Molecular potentials and relaxation dynamics
NASA Astrophysics Data System (ADS)
Karo, A. M.
1981-03-01
The use of empirical pseudopotentials, in evaluating interatomic potentials, provides and inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. As an example, recent calculations of the chi and the a 3 Sigma + states of LiH, NaH, KH, RbH, and CsH and the chi 2 Sigma + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, highly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000/cm over most of the potential curves) with the difference curves being considerably more accurate.
Molecular potentials and relaxation dynamics
Karo, A.M.
1981-03-27
The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. As an example, recent calculations of the chi/sup 1/..sigma../sup +/ and a/sup 3/..sigma../sup +/ states of LiH, NaH, KH, RbH, and CsH and the chi/sup 2/..sigma../sup +/ states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, highly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm/sup -1/ over most of the potential curves) with the difference curves being considerably more accurate.
Molecular dynamics simulations of solutions at constant chemical potential
NASA Astrophysics Data System (ADS)
Perego, C.; Salvalaglio, M.; Parrinello, M.
2015-04-01
Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.
Ridge-based bias potentials to accelerate molecular dynamics.
Xiao, Penghao; Duncan, Juliana; Zhang, Liang; Henkelman, Graeme
2015-12-28
An effective way to accelerate rare events in molecular dynamics simulations is to apply a bias potential which destabilizes minima without biasing the transitions between stable states. This approach, called hyperdynamics, is limited by our ability to construct general bias potentials without having to understand the reaction mechanisms available to the system, a priori. Current bias potentials are typically constructed in terms of a metric which quantifies the distance that a trajectory deviates from the reactant state minimum. Such metrics include detection of negative curvatures of the potential, an energy increase, or deviations in bond lengths from the minimum. When one of these properties exceeds a critical value, the bias potentials are constructed to approach zero. A problem common to each of these schemes is that their effectiveness decreases rapidly with system size. We attribute this problem to a diminishing volume defined by the metrics around a reactant minimum as compared to the total volume of the reactant state basin. In this work, we mitigate the dimensionality scaling problem by constructing bias potentials that are based upon the distance to the boundary of the reactant basin. This distance is quantified in two ways: (i) by following the minimum mode direction to the reactant boundary and (ii) by training a machine learning algorithm to give an analytic expression for the boundary to which the distance can be calculated. Both of these ridge-based bias potentials are demonstrated to scale qualitatively better with dimensionality than the existing methods. We attribute this improvement to a greater filling fraction of the reactant state using the ridge-based bias potentials as compared to the standard potentials. PMID:26723648
Ladd, A.J.C.
1988-08-01
The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.
Molecular dynamics simulation of alkali borate glass using coordination dependent potential
Park, B.; Cormack, A.N.
1997-12-31
The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.
Enhanced Interatomic Potential for Skutterudite CoSb3 in Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Yang, Xuqiu; Zhou, An; Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng
2010-09-01
To find a suitable potential for the interatomic interactions in molecular dynamics (MD) simulations for the study of the mechanical properties of the nanostructured thermoelectric material CoSb3, the advantages and disadvantages of existing potentials for the material are first reviewed and discussed, and then an enhanced potential is proposed in which both bond-stretching and bond-angle distortions are considered. The structural stability and elastic properties of the crystalline CoSb3 model within the developed potential are validated at finite temperature using classic MD tests. Comparison of the mechanical behavior of bulk single-crystal CoSb3, including the stress-strain curve and configuration evolution under tension, shows that the enhanced potential exhibits better reliability than the other potentials. Finally, the significance of the potential and its possible further improvement for broader application are briefly discussed.
NASA Astrophysics Data System (ADS)
Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan
2016-01-01
The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential
Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan
2016-01-28
The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential
Validation of Potential Models for Li2O in Classical Molecular Dynamics Simulation
Oda, Takuji; Oya, Yasuhisa; Tanaka, Satoru; Weber, William J.
2007-08-01
Four Buckingham-type pairwise potential models for Li2O were assessed by molecular static and dynamics simulations. In the static simulation, all models afforded acceptable agreement with experimental values and ab initio calculation results for the crystalline properties. Moreover, the superionic phase transition was realized in the dynamics simulation. However, the Li diffusivity and the lattice expansion were not adequately reproduced at the same time by any model. When using these models in future radiation simulation, these features should be taken into account, in order to reduce the model dependency of the results.
Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment
NASA Astrophysics Data System (ADS)
Rajasekaran, G.; Kumar, Rajesh; Parashar, Avinash
2016-03-01
Graphene is an elementary unit for various carbon based nanostructures. The recent technological developments have made it possible to manufacture hybrid and sandwich structures with graphene. In order to model these nanostructures in atomistic scale, a compatible interatomic potential is required to successfully model these nanostructures. In this article, an interatomic potential with modified cut-off function for Tersoff potential was proposed to avoid overestimation and also to predict the realistic mechanical behavior of single sheet of graphene. In order to validate the modified form of cut-off function for Tersoff potential, simulations were performed with different set of temperatures and strain rates, and results were made to compare with available experimental data and molecular dynamics simulation results obtained with the help of other empirical interatomic potentials.
Yang, Y; Pan, L; Lightstone, F C; Merz, K M
2016-01-01
The potential of mean force simulations, widely applied in Monte Carlo or molecular dynamics simulations, are useful tools to examine the free energy variation as a function of one or more specific reaction coordinate(s) for a given system. Implementation of the potential of mean force in the simulations of biological processes, such as enzyme catalysis, can help overcome the difficulties of sampling specific regions on the energy landscape and provide useful insights to understand the catalytic mechanism. The potential of mean force simulations usually require many, possibly parallelizable, short simulations instead of a few extremely long simulations and, therefore, are fairly manageable for most research facilities. In this chapter, we provide detailed protocols for applying the potential of mean force simulations to investigate enzymatic mechanisms for several different enzyme systems. PMID:27498632
Molecular dynamics study of electrostatic potential along lipid bilayer with gramicidin A
NASA Astrophysics Data System (ADS)
Saito, Hiroaki; Nishimura, Megumi; Takagi, Hiroyuki; Miyakawa, Takeshi; Kawaguchi, Kazutomo; Nagao, Hidemi
2013-02-01
The structure and electrostatic potential profile of the DMPC lipid bilayers with a gramicidin A (GA) were studied by molecular dynamics (MD) simulation. The MD simulation reproduced the effect of GA on the membrane structure; the area per lipid decreases and membrane thickness increases, and the observed membrane structures correspond to the experimental data. The polar headgroup of lipid was found to orient toward the membrane normal as the lipid approaches the GA. The observed electrostatic potential map showed that the electrostatic potential around the region of GA gate was lower than the others at the same level of the membrane normal and the values of electrostatic potential in the pore region of GA were negative. These results indicate that a cation in the aqueous region of membrane can be electrostatically led to the GA entrance and penetrate the GA channel following the gradient of ion concentration.
Zanetti-Polzi, Laura; Corni, Stefano; Daidone, Isabella; Amadei, Andrea
2016-07-21
Here, a methodology is proposed to investigate the collective fluctuation modes of an arbitrary set of observables, maximally contributing to the fluctuation of another functionally relevant observable. The methodology, based on the analysis of fully classical molecular dynamics (MD) simulations, exploits the essential dynamics (ED) method, originally developed to analyse the collective motions in proteins. We apply this methodology to identify the residues that are more relevant for determining the reduction potential (E(0)) of a redox-active protein. To this aim, the fluctuation modes of the single-residue electrostatic potentials mostly contributing to the fluctuations of the total electrostatic potential (the main determinant of E(0)) are investigated for wild-type azurin and two of its mutants with a higher E(0). By comparing the results here obtained with a previous study on the same systems [Zanetti-Polzi et al., Org. Biomol. Chem., 2015, 13, 11003] we show that the proposed methodology is able to identify the key sites that determine E(0). This information can be used for a general deeper understanding of the molecular mechanisms on the basis of the redox properties of the proteins under investigation, as well as for the rational design of mutants with a higher or lower E(0). From the results of the present analysis we propose a new azurin mutant that, according to our calculations, shows a further increase of E(0). PMID:27339768
An ab initio molecular dynamics analysis of lignin as a potential antioxidant for hydrocarbons.
Pan, Tongyan; Cheng, Cheng
2015-11-01
Lignins are complex phenolic polymers with limited industrial uses. To identify new applications of lignins, this study aims to evaluate the conifer alcohol lignin as a potential antioxidant for hydrocarbons, using the petroleum asphalt as an example. Using the ab initio molecular dynamics (AIMD) method, the evaluation is accomplished by tracking the generation of critical species in a lignin-asphalt mixture under a simulated oxidative condition. The generation of new species was detected using nuclear magnetic resonance and four analytical methods including density of states analysis, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses, bonding and energy level analysis, and electrostatic potential energy analysis. Results of the analyses show that the chemical radicals of carbon, nitrogen and sulfur generated in the oxidation process could enhance the agglomeration and/or decomposition tendency of asphalt. The effectiveness of lignins as an antioxidant depends on their chemical compositions. Lignins with a HOMO-LUMO gap larger than the HOMO-LUMO gap of the hydrocarbon system to be protected, such as the conifer alcohol lignin to protect petroleum asphalt as was studied in this work, do not demonstrate beneficial anti-oxidation capacity. Lignins, however, may be effective oxidants for hydrocarbon systems with a larger HOMO-LUMO gap. In addition, lignins may contain more polar sites than the hydrocarbons to be protected; thus the lignins' hydrophobicity and compatibility with the host hydrocarbons need to be well evaluated. The developed AIMD model provides a useful tool for developing antioxidants for generic hydrocarbons. PMID:26562413
Angular dependent potential for α-boron and large-scale molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Pokatashkin, P.; Kuksin, A.; Yanilkin, A.
2015-06-01
Both quantum mechanical and molecular-dynamics (MD) simulations of α-boron are done at this work. Angular dependent interatomic potential (ADP) for boron is obtained using force-matching technique. Fitting data are based on ab initio results within -20..100 GPa pressure range and temperatures up to 2000 K. Characteristics of α-boron, obtained using ADP potential such as bond lengths at equilibrium condition, bulk modulus, pressure-volume relations, Gruneisen coefficient, thermal expansion coefficient are in good agreement with both ab initio data, obtained in this work and known experimental data. As an example of application, the propagation of shock waves through a single crystal of α-boron is also explored by large-scale MD simulations.
Kingsley, Laura J; Esquivel-Rodríguez, Juan; Yang, Ying; Kihara, Daisuke; Lill, Markus A
2016-07-01
Crystallization of protein-protein complexes can often be problematic and therefore computational structural models are often relied on. Such models are often generated using protein-protein docking algorithms, where one of the main challenges is selecting which of several thousand potential predictions represents the most near-native complex. We have developed a novel technique that involves the use of steered molecular dynamics (sMD) and umbrella sampling to identify near-native complexes among protein-protein docking predictions. Using this technique, we have found a strong correlation between our predictions and the interface RMSD (iRMSD) in ten diverse test systems. On two of the systems, we investigated if the prediction results could be further improved using potential of mean force calculations. We demonstrated that a near-native (<2.0 Å iRMSD) structure could be identified in the top-1 ranked position for both systems. © 2016 Wiley Periodicals, Inc. PMID:27232548
NASA Astrophysics Data System (ADS)
Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.
2015-01-01
Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.
NASA Astrophysics Data System (ADS)
Howell, P. C.
2012-12-01
We compare the molecular dynamics Green-Kubo and direct methods for calculating thermal conductivity κ, using as a test case crystalline silicon at temperatures T in the range 500-1000 K (classical regime). We pay careful attention to the convergence with respect to simulation size and duration and to the procedures used to fit the simulation data. We show that in the Green-Kubo method the heat current autocorrelation function is characterized by three decay processes, of which the slowest lasts several tens of picoseconds so that convergence requires several tens of nanoseconds of data. Using the Stillinger-Weber potential we find excellent agreement between the two methods. We also use the direct method to calculate κ(T) for the Tersoff potential and find that the magnitude and the temperature-dependence are different for the two potentials and that neither potential agrees with experimental data. We argue that this implies that using the Stillinger-Weber or Tersoff potentials to predict trends in kappa as some system parameter is varied may yield results which are specific to the potential but not intrinsic to Si.
Howell, P C
2012-12-14
We compare the molecular dynamics Green-Kubo and direct methods for calculating thermal conductivity κ, using as a test case crystalline silicon at temperatures T in the range 500-1000 K (classical regime). We pay careful attention to the convergence with respect to simulation size and duration and to the procedures used to fit the simulation data. We show that in the Green-Kubo method the heat current autocorrelation function is characterized by three decay processes, of which the slowest lasts several tens of picoseconds so that convergence requires several tens of nanoseconds of data. Using the Stillinger-Weber potential we find excellent agreement between the two methods. We also use the direct method to calculate κ(T) for the Tersoff potential and find that the magnitude and the temperature-dependence are different for the two potentials and that neither potential agrees with experimental data. We argue that this implies that using the Stillinger-Weber or Tersoff potentials to predict trends in kappa as some system parameter is varied may yield results which are specific to the potential but not intrinsic to Si. PMID:23248991
Giese, Timothy J; York, Darrin M
2016-06-14
A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed. PMID:27171914
Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner
2014-09-01
The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated by a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.
NASA Astrophysics Data System (ADS)
Zhang, Yongfeng; Millett, Paul C.; Tonks, Michael R.; Bai, Xian-Ming; Biner, S. Bulent
2014-09-01
The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the <1 0 0> symmetrical tilt Σ5 and the <1 1 0> symmetrical tilt Σ3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core-shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The Σ3 boundary was found to be more prone to fracture than the Σ5 one, indicated by a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.
Superposition State Molecular Dynamics.
Venkatnathan, Arun; Voth, Gregory A
2005-01-01
The ergodic sampling of rough energy landscapes is crucial for understanding phenomena like protein folding, peptide aggregation, polymer dynamics, and the glass transition. These rough energy landscapes are characterized by the presence of many local minima separated by high energy barriers, where Molecular Dynamics (MD) fails to satisfy ergodicity. To enhance ergodic behavior, we have developed the Superposition State Molecular Dynamics (SSMD) method, which uses a superposition of energy states to obtain an effective potential for the MD simulation. In turn, the dynamics on this effective potential can be used to sample the configurational free energy of the real potential. The effectiveness of the SSMD method for a one-dimensional rough potential energy landscape is presented as a test case. PMID:26641113
Wang, Jiyao; Deng, Yuqing; Roux, Benoît
2006-01-01
The absolute (standard) binding free energy of eight FK506-related ligands to FKBP12 is calculated using free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent. A number of features are implemented to improve the accuracy and enhance the convergence of the calculations. First, the absolute binding free energy is decomposed into sequential steps during which the ligand-surrounding interactions as well as various biasing potentials restraining the translation, orientation, and conformation of the ligand are turned “on” and “off.” Second, sampling of the ligand conformation is enforced by a restraining potential based on the root mean-square deviation relative to the bound state conformation. The effect of all the restraining potentials is rigorously unbiased, and it is shown explicitly that the final results are independent of all artificial restraints. Third, the repulsive and dispersive free energy contribution arising from the Lennard-Jones interactions of the ligand with its surrounding (protein and solvent) is calculated using the Weeks-Chandler-Andersen separation. This separation also improves convergence of the FEP/MD calculations. Fourth, to decrease the computational cost, only a small number of atoms in the vicinity of the binding site are simulated explicitly, while all the influence of the remaining atoms is incorporated implicitly using the generalized solvent boundary potential (GSBP) method. With GSBP, the size of the simulated FKBP12/ligand systems is significantly reduced, from ∼25,000 to 2500. The computations are very efficient and the statistical error is small (∼1 kcal/mol). The calculated binding free energies are generally in good agreement with available experimental data and previous calculations (within ∼2 kcal/mol). The present results indicate that a strategy based on FEP/MD simulations of a reduced GSBP atomic model sampled with conformational, translational, and orientational restraining
NASA Astrophysics Data System (ADS)
Geng, Hua Y.
2015-02-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.
Mei, J.; Cooper, B.R.; Hao, Y.G.; Scoy, F.L. Van
1994-12-31
Molecular dynamics simulations have been performed to study thermal expansions of Ni-rich (fcc structure) Ni/Cr alloys (which serve as the basis for practical superalloy systems). This has been done using ab initio interatomic potentials with no experimental input. The coefficient of thermal expansion (CTE) as a function of temperature has been calculated. By admixing Re and Me atoms into fee Ni and the fee alloy system Ni/Cr, additive effects on the thermal expansion have been predicted. While addition of Cr lowers the CTE of Ni, and moderate addition of Mo lowers the CTE of Ni over a wide temperature range, moderate addition of Re raises the CTE of both Ni and Ni/Cr alloys over a significant temperature range. An explanation for the contrasting effect of additive Re on the CTE, based on a one-dimensional atomic chain model, is that the trade-off, between atomic volume effects increasing the CTE over that of pure Ni and pair-potential effects (exemplified by the Grueneisen parameter) decreasing the CTE from that of pure nickel, changes for Re compared to Cr and Mo.
Geng, Hua Y.
2015-02-15
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.
Implementing molecular dynamics on hybrid high performance computers—Three-body potentials
NASA Astrophysics Data System (ADS)
Brown, W. Michael; Yamada, Masako
2013-12-01
The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to use accelerators efficiently to improve the performance of molecular dynamics (MD) codes employing pairwise potential energy models, little is reported in the literature for models that include many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algorithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.
Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials
Brown, W Michael; Yamada, Masako
2013-01-01
The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that include many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.
Molecular Dynamics Studies of Dislocations in CdTe Crystals from a New Bond Order Potential.
Zhou, Xiaowang; Ward, Donald K; Wong, Bryan M; Doty, F Patrick; Zimmerman, Jonathan A
2012-08-23
Cd(1-x)Zn(x)Te (CZT) crystals are the leading semiconductors for radiation detection, but their application is limited by the high cost of detector-grade materials. High crystal costs primarily result from property nonuniformity that causes low manufacturing yield. Although tremendous efforts have been made in the past to reduce Te inclusions/precipitates in CZT, this has not resulted in an anticipated improvement in material property uniformity. Moreover, it is recognized that in addition to Te particles, dislocation cells can also cause electric field perturbations and the associated property nonuniformities. Further improvement of the material, therefore, requires that dislocations in CZT crystals be understood and controlled. Here, we use a recently developed CZT bond order potential to perform representative molecular dynamics simulations to study configurations, energies, and mobilities of 29 different types of possible dislocations in CdTe (i.e., x = 1) crystals. An efficient method to derive activation free energies and activation volumes of thermally activated dislocation motion will be explored. Our focus gives insight into understanding important dislocations in the material and gives guidance toward experimental efforts for improving dislocation network structures in CZT crystals. PMID:22962626
NASA Astrophysics Data System (ADS)
Kim, Junghan; Iype, Eldhose; Frijns, Arjan J. H.; Nedea, Silvia V.; van Steenhoven, Anton A.
2014-07-01
Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid-solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water-silicon and water-silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon-water contact angle of 129°, a quartz-water contact angle of 0°, and a cristobalite-water contact angle of 40°, which are in reasonable agreement with experimental values.
Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van
2014-07-01
Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.
Introduction to Accelerated Molecular Dynamics
Perez, Danny
2012-07-10
Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.
The Interaction Potential of an Open Nanotube and its Permeability: Molecular Dynamics Simulation
NASA Astrophysics Data System (ADS)
Bubenchikov, Mikhail A.; Potekaev, Alexander I.; Bubenchikov, Alexey M.; Usenko, Olesya V.; Malozemov, Alexander V.; Tarasov, Egor A.
2016-02-01
The integration of the modified LJ-potential allowed revealing the universal effect of the open carbon tube on the molecular objects moving within or proximate to the tube. There has been established that there are modes of the molecule motion without the energy exchange with the atoms of the carbon framing, under which the moving molecules are subjected to the considerable activation in the tube. The potential holes being the sorption zones in fact are localized.
NASA Astrophysics Data System (ADS)
Carré, A.; Horbach, J.; Ispas, S.; Kob, W.
2008-04-01
A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular-dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of α-quartz are well reproduced, showing the transferability of the new potential.
Ohta, H.; Iwakawa, A.; Eriguchi, K.; Ono, K.
2008-10-01
An interatomic potential model for Si-Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br{sup +}-containing plasmas such as HBr and Br{sub 2} plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger-Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br{sup +} beam.
Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Mollica, Luca; Decherchi, Sergio; Zia, Syeda Rehana; Gaspari, Roberto; Cavalli, Andrea; Rocchia, Walter
2015-06-01
Drug discovery is expensive and high-risk. Its main reasons of failure are lack of efficacy and toxicity of a drug candidate. Binding affinity for the biological target has been usually considered one of the most relevant figures of merit to judge a drug candidate along with bioavailability, selectivity and metabolic properties, which could depend on off-target interactions. Nevertheless, affinity does not always satisfactorily correlate with in vivo drug efficacy. It is indeed becoming increasingly evident that the time a drug spends in contact with its target (aka residence time) can be a more reliable figure of merit. Experimental kinetic measurements are operatively limited by the cost and the time needed to synthesize compounds to be tested, to express and purify the target, and to setup the assays. We present here a simple and efficient molecular-dynamics-based computational approach to prioritize compounds according to their residence time. We devised a multiple-replica scaled molecular dynamics protocol with suitably defined harmonic restraints to accelerate the unbinding events while preserving the native fold. Ligands are ranked according to the mean observed scaled unbinding time. The approach, trivially parallel and easily implementable, was validated against experimental information available on biological systems of pharmacological relevance.
Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations
Mollica, Luca; Decherchi, Sergio; Zia, Syeda Rehana; Gaspari, Roberto; Cavalli, Andrea; Rocchia, Walter
2015-01-01
Drug discovery is expensive and high-risk. Its main reasons of failure are lack of efficacy and toxicity of a drug candidate. Binding affinity for the biological target has been usually considered one of the most relevant figures of merit to judge a drug candidate along with bioavailability, selectivity and metabolic properties, which could depend on off-target interactions. Nevertheless, affinity does not always satisfactorily correlate with in vivo drug efficacy. It is indeed becoming increasingly evident that the time a drug spends in contact with its target (aka residence time) can be a more reliable figure of merit. Experimental kinetic measurements are operatively limited by the cost and the time needed to synthesize compounds to be tested, to express and purify the target, and to setup the assays. We present here a simple and efficient molecular-dynamics-based computational approach to prioritize compounds according to their residence time. We devised a multiple-replica scaled molecular dynamics protocol with suitably defined harmonic restraints to accelerate the unbinding events while preserving the native fold. Ligands are ranked according to the mean observed scaled unbinding time. The approach, trivially parallel and easily implementable, was validated against experimental information available on biological systems of pharmacological relevance. PMID:26103621
Kumar, R. Barani; Suresh, M. Xavier; Priya, B. Shanmuga
2015-01-01
Background: The alpha-delta bungartoxin-4 (α-δ-Bgt-4) is a potent neurotoxin produced by highly venomous snake species, Bungarus caeruleus, mainly targeting neuronal acetylcholine receptors (nAchRs) and producing adverse biological malfunctions leading to respiratory paralysis and mortality. Objective: In this study, we predicted the three-dimensional structure of α-δ-Bgt-4 using homology modeling and investigated the conformational changes and the key residues responsible for nAchRs inhibiting activity. Materials and Methods: From the selected plants, which are traditionally used for snake bites, the active compounds are taken and performed molecular interaction studies and also used for modern techniques like pharmacophore modeling and mapping and absorption, distribution, metabolism, elimination and toxicity analysis which may increase the possibility of success. Results: Moreover, 100's of drug-like compounds were retrieved and analyzed through computational virtual screening and allowed for pharmacokinetic profiling, molecular docking and dynamics simulation. Conclusion: Finally the top five drug-like compounds having competing level of inhibition toward α-δ-Bgt-4 toxin were suggested based on their interaction with α-δ-Bgt-4 toxin. PMID:26109766
NASA Astrophysics Data System (ADS)
Lin, Xubo; Bai, Tingting; Zuo, Yi Y.; Gu, Ning
2014-02-01
Nanoparticles (NPs) show great promises in biomedical applications as the respiratory drug carrier system. Once reaching the alveolar region, NPs first interact with the pulmonary surfactant (PS) film, which serves as the first biological barrier and plays an important role in maintaining the normal respiratory mechanics. Therefore, understanding the interactions between NPs and PS can help promote the NP-based respiratory drug carrier systems. Using coarse-grained molecular dynamics simulations, we studied the effect of rigid spherical NPs with different hydrophobicity and sizes on a dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface. Four different NPs were considered, including hydrophilic and hydrophobic NPs, each with two diameters of 3 nm and 5 nm (the sizes are comparable to that of generation 3 and 5 PAMAM dendrimers, which have been widely used for nanoscale drug carrier systems). Our simulations showed that hydrophilic NPs can readily penetrate into the aqueous phase with little or no disturbance on the DPPC monolayer. However, hydrophobic NPs tend to induce large structural disruptions, thus inhibiting the normal phase transition of the DPPC monolayer upon film compression. Our simulations also showed that this inhibitory effect of hydrophobic NPs can be mitigated through PEGylation. Our results provide useful guidelines for molecular design of NPs as carrier systems for pulmonary drug delivery.Nanoparticles (NPs) show great promises in biomedical applications as the respiratory drug carrier system. Once reaching the alveolar region, NPs first interact with the pulmonary surfactant (PS) film, which serves as the first biological barrier and plays an important role in maintaining the normal respiratory mechanics. Therefore, understanding the interactions between NPs and PS can help promote the NP-based respiratory drug carrier systems. Using coarse-grained molecular dynamics simulations, we studied the effect of rigid spherical NPs
Accelerated molecular dynamics methods
Perez, Danny
2011-01-04
The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.
Guarini, E.; Barocchi, F.
2007-10-19
Anisotropic interactions of liquid CD{sub 4} are studied in detail by comparison of inelastic neutron Brillouin scattering data with molecular dynamics simulations using up to four different models of the methane site-site potential. We demonstrate that the experimental dynamic structure factor S(Q,{omega}) acts as a highly discriminating quantity for possible interaction schemes. In particular, the Q evolution of the spectra enables a selective probing of the short- and medium-range features of the anisotropic potentials. We show that the preferential configuration of methane dimers at liquid densities can thus be discerned by analyzing the orientation-dependent model potential curves, in light of the experimental and simulation results.
Momentum-dependent potentials: Towards the molecular dynamics of fermionlike classical particles
Cordero, P. ); Hernandez, E.S. )
1995-03-01
We investigate classical Hamiltonian models for particles interacting with steep differential repulsive barriers both in coordinate and momentum space. The final aim is to define a classical system of many particles behaving as fermions in many respects. In this paper we examine the appearance of the phase portrait of one- or two-particle systems to skim the essential features that would later be transcribed to the basic rules of a molecular dynamics algorithm. One of the remarkable properties of the phase portrait is the flow from states that start far away with a wide range of momentum towards a narrow region in momentum---a virtual locking of momentum---in the vicinity of the steepest part of the barrier in momentum space. The central ideas are developed through two examples in one and two dimensions.
NASA Astrophysics Data System (ADS)
Zhao, Yinbo; Peng, Xianghe; Fu, Tao; Huang, Cheng; Feng, Chao; Yin, Deqiang; Wang, Zhongchang
2016-09-01
We conduct molecular dynamics simulation of nanoindentation on (111) surface of cubic boron nitride and find that shuffle-set dislocations slip along <112> direction on {111} plane at the initial stage of the indentation. The shuffle-set dislocations are then found to meet together, forming surfaces of a tetrahedron. We also find that the surfaces are stacking-fault zones, which intersect with each other, forming edges of stair-rod dislocations along <110> direction. Moreover, we also calculate the generalized stacking fault (GSF) energies along various gliding directions on several planes and find that the GSF energies of the <112>{111} and <110>{111} systems are relatively smaller, indicating that dislocations slip more easily along <110> and <112> directions on the {111} plane.
Open boundary molecular dynamics
NASA Astrophysics Data System (ADS)
Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.
2015-09-01
This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.
NASA Astrophysics Data System (ADS)
Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.
2015-10-01
We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.
NASA Astrophysics Data System (ADS)
Jacobson, Daniel; Stratt, Richard M.
2014-05-01
Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.
NASA Astrophysics Data System (ADS)
Abs da Cruz, Carolina; Chantrenne, Patrice; Gomes de Aguiar Veiga, Roberto; Perez, Michel; Kleber, Xavier
2013-01-01
Thermal contact conductance of metal-dielectric systems is a key parameter that has to be taken into account for the design and reliability of nanostructured microelectronic systems. This paper aims to predict this value for Si-Cu interfaces using molecular dynamics simulations. To achieve this goal, a modified embedded atom method interatomic potential for Si-Cu system has been set based upon previous MEAM potentials for pure Cu and pure Si. The Si-Cu cross potential is determined by fitting key properties of the alloy to results obtained by ab initio calculations. It has been further evaluated by comparing the structure and energies of Cu dimmers in bulk Si and CumSin clusters to ab initio calculations. The comparison between MD and ab initio calculation also concerns the energy barrier of Cu migration along the (110) channel in bulk Si. Using this interatomic potential, non equilibrium molecular dynamics has been performed to calculate the thermal contact conductance of a Si-Cu interface at different temperature level. The results obtained are in line with previous experimental results for different kind of interfaces. This confirms that the temperature variation of the thermal conductance might not find its origin in the electron-phonon interactions at the interface nor in the quantification of the energy of the vibration modes. The diffuse mismatch model is also used in order to discuss these results.
Bauchy, M.
2014-07-14
We study a calcium aluminosilicate glass of composition (SiO{sub 2}){sub 0.60}(Al{sub 2}O{sub 3}){sub 0.10}(CaO){sub 0.30} by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.
Grenier, Romain; To, Quy-Dong; de Lara-Castells, María Pilar; Léonard, Céline
2015-07-01
Global potentials for the interaction between the Ar atom and gold surfaces are investigated and Ar-Au pair potentials suitable for molecular dynamics simulations are derived. Using a periodic plane-wave representation of the electronic wave function, the nonlocal van-der-Waals vdW-DF2 and vdW-OptB86 approaches have been proved to describe better the interaction. These global interaction potentials have been decomposed to produce pair potentials. Then, the pair potentials have been compared with those derived by combining the dispersionless density functional dlDF for the repulsive part with an effective pairwise dispersion interaction. These repulsive potentials have been obtained from the decomposition of the repulsive interaction between the Ar atom and the Au2 and Au4 clusters and the dispersion coefficients have been evaluated by means of ab initio calculations on the Ar+Au2 complex using symmetry adapted perturbation theory. The pair potentials agree very well with those evaluated through periodic vdW-DF2 calculations. For benchmarking purposes, CCSD(T) calculations have also been performed for the ArAu and Ar+Au2 systems using large basis sets and extrapolations to the complete basis set limit. This work highlights that ab initio calculations using very small surface clusters can be used either as an independent cross-check to compare the performance of state-of-the-art vdW-corrected periodic DFT approaches or, directly, to calculate the pair potentials necessary in further molecular dynamics calculations. PMID:26046588
NASA Astrophysics Data System (ADS)
Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li
2015-03-01
It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.
NASA Astrophysics Data System (ADS)
Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li; Allen, Roland E.
2015-02-01
It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C=C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Perhaps remarkably, but apparently because of electrostatic repulsion, the direction of rotation is the same for both reactions.
Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.
2015-06-03
We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.
Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.
2015-06-03
We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less
Kannan, Srinivasaraghavan; Zacharias, Martin
2009-01-01
The folding process of the 20 residue Trp-cage mini-protein was investigated using standard temperature replica exchange molecular dynamics (T-RexMD) simulation and a biasing potential RexMD (BP-RexMD) method. In contrast to several conventional molecular dynamics simulations, both RexMD methods sampled conformations close to the native structure after 10–20 ns simulation time as the dominant conformational states. In contrast, to T-RexMD involving 16 replicas the BP-RexMD method achieved very similar sampling results with only five replicas. The result indicates that the BP-RexMD method is well suited to study folding processes of proteins at a significantly smaller computational cost, compared to T-RexMD. Both RexMD methods sampled not only similar final states but also agreed on the sampling of intermediate conformations during Trp-cage folding. The analysis of the sampled potential energy contributions indicated that Trp-cage folding is favored by both van der Waals and to a lesser degree electrostatic contributions. Folding does not introduce any significant sterical strain as reflected by similar energy distributions of bonded energy terms (bond length, bond angle and dihedral angle) of folded and unfolded Trp-cage structures. PMID:19399241
Ping, Tan Ai; Hoe, Yeak Su
2014-07-10
Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.
NASA Astrophysics Data System (ADS)
Xie, Gui-long; Zhang, Yong-hong; Huang, Shi-ping
2012-04-01
Using coarse-grained molecular dynamics simulations based on Gay-Berne potential model, we have simulated the cooling process of liquid n-butanol. A new set of GB parameters are obtained by fitting the results of density functional theory calculations. The simulations are carried out in the range of 290-50 K with temperature decrements of 10 K. The cooling characteristics are determined on the basis of the variations of the density, the potential energy and orientational order parameter with temperature, whose slopes all show discontinuity. Both the radial distribution function curves and the second-rank orientational correlation function curves exhibit splitting in the second peak. Using the discontinuous change of these thermodynamic and structure properties, we obtain the glass transition at an estimate of temperature Tg=120±10 K, which is in good agreement with experimental results 110±1 K.
NASA Astrophysics Data System (ADS)
Kvamme, B.; Olsen, R.; Sjöblom, S.; Leirvik, K. N.; Kuznetsova, T.
2014-12-01
Natural gas will inevitably contain trace amounts of water and other impurities during different stages of processing and transport. Glycols, such as triethylene glycol (TEG), will in many cases follow the water. The glycol contents of the gas can originate from preceding glycol-drying units or it can be a residue from the direct injection of glycols used to prevent hydrate formation. Thus, it is important to know how glycol contents will affect the different paths leading to hydrate formation. Glycols may in some cases dominate the condensed water phase. If this occurs, it will lead to the well-documented shift in the hydrate stability curve, due to the altered activity of the water. A great deal of information on the molecular path of a glycol through the system can be obtained from calculating the chemical potential. Due to difficulties in measuring interfacial chemical potentials, these often need to be estimated using theoretical tools. We used molecular dynamics (MD) to study how TEG behaves in the vicinity of mineral surfaces such as calcite and hematite. Many methods exist for estimating chemical potentials based on MD trajectories. These include techniques such as free energy perturbation theory (FEP) and thermodynamic integration (TI). Such methods require sufficient sampling of configurations where free energy is to be estimated. Thus, it can be difficult to estimate chemical potentials on surfaces. There are several methods to circumvent this problem, such as blue moon sampling and umbrella sampling. These have been considered and the most important have been used to estimate chemical potentials of TEG adsorbed on the mineral surfaces. The resulting chemical potentials were compared to the chemical potential of TEG in bulk water, which was estimated using temperature thermodynamic integration.
Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro; Rino, Jose Pedro
2011-01-01
An effective interatomic interaction potential for AlN is proposed. The potential consists of two-body and three-body covalent interactions. The two-body potential includes steric repulsions due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms, charge-induced dipole-interactions due to the electronic polarizability of ions, and induced dipole–dipole (van der Waals) interactions. The covalent characters of the Al–N–Al and N–Al–N bonds are described by the three-body potential. The proposed three-body interaction potential is a modification of the Stillinger–Weber form proposed to describe Si. Using the molecular dynamics method, the interaction potential is used to study structural, elastic, and dynamical properties of crystalline and amorphous states of AlN for several densities and temperatures. The structural energy for wurtzite (2H) structure has the lowest energy, followed zinc-blende and rock-salt (RS) structures. The pressure for the structural transformation from wurtzite-to-RS from the common tangent is found to be 24 GPa. For AlN in the wurtzite phase, our computed elastic constants ( C{sub 11} , C{sub 12} , C{sub 13} , C{sub 33} , C{sub 44} , and C{sub 66} ), melting temperature, vibrational density-of-states, and specific heat agree well with the experiments. Predictions are made for the elastic constant as a function of density for the crystalline and amorphous phase. Structural correlations, such as pair distribution function and neutron and x-ray static structure factors are calculated for the amorphous and liquid state.
Kumar, Rajesh; Rajasekaran, G; Parashar, Avinash
2016-02-26
In this article, molecular dynamics based simulations were carried out to study the tensile behaviour of boron nitride nanosheets (BNNSs). Four different sets of Tersoff potential parameters were used in the simulations for estimating the interatomic interactions between boron and nitrogen atoms. Modifications were incorporated in the Tersoff cut-off function to improve the accuracy of results with respect to fracture stress, fracture strain and Young's modulus. In this study, the original cut-off function was optimised in such a way that small and large cut-off distances were made equal, and hence a single cut-off distance was used with all sets of Tersoff potential parameters. The single value of cut-off distance for the Tersoff potential was chosen after analysing the potential energy and bond forces experienced by boron and nitrogen atoms subjected to bond stretching. The simulations performed with the optimised cut-off function help in identifying the Tersoff potential parameters that reproduce the experimentally evaluated mechanical behaviour of BNNSs. PMID:26820110
Nonequilibrium molecular dynamics
Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )
1990-11-01
The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.
Fu, Yao E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon E-mail: jhsong@cec.sc.edu
2014-08-07
Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.
Kumar, Akhil; Roy, Sudeep; Tripathi, Shubhandra; Sharma, Ashok
2016-01-01
Beta-site APP cleaving enzyme1 (BACE1) catalyzes the rate determining step in the generation of Aβ peptide and is widely considered as a potential therapeutic drug target for Alzheimer's disease (AD). Active site of BACE1 contains catalytic aspartic (Asp) dyad and flap. Asp dyad cleaves the substrate amyloid precursor protein with the help of flap. Currently, there are no marketed drugs available against BACE1 and existing inhibitors are mostly pseudopeptide or synthetic derivatives. There is a need to search for a potent inhibitor with natural scaffold interacting with flap and Asp dyad. This study screens the natural database InterBioScreen, followed by three-dimensional (3D) QSAR pharmacophore modeling, mapping, in silico ADME/T predictions to find the potential BACE1 inhibitors. Further, molecular dynamics of selected inhibitors were performed to observe the dynamic structure of protein after ligand binding. All conformations and the residues of binding region were stable but the flap adopted a closed conformation after binding with the ligand. Bond oligosaccharide interacted with the flap as well as catalytic dyad via hydrogen bond throughout the simulation. This led to stabilize the flap in closed conformation and restricted the entry of substrate. Carbohydrates have been earlier used in the treatment of AD because of their low toxicity, high efficiency, good biocompatibility, and easy permeability through the blood-brain barrier. Our finding will be helpful in identify the potential leads to design novel BACE1 inhibitors for AD therapy. PMID:25707809
Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; Tonks, Michael R.; Noordhoek, Mark J.; Phillpot, Simon R.
2016-06-01
A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less
Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha
2015-01-01
The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho) inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho’s structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO) as a template in MODELLER (v 9.10). The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics) 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9) and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial) database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds – ZINC24934545 and ZINC72319544 – that showed high binding affinity among 2,829 drug analogs that bind with key active-site residues; these residues are considered for protein-ligand binding and unbinding pathways via steered molecular dynamics simulations. Arg215 in the model plays an important role in the stability of the protein
Substructured multibody molecular dynamics.
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Buck, Patrick M; Kumar, Sandeep; Singh, Satish K
2013-03-01
Aggregation is a common hurdle faced during the development of antibody therapeutics. In this study, we explore the potential aggregation liabilities of the Fab (fragment antigen-binding) from a human IgG1κ antibody via multiple elevated temperature molecular dynamic simulations, analogous to accelerated stability studies performed during formulation development. Deformation and solvent exposure changes in response to thermal stress were monitored for individual structural domains (V(H), V(L), C(H)1 and C(L)), their interfaces (V(H):V(L) and C(H)1:C(L)), edge beta-strands and sequence-predicted aggregation-prone regions (APRs). During simulations, domain interfaces deformed prior to the unfolding of individual domains. However, interfacial beta-strands retained their secondary structure and remained solvent protected longer than all other strands or loops. Thus, APRs located in interfacial beta-strands are effectively blocked from self-association. Structural deformations were also observed in complementarity-determining regions, edge beta-strands and adjoining framework beta-strands, which increased their solvent-accessible surface area and exposed APRs in these regions. From the analysis of these structural changes, two potential aggregation liabilities were identified in the V(H) domain of this Fab. Insights gained from this investigation should be useful in devising a rational structure-based strategy for the design and selection of antibody candidates with high potency and improved developability. PMID:23188804
Integration methods for molecular dynamics
Leimkuhler, B.J.; Reich, S.; Skeel, R.D.
1996-12-31
Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches. 48 refs., 2 figs.
Dang, Liem X. )
2001-02-01
In this work, we used molecular dynamics techniques and mean force approaches to compute the ion transfer free energy for the water/dichloromethane liquid-liquid interface. We used polarizable potential models to describe the interactions among the species, and both forward and reverse directions were carried out to estimate the error bar of the computed free energy results. Based on the results of our calculations, we have proposed a mechanism that describes the transport of a chlorine ion across the interface. The computed ion transfer free energy is 14 & No.177; 2 kcal/mol, which is in reasonable agreement with the experimentally reported value of 10 kcal/mol. A smooth transition from the aqueous phase to the non-aqueous phase on the free energy profile clearly indicates that the ion transfer mechanism is a nonactivated process. The computed hydration number for the chlorine ion indicates that some water molecules are associated with the ion inside the non-aqueous phase. This result is in excellent agreement with the experimental interpretation of the ion transfer mechanism reported recently by Osakai et al. (J. Phys. Chem. 1997, 101, 8341).
Abriata, Luciano A.; Dal Peraro, Matteo
2015-01-01
Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027
Patel, Sachin; Joshi, Deepti; Soni, Rani; Sharma, Drista; Bhatt, Tarun Kumar
2016-06-01
Millions of deaths occur every year due to malaria. Growing resistance against existing drugs for treatment of malaria has exaggerated the problem further. There is an intense demand of identifying drug targets in malaria parasite. PfPRL-PTP protein is PRL group of phosphatase, and one of the interesting drug targets being involved in three important pathways of malaria parasite (secretion, phosphorylation, and prenylation). Therefore, in this study, we have modeled three-dimensional structure of PfPRL-PTP followed by validation of 3D structure using RAMPAGE, verify3D, and other structure validation tools. We could identify 12 potential inhibitory compounds using in silico screening of NCI library against PfPRL-PTP with Glide. The molecular dynamics simulation was also performed using GROMACS on PfPRL-PTP model alone and PfPRL-PTP-inhibitor complex. This study of identifying potential drug-like molecules would add up to the process of drug discovery against malaria parasite. PMID:26313238
Molecular Dynamics of Acetylcholinesterase
Shen, T Y.; Tai, Kaihsu; Henchman, Richard H.; Mccammon, Andy
2002-06-01
Molecular dynamics simulations are leading to a deeper understanding of the activity of the enzyme acetylcholinesterase. Simulations have shown how breathing motions in the enzyme facilitate the displacement of substrate from the surface of the enzyme to the buried active site. The most recent work points to the complex and spatially extensive nature of such motions and suggests possible modes of regulation of the activity of the enzyme.
Yuan, Fang; Wang, Shihu; Larson, Ronald G
2015-02-01
We calculate potentials of mean force (PMFs) and mean first passage times for a surfactant to escape a micelle, for both ionic sodium dodecyl sulfate (SDS) and nonionic ethoxylated alcohol (C12E5) micelles using both atomistic and coarse-grained molecular dynamics (MD) simulations. The PMFs are obtained by umbrella sampling and used in a Smoluchowski first-passage-time theory to obtain the times for a surfactant to escape a micelle. The calculated mean first passage time for an SDS molecule to break away from a micelle (with an aggregation number of 60) is around 2 μs, which is consistent with previous experimental measurements of the "fast relaxation time" for exchange of surfactants between the micellar phase and the bulk solvent. The corresponding escape time calculated for a nonionic ethoxylated alcohol C12E5, with the same tail length as SDS, is 60 μs, which is significantly longer than for SDS primarily because the PMF for surfactant desorption is about 3kT smaller than for C12E5. We also show that two coarse-grained (CG) force fields, MARTINI and SDK, give predictions similar to the atomistic CHARMM force field for the nonionic C12E5 surfactant, but for the ionic SDS surfactant, the CG simulations give a PMF similar to that obtained with CHARMM only if long-range electrostatic interactions are included in the CG simulations, rather than using a shifted truncated electrostatic interaction. We also calculate that the mean first passage time for an SDS and a C12E5 to escape from a latex binder surface is of the order of milliseconds, which is more than 100 times longer than the time for escape from the micelle, indicating that in latex waterborne coatings, SDS and C12E5 surfactants likely bind preferentially to the latex polymer interface rather than form micelles, at least at low surfactant concentrations. PMID:25560633
Islam, Md Ataul; Pillay, Tahir S
2016-02-23
Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role in the pharmaceutical industry for lead identification and optimization. In the current study, we analysed the binding preferences and inhibitory activity of HIV-integrase inhibitors using pharmacoinformatics. A set of 30 compounds were selected as the training set of a total 540 molecules for pharmacophore model generation. The final model was validated by statistical parameters and further used for virtual screening. The best mapped model (R = 0.940, RMSD = 2.847, Q(2) = 0.912, se = 0.498, Rpred(2) = 0.847 and rm(test)(2) = 0.636) explained that two hydrogen bond acceptor and one aromatic ring features were crucial for the inhibition of HIV-integrase. From virtual screening, initial hits were sorted using a number of parameters and finally two compounds were proposed as promising HIV-integrase inhibitors. Drug-likeness properties of the final screened compounds were compared to FDA approved HIV-integrase inhibitors. HIV-integrase structure in complex with the most active and final screened compounds were subjected to 50 ns molecular dynamics (MD) simulation studies to check comparative stability of the complexes. The study suggested that the screened compounds might be promising HIV-integrase inhibitors. The new chemical entities obtained from the NCI database will be subjected to experimental studies to confirm potential inhibition of HIV integrase. PMID:26809073
Molecular electrostatic potentials by systematic molecular fragmentation
Reid, David M.; Collins, Michael A.
2013-11-14
A simple method is presented for estimating the molecular electrostatic potential in and around molecules using systematic molecular fragmentation. This approach estimates the potential directly from the electron density. The accuracy of the method is established for a set of organic molecules and ions. The utility of the approach is demonstrated by estimating the binding energy of a water molecule in an internal cavity in the protein ubiquitin.
Multiscale reactive molecular dynamics
NASA Astrophysics Data System (ADS)
Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.
2012-12-01
Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.
Multiscale reactive molecular dynamics
Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.
2012-01-01
Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062
Interactive molecular dynamics
NASA Astrophysics Data System (ADS)
Schroeder, Daniel V.
2015-03-01
Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.
Sousa, Sérgio F; Coimbra, João T S; Paramos, Diogo; Pinto, Rita; Guimarães, Rodrigo S; Teixeira, Vitor; Fernandes, Pedro A; Ramos, Maria J
2013-02-01
Protein farnesyltransferase (FTase) is an important target in many research fields, more markedly so in cancer investigation since several proteins known to be involved in human cancer development are thought to serve as substrates for FTase and to require farnesylation for proper biological activity. Several FTase inhibitors (FTIs) have advanced into clinical testing. Nevertheless, despite the progress in the field several functional and mechanistic doubts on the FTase catalytic activity have persisted. This work provides some crucial information on this important enzyme by describing the application of molecular dynamics simulations using specifically designed molecular mechanical parameters for a variety of 22 CaaX peptides known to work as natural substrates or inhibitors for this enzyme. The study involves a comparative analysis of several important molecular aspects, at the mechanistic level, of the behavior of substrates and inhibitors at the dynamic level, including the behavior of the enzyme and peptides, as well as their interaction, together with the effect of the solvent. Properties evaluated include the radial distribution function of the water molecules around the catalytically important zinc metal atom and cysteine sulfur of CaaX, the conformations of the substrate and inhibitor and the corresponding RMSF values, critical hydrogen bonds, and several catalytically relevant distances. These results are discussed in light of recent experimental and computational evidence that provides new insights into the activity of this enzyme. PMID:23011608
Molecular dynamics simulation of benzene
NASA Astrophysics Data System (ADS)
Trumpakaj, Zygmunt; Linde, Bogumił B. J.
2016-03-01
Intermolecular potentials and a few models of intermolecular interaction in liquid benzene are tested by Molecular Dynamics (MD) simulations. The repulsive part of the Lennard-Jones 12-6 (LJ 12-6) potential is too hard, which yields incorrect results. The exp-6 potential with a too hard repulsive term is also often used. Therefore, we took an expa-6 potential with a small Gaussian correction plus electrostatic interactions. This allows to modify the curvature of the potential. The MD simulations are carried out in the temperature range 280-352 K under normal pressure and at experimental density. The Rayleigh scattering of depolarized light is used for comparison. The results of MD simulations are comparable with the experimental values.
Molecular Dynamics Calculations
NASA Technical Reports Server (NTRS)
1996-01-01
The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching
2016-01-01
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching
2016-01-01
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951
Dynamic fracture toughness determined using molecular dynamics
Swadener, J. G.; Baskes, M. I.; Nastasi, Michael Anthony,
2004-01-01
Molecular dynamics (MD) simulations of fracture in crystalline silicon are conducted in order to determine the dynamic fracture toughness. The MD simulations show how the potential energy released during fracture is partitioned into surface energy, energy stored in defects and kinetic energy. First, the MD fracture simulations are shown to produce brittle fracture and be in reasonable agreement with experimental results. Then dynamic hcture toughness is calculated as the sum of the surface energy and the energy stored as defects directly from the MD models. Models oriented to produce fracture on either (111) or (101) planes are used. For the (101) fracture orientation, equilibrium crack speeds of greater than 80% of the Rayleigh wave speed are obtained. Crack speeds initially show a steep increase with increasing energy release rate followed by a much more gradual increase. No plateau in crack speed is observed for static energy release rates up to 20 J/m{sup 2}. At the point where the change in crack speed behavior occur, the dynamic fracture toughness (J{sub d}) is still within 10% of two times the surface energy (2{gamma}{sub 0}) and changing very slowly. From these MD simulations, it appears that the change in crack speed behavior is due to a change in the kinetic energy generation during dynamic fracture. In addition, MD simulations of facture in silicon with defects were conducted. The addition of defects increases the inelastic dissipation and the energy stored in defects.
Molecular dynamics simulations
Alder, B.J.
1985-07-01
The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs.
VMD: visual molecular dynamics.
Humphrey, W; Dalke, A; Schulten, K
1996-02-01
VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web. PMID:8744570
N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan
2015-01-01
The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment. PMID:26252490
Torres, Rodrigo; Swift, Robert V.; Chim, Nicholas; Wheatley, Nicole; Lan, Benson; Atwood, Brian R.; Pujol, Céline; Sankaran, Banu; Bliska, James B.; Amaro, Rommie E.; Goulding, Celia W.
2011-01-01
Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the role of RipA in
Scalable Molecular Dynamics with NAMD
Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus
2008-01-01
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654
Multisurface Adiabatic Reactive Molecular Dynamics.
Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus
2014-04-01
Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356
Floating orbital molecular dynamics simulations.
Perlt, Eva; Brüssel, Marc; Kirchner, Barbara
2014-04-21
We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated. PMID:24600690
Malathi, Kullappan; Ramaiah, Sudha
2016-06-01
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic bacterium that frequently causes nosocomial infections. New generation cephalosporins and β-lactams along with inhibitors are used for the treatment of opportunistic bacterial infections. The indiscriminate use of antibiotics has led to the emergence of bacterial resistance. Carbapenem class of antibiotics like imipenem and meropenem are currently the final line of antibiotics for the treatment of infections caused by multidrug-resistant P. aeruginosa. Recent reports indicate that P. aeruginosa has acquired resistance to imipenem through a class D oxacillinase-OXA-10 extended spectrum β-lactamase (ESBL). OXA-10 ESBL is encoded by the gene blaOXA-10. There is an urgent need to develop OXA-10 ESBL non-hydrolysing inhibitors. We have attempted to locate OXA-10 ESBL inhibitors by performing molecular docking and molecular dynamics studies on OXA-10 ESBL with imipenem analogues from ZINC database as well as employing imipenem to understand the mechanism of resistance at the structural level. Our in-silico analysis of imipenem analogues reveals that ZINC44672480 has ideal characteristics for a potent OXA-10 ESBL non-hydrolysing inhibitor. We believe that the results from our study will provide valuable insights into the mechanism of drug resistance and aid in designing potent inhibitors against OXA-10 ESBL producing P. aeruginosa. PMID:27234361
Sarman, Sten; Laaksonen, Aatto
2015-02-01
Molecular dynamics simulations of planar elongational flow in a nematic liquid crystal model system based on the Gay-Berne fluid were undertaken by applying the SLLOD equations of motion with an elongational velocity field or strain rate. In order to facilitate the simulation, Kraynik-Reinelt periodic boundary conditions allowing arbitrarily long simulations were used. A Lagrangian constraint algorithm was utilized to fix the director at different angles relative to the elongation direction, so that the various pressure tensor elements could be calculated as a function of this angle. This made it possible to obtain accurate values of the shear viscosities which were found to agree with results previously obtained by shear flow simulations. The torque needed to fix the director at various angles relative to the elongation direction was evaluated in order to determine the stable orientation of the director, where this torque is equal to zero. This orientation was found to be parallel to the elongation direction. It was also noted that the irreversible entropy production was minimal when the director attained this orientation. Since the simulated system was rather large and fairly long simulation runs were undertaken it was also possible to study the cross coupling between the strain rate and the order tensor. It turned out to be very weak at low strain rates but at higher strain rates it could lead to break down of the liquid crystalline order. PMID:25523414
Nonadiabatic Molecular Dynamics with Trajectories
NASA Astrophysics Data System (ADS)
Tavernelli, Ivano
2012-02-01
In the mixed quantum-classical description of molecular systems, only the quantum character of the electronic degrees of freedom is considered while the nuclear motion is treated at a classical level. In the adiabatic case, this picture corresponds to the Born-Oppenheimer limit where the nuclei move as point charges on the potential energy surface (PES) associated with a given electronic state. Despite the success of this approximation, many physical and chemical processes do not fall in the regime where nuclei and electrons can be considered decoupled. In particular, most photoreactions pass through regions of the PES in which electron-nuclear quantum interference effects are sizeable and often crucial for a correct description of the phenomena. Recently, we have developed a trajectory-based nonadiabatic molecular dynamics scheme that describes the nuclear wavepacket as an ensemble of particles following classical trajectories on PESs derived from time-dependent density functional theory (TDDFT) [1]. The method is based on Tully's fewest switches trajectories surface hopping (TSH) where the nonadiabatic coupling elements between the different potential energy surfaces are computed on-the-fly as functionals of the ground state electron density or, equivalently, of the corresponding Kohn-Sham orbitals [2]. Here, we present the theoretical fundamentals of our approach together with an extension that allows for the direct coupling of the dynamics to an external electromagnetic field [3] as well as to the external potential generated by the environment (solvent effects) [4]. The method is applied to the study of the photodissociation dynamics of simple molecules in gas phase and to the description of the fast excited state dynamics of molecules in solution (in particular Ruthenium (II) tris(bipyridine) in water). [4pt] [1] E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett., 98, (2007) 023001. [0pt] [2] Tavernelli I.; Tapavicza E.; Rothlisberger U., J. Chem
Molecular photoionization dynamics
Dehmer, Joseph L.
1982-05-01
This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Chen, Jun; Zhang, Dong H.
2015-09-01
The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li et al., J. Chem. Phys. 142, 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300 K ≤ T ≤ 1000 K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures.
Dynamic molecular crystals with switchable physical properties.
Sato, Osamu
2016-06-21
The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090
Dynamic-domain-decomposition parallel molecular dynamics
NASA Astrophysics Data System (ADS)
Srinivasan, S. G.; Ashok, I.; Jônsson, Hannes; Kalonji, Gretchen; Zahorjan, John
1997-05-01
Parallel molecular dynamics with short-range forces can suffer from load-imbalance problems and attendant performance degradation due to density variations in the simulated system. In this paper, we describe an approach to dynamical load balancing, enabled by the Ādhāra runtime system. The domain assigned to each processor is automatically and dynamically resized so as to evenly distribute the molecular dynamics computations across all the processors. The algorithm was tested on an Intel Paragon parallel computer for two and three-dimensional Lennard-Jones systems containing 99 458 and 256000 atoms, respectively, and using up to 256 processors. In these benchmarks, the overhead for carrying out the load-balancing operations was found to be small and the total computation time was reduced by as much as 50%.
NASA Astrophysics Data System (ADS)
Barone, Luciano Maria; Simonazzi, Riccardo; Tenenbaum, Alexander
1995-09-01
We have studied portability, efficiency and accuracy of a standard Molecular Dynamics simulation on the SIMD parallel computer APE100. Computing speed performance and physical system size range have been analyzed and compared with those of a conventional computer. Short range and long range potentials have been considered, and the comparative advantage of different simulation approaches has been assessed. For long range potentials, APE turns out to be faster than a conventional computer; large systems can be conveniently simulated using either the cloning approach (up to ˜ 10 5 particles) or a domain decomposition with the systolic method. In the case of short range potentials and systems with diffusion (like a liquid), APE is convenient only when using a large number of processors. In a special case (a crystal without diffusion), a specific domain decomposition technique with frames makes APE advantageous for intermediate and large systems. Using the latter technique we have studied in detail the effect of different numerical error sources, and compared the accuracy of APE with that of a conventional computer.
Nanoindentation of Zr by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Lu (芦子哲), Zizhe; Chernatynskiy, Aleksandr; Noordhoek, Mark J.; Sinnott, Susan B.; Phillpot, Simon R.
2015-12-01
Molecular dynamics simulations of nanoindentation are used to study the deformation behaviors of single crystal Zr for four different surface orientations. The comparison of results for two different potentials, an embedded atom method potential and a charged optimized many body potential, reveals the influence of stable and unstable stacking fault energy on dislocation behaviors under nanoindentation. The load-displacement curve, hardness and deformation behaviors of the various surface orientations Zr are compared and the elastic and plastic deformation behaviors are analyzed.
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Struyve, Ward
2015-01-01
Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave function—the quantum potential—together with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.
Larcher, G.; Tran, H. Schwell, M.; Chelin, P.; Landsheere, X.; Hartmann, J.-M.; Hu, S.-M.
2014-02-28
Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.
Semiclassical guided optimal control of molecular dynamics
Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.
2005-10-15
An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Lin, Hai
2009-05-01
Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.
Zhang, Yan; Lin, Hai
2009-10-29
Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6beta-hydrogen abstraction and the 6beta-d(1)-testosterone 6beta-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state. PMID:19480428
Molecular dynamics and protein function
Karplus, M.; Kuriyan, J.
2005-01-01
A fundamental appreciation for how biological macromolecules work requires knowledge of structure and dynamics. Molecular dynamics simulations provide powerful tools for the exploration of the conformational energy landscape accessible to these molecules, and the rapid increase in computational power coupled with improvements in methodology makes this an exciting time for the application of simulation to structural biology. In this Perspective we survey two areas, protein folding and enzymatic catalysis, in which simulations have contributed to a general understanding of mechanism. We also describe results for the F1 ATPase molecular motor and the Src family of signaling proteins as examples of applications of simulations to specific biological systems. PMID:15870208
A sampling of molecular dynamics
NASA Astrophysics Data System (ADS)
Sindhikara, Daniel Jon
The sheer vastness of the number of computations required to simulate a biological molecule puts incredible pressure on algorithms to be efficient while maintaining sufficient accuracy. This dissertation summarizes various projects whose purposes address the large span of types of problems in molecular dynamics simulations of biological systems including: increasing efficiency, measuring convergence, avoiding pitfalls, and an application and analysis of a biological system. Chapters 3 and 4 deal with an enhanced sampling algorithm called "replica exchange molecular dynamics" which is designed to speed-up molecular dynamics simulations. The optimization of a key parameter of these simulations is analyzed. In these successive projects, it was found conclusively that maximizing "exchange attempt frequency" is the most efficient way to run a replica exchange molecular dynamics simulation. Chapter 5 describes an enhanced metric for convergence in parallel simulations called the normalized ergodic measure. The metric is applied to several properties for several replica exchange simulations. Advantages of this metric over other methods are described. Chapter 6 describes the implementation and optimization of an enhanced sampling algorithm similar to replica exchange molecular dynamics called multicanonical algorithm replica exchange molecular dynamics. The algorithm was implemented into a biomolecular simulation suite called AMBER. Additionally several parameters were analyzed and optimized. In Chapter 7, a pitfall in molecular dynamics is observed in biological systems that is caused by negligent use of a simulation's "thermostat". It was found that if the same pseudorandom number seed were used for multiple systems, they eventually synchronize. In this project, synchronization was observed in biological molecules. Various negative effects including corruption of data are pointed out. Chapter 8 describes molecular dynamics simulation of NikR, a homotetrameric nickel
Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.
1999-05-21
The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.
NASA Astrophysics Data System (ADS)
Vasumathi, V.; Cordeiro, Maria Natalia D. S.
2014-03-01
The structures of self-assembled monolayers (SAMs) of short (methyl) and long (hexyl) chain alkyl thiols on the clean gold (111) surface were modelled using for the Au-S interactions either the reactive ReaxFF potential or the well known non-reactive Morse potential, while for the Au-Au interactions either the ReaxFF potential or an embedded-atom method (EAM). Analysis of the MD trajectories of possible SAM structures suggests that disordering of interfacial Au atoms is definitely driven by the gold-sulphur interactions. Our MD results reveal a novel structure where two methanethiol molecules are bound to a gold adatom that has been lifted from the surface at 300 K, and the same kind of RS-Au-SR motif was also observed for hexanethiol at 600 K but not at 300 K. What is more, the above motif is only observed for the reactive ReaxFF potential. Moreover, these results are in clear agreement with recent experiments and more costly first principles-based MD simulations. These findings strongly support the use of reactive potentials such as ReaxFF for gathering an accurate description of Au-S interactions in inexpensive classical MD simulations.
Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi
2016-01-01
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851
Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi
2016-01-01
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851
Bernardino, Kalil; de Moura, André F
2015-10-13
A series of atomistic molecular dynamics simulations were performed in the present investigation to assess the spontaneous formation of surfactant monolayers of sodium octanoate at the water-vacuum interface. The surfactant surface coverage increased until a saturation threshold was achieved, after which any further surfactant addition led to the formation of micellar aggregates within the solution. The saturated films were not densely packed, as might be expected for short-chained surfactants, and all films regardless of the surface coverage presented surfactant molecules with the same ordering pattern, namely, with the ionic heads toward the aqueous solution and the tails lying nearly parallel to the interface. The major contributions to the electrostatic surface potential came from the charged heads and the counterion distribution, which nearly canceled out each other. The balance between the oppositely charged ions rendered the electrostatic contributions from water meaningful, amounting to ca. 10% of the contributions arising from the ionic species. And even the aliphatic tails, whose atoms bear relatively small partial atomic charges as compared to the polar molecules and molecular fragments, contributed with ca. 20% of the total electrostatic surface potential of the systems under investigation. Although the aliphatic tails were not so orderly arranged as in a compact film, the C-H bonds assumed a preferential orientation, leading to an increased contribution to the electrostatic properties of the interface. The most prominent feature arising from the partitioning of the electrostatic potential into individual contributions was the long-range ordering of the water molecules. This ordering of the water molecules produced a repulsive dipole-dipole interaction between the two interfaces, which increased with the surface coverage. Only for a water layer wider than 10 nm was true bulk behavior observed, and the repulsive dipole-dipole interaction faded away. PMID
Ramar, Vanajothi; Pappu, Srinivasan
2016-06-01
Nuclear factor kappa B (NF-κB) is a transcription factor, plays a crucial role in the regulation of various physiological processes such as differentiation, cell proliferation and apoptosis. It also coordinates the expression of various soluble proinflammatory mediators like cytokines and chemokines. The 1, 8-dihydroxy-4-methylanthracene-9, 10-dione (DHMA) was isolated from Luffa acutangala and its in vitro cytotoxic activity against NCI-H460 cells was reported earlier. It also effectively induces apoptosis through suppressing the expression NF-κB protein. Based on experimental evidence, the binding affinity of compound 1 with NF-κB p50 (monomer) and NF-κB-DNA was investigated using molecular docking and its stability was confirmed through molecular dynamic simulation. The reactivity of the compound was evaluated using density functional theory (DFT) calculation. From the docking results, we noticed that the hydroxyl group of DHMA forms hydrogen bond interactions with polar and negatively charged amino acid Tyr57 and Asp239 and the protein-ligand complex was stabilized through pi-pi stacking with the help of polar amino acid His114, which plays a key role in binding of NF-κB to DNA at a site of DNA-binding region (DBR). The result indicates that the isolated bioactive compound DHMA might have altered the binding affinity between DNA and NF-κB. These findings suggest that potential use of DHMA in cancer chemoprevention and therapeutics. PMID:27061144
Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G.; Gao, Jiali
2010-01-01
A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å3, and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born–Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from −0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible. PMID:20490369
Molecular dynamics investigation of nanoscale cavitation dynamics
NASA Astrophysics Data System (ADS)
Sasikumar, Kiran; Keblinski, Pawel
2014-12-01
We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ˜90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ˜20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.
We have explored the degree to which an intermolecular potential for the explosive hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) is transferable for predictions of crystal structures (within the approximation of rigid molecules) of a similar chemical system,in this case, polymo...
Molecular dynamics simulations of weak detonations.
Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie
2011-12-01
Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal. PMID:22304055
NASA Astrophysics Data System (ADS)
Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng
2015-12-01
To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are
Fiftieth anniversary of molecular dynamics
NASA Astrophysics Data System (ADS)
Melker, Alexander I.
2007-04-01
The history of computer application in physics for solving nonlinear problems is considered. Examples from different branches of condensed matter physics (nonlinear vibrations of anharmonic chains of atoms, dynamics of radiation damage of crystals, deformation and fracture of crystals) are given. A new line of investigation and the results obtained in the field of computer simulation of physical processes realized in the department of metal physics and computer technologies in materials science are considered. This line incorporates both a study of self-organization and properties of new materials (fullerenes, carbon nanotubes) and biological objects by molecular dynamics technique as well as the development of new computer simulation methods.
Available Instruments for Analyzing Molecular Dynamics Trajectories
Likhachev, I. V.; Balabaev, N. K.; Galzitskaya, O. V.
2016-01-01
Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed. PMID:27053964
Molecular dynamics on vector computers
NASA Astrophysics Data System (ADS)
Sullivan, F.; Mountain, R. D.; Oconnell, J.
1985-10-01
An algorithm called the method of lights (MOL) has been developed for the computerized simulation of molecular dynamics. The MOL, implemented on the CYBER 205 computer, is based on sorting and reformulating the manner in which neighbor lists are compiled, and it uses data structures compatible with specialized vector statements that perform parallel computations. The MOL is found to reduce running time over standard methods in scalar form, and vectorization is shown to produce an order-of-magnitude reduction in execution time.
Potential molecular wires and molecular alligator clips
NASA Astrophysics Data System (ADS)
Schumm, Jeffry S.; Pearson, Darren L.; Jones, LeRoy, II; Hara, Ryuichiro; Tour, James M.
1996-12-01
The synthesis of oligo(2-ethylphenylene-ethynylene)s, oligo(2-(0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s, and oligo(3-ethylthiophene-ethynylene)s is described via an iterative divergent convergent approach. Synthesized were the monomer, dimer, tetramer, octamer and 16-mer of the oligo(3-ethylthiophene-ethynylene)s and oligo(2-0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s. The 16-mers are 100 Å and 128 Å long, respectively. At each stage in the iteration, the length of the framework doubles. Only three sets of reaction conditions are needed for the entire iterative synthetic sequence; an iodination, a protodesilylation, and a Pd/Cu-catalyzed cross coupling. The oligomers were characterized spectroscopically and by mass spectrometry. The optical properties are presented which show the stage of optical absorbance saturation. The size exclusion chromatography values for the number average weights, relative to polystyrene, illustrate the tremendous differences in the hydrodynamic volume of these rigid rod oligomers versus the random coils of polystyrene. These differences become quite apparent at the octamer stage. The preparation of thiol-protected end groups is described. These may serve as molecular alligator clips for adhesion to gold surfaces. These oligomers may act as molecular wires in molecular electronic devices and they also serve as useful models for understanding related bulk polymers.
Structure and dynamics of complex liquid water: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
S, Indrajith V.; Natesan, Baskaran
2015-06-01
We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.
Molecular dynamics for dense matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi
2012-08-01
We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Chen, Jun; Zhang, Dong H.
2016-04-01
To fast and accurately compute rate coefficients of the H/D + CH4 → H2/HD + CH3 reactions, we propose a segmented strategy for fitting suitable potential energy surface (PES), on which ring-polymer molecular dynamics (RPMD) simulations are performed. On the basis of recently developed permutation invariant polynomial neural-network approach [J. Li et al., J. Chem. Phys. 142, 204302 (2015)], PESs in local configuration spaces are constructed. In this strategy, global PES is divided into three parts, including asymptotic, intermediate, and interaction parts, along the reaction coordinate. Since less fitting parameters are involved in the local PESs, the computational efficiency for operating the PES routine is largely enhanced by a factor of ˜20, comparing with that for global PES. On interaction part, the RPMD computational time for the transmission coefficient can be further efficiently reduced by cutting off the redundant part of the child trajectories. For H + CH4, good agreements among the present RPMD rates and those from previous simulations as well as experimental results are found. For D + CH4, on the other hand, qualitative agreement between present RPMD and experimental results is predicted.
Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng
2016-01-14
To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. PMID:26658834
Molecular Multipole Potential Energy Functions for Water.
Tan, Ming-Liang; Tran, Kelly N; Pickard, Frank C; Simmonett, Andrew C; Brooks, Bernard R; Ichiye, Toshiko
2016-03-01
Water is the most common liquid on this planet, with many unique properties that make it essential for life as we know it. These properties must arise from features in the charge distribution of a water molecule, so it is essential to capture these features in potential energy functions for water to reproduce its liquid state properties in computer simulations. Recently, models that utilize a multipole expansion located on a single site in the water molecule, or "molecular multipole models", have been shown to rival and even surpass site models with up to five sites in reproducing both the electrostatic potential around a molecule and a variety of liquid state properties in simulations. However, despite decades of work using multipoles, confusion still remains about how to truncate the multipole expansions efficiently and accurately. This is particularly important when using molecular multipole expansions to describe water molecules in the liquid state, where the short-range interactions must be accurate, because the higher order multipoles of a water molecule are large. Here, truncation schemes designed for a recent efficient algorithm for multipoles in molecular dynamics simulations are assessed for how well they reproduce results for a simple three-site model of water when the multipole moments and Lennard-Jones parameters of that model are used. In addition, the multipole analysis indicates that site models that do not account for out-of-plane electron density overestimate the stability of a non-hydrogen-bonded conformation, leading to serious consequences for the simulated liquid. PMID:26562223
Simon, Aude; Iftner, Christophe; Mascetti, Joëlle; Spiegelman, Fernand
2015-03-19
The present theoretical study aims at investigating the effects of an argon matrix on the structures, energetics, dynamics, and infrared (IR) spectra of small water clusters (H2O)n (n = 1-6). The potential energy surface is obtained from a hybrid self-consistent charge density functional-based tight binding/force-field approach (SCC-DFTB/FF) in which the water clusters are treated at the SCC-DFTB level and the matrix is modeled at the FF level by a cluster consisting of ∼340 Ar atoms with a face centered cubic (fcc) structure, namely (H2O)n/Ar. With respect to a pure FF scheme, this allows a quantum description of the molecular system embedded in the matrix, along with all-atom geometry optimization and molecular dynamics (MD) simulations of the (H2O)n/Ar system. Finite-temperature IR spectra are derived from the MD simulations. The SCC-DFTB/FF scheme is first benchmarked on (H2O)Arn clusters against correlated wave function results and DFT calculations performed in the present work, and against FF data available in the literature. Regarding (H2O)n/Ar systems, the geometries of the water clusters are found to adapt to the fcc environment, possibly leading to intermolecular distortion and matrix perturbation. Several energetical quantities are estimated to characterize the water clusters in the matrix. In the particular case of the water hexamer, substitution and insertion energies for the prism, bag, and cage are found to be lower than that for the 6-member ring isomer. Finite-temperature MD simulations show that the water monomer has a quasifree rotation motion at 13 K, in agreement with experimental data. In the case of the water dimer, the only large-amplitude motion is a distortion-rotation intermolecular motion, whereas only vibration motions around the nuclei equilibrium positions are observed for clusters with larger sizes. Regarding the IR spectra, we find that the matrix environment leads to redshifts of the stretching modes and almost no shift of the
Su, Pin-Chih; Johnson, Michael E
2016-04-01
Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. PMID:26666582
Le, Hung M; Dinh, Thach S; Le, Hieu V
2011-10-13
The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very
Better, Cheaper, Faster Molecular Dynamics
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.
Molecular Dynamics Simulations of Polymers
NASA Astrophysics Data System (ADS)
Han, Jie
1995-01-01
Molecular dynamics (MD) simulations have been undertaken in this work to explore structures and properties of polyethylene (PE), polyisobutylene (PIB), atactic polypropylene (aPP) and atactic polystyrene (aPS). This work has not only demonstrated the reliability of MD simulations by comparing results with available experiments, but more importantly has revealed structure-property relationships on a molecular level for these selected polymers. Structures of these amorphous polymers were characterized by radial distribution functions (RDFs) or scattering profiles, and properties of the polymers studied were pressure-volume -temperature (PVT) equation of state, enthalpy, cohesive energy, the diffusion coefficient of methane in the polymer, and glass transition temperature. Good agreement was found for these structures and properties between simulation and experiment. More importantly, the scientific understanding of structure-property relationships was established on a molecular level. In the order of aPP (PE), PIB and aPS, with the chain surface separation or free volume decreasing, the density increases and the diffusion coefficient decreases. Therefore, the effects of changes or modifications in the chemical structure of monomer molecules (substituting pendent hydrogen with methyl or phenyl) on polymeric materials performance were attributed to the effects of molecular chain structure on packing structure, which, in turn, affects the properties of these polymers. Local chain dynamics and relaxation have been studied for bulk PE and aPS. Cooperative transitions occur at second-neighbor bonds for PE, and first-neighbor bonds for aPS due to the role of side groups. The activation energy is a single torsional barrier for overall conformational transitions, and is single torsional barrier plus locally "trapped" barrier for relaxation. Temperature dependence is Arrhenius for transition time, and is WLF for relaxation time. The mean correlation times derived from
Molecular dynamics at constant Cauchy stress
NASA Astrophysics Data System (ADS)
Miller, Ronald E.; Tadmor, Ellad B.; Gibson, Joshua S.; Bernstein, Noam; Pavia, Fabio
2016-05-01
The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.
Molecular dynamics at constant Cauchy stress.
Miller, Ronald E; Tadmor, Ellad B; Gibson, Joshua S; Bernstein, Noam; Pavia, Fabio
2016-05-14
The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress. PMID:27179471
ADAPTIVE MULTILEVEL SPLITTING IN MOLECULAR DYNAMICS SIMULATIONS*
Aristoff, David; Lelièvre, Tony; Mayne, Christopher G.; Teo, Ivan
2014-01-01
Adaptive Multilevel Splitting (AMS) is a replica-based rare event sampling method that has been used successfully in high-dimensional stochastic simulations to identify trajectories across a high potential barrier separating one metastable state from another, and to estimate the probability of observing such a trajectory. An attractive feature of AMS is that, in the limit of a large number of replicas, it remains valid regardless of the choice of reaction coordinate used to characterize the trajectories. Previous studies have shown AMS to be accurate in Monte Carlo simulations. In this study, we extend the application of AMS to molecular dynamics simulations and demonstrate its effectiveness using a simple test system. Our conclusion paves the way for useful applications, such as molecular dynamics calculations of the characteristic time of drug dissociation from a protein target. PMID:26005670
2015-01-01
Solute sampling of explicit bulk-phase aqueous environments in grand canonical (GC) ensemble simulations suffer from poor convergence due to low insertion probabilities of the solutes. To address this, we developed an iterative procedure involving Grand Canonical-like Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Each iteration involves GCMC of both the solutes and water followed by MD, with the excess chemical potential (μex) of both the solute and the water oscillated to attain their target concentrations in the simulation system. By periodically varying the μex of the water and solutes over the GCMC-MD iterations, solute exchange probabilities and the spatial distributions of the solutes improved. The utility of the oscillating-μex GCMC-MD method is indicated by its ability to approximate the hydration free energy (HFE) of the individual solutes in aqueous solution as well as in dilute aqueous mixtures of multiple solutes. For seven organic solutes: benzene, propane, acetaldehyde, methanol, formamide, acetate, and methylammonium, the average μex of the solutes and the water converged close to their respective HFEs in both 1 M standard state and dilute aqueous mixture systems. The oscillating-μex GCMC methodology is also able to drive solute sampling in proteins in aqueous environments as shown using the occluded binding pocket of the T4 lysozyme L99A mutant as a model system. The approach was shown to satisfactorily reproduce the free energy of binding of benzene as well as sample the functional group requirements of the occluded pocket consistent with the crystal structures of known ligands bound to the L99A mutant as well as their relative binding affinities. PMID:24932136
Radiation in molecular dynamic simulations
Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M
2008-10-13
Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.
The "Collisions Cube" Molecular Dynamics Simulator.
ERIC Educational Resources Information Center
Nash, John J.; Smith, Paul E.
1995-01-01
Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)
Frank, Martin; Gutbrod, Peter; Hassayoun, Chokri; von Der Lieth, Claus-W
2003-10-01
Molecular dynamics is a rapidly developing field of science and has become an established tool for studying the dynamic behavior of biomolecules. Although several high quality programs for performing molecular dynamic simulations are freely available, only well-trained scientists are currently able to make use of the broad scientific potential that molecular dynamic simulations offer to gain insight into structural questions at an atomic level. The "Dynamic Molecules" approach is the first internet portal that provides an interactive access to set up, perform and analyze molecular dynamic simulations. It is completely based on standard web technologies and uses only publicly available software. The aim is to open molecular dynamics techniques to a broader range of users including undergraduate students, teachers and scientists outside the bioinformatics field. The time-limiting factors are the availability of free capacity on the computing server to run the simulations and the time required to transport the history file through the internet for the animation mode. The interactive access mode of the portal is acceptable for animations of molecules having up to about 500 atoms. PMID:12908101
Molecular dynamics studies of aromatic hydrocarbon liquids
McLaughlin, E.; Gupta, S.
1990-01-01
This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at the geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules.
A concurrent multiscale micromorphic molecular dynamics
Li, Shaofan Tong, Qi
2015-04-21
In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.
Molecular Dynamics Simulation of Shock Induced Detonation
NASA Astrophysics Data System (ADS)
Tomar, Vikas; Zhou, Min
2004-07-01
This research focuses on molecular dynamics (MD) simulation of shock induced detonation in Fe2O3+Al thermite mixtures. A MD model is developed to simulate non-equilibrium stress-induced reactions. The focus is on establishing a criterion for reaction initiation, energy content and rate of energy release as functions of mixture and reinforcement characteristics. A cluster functional potential is proposed for this purpose. The potential uses the electronegativity equalization to account for changes in the charge of different species according to local environment. Parameters in the potential are derived to fit to the properties of Fe, Al, Fe2O3, and Al2O3. NPT MD simulations are carried out to qualitatively check the energetics of the forward (Fe2O3+Al) as well as backward (Al2O3+Fe) thermite reactions. The results show that the potential can account for the energetics of thermite reactions.
Buckybomb: Reactive Molecular Dynamics Simulation.
Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V
2015-03-01
Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material. PMID:26262672
Potential formulation of sleep dynamics
NASA Astrophysics Data System (ADS)
Phillips, A. J. K.; Robinson, P. A.
2009-02-01
A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.
Spectroscopy and molecular dynamics in nonpolar fluids
NASA Astrophysics Data System (ADS)
Everitt, Karl Frederick
This thesis considers the mechanisms by which molecular dynamics in nonpolar liquids influences solvation dynamics and vibrational energy relaxation. We use semiclassical molecular dynamics simulations to calculate photon echo signals for two simple fluids. We demonstrate that two new observables are directly related to the relevant molecular quantity, the frequency- frequency time correlation function (TCF), in contrast to the commonly measured 3PEPS, which cannot be simply related to this TCF at short times. We also present a semianalytic photon echo theory, based on an ansatz which determines the full time dependence from the short time expansion coefficients of the TCF. We demonstrate that this theory accurately predicts most photon echo observables, even when the theory's gaussian approximation is not accurate. We also consider vibrational energy relaxation (VER) in liquid oxygen. Using semiclassical molecular dynamics simulations and an intermolecular potential from the literature, we evaluate the required quantity (the spectral density of a certain force-force TCF) using the same ansatz described above. We demonstrate numerically that this procedure is accurate. Approximately relating this semiclassical rate to the fully quantum mechanical VER rate, using one of the more accurate ``quantum corrections'' available in the literature, yields a result which is in order-of-magnitude agreement with the experimental VER rate. We also calculate the VER rate for liquid oxygen/argon mixtures. The rotations of the solvent near a vibrationally excited molecule, and of that molecule itself, have important consequences for the short-time dynamics of the force-force TCF. We propose a simple statistical model which quantitatively explains the mole- fraction dependence of the observed VER rate. Next, we demonstrate that a newly-developed model for oxygen very accurately describes the liquid, by comparing to experimental measures of microscopic structure and dynamics. We also
Molecular dynamics simulation of ice XII
NASA Astrophysics Data System (ADS)
Borzsák, István; Cummings, Peter T.
1999-02-01
Molecular dynamics simulations have been performed on the newly discovered metastable ice XII. This new crystalline ice phase [C. Lobban, J.L. Finney, W.F. Kuhs, Nature (London) 391 (1998) 268] is proton-disordered. Thus 90 possible configurations of the unit cell can be constructed which differ only in the orientations of the water molecules. The simulation used the TIP4P potential model for water at constant temperature and density. About one-quarter of the initial configurations did not melt in the course of the simulation. This result is supportive of the experimental structure and also demonstrates the ability of this water model to study ice phases.
Crystallization of nickel nanoclusters by molecular dynamics
NASA Astrophysics Data System (ADS)
Chamati, H.; Gaminchev, K.
2012-12-01
We investigated the melting properties of bulk nickel and the crystallization of nickel nanocrystals via molecular dynamics using a potential in the framework of the second moment approximation of tight-binding theory. The melting behavior was simulated with the hysteresis approach by subsequently heating and cooling gradually the system over a wide range of temperatures. The crystallization of nickel nanoclusters consisting of 55, 147 and 309 atoms was achieved after repeatedly annealing and quenching the corresponding quasicrystals several times to avoid being trapped in a local energy minimum. The time over which the global minimum was reached was found to increase with the cluster size.
Molecular dynamics of membrane proteins.
Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson
2004-10-01
Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.
Application of optimal prediction to molecular dynamics
Barber IV, John Letherman
2004-12-01
Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.
Nimmanpipug, Piyarat; Khampa, Chalermpon; Lee, Vannajan Sanghiran; Nangola, Sawitree; Tayapiwatana, Chatchai
2011-11-01
We applied molecular dynamics simulations to investigate the binding properties of a designed ankyrin repeat protein, the DARPin-CD4 complex. DARPin 23.2 has been reported to disturb the human immunodeficiency virus (HIV) viral entry process by Schweizer et al. The protein docking simulation was analysed by comparing the specific ankyrin binder (DARPin 23.2) to an irrelevant control (2JAB) in forming a composite with CD4. To determine the binding free energy of both ankyrins, the MM/PBSA and MM/GBSA protocols were used. The free energy decomposition of both complexes were analysed to explore the role of certain amino acid residues in complex configuration. Interestingly, the molecular docking analysis of DARPin 23.2 revealed a similar CD4 interaction regarding the gp120 theoretical anchoring motif. In contrast, the binding of control ankyrin to CD4 occurred at a different location. This observation suggests that there is an advantage to the molecular modification of DARPin 23.2, an enhanced affinity for CD4. PMID:21962990
Symmetry Reduced Dynamics of Charged Molecular Strands
NASA Astrophysics Data System (ADS)
Ellis, David C. P.; Gay-Balmaz, François; Holm, Darryl D.; Putkaradze, Vakhtang; Ratiu, Tudor S.
2010-09-01
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonlocal when the screened Coulomb interactions, or Lennard-Jones potentials between pairs of charges, are included. The nonlocal dynamics is derived in the convective representation of continuum motion by using modified Euler-Poincaré and Hamilton-Pontryagin variational formulations that illuminate the various approaches within the framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The motion equations in the convective representation are shown to arise by a classical Lagrangian reduction associated to the symmetry group of the system. This approach uses the process of affine Euler-Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on phase space. A change of variables allows a direct passage from this classical point of view to the covariant formulation in terms of Lagrange-Poincaré equations of field theory. In another revealing perspective, the convective representation of the nonlocal equations of molecular strand motion is transformed into quaternionic form.
Molecular dynamics at constant temperature and pressure
NASA Astrophysics Data System (ADS)
Toxvaerd, S.
1993-01-01
Algorithms for molecular dynamics (MD) at constant temperature and pressure are investigated. The ability to remain in a regular orbit in an intermittent chaotic regime is used as a criterion for long-time stability. A simple time-centered algorithm (leap frog) is found to be the most stable of the commonly used algorithms in MD. A model of N one-dimensional dimers with a double-well intermolecular potential, for which the distribution functions at constant temperature T and pressure P can be calculated, is used to investigate MD-NPT dynamics. A time-centered NPT algorithm is found to sample correctly and to be very robust with respect to volume scaling.
Stochastic Event-Driven Molecular Dynamics
Donev, Aleksandar Garcia, Alejandro L.; Alder, Berni J.
2008-02-01
A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and interact with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the solvent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of magnitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain.
Langevin stabilization of molecular dynamics
NASA Astrophysics Data System (ADS)
Izaguirre, Jesús A.; Catarello, Daniel P.; Wozniak, Justin M.; Skeel, Robert D.
2001-02-01
In this paper we show the possibility of using very mild stochastic damping to stabilize long time step integrators for Newtonian molecular dynamics. More specifically, stable and accurate integrations are obtained for damping coefficients that are only a few percent of the natural decay rate of processes of interest, such as the velocity autocorrelation function. Two new multiple time stepping integrators, Langevin Molly (LM) and Brünger-Brooks-Karplus-Molly (BBK-M), are introduced in this paper. Both use the mollified impulse method for the Newtonian term. LM uses a discretization of the Langevin equation that is exact for the constant force, and BBK-M uses the popular Brünger-Brooks-Karplus integrator (BBK). These integrators, along with an extrapolative method called LN, are evaluated across a wide range of damping coefficient values. When large damping coefficients are used, as one would for the implicit modeling of solvent molecules, the method LN is superior, with LM closely following. However, with mild damping of 0.2 ps-1, LM produces the best results, allowing long time steps of 14 fs in simulations containing explicitly modeled flexible water. With BBK-M and the same damping coefficient, time steps of 12 fs are possible for the same system. Similar results are obtained for a solvated protein-DNA simulation of estrogen receptor ER with estrogen response element ERE. A parallel version of BBK-M runs nearly three times faster than the Verlet-I/r-RESPA (reversible reference system propagator algorithm) when using the largest stable time step on each one, and it also parallelizes well. The computation of diffusion coefficients for flexible water and ER/ERE shows that when mild damping of up to 0.2 ps-1 is used the dynamics are not significantly distorted.
Dynamic Shear Modulus of Polymers from Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Byutner, Oleksiy; Smith, Grant
2001-03-01
In this work we describe the methodology for using equilibrium molecular dynamics simulations (MD) simulations to obtain the viscoelastic properties of polymers in the glassy regime. Specifically we show how the time dependent shear stress modulus and frequency dependent complex shear modulus in the high-frequency regime can be determined from the off-diagonal terms of the stress-tensor autocorrelation function obtained from MD trajectories using the Green-Kubo method and appropriate Fourier transforms. In order to test the methodology we have performed MD simulations of a low-molecular-weight polybutadiene system using quantum chemistry based potential functions. Values of the glassy modulus and the maximum loss frequency were found to be in good agreement with experimental data for polybutadiene at 298 K.
Molecular Dynamics Study of Potassium Azide (KN_3)
NASA Astrophysics Data System (ADS)
Ossowski, M.; Hardy, J. R.
1998-03-01
An ab initio model developed for intermolecular and intramolecular potentials in ionic molecular solids(H. M. Lu and J. R. Hardy, Phys. Rev. B, 42, 8339 (1990)) is employed to study the phase diagram of potassium azide (KN_3). We performed first-principles static structural relaxation, supercell molecular dynamics, lattice- dynamical studies and predict the existence of a high temperature rotationally disordered phase in KN_3. A selected work on other members of the alkali azide family will also be discussed.
Dynamical Localization in Molecular Systems.
NASA Astrophysics Data System (ADS)
Wang, Xidi
In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems
Dynamics of riboswitches: Molecular simulations.
Sanbonmatsu, Karissa Y
2014-10-01
Riboswitch RNAs play key roles in bacterial metabolism and represent a promising new class of antibiotic targets for treatment of infectious disease. While many studies of riboswitches have been performed, the exact mechanism of riboswitch operation is still not fully understood at the atomistic level of detail. Molecular dynamics simulations are useful for interpreting existing experimental data and producing predictions for new experiments. Here, a wide range of computational studies on riboswitches is reviewed. By elucidating the key principles of riboswitch operation, computation may aid in the effort to design more specific antibiotics with affinities greater than those of the native ligand. Such a detailed understanding may be required to improve efficacy and reduce side effects. These studies are laying the groundwork for understanding the action mechanism of new compounds that inhibit riboswitch activity. Future directions such as magnesium effects, large-scale conformational changes, expression platforms and co-transcriptional folding are also discussed. This article is part of a Special Issue entitled: Riboswitches. PMID:24953187
Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; Faller, Roland; Evans, James E.; Browning, Nigel D.
2015-03-25
Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show thatmore » the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.« less
Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; Faller, Roland; Evans, James E.; Browning, Nigel D.
2015-03-25
Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show that the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.
Time-Dependent Molecular Reaction Dynamics
Oehrn, Yngve
2007-11-29
This paper is a brief review of a time-dependent, direct, nonadiabatic theory of molecular processes called Electron Nuclear Dynamics (END). This approach to the study of molecular reaction dynamics is a hierarchical theory that can be applied at various levels of approximation. The simplest level of END uses classical nuclei and represents all electrons by a single, complex, determinantal wave function. The wave function parameters such as average nuclear positions and momenta, and molecular orbital coefcients carry the time dependence and serve as dynamical variables. Examples of application are given of the simplest level of END to ion-atom and ion-molecule reactions.
Potential energy hypersurface and molecular flexibility
NASA Astrophysics Data System (ADS)
Koča, Jaroslav
1993-02-01
The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.
Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
Molecular-dynamics simulations of lead clusters
NASA Astrophysics Data System (ADS)
Hendy, S. C.; Hall, B. D.
2001-08-01
Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.
Modeling the Hydrogen Bond within Molecular Dynamics
ERIC Educational Resources Information Center
Lykos, Peter
2004-01-01
The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.
Molecular Dynamics Simulations of Simple Liquids
ERIC Educational Resources Information Center
Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.
2004-01-01
An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.
Molecular ions, Rydberg spectroscopy and dynamics
Jungen, Ch.
2015-01-22
Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.
Thermal transpiration: A molecular dynamics study
NASA Astrophysics Data System (ADS)
T, Joe Francis; Sathian, Sarith P.
2014-12-01
Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.
Thermal transpiration: A molecular dynamics study
T, Joe Francis; Sathian, Sarith P.
2014-12-09
Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.
Parallel Molecular Dynamics Program for Molecules
Energy Science and Technology Software Center (ESTSC)
1995-03-07
ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.
Molecular dynamics simulations of supramolecular polymer rheology
NASA Astrophysics Data System (ADS)
Li, Zhenlong; Djohari, Hadrian; Dormidontova, Elena E.
2010-11-01
Using equilibrium and nonequilibrium molecular dynamics simulations, we studied the equilibrium and rheological properties of dilute and semidilute solutions of head-to-tail associating polymers. In our simulation model, a spontaneous complementary reversible association between the donor and the acceptor groups at the ends of oligomers was achieved by introducing a combination of truncated pseudo-Coulombic attractive potential and Lennard Jones repulsive potential between donor, acceptor, and neighboring groups. We have calculated the equilibrium properties of supramolecular polymers, such as the ring/chain equilibrium, average molecular weight, and molecular weight distribution of self-assembled chains and rings, which all agree well with previous analytical and computer modeling results. We have investigated shear thinning of solutions of 8- and 20-bead associating oligomers with different association energies at different temperatures and oligomer volume fractions. All reduced viscosity data for a given oligomer length can be collapsed into one master curve, exhibiting two power-law regions of shear-thinning behavior with an exponent of -0.55 at intermediate ranges of the reduced shear rate β and -0.8 (or -0.9) at larger shear rates. The equilibrium viscosity of supramolecular solutions with different oligomer lengths and associating energies is found to obey a power-law scaling dependence on oligomer volume fraction with an exponent of 1.5, in agreement with the experimental observations for several dilute or semidilute solutions of supramolecular polymers. This implies that dilute and semidilute supramolecular polymer solutions exhibit high polydispersity but may not be sufficiently entangled to follow the reptation mechanism of relaxation.
Fermionic Molecular Dynamics for Nuclear Dynamics and Thermodynamics
NASA Astrophysics Data System (ADS)
Hasnaoui, K. H. O.; Chomaz, Ph; Gulminelli, F.
A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presented.
Molecular dynamics: A stitch in time
NASA Astrophysics Data System (ADS)
Deupi, Xavier
2014-01-01
Lengthy molecular dynamics simulations of complex systems at the atomic scale usually require supercomputers. Now, by stitching together many shorter independent simulations run 'in the cloud', this requirement has been circumvented, allowing two milliseconds of the dynamics of a G-protein-coupled receptor to be simulated.
First principles molecular dynamics without self-consistent field optimization
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-28
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
Molecular dynamics simulations: advances and applications
Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L
2015-01-01
Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.
Osmosis : a molecular dynamics computer simulation study
NASA Astrophysics Data System (ADS)
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
Molecular dynamics simulations of large macromolecular complexes
Perilla, Juan R.; Goh, Boon Chong; Cassidy, C. Keith; Liu, Bo; Bernardi, Rafael C.; Rudack, Till; Yu, Hang; Wu, Zhe; Schulten, Klaus
2015-01-01
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone. PMID:25845770
NASA Astrophysics Data System (ADS)
Shimizu, Futoshi; Kimizuka, Hajime; Kaburaki, Hideo
2002-08-01
A new parallel computing environment, called as ``Parallel Molecular Dynamics Stencil'', has been developed to carry out a large-scale short-range molecular dynamics simulation of solids. The stencil is written in C language using MPI for parallelization and designed successfully to separate and conceal parts of the programs describing cutoff schemes and parallel algorithms for data communication. This has been made possible by introducing the concept of image atoms. Therefore, only a sequential programming of the force calculation routine is required for executing the stencil in parallel environment. Typical molecular dynamics routines, such as various ensembles, time integration methods, and empirical potentials, have been implemented in the stencil. In the presentation, the performance of the stencil on parallel computers of Hitachi, IBM, SGI, and PC-cluster using the models of Lennard-Jones and the EAM type potentials for fracture problem will be reported.
Multiple time step integrators in ab initio molecular dynamics
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
NASA Astrophysics Data System (ADS)
Kapko, Vitaliy; Zhao, Zuofeng; Matyushov, Dmitry V.; Austen Angell, C.
2013-03-01
The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and/or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972), 10.1016/0022-3093(72)90269-4] - and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010), 10.1103/Physics.3.37] that some object shapes find little advantage in self-assembly to ordered structures - meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506; A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004), 10.1126/science.1093010] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003), 10.1103/PhysRevE.67.051301] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005), 10.1103/PhysRevLett.94.215701] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981), 10.1063/1.441483] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence
Kapko, Vitaliy; Zhao, Zuofeng; Matyushov, Dmitry V; Austen Angell, C
2013-03-28
The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and∕or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972)]--and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010)] that some object shapes find little advantage in self-assembly to ordered structures--meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004); A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004)] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003)] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005)] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence of "ideal glassformers"--single or multicomponent liquids that vitrify before ever becoming metastable with respect to crystals. We find evidence that "ideal glassformer" systems might
Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code
NASA Astrophysics Data System (ADS)
Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín
2010-12-01
Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to
Meng, Qingyong Chen, Jun Zhang, Dong H.
2015-09-14
The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li et al., J. Chem. Phys. 142, 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300 K ≤ T ≤ 1000 K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures.
Trillion-atom molecular dynamics becomes a reality
Kadau, Kai; Germann, Timothy C
2008-01-01
By utilizing the molecular dynamics code SPaSM on Livermore's BlueGene/L architecture, consisting of 212 992 IBM PowerPC440 700 MHz processors, a molecular dynamics simulation was run with one trillion atoms. To demonstrate the practicality and future potential of such ultra large-scale simulations, the onset of the mechanical shear instability occurring in a system of Lennard-Jones particles arranged in a simple cubic lattice was simulated. The evolution of the instability was analyzed on-the-fly using the in-house developed massively parallel graphical object-rendering code MD{_}render.
NASA Astrophysics Data System (ADS)
Chakraborty, Arindam; Zhao, Yan; Lin, Hai; Truhlar, Donald G.
2006-01-01
-energy surface is a combined valence bond molecular mechanics (CVBMM) surface. Rate constants calculated with the CVBMM surface agree with the MPW54 rate constants within 12% for 534-2000 K and within 23% for 200-491 K. The full CVBMM potential-energy surface is now available for use in variety of dynamics calculations, and it provides a prototype for developing CVBMM potential-energy surfaces for other reactions.
Molecular dynamic simulations of ocular tablet dissolution.
Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire
2013-11-25
Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies. PMID:24073784
Molecular Scale Dynamics of Large Ring Polymers
NASA Astrophysics Data System (ADS)
Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.
2014-10-01
We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.
Dynamic signature of molecular association in methanol
NASA Astrophysics Data System (ADS)
Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.
2016-07-01
Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.
Dynamic signature of molecular association in methanol.
Bertrand, C E; Self, J L; Copley, J R D; Faraone, A
2016-07-01
Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids. PMID:27394112
Molecular scale dynamics of large ring polymers.
Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D
2014-10-17
We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture. PMID:25361284
Numerical methods for molecular dynamics
Skeel, R.D.
1991-01-01
This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.
Theoretical analysis of dynamic processes for interacting molecular motors
NASA Astrophysics Data System (ADS)
Teimouri, Hamid; Kolomeisky, Anatoly B.; Mehrabiani, Kareem
2015-02-01
Biological transport is supported by the collective dynamics of enzymatic molecules that are called motor proteins or molecular motors. Experiments suggest that motor proteins interact locally via short-range potentials. We investigate the fundamental role of these interactions by carrying out an analysis of a new class of totally asymmetric exclusion processes, in which interactions are accounted for in a thermodynamically consistent fashion. This allows us to explicitly connect microscopic features of motor proteins with their collective dynamic properties. A theoretical analysis that combines various mean-field calculations and computer simulations suggests that the dynamic properties of molecular motors strongly depend on the interactions, and that the correlations are stronger for interacting motor proteins. Surprisingly, it is found that there is an optimal strength of interactions (weak repulsion) that leads to a maximal particle flux. It is also argued that molecular motor transport is more sensitive to attractive interactions. Applications of these results for kinesin motor proteins are discussed.
Molecular dynamics studies on nanoscale gas transport
NASA Astrophysics Data System (ADS)
Barisik, Murat
wall force penetration region at different flow conditions. Shear stress results are utilized to calculate the tangential momentum accommodation coefficient (TMAC) between argon gas and FCC walls. The TMAC value is shown to he independent of the now properties and Knudsen number in all simulations. Velocity profiles show distinct deviations from the kinetic theory based solutions inside the wall force penetration depth, while they match the linearized Boltzmann equation solution outside these zones. Afterwards, surface effects are studied as a function of the surface-gas potential strength ratio (epsilon wf/epsilonff) for the shear driven argon gas flows in the early transition and tree molecular flow regimes. Results show that increased epsilonwf/epsilon ff results in increased gas density, leading towards monolayer adsorption on surfaces. The near wall velocity profile shows reduced gas slip, and eventually velocity stick with increased epsilonwf/epsilon ff. Similarly, using MD predicted shear stress values and kinetic theory, TMAC are calculated as a function of epsilonwf/epsilon ff and TMAC values are shown to be independent of the Knudsen number. Results indicate emergence of the wall force field penetration depth as an additional length scale for gas flows in nano-channels, breaking the dynamic similarity between rarefied and nano-scale gas flows solely based on the Knudsen and Mach numbers.
Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks
NASA Astrophysics Data System (ADS)
Fahrenthold, Eric; Bass, Joseph
2015-06-01
Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.
Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms
NASA Astrophysics Data System (ADS)
Lühmann, Dirk-Sören; Weitenberg, Christof; Sengstock, Klaus
2015-07-01
In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.
Optimizing replica exchange moves for molecular dynamics.
Nadler, Walter; Hansmann, Ulrich H E
2007-11-01
We sketch the statistical physics framework of the replica exchange technique when applied to molecular dynamics simulations. In particular, we draw attention to generalized move sets that allow a variety of optimizations as well as new applications of the method. PMID:18233794
Molecular dynamics calculations of nuclear stimulated desorption
Glikman, E.; Kelson, I. ); Doan, N.V. )
1991-09-01
Molecular dynamics calculations of nuclear stimulated desorption are carried out for a palladium crystal containing radioactive palladium atoms. The total desorption probability from various sites are computed, as well as the angular distribution of the desorbing atoms. The implications of the results to different experimental scenarios are discussed.
Reaction dynamics in polyatomic molecular systems
Miller, W.H.
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
Molecular Dynamics Simulations of Graphene Oxide Frameworks
Zhu, Pan; Sumpter, Bobby G; Meunier, V.; Nicolai, Adrien
2013-01-01
We use quantum mechanical calculations to develop a full set of force field parameters in order to perform molecular dynamics simulations to understand and optimize the molecular storage properties inside Graphene Oxide Frameworks (GOFs). A set of boron-related parameters for commonly used empirical force fields is determined to describe the non-bonded and bonded interactions between linear boronic acid linkers and graphene sheets of GOF materials. The transferability of the parameters is discussed and their validity is quantified by comparing quantum mechanical and molecular mechanical structural and vibrational properties. The application of the model to the dynamics of water inside the GOFs reveals significant variations in structural flexibility of GOF depending on the linker density, which is shown to be usable as a tuning parameter for desired diffusion properties.
Molecular dynamics of PLK1 during mitosis
Schmucker, Stephane; Sumara, Izabela
2014-01-01
Polo-like kinase 1 (PLK1) is a key regulator of eukaryotic cell division. During mitosis, dynamic regulation of PLK1 is crucial for its roles in centrosome maturation, spindle assembly, microtubule–kinetochore attachment, and cytokinesis. Similar to other members of the PLK family, the molecular architecture of PLK1 protein is characterized by 2 domains—the kinase domain and the regulatory substrate-binding domain (polo-box domain)—that cooperate and control PLK1 function during mitosis. Mitotic cells employ many layers of regulation to activate and target PLK1 to different cellular structures in a timely manner. During the last decade, numerous studies have shed light on the precise molecular mechanisms orchestrating the mitotic activity of PLK1 in time and space. This review aims to discuss available data and concepts related to regulation of the molecular dynamics of human PLK1 during mitotic progression. PMID:27308323
Molecular Dynamics Simulations of Coulomb Explosion
Bringa, E M
2002-05-17
A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.
Combined molecular dynamics-spin dynamics simulations of bcc iron
Perera, Meewanage Dilina N; Yin, Junqi; Landau, David P; Nicholson, Don M; Stocks, George Malcolm; Eisenbach, Markus; Brown, Greg
2014-01-01
Using a classical model that treats translational and spin degrees of freedom on an equal footing, we study phonon-magnon interactions in BCC iron with combined molecular and spin dynamics methods. The atomic interactions are modeled via an empirical many-body potential while spin dependent interactions are established through a Hamiltonian of the Heisenberg form with a distance dependent magnetic exchange interaction obtained from first principles electronic structure calculations. The temporal evolution of translational and spin degrees of freedom was determined by numerically solving the coupled equations of motion, using an algorithm based on the second order Suzuki-Trotter decomposition of the exponential operators. By calculating Fourier transforms of space- and time-displaced correlation functions, we demonstrate that the the presence of lattice vibrations leads to noticeable softening and damping of spin wave modes. As a result of the interplay between lattice and spin subsystems, we also observe additional longitudinal spin wave excitations, with frequencies which coincide with that of the longitudinal lattice vibrations.
Exciton dynamics in perturbed vibronic molecular aggregates
Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.
2015-01-01
A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840
Exciton dynamics in perturbed vibronic molecular aggregates.
Brüning, C; Wehner, J; Hausner, J; Wenzel, M; Engel, V
2016-07-01
A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840
Molecular Electrostatic Potentials from Invariom Point Charges.
Wandtke, Claudia M; Lübben, Jens; Dittrich, Birger
2016-07-18
A set of look-up point charges for generating molecular electrostatic potentials is provided. The set relies on atom classification of the invariom database, which has already been applied to assign aspherical scattering factors in single-crystal X-ray diffraction. The focus of the investigation is on improving the accuracy of electrostatic potentials calculated by using tabulated point charges. In this respect, the performance of invariom point charges is compared with 1) those from a restrained fit to the electrostatic potential directly following quantum-chemical DFT computations, 2) semi-empirical AM1-bcc charges, and 3) conceptually similar TPACM4 look-up charges. Invariom classification gives charges that perform better than those from TPACM4, although tabulated charges remain inferior to those from molecule-specific computations. Point-charge electrostatic potentials also agree favorably with those from charge-density studies on the basis of X-ray experiments, without requiring the considerable effort of the latter. PMID:26999276
Rational Prediction with Molecular Dynamics for Hit Identification
Nichols, Sara E; Swift, Robert V; Amaro, Rommie E
2012-01-01
Although the motions of proteins are fundamental for their function, for pragmatic reasons, the consideration of protein elasticity has traditionally been neglected in drug discovery and design. This review details protein motion, its relevance to biomolecular interactions and how it can be sampled using molecular dynamics simulations. Within this context, two major areas of research in structure-based prediction that can benefit from considering protein flexibility, binding site detection and molecular docking, are discussed. Basic classification metrics and statistical analysis techniques, which can facilitate performance analysis, are also reviewed. With hardware and software advances, molecular dynamics in combination with traditional structure-based prediction methods can potentially reduce the time and costs involved in the hit identification pipeline. PMID:23110535
Molecular dynamics study of cyclohexane interconversion
NASA Astrophysics Data System (ADS)
Wilson, Michael A.; Chandler, David
1990-12-01
Classical molecular dynamics calculations are reported for one C 6H 12 molecule in a bath of 250 CS 2 molecules at roomtemperature and liquid densities of 1.0, 1.3, 1.4 and 1.5 g/cm 3. The solvent contribution to the free energy of activation for the chair-boat isomerization has been determined to high accuracy. The transmission coefficient and reactive flux correlation functions have also been computed. The results obtained agree with earlier conclusions drawn from RISM integral equation calculations and stochastic molecular dynamics calculations. Namely, the solvent effect on the rate manifests a qualitative breakdown of transition state theory and the RRKM picture of unimolecular kinetics. Analysis of the activated trajectories indicate a significant degree of quasiperiodicity.
Molecular dynamics studies of polyurethane nanocomposite hydrogels
NASA Astrophysics Data System (ADS)
Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.
2013-10-01
Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.
New faster CHARMM molecular dynamics engine
Hynninen, Antti-Pekka; Crowley, Michael F
2014-01-01
We introduce a new faster molecular dynamics (MD) engine into the CHARMM software package. The new MD engine is faster both in serial (i.e., single CPU core) and parallel execution. Serial performance is approximately two times higher than in the previous version of CHARMM. The newly programmed parallelization method allows the MD engine to parallelize up to hundreds of CPU cores. PMID:24302199
Molecular dynamics modelling of solidification in metals
Boercker, D.B.; Belak, J.; Glosli, J.
1997-12-31
Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.
Molecular crowding and protein enzymatic dynamics.
Echeverria, Carlos; Kapral, Raymond
2012-05-21
The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding. PMID:22476233
Monoamine transporters: insights from molecular dynamics simulations
Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit
2015-01-01
The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185
Molecular Dynamics Simulation of Disordered Zircon
Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin
2004-02-27
The melting of zircon and the amorphous state produced by quenching from the melt were simulated by molecular dynamics using a new partial charge model combined with the Ziegler-Biersack-Littmark potential. The model has been established for the description of the crystalline and aperiodic structures of zircon in order to be used for the simulation of displacement cascades. It provides an excellent fit to the structure, and accounts with convenient precision the mechanical and thermodynamic properties of zircon. The calculated melting temperature is about 2100 K. The activation energy for self-diffusion of ions in the liquid state was determined to be 190-200 kJ/mole. Melt quenching was employed to produce two different disordered states with distinct densities and structures. In the high density disordered state, the zircon structure is intact but the bond angle distributions are broader, 4% of the Si units are polymerized, and the volume swelling is about 8%. In the low density amorphous state, the Zr and Si coordination numbers are lower, and the Zr-O and Si-O bond lengths are shorter than corresponding values for the crystal. In addition, a highly polymerized Si network, with average connectivity of two, is observed in the low density amorphous state. These features have all been experimentally observed in natural metamict zircon. The present findings, when considered in light of experimental radiation effects studies, suggest that the swelling in zircon arises initially from disorder in the zircon crystal, and at high doses the disordered crystal is unable to accommodate the volume expansion and transforms to the amorphous state.
Optimally designed fields for controlling molecular dynamics
NASA Astrophysics Data System (ADS)
Rabitz, Herschel
1991-10-01
This research concerns the development of molecular control theory techniques for designing optical fields capable of manipulating molecular dynamic phenomena. Although is has been long recognized that lasers should be capable of manipulating dynamic events, many frustrating years of intuitively driven laboratory studies only serve to illustrate the point that the task is complex and defies intuition. The principal new component in the present research is the recognition that this problem falls into the category of control theory and its inherent complexities require the use of modern control theory tools largely developed in the engineering disciplines. Thus, the research has initiated a transfer of the control theory concepts to the molecular scale. Although much contained effort will be needed to fully develop these concepts, the research in this grant set forth the basic components of the theory and carried out illustrative studies involving the design of optical fields capable of controlling rotational, vibrational and electronic degrees of freedom. Optimal control within the quantum mechanical molecular realm represents a frontier area with many possible ultimate applications. At this stage, the theoretical tools need to be joined with merging laboratory optical pulse shaping capabilities to illustrate the power of the concepts.
Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.
NASA Astrophysics Data System (ADS)
Fidelis, Krzysztof Andrzej
1990-08-01
The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.
Dynamic Maintenance and Visualization of Molecular Surfaces
Bajaj, C L; Pascucci, V; Shamir, A; Holt, R J; Netravali, A N
2004-12-16
Molecular surface computations are often necessary in order to perform synthetic drug design. A critical step in this process is the computation and update of an exact boundary representation for the molecular surface (e.g. the Lee-Richards surface). In this paper they introduce efficient techniques for computing a molecular surface boundary representation as a set of NURBS (non-uniform rational B-splines) patches. This representation introduces for molecules the same geometric data structure used in the solid modeling community and enables immediate access to a wide range of modeling operations and techniques. Furthermore, this allows the use of any general solid modeling or visualization system as a molecular modeling interface. However, using such a representation in a molecular modeling environment raises several efficiency and update constraints, especially in a dynamic setting. For example, changes in the probe radius result in both geometric and topological changes to the set of patches. The techniques provide the option of trading accuracy of the representation for the efficiency of the computation, while still tracking the changes in the set of patches. In particular, they discuss two main classes of dynamic updates: one that keeps the topology of the molecular configuration fixed, and a more complicated case where the topology may be updated continuously. In general the generated output surface is represented in a format that can be loaded into standard solid modeling systems. It can also be directly triangulated or rendered, possibly at different levels of resolution, by a standard graphics library such as OpenGL without any additional effort.
The 2011 Dynamics of Molecular Collisions Conference
Nesbitt, David J.
2011-07-11
The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor
A random rotor molecule: Vibrational analysis and molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.
2012-12-01
Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4″″-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2″-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.
Optimizing legacy molecular dynamics software with directive-based offload
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-05-14
The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less
Optimizing legacy molecular dynamics software with directive-based offload
NASA Astrophysics Data System (ADS)
Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.
2015-10-01
Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.
Complete Characterization of Molecular Dynamics in Ultrashort Laser Fields
Feuerstein, B.; Ergler, Th.; Rudenko, A.; Zrost, K.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Niederhausen, T.; Thumm, U.
2007-10-12
Reaction Microscope-based, complete, and time-resolved Coulomb explosion imaging of vibrating and dissociating D{sub 2}{sup +} molecules with femtosecond time-resolution allowed us to perform an internuclear distance (R-)dependent Fourier analysis of the corresponding wave packets. Calculations demonstrate that the obtained two-dimensional R-dependent frequency spectra enable the complete characterization of the wave packet dynamics and directly visualize the field-modified molecular potential curves in intense, ultrashort laser pulses.
Molecular dynamics modeling of a nanomaterials-water surface interaction
NASA Astrophysics Data System (ADS)
Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid
2016-04-01
In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.
Polymer Fluid Dynamics: Continuum and Molecular Approaches.
Bird, R B; Giacomin, A J
2016-06-01
To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems. PMID:27276553
NASA Astrophysics Data System (ADS)
Verboncoeur, John; Dharuman, Gautham; Christlieb, Andrew; Murillo, Michael
2015-11-01
Ground state energies and configurations of N, F, Ne, Al, S, Ar and Ca are obtained using a quasi-classical treatment with Kirschbaum-Wilets potentials. The effect of phase space parameters on the ground state energy is studied in detail and compared with Hartree-Fock values. The phase space parameters that resulted in ground state energies comparable to Hartree-Fock values are found to be correlated and follow a pattern with atomic number which led to identifying a predictive capability in the model. The change in ground state configurations for different phase space parameters is studied and correlated with the corresponding change in ground state energies. Work supported by Air Force Office of Scientific Research (AFOSR).
Analysis of motion features for molecular dynamics simulation of proteins
NASA Astrophysics Data System (ADS)
Kamada, Mayumi; Toda, Mikito; Sekijima, Masakazu; Takata, Masami; Joe, Kazuki
2011-01-01
Recently, a new method for time series analysis using the wavelet transformation has been proposed by Sakurai et al. We apply it to molecular dynamics simulation of Thermomyces lanuginosa lipase (TLL). Introducing indexes to characterize collective motion of the protein, we have obtained the following two results. First, time evolution of the collective motion involves not only the dynamics within a single potential well but also takes place wandering around multiple conformations. Second, correlation of the collective motion between secondary structures shows that collective motion exists involving multiple secondary structures. We discuss future prospects of our study involving 'disordered proteins'.
Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.
Application of two dimensional periodic molecular dynamics to interfaces.
NASA Astrophysics Data System (ADS)
Gay, David H.; Slater, Ben; Catlow, C. Richard A.
1997-08-01
We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.
Local Refinements in Classical Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Fackeldey, Konstantin; Weber, Marcus
2014-03-01
Quantum mechanics provide a detailed description of the physical and chemical behavior of molecules. However, with increasing size of the system the complexity rises exponentially, which is prohibitive for efficient dynamical simulation. In contrast, classical molecular dynamics procure a coarser description by using less degrees of freedom. Thus, it seems natural to seek for an adequate trade-off between accurateness and computational feasibility in the simulation of molecules. Here, we propose a novel method, which combines classical molecular simulations with quantum mechanics for molecular systems. For this we decompose the state space of the respective molecule into subsets, by employing a meshfree partition of unity. We show, that this partition allows us to localize an empirical force field and to run locally constrained classical trajectories. Within each subset, we compute the energy on the quantum level for a fixed number of spatial states (ab initio points). With these energy values from the ab initio points we have a local scattered data problem, which can be solved by the moving least squares method.
Scattering studies of molecular dynamics of complex fluids
NASA Astrophysics Data System (ADS)
Liao, Ciya
The dynamics of complex fluids is studied by modeling the spectrum of density fluctuation: dynamic structure factor. The theoretic models are compared with experimental measurements by X-ray and molecular dynamics simulation results. In time scale, the dynamics of supercooled water can be well separated into short time and long time dynamics. While the long time dynamics is modeled well by a stretch exponential and explained as cage relaxations by mode coupling theory, the short time dynamics is under study in this thesis. We introduce two models for the short time dynamics. One model assumes that the short time movement of particles inside a cage is in a harmonic potential well with a vibrational frequency distribution function having a two-peak structure. The relationship of density of state with the single particle dynamic structure factor is employed to formulate the model. The other model treats the in-cage rattlings as collisions between hard sphere particles which can be modeled by a kinetic theory. A modification of the kinetic theory has to be used to account for the cage effect on the short time dynamics. The idea that the short time dynamics can be considered separately from long time dynamics is verified by the potential landscape view. The inherent structure which is defined as a local minimum in the potential function varies from time to time as the result of the crossing- basin of system in the potential landscape. The within basin movement regarded as short time rattlings can be eliminated by calculating the intermediate scattering function of the inherent structure, which shows an almost identical behavior as the long time part of original intermediate scattering function. A recent development of high resolution inelastic X-ray scattering technique brings a challenge on how to deal with the form factors of different atoms in the explanation of the measured dynamic structure factor. A generalized dynamic structure factor is defined to include the
Electronic continuum model for molecular dynamics simulations.
Leontyev, I V; Stuchebrukhov, A A
2009-02-28
A simple model for accounting for electronic polarization in molecular dynamics (MD) simulations is discussed. In this model, called molecular dynamics electronic continuum (MDEC), the electronic polarization is treated explicitly in terms of the electronic continuum (EC) approximation, while the nuclear dynamics is described with a fixed-charge force field. In such a force-field all atomic charges are scaled to reflect the screening effect by the electronic continuum. The MDEC model is rather similar but not equivalent to the standard nonpolarizable force-fields; the differences are discussed. Of our particular interest is the calculation of the electrostatic part of solvation energy using standard nonpolarizable MD simulations. In a low-dielectric environment, such as protein, the standard MD approach produces qualitatively wrong results. The difficulty is in mistreatment of the electronic polarizability. We show how the results can be much improved using the MDEC approach. We also show how the dielectric constant of the medium obtained in a MD simulation with nonpolarizable force-field is related to the static (total) dielectric constant, which includes both the nuclear and electronic relaxation effects. Using the MDEC model, we discuss recent calculations of dielectric constants of alcohols and alkanes, and show that the MDEC results are comparable with those obtained with the polarizable Drude oscillator model. The applicability of the method to calculations of dielectric properties of proteins is discussed. PMID:19256627
Molecular dynamics in high electric fields
NASA Astrophysics Data System (ADS)
Apostol, M.; Cune, L. C.
2016-06-01
Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.
Tunable Interfacial Thermal Conductance by Molecular Dynamics
NASA Astrophysics Data System (ADS)
Shen, Meng
We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1
Tunable Interfacial Thermal Conductance by Molecular Dynamics
NASA Astrophysics Data System (ADS)
Shen, Meng
We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1
Molecular digital pathology: progress and potential of exchanging molecular data.
Roy, Somak; Pfeifer, John D; LaFramboise, William A; Pantanowitz, Liron
2016-09-01
Many of the demands to perform next generation sequencing (NGS) in the clinical laboratory can be resolved using the principles of telepathology. Molecular telepathology can allow facilities to outsource all or a portion of their NGS operation such as cloud computing, bioinformatics pipelines, variant data management, and knowledge curation. Clinical pathology laboratories can electronically share diverse types of molecular data with reference laboratories, technology service providers, and/or regulatory agencies. Exchange of electronic molecular data allows laboratories to perform validation of rare diseases using foreign data, check the accuracy of their test results against benchmarks, and leverage in silico proficiency testing. This review covers the emerging subject of molecular telepathology, describes clinical use cases for the appropriate exchange of molecular data, and highlights key issues such as data integrity, interoperable formats for massive genomic datasets, security, malpractice and emerging regulations involved with this novel practice. PMID:27471996
Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics
Yu, H.G.; Muckerman, J.T.
2010-06-01
The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.
Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics
Yu H. G.; Muckerman, J.T.
2012-05-29
The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.
Potential molecular targets for Ewing's sarcoma therapy.
Jully, Babu; Rajkumar, Thangarajan
2012-10-01
Ewing's sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing's sarcoma. PMID:23580819
Thermostability of Enzymes from Molecular Dynamics Simulations.
Zeiske, Tim; Stafford, Kate A; Palmer, Arthur G
2016-06-14
Thermodynamic stability is a central requirement for protein function, and one goal of protein engineering is improvement of stability, particularly for applications in biotechnology. Herein, molecular dynamics simulations are used to predict in vitro thermostability of members of the bacterial ribonuclease HI (RNase H) family of endonucleases. The temperature dependence of the generalized order parameter, S, for four RNase H homologues, from psychrotrophic, mesophilic, and thermophilic organisms, is highly correlated with experimentally determined melting temperatures and with calculated free energies of folding at the midpoint temperature of the simulations. This study provides an approach for in silico mutational screens to improve thermostability of biologically and industrially relevant enzymes. PMID:27123810
8B structure in Fermionic Molecular Dynamics
NASA Astrophysics Data System (ADS)
Henninger, K. R.; Neff, T.; Feldmeier, H.
2015-04-01
The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.
Molecular dynamics simulations of dense plasmas
Collins, L.A.; Kress, J.D.; Kwon, I.; Lynch, D.L.; Troullier, N.
1993-12-31
We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.
Molecular beam studies of reaction dynamics
Lee, Y.T.
1987-03-01
Purpose of this research project is two-fold: (1) to elucidate detailed dynamics of simple elementary reactions which are theoretically important and to unravel the mechanism of complex chemical reactions or photo chemical processes which play an important role in many macroscopic processes and (2) to determine the energetics of polyatomic free radicals using microscopic experimental methods. Most of the information is derived from measurement of the product fragment translational energy and angular distributions using unique molecular beam apparati designed for these purposes.
First principles molecular dynamics of molten NaCl
NASA Astrophysics Data System (ADS)
Galamba, N.; Costa Cabral, B. J.
2007-03-01
First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.
Sanville, Edward J; Bock, Nicolas; Challacombe, William M; Cawkwell, Marc J; Niklasson, Anders M N; Dattelbaum, Dana M; Sheffield, Stephen; Sewell, Thomas D
2010-01-01
A set of interatomic potentials for hydrocarbons that are based upon the self-consistent charge transfer tight-binding approximation to density functional theory have been developed and implemented into the quantum molecular dynamics code ''LATTE''. The interatomic potentials exhibit an outstanding level of transferability and have been applied in molecular dynamics simulations of tert-butylacetylene under thermodynamic conditions that correspond to its single-shock Hugoniot. We have achieved precise conservation of the total energy during microcanonical molecular dynamics trajectories under incomplete convergence via the extended Lagrangian Born-Oppenheimer molecular dynamics formalism. In good agreement with the results of a series of flyer-plate impact experiments, our SCC-TB molecular dynamics simulations show that tert-butylactylene molecules polymerize at shock pressures around 6.1 GPa.
Molecular dynamics simulation of threshold displacement energies in zircon
Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.
2009-10-15
Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.
Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A
2013-03-21
The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio
Charge transport network dynamics in molecular aggregates.
Jackson, Nicholas E; Chen, Lin X; Ratner, Mark A
2016-08-01
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, [Formula: see text] Simulations reveal the relevant timescale for local transfer integral decorrelation to be [Formula: see text]100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871
Potential energy surfaces and reaction dynamics of polyatomic molecules
Chang, Yan-Tyng.
1991-11-01
A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.
Shock induced phase transition of water: Molecular dynamics investigation
NASA Astrophysics Data System (ADS)
Neogi, Anupam; Mitra, Nilanjan
2016-02-01
Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.