this weak-coupling pathology in isothermal molecular dynamics simulations.

  10. Proton transfer dynamics in the propionic acid dimer from path integral molecular dynamics calculations.

    PubMed

    Durlak, Piotr; Latajka, Zdzis?aw

    2011-09-01

    The double proton transfer process in the cyclic dimer of propionic acid in the gas phase was studied using a path integral molecular dynamics method. Structures, energies and proton trajectories were determined. Very large amplitude motions of the skeleton of a propionic acid molecule were observed during the simulations, and almost free rotation of the C(2)H(5) group around the C(?)-C bond. A double-well symmetric potential with a very small energy barrier was determined from the free energy profile for the proton motions. Infrared spectra for different isotopomers were calculated, and comparative vibrational analysis was performed. The vibrational results from CPMD appear to be in qualitative agreement with the experimental ones. PMID:21213001

  11. New ways to boost molecular dynamics simulations.

    PubMed

    Krieger, Elmar; Vriend, Gert

    2015-05-15

    We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all-atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 Å cutoff, correct atom masses, reproducible trajectory, CPU with 3.6 GHz, no turbo boost, 8 AVX registers). The new features include a mixed multiple time-step algorithm (reaching 5 fs), a tuned version of LINCS to constrain bond angles, the fusion of pair list creation and force calculation, pressure coupling with a "densostat," and exploitation of new CPU instruction sets like AVX2. The impact of Intel's new transactional memory, atomic instructions, and sloppy pair lists is also analyzed. The algorithms map well to GPUs and can automatically handle most Protein Data Bank (PDB) files including ligands. An implementation is available as part of the YASARA molecular modeling and simulation program from www.YASARA.org. PMID:25824339

  12. Molecular dynamics in nitramines and modified nitramines

    NASA Astrophysics Data System (ADS)

    Brill, T. B.

    1983-11-01

    The structure of RDX has been compared by the use of Fourier transform infrared spectroscopy in the gas phase, melt phase, solution phase, and the solid Beta and alpha phases. The gas, melt, and solid Beta-RDX phases have not been studied previously. The RDX molecule has essentially C sub 3V molecular structure in all environments except the stable solid Alpha-RDX phase. The RDX and HMX melts were found to be comprised almost entirely of intact nitramine molecules, but decomposition before melting was directly detected in HMX. RDX was found to be a highly flexible molecule. In keeping with this flexibility, the crystal structure of the complex between RDX and sulfolane revealed NN02 groups frozen in axial, equatorial, and planar positions within one molecule. The crystal structure of AZMTTC was determined and its thermal decomposition mechanism empirically reasoned. HN3, not previously recognized as a product, appears to trigger the decomposition of AZMTTC. Copious amounts of N2O and CH2O are then released due to depolymerization of the ring. The IR spectra of the gas and solid phases and the TGA all support this mechanism.

  13. Molecular simulation of protein dynamics in nanopores. II. Diffusion

    NASA Astrophysics Data System (ADS)

    Javidpour, Leili; Tabar, M. Reza Rahimi; Sahimi, Muhammad

    2009-02-01

    A novel combination of discontinuous molecular dynamics and the Langevin equation, together with an intermediate-resolution model of proteins, is used to carry out long (several microsecond) simulations in order to study transport of proteins in nanopores. We simulated single-domain proteins with the ?-helical native structure. Both attractive and repulsive interaction potentials between the proteins and the pores' walls are considered. The diffusivity D of the proteins is computed not only under the bulk conditions but also as a function of their "length" (the number of the amino-acid groups), temperature T, pore size, and interaction potentials with the walls. Compared with the experimental data, the computed diffusivities under the bulk conditions are of the correct order of magnitude. The diffusivities both in the bulk and in the pores follow a power law in the length ? of the proteins and are larger in pores with repulsive walls. D+/D-, the ratio of the diffusivities in pores with attractive and repulsive walls, exhibits two local maxima in its dependence on the pore size h, which are attributed to the pore sizes and protein configurations that induce long-lasting simultaneous interactions with both walls of the pores. Far from the folding temperature Tf, D increases about linearly with T, but due to the thermal fluctuations and their effect on the proteins' structure near Tf, the dependence of D on T in this region is nonlinear. We propose a novel and general "phase diagram," consisting of four regions, that describes qualitatively the effect of h, T, and interaction potentials with the walls on the diffusivity D of a protein.

  14. Molecular dynamics modelling of radiation damage in zircon

    NASA Astrophysics Data System (ADS)

    Grechanovsky, A. E.

    2009-04-01

    Zircon (ZrSiO4) is among actinide-bearing phases which has been proposed as a crystalline confinement matrix for nuclear waste management, especially for weapon-grade plutonium and UO2 spent fuel in the USA. Zircon is also widely used in geochronology. But, with accumulating ?-decay damage, zircon undergoes a radiation induced transition to an amorphous (or metamict) state. So, in the present work molecular dynamics simulations (MD simulations) of zircon structure have been performed to study radiation damage in zircon. In this technique, one simulates the propagation of an energetic particle in a system of atoms interacting via model potentials, by integrating the Newton equations of motion. Author has used version 3.09 of the DL_POLY molecular simulation package. Zircon structure containing 181944 atoms (19x19x21 unit cells) was equilibrated at 300 K for 10 ps, and one Zr atom (usually called the primary knock-on atom, PKA) was given a velocity corresponding to an implantation energy of about 20 keV. MD simulations were performed in the microcanonical ensemble that is under conditions of constant particle number, volume and energy. Results of the MD simulations show that the number of interstitials is equal to 840 atoms. This is very close (4000-5000 atoms for 70 keV recoil atom 234Th) to what is measured in the diffuse x-ray scattering and NMR experiments on amorphous metamict samples (damaged by natural irradiation) of geological age. It has been shown that the damaged structure contains several depleted regions with characteristic sized up to 2,5 nm after single event and up to 4,5 nm after three overlapping events. Furthermore, these events produce channels of depleted matter between the overlapping damaged regions. These channels provide a high-diffusivity path for radiogenic Pb (percolation effect). Loss of radiogenic Pb may result in to incorrect dating of rocks.

  15. Dual-resolution molecular dynamics simulation of antimicrobials in biomembranes

    PubMed Central

    Orsi, Mario; Noro, Massimo G.; Essex, Jonathan W.

    2011-01-01

    Triclocarban and triclosan, two potent antibacterial molecules present in many consumer products, have been subject to growing debate on a number of issues, particularly in relation to their possible role in causing microbial resistance. In this computational study, we present molecular-level insights into the interaction between these antimicrobial agents and hydrated phospholipid bilayers (taken as a simple model for the cell membrane). Simulations are conducted by a novel dual-resolution molecular dynamics approach which combines accuracy with efficiency: the antimicrobials, modelled atomistically, are mixed with simplified (coarse-grain) models of lipids and water. A first set of calculations is run to study the antimicrobials' transfer free energies and orientations as a function of depth inside the membrane. Both molecules are predicted to preferentially accumulate in the lipid headgroupglycerol region; this finding, which reproduces corresponding experimental data, is also discussed in terms of a general relation between solute partitioning and the intramembrane distribution of pressure. A second set of runs involves membranes incorporated with different molar concentrations of antimicrobial molecules (up to one antimicrobial per two lipids). We study the effects induced on fundamental membrane properties, such as the electron density, lateral pressure and electrical potential profiles. In particular, the analysis of the spontaneous curvature indicates that increasing antimicrobial concentrations promote a destabilizing tendency towards non-bilayer phases, as observed experimentally. The antimicrobials' influence on the self-assembly process is also investigated. The significance of our results in the context of current theories of antimicrobial action is discussed. PMID:21131331

  16. Multifractal analysis of dynamic potential surface of ion-conducting materials

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko; Ngai, K. L.

    2005-06-01

    A multifractal analysis using singularity spectra [T.C. Halsey et al., Phys. Rev. A 33, 1141 (1986)] provides a general tool to study the temporal-spatial properties of particles in complex disordered materials such as ions in ionically conducting glasses and melts. Obtained by molecular-dynamics simulations, the accumulated positions of the particles dynamically form a structural pattern called the dynamical potential surface. In this work, the complex dynamical potential surfaces of Li ions in the lithium silicates were visualized and characterized by the multifractal analysis. The fractal dimensions and strength of the singularity related to the spatial intermittency of the dynamics are examined, and the relationship between dynamics and the singularity spectra is discussed.

  17. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  18. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  19. Molecular dynamics simulation of size segregation in three dimensions

    NASA Astrophysics Data System (ADS)

    Gallas, Jason A. C.; Herrmann, Hans J.; Pschel, Thorsten; Soko?owski, Stefan

    1996-01-01

    We report the first three-dimensional molecular dynamics simulation of particle segregation by shaking. Two different containers are considered: one cylindrical and another with periodic boundary conditions. The dependence of the time evolution of a test particle inside the material is studied as a function of the shaking frequency and amplitude, damping coefficients, and dispersivity.

  20. Reasoning with Atomic-Scale Molecular Dynamic Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…

  1. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    PubMed Central

    De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  2. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  3. Molecular vibrational dynamics in PMMA studied by femtosecond CARS

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Fan, Rongwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-11-01

    The ultrafast molecular vibrational dynamics in PMMA sheets is studied by femtosecond time-resolved coherent anti-Stokes Raman spectroscopy at room temperature. The C-H stretch modes at 2870 cm-1 and 3008 cm-1 in PMMA sheets are excited and detected. The coherence relaxation times and beat wavenumbers of the Raman modes are obtained.

  4. Nanoscale Probing of Dynamics in Local Molecular Environments.

    PubMed

    Atkin, Joanna M; Sass, Paul M; Teichen, Paul E; Eaves, Joel D; Raschke, Markus B

    2015-11-19

    Vibrational spectroscopy can provide information about structure, coupling, and dynamics underlying the properties of complex molecular systems. While measurements of spectral line broadening can probe local chemical environments, the spatial averaging in conventional spectroscopies limits insight into underlying heterogeneity, in particular in disordered molecular solids. Here, using femtosecond infrared scattering scanning near-field optical microscopy (IR s-SNOM), we resolve in vibrational free-induction decay (FID) measurements a high degree of spatial heterogeneity in polytetrafluoroethylene (PTFE) as a dense molecular model system. In nanoscopic probe volumes as small as 10(3) vibrational oscillators, we approach the homogeneous response limit, with extended vibrational dephasing times of several picoseconds, that is, up to 10 times the inhomogeneous lifetime, and spatial average converging to the bulk ensemble response. We simulate the dynamics of relaxation with a finite set of local vibrational transitions subject to random modulations in frequency. The combined results suggest that the observed heterogeneity arises due to static and dynamic variations in the local molecular environment. This approach thus provides real-space and real-time visualization of the subensemble dynamics that define the properties of many functional materials. PMID:26528865

  5. Open boundary molecular dynamics of sheared star-polymer melts.

    PubMed

    Sablić, Jurij; Praprotnik, Matej; Delgado-Buscalioni, Rafael

    2016-02-17

    Open boundary molecular dynamics (OBMD) simulations of a sheared star polymer melt under isothermal conditions are performed to study the rheology and molecular structure of the melt under a fixed normal load. Comparison is made with the standard molecular dynamics (MD) in periodic (closed) boxes at a fixed shear rate (using the SLLOD dynamics). The OBMD system exchanges mass and momentum with adjacent reservoirs (buffers) where the external pressure tensor is imposed. Insertion of molecules in the buffers is made feasible by implementing there a low resolution model (blob-molecules with soft effective interactions) and then using the adaptive resolution scheme (AdResS) to connect with the bulk MD. Straining with increasing shear stress induces melt expansion and a significantly different redistribution of pressure compared with the closed case. In the open sample, the shear viscosity is also a bit lowered but more stable against the viscous heating. At a given Weissenberg number, molecular deformations and material properties (recoverable shear strain and normal stress ratio) are found to be similar in both setups. We also study the modelling effect of normal and tangential friction between monomers implemented in a dissipative particle dynamics (DPD) thermostat. Interestingly, the tangential friction substantially enhances the elastic response of the melt due to a reduction of the kinetic stress viscous contribution. PMID:26820315

  6. Relating Soil Organic Matter Dynamics to its Molecular Structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of the dynamics of soil organic matter (SOM) must be integrated with a sound knowledge of it biochemical complexity. The molecular structure of SOM was determined in 98% sand soils to eliminate the known protective effects of clay on the amount and turnover rate of the SOM constitu...

  7. Reasoning with Atomic-Scale Molecular Dynamic Models

    ERIC Educational Resources Information Center

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate

  8. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  9. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics.

    PubMed

    Zhang, Wenjun; Wang, Ming L; Cranford, Steven W

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  10. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    PubMed Central

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  11. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring.

  12. Collective excitations in liquid CD4: Neutron scattering and molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Bafile, U.; Barocchi, F.; Demmel, F.; Formisano, F.; Sampoli, M.; Venturi, G.

    2005-12-01

    We have investigated the dynamic structure factor S(Q,?) of liquid CD4 at T = 97.7 K in the wave vector range 2 <= Q/nm-1 <= 15 by means of neutron scattering and molecular-dynamics simulation, in order to study the centre-of-mass collective dynamics. The agreement between the experimental spectra and those simulated using a recent ab initio based intermolecular potential is good, particularly at low Q. Underdamped collective excitations, detected in the whole experimental Q-range, characterize the dynamics of liquid CD4 as markedly different from that of other molecular liquids. Also, the energy and damping of collective excitations in methane are shown to differ considerably, even at the lowest measured Q-values, from those of linearized hydrodynamic modes. An empirical relation, able to reconcile the different wave vector ranges of mode propagation observed in disparate liquids, is investigated.

  13. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  14. Adsorbed water on iron surface by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fernandes, F. W.; Campos, T. M. B.; Cividanes, L. S.; Simonetti, E. A. N.; Thim, G. P.

    2016-01-01

    The adsorption of H2O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron-water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  15. Collisional dynamics in a gas of molecular super-rotors

    PubMed Central

    Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh.

    2015-01-01

    Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable ‘gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational–translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the ‘gyroscopic stage' is abruptly terminated by an explosive rotational–translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules. PMID:26160223

  16. Collisional dynamics in a gas of molecular super-rotors

    NASA Astrophysics Data System (ADS)

    Khodorkovsky, Yuri; Steinitz, Uri; Hartmann, Jean-Michel; Averbukh, Ilya Sh.

    2015-07-01

    Recently, femtosecond laser techniques have been developed that are capable of bringing gas molecules to extremely fast rotation in a very short time, while keeping their translational motion relatively slow. Here we study collisional equilibration dynamics of this new state of molecular gases. We show that the route to equilibrium starts with a metastable `gyroscopic stage' in the course of which the molecules maintain their fast rotation and orientation of the angular momentum through many collisions. The inhibited rotational-translational relaxation is characterized by a persistent anisotropy in the molecular angular distribution, and is manifested in the optical birefringence and anisotropic diffusion in the gas. After a certain induction time, the `gyroscopic stage' is abruptly terminated by an explosive rotational-translational energy exchange, leading the gas towards the final equilibrium. We illustrate our conclusions by direct molecular dynamics simulation of several gases of linear molecules.

  17. Large-Scale Molecular Dynamics Simulation of Polyolefin Blends

    NASA Astrophysics Data System (ADS)

    Jaramillo, Eugenio; Grest, Gary S.; Curro, John G.; Wu, David T.

    2003-03-01

    Molecular dynamics (MD) simulations were carried out on the binary blends of five polyolefins: head-to-tail isotactic (iPP) and syndiotactic (sPP) polypropylene, head-to-head polypropylene (hhPP), polyisobutylene (PIB), and polyethylene (PE). These polyolefins were modeled at the united atom level at 453K using the TRaPPE potential between pairs of sites. Surprisingly, the heat of mixing for all the blends was found to depend not only on the intermolecular van der Waals contributions, but also on intramolecular van der Waals, angular bending, and torsional components. The i parameters from the simulations were estimated from the structure factors using the random phase approximation (RPA) in analogy with neutron scattering (SANS) experiments. The MD simulations predicted temperature dependent i parameters in good agreement with SANS measurements previously reported on hhPP/PIB, hhPP/PP, and hhPP/PE. Intermolecular pair correlation functions were used to compare chain packing in the melts and blends.

  18. Orbital-Free Molecular Dynamics Simulations at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Kress, J. D.; Collins, L. A.; Ticknor, C.

    2015-06-01

    Large-scale molecular dynamics (MD) simulations in an orbital-free (OF) density-functional theory (DFT) formulation have been performed for pure and mixed species over a broad range of temperatures (T) and densities (ρ) that includes the warm, dense matter and high-energy density physics regimes. A finite-temperature Thomas-Fermi-Dirac form with a local-density exchange-correlation potential and a regularized electron-ion interaction represents the quantum nature of the electrons. In particular, we examine the efficacy of the OFMD approach as an effective bridge between Kohn-Sham DFT MD at low temperatures and simple, fully-ionized plasma models at high temperatures. Comparisons against intermediate-range constructions such as the Yukawa and one-component plasmas are also made. We examine the mass transport (diffusion, viscosity) properties of various systems, ranging from light to heavy elements, including lithium hydride (LiH), mixtures of LiH with uranium, mixtures of deuterium-tritium (DT) with plutonium and mixtures of DT with plastic (CH). The OFMD mass transport results have been fitted to simple functions of ρ and T suitable for use in hydrodynamics simulation codes.

  19. Molecular Dynamics Study of Polymer Separation Using a Nanofluidic Staircase

    NASA Astrophysics Data System (ADS)

    Phelan, Frederick, Jr.; Forrey, Christopher

    2013-03-01

    The diffusive behavior of isolated polymer chains in a nanofluidic staircase has recently been studied experimentally [Strychalski et al., Macromolecules, 45(3), 1602, (2012); Stavis et al., Lab Chip, 12(19), 1174, (2012)] and by simulation [Phelan et al., in preparation, (2012)]. Chains are observed to exhibit spontaneous 1-D biased diffusion from regions of high to low confinement, without the use of external forces, under conditions where the local confinement lies in either the Odijk or de Gennes regimes. The transport mechanism is that of a Brownian motor, where the polymer free energy is used to generate directed transport using thermal fluctuations and the biased structural features of the device. The nanostaircase has potential for a number of applications in polymer measurement science and transport, an important one of which could be separations. To study this, we examine polymer separation in the nanofluidic staircase using the molecular dynamics simulation software LAMMPS. Length based separations of linear polymers as applicable to DNA separations are the main topic of the study, but the effect of more complex architectures such as branching are also examined.

  20. Molecular dynamics study of the vaporization of an ionic drop

    NASA Astrophysics Data System (ADS)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  1. Molecular dynamics simulation of photodissociation of carbon monoxide from hemoglobin

    SciTech Connect

    Henry, E.R.; Levitt, M.; Eaton, W.A.

    1985-04-01

    A molecular dynamics simulation of the photodissociation of carbon monoxide from the alpha subunit of hemoglobin is described. To initiate photodissociation, trajectories of the liganded molecule were interrupted, the iron-carbon monoxide bond was broken, and the parameters of the iron-nitrogen bonds were simultaneously altered to produce a deoxyheme conformation. Heme potential functions were used that reproduce the energies and forces for the iron out-of-plane motion obtained from quantum mechanical calculations. The effect of the protein on the rate and extent of the displacement of the iron from the porphyrin plane was assessed by comparing the results with those obtained for an isolated complex of heme with imidazole and carbon monoxide. The half-time for the displacement of the iron from the porphyrin plane was found to be 50-150 fs for both the protein and the isolated complex. These results support the interpretation of optical absorption studies using 250-fs laser pulses that the iron is displaced from the porphyrin plane within 350 fs in both hemoglobin and a free heme complex in solution.

  2. Thermomechanical buckling of boron nitride nanotubes using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-02-01

    We study the thermal buckling behavior of precompressed boron-nitride nanotubes (BNNTs) using molecular dynamics simulations with Tersoff interatomic potential. We compute the critical buckling strains at near-zero temperature, and subsequently precompress the nanotubes at a certain fraction of this value followed by temperature ramping. The critical buckling temperature, T cr , is marked by a sudden decrease of the internal force. We observe that (i) at small to moderate lengths, T cr is higher for chiral nanotubes than for either armchair or zigzag nanotubes, (ii) T cr decreases with increasing diameter unlike in thermal disintegration where disintegration temperatures rise with increasing diameter, and (iii) armchair nanotubes have an optimal length for which T cr is maximum. We qualitatively explain the reasons for each of the findings. Thermomechanical buckling occurs predominantly in two ways depending on the length of the nanotube—while the shorter nanotubes fail by radial instability (shell-like behavior), the longer ones invariably fail due to bending-buckling (rod-like behavior).

  3. A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya

    2010-05-01

    In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.

  4. Molecular dynamics simulation of cluster formation in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Hatomi, Daiki; Ohnishi, Naofumi; Nishikino, Masaharu

    2013-09-01

    Short-period laser ablation of a platinum solid target was investigated through three-dimensional classical molecular dynamics simulations using the embedded atom method potential. The platinum target was ablated by an ultrashort-pulse laser with three different fluences near the ablation threshold and single 100-fs pulse. Although each laser fluence causes melting and evaporation of the target surface, ablation processes are morphologically different. When the laser fluence is just above the ablation threshold, the surface layer of the solid target breaks away, and so-called spallation occurs. With the moderate laser fluence, homogeneous nucleation of nano-sized clusters takes place in the liquidized layer at the surface, resulting in the homogenization in the emitted cluster size, while the surface layer fragments and vaporizes with the higher fluence. Moreover, in the spallation regime, the recreated surface has nano-sized roughness and is formed after the surface oscillates with a rv20-ns period. This inherent roughness formation may be a seed of the nano-sized regular structure observed by past experiments with repetitive pulses.

  5. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-01

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size. PMID:26642993

  6. Determination of the experimental equilibrium structure of solid nitromethane using path-integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony M.; Habershon, Scott; Morrison, Carole A.; Rankin, David W. H.

    2010-03-01

    Path-integral molecular dynamics (PIMD) simulations with an empirical interaction potential have been used to determine the experimental equilibrium structure of solid nitromethane at 4.2 and 15 K. By comparing the time-averaged molecular structure determined in a PIMD simulation to the calculated minimum-energy (zero-temperature) molecular structure, we have derived structural corrections that describe the effects of thermal motion. These corrections were subsequently used to determine the equilibrium structure of nitromethane from the experimental time-averaged structure. We find that the corrections to the intramolecular and intermolecular bond distances, as well as to the torsion angles, are quite significant, particularly for those atoms participating in the anharmonic motion of the methyl group. Our results demonstrate that simple harmonic models of thermal motion may not be sufficiently accurate, even at low temperatures, while molecular simulations employing more realistic potential-energy surfaces can provide important insight into the role and magnitude of anharmonic atomic motions.

  7. Ab initio molecular dynamics: Concepts, recent developments, and future trends

    PubMed Central

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E.

    2005-01-01

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed on the fly from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  8. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines. PMID:23731408

  9. Drugs That Target Dynamic Microtubules: A New Molecular Perspective

    PubMed Central

    Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu

    2011-01-01

    Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049

  10. Molecular dynamics simulation of liquid-vapor phase equilibria in polar fluids

    NASA Astrophysics Data System (ADS)

    Eslami, Hossein; Dargahi, Ali; Behnejad, Hassan

    2009-04-01

    A new molecular dynamics simulation technique in the grand canonical ensemble [H. Eslami, F. Mller-Plathe, J. Comput. Chem. 28 (2007) 1763], has been employed to calculate the chemical potentials in the coexisting liquid and vapor phases of pure water, methanol, and acetonitrile. Calculating the chemical potentials in the liquid phase, a new method [J. Vrabec, H. Hasse, Mol. Phys. 100 (2002) 3375], has been employed to calculate the phase coexistence point. In this method just two independent simulations in the grand canonical ensemble are needed to be performed and the molecules are inserted into or deleted from the system in a dynamical way.

  11. Molecular Diagnosis of Diarrhea: Current Status and Future Potential

    PubMed Central

    Platts-Mills, James A; Operario, Darwin J

    2011-01-01

    Determining the microbiologic etiology of enteric infection remains an elusive goal. Conventional approaches, including culture, microscopy, and antigen-based tests have significant limitations such as limit of detection and the need for multiple procedures. Molecular diagnostics, especially PCR based tests, are rapidly changing research and practice in infectious diseases. Diarrheal disease, with its broad range of potential infectious etiologies, is well suited for multiplex molecular testing. This review highlights examples of currently employed molecular tests, as well as ways in which these tests can be applied in the future. The absence of a gold standard for the microbiologic cause of diarrhea means that the clinical significance of detected organisms may not always be clear. Conventional wisdom is that there should be one main pathogen causing diarrhea, however our thinking is challenged by increased detection of mixed infections. Thus, the successful incorporation of molecular diagnostics for diarrheal disease into practice will require both a careful understanding of the technical aspects and research to define their clinical utility. PMID:22116640

  12. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  13. Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method

    NASA Astrophysics Data System (ADS)

    Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori

    2009-10-01

    We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This FMO-PIMD method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.

  14. Intermolecular structure and collective dynamics of supercritical fluoroform studied by molecular dynamics simulations.

    PubMed

    Ingrosso, Francesca; Ladanyi, Branka M

    2013-01-17

    The density dependence of the local structure and of collective dynamics of a polar fluid fluoroform along an isotherm at a temperature of 1.03 T(c), in the near-critical (NC) region, were studied by classical molecular dynamics (MD) simulations. In the case of local structure we focus on local density inhomogeneities and on orientational pair correlations that are relevant to dielectric properties and light scattering intensities. Our results show that the density dependence of the frequency shifts of fluoroform ?(2) and ?(3) modes correlates well with that of intermolecular dipole-dipole interactions. Our study of collective dynamics deals with dipole and polarizability anisotropy relaxation, experimentally accessible through far-infrared absorption, depolarized light scattering, and optical Kerr effect. Our MD simulations were performed using an all-atom nonpolarizable potential model of fluoroform. Contributions of induced dipoles to dielectric properties were included using first-order perturbation theory, and this approach was also used to include interaction-induced contributions to polarizability anisotropy relaxation. For interactions involving induced dipoles, we calculated and compared the results of a distributed polarizability model to a model with a single polarizable site located at the center-of-mass. Using a projection scheme that allows us to identify the contributions from different relaxation mechanisms, we found that dipole relaxation is dominated by collective reorientation, while in the case of polarizability anisotropy, relaxation processes related to translational dynamics make a major contribution over most of the fluid density range. The dielectric properties of fluoroform in the NC region were calculated and compared to the corresponding measurements. We found the dielectric constant and the far-infrared absorption spectrum to be in good agreement with experiments. PMID:23259748

  15. Molecular Dynamics of a Water-Lipid Bilayer Interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1994-01-01

    We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.

  16. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    PubMed

    Denzel, Philipp; Diemand, Jrg; Anglil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine ?-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, ? events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an ? track, which explains the observed larger acoustic amplitudes. PMID:26871185

  17. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958), 10.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α -particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  18. Gramicidin A Backbone and Side Chain Dynamics Evaluated by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Experiments. I: Molecular Dynamics Simulations

    PubMed Central

    Inglfsson, Helgi I.; Li, Yuhui; Vostrikov, Vitaly V.; Gu, Hong; Hinton, James F.; Koeppe, Roger E.; Roux, Benot; Andersen, Olaf S.

    2011-01-01

    Gramicidin A (gA) channels provide an ideal system to test molecular dynamics (MD) simulations of membrane proteins. The peptide backbone lines a cation-selective pore and, due to the small channel size, the average structure and extent of fluctuations of all atoms in the peptide will influence ion permeation. This raises the question of how well molecular mechanical force fields used in MD simulations and potential of mean force (PMF) calculations can predict structure and dynamics as well as ion permeation. To address this question, we undertook a comparative study of nuclear magnetic resonance (NMR) observables predicted by fully atomistic MD simulations on a gA dimer embedded in a sodium dodecyl sulfate (SDS) micelle with measurements of the gA dimer backbone and tryptophan side chain dynamics using solution state 15N-NMR on gA dimers in SDS micelles. This comparison enables us to examine the robustness of the MD simulations done using different force fields, as well as their ability to predict important features of the gA channel. We find that MD is able to predict NMR observables, including the generalized order parameters (S2), the 15N spin-lattice (T1), spin-spin (T2) relaxation times, and the 1H-15N nuclear Overhauser effect (NOE), with remarkable accuracy. To examine further how differences in the force fields can affect the channel conductance, we calculated the PMF for K+ and Na+ permeation through a gA channel in a dimyristoylphosphatidylcholine (DMPC) bilayer. In this case, we find that MD is less successful in quantitatively predicting the single-channel conductance. PMID:21574563

  19. Force field parameters for S-nitrosocysteine and molecular dynamics simulations of S-nitrosated thioredoxin

    SciTech Connect

    Han, Sanghwa

    2008-12-12

    Estimation of structural perturbation induced by S-nitrosation is important to understand the mode of cellular signal transduction mediated by nitric oxide. Crystal structures of S-nitrosated proteins have been solved only for a few cases, however, so that molecular dynamics simulation may provide an alternative tool for probing structural perturbation. In this study AMBER-99 force field parameters for S-nitrosocysteine were developed and applied to molecular dynamics simulations of S-nitrosated thioredoxin. Geometry optimization at the level of HF/6-31G* was followed by a restrained electrostatic potential charge-fitting to obtain the atomic charges of S-nitrosocysteine. Force constants for bonds and angles were obtained from generalized AMBER force field. Torsional force constants for CC-SN and CS-NO were determined by fitting the torsional profiles obtained from geometry optimization with those from molecular mechanical energy minimization. Finally molecular dynamics simulations were performed with theses parameters on oxidized and reduced thioredoxin with and without S-nitrosocysteine. In all cases the root-mean-square deviations of {alpha}-carbons yielded well-behaved trajectories. The CC-SH dihedral angle which fluctuated severely during the simulation became quiet upon S-nitrosation. In conclusion the force field parameters developed in this study for S-nitrosocysteine appear to be suitable for molecular dynamics simulations of S-nitrosated proteins.

  20. Potential Competitive Dynamics of Acoustic Ecology.

    PubMed

    Radford, C A; Montgomery, J C

    2016-01-01

    The top predators in coastal marine ecosystems, such as whales, dolphins, seabirds, and large predatory fishes (including sharks), may compete with each other to exploit food aggregations. Finding these patchy food sources and being first to a food patch could provide a significant competitive advantage. Our hypothesis is that food patches have specific sound signatures that marine predators could detect and that acoustic sources and animal sensory capabilities may contribute to competition dynamics. Preliminary analysis shows that diving gannets have a distinct spectral signature between 80 and 200 Hz, which falls within the hearing sensitivity of large pelagic fishes. Therefore, we suggest that diving birds may contribute to the sound signatures of food aggregations, linking competition dynamics both above and below the water surface. PMID:26611047