Sample records for potential pathophysiological role

  1. Potential Role of Extracellular Vesicles in the Pathophysiology of Drug Addiction.

    PubMed

    Rao, P S S; O'Connell, Kelly; Finnerty, Thomas Kyle

    2018-01-23

    Extracellular vesicles (EVs) are small vesicles secreted by cells and are known to carry sub-cellular components including microRNA, proteins, and lipids. Due to their ability to transport cargo between cells, EVs have been identified as important regulators of various pathophysiological conditions and can therefore influence treatment outcomes. In particular, the significance of microRNAs in EV-mediated cell-cell communication is well-documented. While the influence of EVs and the cargo delivered by EVs has been extensively reviewed in other neurological disorders, the available literature on the potential role of EVs in the pathophysiology of drug addiction has not been reviewed. Hence, in this article, the known effects of commonly abused drugs (ethanol, nicotine, opiates, cocaine, and cannabinoids) on EV secretion have been reviewed. In addition, the potential role of drugs of abuse in affecting the delivery of EV-packaged microRNAs, and the subsequent impact on neuronal health and continued drug dependence, has been discussed.

  2. Role of the Hemostatic System on SCD Pathophysiology and Potential Therapeutics

    PubMed Central

    Pakbaz, Zahra; Wun, Ted

    2014-01-01

    Synopsis Recent studies suggest that sickle cell disease is a hypercoagulable state contributing to the vaso-occlusive events in microcirculation resulting in acute and chronic sickle cell related organ damage. In this article, we will review the existing evidence for contribution of hemostatic system perturbation to sickle cell disease pathophysiology. We will also review the data showing increased risk of thromboembolic events, particularly newer information on the incidence of VTE. Finally, the potential role of platelet inhibitors and anticoagulants in SCD will be briefly reviewed. PMID:24589271

  3. Role of Polyamines in Asthma Pathophysiology

    PubMed Central

    2018-01-01

    Asthma is a complex disease of airways, where the interactions of immune and structural cells result in disease outcomes with airway remodeling and airway hyper-responsiveness. Polyamines, which are small-sized, natural super-cations, interact with negatively charged intracellular macromolecules, and altered levels of polyamines and their interactions have been associated with different pathological conditions including asthma. Elevated levels of polyamines have been reported in the circulation of asthmatic patients as well as in the lungs of a murine model of asthma. In various studies, polyamines were found to potentiate the pathogenic potential of inflammatory cells, such as mast cells and granulocytes (eosinophils and neutrophils), by either inducing the release of their pro-inflammatory mediators or prolonging their life span. Additionally, polyamines were crucial in the differentiation and alternative activation of macrophages, which play an important role in asthma pathology. Importantly, polyamines cause airway smooth muscle contraction and thus airway hyper-responsiveness, which is the key feature in asthma pathophysiology. High levels of polyamines in asthma and their active cellular and macromolecular interactions indicate the importance of the polyamine pathway in asthma pathogenesis; therefore, modulation of polyamine levels could be a suitable approach in acute and severe asthma management. This review summarizes the possible roles of polyamines in different pathophysiological features of asthma. PMID:29316647

  4. Role of negative affects in pathophysiology and clinical expression of irritable bowel syndrome

    PubMed Central

    Muscatello, Maria Rosaria A; Bruno, Antonio; Scimeca, Giuseppe; Pandolfo, Gianluca; Zoccali, Rocco A

    2014-01-01

    Irritable bowel syndrome (IBS) is regarded as a multifactorial disease in which alterations in the brain-gut axis signaling play a major role. The biopsychosocial model applied to the understanding of IBS pathophysiology assumes that psychosocial factors, interacting with peripheral/central neuroendocrine and immune changes, may induce symptoms of IBS, modulate symptom severity, influence illness experience and quality of life, and affect outcome. The present review focuses on the role of negative affects, including depression, anxiety, and anger, on pathogenesis and clinical expression of IBS. The potential role of the autonomic nervous system, stress-hormone system, and immune system in the pathophysiology of both negative affects and IBS are taken into account. Psychiatric comorbidity and subclinical variations in levels of depression, anxiety, and anger are further discussed in relation to the main pathophysiological and symptomatic correlates of IBS, such as sensorimotor functions, gut microbiota, inflammation/immunity, and symptom reporting. PMID:24976697

  5. Role of negative affects in pathophysiology and clinical expression of irritable bowel syndrome.

    PubMed

    Muscatello, Maria Rosaria A; Bruno, Antonio; Scimeca, Giuseppe; Pandolfo, Gianluca; Zoccali, Rocco A

    2014-06-28

    Irritable bowel syndrome (IBS) is regarded as a multifactorial disease in which alterations in the brain-gut axis signaling play a major role. The biopsychosocial model applied to the understanding of IBS pathophysiology assumes that psychosocial factors, interacting with peripheral/central neuroendocrine and immune changes, may induce symptoms of IBS, modulate symptom severity, influence illness experience and quality of life, and affect outcome. The present review focuses on the role of negative affects, including depression, anxiety, and anger, on pathogenesis and clinical expression of IBS. The potential role of the autonomic nervous system, stress-hormone system, and immune system in the pathophysiology of both negative affects and IBS are taken into account. Psychiatric comorbidity and subclinical variations in levels of depression, anxiety, and anger are further discussed in relation to the main pathophysiological and symptomatic correlates of IBS, such as sensorimotor functions, gut microbiota, inflammation/immunity, and symptom reporting.

  6. A potential pathophysiological role for galectins and the renin-angiotensin system in preeclampsia.

    PubMed

    Blois, Sandra M; Dechend, Ralf; Barrientos, Gabriela; Staff, Anne Cathrine

    2015-01-01

    This review discusses a potential role of galectins and the renin-angiotensin system (RAS) in the pathophysiology of preeclampsia (PE). Preeclampsia affects between 3 and 5 % of all pregnancies and is a heterogeneous disease, which may be caused by multiple factors. The only cure is the delivery of the placenta, which may result in a premature delivery and baby. Probably due to its heterogeneity, PE studies in human have hitherto only led to the identification of a limited number of factors involved in the pathogenesis of the disease. Animal models, particularly in mice and rats, have been used to gain further insight into the molecular pathology behind PE. In this review, we discuss the picture emerging from human and animal studies pointing to galectins and the RAS being associated with the PE syndrome and affecting a broad range of cellular signaling components. Moreover, we review the epidemiological evidence for PE increasing the risk of future cardiovascular disease later in life.

  7. The Role of Interleukin-10 in the Pathophysiology of Preeclampsia.

    PubMed

    Cubro, Hajrunisa; Kashyap, Sonu; Nath, Meryl C; Ackerman, Allan W; Garovic, Vesna D

    2018-04-30

    The pathophysiology of preeclampsia is complex and not entirely understood. A key feature in preeclampsia development is an immunological imbalance that shifts the maternal immune response from one of tolerance towards one promoting chronic inflammation and endothelial dysfunction. As a key regulator of immunity, IL-10 not only has immunomodulatory activity, but also directly benefits vasculature and promotes successful cellular interactions at the maternal-fetal interface. Here we focus on the mechanisms by which the dysregulation of IL-10 may contribute to the pathophysiology of preeclampsia. Dysregulation of IL-10 has been demonstrated in various animal models of preeclampsia. Decreased IL-10 production in both placenta and peripheral blood mononuclear cells has been reported in human studies, but with inconsistent results. The significance of IL-10 in preeclampsia has shifted from a key biomarker to one with therapeutic potential. As such, a better understanding of the role of this cytokine in the pathophysiology of preeclampsia is of paramount importance.

  8. The role of autoantibodies in the pathophysiology of rheumatoid arthritis.

    PubMed

    Derksen, V F A M; Huizinga, T W J; van der Woude, D

    2017-06-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation. The presence of autoantibodies in the sera of RA patients has provided many clues to the underlying disease pathophysiology. Based on the presence of several autoantibodies like rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), anti-carbamylated protein antibodies (anti-CarP), and more recently anti-acetylated protein antibodies RA can be subdivided into seropositive and seronegative disease. The formation of these autoantibodies is associated with both genetic and environmental risk factors for RA, like specific human leukocyte antigen (HLA) alleles and smoking. Autoantibodies can be detected many years before disease onset in a subset of patients, suggesting a sequence of events in which the first autoantibodies develop in predisposed hosts, before an inflammatory response ensues leading to clinically apparent arthritis. Research on the characteristics and effector functions of these autoantibodies might provide more insight in pathophysiological processes underlying arthritis in RA. Recent data suggests that ACPA might play a role in perpetuating inflammation once it has developed. Furthermore, pathophysiological mechanisms have been discovered supporting a direct link between the presence of ACPA and both bone erosions and pain in RA patients. In conclusion, investigating the possible pathogenic potential of autoantibodies might lead to improved understanding of the underlying pathophysiological processes in rheumatoid arthritis.

  9. The role of beta-endorphin in the pathophysiology of major depression.

    PubMed

    Hegadoren, K M; O'Donnell, T; Lanius, R; Coupland, N J; Lacaze-Masmonteil, N

    2009-10-01

    A role for beta-endorphin (beta-END) in the pathophysiology of major depressive disorder (MDD) is suggested by both animal research and studies examining clinical populations. The major etiological theories of depression include brain regions and neural systems that interact with opioid systems and beta-END. Recent preclinical data have demonstrated multiple roles for beta-END in the regulation of complex homeostatic and behavioural processes that are affected during a depressive episode. Additionally, beta-END inputs to regulatory pathways involving feeding behaviours, motivation, and specific types of motor activity have important implications in defining the biological foundations for specific depressive symptoms. Early research linking beta-END to MDD did so in the context of the hypothalamic-pituitary-adrenal (HPA) axis activity, where it was suggested that HPA axis dysregulation may account for depressive symptoms in some individuals. The primary aims of this paper are to use both preclinical and clinical research (a) to critically review data that explores potential roles for beta-END in the pathophysiology of MDD and (b) to highlight gaps in the literature that limit further development of etiological theories of depression and testable hypotheses. In addition to examining methodological and theoretical challenges of past clinical studies, we summarize studies that have investigated basal beta-END levels in MDD and that have used challenge tests to examine beta-END responses to a variety of experimental paradigms. A brief description of the synthesis, location in the CNS and behavioural pharmacology of this neuropeptide is also provided to frame this discussion. Given the lack of clinical improvement observed with currently available antidepressants in a significant proportion of depressed individuals, it is imperative that novel mechanisms be investigated for antidepressant potential. We conclude that the renewed interest in elucidating the role of beta

  10. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management.

    PubMed

    Nur, Erfan; Biemond, Bart J; Otten, Hans-Martin; Brandjes, Dees P; Schnog, John-John B

    2011-06-01

    Sickle cell disease (SCD) is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and vaso-occlusion leading to a reduced quality of life and life expectancy. Oxidative stress is an important feature of SCD and plays a significant role in the pathophysiology of hemolysis, vaso-occlusion and ensuing organ damage in sickle cell patients. Reactive oxygen species (ROS) and the (end-)products of their oxidative reactions are potential markers of disease severity and could be targets for antioxidant therapies. This review will summarize the role of ROS in SCD and their potential implication for SCD management. Copyright © 2011 Wiley-Liss, Inc.

  11. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  12. The Emerging Role of Chronic Low-Grade Inflammation in the Pathophysiology of Polycystic Ovary Syndrome.

    PubMed

    Shorakae, Soulmaz; Teede, Helena; de Courten, Barbora; Lambert, Gavin; Boyle, Jacqueline; Moran, Lisa J

    2015-07-01

    Polycystic ovary syndrome (PCOS) has become increasingly common over recent years and is associated with reproductive features as well as cardiometabolic risk factors, including visceral obesity, dyslipidemia and impaired glucose homeostasis, and potentially cardiovascular disease. Emerging evidence suggests that these long-term metabolic effects are linked to a low-grade chronic inflammatory state with the triad of hyperinsulinemia, hyperandrogenism, and low-grade inflammation acting together in a vicious cycle in the pathophysiology of PCOS. Dysregulation of the sympathetic nervous system may also act as an important component, potentially creating a tetrad in the pathophysiology of PCOS. The aim of this review is to examine the role of chronic inflammation and the sympathetic nervous system in the development of obesity and PCOS and review potential therapeutic options to alleviate low-grade inflammation in this setting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. The Pathophysiology of Insomnia

    PubMed Central

    Levenson, Jessica C.; Kay, Daniel B.

    2015-01-01

    Insomnia disorder is characterized by chronic dissatisfaction with sleep quantity or quality that is associated with difficulty falling asleep, frequent nighttime awakenings with difficulty returning to sleep, and/or awakening earlier in the morning than desired. Although progress has been made in our understanding of the nature, etiology, and pathophysiology of insomnia, there is still no universally accepted model. Greater understanding of the pathophysiology of insomnia may provide important information regarding how, and under what conditions, the disorder develops and is maintained as well as potential targets for prevention and treatment. The aims of this report are (1) to summarize current knowledge on the pathophysiology of insomnia and (2) to present a model of the pathophysiology of insomnia that considers evidence from various domains of research. Working within several models of insomnia, evidence for the pathophysiology of the disorder is presented across levels of analysis, from genetic to molecular and cellular mechanisms, neural circuitry, physiologic mechanisms, sleep behavior, and self-report. We discuss the role of hyperarousal as an overarching theme that guides our conceptualization of insomnia. Finally, we propose a model of the pathophysiology of insomnia that integrates the various types of evidence presented. PMID:25846534

  14. Pathophysiologic roles of the fibrinogen gamma chain.

    PubMed

    Farrell, David H

    2004-05-01

    Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.

  15. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].

    PubMed

    Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto

    2003-09-01

    ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout

  16. The Role of Necroptosis in the Pathophysiology of Bone Marrow Failure

    DTIC Science & Technology

    2014-03-01

    AD_________________ Award Number: W81XWH-13-1-0045 TITLE: The Role of Necroptosis in the...YYYY) -2014 2. REPORT TYPE Annual report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The Role of Necroptosis in the Pathophysiology of...12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT We proposed that: 1) persistent spontaneous necroptosis in a

  17. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy.

    PubMed

    Behl, Tapan; Velpandian, Thirumurthy; Kotwani, Anita

    2017-05-01

    The implications of altered coagulation-fibrinolytic system in the pathophysiology of several vascular disorders, such as stroke and myocardial infarction, have been well researched upon and established. However, its role in the progression of diabetic retinopathy has not been explored much. Since a decade, it is known that hyperglycemia is associated with a hypercoagulated state and the various impairments it causes are well acknowledged as independent risk factors for the development of cardiovascular diseases. But recent studies suggest that the hypercoagulative state and diminished fibrinolytic responses might also alter retinal homeostasis and induce several deleterious molecular changes in retinal cells which aggravate the already existing hyperglycemia-induced pathological conditions and thereby lead to the progression of diabetic retinopathy. The major mediators of coagulation-fibrinolytic system whose concentration or activity get altered during hyperglycemia include fibrinogen, antithrombin-III (AT-III), plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF). Inhibiting the pathways by which these altered mediators get involved in the pathophysiology of diabetic retinopathy can serve as potential targets for the development of an adjuvant novel alternative therapy for diabetic retinopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice.

    PubMed

    Hering, Dagmara; Trzebski, Andrzej; Narkiewicz, Krzysztof

    2017-03-01

    Hypertension remains a major and growing public health problem associated with the greatest global rate of cardiovascular morbidity and mortality. Although numerous factors contribute to poor control of blood pressure (BP) and to pseudoresistance (eg, unawareness, lifestyle habits, nonadherence to medication, insufficient treatment, drug‑induced hypertension, undiagnosed secondary causes), true resistant hypertension (RH) is reported in 10.1% of patients treated for elevated BP. While the mechanisms underlying RH remain complex and not entirely understood, sympathetic activation involved in the pathophysiology of hypertension, disease progression, and adverse complications is further augmented in patients with drug‑resistant hypertension. The well‑established contribution of neurogenic component of hypertension has led to the introduction of new alternative therapies aimed specifically at modulating central and neural reflexes mechanisms involved in BP control. Although clinical benefits of lowering BP with renal denervation, baroreflex activation therapy, carotid body denervation, central arteriovenous anastomosis, and deep brain stimulation have advanced our knowledge on uncontrolled hypertension, the variable BP response has prompted extensive ongoing research to define predictors of treatment effectiveness and further investigation of pathophysiology of RH. Very recently, research on the role of vasopressinergic neurons, masked tachycardia, and impaired brain neural activity has provided novel insights into hypertension. This review briefly summarizes the role of the centrally mediated sympathetic nervous system in hypertension, the therapeutic strategies that distinctively target impaired neural reflex mechanisms, and potential implications for future clinical research and therapies.

  19. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.

    PubMed

    Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek

    2017-02-01

    Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.

  20. The role of DNA methylation in the pathophysiology and treatment of bipolar disorder

    PubMed Central

    Fries, Gabriel Rodrigo; Li, Qiongzhen; McAlpin, Blake; Rein, Theo; Walss-Bass, Consuelo; Soares, Jair C.; de Quevedo, Joao

    2016-01-01

    Bipolar disorder (BD) is a multifactorial illness thought to result from an interaction between genetic susceptibility and environmental stimuli. Epigenetic mechanisms, including DNA methylation, can modulate gene expression in response to the environment, and therefore might account for part of the heritability reported for BD. This paper aims to review evidence of the potential role of DNA methylation in the pathophysiology and treatment of BD. In summary, several studies suggest that alterations in DNA methylation may play an important role in the dysregulation of gene expression in BD, and some actually suggest their potential use as biomarkers to improve diagnosis, prognosis, and assessment of response to treatment. This is also supported by reports of alterations in the levels of DNA methyltransferases in patients and in the mechanism of action of classical mood stabilizers. In this sense, targeting specific alterations in DNA methylation represents exciting new treatment possibilities for BD, and the ‘plastic’ characteristic of DNA methylation accounts for a promising possibility of restoring environment-induced modifications in patients. PMID:27328785

  1. Role of scavenger receptors in the pathophysiology of chronic liver diseases.

    PubMed

    Armengol, Carolina; Bartolí, Ramon; Sanjurjo, Lucía; Serra, Isabel; Amézaga, Núria; Sala, Margarita; Sarrias, Maria-Rosa

    2013-01-01

    Scavenger receptors comprise a large family of structurally diverse proteins that are involved in many homeostatic functions. They recognize a wide range of ligands, from pathogen-associated molecular patterns (PAMPs) to endogenous, as well as modified host-derived molecules (DAMPs). The liver deals with blood micro-organisms and DAMPs released from injured organs, thus performing vital metabolic and clearance functions that require the uptake of nutrients and toxins. Many liver cell types, including hepatocytes and Kupffer cells, express scavenger receptors that play key roles in hepatitis C virus entry, lipid uptake, and macrophage activation, among others. Chronic liver disease causes high morbidity and mortality worldwide. Hepatitis virus infection, alcohol abuse, and non-alcoholic fatty liver are the main etiologies associated with this disease. In this context, continuous inflammation as a result of liver damage leads to hepatic fibrosis, which frequently brings about cirrhosis and ultimately hepatocellular carcinoma. In this review, we will summarize the role of scavenger receptors in the pathophysiology of chronic liver diseases. We will also emphasize their potential as biomarkers of advanced liver disease, including cirrhosis and cancer.

  2. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas.

    PubMed

    Hegyi, Péter; Rakonczay, Zoltán

    2011-11-15

    Nitric oxide (NO), a ubiquitous gaseous signaling molecule, contributes to both pancreatic physiology and pathophysiology. The present review provides a general overview of NO synthesis, signaling, and function. Further, it specifically discusses NO metabolism and its effects in the exocrine pancreas and focuses on the role of NO in the pathogenesis of acute pancreatitis and pancreatic ischemia/reperfusion injury. Unfortunately, the role of NO in pancreatic physiology and pathophysiology remains controversial in numerous areas. Many questions regarding the messenger molecule still remain unanswered. Probably the least is known about the downstream targets of NO, which need to be identified, especially at the molecular level.

  3. The rise of pathophysiologic research in the United States: the role of two Harvard hospitals.

    PubMed

    Tishler, Peter V

    2013-01-01

    Pathophysiologic research, the major approach to understanding and treating disease, was created in the 20th century, and two Harvard-affiliated hospitals, the Peter Bent Brigham Hospital and Boston City Hospital, played a key role in its development. After the Flexner Report of 1910, medical students were assigned clinical clerkships in teaching hospitals. Rockefeller-trained Francis Weld Peabody, who was committed to investigative, pathophysiologic research, was a critical leader in these efforts. At the Brigham, Harvard medical students observed patients closely and asked provocative questions about their diseases. Additionally, physicians returned from World War I with questions concerning the pathophysiology of wartime injuries. At the Boston City Hospital's new Thorndike Memorial Laboratory, Peabody fostered investigative question-based research by physicians. These physicians expanded pathophysiologic investigation from the 1920s. Post-war, Watson and Crick's formulation of the structure of DNA led shortly to modern molecular biology and new research approaches that are being furthered at the Boston Hospitals.

  4. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology.

    PubMed

    Armakolas, Nikolaos; Armakolas, Athanasios; Antonopoulos, Athanasios; Dimakakos, Andreas; Stathaki, Martha; Koutsilieris, Michael

    2016-12-01

    Growth hormone (GH) regulated mainly liver-produced insulin-like growth factor 1 (IGF-1) is a key molecule in embryonic & post embryonic development that is also involved in cancer biology. Herein we review new insights of the role of igf-1 gene products and of the IGF-1Ec isoform in muscle and bone development/repair and its role in osteosarcoma pathophysiology, underlying the possible role of the Ec peptide as a future therapeutic target. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders

    PubMed Central

    Boules, Mona M; Fredrickson, Paul; Muehlmann, Amber M; Richelson, Elliott

    2014-01-01

    Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders. PMID:25379273

  6. An update on pancreatic pathophysiology (do we have to rewrite pancreatic pathophysiology?).

    PubMed

    Hammer, Heinz F

    2014-02-01

    This review focuses on seven aspects of physiology and pathophysiology of the exocrine pancreas that have been intensively discussed and studied within the past few years: (1) the role of neurohormonal mechanisms like melatonin, leptin, or ghrelin in the stimulation of pancreatic enzyme secretion; (2) the initiation processes of acute pancreatitis, like fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen by the lysosomal enzyme cathepsin B, or autoactivation of trypsinogen; (3) the role of genes in the pathogenesis of acute pancreatitis; (4) the role of alcohol and constituents of alcoholic beverages in the pathogenesis of acute pancreatitis; (5) the role of pancreatic hypertension, neuropathy, and central mechanisms for the pathogenesis of pain in chronic pancreatitis; (6) the relation between exocrine pancreatic function and diabetes mellitus; and (7) pathophysiology, diagnosis and treatment of pancreatic steatorrhea.

  7. Pathophysiology of gastro-esophageal reflux disease: a role for mucosa integrity?

    PubMed

    Farré, R

    2013-10-01

    Gastro-esophageal reflux disease (GERD) is very prevalent and has a high burden on health security system costs. Nevertheless, pathophysiology is complex and not well-understood. Several mechanisms have been proposed: decreased salivation, impaired esophageal clearance, decreased lower esophageal sphincter pressure resting tone, presence of hiatal hernia, increased number of transient lower esophageal sphincter relaxations (TLESRs), increased acid, and pepsin secretion, pyloric incompetence provoking duodeno-gastro-esophageal reflux of bile acids and trypsin. Independent of the relevance of each mechanism, the ultimate phenomenon is that mucosal epithelium is exposed for a longer time to agents as acid and pepsin or is in contact to luminal agents not commonly present in gastric refluxate as trypsin or bile acids. This leads to a visible damage of the epithelium (erosive esophagitis -EE) or impairing mucosal integrity without any sign of macroscopic alteration as occurs in non-erosive reflux disease (NERD). Luminal factors are not the only responsible for such impairment; more recent data indicate that endogenous factors may also play a role. This review will update the most recent findings on the putative pathophysiological mechanisms and specially will focus on the role of esophageal mucosal integrity in GERD. Methodologies used for the evaluation of mucosal integrity, its relevance in EE and NERD, its involvement in symptoms perception and the effect of luminal and endogenous factors will be discussed. © 2013 John Wiley & Sons Ltd.

  8. An update on oxidative stress-mediated organ pathophysiology.

    PubMed

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Central voice production and pathophysiology of spasmodic dysphonia.

    PubMed

    Mor, Niv; Simonyan, Kristina; Blitzer, Andrew

    2018-01-01

    Our ability to speak is complex, and the role of the central nervous system in controlling speech production is often overlooked in the field of otolaryngology. In this brief review, we present an integrated overview of speech production with a focus on the role of central nervous system. The role of central control of voice production is then further discussed in relation to the potential pathophysiology of spasmodic dysphonia (SD). Peer-review articles on central laryngeal control and SD were identified from PUBMED search. Selected articles were augmented with designated relevant publications. Publications that discussed central and peripheral nervous system control of voice production and the central pathophysiology of laryngeal dystonia were chosen. Our ability to speak is regulated by specialized complex mechanisms coordinated by high-level cortical signaling, brainstem reflexes, peripheral nerves, muscles, and mucosal actions. Recent studies suggest that SD results from a primary central disturbance associated with dysfunction at our highest levels of central voice control. The efficacy of botulinum toxin in treating SD may not be limited solely to its local effect on laryngeal muscles and also may modulate the disorder at the level of the central nervous system. Future therapeutic options that target the central nervous system may help modulate the underlying disorder in SD and allow clinicians to better understand the principal pathophysiology. NA.Laryngoscope, 128:177-183, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Potential Role of the Gut Microbiome in ALS: A Systematic Review.

    PubMed

    Wright, Michelle L; Fournier, Christina; Houser, Madelyn C; Tansey, Malú; Glass, Jonathan; Hertzberg, Vicki Stover

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) etiology and pathophysiology are not well understood. Recent data suggest that dysbiosis of gut microbiota may contribute to ALS etiology and progression. This review aims to explore evidence of associations between gut microbiota and ALS etiology and pathophysiology. Databases were searched for publications relevant to the gut microbiome in ALS. Three publications provided primary evidence of changes in microbiome profiles in ALS. An ALS mouse model revealed damaged tight junction structure and increased permeability in the intestine versus controls along with a shifted microbiome profile, including decreased levels of butyrate-producing bacteria. In a subsequent publication, again using an ALS mouse model, researchers showed that dietary supplementation with butyrate relieved symptoms and lengthened both time to onset of weight loss and survival time. In a small study of ALS patients and healthy controls, investigators also found decreased levels of butyrate-producing bacteria. Essential for maintaining gut barrier integrity, butyrate is the preferred energy source of intestinal epithelial cells. Ten other articles were reviews and commentaries providing indirect support for a role of gut microbiota in ALS pathophysiology. Thus, these studies provide a modicum of evidence implicating gut microbiota in ALS disease, although more research is needed to confirm the connection and determine pathophysiologic mechanisms. Nurses caring for these patients need to understand the gut microbiome and its potential role in ALS in order to effectively counsel patients and their families about emerging therapies (e.g., prebiotics, probiotics, and fecal microbial transplant) and their off-label uses.

  11. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases.

    PubMed

    Morris, Gerwyn; Walder, Ken; Carvalho, André F; Tye, Susannah J; Lucas, Kurt; Berk, Michael; Maes, Michael

    2018-01-01

    There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery.

    PubMed

    Demidova-Rice, Tatiana N; Hamblin, Michael R; Herman, Ira M

    2012-08-01

    This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.

  13. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    cellular signaling pathways required for growth. In contrast, progesterone via PR activation appears to increase leiomyoma growth. The exact role of PRs in cervical cancer is unclear. PRs regulate implantation and therefore aberrant PR function may be implicated in recurrent pregnancy loss (RPL). PRs likely regulate key immunogenic factors involved in RPL. However, the exact role of PRs in the pathophysiology of RPL and the use of progesterone for therapeutic benefit remains uncertain. CONCLUSIONS PRs are key mediators of progesterone action in uterine tissues and are essential for normal uterine function. Aberrant PR function (due to abnormal expression and/or function) is a major cause of uterine pathophysiology. Further investigation of the underlying mechanisms of PR isoform action in the uterus is required, as this knowledge will afford the opportunity to create progestin/PR-based therapeutics to treat various uterine pathologies. PMID:25406186

  14. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 2: Role of Growth Factors in Normal and Pathological Wound Healing: Therapeutic Potential and Methods of Delivery

    PubMed Central

    Demidova-Rice, Tatiana N.; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed. PMID:22820962

  15. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    PubMed Central

    Ozier, Annaïg; Allard, Benoit; Bara, Imane; Girodet, Pierre-Olivier; Trian, Thomas; Marthan, Roger; Berger, Patrick

    2011-01-01

    Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function. PMID:22220184

  16. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system

    PubMed Central

    Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru

    2017-01-01

    Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153

  17. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.

    PubMed

    Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R

    2018-05-01

    The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.

  18. A theoretical framework informing research about the role of stress in the pathophysiology of bipolar disorder.

    PubMed

    Brietzke, Elisa; Mansur, Rodrigo Barbachan; Soczynska, Joanna; Powell, Alissa M; McIntyre, Roger S

    2012-10-01

    The staggering illness burden associated with Bipolar Disorder (BD) invites the need for primary prevention strategies. Before preventative strategies can be considered in individuals during a pre-symptomatic period (i.e., at risk), unraveling the mechanistic steps wherein external stress is transduced and interacts with genetic vulnerability in the early stages of BD will be a critical conceptual necessity. Herein we comprehensively review extant studies reporting on stress and bipolar disorder. The overarching aim is to propose a conceptual framework to inform research about the role of stress in the pathophysiology of BD. Computerized databases i.e. PubMed, PsychInfo, Cochrane Library and Scielo were searched using the following terms: "bipolar disorder" cross-referenced with "stress", "general reaction to stress", "resilience", "resistance", "recovery" "stress-diathesis", "allostasis", and "hormesis". Data from literature indicate the existence of some theoretical models to understand the influence of stress in the pathophysiology of BD, including classical stress-diathesis model and new models such as allostasis and hormesis. In addition, molecular mechanisms involved in stress adaptation (resistance, resilience and recovery) can also be translated in research strategies to investigate the impact of stress in the pathophysiology of BD. Most studies are retrospective and/or cross sectional, do not consider the period of development, assess brain function with only one or few methodologies, and use animal models which are not always similar to human phenotypes. The interaction between stress and brain development is dynamic and complex. In this article we proposed a theoretical model for investigation about the role of stress in the pathophysiology of BD, based on the different kinds of stress adaptation response and their putative neurobiological underpinnings. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Inflammation in the pathophysiology of essential hypertension.

    PubMed

    Montecucco, Fabrizio; Pende, Aldo; Quercioli, Alessandra; Mach, François

    2011-01-01

    In spite of the huge amount of research recently performed in this area, the pathogenesis of human hypertension remains elusive. Thus, hypertension has to be defined as "essential" for the majority of patients with high blood pressure. Given the lack of animal models useful to investigate essential hypertension, we analyze and discuss both clinical and basic research studies indicating that essential hypertension should be considered as a potential multifactorial inflammatory disease. The pathophysiology of essential hypertension might result from interactions between genetic and environmental factors. Morphological abnormalities in the renal parenchyma and arteries have also been shown to determine hypertension. Inflammatory processes might induce renal vasoconstriction, ischemia and injury that can sustain systemic hypertension. Arterial and tubulointerstitial infiltration of inflammatory cells in response to renal damage might further increase renal and vascular alterations through the production of oxidants and other soluble inflammatory mediators. The present review gives an update regarding the latest research on the possible direct role of inflammation in the pathophysiology of essential hypertension.

  20. The Glutamatergic Aspects of Schizophrenia Molecular Pathophysiology: Role of the Postsynaptic Density, and Implications for Treatment

    PubMed Central

    Iasevoli, Felice; Tomasetti, Carmine; Buonaguro, Elisabetta F.; de Bartolomeis, Andrea

    2014-01-01

    Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately 1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its pathophysiology to postsynaptic abnormalities. The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia. More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this devastating illness. The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be discussed. PMID:24851087

  1. [Pathophysiology of hypertension: what's new?].

    PubMed

    Büchner, Nikolaus; Vonend, Oliver; Rump, Lars Christian

    2006-06-01

    The pathophysiology of primary hypertension is still unresolved and appears more complex than ever. It is beyond the scope of this article to review all new scientific developments in this field. On clinical grounds, hypertension is divided into primary and secondary forms. Here, the authors discuss the pathophysiology of hypertension associated with three common disease entities showing a large overlap with primary hypertension: chronic kidney disease (CKD), obstructive sleep apnea (OSA), and hyperaldosteronism. Especially in CKD and OSA, the activation of the sympathetic nervous system plays a crucial role. It is the authors' belief that hypertension due to these three diseases is more common than previously appreciated and may account for about 20% of the hypertensive population. The knowledge of the underlying pathophysiology allows early diagnosis and guides optimal treatment of these hypertensive patients.

  2. Astroglial role in the pathophysiology of status epilepticus: an overview

    PubMed Central

    Vargas-Sánchez, Karina; Mogilevskaya, Maria; Rodríguez-Pérez, John; Rubiano, María G.; Javela, José J.; González-Reyes, Rodrigo E.

    2018-01-01

    Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.

  3. The role of immune dysfunction in the pathophysiology of autism

    PubMed Central

    Onore, Charity; Careaga, Milo; Ashwood, Paul

    2012-01-01

    Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670

  4. Astroglial role in the pathophysiology of status epilepticus: an overview.

    PubMed

    Vargas-Sánchez, Karina; Mogilevskaya, Maria; Rodríguez-Pérez, John; Rubiano, María G; Javela, José J; González-Reyes, Rodrigo E

    2018-06-01

    Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.

  5. Role of Anticonvulsant and Antiepileptogenic Neurosteroids in the Pathophysiology and Treatment of Epilepsy

    PubMed Central

    Reddy, Doodipala Samba

    2011-01-01

    This review highlights the role of major endogenous neurosteroids in seizure disorders and the promise of neurosteroid replacement therapy in epilepsy. Neurosteroids are endogenous modulators of seizure susceptibility. Neurosteroids such as allopregnanolone (3α-hydroxy-5α-pregnane-20-one) and allotetrahydrodeoxycorticosterone (3α,21-dihydroxy-5α-pregnan-20-one) are positive modulators of GABA-A receptors. Aside from peripheral tissues, neurosteroids are synthesized within the brain, mostly in principal neurons. Neurosteroids potentiate synaptic GABA-A receptor function and also activate δ-subunit-containing extrasynaptic GABA-A receptors that mediate tonic currents and thus may play an important role in neuronal network excitability and seizure susceptibility. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. They protect against seizures induced by GABA-A receptor antagonists, 6-Hz model, pilocarpine-induced limbic seizures, and seizures in kindled animals. Unlike benzodiazepines, tolerance does not occur to their actions during chronic administration. Our recent studies provide compelling evidence that neurosteroids may have antiepileptogenic properties. There is emerging evidence that endogenous neurosteroids may play a key role in the pathophysiology of catamenial epilepsy, stress–sensitive seizure conditions, temporal lobe epilepsy, and alcohol-withdrawal seizures. It is suggested that neurosteroid replacement with natural or synthetic neurosteroids may be useful in the treatment of epilepsy. Synthetic analogs of neurosteroids that are devoid of hormonal side effects show promise in the treatment of diverse seizure disorders. Agents that stimulate endogenous production of neurosteroids may also be useful for treatment of epilepsy. PMID:22654805

  6. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment of anemia of chronic inflammation.

    PubMed

    Langer, Arielle L; Ginzburg, Yelena Z

    2017-06-01

    Anemia of chronic inflammation (ACI) is a frequently diagnosed anemia and portends an independently increased morbidity and poor outcome associated with multiple underlying diseases. The pathophysiology of ACI is multifactorial, resulting from the effects of inflammatory cytokines which both directly and indirectly suppress erythropoiesis. Recent advances in molecular understanding of iron metabolism provide strong evidence that immune mediators, such as IL-6, lead to hepcidin-induced hypoferremia, iron sequestration, and decreased iron availability for erythropoiesis. The role of hepcidin-ferroportin axis in the pathophysiology of ACI is stimulating the development of new diagnostics and targeted therapies. In this review, we present an overview of and rationale for inflammation-, iron-, and erythropoiesis-related strategies currently in development. © 2017 International Society for Hemodialysis.

  7. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy.

    PubMed

    Mansilha, Armando; Sousa, Joel

    2018-06-05

    Chronic venous disease (CVD) is a common pathology, with significant physical and psychological impacts for patients and high economic costs for national healthcare systems. Throughout the last decades, several risk factors for this condition have been identified, but only recently, have the roles of inflammation and endothelial dysfunction been properly assessed. Although still incompletely understood, current knowledge of the pathophysiological mechanisms of CVD reveals several potential targets and strategies for therapeutic intervention, some of which are addressable by currently available venoactive drugs. The roles of these drugs in the clinical improvement of venous tone and contractility, reduction of edema and inflammation, as well as in improved microcirculation and venous ulcer healing have been studied extensively, with favorable results reported in the literature. Here, we aim to review these pathophysiological mechanisms and their implications regarding currently available venoactive drug therapies.

  8. The role of oxidative stress in the pathophysiology of hypertension.

    PubMed

    Rodrigo, Ramón; González, Jaime; Paoletto, Fabio

    2011-04-01

    Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO), which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However, under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E, has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic strategies that could prevent or treat this disorder.

  9. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders

    PubMed Central

    Peterlik, Daniel; Flor, Peter J.; Uschold-Schmidt, Nicole

    2016-01-01

    Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders. PMID:27296643

  10. Pathophysiology and Treatment of Resistant Hypertension: The Role of Aldosterone and Amiloride-Sensitive Sodium Channels

    PubMed Central

    Judd, Eric K.; Calhoun, David A.; Warnock, David G.

    2015-01-01

    Summary Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented. PMID:25416662

  11. Pathophysiology and treatment of resistant hypertension: the role of aldosterone and amiloride-sensitive sodium channels.

    PubMed

    Judd, Eric K; Calhoun, David A; Warnock, David G

    2014-01-01

    Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented.

  12. Pathophysiological roles of P2 receptors in glial cells.

    PubMed

    Abbracchio, Maria P; Verderio, Claudia

    2006-01-01

    Extracellular nucleotides act through specific receptors on target cells: the seven ionotropic P2X and the eight G protein-coupled P2Y receptors. All these receptors are expressed by brain astroglia and microglia. In astrocytes, P2 receptors have been implicated in short-term calcium-dependent cell-cell communication. Upon mechanical stimulation or activation by other transmitters, astrocytes release ATP and respond to ATP with a propagating wave of intracellular calcium increases, allowing a homotypic astrocyte-astrocyte communication, as well as an heterotypic signalling which also involves neurons, oligodendrocytes and microglia. Astrocytic P2 receptors also mediate reactive astrogliosis, a reaction contributing to neuronal death in neurodegenerative diseases. Signalling leading to inflammatory astrogliosis involves induction of cyclo-oxygenase 2 through stimulation of ERK1,2 and of the transcriptional factors AP-1 and NF-kappaB. Microglia also express several P2 receptors linked to intracellular calcium increases. P2 receptor subtypes are differentially regulated by typical proinflammatory signals for these cells (e.g. lipopolysaccharide), suggesting specific roles in brain immune responses. Globally, these findings highlight the roles of P2 receptors in glial cell pathophysiology suggesting a contribution to neurodegenerative diseases characterized by excessive gliosis and neuro-inflammation. They also open up the possibility of modulating brain damage by ligands selectively targeting the specific P2 receptor subtypes involved in the gliotic response.

  13. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    PubMed

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  14. A putative role for homocysteine in the pathophysiology of acute bacterial meningitis in children.

    PubMed

    Coimbra, Roney Santos; Calegare, Bruno Frederico Aguilar; Candiani, Talitah Michel Sanchez; D'Almeida, Vânia

    2014-01-01

    Acute bacterial meningitis frequently causes cortical and hippocampal neuron loss leading to permanent neurological sequelae. Neuron death in acute bacterial meningitis involves the excessive activation of NMDA receptors and p53-mediated apoptosis, and the latter is triggered by the depletion of NAD + and ATP cellular stores by the DNA repair enzyme poly(ADP-ribose) polymerase. This enzyme is activated during acute bacterial meningitis in response to DNA damage induced, on its turn, by reactive oxygen and nitrogen species. An excess of homocysteine can also induce this cascade of events in hippocampal neurons. The present work aimed at investigating the possible involvement of homocysteine in the pathophysiology of meningitis by comparing its concentrations in cerebrospinal fluid (CSF) samples from children with viral or acute bacterial meningitis, and control individuals. Homocysteine and cysteine concentrations were assessed by high-performance liquid chromatography in CSF samples from nine patients with acute bacterial meningitis, 13 patients with viral meningitis and 18 controls (median age: 4 years-old; range: <1 to 13) collected by lumbar puncture at admission at the Children's Hospital Joao Paulo II - FHEMIG, from January 2010 to November 2011. We found that homocysteine accumulates up to neurotoxic levels within the central nervous system of patients with acute bacterial meningitis, but not in those with viral meningitis or control individuals. No correlation was found between homocysteine and cysteine concentrations and the cerebrospinal fluid standard cytochemical parameters. Our results suggest that HCY is produced intrathecally in response to acute bacterial meningitis and accumulates within the central nervous system reaching potentially neurotoxic levels. This is the first work to propose a role for HCY in the pathophysiology of brain damage associated with acute bacterial meningitis.

  15. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    PubMed

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  16. Cardiometabolic Risk and Female Sexuality-Part I. Risk Factors and Potential Pathophysiological Underpinnings for Female Vasculogenic Sexual Dysfunction Syndromes.

    PubMed

    Maseroli, Elisa; Scavello, Irene; Vignozzi, Linda

    2018-05-02

    Erectile dysfunction is recognized as an opportunity for preventing cardiovascular (CV) events, and assessing the impairment of penile vascular flow by Doppler ultrasound is an important tool to ascertain CV risk. Conversely, the role of genital vascular impairment in the pathophysiology of female sexual dysfunction (FSD) remains contentious. To focus on the current scientific support for an association between CV risk factors and female sexual health in the 1st part of a 2-part review. A thorough literature search of peer-reviewed publications on the associations between CV risk factors and FSD and their underlying mechanisms was performed using the PubMed database. We present a summary of the evidence from clinical studies and discuss the possible mechanisms providing the pathophysiologic bases of vasculogenic FSD syndromes. The peripheral sexual response in women is a vascular-dependent event, and evidence suggests that cardiometabolic-related perturbations in endothelial function can determine vascular insufficiency in female genital tissues. Although epidemiologic and observational studies demonstrate that the prevalence of FSD is higher in women with diabetes mellitus, a cause-effect relation between these clinical conditions cannot be assumed. Evidence on the effect of obesity, metabolic syndrome, and polycystic ovary syndrome on sexual function in women is controversial. Data on the associations of dyslipidemia and hypertension with FSD are limited. Common cardiometabolic alterations could affect vascular function in the female genital tract. Based on limited data, there is an association between CV risk factors and female sexual health in women; however, this association appears milder than in men. Maseroli E, Scavello I, Vignozzi L. Cardiometabolic Risk and Female Sexuality-Part I. Risk Factors and Potential Pathophysiological Underpinnings for Female Vasculogenic Sexual Dysfunction Syndromes. Sex Med Rev 2018;X:XXX-XXX. Copyright © 2018 International

  17. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways.

    PubMed

    Gimba, E R; Tilli, T M

    2013-04-30

    Human osteopontin is subject to alternative splicing, which generates three isoforms, termed OPNa, OPNb and OPNc. These variants show specific expression and roles in different cell contexts. We present an overview of current knowledge of the expression profile of human OPN splicing isoforms (OPN-SIs), their tissue-specific roles, and the pathways mediating their functional properties in different pathophysiological conditions. We also describe their putative application as biomarkers, and their potential use as therapeutic targets by using antibodies, oligonucleotides or siRNA molecules. This synthesis provides new clues for a better understanding of human OPN splice variants, their roles in normal and pathological conditions, and their possible clinical applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    PubMed

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. © The Author(s), 2015.

  19. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure.

    PubMed

    Rossi, Francesco; Mascolo, Annamaria; Mollace, Vincenzo

    2017-01-01

    Chronic Heart Failure (HF) is still a disease state characterized by elevated morbidity and mortality and represents an unresolved problem for its socio-economic impact. Besides many of the pathophysiological events leading to advanced HF have been widely disclosed in the past decades, the role of neuro-hormonal dysregulation accompanying HF has to be clearly assessed with the objective of better therapeutic approaches in treating such a disease. In the present review article, alongside with a brief re-evaluation of general aspects of HF physiopathology, we summarize recent advances in the cross talk between renin-angiotensin-aldosterone system (RAAS) with natriuretic peptides (NPs) which have been shown to play a relevant role in the development of severe HF. The role of RAAS-NPs interplay has been shown to be crucial in both hemodynamic and tissue remodeling associated to cardiomyocyte dysfunction, leading to advanced impairment of left ventricular performance. On the basis of these results, the development of drugs resetting both RAAS and NPs system seems to be promising for a successful long term treatment of chronic HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Pathophysiology of hypertension in obese children: a systematic review.

    PubMed

    Wirix, A J G; Kaspers, P J; Nauta, J; Chinapaw, M J M; Kist-van Holthe, J E

    2015-10-01

    Hypertension is increasingly common in overweight and obese children. The mechanisms behind the development of hypertension in obesity are complex, and evidence is limited. In order to effectively treat obese children for hypertension, it is important to have a deeper understanding of the pathophysiology of hypertension in obese children. The present review summarizes the main factors associated with hypertension in obese children and discusses their potential role in its pathophysiology. Systematic searches were conducted in PubMed and EMBASE for articles published up to October 2014. In total, 60 relevant studies were included. The methodological quality of the included studies ranged from weak to strong. Several factors important in the development of hypertension in obese children have been suggested, including endocrine determinants, such as corticosteroids and adipokines, sympathetic nervous system activity, disturbed sodium homeostasis, as well as oxidative stress, inflammation and endothelial dysfunction. Understanding the pathophysiology of hypertension in overweight and obese children is important and could have implications for its screening and treatment. Based on solely cross-sectional observational studies, it is impossible to infer causality. Longitudinal studies of high methodological quality are needed to gain more insight into the complex mechanisms behind the development of hypertension in obese children. © 2015 World Obesity.

  1. Gender Differences in Epidemiology, Pathophysiology, and Treatment of Hypertension.

    PubMed

    Di Giosia, Paolo; Giorgini, Paolo; Stamerra, Cosimo Andrea; Petrarca, Marco; Ferri, Claudio; Sahebkar, Amirhossein

    2018-02-14

    This review aims to examine gender differences in both the epidemiology and pathophysiology of hypertension and to explore gender peculiarities on the effects of antihypertensive agents in decreasing BP and CV events. Men and women differ in prevalence, awareness, and control rate of hypertension in an age-dependent manner. Studies suggest that sex hormones changes play a pivotal role in the pathophysiology of hypertension in postmenopausal women. Estrogens influence the vascular system inducing vasodilatation, inhibiting vascular remodeling processes, and modulating the renin-angiotensin aldosterone system and the sympathetic system. This leads to a protective effect on arterial stiffness during reproductive age that is dramatically reversed after menopause. Data on the efficacy of antihypertensive therapy between genders are conflicting, and the underrepresentation of aged women in large clinical trials could influence the results. Therefore, further clinical research is needed to uncover potential gender differences in hypertension to promote the development of a gender-oriented approach to antihypertensive treatment.

  2. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity.

    PubMed

    Chaves Filho, Adriano José Maia; Lima, Camila Nayane Carvalho; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Maes, Michael; Macedo, Danielle

    2018-01-03

    Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The role of TGF-β in the pathophysiology of peritoneal endometriosis.

    PubMed

    Young, Vicky J; Ahmad, S F; Duncan, W Colin; Horne, Andrew W

    2017-09-01

    Endometriosis is estimated to affect 6-10% of women of reproductive age and it is associated with chronic pelvic pain, dysmenorrhoea and subfertility. It is currently managed surgically or medically but symptoms recur in up to 75% of cases and available medical treatments have undesirable side effects. Endometriosis is defined as the presence of endometrial tissue outside the uterus with lesions typically found on the peritoneum. The aetiology of endometriosis is uncertain but there is increasing evidence that transforming growth factor (TGF)-β plays a major role. A descriptive review was undertaken of the published literature on the expression pattern of TGF-β ligands and signalling molecules in women with and without endometriosis, and on the potential roles of TGF-β signalling in the development and progression of peritoneal endometriosis. The current understanding of the TGF-β signalling pathway is summarized. We searched the Pubmed database using the terms 'transforming growth factor beta' and 'endometriosis' for studies published between 1995 and 2016. The initial search identified 99 studies and these were used as the basic material for this review. We also extended our remit for important older publications. In addition, we searched the reference lists of studies used in this review for additional studies we judged as relevant. Studies which were included in the review focused on peritoneal endometriosis only as increasing evidence suggests that ovarian and deep endometriosis may have a differing pathophysiology. Thus, a final 95 studies were included in the review. TGF-β1 is reported to be increased in the peritoneal fluid, serum, ectopic endometrium and peritoneum of women with endometriosis compared to women without endometriosis, and TGF-β1-null mice have reduced endometriosis lesion growth when compared to their wild-type controls. Studies in mice and women have indicated that increasing levels of TGF-β ligands are associated with decreased

  4. The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity

    PubMed Central

    2014-01-01

    Bisphenol A (BPA) is a monomer found in commonly used consumer plastic goods. Although much attention in recent years has been placed on BPA's impact as an endocrine disruptor, it also appears to activate many immune pathways involved in both autoimmune disease development and autoimmune reactivity provocation. The current scientific literature is void of research papers linking BPA directly to human or animal onset of autoimmunity. This paper explores the impact of BPA on immune reactivity and the potential roles these mechanisms may have on the development or provocation of autoimmune diseases. Potential mechanisms by which BPA may be a contributing risk factor to autoimmune disease development and progression include its impact on hyperprolactinemia, estrogenic immune signaling, cytochrome P450 enzyme disruption, immune signal transduction pathway alteration, cytokine polarization, aryl hydrocarbon activation of Th-17 receptors, molecular mimicry, macrophage activation, lipopolysaccharide activation, and immunoglobulin pathophysiology. In this paper a review of these known autoimmune triggering mechanisms will be correlated with BPA exposure, thereby suggesting that BPA has a role in the pathogenesis of autoimmunity. PMID:24804084

  5. The link between otitis media with effusion and allergy: a potential role for intranasal corticosteroids.

    PubMed

    Lack, Gideon; Caulfield, Helen; Penagos, Martin

    2011-05-01

    We reviewed the evidence linking otitis media with effusion (OME) and atopy, with the goal of clarifying the possible role of intranasal corticosteroids (INSs) in OME treatment. In August 2009, the MEDLINE database was searched for primary studies on OME epidemiology, pathophysiology, and treatment. Relevant clinical guidelines were obtained. Interpreting OME research is complicated by variable disease definitions, patient populations, methodologies, and outcomes assessments, along with the possibility of spontaneous resolution. However, evidence links OME with atopic conditions including allergic rhinitis; observed prevalence of allergic rhinitis in patients with chronic or recurrent OME ranges from 24% to 89%. Such findings have prompted evaluations of common allergy medications for OME treatment. While short-term use of INSs alone or combined with antibiotics has shown benefit in some studies, more prolonged treatment protocols and long-term clinical outcomes will require critical assessment. Evidence suggesting epidemiologic and pathophysiologic links between allergy and OME has prompted investigation into a potential role for INSs in OME management, with promising initial results. Benefits of considering medical treatment in patients with OME prior to surgery include both the potential reductions in allergic inflammation and the naturally occurring spontaneous resolution of OME in these patients. © 2011 John Wiley & Sons A/S.

  6. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus

    PubMed Central

    Abell, Sally K.; De Courten, Barbora; Boyle, Jacqueline A.; Teede, Helena J.

    2015-01-01

    Understanding pathophysiology and identifying mothers at risk of major pregnancy complications is vital to effective prevention and optimal management. However, in current antenatal care, understanding of pathophysiology of complications is limited. In gestational diabetes mellitus (GDM), risk prediction is mostly based on maternal history and clinical risk factors and may not optimally identify high risk pregnancies. Hence, universal screening is widely recommended. Here, we will explore the literature on GDM and biomarkers including inflammatory markers, adipokines, endothelial function and lipids to advance understanding of pathophysiology and explore risk prediction, with a goal to guide prevention and treatment of GDM. PMID:26110385

  7. Dry eye disease: pathophysiology, classification, and diagnosis.

    PubMed

    Perry, Henry D

    2008-04-01

    Dry eye disease (DED) is a multifactorial disorder of the tear film and ocular surface that results in eye discomfort, visual disturbance, and often ocular surface damage. Although recent research has made progress in elucidating DED pathophysiology, currently there are no uniform diagnostic criteria. This article discusses the normal anatomy and physiology of the lacrimal functional unit and the tear film; the pathophysiology of DED; DED etiology, classification, and risk factors; and DED diagnosis, including symptom assessment and the roles of selected diagnostic tests.

  8. NADPH Oxidase-Dependent Signaling in Endothelial Cells: Role in Physiology and Pathophysiology

    PubMed Central

    Ushio-Fukai, Masuko; Malik, Asrar B.

    2009-01-01

    Abstract Reactive oxygen species (ROS) including superoxide (O2·−) and hydrogen peroxide (H2O2) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, “oxidant signaling,” has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47phox, p67phox and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91phox (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets. Antioxid. Redox Signal. 11, 791–810. PMID:18783313

  9. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    PubMed Central

    Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.

    2014-01-01

    Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550

  10. The pathophysiology of migraine: implications for clinical management.

    PubMed

    Charles, Andrew

    2018-02-01

    The understanding of migraine pathophysiology is advancing rapidly. Improved characterisation and diagnosis of its clinical features have led to the view of migraine as a complex, variable disorder of nervous system function rather than simply a vascular headache. Recent studies have provided important new insights into its genetic causes, anatomical and physiological features, and pharmacological mechanisms. The identification of new migraine-associated genes, the visualisation of brain regions that are activated at the earliest stages of a migraine attack, a greater appreciation of the potential role of the cervical nerves, and the recognition of the crucial role for neuropeptides are among the advances that have led to novel targets for migraine therapy. Future management of migraine will have the capacity to tailor treatments based on the distinct mechanisms of migraine that affect individual patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Potential role of blood biomarkers in the management of nontraumatic intracerebral hemorrhage.

    PubMed

    Senn, Rebecca; Elkind, Mitchell S V; Montaner, Joan; Christ-Crain, Mirjam; Katan, Mira

    2014-01-01

    Intracerebral hemorrhage (ICH), a subtype of stroke associated with high mortality and disability, accounts for 13% of all strokes. Basic and clinical research has contributed to our understanding of the complex pathophysiology of neuronal injury in ICH. Outcome rates, however, remain stable, and questions regarding acute management of ICH remain unanswered. Newer research is aiming at matching measured levels of serum proteins, enzymes, or cells to different stages of brain damage, suggesting that blood biomarkers may assist in acute diagnosis, therapeutic decisions, and prognostication. This paper provides an overview on the most promising blood biomarkers and their potential role in the diagnosis and management of spontaneous ICH. Information was collected from studies, reviews, and guidelines listed in PubMed up to November 2013 on blood biomarkers of nontraumatic ICH in humans. We describe the potential role and limitations of GFAP, S100B/RAGE, and ApoC-III as diagnostic biomarkers, β-​Amyloid as a biomarker for etiological classification, and 27 biomarkers for prognosis of mortality and functional outcome. Within the group of prognostic markers we discuss markers involved in coagulation processes (e.g., D-Dimers), neuroendocrine markers (e.g., copeptin), systemic metabolic markers (e.g., blood glucose levels), markers of inflammation (e.g., IL-6), as well as growth factors (e.g., VEGF), and others (e.g., glutamate). Some of those blood biomarkers are agents of pathologic processes associated with hemorrhagic stroke but also other diseases, whereas others play more distinct pathophysiological roles and help in understanding the basic mechanisms of brain damage and/or recovery in ICH. Numerous blood biomarkers are associated with different pathophysiological pathways in ICH, and some of them promise to be useful in the management of ICH, eventually contributing additional information to current tools for diagnosis, therapy monitoring, risk stratification, or

  12. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  13. Jaundice associated pruritis: a review of pathophysiology and treatment.

    PubMed

    Bassari, Ramez; Koea, Jonathan B

    2015-02-07

    To review the underlying pathophysiology and currently available treatments for pruritis associated with jaundice. English language literature was reviewed using MEDLINE, PubMed, EMBASE and clinicaltrials.gov for papers and trails addressing the pathophysiology and potential treatments for pruritis associated with jaundice. Recent advances in the understanding of the peripheral anatomy of itch transmission have defined a histamine stimulated pathway and a cowhage stimulated pathway with sensation conveyed centrally via the contralateral spinothalamic tract. Centrally, cowhage and histamine stimulated neurons terminate widely within the thalamus and sensorimotor cortex. The causative factors for itch in jaundice have not been clarified although endogenous opioids, serotonin, steroid and lysophosphatidic acid all play a role. Current guidelines for the treatment of itching in jaundice recommend initial management with biliary drainage where possible and medical management with ursodeoxycholic acid, followed by cholestyramine, rifampicin, naltrexone and sertraline. Other than biliary drainage no single treatment has proved universally effective. Pruritis associated with jaundice is a common but poorly understood condition for which biliary drainage is the most effective therapy. Pharmacological therapy has advanced but remains variably effective.

  14. Jaundice associated pruritis: A review of pathophysiology and treatment

    PubMed Central

    Bassari, Ramez; Koea, Jonathan B

    2015-01-01

    To review the underlying pathophysiology and currently available treatments for pruritis associated with jaundice. English language literature was reviewed using MEDLINE, PubMed, EMBASE and clinicaltrials.gov for papers and trails addressing the pathophysiology and potential treatments for pruritis associated with jaundice. Recent advances in the understanding of the peripheral anatomy of itch transmission have defined a histamine stimulated pathway and a cowhage stimulated pathway with sensation conveyed centrally via the contralateral spinothalamic tract. Centrally, cowhage and histamine stimulated neurons terminate widely within the thalamus and sensorimotor cortex. The causative factors for itch in jaundice have not been clarified although endogenous opioids, serotonin, steroid and lysophosphatidic acid all play a role. Current guidelines for the treatment of itching in jaundice recommend initial management with biliary drainage where possible and medical management with ursodeoxycholic acid, followed by cholestyramine, rifampicin, naltrexone and sertraline. Other than biliary drainage no single treatment has proved universally effective. Pruritis associated with jaundice is a common but poorly understood condition for which biliary drainage is the most effective therapy. Pharmacological therapy has advanced but remains variably effective. PMID:25663760

  15. Prevalence, pathophysiological mechanisms and factors affecting urolithiasis.

    PubMed

    Khan, Aslam

    2018-05-01

    The formation of urinary stone, urolithiasis, is one the oldest known disease affecting human throughout different civilizations and times. The exact pathophysiological mechanism of urolithiasis is not yet clear, as these calculi are of various types and too complex for simple understanding. A single theory cannot explain its formation; therefore, different theories are presented in various times for its explanation like free particle, fixed particle, Randall's plaque theory. In addition, various factors and components are identified that play an important role in the formation of these urinary calculi. In this review, composition of kidney stones, its prevalence/incidence, explanation of pathophysiological mechanisms and role of various factors; urinary pH, uric acid, parathyroid hormone, citrate, oxalate, calcium and macromolecules; osteopontin, matrix Gla protein, kidney injury molecules, urinary prothrombin fragment-1, Tamm-Horsfall protein, inter-α-inhibitors, have been discussed in detail.

  16. Brief Report: Pathophysiology of Autism: Neurochemistry.

    ERIC Educational Resources Information Center

    Cook, Edwin H., Jr.

    1996-01-01

    This paper reviews what is known about the role of neurochemicals in controlling the development of the brain and in the pathophysiology of autism. Suggested approaches to further research involve using animal models, examining effects of drugs on neurochemicals, and using such technologies as positron emission tomography and magnetic resonance…

  17. Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells

    PubMed Central

    Chang, Chawnshang; Yeh, Shuyuan; Lee, Soo Ok; Chang, Ta-min

    2013-01-01

    The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases. PMID:24653668

  18. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    PubMed

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  19. Melatonin plays a protective role in postburn rodent gut pathophysiology.

    PubMed

    Al-Ghoul, Walid M; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-05-17

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 micromole/kg), but not 1.86 mg/kg (8 micromole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin

  20. Pathophysiology 220.

    ERIC Educational Resources Information Center

    Smith, Lori

    A description is provided of a course, "Pathophysiology 220," designed to provide junior nursing students at the University of Michigan's School of Nursing with theoretical knowledge of a broad range of pathophysiological conditions. Section I discusses the place of the course in the curriculum, the allotment of class time, course requirements,…

  1. Metabolic syndrome, its pathophysiology and the role of melatonin.

    PubMed

    Srinivasan, Venkataramanujam; Ohta, Yoshiji; Espino, Javier; Pariente, Jose A; Rodriguez, Ana B; Mohamed, Mahaneem; Zakaria, Rahimah

    2013-01-01

    Metabolic syndrome (MetS) is characterised by symptoms of obesity, insulin resistance, hypertension, dyslipidemia and diabetes mellitus. The pathophysiological mechanisms involved in MetS are complex and involved dysregulation of many biochemical and physiological regulatory mechanisms of the body. Elevated levels of low density lipoproteins like VLDL, and LDL with reduction of HDL seen in patients with MetS contribute to atherogenic dyslipedemia. Melatonin has been suggested to be effective in improving MetS through its anti-hyperlipidemic action. Melatonin reduced both adiposity, and body weight in experimental animal studies and also attenuated weight gain and obesityinduced metabolic alterations and this effect of melatonin is attributed to its anti-oxidative effects. Melatonin administration has been shown to inhibit insulin release by acting through both MT1 and MT2 melatonin receptors present in pancreatic β-cells. Melatonin also increased insulin sensitivity and glucose tolerance in animals fed with either high fat or high sucrose diet. Melatonin exerts most of its beneficial actions by acting through MT1 and MT2 melatonin receptors present in various tissues of the body and some of the metabolic actions of melatonin have been blocked by melatonin antagonist like luzindole. Ramelteon, the newly available melatonin agonist will also have more promising role in the control of MetS. The numbers of patents are available with regard to treatment of MetS. Drug related to antidepressant fluoxetine is used for treatment of MetS (US Patent No. 2008001400450). Anti-oxidants like S-adenosyl-methionine, Vitamin E, and Vitamin C have been found beneficial in treating MetS (US Patent No. 8063024). Melatonin being a powerful Antioxidant will have a promising role in treating patients with metabolic syndrome.

  2. The role of NMDA receptors in the pathophysiology and treatment of mood disorders.

    PubMed

    Ghasemi, Mehdi; Phillips, Cristy; Trillo, Ludwig; De Miguel, Zurine; Das, Devsmita; Salehi, Ahmad

    2014-11-01

    Mood disorders such as major depressive disorder and bipolar disorder are chronic and recurrent illnesses that cause significant disability and affect approximately 350 million people worldwide. Currently available biogenic amine treatments provide relief for many and yet fail to ameliorate symptoms for others, highlighting the need to diversify the search for new therapeutic strategies. Here we present recent evidence implicating the role of N-methyl-D-aspartate receptor (NMDAR) signaling in the pathophysiology of mood disorders. The possible role of NMDARs in mood disorders has been supported by evidence demonstrating that: (i) both BPD and MDD are characterized by altered levels of central excitatory neurotransmitters; (ii) NMDAR expression, distribution, and function are atypical in patients with mood disorders; (iii) NMDAR modulators show positive therapeutic effects in BPD and MDD patients; and (iv) conventional antidepressants/mood stabilizers can modulate NMDAR function. Taken together, this evidence suggests the NMDAR system holds considerable promise as a therapeutic target for developing next generation drugs that may provide more rapid onset relief of symptoms. Identifying the subcircuits involved in mood and elucidating the role of NMDARs subtypes in specific brain circuits would constitute an important step toward the development of more effective therapies with fewer side effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pathophysiology of priapism: dysregulatory erection physiology thesis.

    PubMed

    Burnett, Arthur L

    2003-07-01

    While a modest amount of medical literature has been written on the topic of priapism, reports heretofore have focused predominantly on diagnostic and management related aspects of the disorder, providing meager information in regard to its pathophysiology. Accordingly the intent of this review was to explore the etiological and pathogenic factors involved in priapism. The review entailed an overview of traditional and modern concepts that have been applied to the pathophysiology of priapism and an evaluation of assorted observational and experimental data relating to this field of study. The basic exercise consisted of a literature search using the National Library of Medicine PubMed Services, index referencing provided through the Historical Collection of the Institute of Medicine of The Johns Hopkins University and a survey of abstract proceedings from national meetings relevant to priapism. Insight into the pathophysiology of priapism was derived from a synthesis of evolutionary clinical experiences, mythical beliefs, clinical variants and scientific advances associated with the field of priapism. The results can be summarized. 1) Clinicopathological manifestations of priapism support its basic classification into low flow (ischemic) and high flow (nonischemic) hemodynamic categories, commonly attributed to venous outflow occlusion and unregulated arterial overflow of the penis, respectively. 2) Factual information is insufficient to substantiate etiological roles for urethral infection, bladder distention, failed ejaculation, satyriasis and sleep apnea in priapism. 3) Features of the variant forms of priapism invoke changes in nervous system control of erection and penile vascular homeostasis as having pathogenic roles in the disorder. 4) Clinical therapeutic and basic science investigative studies have revealed various effector mechanisms of the erectile tissue response that may act in dysregulated fashion to subserve priapism. This exercise suggested that

  4. [Pathophysiology of sickle cell disease].

    PubMed

    Elion, J; Laurance, S; Lapouméroulie, C

    2010-12-01

    It has been 100 years since Herrick published the first medical case report of sickle cell disease. In 1949, Pauling discovered hemoglobin S (HbS). As early as the 1960-70s, emerged a coherent detailed molecular-level description of pathophysiology of sickle disease. It involved polymerization of deoxyhemoglobin S with formation of long fibers inside red blood cells (RBC) causing a distorted sickle shape and shortened lifespan. These changes constitute the basic disease process and account for hemolytic anemia and for obstructive events underlying vasoocclusive crises (VOC). However, they do not explain the mechanisms that trigger VOC. The purpose of this review is to present recent data on dehydration of sickle cell RBC, abnormalities in RBC adhesion to the vascular endothelium, the role of inflammatory events and of activation of all cells in the vessel, and abnormalities of vascular tone and carbon monoxide metabolism. These data provide new insight into the pathophysiology of the first molecular disease.

  5. Orthostatic intolerance: potential pathophysiology and therapy.

    PubMed

    Lu, Chih-Cherng; Tseng, Ching-Jiunn; Tang, Hung-Shang; Tung, Che-Se

    2004-09-30

    Orthostatic intolerance affects an estimated 1 in 500 persons and causes a wide range of disabilities. After essential hypertension, it is the most frequently encountered dysautonomia, accounting for the majority of patients referred to centers specializing in autonomic disorders. Patients are typically young females with symptoms such as dizziness, visual changes, head and neck discomfort, poor concentration, fatigue, palpitations, tremulousness, anxiety, and, in some cases, syncope. Syncope is the most hazardous symptom of orthostatic intolerance, presumably occurring because of impaired cerebral perfusion and in part to compensatory autonomic mechanisms. The etiology of this syndrome is still unclear but is heterogeneous. Orthostatic intolerance used to be characterized by an overall enhancement of noradrenergic tone at rest in some patients and by a patchy dysautonomia of postganglionic sympathetic fibers with a compensatory cardiac sympathetic activation in others. However, recent advances in molecular genetics are improving our understanding of orthostatic intolerance, such as several genetic diseases (such as Ehler-Danlos syndrome and norepinephrine transporter deficiency) presenting with symptoms typical of orthostatic intolerance. Future work will include investigation of genetic functional mutations underlying interindividual differences in autonomic cardiovascular control, body fluid regulation, and vascular regulation in orthostatic intolerance patients. The goal of this review article is to describe recent advances in understanding the pathophysiological mechanisms of orthostatic intolerance and their clinical significance.

  6. Melatonin Plays a Protective Role in Postburn Rodent Gut Pathophysiology

    PubMed Central

    Al-Ghoul, Walid M.; Abu-Shaqra, Steven; Park, Byeong Gyu; Fazal, Nadeem

    2010-01-01

    Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 μmole/kg), but not 1.86 mg/kg (8 μmole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin supplementation on

  7. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders.

    PubMed

    Reinhard, Sarah M; Razak, Khaleel; Ethell, Iryna M

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called 'critical periods.' MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer's disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.

  8. The role of the hippocampus in the pathophysiology of major depression

    PubMed Central

    Campbell, Stephanie; MacQueen, Glenda

    2004-01-01

    Converging lines of research suggest that the hippocampal complex (HC) may have a role in the pathophysiology of major depressive disorder (MDD). Although postmortem studies show little cellular death in the HC of depressed patients, animal studies suggest that elevated glucocorticoid levels associated with MDD may negatively affect neurogenesis, cause excitotoxic damage or be associated with reduced levels of key neurotrophins in the HC. Antidepressant medications may counter these effects, having been shown to increase HC neurogenesis and levels of brain-derived neurotrophic factor in animal studies. Neuropsychological studies have identified deficits in hippocampus-dependent recollection memory that may not abate with euthymia, and such memory impairment has been the most reliably documented cognitive abnormality in patients with MDD. Finally, data from imaging studies suggest both structural changes in the volume of the HC and functional alterations in frontotemporal and limbic circuits that may be critical for mood regulation. The extent to which such functional and structural changes determine clinical outcome in MDD remains unknown; a related, but also currently unanswered, question is whether the changes in HC function and structure observed in MDD are preventable or modifiable with effective treatment for the depressive illness. PMID:15644983

  9. Vulvodynia: Definition, Prevalence, Impact, and Pathophysiological Factors.

    PubMed

    Pukall, Caroline F; Goldstein, Andrew T; Bergeron, Sophie; Foster, David; Stein, Amy; Kellogg-Spadt, Susan; Bachmann, Gloria

    2016-03-01

    Vulvodynia constitutes a highly prevalent form of chronic genital pain in women, and current information regarding its definition, prevalence, impact, and pathophysiologic factors involved is needed. To update the scientific evidence published in 2010 from the Third International Consultation of Sexual Medicine pertaining to the definition, prevalence, impact, and pathophysiologic factors of women's sexual pain. An expert committee, as part of the Fourth International Consultation of Sexual Medicine, comprised of researchers and clinicians from biological and social science disciplines, reviewed the scientific evidence on the definition, prevalence, impact, and pathophysiologic factors related to chronic genital pain. A review of the definition, prevalence, impact, and pathophysiological factors involved in vulvodynia. Vulvodynia is a prevalent and highly impactful genital pain condition. Numerous factors have been implicated in its development and maintenance. What is becoming increasingly apparent is that it likely represents the end point of different factors that can differ from patient to patient. Longitudinal research is needed to shed light on risk factors involved in the expression of vulvodynia, as well as in potential subgroups of affected patients, in order to develop an empirically supported treatment algorithm. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  10. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics.

    PubMed

    Camara-Lemarroy, Carlos R; Metz, Luanne; Meddings, Jonathan B; Sharkey, Keith A; Wee Yong, V

    2018-05-30

    Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.

  11. THE REGULATION ROLE OF CAROTID BODY PERIPHERAL CHEMORECEPTORS IN PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL CONDITIONS.

    PubMed

    Lazovic, Biljana; Zlatkovic Svenda, Mirjana; Durmic, Tijana; Stajic, Zoran; Duric, Vesna; Zugic, Vladimir

    2016-11-01

    The major oxygen sensors in the human body are peripheral chemoreceptors. also known as interoreceptors- as connected with internal organs, located in the aortic arch and in the body of the common carotid artery. Chemoreceptor function under physiological conditions. Stimulation of peripheral chemoreceptors during enviromental hypoxia causes a reflex-mediated increased ventilation, followed by the increase of the muscle sympatic activity, aiming to maintain tissue oxygen homeostatis, as well as glucosae, homeostatis. Besides that, peripheral chemoreceptors interact with central chemoreceptors. responsible for carbon dioxide changes . and they are able to modulate each other. Chemoreceptor function in pathophysiological conditions. Investigations of respiratory function in many pathological processes, such as hypertension, obstructive sleep apnea, congestive heart failure and many other diseases that are presented with enhanced peripheral chemosensitivity and impaired functional sy mpatholysis ultimately determine the peripheral chemorcceptor role and significance of peripheral chemoreceptors in the process of those pathological conditions development. Considering this, the presumed influence of peripheral chemoreceptors is important in patients having the above mentioned pathology. The importance and the role of peripheral chemoreceptors in the course of the breathing control is still controversial, despite many scientific attempts to solve this problem. The main objective of this review is to give the latest data on the peripheral chemoreceptor role and to highlight the importance of peripheral chemoreceptors for maintaining of oxygen homeostasis in pateints with hypoxia caused by either physiological or pathological conditions.

  12. Reform in teaching preclinical pathophysiology.

    PubMed

    Li, Yong-Yu; Li, Kun; Yao, Hong; Xu, Xiao-Juan; Cai, Qiao-Lin

    2015-12-01

    Pathophysiology is a scientific discipline that studies the onset and progression of pathological conditions and diseases, and pathophysiology is one of the core courses in most preclinical medical curricula. In China, most medical schools house a Department of Pathophysiology, in contrast to medical schools in many developed countries. The staff in Chinese Departments of Pathophysiology generally consists of full-time instructors or lecturers who teach medical students. These lecturers are sometimes lacking in clinic knowledge and experiences. To overcome this, in recent years, we have been trying to bring new trends in teaching pathophysiology into our curriculum. Our purpose in writing this article was to share our experiences with our colleagues and peers worldwide in the hope that the insights we have gained in pathophysiology teaching will be of some value to educators who advocate teaching reform in medical schools. Copyright © 2015 The American Physiological Society.

  13. Pathophysiology, Diagnosis, and Treatment of Radiation Necrosis in the Brain

    PubMed Central

    MIYATAKE, Shin-Ichi; NONOGUCHI, Noasuke; FURUSE, Motomasa; YORITSUNE, Erina; MIYATA, Tomo; KAWABATA, Shinji; KUROIWA, Toshihiko

    2015-01-01

    New radiation modalities have made it possible to prolong the survival of individuals with malignant brain tumors, but symptomatic radiation necrosis becomes a serious problem that can negatively affect a patient’s quality of life through severe and lifelong effects. Here we review the relevant literature and introduce our original concept of the pathophysiology of brain radiation necrosis following the treatment of brain, head, and neck tumors. Regarding the pathophysiology of radiation necrosis, we introduce two major hypotheses: glial cell damage or vascular damage. For the differential diagnosis of radiation necrosis and tumor recurrence, we focus on the role of positron emission tomography. Finally, in accord with our hypothesis regarding the pathophysiology, we describe the promising effects of the anti-vascular endothelial growth factor antibody bevacizumab on symptomatic radiation necrosis in the brain. PMID:25744350

  14. Erectile dysfunction and coronary atherothrombosis in diabetic patients: pathophysiology, clinical features and treatment.

    PubMed

    Gazzaruso, Carmine

    2006-03-01

    The current review reports recent data available in the literature on the prevalence of erectile dysfunction and the association of erectile dysfunction with overt and silent coronary artery disease in patients with diabetes mellitus. The mechanisms by which erectile dysfunction is associated with coronary artery disease and potential clinical implications of this association have been extensively analysed. In particular, the role of endothelial dysfunction in the pathophysiology of erectile dysfunction and the potential clinical usefulness of erectile dysfunction to identify diabetic patients with silent coronary artery disease have been outlined. Finally, recent guidelines on the treatment of erectile dysfunction with phosphodiesterase-5 inhibitors in diabetic patients with and without coronary artery disease have been reported and discussed.

  15. "Amyand's Hernia" – Pathophysiology, Role of Investigations and Treatment

    PubMed Central

    SINGAL, Rikki; GUPTA, Samita

    2011-01-01

    ABSTRACT Background: In the present era, appendicitis and hernia are common problems but their presentations in different positions are rare to be seen. It is difficult to make diagnose pre-operatively of contents as appendicitis in obstructed hernia. The term "Amyand's hernia" was lost in the literature and we are describing its pathophysiology and management. The aggravating factors are: complex injuries related to hernia (size, degree of sliding, multiplicity, etc.), patient characteristics (age, activity, respiratory disease, dysuria, obesity, constipation). If not treated in the earliest stages then it can lead to significant morbidity and mortality. Existing literature describes almost exclusively its pathophysiology, investigations and treatment. Material and Methods: We have focused on clinical presentation, radiological investigations and management of "Amyand's hernia". In literature, there is still confusion regarding investigations and treatment. We are presenting such rare entity managed in time without encountering any post-operative complications. Results: Ultrasonography and Computed Tomography are useful tests but clinical correlation is necessary in incarcerated appendix. Regarding treatment, it is clear that if appendix is inflamed then it should be removed, but we concluded that if appendix is found to be normal in obstructed hernia then it should also be removed due to possible later inflammation. Conclusion: If the appendix found in the hernial sac is inflamed then chances of mortality increase. Although emergency surgery is indicated in all obstructed hernias, morbidity and mortality can be decreased if operated on time. Early recognition and its awareness, along with good surgical technique in such cases are keys to success when dealing with this problem. PMID:22879848

  16. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology.

    PubMed

    Serralheiro, Pedro; Soares, Andreia; Costa Almeida, Carlos M; Verde, Ignacio

    2017-11-26

    Chronic venous insufficiency and varicose veins occur commonly in affluent countries and are a socioeconomic burden. However, there remains a relative lack of knowledge about venous pathophysiology. Various theories have been suggested, yet the molecular sequence of events is poorly understood. Transforming growth factor-beta one (TGF-β1) is a highly complex polypeptide with multifunctional properties that has an active role during embryonic development, in adult organ physiology and in the pathophysiology of major diseases, including cancer and various autoimmune, fibrotic and cardiovascular diseases. Therefore, an emphasis on understanding its signaling pathways (and possible disruptions) will be an essential requirement for a better comprehension and management of specific diseases. This review aims at shedding more light on venous pathophysiology by describing the TGF-β1 structure, function, activation and signaling, and providing an overview of how this growth factor and disturbances in its signaling pathway may contribute to specific pathological processes concerning the vessel wall which, in turn, may have a role in chronic venous insufficiency.

  17. Reform in Teaching Preclinical Pathophysiology

    ERIC Educational Resources Information Center

    Li, Yong-Yu; Li, Kun; Yao, Hong; Xu, Xiao-Juan; Cai, Qiao-Lin

    2015-01-01

    Pathophysiology is a scientific discipline that studies the onset and progression of pathological conditions and diseases, and pathophysiology is one of the core courses in most preclinical medical curricula. In China, most medical schools house a Department of Pathophysiology, in contrast to medical schools in many developed countries. The staff…

  18. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders

    PubMed Central

    Reinhard, Sarah M.; Razak, Khaleel; Ethell, Iryna M.

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders. PMID:26283917

  19. The Role of Neurosteroids in the Pathophysiology and Treatment of Catamenial Epilepsy

    PubMed Central

    Reddy, Doodipala Samba

    2009-01-01

    SUMMARY Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Generally, a two-fold or greater increase in seizure frequency during a particular phase of the menstrual cycle could be considered as catamenial epilepsy. Based on this criteria, recent clinical studies indicate that catamenial epilepsy affects 31 – 60% of the women with epilepsy. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. However, there is no specific drug available today for catamenial epilepsy, which has not been successfully treated with conventional antiepileptic drugs. Elucidation of the pathophysiology of catamenial epilepsy is a prerequisite to develop specific targeted approaches for treatment or prevention of the disorder. Cyclical changes in the circulating levels of estrogens and progesterone play a central role in the development of catamenial epilepsy. There is emerging evidence that endogenous neurosteroids with anticonvulsant or proconvulsant effects could play a critical role in catamenial epilepsy. It is thought that perimenstrual catamenial epilepsy is associated with the withdrawal of anticonvulsant neurosteroids. Progesterone and other hormonal agents have been shown in limited trials to be moderately effective in catamenial epilepsy, but may cause endocrine side effects. Synthetic neurosteroids, which enhance the tonic GABA-A receptor function, might provide an effective approach for the catamenial epilepsy therapy without producing hormonal side effects. PMID:19406620

  20. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes

    PubMed Central

    Makris, Konstantinos; Spanou, Loukia

    2016-01-01

    Acute kidney injury (AKI) is a clinical syndrome that complicates the course and worsens the outcome in a significant number of hospitalised patients. Recent advances in clinical and basic research will help with a more accurate definition of this syndrome and in the elucidation of its pathogenesis. With this knowledge we will be able to conduct more accurate epidemiologic studies in an effort to gain a better understanding of the impact of this syndrome. AKI is a syndrome that rarely has a sole and distinct pathophysiology. Recent evidence, in both basic science and clinical research, is beginning to change our view for AKI from a single organ failure syndrome to a syndrome where the kidney plays an active role in the progress of multi-organ dysfunction. Accurate and prompt recognition of AKI and better understanding of the pathophysiologic mechanisms underlying the various clinical phenotypes are of great importance to research for effective therapeutic interventions. In this review we provide the most recent updates in the definition, epidemiology and pathophysiology of AKI. PMID:28303073

  1. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes.

    PubMed

    Makris, Konstantinos; Spanou, Loukia

    2016-05-01

    Acute kidney injury (AKI) is a clinical syndrome that complicates the course and worsens the outcome in a significant number of hospitalised patients. Recent advances in clinical and basic research will help with a more accurate definition of this syndrome and in the elucidation of its pathogenesis. With this knowledge we will be able to conduct more accurate epidemiologic studies in an effort to gain a better understanding of the impact of this syndrome. AKI is a syndrome that rarely has a sole and distinct pathophysiology. Recent evidence, in both basic science and clinical research, is beginning to change our view for AKI from a single organ failure syndrome to a syndrome where the kidney plays an active role in the progress of multi-organ dysfunction. Accurate and prompt recognition of AKI and better understanding of the pathophysiologic mechanisms underlying the various clinical phenotypes are of great importance to research for effective therapeutic interventions. In this review we provide the most recent updates in the definition, epidemiology and pathophysiology of AKI.

  2. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics.

    PubMed

    Pearn, Matthew L; Niesman, Ingrid R; Egawa, Junji; Sawada, Atsushi; Almenar-Queralt, Angels; Shah, Sameer B; Duckworth, Josh L; Head, Brian P

    2017-05-01

    Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.

  3. The Pathophysiology of HIV-/HAART-Related Metabolic Syndrome Leading to Cardiovascular Disorders: The Emerging Role of Adipokines

    PubMed Central

    Palios, John; Kadoglou, Nikolaos P. E.; Lampropoulos, Stylianos

    2012-01-01

    Individuals infected with human immunodeficiency virus (HIV) frequently demonstrate metabolic syndrome (MS) associated with increased incidence of cardiovascular disorders. Characteristics of HIV infection, such as immunodeficiency, viral load, and duration of the disease, in addition to the highly active antiretroviral therapy (HAART) have been suggested to induce MS in these patients. It is well documented that MS involves a number of traditional cardiovascular risk factors, like glucose, lipids, and arterial blood pressure abnormalities, leading to extensive atherogenic arterial wall changes. Nevertheless, the above traditional cardiovascular risk factors merely explain the exacerbated cardiovascular risk in MS. Nowadays, the adipose-tissue derivatives, known as adipokines, have been suggested to contribute to chronic inflammation and the MS-related cardiovascular disease. In view of a novel understanding on how adipokines affect the pathogenesis of HIV/HAART-related MS and cardiovascular complications, this paper focuses on the interaction of the metabolic pathways and the potential cardiovascular consequences. Based on the current literature, we suggest adipokines to have a role in the pathogenesis of the HIV/HAART-related MS. It is crucial to understand the pathophysiology of the HIV/HAART-related MS and apply therapeutic strategies in order to reduce cardiovascular risk in HIV patients. PMID:22203832

  4. Pathophysiology and neuroprotection of global and focal perinatal brain injury: lessons from animal models

    PubMed Central

    Manganozzi, Lucilla; Moretti, Raffaella; Vexler, Zinaida S.; Gressens, Pierre

    2016-01-01

    BACKGROUND Arterial ischemic stroke occurs most frequently in term newborns than in the elderly, and brain immaturity affects mechanisms of ischemic injury and recovery. The susceptibility to injury of the brain was assumed to be lower in the perinatal period as compared to childhood. This concept was recently challenged by clinical studies showing marked motor disabilities after stroke in neonates, with the severity of motor and cortical sensory deficits similar in both perinatal and childhood ischemic stroke. The understanding of the triggers and the pathophysiological mechanisms of perinatal stroke has greatly improved in recent years, but many aspects remain still unclear. METHODS In this review, we will focus on the pathophysiology of perinatal stroke and on therapeutic strategies that can protect the immature brain from the consequences of stroke by targeting inflammation and brain microenvironment. RESULTS Studies in neonatal rodent models of cerebral ischemia have shown a potential role for soluble inflammatory molecules as important modulators of injury and recovery. A great effort has been made and is still in act to try neuroprotective molecules based on the new physiopatological acquisition. CONCLUSION In this review we aim to give a comprehensive view of new insights concerning pathophysiological mechanism of focal and global perinatal brain injury and its new therapeutic approaches. PMID:26002050

  5. Pathophysiology of hypophosphatasia and the potential role of asfotase alfa.

    PubMed

    Orimo, Hideo

    2016-01-01

    Hypophosphatasia (HPP) is an inherited systemic bone disease that is characterized by bone hypomineralization. HPP is classified into six forms according to the age of onset and severity as perinatal (lethal), perinatal benign, infantile, childhood, adult, and odontohypophosphatasia. The causative gene of the disease is the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP is expressed ubiquitously, and its physiological role is apparent in bone mineralization. A defect in bone mineralization can manifest in several ways, including rickets or osteomalacia in HPP patients. Patients with severe forms suffer from respiratory failure because of hypoplastic chest, which is the main cause of death. They sometimes present with seizures due to a defect in vitamin B6 metabolism resulting from the lack of alkaline phosphatase activity in neuronal cells, which is also lethal. Patients with a mild form of the disease exhibit rickets or osteomalacia and a functional defect of exercise. Odontohypophosphatasia shows only dental manifestations. To date, 302 mutations in the ALPL gene have been reported, mainly single-nucleotide substitutions, and the relationships between phenotype and genotype have been partially elucidated. An established treatment for HPP was not available until the recent development of enzyme replacement therapy. The first successful enzyme replacement therapy in model mice using a modified human TNAP protein (asfotase alfa) was reported in 2008, and subsequently success in patients with severe form of the disease was reported in 2012. In 2015, asfotase alfa was approved in Japan in July, followed by in the EU and Canada in August, and then by the US Food and Drug Administration in the USA in October. It is expected that therapy with asfotase alfa will drastically change treatments and prognosis of HPP.

  6. Hemorrhoids: from basic pathophysiology to clinical management.

    PubMed

    Lohsiriwat, Varut

    2012-05-07

    This review discusses the pathophysiology, epidemiology, risk factors, classification, clinical evaluation, and current non-operative and operative treatment of hemorrhoids. Hemorrhoids are defined as the symptomatic enlargement and distal displacement of the normal anal cushions. The most common symptom of hemorrhoids is rectal bleeding associated with bowel movement. The abnormal dilatation and distortion of the vascular channel, together with destructive changes in the supporting connective tissue within the anal cushion, is a paramount finding of hemorrhoids. It appears that the dysregulation of the vascular tone and vascular hyperplasia might play an important role in hemorrhoidal development, and could be a potential target for medical treatment. In most instances, hemorrhoids are treated conservatively, using many methods such as lifestyle modification, fiber supplement, suppository-delivered anti-inflammatory drugs, and administration of venotonic drugs. Non-operative approaches include sclerotherapy and, preferably, rubber band ligation. An operation is indicated when non-operative approaches have failed or complications have occurred. Several surgical approaches for treating hemorrhoids have been introduced including hemorrhoidectomy and stapled hemorrhoidopexy, but postoperative pain is invariable. Some of the surgical treatments potentially cause appreciable morbidity such as anal stricture and incontinence. The applications and outcomes of each treatment are thoroughly discussed.

  7. Sickle cell dehydration: Pathophysiology and therapeutic applications.

    PubMed

    Brugnara, Carlo

    2018-01-01

    Cell dehydration is a distinguishing characteristic of sickle cell disease and an important contributor to disease pathophysiology. Due to the unique dependence of Hb S polymerization on cellular Hb S concentration, cell dehydration promotes polymerization and sickling. In double heterozygosis for Hb S and C (SC disease) dehydration is the determining factor in disease pathophysiology. Three major ion transport pathways are involved in sickle cell dehydration: the K-Cl cotransport (KCC), the Gardos channel (KCNN4) and Psickle, the polymerization induced membrane permeability, most likely mediated by the mechano-sensitive ion channel PIEZO1. Each of these pathways exhibit unique characteristics in regulation by oxygen tension, intracellular and extracellular environment, and functional expression in reticulocytes and mature red cells. The unique dependence of K-Cl cotransport on intracellular Mg and the abnormal reduction of erythrocyte Mg content in SS and SC cells had led to clinical studies assessing the effect of oral Mg supplementation. Inhibition of Gardos channel by clotrimazole and senicapoc has led to Phase 1,2,3 trials in patients with sickle cell disease. While none of these studies has resulted in the approval of a novel therapy for SS disease, they have highlighted the key role played by these pathways in disease pathophysiology.

  8. The pathophysiology of delayed ejaculation

    PubMed Central

    2016-01-01

    Delayed ejaculation (DE) is probably least studied, and least understood of male sexual dysfunctions, with an estimated prevalence of 1–4% of the male population. Pathophysiology of DE is multifactorial and including psychosexual-behavioral and cultural factors, disruption of ejaculatory apparatus, central and peripheral neurotransmitters, hormonal or neurochemical ejaculatory control and psychosocial factors. Although knowledge of the physiology of the DE has increased in the last two decade, our understanding of the different pathophysiological process of the causes of DE remains limited. To provide a systematic update on the pathophysiology of DE. A systematic review of Medline and PubMed for relevant publications on ejaculatory dysfunction (EjD), DE, retarded ejaculation, inhibited ejaculation, and climax was performed. The search was limited to the articles published between the January 1960 and December 2015 in English. Of 178 articles, 105 were selected for this review. Only those publications relevant to the pathophysiology, epidemiology and prevalence of DE were included. The pathophysiology of DE involves cerebral sensory areas, motor centers, and several spinal nuclei that are tightly interconnected. The biogenic, psychogenic and other factors strongly affect the pathophysiology of DE. Despite the many publications on this disorder, there still is a paucity of publications dedicated to the subject. PMID:27652227

  9. Hypertension in pregnancy: Taking cues from pathophysiology for clinical practice.

    PubMed

    Sava, Ruxandra I; March, Keith L; Pepine, Carl J

    2018-02-01

    Pregnancy-related hypertension (PHTN) syndromes are a frequent and potentially deadly complication of pregnancy, while also negatively impacting the lifelong health of the mother and child. PHTN appears in women likely to develop hypertension later in life, with the stress of pregnancy unmasking a subclinical hypertensive phenotype. However, distinguishing between PHTN and chronic hypertension is essential for optimal management. Preeclampsia (PE) is linked to potentially severe outcomes and lacks effective treatments due to poorly understood mechanisms. Inadequate remodeling of spiral uterine arteries (SUAs), the cornerstone of PE pathophysiology, leads to hypoperfusion of the developing placenta. In normal pregnancies, extravillous trophoblast (EVT) cells assume an invasive phenotype and invade SUAs, transforming them into large conduits. Decidual natural killer cells play an essential role, mediating materno-fetal immune tolerance, inducing early SUA remodeling and regulating EVT invasiveness. Notch signaling is important in EVT phenotypic switch and is dysregulated in PE. The hypoxic placenta releases antiangiogenic and proinflammatory factors that converge upon maternal endothelium, inducing endothelial dysfunction, hypertension, and organ damage. Hypoxia-inducible factor 1-α is upstream of such molecules, whereas endothelin-1 is a major effector. We also describe important genetic links and evidence of incomplete materno-fetal immune tolerance, with PE patients presenting with autoantibodies, lower T reg , and higher T h 17 cells. Thus, PE manifestations arise as a consequence of mal-placentation or/and because of a predisposition of the maternal vascular bed to excessively react to pathogenic molecules. From this pathophysiological basis, we provide current and propose future therapeutic directions for PE. © 2018 Wiley Periodicals, Inc.

  10. Inflammation and the pathophysiology of work-related musculoskeletal disorders.

    PubMed

    Barbe, Mary F; Barr, Ann E

    2006-09-01

    Work-related musculoskeletal disorders (MSDs) have accounted for a significant proportion of work injuries and workers' compensation claims in industrialized nations since the late 1980s. Despite epidemiological evidence for the role of repetition and force in the onset and progression of work-related MSDs, complete understanding of these important occupational health problems requires further elucidation of pathophysiological mechanisms of the tissue response, particularly in the early stage of these disorders. Results from several clinical and experimental studies indicate that tissue microtraumas occur as a consequence of performing repetitive and/or forceful tasks, and that this mechanical tissue injury leads to local and perhaps even systemic inflammation, followed by fibrotic and structural tissue changes. Here we review work linking inflammation and the development of work-related MSDs. We also propose a conceptual framework suggesting the potential roles that inflammation may play in these disorders, and how inflammation may contribute to pain, motor dysfunction, and to puzzling psychological symptoms that are often characteristic of patients with work-related MSDs.

  11. Pancreatitis in dogs and cats: definitions and pathophysiology.

    PubMed

    Watson, P

    2015-01-01

    Pancreatitis, or inflammation of the pancreas, is commonly seen in dogs and cats and presents a spectrum of disease severities from acute to chronic and mild to severe. It is usually sterile, but the causes and pathophysiology remain poorly understood. The acute end of the disease spectrum is associated with a high mortality but the potential for complete recovery of organ structure and function if the animal survives. At the other end of the spectrum, chronic pancreatitis in either species can cause refractory pain and reduce quality of life. It may also result in progressive exocrine and endocrine functional impairment. There is confusion in the veterinary literature about definitions of acute and chronic pancreatitis and there are very few studies on the pathophysiology of naturally occurring pancreatitis in dogs and cats. This article reviews histological and clinical definitions and current understanding of the pathophysiology and causes in small animals by comparison with the much more extensive literature in humans, and suggests many areas that need further study in dogs and cats. © 2015 British Small Animal Veterinary Association.

  12. The Physiological/Pathophysiological Significance of Vitamin D in Cancer, Cardiovascular Disorders and Beyond.

    PubMed

    AlMatar, Manaf; AlMandeal, Husam; Makky, Essam A; Kayar, Begum; Yarar, Emel; Var, Isıl; Koksal, Fatih

    2017-01-01

    Vitamin D, a molecular precursor of the potent steroid hormone calcitriol, has crucial functions and roles in physiology and pathophysiology. Tellingly, calcitriol has been shown to regulate various cellular signalling networks and cascades that have crucial role in cancer biology and diagnostics. Mounting lines of evidences from previous clinical and preclinical investigations indicate that the deficiency of vitamin D may contribute to the carcinogenesis risk. Concomitantly, recent reports suggested that significant reduction in the cancer occurrence and progression is more likely to appear after vitamin D supplementation. Furthermore, a pivotal role functioned by vitamin D in cardiovascular physiology indicates that the deficiency of vitamin D is significantly correlated with enhanced prevalence of stroke, hypertension and myocardial infarction. Notably, vitamin D status is more likely to be used as a lifestyle biomarker, since poor and unhealthy lifestyles are correlated with the deficiency of vitamin D, a feature which may result in cardiovascular complications. Moreover, recent reports revealed that the effect of vitamin D is to cover not only cardiovascular system but also skeletal system. Herein, we are highlighting the recent knowledge of vitamin D roles and functions with respect to pathophysiological disorders such as cancer, cardiovascular diseases, rheumatoid arthritis (RA) and debate the potential avails of vitamin D on slowing cancer, cardiovascular disease and RA progression. The findings of this review confirm that the importance of vitamin D metabolites or analogues which can provide a helpful platform to target some kinds of cancer, particularly when used in combination with existing therapies. Moreover, the correlation between vitamin D deficiencies with cardiovascular diseases and rheumatoid arthritis (RA) progression might suggest a pivotal role of vitamin D in either initiation or progression of these diseases. Copyright© Bentham Science

  13. Advances in the pathophysiology of pre-eclampsia and related podocyte injury

    PubMed Central

    Craici, Iasmina M.; Wagner, Steven J.; Weissgerber, Tracey L.; Grande, Joseph P.; Garovic, Vesna D.

    2014-01-01

    Pre-eclampsia is a pregnancy-specific hypertensive disorder that may lead to serious maternal and fetal complications. It is a multisystem disease that is commonly, but not always, accompanied by proteinuria. Its cause(s) remain unknown, and delivery remains the only definitive treatment. It is increasingly recognized that many pathophysiological processes contribute to this syndrome, with different signaling pathways converging at the point of systemic endothelial dysfunction, hypertension, and proteinuria. Different animal models of pre-eclampsia have proven utility for specific aspects of pre-eclampsia research, and offer insights into pathophysiology and treatment possibilities. Therapeutic interventions that specifically target these pathways may optimize pre-eclampsia management and may improve fetal and maternal outcomes. In addition, recent findings regarding placental, endothelial, and podocyte pathophysiology in pre-eclampsia provide unique and exciting possibilities for improved diagnostic accuracy. Emerging evidence suggests that testing for urinary podocytes or their markers may facilitate the prediction and diagnosis of pre-eclampsia. In this review, we explore recent research regarding placental, endothelial, and podocyte pathophysiology. We further discuss new signaling and genetic pathways that may contribute to pre-eclampsia pathophysiology, emerging screening and diagnostic strategies, and potential targeted interventions. PMID:24573315

  14. Update on the pathophysiological activities of the cardiac molecule cardiotrophin-1 in obesity.

    PubMed

    Asrih, Mohamed; Mach, François; Quercioli, Alessandra; Dallegri, Franco; Montecucco, Fabrizio

    2013-01-01

    Cardiotrophin-1 (CT-1) is a heart-targeting cytokine that has been reported to exert a variety of activities also in other organs such as the liver, adipose tissue, and atherosclerotic arteries. CT-1 has been shown to induce these effects via binding to a transmembrane receptor, comprising the leukaemia inhibitory factor receptor (LIFR β ) subunit and the glycoprotein 130 (gp130, a common signal transducer). Both local and systemic concentrations of CT-1 have been shown to potentially play a critical role in obesity. For instance, CT-1 plasma concentrations have been shown to be increased in metabolic syndrome (a cluster disease including obesity) probably due to adipose tissue overexpression. Interestingly, treatment with exogenous CT-1 has been shown to improve lipid and glucose metabolism in animal models of obesity. These benefits might suggest a potential therapeutic role for CT-1. However, beyond its beneficial properties, CT-1 has been also shown to induce some adverse effects, such as cardiac hypertrophy and adipose tissue inflammation. Although scientific evidence is still needed, CT-1 might be considered as a potential example of damage/danger-associated molecular pattern (DAMP) in obesity-related cardiovascular diseases. In this narrative review, we aimed at discussing and updating evidence from basic research on the pathophysiological and potential therapeutic roles of CT-1 in obesity.

  15. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    PubMed

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hemorrhoids: From basic pathophysiology to clinical management

    PubMed Central

    Lohsiriwat, Varut

    2012-01-01

    This review discusses the pathophysiology, epidemiology, risk factors, classification, clinical evaluation, and current non-operative and operative treatment of hemorrhoids. Hemorrhoids are defined as the symptomatic enlargement and distal displacement of the normal anal cushions. The most common symptom of hemorrhoids is rectal bleeding associated with bowel movement. The abnormal dilatation and distortion of the vascular channel, together with destructive changes in the supporting connective tissue within the anal cushion, is a paramount finding of hemorrhoids. It appears that the dysregulation of the vascular tone and vascular hyperplasia might play an important role in hemorrhoidal development, and could be a potential target for medical treatment. In most instances, hemorrhoids are treated conservatively, using many methods such as lifestyle modification, fiber supplement, suppository-delivered anti-inflammatory drugs, and administration of venotonic drugs. Non-operative approaches include sclerotherapy and, preferably, rubber band ligation. An operation is indicated when non-operative approaches have failed or complications have occurred. Several surgical approaches for treating hemorrhoids have been introduced including hemorrhoidectomy and stapled hemorrhoidopexy, but postoperative pain is invariable. Some of the surgical treatments potentially cause appreciable morbidity such as anal stricture and incontinence. The applications and outcomes of each treatment are thoroughly discussed. PMID:22563187

  17. GI stem cells – new insights into roles in physiology and pathophysiology

    PubMed Central

    von Furstenberg, Richard J.

    2016-01-01

    Abstract This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles. PMID:27107928

  18. The hypothalamic–pituitary–adrenal axis and sex hormones in chronic stress and obesity: pathophysiological and clinical aspects

    PubMed Central

    Pasquali, Renato

    2012-01-01

    Obesity, particularly the abdominal phenotype, has been ascribed to an individual maladaptation to chronic environmental stress exposure mediated by a dysregulation of related neuroendocrine axes. Alterations in the control and action of the hypothalamic–pituitary–adrenal axis play a major role in this context, with the participation of the sympathetic nervous system. The ability to adapt to chronic stress may differ according to sex, with specific pathophysiological events leading to the development of stress-related chronic diseases. This seems to be influenced by the regulatory effects of sex hormones, particularly androgens. Stress may also disrupt the control of feeding, with some differences according to sex. Finally, the amount of experimental data in both animals and humans may help to shed more light on specific phenotypes of obesity, strictly related to the chronic exposure to stress. This challenge may potentially imply a different pathophysiological perspective and, possibly, a specific treatment. PMID:22612409

  19. Leptin in human physiology and pathophysiology

    PubMed Central

    Magkos, Faidon; Brinkoetter, Mary; Sienkiewicz, Elizabeth; Dardeno, Tina A.; Kim, Sang-Yong; Hamnvik, Ole-Petter R.; Koniaris, Anastasia

    2011-01-01

    Leptin, discovered through positional cloning 15 years ago, is an adipocyte-secreted hormone with pleiotropic effects in the physiology and pathophysiology of energy homeostasis, endocrinology, and metabolism. Studies in vitro and in animal models highlight the potential for leptin to regulate a number of physiological functions. Available evidence from human studies indicates that leptin has a mainly permissive role, with leptin administration being effective in states of leptin deficiency, less effective in states of leptin adequacy, and largely ineffective in states of leptin excess. Results from interventional studies in humans demonstrate that leptin administration in subjects with congenital complete leptin deficiency or subjects with partial leptin deficiency (subjects with lipoatrophy, congenital or related to HIV infection, and women with hypothalamic amenorrhea) reverses the energy homeostasis and neuroendocrine and metabolic abnormalities associated with these conditions. More specifically, in women with hypothalamic amenorrhea, leptin helps restore abnormalities in hypothalamic-pituitary-peripheral axes including the gonadal, thyroid, growth hormone, and to a lesser extent adrenal axes. Furthermore, leptin results in resumption of menses in the majority of these subjects and, in the long term, may increase bone mineral content and density, especially at the lumbar spine. In patients with congenital or HIV-related lipoatrophy, leptin treatment is also associated with improvements in insulin sensitivity and lipid profile, concomitant with reduced visceral and ectopic fat deposition. In contrast, leptin's effects are largely absent in the obese hyperleptinemic state, probably due to leptin resistance or tolerance. Hence, another emerging area of research pertains to the discovery and/or usefulness of leptin sensitizers. Results from ongoing studies are expected to further increase our understanding of the role of leptin and the potential clinical

  20. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.

    PubMed

    Michalakis, Stylianos; Becirovic, Elvir; Biel, Martin

    2018-03-07

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca 2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  1. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    PubMed Central

    Biel, Martin

    2018-01-01

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application. PMID:29518895

  2. Pathogenesis and Pathophysiology of Pneumococcal Meningitis

    PubMed Central

    Mook-Kanamori, Barry B.; Geldhoff, Madelijn; van der Poll, Tom; van de Beek, Diederik

    2011-01-01

    Summary: Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy. PMID:21734248

  3. Critical role of canonical transient receptor potential channel 7 in initiation of seizures.

    PubMed

    Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Birnbaumer, Lutz; Zheng, Fang

    2014-08-05

    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel.

  4. Pathophysiology of depression: role of sleep and the melatonergic system.

    PubMed

    Srinivasan, Venkataramanujan; Pandi-Perumal, Seithikurippu R; Trakht, Ilya; Spence, D Warren; Hardeland, Ruediger; Poeggeler, Burkhard; Cardinali, Daniel P

    2009-02-28

    Profound disturbances in sleep architecture occur in major depressive disorders (MDD) and in bipolar affective disorders. Reduction in slow wave sleep, decreased latency of rapid eye movement (REM) sleep and abnormalities in the timing of REM/non-REM sleep cycles have all been documented in patients with MDD. It is thus evident that an understanding of the basic mechanisms of sleep regulation is essential for an analysis of the pathophysiology of depressive disorders. The suprachiasmatic nucleus (SCN), which functions as the body's master circadian clock, plays a major role in the regulation of the sleep/wakefulness rhythm and interacts actively with the homeostatic processes that regulate sleep. The control of melatonin secretion by the SCN, the occurrence of high concentrations of melatonin receptors in the SCN, and the suppression of electrical activity in the SCN by melatonin all underscore the major influence which this neurohormone has in regulating the sleep/wake cycle. The transition from wakefulness to high sleep propensity is associated with the nocturnal rise of endogenous melatonin secretion. Various lines of evidence show that depressed patients exhibit disturbances in both the amplitude and shape of the melatonin secretion rhythm and that melatonin can improve the quality of sleep in these patients. The choice of a suitable antidepressant that improves sleep quality is thus important while treating a depressive disorder. The novel antidepressant agomelatine, which combines the properties of a 5-HT(2C) antagonist and a melatonergic MT(1)/MT(2) receptor agonist, has been found very effective for resetting the disturbed sleep/wake cycle and in improving the clinical status of MDD. Agomelatine has also been found useful in treating sleep problems and improving the clinical status of patients suffering from seasonal affective disorder.

  5. Modern iron replacement therapy: clinical and pathophysiological insights.

    PubMed

    Girelli, Domenico; Ugolini, Sara; Busti, Fabiana; Marchi, Giacomo; Castagna, Annalisa

    2018-01-01

    Iron deficiency, with or without anemia, is extremely frequent worldwide, representing a major public health problem. Iron replacement therapy dates back to the seventeenth century, and has progressed relatively slowly until recently. Both oral and intravenous traditional iron formulations are known to be far from ideal, mainly because of tolerability and safety issues, respectively. At the beginning of this century, the discovery of hepcidin/ferroportin axis has represented a turning point in the knowledge of the pathophysiology of iron metabolism disorders, ushering a new era. In the meantime, advances in the pharmaceutical technologies are producing newer iron formulations aimed at minimizing the problems inherent with traditional approaches. The pharmacokinetic of oral and parenteral iron is substantially different, and diversities have become even clearer in light of the hepcidin master role in regulating systemic iron homeostasis. Here we review how iron therapy is changing because of such important advances in both pathophysiology and pharmacology.

  6. Zinc-Permeable Ion Channels: Effects on Intracellular Zinc Dynamics and Potential Physiological/Pathophysiological Significance

    PubMed Central

    Inoue, Koichi; O'Bryant, Zaven; Xiong, Zhi-Gang

    2015-01-01

    Zinc (Zn2+) is one of the most important trace metals in the body. It is necessary for the normal function of a large number of proteins including enzymes and transcription factors. While extracellular fluid may contain up to micromolar Zn2+, intracellular Zn2+ concentration is generally maintained at a subnanomolar level; this steep gradient across the cell membrane is primarily attributable to Zn2+ extrusion by Zn2+ transporting systems. Interestingly, systematic investigation has revealed that activities, previously believed to be dependent on calcium (Ca2+), may be partially mediated by Zn2+. This is also supported by new findings that some Ca2+-permeable channels such as voltage-dependent calcium channels (VDCCs), N-methyl-D-aspartate receptors (NMDA), and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPA-Rs) are also permeable to Zn2+. Thus, the importance of Zn2+ in physiological and pathophysiological processes is now more widely appreciated. In this review, we describe Zn2+-permeable membrane molecules, especially Zn2+-permeable ion channels, in intracellular Zn2+dynamics and Zn2+ mediated physiology/pathophysiology. PMID:25666796

  7. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis

    PubMed Central

    Chana, Gursharan; Bousman, Chad A.; Money, Tammie T.; Gibbons, Andrew; Gillett, Piers; Dean, Brian; Everall, Ian P.

    2013-01-01

    Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations. PMID

  8. [Current concepts in pathophysiology of CRPS I].

    PubMed

    Nickel, F T; Maihöfner, C

    2010-02-01

    Knowledge about the pathophysiology underlying the complex regional pain syndrome (CRPS) has increased over the last years. Classically, CRPS has been considered to be mainly driven by sympathetic dysfunction with sympathetically maintained pain being its major pathogenetic mechanism. Currently, the disease is understood as result of a complex interplay between altered somatosensory, motor, autonomic and inflammatory systems. Peripheral and central sensitization is a common feature in CRPS as in other neuropathic pain syndromes. One important mechanism is the sensitization of spinal dorsal horn cells via activation of postsynaptic NMDA-receptors by chronic C-fiber input. Differential activity of endogenous pain modulating systems may play a pivotal role in the development of CRPS, too. Neuronal plasticity of the somatosensory cortex accounts for central sensory signs. Also the motor system is subject to central adaptive changes in patients with CRPS. Calcitonin-gene related peptide (CGRP) and substance P mediate neurogenic inflammation. Additionally other proinflammatory cytokines involved in the inflammatory response in CRPS have been identified. In terms of the sympathetic nervous system, recent evidence rather points to a sensitization of adrenergic receptors than to increased efferent sympathetic activity. Particularly the expression of alpha (1)-adrenoceptors on nociceptive C-fibers may play a major role. These pathophysiological ideas do not exclude each other. In fact they complement one another. The variety of the involved systems may explain the versatile clinical picture of CRPS. Georg Thieme Verlag KG Stuttgart, New York.

  9. Behçet's syndrome pathophysiology and potential therapeutic targets.

    PubMed

    Emmi, Giacomo; Silvestri, Elena; Squatrito, Danilo; D'Elios, Mario Milco; Ciucciarelli, Lucia; Prisco, Domenico; Emmi, Lorenzo

    2014-04-01

    Behçet syndrome is a systemic inflammatory disorder characterized by multiorgan involvement such as oral and genital ulcers, uveitis, skin lesions as well as by less frequent, but often more severe, central nervous system and vascular manifestations. The pathogenetic mechanisms are still incompletely known; however the interaction between a specific genetic background and environmental or infectious factors certainly contributes to the immune dysregulation that characterizes this disease. The discovery of new immunological pathways in Behçet syndrome pathogenesis may help us to set up new treatments. In this review, we will focus our attention on the possible mechanisms underlying Behçet syndrome pathogenesis and their potential role as novel therapeutic targets.

  10. Emerging role of liver X receptors in cardiac pathophysiology and heart failure.

    PubMed

    Cannon, Megan V; van Gilst, Wiek H; de Boer, Rudolf A

    2016-01-01

    Liver X receptors (LXRs) are master regulators of metabolism and have been studied for their pharmacological potential in vascular and metabolic disease. Besides their established role in metabolic homeostasis and disease, there is mounting evidence to suggest that LXRs may exert direct beneficial effects in the heart. Here, we aim to provide a conceptual framework to explain the broad mode of action of LXRs and how LXR signaling may be an important local and systemic target for the treatment of heart failure. We discuss the potential role of LXRs in systemic conditions associated with heart failure, such as hypertension, diabetes, and renal and vascular disease. Further, we expound on recent data that implicate a direct role for LXR activation in the heart, for its impact on cardiomyocyte damage and loss due to ischemia, and effects on cardiac hypertrophy, fibrosis, and myocardial metabolism. Taken together, the accumulating evidence supports the notion that LXRs may represent a novel therapeutic target for the treatment of heart failure.

  11. Pathophysiology of Portal Hypertension and Its Clinical Links

    PubMed Central

    Seo, Yeon Seok; Shah, Vijay H

    2011-01-01

    Portal hypertension is a major cause of morbidity and mortality in patients with liver cirrhosis. Intrahepatic vascular resistance due to architectural distortion and intrahepatic vasoconstriction, increased portal blood flow due to splanchnic vasodilatation, and development of collateral circulation have been considered as major factors for the development of portal hypertension. Recently, sinusoidal remodeling and angiogenesis have been focused as potential etiologic factors and various researchers have tried to improve portal hypertension by modulating these new targets. This article reviews potential new treatments in the context of portal hypertension pathophysiology concepts. PMID:25755320

  12. Orexinergic system and pathophysiology of epilepsy.

    PubMed

    Doreulee, N; Alania, M; Vashalomidze, G; Skhirtladze, E; Kapanadze, Ts

    2010-11-01

    Neuropeptids orexins, also known as the hypocretins, are expressed in the lateral hypothalamus. Orexin-containing cells project widely throughout the brains, are crucial for the regulation of wakefulness and dysfunction of this system is associated with pathophysiology of narcolepsy-cataplexy. Orexin neurons play an important role in motivation, feeding and adaptive behaviors. Distribution of orexinergic receptors in the hippocampus tended to the ideas that orexins might be involved in the functions relating to the hippocampus. Effects of neuropeptide orexin-A on epileptiform activity in hippocampal slices were investigated. 500 µm thick hippocampal slices from 8-10 week-old rodents were used. Field excitatory postsynaptic potential (pop-fEPSP) and population spike in CA1 of hippocamopus were registered using standard protocol of in vitro electrophysiological experiments. Initial slope of the fEPSP and amplitude of II pop-spike were measured. Bursting neurons in CA3 were recorded in modified saline. We have found that orexin-A decreases duration/amplitude of multiple discharges of pop-spikes and inhibits spontaneous epileptiform afterdischarges induced by bicuculline methiodide in CA1. Orexin-A also modulates the frequency of discharges of bursting neurons in CA3. Our results suggest possible involvement of orexinergic system in antiepileptic action. Supported by ISTC Grant G-1318.

  13. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis.

    PubMed

    Borowitz, Drucy

    2015-10-01

    The gene that encodes for the cystic fibrosis transmembrane regulator protein (CFTR) was identified in 1989, yet major pathophysiologic questions remain unanswered. There is emerging evidence that CFTR is a bicarbonate channel, a driver of chloride-bicarbonate exchange and through its action on local pH, a regulator of other ion channels and of proteins that function optimally in a neutral environment. In both the respiratory and gastrointestinal (GI) tracts, bicarbonate drives ionic content and fluid on epithelial surfaces, allows mucins to unfold and become slippery, and contributes to innate immunity. In the GI tract bicarbonate neutralizes gastric acid to support digestion and absorption. When CFTR is dysfunctional, lack of bicarbonate secretion disrupts these normal processes and thus leads directly to the clinical symptoms and signs of CF. This article synthesizes evidence from cell, animal, and human investigations that support these concepts. Bicarbonate secretion does not seem to be the same in all tissues and varies with physiologic demand. Thus, tissue type and whether conditions are baseline or stimulated needs to be taken into account when evaluating the evidence concerning the role of bicarbonate in the pathophysiology of CF as a regulator of local pH. Basic and applied research that focuses on the role of CFTR-mediated bicarbonate secretion helps explain many of the diverse clinical manifestations that are CF. © 2015 Wiley Periodicals, Inc.

  14. DNA methylation and the potential role of demethylating agents in prevention of progressive chronic kidney disease.

    PubMed

    Larkin, Benjamin P; Glastras, Sarah J; Chen, Hui; Pollock, Carol A; Saad, Sonia

    2018-04-24

    Chronic kidney disease (CKD) is a global epidemic, and its major risk factors include obesity and type 2 diabetes. Obesity not only promotes metabolic dysregulation and the development of diabetic kidney disease but also may independently lead to CKD by a variety of mechanisms, including endocrine and metabolic dysfunction, inflammation, oxidative stress, altered renal hemodynamics, and lipotoxicity. Deleterious renal effects of obesity can also be transmitted from one generation to the next, and it is increasingly recognized that offspring of obese mothers are predisposed to CKD. Epigenetic modifications are changes that regulate gene expression without altering the DNA sequence. Of these, DNA methylation is the most studied. Epigenetic imprints, particularly DNA methylation, are laid down during critical periods of fetal development, and they may provide a mechanism by which maternal-fetal transmission of chronic disease occurs. Our current review explores the evidence for the role of DNA methylation in the development of CKD, diabetic kidney disease, diabetes, and obesity. DNA methylation has been implicated in renal fibrosis-the final pathophysiologic pathway in the development of end-stage kidney disease-which supports the notion that demethylating agents may play a potential therapeutic role in preventing development and progression of CKD.-Larkin, B. P., Glastras, S. J., Chen, H., Pollock, C. A., Saad, S. DNA methylation and the potential role of demethylating agents in prevention of progressive chronic kidney disease.

  15. Dietary Advanced Glycation End Products and their Potential role in Cardiometabolic Disease in Children

    PubMed Central

    Gupta, Anshu; Uribarri, Jaime

    2016-01-01

    The rising incidence of obesity and metabolic diseases such as diabetes mellitus and cardiovascular disease in adolescents and young adults is of grave concern. Recent studies favor role of lifestyle factors over genetics in perpetuation of inflammation, insulin resistance and oxidative stress, which are pathophysiologic processes common to above diseases; furthermore, the importance of dietary factors in addition to calories and physical activity in these processes is being increasingly recognized. Advanced glycation end products (AGEs) belong to a category of dietary oxidants which have been implicated in the pathogenesis of inflammation, oxidative stress, insulin resistance, β-cell failure and endothelial dysfunction. This paper reviews the studies of AGEs with focus on their role in cardiometabolic disease in children. A MEDLINE search was performed using the keywords childhood obesity, metabolic syndrome and advanced glycation end products. Articles published in English between 1975 and 2015 and their references were reviewed. While most studies were performed in adults, a few studies also demonstrated a role of AGEs in obesity and associated cardiometabolic comorbidities in the younger population. Available evidence suggests involvement of AGEs in pathogenesis of adiposity and β-cell failure in children. Potential areas for further research to investigate underlying mechanisms are proposed. PMID:27008270

  16. Protein O-GlcNAcylation and Cardiovascular (Patho)physiology*

    PubMed Central

    Marsh, Susan A.; Collins, Helen E.; Chatham, John C.

    2014-01-01

    Our understanding of the role of protein O-GlcNAcylation in the regulation of the cardiovascular system has increased rapidly in recent years. Studies have linked increased O-GlcNAc levels to glucose toxicity and diabetic complications; conversely, acute activation of O-GlcNAcylation has been shown to be cardioprotective. However, it is also increasingly evident that O-GlcNAc turnover plays a central role in the delicate regulation of the cardiovascular system. Therefore, the goals of this minireview are to summarize our current understanding of how changes in O-GlcNAcylation influence cardiovascular pathophysiology and to highlight the evidence that O-GlcNAc cycling is critical for normal function of the cardiovascular system. PMID:25336635

  17. Role of mitochondrial oxidative stress in hypertension

    PubMed Central

    Ungvari, Zoltan

    2013-01-01

    Based on mosaic theory, hypertension is a multifactorial disorder that develops because of genetic, environmental, anatomical, adaptive neural, endocrine, humoral, and hemodynamic factors. It has been recently proposed that oxidative stress may contribute to all of these factors and production of reactive oxygen species (ROS) play an important role in the development of hypertension. Previous studies focusing on the role of vascular NADPH oxidases provided strong support of this concept. Although mitochondria represent one of the most significant sources of cellular ROS generation, the regulation of mitochondrial ROS generation in the cardiovascular system and its pathophysiological role in hypertension are much less understood. In this review, the role of mitochondrial oxidative stress in the pathophysiology of hypertension and cross talk between angiotensin II signaling, pathways involved in mechanotransduction, NADPH oxidases, and mitochondria-derived ROS are considered. The possible benefits of therapeutic strategies that have the potential to attenuate mitochondrial oxidative stress for the prevention/treatment of hypertension are also discussed. PMID:24043248

  18. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    PubMed

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  19. Redox signaling in pathophysiology of hypertension.

    PubMed

    Majzunova, Miroslava; Dovinova, Ima; Barancik, Miroslav; Chan, Julie Y H

    2013-09-18

    Reactive oxygen species (ROS) are products of normal cellular metabolism and derive from various sources in different cellular compartments. Oxidative stress resultant from imbalance between ROS generation and antioxidant defense mechanisms is important in pathogenesis of cardiovascular diseases, such as hypertension, heart failure, atherosclerosis, diabetes, and cardiac hypertrophy. In this review we focus on hypertension and address sources of cellular ROS generation, mechanisms involved in regulation of radical homeostasis, superoxide dismutase isoforms in pathophysiology of hypertension; as well as radical intracellular signaling and phosphorylation processes in proteins of the affected cardiovascular tissues. Finally, we discuss the transcriptional factors involved in redox-sensitive gene transcription and antioxidant response, as well as their roles in hypertension.

  20. Redox signaling in pathophysiology of hypertension

    PubMed Central

    2013-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism and derive from various sources in different cellular compartments. Oxidative stress resultant from imbalance between ROS generation and antioxidant defense mechanisms is important in pathogenesis of cardiovascular diseases, such as hypertension, heart failure, atherosclerosis, diabetes, and cardiac hypertrophy. In this review we focus on hypertension and address sources of cellular ROS generation, mechanisms involved in regulation of radical homeostasis, superoxide dismutase isoforms in pathophysiology of hypertension; as well as radical intracellular signaling and phosphorylation processes in proteins of the affected cardiovascular tissues. Finally, we discuss the transcriptional factors involved in redox-sensitive gene transcription and antioxidant response, as well as their roles in hypertension. PMID:24047403

  1. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis

    PubMed Central

    Chistiakov, Dimitry A.; Nikiforov, Nikita G.

    2016-01-01

    Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances. PMID:27493969

  2. Role of Anti-Müllerian Hormone in pathophysiology, diagnosis and treatment of Polycystic Ovary Syndrome: a review.

    PubMed

    Dumont, Agathe; Robin, Geoffroy; Catteau-Jonard, Sophie; Dewailly, Didier

    2015-12-21

    Polycystic ovary syndrome (PCOS) is the most common cause of chronic anovulation and hyperandrogenism in young women. Excessive ovarian production of Anti-Müllerian Hormone, secreted by growing follicles in excess, is now considered as an important feature of PCOS. The aim of this review is first to update the current knowledge about the role of AMH in the pathophysiology of PCOS. Then, this review will discuss the improvement that serum AMH assay brings in the diagnosis of PCOS. Last, this review will explain the utility of serum AMH assay in the management of infertility in women with PCOS and its utility as a marker of treatment efficiency on PCOS symptoms. It must be emphasized however that the lack of an international standard for the serum AMH assay, mainly because of technical issues, makes it difficult to define consensual thresholds, and thus impairs the widespread use of this new ovarian marker. Hopefully, this should soon improve.

  3. Recent developments in the pathophysiology of irritable bowel syndrome

    PubMed Central

    El-Salhy, Magdy

    2015-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, the pathophysiology of which is not completely known, although it has been shown that genetic/social learning factors, diet, intestinal microbiota, intestinal low-grade inflammation, and abnormal gastrointestinal endocrine cells play a major role. Studies of familial aggregation and on twins have confirmed the heritability of IBS. However, the proposed IBS risk genes are thus far nonvalidated hits rather than true predisposing factors. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, with the effect exerted by diet seemingly caused by intake of poorly absorbed carbohydrates and fiber. Obesity is a possible comorbidity of IBS. Differences in the microbiota between IBS patients and healthy controls have been reported, but the association between IBS symptoms and specific bacterial species is uncertain. Low-grade inflammation appears to play a role in the pathophysiology of a major subset of IBS, namely postinfectious IBS. The density of intestinal endocrine cells is reduced in patients with IBS, possibly as a result of genetic factors, diet, intestinal microbiota, and low-grade inflammation interfering with the regulatory signals controlling the intestinal stem-cell clonogenic and differentiation activities. Furthermore, there is speculation that this decreased number of endocrine cells is responsible for the visceral hypersensitivity, disturbed gastrointestinal motility, and abnormal gut secretion seen in IBS patients. PMID:26167065

  4. Growth and Development Symposium: Inflammation: Role in the etiology and pathophysiology of clinical mastitis in dairy cows.

    PubMed

    Ballou, M A

    2012-05-01

    Genetic selection for increased milk production in dairy cattle was not associated with an attenuated inflammatory response. The systemic and local inflammatory responses contribute to altered metabolism, reduced production performance, and increased cull rate of lactating dairy cows with clinical mastitis. More aggressive inflammatory responses were observed during the peripartum period when compared with cows in late lactation after an intramammary challenge with purified lipopolysaccharide. The epidemiology of clinical mastitis indicates that the greatest incidence is observed during the peripartum period; therefore, an enhanced inflammatory response with concomitant suppression in other immune responses may be involved in the etiology and severity of the clinical mastitis observed in peripartum cows. Milk production losses and compositional changes are observed among all mammary quarters from a cow with clinical mastitis, but the responses are more severe and sustained among infected quarters. The infected mammary quarters reflect both the systemic and local reactions, whereas uninfected quarters represent only the systemic response. The systemic effects of the inflammatory response include reduced DMI, hyperthermia, and changes in whole-body nutrient partitioning affecting mammary epithelial substrate availability, whereas local inflammatory effects include energetic requirements of the increased inflammatory leukocyte pool, decreased synthetic capacity of mammary epithelium independent of substrate availability, and paracellular leakage of milk components from the alveolar lumen into the extracellular fluid. Research has focused on improving host immunological defenses, attenuating the inflammatory response, or improving the resolution of the disease state to limit the deleterious effects during clinical mastitis. This paper highlights the role inflammation plays in the etiology and pathophysiology of clinical mastitis as well as potential management

  5. Pathophysiology and animal modeling of underactive bladder.

    PubMed

    Tyagi, Pradeep; Smith, Phillip P; Kuchel, George A; de Groat, William C; Birder, Lori A; Chermansky, Christopher J; Adam, Rosalyn M; Tse, Vincent; Chancellor, Michael B; Yoshimura, Naoki

    2014-09-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB.

  6. Pathophysiology and animal modeling of underactive bladder

    PubMed Central

    Tyagi, Pradeep; Smith, Phillip P.; Kuchel, George A.; de Groat, William C.; Birder, Lori A.; Chermansky, Christopher J.; Adam, Rosalyn M.; Tse, Vincent; Chancellor, Michael B.; Yoshimura, Naoki

    2015-01-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB. PMID:25238890

  7. OCT monitoring of pathophysiological processes

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Shakhova, Natalia M.; Shakhov, Andrei; Petrova, Galina P.; Zagainova, Elena; Snopova, Ludmila; Kuznetzova, Irina N.; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kamensky, Vladislav A.; Kuranov, Roman V.; Sergeev, Alexander M.

    1999-04-01

    Based on results of clinical examination of about 200 patients we discuss capabilities of the optical coherence tomography (OCT) in monitoring and diagnosing of various pathophysiological processes. Performed in several clinical areas including dermatology, urology, laryngology, gynecology, and dentistry, our study shows the existence of common optical features in manifestation of a pathophysiological process in different organs. In this paper we focus at such universal tomographic optical signs for processes of inflammation, necrosis and tumor growth. We also present data on dynamical OCT monitoring of evolution of pathophysiological processes, both at the stage of disease development and following-up results of different treatments such as drug application, radiation therapy, cryodestruction, and laser vaporization. The discovered peculiarities of OCT images for structural and functional imaging of biological tissues can be put as a basis for application of this method for diagnosing of pathology, guidance of treatment, estimation of its adequacy and assessing of the healing process.

  8. The chronobiology, etiology and pathophysiology of obesity

    PubMed Central

    Garaulet, M; Ordovás, JM; Madrid, JA

    2015-01-01

    The effect of CD on human health is an emerging issue. Many records link CD with diseases such as cancer, cardiovascular, cognitive impairment and obesity, all of them conducive to premature aging. The amount of sleep has declined by 1.5 h over the past century, accompanied by an important increase in obesity. Shift work, sleep deprivation and exposure to bright light at night increase the prevalence of adiposity. Animal models have shown that mice with Clock gene disruption are prone to developing obesity and MetS. This review summarizes the latest developments with regard to chronobiology and obesity, considering (1) how molecular clocks coordinate metabolism and the specific role of the adipocyte; (2) CD and its causes and pathological consequences; (3) the epidemiological evidence of obesity as a chronobiological illness; and (4) theories of circadian disruption and obesity. Energy intake and expenditure, relevance of sleep, fat intake from a circadian perspective and psychological and genetic aspects of obesity are examined. Finally, ideas about the use of chronobiology in the treatment of obesity are discussed. Such knowledge has the potential to become a valuable tool in the understanding of the relationship between the chronobiology, etiology and pathophysiology of obesity. PMID:20567242

  9. The chronobiology, etiology and pathophysiology of obesity.

    PubMed

    Garaulet, M; Ordovás, J M; Madrid, J A

    2010-12-01

    The effect of CD on human health is an emerging issue. Many records link CD with diseases such as cancer, cardiovascular, cognitive impairment and obesity, all of them conducive to premature aging. The amount of sleep has declined by 1.5 h over the past century, accompanied by an important increase in obesity. Shift work, sleep deprivation and exposure to bright light at night increase the prevalence of adiposity. Animal models have shown that mice with Clock gene disruption are prone to developing obesity and MetS. This review summarizes the latest developments with regard to chronobiology and obesity, considering (1) how molecular clocks coordinate metabolism and the specific role of the adipocyte; (2) CD and its causes and pathological consequences; (3) the epidemiological evidence of obesity as a chronobiological illness; and (4) theories of circadian disruption and obesity. Energy intake and expenditure, relevance of sleep, fat intake from a circadian perspective and psychological and genetic aspects of obesity are examined. Finally, ideas about the use of chronobiology in the treatment of obesity are discussed. Such knowledge has the potential to become a valuable tool in the understanding of the relationship between the chronobiology, etiology and pathophysiology of obesity.

  10. Constipation: Pathophysiology and Current Therapeutic Approaches.

    PubMed

    Sharma, Amol; Rao, Satish

    2017-01-01

    Chronic constipation is a common, persistent condition affecting many patients worldwide, presenting significant economic burden and resulting in substantial healthcare utilization. In addition to infrequent bowel movements, the definition of constipation includes excessive straining, a sense of incomplete evacuation, failed or lengthy attempts to defecate, use of digital manoeuvres for evacuation of stool, abdominal bloating, and hard consistency of stools. After excluding secondary causes of constipation, chronic idiopathic or primary constipation can be classified as functional defecation disorder, slow-transit constipation (STC), and constipation-predominant irritable bowel syndrome (IBS-C). These classifications are not mutually exclusive and significant overlap exists. Initial therapeutic approach to primary constipation, regardless of aetiology, consists of diet and lifestyle changes such as encouraging adequate fluid and fibre intake, regular exercise, and dietary modification. Laxatives are the mainstay of pharmacologic treatment for potential long-term therapy in patients who do not respond to lifestyle or dietary modification. After a failed empiric trial of laxatives, diagnostic testing is necessary to understand underlying anorectal and/or colonic pathophysiology. No single test provides a comprehensive assessment for primary constipation; therefore, multiple tests are used to provide complementary information to one another. Dyssynergic defecation, a functional defecation disorder, is an acquired behavioural disorder of defecation present in two-thirds of adult patients, where an inability to coordinate the abdominal, recto-anal, and pelvic floor muscles during attempted defecation exists. Biofeedback therapy is the mainstay treatment for dyssynergic defecation aimed at improving coordination of abdominal and anorectal muscles. A large percentage of patients with dyssynergic defecation also exhibit rectal hyposensitivity and may benefit from the

  11. Imaging Alzheimer's disease pathophysiology with PET

    PubMed Central

    Schilling, Lucas Porcello; Zimmer, Eduardo R.; Shin, Monica; Leuzy, Antoine; Pascoal, Tharick A.; Benedet, Andréa L.; Borelli, Wyllians Vendramini; Palmini, André; Gauthier, Serge; Rosa-Neto, Pedro

    2016-01-01

    ABSTRACT Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD. PMID:29213438

  12. Discrete Pathophysiology is Uncommon in Patients with Nonspecific Arm Pain.

    PubMed

    Kortlever, Joost T P; Janssen, Stein J; Molleman, Jeroen; Hageman, Michiel G J S; Ring, David

    2016-06-01

    Nonspecific symptoms are common in all areas of medicine. Patients and caregivers can be frustrated when an illness cannot be reduced to a discrete pathophysiological process that corresponds with the symptoms. We therefore asked the following questions: 1) Which demographic factors and psychological comorbidities are associated with change from an initial diagnosis of nonspecific arm pain to eventual identification of discrete pathophysiology that corresponds with symptoms? 2) What is the percentage of patients eventually diagnosed with discrete pathophysiology, what are those pathologies, and do they account for the symptoms? We evaluated 634 patients with an isolated diagnosis of nonspecific upper extremity pain to see if discrete pathophysiology was diagnosed on subsequent visits to the same hand surgeon, a different hand surgeon, or any physician within our health system for the same pain. There were too few patients with discrete pathophysiology at follow-up to address the primary study question. Definite discrete pathophysiology that corresponded with the symptoms was identified in subsequent evaluations by the index surgeon in one patient (0.16% of all patients) and cured with surgery (nodular fasciitis). Subsequent doctors identified possible discrete pathophysiology in one patient and speculative pathophysiology in four patients and the index surgeon identified possible discrete pathophysiology in four patients, but the five discrete diagnoses accounted for only a fraction of the symptoms. Nonspecific diagnoses are not harmful. Prospective randomized research is merited to determine if nonspecific, descriptive diagnoses are better for patients than specific diagnoses that imply pathophysiology in the absence of discrete verifiable pathophysiology.

  13. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE.

    PubMed

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-07-15

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-01-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.

  15. Transforming pathophysiology instruction through narrative pedagogy and Socratic questioning.

    PubMed

    Rogge, M M

    2001-01-01

    Pathophysiology, heavily content driven, has typically been taught through the use of traditional behavioral pedagogy and a reliance on the formal lecture. The author describes the limitations of this approach to teaching pathophysiology and describes the use of narrative pedagogy and Socratic questioning as alternative methods of instruction to augment lecture methods. Specific strategies for transforming traditional classroom teaching by using Socratic questions in a pathophysiology course for nurse practitioners are described. Student and faculty reactions to the initial efforts to transform pathophysiology instruction are also described.

  16. Post-Stroke Sleep-Disordered Breathing—Pathophysiology and Therapy Options

    PubMed Central

    Stevens, David; Martins, Rodrigo Tomazini; Mukherjee, Sutapa; Vakulin, Andrew

    2018-01-01

    Sleep-disordered breathing (SDB), encompassing both obstructive and central sleep apnea, is prevalent in at least 50% of stroke patients. Small studies have shown vast improvements in post-stroke functional recovery outcomes after the treatment of SDB by continuous positive airway pressure. However, compliance to this therapy is very poor in this complex patient group. There are alternative therapy options for SDB that may be more amenable for use in at least some post-stroke patients, including mandibular advancement, supine avoidance, and oxygen therapy. There are few studies, however, that demonstrate efficacy and compliance with these alternative therapies currently. Furthermore, novel SDB-phenotyping approaches may help to provide important clinical information to direct therapy selection in individual patients. Prior to realizing individualized therapy, we need a better understanding of the pathophysiology of SDB in post-stroke patients, including the role of inherent phenotypic traits, as well as the contribution of stroke size and location. This review summarizes the available literature on SDB pathophysiology and treatment in post-stroke patients, identifies gaps in the literature, and sets out areas for further research. PMID:29536012

  17. Etiology of ejaculation and pathophysiology of premature ejaculation.

    PubMed

    Donatucci, Craig F

    2006-09-01

    Ejaculation is comprised of three stages of the male sexual response cycle, namely emission, ejection, and orgasm; however, in comparison with erection, which is a well-understood component of male sexual response, the pathophysiology of ejaculation has yet to be fully delineated. Premature ejaculation (PE), the most common sexual disorder in men, while believed to have a multifactorial etiology, is even less well understood. This article reviews the physiology of ejaculation, and the multifactorial pathophysiology of PE. The Sexual Medicine Society of North America hosted a State of the Art Conference on Premature Ejaculation on June 24-26, 2005 in collaboration with the University of South Florida. The purpose was to have an open exchange of contemporary research and clinical information on PE. There were 16 invited presenters and discussants; the group focused on several educational objectives. Data were obtained by extensive examination of published peer-reviewed literature. Evidence supports that biologic mechanisms associated with neurotransmitters such as norepinephrine, serotonin, oxytocin, Gamma-amino-butyric acid, and nitric oxide (NO) as well as the hormone estrogen play central roles in ejaculation, and subsequently may mediate PE. There is also emerging evidence to show that hyperthyroidism may be a causal factor in PE. Recent data also suggest that psychogenic factors include high level of any experience by some men with PE. The pathophysiology of both lifelong and acquired PE appears to be both neurobiogenic and psychogenic. While psychogenic factors appear to be contributory to PE, pharmacologic intervention of PE can modify intravaginal ejaculatory latency time (IELT), which suggests that IELT is a biological variable, and is likely biologically dependent upon neurotransmitters and hormones.

  18. Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques.

    PubMed

    Safronetz, David; Prescott, Joseph; Feldmann, Friederike; Haddock, Elaine; Rosenke, Rebecca; Okumura, Atsushi; Brining, Douglas; Dahlstrom, Eric; Porcella, Stephen F; Ebihara, Hideki; Scott, Dana P; Hjelle, Brian; Feldmann, Heinz

    2014-05-13

    The pathophysiology of hantavirus pulmonary syndrome (HPS) remains unclear because of a lack of surrogate disease models with which to perform pathogenesis studies. Nonhuman primates (NHP) are considered the gold standard model for studying the underlying immune activation/suppression associated with immunopathogenic viruses such as hantaviruses; however, to date an NHP model for HPS has not been described. Here we show that rhesus macaques infected with Sin Nombre virus (SNV), the primary etiological agent of HPS in North America, propagated in deer mice develop HPS, which is characterized by thrombocytopenia, leukocytosis, and rapid onset of respiratory distress caused by severe interstitial pneumonia. Despite establishing a systemic infection, SNV differentially activated host responses exclusively in the pulmonary endothelium, potentially the mechanism leading to acute severe respiratory distress. This study presents a unique chronological characterization of SNV infection and provides mechanistic data into the pathophysiology of HPS in a closely related surrogate animal model. We anticipate this model will advance our understanding of HPS pathogenesis and will greatly facilitate research toward the development of effective therapeutics and vaccines against hantaviral diseases.

  19. The importance of obstructive sleep apnoea and hypopnea pathophysiology for customized therapy.

    PubMed

    Bosi, Marcello; De Vito, Andrea; Gobbi, Riccardo; Poletti, Venerino; Vicini, Claudio

    2017-03-01

    The objective of this study is to highlight the importance of anatomical and not-anatomical factors' identification for customized therapy in OSAHS patients. The data sources are: MEDLINE, The Cochrane Library and EMBASE. A systematic review was performed to identify studies that analyze the role of multiple interacting factors involved in the OSAHS pathophysiology. 85 out of 1242 abstracts were selected for full-text review. A variable combinations pathophysiological factors contribute to realize differentiated OSAHS phenotypes: a small pharyngeal airway with a low resistance to collapse (increased critical closing pressure), an inadequate responses of pharyngeal dilator muscles (wakefulness drive to breathe), an unstable ventilator responsiveness to hypercapnia (high loop gain), and an increased propensity to wake related to upper airway obstruction (low arousal threshold). Identifying if the anatomical or not-anatomical factors are predominant in each OSAHS patient represents the current challenge in clinical practice, moreover for the treatment decision-making. In the future, if a reliable and accurate pathophysiological pattern for each OSAHS patient can be identified, a customized therapy will be feasible, with a significant improvement of surgical success in sleep surgery and a better understanding of surgical failure.

  20. Mechanistic approach to the pathophysiology of target organ damage in hypertension from studies in a human model with characteristics opposite to hypertension: Bartter's and Gitelman's syndromes.

    PubMed

    Calò, L A; Maiolino, G

    2015-07-01

    Extensive studies using Bartter's/Gitelman's syndrome patients have provided insights into the angiotensin II (Ang II) signaling pathways involved in the regulation of vascular tone and cardiovascular-renal remodeling. The renin-angiotensin-aldosterone system is activated in these syndromes, however, patients do not develop hypertension and cardiovascular remodeling and clinically manifest conditions opposite to hypertension. The short- and the long-term signaling of Ang II remains an important matter of investigation to shed light on mechanisms responsible for the pathophysiology of hypertension and its long-term complications. The long-term signaling of Ang II is involved in the pathophysiology of cardiovascular-renal remodeling and inflammatory responses in which the balance between RhoA/Rho kinase pathway and NO system plays a crucial role. In this brief review, the results of our studies in Bartter's and Gitelman's syndromes are reported on these processes. The information obtained from these studies can clarify, confirm or be used to extend the biochemical mechanisms responsible for the pathophysiology of hypertension and its long-term complications and could offer further chances to identify additional potential significant targets of therapy.

  1. Morel-Lavallee Lesions-Review of Pathophysiology, Clinical Findings, Imaging Findings and Management.

    PubMed

    Diviti, Sreelatha; Gupta, Nishant; Hooda, Kusum; Sharma, Komal; Lo, Lawrence

    2017-04-01

    Morel-Lavallee lesion is a post-traumatic soft tissue degloving injury. This is commonly associated with sports injury caused by a shearing force resulting in separation of the hypodermis from the deeper fascia. Most common at the greater trochanter, these injuries also occur at flank, buttock, lumbar spine, scapula and the knee. Separation of the tissue planes result in a complex serosanguinous fluid collection with areas of fat within it. The imaging appearance is variable and non specific, potentially mimicking simple soft tissue haematoma, superficial bursitis or necrotic soft tissue neoplasms. If not treated in the acute or early sub acute settings, these collections are at risk for superinfection, overlying tissue necrosis and continued expansion. In this review article, we discuss the clinical presentation, pathophysiology, imaging features and differential diagnostic considerations of Morel-Lavallee lesions. Role of imaging in guiding prompt and appropriate treatment has also been discussed.

  2. Graph theory findings in the pathophysiology of temporal lobe epilepsy

    PubMed Central

    Chiang, Sharon; Haneef, Zulfi

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083

  3. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology

    PubMed Central

    Bernardi, Paolo; Rasola, Andrea; Forte, Michael; Lippe, Giovanna

    2015-01-01

    The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca2+-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology. PMID:26269524

  4. Pathophysiological role of microRNA-29 in pancreatic cancer stroma.

    PubMed

    Kwon, Jason J; Nabinger, Sarah C; Vega, Zachary; Sahu, Smiti Snigdha; Alluri, Ravi K; Abdul-Sater, Zahi; Yu, Zhangsheng; Gore, Jesse; Nalepa, Grzegorz; Saxena, Romil; Korc, Murray; Kota, Janaiah

    2015-06-22

    Dense fibrotic stroma associated with pancreatic ductal adenocarcinoma (PDAC) is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Current, anti-stromal therapies have failed to improve tumor response to chemotherapy and patient survival. Furthermore, recent studies show that stroma impedes tumor progression, and its complete ablation accelerates PDAC progression. In an effort to understand the molecular mechanisms associated with tumor-stromal interactions, using in vitro and in vivo models and PDAC patient biopsies, we show that the loss of miR-29 is a common phenomenon of activated pancreatic stellate cells (PSCs)/fibroblasts, the major stromal cells responsible for fibrotic stromal reaction. Loss of miR-29 is correlated with a significant increase in extracellular matrix (ECM) deposition, a major component in PDAC stroma. Our in vitro miR-29 gain/loss-of-function studies document the role of miR-29 in PSC-mediated ECM stromal protein accumulation. Overexpression of miR-29 in activated stellate cells reduced stromal deposition, cancer cell viability, and cancer growth in co-culture. Furthermore, the loss of miR-29 in TGF-β1 activated PSCs is SMAD3 dependent. These results provide insights into the mechanistic role of miR-29 in PDAC stroma and its potential use as a therapeutic agent to target PDAC.

  5. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  6. Understanding changes in cardiovascular pathophysiology.

    PubMed

    Chummun, Harry

    Cardiovascular pathophysiological changes, such as hypertension and enlarged ventricles, reflect the altered functions of the heart and its circulation during ill-health. This article examines the normal and altered anatomy of the cardiac valves, the contractile elements and enzymes of the myocardium, the significance of the different factors associated with cardiac output, and the role of the autonomic nervous system in the heart beat. It also explores how certain diseases alter these functions and result in cardiac symptoms. Nurses can benefit from knowledge of these specific changes, for example, by being able to ask relevant questions in order to ascertain the nature of a patients condition, by being able to take an effective patient history and by being able to read diagnostic results, such as electrocardiograms and cardiac enzyme results. All this will help nurses to promote sound cardiac care based on a physiological rationale.

  7. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy

    PubMed Central

    Tal, Reshef; Segars, James H.

    2014-01-01

    Background It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. Methods Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. Results Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. Conclusions Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess

  8. Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System.

    PubMed

    Antoine, Steve; Vaidya, Gaurang; Imam, Haider; Villarreal, Daniel

    2017-01-01

    The syndrome of heart failure involves complex pathophysiologic mechanisms and is associated with extremely high-morbidity, mortality and economic costs. This growing global epidemic has diverse etiologies and is fundamentally characterized by dyshomeostasis between heart and kidneys, leading to development and progression of the cardiorenal syndrome. Excessive and sustained sympathoexcitation has emerged as a single prominent factor involved in the structural and functional dysfunction of multiple organ systems during this disease. Studies in experimental models of heart failure indicate that ablation of the renal nerves may help restore renal sodium and water equilibrium as well as the attenuation of adverse cardiac remodeling. With the recent development of minimally invasive endovascular renal denervation in humans, it is anticipated that this technology would become a novel and important paradigm shift in the management of heart failure. Copyright © 2017. Published by Elsevier Inc.

  9. What is precise pathophysiology in development of hypertension in pregnancy? Precision medicine requires precise physiology and pathophysiology.

    PubMed

    Gao, Qinqin; Tang, Jiaqi; Li, Na; Liu, Bailin; Zhang, Mengshu; Sun, Miao; Xu, Zhice

    2018-02-01

    It is widely accepted that placental ischemia is central in the evolution of hypertension in pregnancy. Many studies and reviews have targeted placental ischemia to explain mechanisms for initiating pregnancy hypertension. The placenta is rich in blood vessels, which are the basis for developing placental ischemia. However, is the physiology of placental vessels the same as that of nonplacental vessels? What is the pathophysiology of placental vessels in development of pregnancy hypertension? This review aims to provide a comprehensive summary of special features of placental vascular regulations and the pathophysiological changes linked to preeclamptic conditions. Interestingly, some popular theories or accepted concepts could be based on our limited knowledge and evidence regarding placental vascular physiology, pharmacology and pathophysiology. New views raised could offer interesting ideas for future investigation of mechanisms as well as targets for pregnancy hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Epidemiology, Pathophysiology, and Natural History of Pulmonary Embolism.

    PubMed

    Turetz, Meredith; Sideris, Andrew T; Friedman, Oren A; Triphathi, Nidhi; Horowitz, James M

    2018-06-01

    Pulmonary embolism (PE) is a common and potentially deadly form of venous thromboembolic disease. It is the third most common cause of cardiovascular death and is associated with multiple inherited and acquired risk factors as well as advanced age. The prognosis from PE depends on the degree of obstruction and hemodynamic effects of PE and understanding the pathophysiology helps in risk-stratifying patients and determining treatment. Though the natural history of thrombus is resolution, a subset of patients have chronic residual thrombus, contributing to the post-PE syndrome.

  11. Involvement of the Kynurenine Pathway in Human Glioma Pathophysiology

    PubMed Central

    Adams, Seray; Teo, Charles; McDonald, Kerrie L.; Zinger, Anna; Bustamante, Sonia; Lim, Chai K.; Sundaram, Gayathri; Braidy, Nady; Brew, Bruce J.; Guillemin, Gilles J.

    2014-01-01

    The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD+, which is necessary for energy production and DNA repair. PMID:25415278

  12. Wolfram Syndrome: A Case Report and Review of Clinical Manifestations, Genetics Pathophysiology, and Potential Therapies

    PubMed Central

    McMillan, J. M.; Au, P. Y. B.; Suchowersky, O.

    2018-01-01

    Background Classical Wolfram syndrome (WS) is a rare autosomal recessive disorder caused by mutations in WFS1, a gene implicated in endoplasmic reticulum (ER) and mitochondrial function. WS is characterized by insulin-requiring diabetes mellitus and optic atrophy. A constellation of other features contributes to the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). This review seeks to raise awareness of this rare form of diabetes so that individuals with WS are identified and provided with appropriate care. Case We describe a woman without risk factors for gestational or type 2 diabetes who presented with gestational diabetes (GDM) at the age of 39 years during her first and only pregnancy. Although she had optic atrophy since the age of 10 years, WS was not considered as her diagnosis until she presented with GDM. Biallelic mutations in WFS1 were identified, supporting a diagnosis of classical WS. Conclusions The distinct natural history, complications, and differences in management reinforce the importance of distinguishing WS from other forms of diabetes. Recent advances in the genetics and pathophysiology of WS have led to promising new therapeutic considerations that may preserve β-cell function and slow progressive neurological decline. Insight into the pathophysiology of WS may also inform strategies for β-cell preservation for individuals with type 1 and 2 diabetes. PMID:29850290

  13. Deep brain stimulation for severe autism: from pathophysiology to procedure.

    PubMed

    Sinha, Saurabh; McGovern, Robert A; Sheth, Sameer A

    2015-06-01

    Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges.

  14. Graph theory findings in the pathophysiology of temporal lobe epilepsy.

    PubMed

    Chiang, Sharon; Haneef, Zulfi

    2014-07-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyanohara, Jun; Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp; Sanpei, Kazuaki

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2more » days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO

  16. Rabies: changing prophylaxis and new insights in pathophysiology.

    PubMed

    Ugolini, Gabriella; Hemachudha, Thiravat

    2018-02-01

    Despite great progress in decoding disease mechanisms, rabies remains one of the leading causes of human death worldwide. Towards the elimination of human rabies deaths by 2030, feasible and affordable post (PEP) and pre-exposure prophylaxis (PrEP) must be available with expansion to rural areas in rabies endemic countries. Vaccination and population control of dogs, principal reservoirs and transmitters, must be done in concert. Advances in the understanding of rabies neuropathogenesis and pathophysiology are reviewed, including recent experimental findings on host- and virus-specific mechanisms mediating neuronal survival and explaining clinical differences in furious and paralytic rabies. The forthcoming World Health Organization guide on rabies based on pathogenesis and immunization mechanisms data with support by clinical evidence provide new accelerated 1 week intradermal PrEP and PEP schedules. Rabies immunoglobulin injected into the wound only is endorsed at amounts not exceeding the dose interfering with active immunization. Potential therapeutics as designed in accord with rabies neuro-pathophysiology are plausible. Clinical practice and rabies awareness can be leveraged by transboundary collaboration among different areas. Advancement in prophylaxis and perspectives on animal control offer a new path to conquer rabies by 2030.

  17. A Novel Human Ghrelin Variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase Are Overexpressed in Breast Cancer: Potential Pathophysiological Relevance

    PubMed Central

    Gahete, Manuel D.; Córdoba-Chacón, José; Hergueta-Redondo, Marta; Martínez-Fuentes, Antonio J.; Kineman, Rhonda D.; Moreno-Bueno, Gema

    2011-01-01

    The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer. PMID:21829727

  18. Hypertension: physiology and pathophysiology.

    PubMed

    Hall, John E; Granger, Joey P; do Carmo, Jussara M; da Silva, Alexandre A; Dubinion, John; George, Eric; Hamza, Shereen; Speed, Joshua; Hall, Michael E

    2012-10-01

    Despite major advances in understanding the pathophysiology of hypertension and availability of effective and safe antihypertensive drugs, suboptimal blood pressure (BP) control is still the most important risk factor for cardiovascular mortality and is globally responsible for more than 7 million deaths annually. Short-term and long-term BP regulation involve the integrated actions of multiple cardiovascular, renal, neural, endocrine, and local tissue control systems. Clinical and experimental observations strongly support a central role for the kidneys in the long-term regulation of BP, and abnormal renal-pressure natriuresis is present in all forms of chronic hypertension. Impaired renal-pressure natriuresis and chronic hypertension can be caused by intrarenal or extrarenal factors that reduce glomerular filtration rate or increase renal tubular reabsorption of salt and water; these factors include excessive activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, increased formation of reactive oxygen species, endothelin, and inflammatory cytokines, or decreased synthesis of nitric oxide and various natriuretic factors. In human primary (essential) hypertension, the precise causes of impaired renal function are not completely understood, although excessive weight gain and dietary factors appear to play a major role since hypertension is rare in nonobese hunter-gathers living in nonindustrialized societies. Recent advances in genetics offer opportunities to discover gene-environment interactions that may also contribute to hypertension, although success thus far has been limited mainly to identification of rare monogenic forms of hypertension. © 2012 American Physiological Society

  19. Starry Sky Pattern in Hematopoietic Neoplasms: A Review of Pathophysiology and Differential Diagnosis.

    PubMed

    Dy-Ledesma, Janelyn L; Khoury, Joseph D; Agbay, Rose Lou Marie C; Garcia, Mar; Miranda, Roberto N; Medeiros, L Jeffrey

    2016-11-01

    The starry sky pattern is a distinctive histologic feature wherein a rapidly proliferating hematolymphoid neoplasm contains scattered histiocytes with abundant pale cytoplasm in a background of monomorphic neoplastic cells. The cytoplasm of these histiocytes typically contains cellular remnants, also known as tingible bodies, incorporated through active phagocytosis. Although common and widely recognized, relatively little is known about the pathophysiological underpinnings of the starry sky pattern. Its resemblance to a similar pattern seen in the germinal centers of secondary follicles suggests a possible starting point for understanding the molecular basis of the starry sky pattern and potential routes for its exploitation for therapeutic purposes. In this review, we discuss the historical, pathophysiological, and clinical implications of the starry sky pattern.

  20. Urinary proteomics in renal pathophysiology: Impact of proteinuria.

    PubMed

    Sancho-Martínez, Sandra M; Prieto-García, Laura; Blanco-Gozalo, Víctor; Fontecha-Barriuso, Miguel; López-Novoa, José M; López-Hernández, Francisco J

    2015-06-01

    Urinary differential proteomics is used to study renal pathophysiological mechanisms, find novel markers of biological processes and renal diseases, and stratify patients according to proteomic profiles. The proteomic procedure determines the pathophysiological meaning and clinical relevance of results. Urine samples for differential proteomic studies are usually normalized by protein content, regardless of its pathophysiological characteristics. In the field of nephrology, this approach translates into the comparison of a different fraction of the total daily urine output between proteinuric and nonproteinuric samples. Accordingly, alterations in the level of specific proteins found by this method reflect the relative presence of individual proteins in the urine; but they do not necessarily show alterations in their daily excretion, which is a key parameter for the understanding of the pathophysiological meaning of urinary components. For renal pathophysiology studies and clinical biomarker identification or determination, an alternative proteomic concept providing complementary information is based on sample normalization by daily urine output, which directly informs on changes in the daily excretion of individual proteins. This is clinically important because daily excretion (rather than absolute or relative concentration) is the only self-normalized way to evaluate the real meaning of urinary parameters, which is also independent of urine concentration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pathophysiology of migraine

    PubMed Central

    Goadsby, Peter J.

    2012-01-01

    Migraine is a common disabling brain disorder whose pathophysiology is now being better understood. The study of anatomy and physiology of pain producing structures in the cranium and the central nervous system modulation of the input have led to the conclusion that migraine involves alterations in the sub-cortical aminergic sensory modulatory systems that influence the brain widely. PMID:23024559

  2. Obesity: Pathophysiology and Intervention

    PubMed Central

    Zhang, Yi; Liu, Ju; Yao, Jianliang; Ji, Gang; Qian, Long; Wang, Jing; Zhang, Guansheng; Tian, Jie; Nie, Yongzhan; Zhang, Yi Edi.; Gold, Mark S.; Liu, Yijun

    2014-01-01

    Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity. PMID:25412152

  3. The pathophysiology of Peyronie's disease.

    PubMed

    El-Sakka, Ahmed I; Salabas, Emre; Dinçer, Murat; Kadioglu, Ates

    2013-09-01

    To review the contemporary knowledge of the pathophysiology of Peyronie's disease (PD). Medline was searched for papers published in English from 2000 to March 2013, using the keywords 'Peyronie's disease' and 'pathophysiology'. More than 300 relevant articles were identified for the purpose of this review. Unfortunately only a few studies had a high level of evidence, and the remaining studies were not controlled in their design. Many theories have been proposed to explain the cause of PD, but the true pathogenesis of PD remains an enigma. Identifying particular growth factors and the specific genes responsible for the induction of PD have been the ultimate goal of research over the past several decades. This would provide the means to devise a possible gene therapy for this devastating condition. We discuss present controversies and new discoveries related to the pathophysiology of this condition. PD is one of the most puzzling diseases in urology. The pathogenesis remains uncertain and there is still controversy about the best management. The pathogenesis of PD has been explored in animal models, cell cultures and clinical trials, but the results have led to further questions. New research on the aetiology and pathogenesis of PD is needed, and which will hopefully improve the understanding and management for patients with this frustrating disease.

  4. Cannabinoids: is there a potential treatment role in epilepsy?

    PubMed Central

    Blair, Robert E; Deshpande, Laxmikant S; DeLorenzo, Robert J

    2016-01-01

    Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management. While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established. This commentary will touch on our understanding of the brain endocannabinoid system’s regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures. At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy. PMID:26234319

  5. Cannabinoids: is there a potential treatment role in epilepsy?

    PubMed

    Blair, Robert E; Deshpande, Laxmikant S; DeLorenzo, Robert J

    2015-01-01

    Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management. While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established. This commentary will touch on our understanding of the brain endocannabinoid system's regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures. At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.

  6. Renal sympathetic denervation in therapy resistant hypertension - pathophysiological aspects and predictors for treatment success

    PubMed Central

    Fengler, Karl; Rommel, Karl Philipp; Okon, Thomas; Schuler, Gerhard; Lurz, Philipp

    2016-01-01

    Many forms of human hypertension are associated with an increased systemic sympathetic activity. Especially the renal sympathetic nervous system has been found to play a prominent role in this context. Therefore, catheter-interventional renal sympathetic denervation (RDN) has been established as a treatment for patients suffering from therapy resistant hypertension in the past decade. The initial enthusiasm for this treatment was markedly dampened by the results of the Symplicity-HTN-3 trial, although the transferability of the results into clinical practice to date appears to be questionable. In contrast to the extensive use of RDN in treating hypertensive patients within or without clinical trial settings over the past years, its effects on the complex pathophysiological mechanisms underlying therapy resistant hypertension are only partly understood and are part of ongoing research. Effects of RDN have been described on many levels in human trials: From altered systemic sympathetic activity across cardiac and metabolic alterations down to changes in renal function. Most of these changes could sustainably change long-term morbidity and mortality of the treated patients, even if blood pressure remains unchanged. Furthermore, a number of promising predictors for a successful treatment with RDN have been identified recently and further trials are ongoing. This will certainly help to improve the preselection of potential candidates for RDN and thereby optimize treatment outcomes. This review summarizes important pathophysiologic effects of renal denervation and illustrates the currently known predictors for therapy success. PMID:27621771

  7. Pathophysiology of diverticular disease.

    PubMed

    Schieffer, Kathleen M; Kline, Bryan P; Yochum, Gregory S; Koltun, Walter A

    2018-06-07

    Inflammation of diverticula, or outpouchings of the colonic mucosa and submucosa through the muscularis layer, leads to diverticulitis. The development of diverticular disease, encompassing both diverticulosis and diverticulitis, is a result of genetic predisposition, lifestyle, and environmental factors, including the microbiome. Areas covered: Previous reports implicated genetic predisposition, environmental factors, and colonic dysmotility in diverticular disease. Recent studies have associated specific host immune responses and the microbiome as contributors to diverticulitis. To review pertinent literature describing pathophysiological factors associated with diverticulosis or diverticulitis, we searched the PubMed database (March 2018) for articles considering the role of colonic architecture, genetic predisposition, environment, colonic motility, immune response, and the microbiome. Expert commentary: In the recent years, research into the molecular underpinnings of diverticular disease has enhanced our understanding of diverticular disease pathogenesis. Although acute uncomplicated diverticulitis is treated with broad spectrum antibiotics, evaluation of the microbiome has been limited and requires further comprehensive studies. Evidence suggests that a deregulation of the host immune response is associated with both diverticulosis and diverticulitis. Further examining these pathways may reveal proteins that can be therapeutic targets or aid in identifying biological determinants of clinical or surgical decision making.

  8. Pathophysiology, Evaluation, and Treatment of Bloating

    PubMed Central

    Gabbard, Scott L.; Crowell, Michael D.

    2011-01-01

    Abdominal bloating is commonly reported by men and women of all ages. Bloating occurs in nearly all patients with irritable bowel syndrome, and it also occurs in patients with other functional and organic disorders. Bloating is frequently disturbing to patients and frustrating to clinicians, as effective treatments are limited and are not universally successful. Although the terms bloating and abdominal distention are often used interchangeably, these symptoms likely involve different pathophysiologic processes, both of which are still not completely understood. The goal of this paper is to review the pathophysiology, evaluation, and treatment of bloating and abdominal distention. PMID:22298969

  9. A pathophysiological role of PDE3 in allergic airway inflammation

    PubMed Central

    Beute, Jan; Lukkes, Melanie; Koekoek, Ewout P.; Nastiti, Hedwika; Ganesh, Keerthana; de Bruijn, Marjolein J.W.; Hockman, Steve; van Nimwegen, Menno; Braunstahl, Gert-Jan; Boon, Louis; Lambrecht, Bart N.; Manganiello, Vince C.; Hendriks, Rudi W.

    2018-01-01

    Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite–driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach. PMID:29367458

  10. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.

    PubMed

    Seino, Susumu

    2003-01-01

    K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.

  11. One level up: abnormal proteolytic regulation of IGF activity plays a role in human pathophysiology.

    PubMed

    Argente, Jesús; Chowen, Julie A; Pérez-Jurado, Luis A; Frystyk, Jan; Oxvig, Claus

    2017-10-01

    The discovery of a mutation in a specific gene can be very important for determining the pathophysiology underlying the disease of a patient and may also help to decide the best treatment protocol on an individual basis. However, sometimes the discovery of mutations in new proteins advances our comprehension in a more widespread manner. The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is fundamental for systemic growth, but is also involved in many other important processes. Our understanding of this system in physiology and pathophysiology has advanced throughout the years with each discovery of mutations in members of this axis. This review focuses on the most recent discovery: mutations in the metalloproteinase pregnancy-associated plasma protein-A2 (PAPP-A2), one of the proteases involved in liberating IGF-1 from the complexes in which it circulates, in patients with delayed growth failure. We also discuss the advances in the stanniocalcins (STC1 and STC2), proteins that modulate PAPP-A2, as well as PAPP-A. These new advances not only bring us one step closer to understanding the strict spatial and temporal control of this axis in systemic growth and maturation, but also highlight possible therapeutic targets when this system goes awry. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine.

    PubMed

    Kelestemur, Taha; Yulug, Burak; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kilic, Ulkan; Caglayan, Berrak; Yalcin, Esra; Gundogdu, Reyhan Zeynep; Kilic, Ertugrul

    2016-01-26

    The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Noradrenergic dysregulation in the pathophysiology of PTSD.

    PubMed

    Hendrickson, Rebecca C; Raskind, Murray A

    2016-10-01

    A central role for noradrenergic dysregulation in the pathophysiology of post-traumatic stress disorder (PTSD) is increasingly suggested by both clinical and basic neuroscience research. Here, we integrate recent findings from clinical and animal research with the earlier literature. We first review the evidence for net upregulation of the noradrenergic system and its responsivity to stress in individuals with PTSD. Next, we trace the evidence that the α 1 noradrenergic receptor antagonist prazosin decreases many of the symptoms of PTSD from initial clinical observations, to case series, to randomized controlled trials. Finally, we review the basic science work that has begun to explain the mechanism for this efficacy, as well as to explore its possible limitations and areas for further advancement. We suggest a view of the noradrenergic system as a central, modifiable link in a network of interconnected stress-response systems, which also includes the amygdala and its modulation by medial prefrontal cortex. Particular attention is paid to the evidence for bidirectional signaling between noradrenaline and corticotropin-releasing factor (CRF) in coordinating these interconnected systems. The multiple different ways in which the sensitivity and reactivity of the noradrenergic system may be altered in PTSD are highlighted, as is the evidence for possible heterogeneity in the pathophysiology of PTSD between different individuals who appear clinically similar. We conclude by noting the importance moving forward of improved measures of noradrenergic functioning in clinical populations, which will allow better recognition of clinical heterogeneity and further assessment of the functional implications of different aspects of noradrenergic dysregulation. Published by Elsevier Inc.

  14. [Pathophysiology of hypertension : What are our current concepts?].

    PubMed

    Jordan, J

    2015-03-01

    In the year 2015, many questions regarding the pathophysiology of essential arterial hypertension remain unresolved. Substantial scientific progress has been made in various medical areas aided by novel molecular"omics" techniques. The findings could then be implemented in diagnostic and therapeutic procedures. In the field of hypertension research such methods have been applied in very large cohorts but have contributed less to pathophysiological understanding and clinical management than expected. The findings on the pathophysiological importance of baroreflex mechanisms, natriuretic peptides and osmotically inactive sodium storage discussed in this article all have something in common: all are based on small, carefully conducted human physiological investigations and often challenge current textbook knowledge. Nevertheless, these findings have opened up new research fields and are likely to affect clinical care.

  15. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes

    PubMed Central

    Frye, Richard E.; Rossignol, Daniel A.

    2016-01-01

    Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and

  16. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology

    PubMed Central

    Sykes, Edward A.; Dai, Qin; Sarsons, Christopher D.; Chen, Juan; Rocheleau, Jonathan V.; Hwang, David M.; Zheng, Gang; Cramb, David T.; Rinker, Kristina D.; Chan, Warren C. W.

    2016-01-01

    Nanoparticles can provide significant improvements in the diagnosis and treatment of cancer. How nanoparticle size, shape, and surface chemistry can affect their accumulation, retention, and penetration in tumors remains heavily investigated, because such findings provide guiding principles for engineering optimal nanosystems for tumor targeting. Currently, the experimental focus has been on particle design and not the biological system. Here, we varied tumor volume to determine whether cancer pathophysiology can influence tumor accumulation and penetration of different sized nanoparticles. Monte Carlo simulations were also used to model the process of nanoparticle accumulation. We discovered that changes in pathophysiology associated with tumor volume can selectively change tumor uptake of nanoparticles of varying size. We further determine that nanoparticle retention within tumors depends on the frequency of interaction of particles with the perivascular extracellular matrix for smaller nanoparticles, whereas transport of larger nanomaterials is dominated by Brownian motion. These results reveal that nanoparticles can potentially be personalized according to a patient’s disease state to achieve optimal diagnostic and therapeutic outcomes. PMID:26884153

  17. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.

    PubMed

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-04-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. Copyright© Ferrata Storti Foundation.

  18. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    PubMed

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  20. The pathophysiological role of PEDF in bone diseases.

    PubMed

    Broadhead, M L; Akiyama, T; Choong, P F M; Dass, C R

    2010-04-01

    First discovered in 1991 as a factor secreted by retinal pigment epithelial cells, the potency of pigment epithelium derived factor (PEDF) as an anti-angiogenic has led to examination of its role in active bone growth, repair and remodelling. In the musculoskeletal system, PEDF expression occurs particularly at sites of active bone formation. Expression has been noted in osteoblasts and to a lesser degree osteoclasts, the major classes of bone cells. In fact, PEDF is capable of inducing differentiation of precursor cells into mature osteoblasts. Expression and localisation are closely linked with that of vascular endothelial growth factor (VEGF). Studies at the epiphyseal plate have revealed that PEDF expression plays a key role in endochondral ossification, and beyond this may account for the epiphyseal plate's innate ability to resist neoplastic cell invasion. Collagen-1, the major protein in bone, is avidly bound by PEDF, implicating an important role played by this protein on PEDF function, possibly through MMP-2 and -9 activity. Surprisingly, the role of PEDF has not been evaluated more widely in bone disorders, so the challenge ahead lies in a more diverse evaluation of PEDF in various osteologic pathologies including osteoarthritis and fracture healing.

  1. [Refeeding syndrome : Pathophysiology, risk factors, prevention, and treatment].

    PubMed

    Wirth, R; Diekmann, R; Janssen, G; Fleiter, O; Fricke, L; Kreilkamp, A; Modreker, M K; Marburger, C; Nels, S; Pourhassan, M; Schaefer, R; Willschrei, H-P; Volkert, D

    2018-04-01

    Refeeding syndrome is a life-threatening complication that may occur after initiation of nutritional therapy in malnourished patients, as well as after periods of fasting and hunger. Refeeding syndrome can be effectively prevented and treated if its risk factors and pathophysiology are known. The initial measurement of thiamine level and serum electrolytes, including phosphate and magnesium, their supplementation if necessary, and a slow increase in nutritional intake along with close monitoring of serum electrolytes play an important role. Since refeeding syndrome is not well known and the symptoms can be extremely heterogeneous, this complication is poorly recognized, especially against the background of severe disease and multimorbidity. This overview aims to summarize the current knowledge and increase awareness about refeeding syndrome.

  2. Pathophysiology of luteal-phase deficiency in human reproduction.

    PubMed

    Nakajima, S T; Gibson, M

    1991-03-01

    There are numerous probable mechanisms for the clinical occurrence of a luteal-phase deficiency. Defects may occur in either the proliferative, luteal, or luteal-rescue stage of a menstrual cycle. In each of these three domains, alterations in the trophic stimulation or the response at either the ovarian or endometrial level further subdivide the etiologies for luteal-phase deficiency. Additional development of new concepts in the areas of intraovarian signaling, the possible role of growth factors, and the measurement of newly discovered luteal products will enable us to expand our thought process. With a better understanding of the pathophysiology of luteal-phase deficiency, it is anticipated that new treatments will be devised to address precisely a given specific etiologic factor.

  3. Pathophysiology and Nonsurgical Treatment of Chronic Subdural Hematoma: From Past to Present to Future.

    PubMed

    Holl, Dana C; Volovici, Victor; Dirven, Clemens M F; Peul, Wilco C; van Kooten, Fop; Jellema, Korné; van der Gaag, Niels A; Miah, Ishita P; Kho, Kuan H; den Hertog, Heleen M; Lingsma, Hester F; Dammers, Ruben

    2018-05-14

    Chronic subdural hematoma (CSDH) is one of the more frequent pathologic entities in daily neurosurgical practice. Historically, CSDH was considered progressive recurrent bleeding with a traumatic cause. However, recent evidence has suggested a complex intertwined pathway of inflammation, angiogenesis, local coagulopathy, recurrent microbleeds, and exudates. The aim of the present review is to collect existing data on pathophysiology of CSDH to direct further research questions aiming to optimize treatment for the individual patient. We performed a thorough literature search in PubMed, Ovid, EMBASE, CINAHL, and Google scholar, focusing on any aspect of the pathophysiology and nonsurgical treatment of CSDH. After a (minor) traumatic event, the dural border cell layer tears, which leads to the extravasation of cerebrospinal fluid and blood in the subdural space. A cascade of inflammation, impaired coagulation, fibrinolysis, and angiogenesis is set in motion. The most commonly used treatment is surgical drainage. However, because of the pathophysiologic mechanisms, the mortality and high morbidity associated with surgical drainage, drug therapy (dexamethasone, atorvastatin, tranexamic acid, or angiotensin-converting enzyme inhibitors) might be a beneficial alternative in many patients with CSDH. Based on pathophysiologic mechanisms, animal experiments, and small patient studies, medical treatment may play a role in the treatment of CSDH. There is a lack of level I evidence in the nonsurgical treatment of CSDH. Therefore, randomized controlled trials, currently lacking, are needed to assess which treatment is most effective in each individual patient. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Pathophysiology and Immune Dysfunction in Endometriosis

    PubMed Central

    Ahn, Soo Hyun; Monsanto, Stephany P.; Miller, Caragh; Singh, Sukhbir S.; Thomas, Richard; Tayade, Chandrakant

    2015-01-01

    Endometriosis is an estrogen-dependent, chronic, proinflammatory disease prevalent in 10% of women of reproductive age worldwide. Characterized by the growth of endometrium-like tissue in aberrant locations outside of the uterus, it is responsible for symptoms including chronic pelvic pain, dysmenorrhea, and subfertility that degrade quality of life of women significantly. In Canada, direct and indirect economic cost of endometriosis amounts to 1.8 billion dollars, and this is elevated to 20 billion dollars in the United States. Despite decades of research, the etiology and pathophysiology of endometriosis still remain to be elucidated. This review aims to bring together the current understanding regarding the pathogenesis of endometriosis with specific focus on mechanisms behind vascularization of the lesions and the contribution of immune factors in facilitating lesion establishment and development. The role of hormones, immune cells, and cytokine signaling is highlighted, in addition to discussing the current pharmaceutical options available for management of pain symptoms in women with endometriosis. PMID:26247027

  5. Pathophysiology and Immune Dysfunction in Endometriosis.

    PubMed

    Ahn, Soo Hyun; Monsanto, Stephany P; Miller, Caragh; Singh, Sukhbir S; Thomas, Richard; Tayade, Chandrakant

    2015-01-01

    Endometriosis is an estrogen-dependent, chronic, proinflammatory disease prevalent in 10% of women of reproductive age worldwide. Characterized by the growth of endometrium-like tissue in aberrant locations outside of the uterus, it is responsible for symptoms including chronic pelvic pain, dysmenorrhea, and subfertility that degrade quality of life of women significantly. In Canada, direct and indirect economic cost of endometriosis amounts to 1.8 billion dollars, and this is elevated to 20 billion dollars in the United States. Despite decades of research, the etiology and pathophysiology of endometriosis still remain to be elucidated. This review aims to bring together the current understanding regarding the pathogenesis of endometriosis with specific focus on mechanisms behind vascularization of the lesions and the contribution of immune factors in facilitating lesion establishment and development. The role of hormones, immune cells, and cytokine signaling is highlighted, in addition to discussing the current pharmaceutical options available for management of pain symptoms in women with endometriosis.

  6. A systems approach to bone pathophysiology.

    PubMed

    Weiss, Aaron J; Lipshtat, Azi; Mechanick, Jeffrey I

    2010-11-01

    With evolving interest in multiscalar biological systems one could assume that reductionist approaches may not fully describe biological complexity. Instead, tools such as mathematical modeling, network analysis, and other multiplexed clinical- and research-oriented tests enable rapid analyses of high-throughput data parsed at the genomic, proteomic, metabolomic, and physiomic levels. A physiomic-level approach allows for recursive horizontal and vertical integration of subsystem coupling across and within spatiotemporal scales. Additionally, this methodology recognizes previously ignored subsystems and the strong, nonintuitively obvious and indirect connections among physiological events that potentially account for the uncertainties in medicine. In this review, we flip the reductionist research paradigm and review the concept of systems biology and its applications to bone pathophysiology. Specifically, a bone-centric physiome model is presented that incorporates systemic-level processes with their respective therapeutic implications. © 2010 New York Academy of Sciences.

  7. Circadian molecular clock in lung pathophysiology

    PubMed Central

    Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.

    2015-01-01

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  8. Understanding the pathophysiology of schizophrenia: Contributions from the Melbourne Psychiatric Brain Bank.

    PubMed

    Dean, Brian; Copolov, David; Scarr, Elizabeth

    2016-11-01

    The Melbourne Psychiatric Brain Bank came into existence 25years ago. This review focusses on lines of research that have used tissue from the Brain Bank over periods of time. Hence there is a discussion on the significance of changes in levels of serotonin 2A receptors in the cortex of patients with schizophrenia and the relevance of such changes with regards to the pathophysiology of the disorder. The extensive contribution made by studies using tissue from the Melbourne Psychiatric Brain Bank to understanding the role of muscarinic receptors in the pathophysiology and treatment of schizophrenia is summarised. Finally, findings using brain bank tissue and "omics" technologies are reviewed. In each case, findings using tissue from the Melbourne Psychiatric Brain Bank is placed in context with research carried out on human postmortem CNS in schizophrenia and with findings in other lines of research that can help explain the causes or consequences of changes in CNS molecular cytoarchitecture. This timely review of data from the Melbourne Psychiatric Brain Bank reinforces the challenges faced in trying to increase our understanding of the molecular pathophysiology of schizophrenia. Continuing to increase our understanding of the disorder is important as a precursor to identifying new drug targets that can be exploited to improve the treatment of a disorder where treatment resistance remains a significant problem (Millan et al., 2016). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 95th Anniversary of Pathophysiology in Croatia.

    PubMed

    Kovač, Zdenko

    2017-12-01

    University level of Pathophysiology research and teaching in Croatia had started with the third year of Medical School of Zagreb in academic year 1919./20. Ever since, despite historical changes of the main university stake holder, the state of Croatia, Department of Pathophysiology development progressed and has made visible academic achievements, with a broader effect in medical community. The first 95 years of academic tradition and major achievements are shortly described in this paper. Professor Miroslav Mikuličić envisioned Pathophysiology in close relations with Pharmacology and made the pioneering steps of establishing the "double" department at Šalata. His group was academically very pro-active, with strong international scientific participation and recruitment of professionals. The group published the first voluminous textbook of Pharmacology and Pathophysiology, in Croatian. In fifties, professor Pavao Sokolić established clinical pathophysiology within the Hospital Centre at Rebro. Out of "double" department two new departments were founded, the Pathophysiology one was completed with the clinical ward. That institutional move from Šalata hill to the Rebro hill was a necessary gigantic step and a prerequisite for the proper further development. It was in accordance with the concept of the Mikuličić's program of Pathophysiology from 1917. Pavao Sokolić has been remembered for his visions, deep insights into etiopathogenesis, ability to transfer knowledge and friendly relations to students. Sharp intellectual power, emanating charisma, academic erudition and unique clinical competencies made the legendary image of the "Teacher" - as students used to refer to him with admiration. He was second to no one when complex patient issues were to be resolved. Clinical Hospital Centre Zagreb and his Department at Rebro have become a referral point to whom to go to despair. Students recognized in their Teacher the landmark of Croatian medicine, which made a

  10. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology

    PubMed Central

    Zhang, Dachuan; Xu, Chunliang; Manwani, Deepa

    2016-01-01

    Sickle cell disease (SCD) is a severe genetic blood disorder characterized by hemolytic anemia, episodic vaso-occlusion, and progressive organ damage. Current management of the disease remains symptomatic or preventative. Specific treatment targeting major complications such as vaso-occlusion is still lacking. Recent studies have identified various cellular and molecular factors that contribute to the pathophysiology of SCD. Here, we review the role of these elements and discuss the opportunities for therapeutic intervention. PMID:26758915

  11. The pathophysiology of bronchiectasis

    PubMed Central

    King, Paul T

    2009-01-01

    Bronchiectasis is defined by permanent and abnormal widening of the bronchi. This process occurs in the context of chronic airway infection and inflammation. It is usually diagnosed using computed tomography scanning to visualize the larger bronchi. Bronchiectasis is also characterized by mild to moderate airflow obstruction. This review will describe the pathophysiology of noncystic fibrosis bronchiectasis. Studies have demonstrated that the small airways in bronchiectasis are obstructed from an inflammatory infiltrate in the wall. As most of the bronchial tree is composed of small airways, the net effect is obstruction. The bronchial wall is typically thickened by an inflammatory infiltrate of lymphocytes and macrophages which may form lymphoid follicles. It has recently been demonstrated that patients with bronchiectasis have a progressive decline in lung function. There are a large number of etiologic risk factors associated with bronchiectasis. As there is generally a long-term retrospective history, it may be difficult to determine the exact role of such factors in the pathogenesis. Extremes of age and smoking/chronic obstructive pulmonary disease may be important considerations. There are a variety of different pathogens involved in bronchiectasis, but a common finding despite the presence of purulent sputum is failure to identify any pathogenic microorganisms. The bacterial flora appears to change with progression of disease. PMID:20037680

  12. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach.

    PubMed

    Ellis, Michael J; Leddy, John; Willer, Barry

    2016-01-01

    Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach.

  13. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach

    PubMed Central

    Ellis, Michael J.; Leddy, John; Willer, Barry

    2016-01-01

    Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach. PMID:27605923

  14. Research Review: The Role of Cytokines in Depression in Adolescents: A Systematic Review

    ERIC Educational Resources Information Center

    Mills, Natalie T.; Scott, James G.; Wray, Naomi R.; Cohen-Woods, Sarah; Baune, Bernhard T.

    2013-01-01

    Background: While cytokines have been implicated in the pathophysiology of depression in adults, the potential role in younger age groups such as adolescents is less clear. This article therefore reviews the literature (a) to explore the relationship between cytokines and depression in adolescents, and (b) to examine how cytokines may be related…

  15. Assessing pathophysiology of cancer anorexia.

    PubMed

    Laviano, Alessandro; Koverech, Angela; Seelaender, Marilia

    2017-09-01

    Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.

  16. GPR120: Mechanism of action, role and potential for medical applications.

    PubMed

    Karakuła-Juchnowicz, Hanna; Róg, Joanna; Juchnowicz, Dariusz; Morylowska-Topolska, Justyna

    2017-11-19

    G protein-coupled receptors (GPCRs) constitute a family of transmembrane proteins that mediate many cellular processes. GPR120/FFAR4, a receptor from this family that is activated by fatty acids, has received considerable attention recently. This paper presents a literature review concerning the role of GPR120 and its mechanism of action in animal and human studies as well as the potential use of GPR120 for the treatment of chronic diseases. Two electronic databases - Medline and Google Scholar - were searched for available studies addressing the review topic that were written in English and published from 2000 to June 2017. The following key terms were used in the search: GPR120, FFA4, GPR120 agonist, PUFAs, EPA, DHA, adipocyte, obesity, hyperlipidemia, inflammation, cancer, diabetes, insulin resistance, taste, atherogenesis, hepatis, central nervous system. In humans, GPR120 expression is expressed in macrophages, eosinophils, and adipose tissue, in cells of the tongue, liver, lungs, small and large intestine, gastric mucosa, and pancreas, in the central nervous system and placental microvilli. Medium- and long-chain fatty acids act as ligands for the receptor. Through the internalization of beta-arrestin-2 complex and the inhibition of NF-κB, GPR120 mediates the activation of the cell's anti-inflammatory mechanisms. The receptor is also involved in the maturation of adipocytes, the modulation of insulin signalling pathways, the regulation of glucose metabolism, and the secretion of intestinal hormones. GPR120 is a promising target for the treatment of numerous diseases, whose pathophysiology is associated with low-grade inflammation. As a result of intensive searches, a likely group of synthetic agonists of the receptor was determined with potential therapeutic applications in conditions such as obesity, impaired carbohydrate metabolism, inflammatory bowel diseases, cancer, mental disorders.

  17. Frailty and sarcopenia: The potential role of an aged immune system.

    PubMed

    Wilson, Daisy; Jackson, Thomas; Sapey, Elizabeth; Lord, Janet M

    2017-07-01

    Frailty is a common negative consequence of ageing. Sarcopenia, the syndrome of loss of muscle mass, quality and strength, is more common in older adults and has been considered a precursor syndrome or the physical manifestation of frailty. The pathophysiology of both syndromes is incompletely described with multiple causes, inter-relationships and complex pathways proposed. Age-associated changes to the immune system (both immunesenescence, the decline in immune function with ageing, and inflammageing, a state of chronic inflammation) have been suggested as contributors to sarcopenia and frailty but a direct causative role remains to be established. Frailty, sarcopenia and immunesenescence are commonly described in older adults but are not ubiquitous to ageing. There is evidence that all three conditions are reversible and all three appear to share common inflammatory drivers. It is unclear whether frailty, sarcopenia and immunesenescence are separate entities that co-occur due to coincidental or potentially confounding factors, or whether they are more intimately linked by the same underlying cellular mechanisms. This review explores these possibilities focusing on innate immunity, and in particular associations with neutrophil dysfunction, inflammation and known mechanisms described to date. Furthermore, we consider whether the age-related decline in immune cell function (such as neutrophil migration), increased inflammation and the dysregulation of the phosphoinositide 3-kinase (PI3K)-Akt pathway in neutrophils could contribute pathogenically to sarcopenia and frailty. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. GLUTAMATE ABNORMALITIES IN OBSESSIVE COMPULSIVE DISORDER: NEUROBIOLOGY, PATHOPHYSIOLOGY, AND TREATMENT

    PubMed Central

    Pittenger, Christopher; Bloch, Michael H.; Williams, Kyle

    2011-01-01

    Obsessive compulsive disorder is prevalent, disabling, incompletely understood, and often resistant to current therapies. Established treatments consist of specialized cognitive-behavioral psychotherapy and pharmacotherapy with medications targeting serotonergic and dopaminergic neurotransmission. However, remission is rare, and more than a quarter of OCD sufferers receive little or no benefit from these approaches, even when they are optimally delivered. New insights into the disorder, and new treatment strategies, are urgently needed. Recent evidence suggests that the ubiquitous excitatory neurotransmitter glutamate is dysregulated in OCD, and that this dysregulation may contribute to the pathophysiology of the disorder. Here we review the current state of this evidence, including neuroimaging studies, genetics, neurochemical investigations, and insights from animal models. Finally, we review recent findings from small clinical trials of glutamate-modulating medications in treatment-refractory OCD. The precise role of glutamate dysregulation in OCD remains unclear, and we lack blinded, well-controlled studies demonstrating therapeutic benefit from glutamate-modulating agents. Nevertheless, the evidence supporting some important perturbation of glutamate in the disorder is increasingly strong. This new perspective on the pathophysiology of OCD, which complements the older focus on monoaminergic neurotransmission, constitutes an important focus of current research and a promising area for the ongoing development of new therapeutics. PMID:21963369

  19. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  20. Pathophysiology of renal denervation procedures: from renal nerve anatomy to procedural parameters.

    PubMed

    Ammar, Sonia; Ladich, Elena; Steigerwald, Kristin; Deisenhofer, Isabel; Joner, Michael

    2013-05-01

    Endovascular renal denervation techniques have been clinically adopted for the treatment of resistant arterial hypertension with great success. Despite the favourable early results achieved with this technology, a clear understanding of the pathophysiology underlying this novel treatment is lacking. In addition, non-responsiveness to renal denervation remains a nidus for treatment failure in distinct patients. In search of meaningful surrogate parameters relating to treatment responsiveness, the current article reviews the existing knowledge on renal nerve anatomy, changes occurring after denervation and procedural parameters collected during denervation. From preclinical experience, the most reliable morphological parameter reflecting successful renal denervation is the presence of axonal degeneration. Most procedural and clinical parameters need extended investigation before adopting them as potential surrogate parameters for successful renal denervation. As a consequence, there is an imperative need for dedicated research revealing the pathophysiology of renal denervation procedures. In this regard, close co-operation of engineers, researchers and clinicians is warranted to turn renal denervation into a milestone treatment of arterial hypertension.

  1. Retinovascular physiology and pathophysiology: new experimental approach/new insights

    PubMed Central

    Puro, Donald G.

    2012-01-01

    vulnerability to purinergic vasotoxicity, which is a newly identified pathobiological mechanism. Other recent studies reveal that KATP channels not only have an essential physiological role in generating vasomotor responses, but their activation substantially boosts the lethality of hypoxia. Thus, the pathophysiology of the retinal microvasculature is closely linked with its physiology. PMID:22333041

  2. A comprehensive pathophysiology of dandruff and seborrheic dermatitis - towards a more precise definition of scalp health.

    PubMed

    Schwartz, James R; Messenger, Andrew G; Tosti, Antonella; Todd, Gail; Hordinsky, Maria; Hay, Roderick J; Wang, Xuemin; Zachariae, Claus; Kerr, Kathy M; Henry, James P; Rust, Rene C; Robinson, Michael K

    2013-03-27

    Despite an increasing knowledge of dandruff and seborrheic dermatitis (D/SD), the pathophysiological understanding is still incomplete but suggests a role of Malassezia yeasts in triggering inflammatory and hyper-proliferative epidermal responses. The objective of this report is to review published literature from in vivo studies of D/SD populations to provide a more complete description of overall scalp health. New biomolecular capabilities establish a depth of pathophysiological understanding not previously achievable with traditional means of investigation. Biomarkers representing inflammation, hyper-proliferation and barrier function are all perturbed by the D/SD condition and robustly respond to therapeutic resolution. These biomarkers can be sampled noninvasively, enabling their use in routine clinical evaluations as either surrogate endpoints or complementary ones to classical signs/symptoms to broaden the etiological learning.

  3. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use.

    PubMed

    Mysels, David; Sullivan, Maria A

    2009-01-01

    There is increasing evidence that the kappa-opiate receptor, in addition to the mu-opiate receptor, plays an important role in substance use pathophysiology and behavior. As dopamine activity is upregulated through chronic substance use, kappa receptor activity, mediated through the peptide dynorphin, is upregulated in parallel. Dynorphin causes dysphoria and decreased locomotion, and the upregulation of its activity on the kappa receptor likely dampens the excitation caused by increased dopaminergic activity. This feedback mechanism may have significant clinical implications for treating drug dependent patients in various stages of their pathology.

  4. Pathophysiology and Management of Parkinsonian Tremor.

    PubMed

    Helmich, Rick C; Dirkx, Michiel F

    2017-04-01

    Parkinson's tremor is one of the cardinal motor symptoms of Parkinson's disease. The pathophysiology of Parkinson's tremor is different from that of other motor symptoms such as bradykinesia and rigidity. In this review, the authors discuss evidence suggesting that tremor is a network disorder that arises from distinct pathophysiological changes in the basal ganglia and in the cerebellothalamocortical circuit. They also discuss how interventions in this circuitry, for example, deep brain surgery and noninvasive brain stimulation, can modulate or even treat tremor. Future research may focus on understanding sources for the large variability between patients in terms of treatment response, on understanding the contextual factors that modulate tremor (stress, voluntary movements), and on focused interventions in the tremor circuitry. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Current pathophysiological concepts and management of pulmonary hypertension.

    PubMed

    Lourenço, André P; Fontoura, Dulce; Henriques-Coelho, Tiago; Leite-Moreira, Adelino F

    2012-03-22

    Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. A potential therapeutic role for aldose reductase inhibitors in the treatment of endotoxin-related inflammatory diseases

    PubMed Central

    Pandey, Saumya; Srivastava, Satish K

    2012-01-01

    Introduction Aldose reductase (AR) initially thought to be involved in the secondary diabetic complications because of its glucose reducing potential. However, evidence from recent studies indicates that AR is an excellent reducer of a number of lipid peroxidation-derived aldehydes as well as their glutathione conjugates, which regulate inflammatory signals initiated by oxidants such as cytokines, growth factors and bacterial endotoxins, and revealed the potential use of AR inhibition as an approach to prevent inflammatory complications. Areas covered An extensive Internet and Medline search was performed to retrieve information on understanding the role of AR inhibition in the pathophysiology of endotoxin-mediated inflammatory disorders. Overall, inhibition of AR appears to be a promising strategy for the treatment of endotoxemia, sepsis and other related inflammatory diseases. Expert opinion Current knowledge provides enough evidence to indicate that AR inhibition is a logical therapeutic strategy for the treatment of endotoxin-related inflammatory diseases. Since, AR inhibitors have already gone to Phase-iii clinical studies for diabetic complications and found to be safe for human use, their use in endotoxin–related inflammatory diseases could be expedited. However, one of the major challenges will be the discovery of AR regulated clinically-relevant biomarkers to identify susceptible individuals at risk of developing inflammatory diseases, thereby warranting future research in this area. PMID:22283786

  7. Pathophysiology of AAA: heredity vs environment.

    PubMed

    Björck, Martin; Wanhainen, Anders

    2013-01-01

    Abdominal aortic aneurysm (AAA) has a complex pathophysiology, in which both environmental and genetic factors play important roles, the most important being smoking. The recently reported falling prevalence rates of AAA in northern Europe and Australia/New Zeeland are largely explained by healthier smoking habits. Dietary factors and obesity, in particular abdominal obesity, are also of importance. A family history of AAA among first-degree relatives is present in approximately 13% of incident cases. The probability that a monozygotic twin of a person with an AAA has the disease is 24%, 71 times higher than that for a monozygotic twin of a person without AAA. Approximately 1000 SNPs in 100 candidate genes have been studied, and three genome-wide association studies were published, identifying different diverse weak associations. An example of interaction between environmental and genetic factors is the effect of cholesterol, where genetic and dietary factors affect levels of both HDL and LDL. True epigenetic studies have not yet been published. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system.

    PubMed

    Gomes, Clarissa P C; de Gonzalo-Calvo, David; Toro, Rocio; Fernandes, Tiago; Theisen, Daniel; Wang, Da-Zhi; Devaux, Yvan

    2018-05-23

    There is overwhelming evidence that regular exercise training is protective against cardiovascular disease (CVD), the main cause of death worldwide. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Non-coding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Revealing the molecular components and mechanisms of the link between exercise and health outcomes will catalyse discoveries of new biomarkers and therapeutic targets. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for CVD. Finally, considerations and perspectives for future studies will be proposed. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle.

    PubMed

    Rech, Monika; Barandiarán Aizpurua, Arantxa; van Empel, Vanessa; van Bilsen, Marc; Schroen, Blanche

    2018-05-01

    Half of all heart failure patients have preserved ejection fraction (HFpEF). Comorbidities associated with and contributing to HFpEF include obesity, diabetes and hypertension. Still, the underlying pathophysiological mechanisms of HFpEF are unknown. A preliminary consensus proposes that the multi-morbidity triggers a state of systemic, chronic low-grade inflammation, and microvascular dysfunction, causing reduced nitric oxide bioavailability to adjacent cardiomyocytes. As a result, the cardiomyocyte remodels its contractile elements and fails to relax properly, causing diastolic dysfunction, and eventually HFpEF. HFpEF is a complex syndrome for which currently no efficient therapies exist. This is notably due to the current one-size-fits-all therapy approach that ignores individual patient differences. MicroRNAs have been studied in relation to pathophysiological mechanisms and comorbidities underlying and contributing to HFpEF. As regulators of gene expression, microRNAs may contribute to the pathophysiology of HFpEF. In addition, secreted circulating microRNAs are potential biomarkers and as such, they could help stratify the HFpEF population and open new ways for individualized therapies. In this review, we provide an overview of the ever-expanding world of non-coding RNAs and their contribution to the molecular mechanisms underlying HFpEF. We propose prospects for microRNAs in stratifying the HFpEF population. MicroRNAs add a new level of complexity to the regulatory network controlling cardiac function and hence the understanding of gene regulation becomes a fundamental piece in solving the HFpEF puzzle.

  10. A Unified Pathophysiological Construct of Diabetes and its Complications.

    PubMed

    Schwartz, Stanley S; Epstein, Solomon; Corkey, Barbara E; Grant, Struan F A; Gavin Iii, James R; Aguilar, Richard B; Herman, Mary E

    2017-09-01

    Advances in understanding diabetes mellitus (DM) through basic and clinical research have helped clarify and reunify a disease state fragmented into numerous etiologies and subtypes. It is now understood that a common pathophysiology drives the diabetic state throughout its natural history and across its varied clinical presentations, a pathophysiology involving metabolic insults, oxidative damage, and vicious cycles that aggravate and intensify organ dysfunction and damage. This new understanding of the disease requires that we revisit existing diagnostics and treatment approaches, which were built upon outmoded assumptions. 'The Common Pathophysiologic Origins of Diabetes Mellitus and its Complications Construct' is presented as a more accurate, foundational, and translatable construct of DM that helps make sense of the hitherto ambiguous findings of long-term outcome studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oral submucous fibrosis: An update on pathophysiology of malignant transformation.

    PubMed

    Arakeri, Gururaj; Patil, Shekar Gowda; Aljabab, Abdulsalam S; Lin, Kuan-Chou; Merkx, M A W; Gao, Shan; Brennan, Peter A

    2017-07-01

    Oral submucous fibrosis (OSMF) is a potentially malignant condition associated with areca nut chewing. Formerly confined to the Indian subcontinent, it is now often seen in Asian populations of the United Kingdom, USA and other developed countries, and is therefore a serious problem for global health. What makes it more sinister is the malignant transformation rate, which has been reported to be around 7.6% over a 17-year period. In this concise article, we review the current trends in the pathophysiology of malignant transformation of OSMF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Epidemiology, pathophysiology, and the future of ocular toxoplasmosis.

    PubMed

    Kijlstra, Aize; Petersen, Eskild

    2014-04-01

    Despite large advances in the field of ocular toxoplasmosis, large gaps still exist in our knowledge concerning the epidemiology and pathophysiology of this potentially blinding infectious disease. Although ocular toxoplasmosis is considered to have a high health burden, still little is known about its exact prevalence and how it affects the quality of life. The epidemiology of toxoplasmosis depends on local habits throughout the globe, and changes are likely in view of increased meat consumption in developing countries and demands for higher animal welfare in the Western world. Water is increasingly seen as an important risk factor and more studies are needed to quantitate and control the role of water exposure (drinking, swimming). Tools are now becoming available to study both the human host as well as parasite genetic factors in the development of ocular toxoplasmosis. Further research on the role of Toxoplasma strains as well as basic studies on parasite virulence is needed to explain why Toxoplasma associated eye disease is so severe in some countries, such as Brazil. Although genetic analysis of the parasite represents the gold standard, further developments in serotyping using peptide arrays may offer practical solutions to study the role of parasite strains in the pathogenesis of Toxoplasma retinochoroiditis. More research is needed concerning the pathways whereby the parasite can infect the retina. Once in the retina further tissue damage may be due to parasite virulence factors or could be caused by an aberrant host immune response. Local intraocular immune responses are nowadays used for diagnostic procedures. Future developments may include the use of Raman technology or the direct visualization of a Toxoplasma cyst by optical coherence tomography (OCT). With the availability of ocular fluid specimens obtained for diagnostic purposes and the development of advanced proteomic techniques, a biomarker fingerprint that is unique for an eye with

  13. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology.

    PubMed

    Leussis, Melanie P; Madison, Jon M; Petryshen, Tracey L

    2012-10-01

    Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.

  14. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy.

    PubMed

    Saeedi Saravi, Seyed Soheil; Ghazi-Khansari, Mahmoud; Ejtemaei Mehr, Shahram; Nobakht, Maliheh; Mousavi, Seyyedeh Elaheh; Dehpour, Ahmad Reza

    2016-05-21

    To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition. Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein. Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin

  15. Role of renal sensory nerves in physiological and pathophysiological conditions

    PubMed Central

    2014-01-01

    Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364

  16. Leucine-Rich Repeat Kinase 2 in Parkinson's Disease: Updated from Pathogenesis to Potential Therapeutic Target.

    PubMed

    Chen, Jinhua; Chen, Ying; Pu, Jiali

    2018-04-27

    Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the midbrain. The pathogenesis of PD is not fully understood but is likely caused by a combination of genetic and environmental factors. Several genes are associated with the onset and progression of familial PD. There is increasing evidence that leucine-rich repeat kinase 2 (LRRK2) plays a significant role in PD pathophysiology. Many studies have been conducted to elucidate the functions of LRRK2 and identify effective LRRK2 inhibitors for PD treatment. In this review, we discuss the role of LRRK2 in PD and recent progress in the use of LRRK2 inhibitors as therapeutic agents. Key Messages: LRRK2 plays a significant role in the pathophysiology of PD, and pharmacological inhibition of LRRK2 has become one of the most promising potential therapies for PD. Further research is warranted to determine the functions of LRRK2 and expand the applications of LRRK2 inhibitors in PD treatment. © 2018 S. Karger AG, Basel.

  17. Bursting Regimes in a Reaction-Diffusion System with Action Potential-Dependent Equilibrium

    PubMed Central

    Meier, Stephen R.; Lancaster, Jarrett L.; Starobin, Joseph M.

    2015-01-01

    The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018

  18. The pathophysiology of post-stroke aphasia: A network approach.

    PubMed

    Thiel, Alexander; Zumbansen, Anna

    2016-06-13

    Post-stroke aphasia syndromes as a clinical entity arise from the disruption of brain networks specialized in language production and comprehension due to permanent focal ischemia. This approach to post-stroke aphasia is based on two pathophysiological concepts: 1) Understanding language processing in terms of distributed networks rather than language centers and 2) understanding the molecular pathophysiology of ischemic brain injury as a dynamic process beyond the direct destruction of network centers and their connections. While considerable progress has been made in the past 10 years to develop such models on a systems as well as a molecular level, the influence of these approaches on understanding and treating clinical aphasia syndromes has been limited. In this article, we review current pathophysiological concepts of ischemic brain injury, their relationship to altered information processing in language networks after ischemic stroke and how these mechanisms may be influenced therapeutically to improve treatment of post-stroke aphasia. Understanding the pathophysiological mechanism of post-stroke aphasia on a neurophysiological systems level as well as on the molecular level becomes more and more important for aphasia treatment, as the field moves from standardized therapies towards more targeted individualized treatment strategies comprising behavioural therapies as well as non-invasive brain stimulation (NIBS).

  19. Autism and 15q11-q13 disorders: behavioral, genetic, and pathophysiological issues.

    PubMed

    Dykens, Elisabeth M; Sutcliffe, James S; Levitt, Pat

    2004-01-01

    New insights into biological factors that underlie autism may be gained by comparing autism to other neurodevelopmental disorders that have autistic features and relatively well-delineated genetic etiologies or neurobiological findings. This review moves beyond global diagnoses of autism and instead uses an endophenotypic approach to compare specific clusters of autistic symptomatology to features of chromosome 15q11-q13 disorders. Paternally or maternally derived deficiencies of 15q11-q13 result in Prader-Willi or Angelman syndromes, and we first use a global approach to review potential autism susceptibility genes in the 15q11-q13 region. We then use a more trait-based approach to suggest possible ties between specific phenotypic characteristics of autism and Prader-Willi syndrome, namely savant-like skills. We conclude with insights from pathophysiological studies that implicate altered development of specific neuron types and circuits in the cerebral cortex as part of the pathophysiological processes associated with autism and mental retardation. Copyright 2004 Wiley-Liss, Inc.

  20. The "chloride theory", a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology.

    PubMed

    Kataoka, Hajime

    2017-07-01

    Body fluid volume regulation is a complex process involving the interaction of various afferent (sensory) and neurohumoral efferent (effector) mechanisms. Historically, most studies focused on the body fluid dynamics in heart failure (HF) status through control of the balance of sodium, potassium, and water in the body, and maintaining arterial circulatory integrity is central to a unifying hypothesis of body fluid regulation in HF pathophysiology. The pathophysiologic background of the biochemical determinants of vascular volume in HF status, however, has not been known. I recently demonstrated that changes in vascular and red blood cell volumes are independently associated with the serum chloride concentration, but not the serum sodium concentration, during worsening HF and its recovery. Based on these observations and the established central role of chloride in the renin-angiotensin-aldosterone system, I propose a unifying hypothesis of the "chloride theory" for HF pathophysiology, which states that changes in the serum chloride concentration are the primary determinant of changes in plasma volume and the renin-angiotensin-aldosterone system under worsening HF and therapeutic resolution of worsening HF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In vivo imaging of the pathophysiological changes and neutrophil dynamics in influenza virus-infected mouse lungs.

    PubMed

    Ueki, Hiroshi; Wang, I-Hsuan; Fukuyama, Satoshi; Katsura, Hiroaki; da Silva Lopes, Tiago Jose; Neumann, Gabriele; Kawaoka, Yoshihiro

    2018-06-25

    The pathophysiological changes that occur in lungs infected with influenza viruses are poorly understood. Here we established an in vivo imaging system that combines two-photon excitation microscopy and fluorescent influenza viruses of different pathogenicity. This approach allowed us to monitor and correlate several parameters and physiological changes including the spread of infection, pulmonary permeability, pulmonary perfusion speed, number of recruited neutrophils in infected lungs, and neutrophil motion in the lungs of live mice. Several physiological changes were larger and occurred earlier in mice infected with a highly pathogenic H5N1 influenza virus compared with those infected with a mouse-adapted human strain. These findings demonstrate the potential of our in vivo imaging system to provide novel information about the pathophysiological consequences of virus infections.

  2. Maximizing Potential: The Parents' Role.

    ERIC Educational Resources Information Center

    Dyer, Shirley Poindexter

    The mother of a 16-year-old daughter with autism offers a parental perspective on coping with a child's disability. The paper emphasizes that through direct interaction with the child and the child's teacher and through taking an active role in the child's activities and achievements, the child's potential can be discovered and the child can be…

  3. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology

    PubMed Central

    Balint, Bettina; Vincent, Angela; Meinck, Hans-Michael; Irani, Sarosh R; Bhatia, Kailash P

    2018-01-01

    Abstract Movement disorders are a prominent and common feature in many autoantibody-associated neurological diseases, a group of potentially treatable conditions that can mimic infectious, metabolic or neurodegenerative disease. Certain movement disorders are likely to associate with certain autoantibodies; for example, the characteristic dyskinesias, chorea and dystonia associated with NMDAR antibodies, stiff person spectrum disorders with GAD, glycine receptor, amphiphysin or DPPX antibodies, specific paroxysmal dystonias with LGI1 antibodies, and cerebellar ataxia with various anti-neuronal antibodies. There are also less-recognized movement disorder presentations of antibody-related disease, and a considerable overlap between the clinical phenotypes and the associated antibody spectra. In this review, we first describe the antibodies associated with each syndrome, highlight distinctive clinical or radiological ‘red flags’, and suggest a syndromic approach based on the predominant movement disorder presentation, age, and associated features. We then examine the underlying immunopathophysiology, which may guide treatment decisions in these neuroimmunological disorders, and highlight the exceptional interface between neuronal antibodies and neurodegeneration, such as the tauopathy associated with IgLON5 antibodies. Moreover, we elaborate the emerging pathophysiological parallels between genetic movement disorders and immunological conditions, with proteins being either affected by mutations or targeted by autoantibodies. Hereditary hyperekplexia, for example, is caused by mutations of the alpha subunit of the glycine receptor leading to an infantile-onset disorder with exaggerated startle and stiffness, whereas antibodies targeting glycine receptors can induce acquired hyperekplexia. The spectrum of such immunological and genetic analogies also includes cerebellar ataxias and some encephalopathies. Lastly, we discuss how these pathophysiological considerations

  4. An update on equine post-operative ileus: Definitions, pathophysiology and management.

    PubMed

    Lisowski, Z M; Pirie, R S; Blikslager, A T; Lefebvre, D; Hume, D A; Hudson, N P H

    2018-05-01

    Post-operative ileus (POI) is a serious condition which any horse undergoing abdominal surgery is at risk of developing, leading to increased hospitalisation time and resulting costs. Advances in the understanding of the development of equine POI are mainly based on human and rodent literature, where manipulation-induced inflammation has been identified as a trigger, with activation of resident muscularis externa macrophages playing a crucial role in the pathophysiology. Despite many pharmacological trials in all species, there is no single completely successful treatment for POI, highlighting that the condition is multifactorial in cause and requires a multimodal approach to minimise its incidence. © 2017 EVJ Ltd.

  5. Role of the Renin–Angiotensin System in the Pathogenesis of Intimal Hyperplasia: Therapeutic Potential for Prevention of Vein Graft Failure?

    PubMed Central

    Osgood, Michael J.; Harrison, David G.; Sexton, Kevin W.; Hocking, Kyle M.; Voskresensky, Igor V.; Komalavilas, Padmini; Cheung-Flynn, Joyce; Guzman, Raul J.; Brophy, Colleen M.

    2014-01-01

    The saphenous vein remains the most widely used conduit for peripheral and coronary revascularization despite a high rate of vein graft failure. The most common cause of vein graft failure is intimal hyperplasia. No agents have been proven to be successful for the prevention of intimal hyperplasia in human subjects. The rennin–angiotensin system is essential in the regulation of vascular tone and blood pressure in physiologic conditions. However, this system mediates cardiovascular remodeling in pathophysiologic states. Angiotensin II is becoming increasingly recognized as a potential mediator of intimal hyperplasia. Drugs modulating the renin–angiotensin system include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. These drugs are powerful inhibitors of atherosclerosis and cardiovascular remodeling, and they are first-line agents for management of several medical conditions based on class I evidence that they delay progression of cardiovascular disease and improve survival. Several experimental models have demonstrated that these agents are capable of inhibiting intimal hyperplasia. However, there are no data supporting their role in prevention of intimal hyperplasia in patients with vein grafts. This review summarizes the physiology of the rennin–angiotensin system, the role of angiotensin II in the pathogenesis of cardiovascular remodeling, the medical indications for these agents, and the experimental data supporting an important role of the rennin–angiotensin system in the pathogenesis of intimal hyperplasia. PMID:22445245

  6. Pathophysiology of wound healing and alterations in venous leg ulcers-review.

    PubMed

    Raffetto, Joseph D

    2016-03-01

    Venous leg ulcer (VLU) is one of the most common lower extremity ulcerated wound, and is a significant healthcare problem with implications that affect social, economic, and the well-being of a patient. VLU can have debilitating related problems which require weekly medical care and may take months to years to heal. The pathophysiology of VLU is complex, and healing is delayed in many patients due to a persistent inflammatory condition. Patient genetic and environmental factors predispose individuals to chronic venous diseases including VLU. Changes in shear stress affecting the glycocalyx are likely initiating events, leading to activation of adhesion molecules on endothelial cells, and leukocyte activation with attachment and migration into vein wall, microcirculation, and in the interstitial space. Multiple chemokines, cytokines, growth factors, proteases and matrix metalloproteinases are produced. The pathology of VLU involves an imbalance of inflammation, inflammatory modulators, oxidative stress, and proteinase activity. Understanding the cellular and biochemical events that lead to the progression of VLU is critical. With further understanding of inflammatory pathways and potential mechanisms, certain biomarkers could be revealed and studied as both involvement in the pathophysiology of VLU but also as therapeutic targets for VLU healing. © The Author(s) 2016.

  7. Requirements for the formal representation of pathophysiology mechanisms by clinicians

    PubMed Central

    Helvensteijn, M.; Kokash, N.; Martorelli, I.; Sarwar, D.; Islam, S.; Grenon, P.; Hunter, P.

    2016-01-01

    Knowledge of multiscale mechanisms in pathophysiology is the bedrock of clinical practice. If quantitative methods, predicting patient-specific behaviour of these pathophysiology mechanisms, are to be brought to bear on clinical decision-making, the Human Physiome community and Clinical community must share a common computational blueprint for pathophysiology mechanisms. A number of obstacles stand in the way of this sharing—not least the technical and operational challenges that must be overcome to ensure that (i) the explicit biological meanings of the Physiome's quantitative methods to represent mechanisms are open to articulation, verification and study by clinicians, and that (ii) clinicians are given the tools and training to explicitly express disease manifestations in direct contribution to modelling. To this end, the Physiome and Clinical communities must co-develop a common computational toolkit, based on this blueprint, to bridge the representation of knowledge of pathophysiology mechanisms (a) that is implicitly depicted in electronic health records and the literature, with (b) that found in mathematical models explicitly describing mechanisms. In particular, this paper makes use of a step-wise description of a specific disease mechanism as a means to elicit the requirements of representing pathophysiological meaning explicitly. The computational blueprint developed from these requirements addresses the Clinical community goals to (i) organize and manage healthcare resources in terms of relevant disease-related knowledge of mechanisms and (ii) train the next generation of physicians in the application of quantitative methods relevant to their research and practice. PMID:27051514

  8. Renal cell carcinoma: a review of biology and pathophysiology

    PubMed Central

    Nabi, Shahzaib; Kessler, Elizabeth R.; Bernard, Brandon; Flaig, Thomas W.; Lam, Elaine T.

    2018-01-01

    Over the past decade, our understanding of the biology and pathophysiology of renal cell carcinoma (RCC) has improved significantly. Insight into the disease process has helped us in developing newer therapeutic approaches toward RCC. In this article, we review the various genetic and immune-related mechanisms involved in the pathogenesis and development of this cancer and how that knowledge is being used to develop therapeutic targeted drugs for the treatment of RCC. The main emphasis of this review article is on the most common genetic alterations found in clear cell RCC and how various drugs are currently targeting such pathways. This article also looks at the role of the immune system in allowing the growth of RCC and how the immune system can be manipulated to reactivate cytotoxic immunity against RCC. PMID:29568504

  9. Retinal vein occlusion: pathophysiology and treatment options.

    PubMed

    Karia, Niral

    2010-07-30

    This paper reviews the current thinking about retinal vein occlusion. It gives an overview of its pathophysiology and discusses the evidence behind the various established and emerging treatment paradigms.

  10. Acute pathophysiological processes after ischaemic and traumatic brain injury.

    PubMed

    Kunz, Alexander; Dirnagl, Ulrich; Mergenthaler, Philipp

    2010-12-01

    Ischaemic stroke and brain trauma are among the leading causes of mortality and long-term disability in the western world. Enormous endeavours have been made to elucidate the complex pathophysiology of ischaemic and traumatic brain injury with the intention of developing new therapeutic strategies for patients suffering from these devastating diseases. This article reviews the current knowledge on cascades that are activated after ischaemic and traumatic brain injury and that lead to progression of tissue damage. Main attention will be on pathophysiological events initiated after ischaemic stroke including excitotoxicity, oxidative/nitrosative stress, peri-infarct depolarizations, apoptosis and inflammation. Additionally, specific pathophysiological aspects after traumatic brain injury will be discussed along with their similarities and differences to ischaemic brain injury. This article provides prerequisites for understanding the therapeutic strategies for stroke and trauma patients which are addressed in other articles of this issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies.

    PubMed

    Voulgari, Christina; Papadogiannis, Dimitrios; Tentolouris, Nicholas

    2010-10-21

    Diabetic cardiomyopathy (DCM), although a distinct clinical entity, is also a part of the diabetic atherosclerosis process. It may be independent of the coexistence of ischemic heart disease, hypertension, or other macrovascular complications. Its pathological substrate is characterized by the presence of myocardial damage, reactive hypertrophy, and intermediary fibrosis, structural and functional changes of the small coronary vessels, disturbance of the management of the metabolic cardiovascular load, and cardiac autonomic neuropathy. These alterations make the diabetic heart susceptible to ischemia and less able to recover from an ischemic attack. Arterial hypertension frequently coexists with and exacerbates cardiac functioning, leading to the premature appearance of heart failure. Classical and newer echocardiographic methods are available for early diagnosis. Currently, there is no specific treatment for DCM; targeting its pathophysiological substrate by effective risk management protects the myocardium from further damage and has a recognized primary role in its prevention. Its pathophysiological substrate is also the objective for the new therapies and alternative remedies.

  12. Role of Major NMDA or AMPA Receptor Subunits in MK-801 Potentiation of Ethanol Intoxication

    PubMed Central

    Palachick, Benjamin; Chen, Yi-Chyan; Enoch, Abigail J.; Karlsson, Rose-Marie; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    Background The glutamate system plays a major role in mediating EtOH’s effects on brain and behavior, and is implicated in the pathophysiology of alcohol-related disorders. N-methyl-D-aspartate receptor (NMDAR) antagonists such as MK-801 (dizocilpine) interact with EtOH at the behavioral level, but the molecular basis of this interaction is unclear. Methods We first characterized the effects of MK-801 treatment on responses to the ataxic (accelerating rotarod), hypothermic and sedative/hypnotic effects of acute EtOH administration in C57BL/6J and 129/SvImJ inbred mice. Effects of another NMDAR antagonist, phencyclidine, on EtOH-induced sedation/hypnosis were also assessed. Gene knockout of the NMDAR subunit NR2A or L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate GluR1 or pharmacological antagonism of the NMDAR subunit NR2B (via Ro 25-6981) was employed to examine whether inactivating any one of these glutamate signaling molecules modified MK-801’s effect on EtOH-related behaviors. Results MK-801 markedly potentiated the ataxic effects of 1.75 g/kg EtOH and the sedative/hypnotic effects of 3.0 g/kg EtOH, but not the hypothermic effects of 3.0 g/kg EtOH, in C57BL/6J and 129/SvImJ mice. Phencyclidine potentiated EtOH-induced sedation/hypnosis in both inbred strains. Neither NR2A nor GluR1 KO significantly altered basal EtOH-induced ataxia, hypothermia, or sedation/hypnosis. Ro 25-6981 modestly increased EtOH-induced sedation/hypnosis. The ability of MK-801 to potentiate EtOH-induced ataxia and sedation/hypnosis was unaffected by GluR1 KO or NR2B antagonism. NR2A KO partially reduced MK-801 + EtOH-induced sedation/hypnosis, but not ataxia or hypothermia. Conclusions Data confirm a robust and response-specific potentiating effect of MK-801 on sensitivity to EtOH’s intoxicating effects. Inactivation of three major components of glutamate signaling had no or only partial impact on the ability of MK-801 to potentiate behavioral sensitivity to EtOH. Further

  13. Pathophysiology, management and treatment of smoke inhalation injury

    PubMed Central

    Rehberg, Sebastian; Maybauer, Marc O; Enkhbaatar, Perenlei; Maybauer, Dirk M; Yamamoto, Yusuke; Traber, Daniel L

    2009-01-01

    Smoke inhalation injury continues to increase morbidity and mortality in burn patients in both the third world and industrialized countries. The lack of uniform criteria for the diagnosis and definition of smoke inhalation injury contributes to the fact that, despite extensive research, mortality rates have changed little in recent decades. The formation of reactive oxygen and nitrogen species, as well as the procoagulant and antifibrinolytic imbalance of alveolar homeostasis, all play a central role in the pathogenesis of smoke inhalation injury. Further hallmarks include massive airway obstruction owing to cast formation, bronchospasm, the increase in bronchial circulation and transvascular fluid flux. Therefore, anticoagulants, antioxidants and bronchodilators, especially when administered as an aerosol, represent the most promising treatment strategies. The purpose of this review article is to provide an overview of the pathophysiological changes, management and treatment options of smoke inhalation injury based on the current literature. PMID:20161170

  14. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cover, Cathleen; Liu Jie; Farhood, Anwar

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-{alpha}, interleukin-1{beta} and macrophage inflammatory protein-2)more » was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose.« less

  15. The pathophysiology of hypertension in patients with obesity.

    PubMed

    DeMarco, Vincent G; Aroor, Annayya R; Sowers, James R

    2014-06-01

    The combination of obesity and hypertension is associated with high morbidity and mortality because it leads to cardiovascular and kidney disease. Potential mechanisms linking obesity to hypertension include dietary factors, metabolic, endothelial and vascular dysfunction, neuroendocrine imbalances, sodium retention, glomerular hyperfiltration, proteinuria, and maladaptive immune and inflammatory responses. Visceral adipose tissue also becomes resistant to insulin and leptin and is the site of altered secretion of molecules and hormones such as adiponectin, leptin, resistin, TNF and IL-6, which exacerbate obesity-associated cardiovascular disease. Accumulating evidence also suggests that the gut microbiome is important for modulating these mechanisms. Uric acid and altered incretin or dipeptidyl peptidase 4 activity further contribute to the development of hypertension in obesity. The pathophysiology of obesity-related hypertension is especially relevant to premenopausal women with obesity and type 2 diabetes mellitus who are at high risk of developing arterial stiffness and endothelial dysfunction. In this Review we discuss the relationship between obesity and hypertension with special emphasis on potential mechanisms and therapeutic targeting that might be used in a clinical setting.

  16. The pathophysiology of hypertension in patients with obesity

    PubMed Central

    DeMarco, Vincent G.; Aroor, Annayya R.; Sowers, James R.

    2015-01-01

    The combination of obesity and hypertension is associated with high morbidity and mortality because it leads to cardiovascular and kidney disease. Potential mechanisms linking obesity to hypertension include dietary factors, metabolic, endothelial and vascular dysfunction, neuroendocrine imbalances, sodium retention, glomerular hyperfiltration, proteinuria, and maladaptive immune and inflammatory responses. Visceral adipose tissue also becomes resistant to insulin and leptin and is the site of altered secretion of molecules and hormones such as adiponectin, leptin, resistin, TNF and IL-6, which exacerbate obesity-associated cardiovascular disease. Accumulating evidence also suggests that the gut microbiome is important for modulating these mechanisms. Uric acid and altered incretin or dipeptidyl peptidase 4 activity further contribute to the development of hypertension in obesity. The pathophysiology of obesity-related hypertension is especially relevant to premenopausal women with obesity and type 2 diabetes mellitus who are at high risk of developing arterial stiffness and endothelial dysfunction. In this Review we discuss the relationship between obesity and hypertension with special emphasis on potential mechanisms and therapeutic targeting that might be used in a clinical setting. PMID:24732974

  17. Chronic bowel inflammation and inflammatory joint disease: Pathophysiology.

    PubMed

    Speca, Silvia; Dubuquoy, Laurent

    2017-07-01

    Bowel inflammation is closely linked to chronic joint inflammation. Research reported in the 1980s demonstrated bowel inflammation with gross and microscopic pathological features identical to those of Crohn's disease in over 60% of patients with spondyloarthritis (SpA). Numerous prospective studies have evidenced joint involvement in patients with chronic inflammatory bowel disease (IBD) and bowel inflammation in patients with SpA. Nevertheless, the interactions of joint disease and chronic bowel inflammation remain incompletely elucidated. Two main hypotheses have been suggested to explain potential links between inflammation of the mucosal immune system and peripheral arthritis: one identifies gut bacteria as potentially implicated in the development of joint inflammation and the other involves the recruitment of gut lymphocytes or activated macrophages to the joints. Pathophysiological investigations have established that HLA-B27 is a pivotal pathogenic factor. Here, we review current data on links between chronic bowel inflammation and inflammatory joint disease. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  18. Retinal vein occlusion: pathophysiology and treatment options

    PubMed Central

    Karia, Niral

    2010-01-01

    This paper reviews the current thinking about retinal vein occlusion. It gives an overview of its pathophysiology and discusses the evidence behind the various established and emerging treatment paradigms. PMID:20689798

  19. [Circadian blood pressure variation under several pathophysiological conditions including secondary hypertension].

    PubMed

    Imai, Yutaka; Hosaka, Miki; Satoh, Michihiro

    2014-08-01

    Abnormality of circadian blood pressure (BP) variation, i.e. non-dipper, riser, nocturnal hypertension etc, is brought by several pathophysiological conditions especially by secondary hypertension. These pathophysiological conditions are classified into several categories, i.e. disturbance of autonomic nervous system, metabolic disorder, endocrine disorder, disorder of Na and water excretion (e.g. sodium sensitivity), severe target organ damage and ischemia, cardiovascular complications and drug induced hypertension. Each pathophysiological condition which brings disturbance of circadian BP variation is included in several categories, e.g. diabetes mellitus is included in metabolic disorder, autonomic imbalance, sodium sensitivity and endocrine disorder. However, it seems that unified principle of the genesis of disturbance of circadian BP variation in many pathophysiological conditions is autonomic imbalance. Thus, it is concluded that disturbance of circadian BP variation is not purposive biological behavior but the result of autonomic imbalance which looks as if compensatory reaction such as exaggerated Na-water excretion during night in patient with Na-water retention who reveals disturbed circadian BP variation.

  20. Ocular toxoplasmosis: recent aspects of pathophysiology and clinical implications.

    PubMed

    Pleyer, Uwe; Schlüter, Dirk; Mänz, Martin

    2014-01-01

    Toxoplasma gondii is an extremely successful opportunistic parasite which infects approximately one third of the human population worldwide. The impact of this parasite on human health becomes particularly manifest in congenital damage with infection and subsequent inflammation of neuronal tissues including the retina. Although advances in our understanding could be achieved in ocular toxoplasmosis, large gaps still exist on factors influencing the epidemiology and pathophysiology of this potentially blinding disease. We are only at the beginning of understanding the complex biology of this parasite and its mechanisms of invasion, virulence and interaction with the host's immune response. Since it is a preventable cause of blindness, it is necessary to assess factors that have the potential to control this disease in the future. This mini review will focus on recent advances in postnatal acquired ocular infection and the factors that may influence its prevalence and functional outcome. © 2014 S. Karger AG, Basel.

  1. miRwayDB: a database for experimentally validated microRNA-pathway associations in pathophysiological conditions

    PubMed Central

    Das, Sankha Subhra; Saha, Pritam

    2018-01-01

    Abstract MicroRNAs (miRNAs) are well-known as key regulators of diverse biological pathways. A series of experimental evidences have shown that abnormal miRNA expression profiles are responsible for various pathophysiological conditions by modulating genes in disease associated pathways. In spite of the rapid increase in research data confirming such associations, scientists still do not have access to a consolidated database offering these miRNA-pathway association details for critical diseases. We have developed miRwayDB, a database providing comprehensive information of experimentally validated miRNA-pathway associations in various pathophysiological conditions utilizing data collected from published literature. To the best of our knowledge, it is the first database that provides information about experimentally validated miRNA mediated pathway dysregulation as seen specifically in critical human diseases and hence indicative of a cause-and-effect relationship in most cases. The current version of miRwayDB collects an exhaustive list of miRNA-pathway association entries for 76 critical disease conditions by reviewing 663 published articles. Each database entry contains complete information on the name of the pathophysiological condition, associated miRNA(s), experimental sample type(s), regulation pattern (up/down) of miRNA, pathway association(s), targeted member of dysregulated pathway(s) and a brief description. In addition, miRwayDB provides miRNA, gene and pathway score to evaluate the role of a miRNA regulated pathways in various pathophysiological conditions. The database can also be used for other biomedical approaches such as validation of computational analysis, integrated analysis and prediction of computational model. It also offers a submission page to submit novel data from recently published studies. We believe that miRwayDB will be a useful tool for miRNA research community. Database URL: http://www.mirway.iitkgp.ac.in PMID:29688364

  2. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance. Copyright © 2016 the American Physiological Society.

  3. Pathophysiological insights in sickle cell disease.

    PubMed

    Odièvre, Marie-Hélène; Verger, Emmanuelle; Silva-Pinto, Ana Cristina; Elion, Jacques

    2011-10-01

    The first coherent pathophysiological scheme for sickle cell disease (SCD) emerged in the sixties-seventies based on an extremely detailed description of the molecular mechanism by which HbS in its deoxy-form polymerises and forms long fibres within the red blood cell that deform it and make it fragile. This scheme explains the haemolytic anaemia, and the mechanistic aspects of the vaso-occlusive crises (VOCs), but, even though it constitutes the basic mechanism of the disease, it does not account for the processes that actually trigger VOCs. This paper reviews recent data which imply: red blood cell dehydration, its abnormal adhesion properties to the endothelium, the participation of inflammatory phenomenon and of a global activation of all the cells present in the vessel, and finally, abnormalities of the vascular tone and of nitric oxide metabolism. These data altogether have shed a new light on the pathophysiology of the first molecular disease i.e. sickle cell disease.

  4. PKCε promotes human Th17 differentiation: Implications in the pathophysiology of psoriasis.

    PubMed

    Martini, Silvia; Pozzi, Giulia; Carubbi, Cecilia; Masselli, Elena; Galli, Daniela; Di Nuzzo, Sergio; Banchini, Antonio; Gobbi, Giuliana; Vitale, Marco; Mirandola, Prisco

    2018-04-01

    PKCε is implicated in T cell activation and proliferation and is overexpressed in CD4 + -T cells from patients with autoimmune Hashimoto's thyroiditis. Although this might induce the suspicion that PKCε takes part in autoimmunity, its role in the molecular pathophysiology of immune-mediated disorders is still largely unknown. We studied PKCε expression in circulating CD4 + -T cells from patients with psoriasis, a skin disorder characterized by an increased amount of Th17 cells, a CD4 + subset that is critical in the development of autoimmunity. Although the mechanisms that underlie Th17 differentiation in humans are still unclear, we here show that: (i) PKCε is overexpressed in CD4 + -T cells from psoriatic patients, and its expression positively correlates with the severity of the disease, being reduced by effective phototherapy; (ii) PKCε interacts with Stat3 during Th17 differentiation and its overexpression results in an enhanced expression of Stat3 and pStat3(Ser727); iii) conversely, when PKCε is forcibly downregulated, CD4 + -T cells show lower levels of pStat3(Ser727) expression and defective in vitro expansion into the Th17-lineage. These data provide a novel insight into the molecular mechanisms of Th17 cell polarization that is known to play a crucial role in autoimmunity, pinpointing PKCε as a potential target in Th17-mediated diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    PubMed

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis

  6. Cerebral toxoplasmosis in Acquired Immunodeficiency Syndrome (AIDS) patients also provides unifying pathophysiologic hypotheses for Holmes tremor.

    PubMed

    Lekoubou, Alain; Njouoguep, Rodrigue; Kuate, Callixte; Kengne, André Pascal

    2010-06-03

    Holmes tremor is a rare symptomatic movement disorder. Currently suggested pathophysiological mechanisms of the disease are mostly derived from stroke cases. Although rare, cerebral toxoplasmosis may strengthen the pathophysiologic mechanism of disease. A case of Holmes tremor secondary to cerebral toxoplasmosis in an AIDS patient is presented. A relevant literature search was performed, using pubmed and several entries for Holmes tremor as labelled in the literature. The unifying feature of our case and those of the literature is the involvement of either the cerebello-thalamo-cortical and/or the dentato-rubro-olivary pathways. The abscess or the extension of surrounding edema beyond these two circuits may account for the superimposed dysfunction of the nigrostriatal system in some but not all cases. The short delay observed in our observation and the dramatic response to treatment may indirectly support the secondary neuronal degeneration theory in the mechanism of Holmes tremor. Cases of cerebral toxoplasmosis in AIDS patients also provide arguments for the role of the thalamo-cortical and/or the dentato-rubro-olivary pathways dysfunction in the pathogenesis of Holmes tremor. Involvement of the nigro-striatal pathway may not be crucial in the development of this syndrome. Our case also brings additional indirect arguments for the role of secondary neuronal degeneration in the mechanism of Holmes tremor.

  7. Blood–brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches

    PubMed Central

    Marchi, Nicola; Granata, Tiziana; Ghosh, Chaitali; Janigro, Damir

    2016-01-01

    The blood–brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte–endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB-centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add-on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs. PMID:22905812

  8. Delayed Ejaculation: Pathophysiology, Diagnosis, and Treatment

    PubMed Central

    2018-01-01

    Delayed ejaculation (DE) is a poorly defined and uncommon form of male sexual dysfunction, characterized by a marked delay in ejaculation or an inability to achieve ejaculation. It is often quite concerning to patients and their partners, and sometimes frustrates couples' attempts to conceive. This article aims to review the pathophysiology of DE and anejaculation (AE), to explore our current understanding of the diagnosis, and to present the treatment options for this condition. Electronic databases were searched from 1966 to October 2017, including PubMed (MEDLINE) and Embase. We combined “delayed ejaculation,” “retarded ejaculation,” “inhibited ejaculation,” or “anejaculation” as Medical Subject Headings (MeSH) terms or keywords with “epidemiology,” “etiology,” “pathophysiology,” “clinical assessment,” “diagnosis,” or “treatment.” Relevant sexual medicine textbooks were searched as well. The literature suggests that the pathophysiology of DE/AE is multifactorial, including both organic and psychosocial factors. Despite the many publications on this condition, the exact pathogenesis is not yet known. There is currently no single gold standard for diagnosing DE/AE, as operationalized criteria do not exist. The history is the key to the diagnosis. Treatment should be cause-specific. There are many approaches to treatment planning, including various psychological interventions, pharmacotherapy, and specific treatments for infertile men. An approved form of drug therapy does not exist. A number of approaches can be employed for infertile men, including the collection of nocturnal emissions, prostatic massage, prostatic urethra catheterization, penile vibratory stimulation, probe electroejaculation, sperm retrieval by aspiration from either the vas deferens or the epididymis, and testicular sperm extraction. PMID:29299903

  9. The complex pathophysiology of acquired aplastic anaemia.

    PubMed

    Zeng, Y; Katsanis, E

    2015-06-01

    Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8(+) cytotoxic T cells, CD4(+) T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure. © 2015 British Society for Immunology.

  10. The complex pathophysiology of acquired aplastic anaemia

    PubMed Central

    Zeng, Y; Katsanis, E

    2015-01-01

    Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8+ cytotoxic T cells, CD4+ T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure. PMID:25683099

  11. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia

    PubMed Central

    Jaunarajs, K.L. Eskow; Bonsi, P.; Chesselet, M.F.; Standaert, D.G.; Pisani, A.

    2015-01-01

    Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestion of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia. PMID:25697043

  12. Tics and Tourette: a clinical, pathophysiological and etiological review.

    PubMed

    Dale, Russell C

    2017-12-01

    Describe developments in the etiological understanding of Tourette syndrome. Tourette syndrome is a complex heterogenous clinical syndrome, which is not a unitary entity. Pathophysiological models describe gamma-aminobutyric acid-ergic-associated disinhibition of cortico-basal ganglia motor, sensory and limbic loops. MRI studies support basal ganglia volume loss, with additional white matter and cerebellar changes. Tourette syndrome cause likely involves multiple vulnerability genes and environmental factors. Only recently have some vulnerability gene findings been replicated, including histidine decarboxylase and neurexin 1, yet these rare variants only explain a small proportion of patients. Planned large genetic studies will improve genetic understanding. The role of inflammation as a contributor to disease expression is now supported by large epidemiological studies showing an association with maternal autoimmunity and childhood infection. Investigation of blood cytokines, blood mRNA and brain mRNA expression support the role of a persistent immune activation, and there are similarities with the immune literature of autistic spectrum disorder. Current treatment is symptomatic, although there is a better appreciation of factors that influence treatment response. At present, therapeutics is focused on symptom-based treatments, yet with improved etiological understanding, we will move toward disease-modifying therapies in the future.

  13. The role of the lacrimal functional unit in the pathophysiology of dry eye.

    PubMed

    Stern, Michael E; Gao, Jianping; Siemasko, Karyn F; Beuerman, Roger W; Pflugfelder, Stephen C

    2004-03-01

    The majority of dry eye symptoms are due to a chronic inflammation of the lacrimal functional unit resulting in a loss of tear film integrity and normal function. This leads to a reduction in the ability of the ocular surface to respond to environmental challenges. The underlying cause of tear film dysfunction is the alteration of tear aqueous, mucin, and lipid components. This may result from a systemic autoimmune disease or a local autoimmune event. A lack of systemic androgen support to the lacrimal gland has been shown to be a facilitative factor in the initiation of this type of pathophysiology. Tear secretion is controlled by the lacrimal functional unit consisting of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland and the interconnecting innervation. If any portion of this functional unit is compromised, lacrimal gland support to the ocular surface is impeded. Factors such as neurogenic inflammation and T cell involvement in the disease pathogenesis as well as newly developed animal models of ocular surface inflammation are discussed.

  14. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders

    PubMed Central

    Mosconi, Matthew W.; Wang, Zheng; Schmitt, Lauren M.; Tsai, Peter; Sweeney, John A.

    2015-01-01

    The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD. PMID:26388713

  15. Emerging Roles of GPER in Diabetes and Atherosclerosis

    PubMed Central

    Barton, Matthias; Prossnitz, Eric R.

    2015-01-01

    G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth, as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings of its roles in obesity, diabetes, and atherosclerosis, including the GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed. PMID:25767029

  16. Pathophysiological Progression Model for Selected Toxicological Endpoints

    EPA Science Inventory

    The existing continuum paradigms are effective models to organize toxicological data associated with endpoints used in human health assessments. A compendium of endpoints characterized along a pathophysiological continuum would serve to: weigh the relative importance of effects o...

  17. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale.

    PubMed

    Böhm, Michael; Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome.

  18. Gender aspects in heart failure. Pathophysiology and medical therapy.

    PubMed

    Regitz-Zagrosek, V; Lehmkuhl, E; Lehmkuhl, H B; Hetzer, R

    2004-09-01

    Gender differences in the syndrome of heart failure (HF) occur in etiology and pathophysiology and lead to differences in the clinical presentation and course of the syndrome. In addition, gender specific treatment responses and gender associated differences in the behavior of treating physicians are found. Hypertension and diabetes play a major role as causes of HF in women and both interact in their pathophysiology with the renin angiotensin system (RAS). Modulation of the RAS by estrogens explains specific differences between pre- and post-menopausal women and men. Myocardial growth processes and myocardial calcium handling are differentially regulated in female and male myocytes. Myocardial remodeling with age and as a consequence of mechanical load differs in women and men. For yet unknown reasons, HF with preserved systolic function seems to be more frequent in women than in men and the clinical course of systolic HF is different in both genders. Medical therapy in heart failure has usually not been specified according to gender and gender specific analysis has been neglected in most large survival trials. Only a post-hoc analysis of gender differences led to the recognition of increased mortality with digitalis therapy in women. Single studies on angiotensin converting enzyme inhibitors (ACEI) or beta-receptor blockers did not reach significant end points in women whereas meta-analyses showed overall positive effects. Side effects of ACEI are more common and pharmacokinetics of beta-blockers are different in women. Angiotensin receptor blockers (ARB) are equally well tolerated in women and men. RAS inhibition may be particularly advantageous in postmenopausal women in whom the natural modulation of the RAS by estrogens is lost.

  19. Update on Mastocytosis (Part 1): Pathophysiology, Clinical Features, and Diagnosis.

    PubMed

    Azaña, J M; Torrelo, A; Matito, A

    2016-01-01

    Mastocytosis is a term used to describe a heterogeneous group of disorders characterized by clonal proliferation of mast cells in various organs. The organ most often affected is the skin. Mastocytosis is a relatively rare disorder that affects both sexes equally. It can occur at any age, although it tends to appear in the first decade of life, or later, between the second and fifth decades. Our understanding of the pathophysiology of mastocytosis has improved greatly in recent years, with the discovery that somatic c-kit mutations and aberrant immunophenotypic features have an important role. The clinical manifestations of mastocytosis are diverse, and skin lesions are the key to diagnosis in most patients. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  20. Neuroimaging Insights into the Pathophysiology of Sleep Disorders

    PubMed Central

    Desseilles, Martin; Dang-Vu, Thanh; Schabus, Manuel; Sterpenich, Virginie; Maquet, Pierre; Schwartz, Sophie

    2008-01-01

    Neuroimaging methods can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. However, it is still unclear how these new data might improve our understanding of the pathophysiology underlying adult sleep disorders. Here we review functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). The studies reviewed include neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy), metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging), and ligand marker measurements. Based on the current state of the research, we suggest that brain imaging is a useful approach to assess the structural and functional correlates of sleep impairments as well as better understand the cerebral consequences of various therapeutic approaches. Modern neuroimaging techniques therefore provide a valuable tool to gain insight into possible pathophysiological mechanisms of sleep disorders in adult humans. Citation: Desseilles M; Dang-Vu TD; Schabus M; Sterpenich V; Maquet P; Schwartz S. Neuroimaging insights into the pathophysiology of sleep disorders. SLEEP 2008;31(6):777–794. PMID:18548822

  1. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    PubMed

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  2. Pathophysiology and management of multivalvular disease

    PubMed Central

    Unger, Philippe; Clavel, Marie-Annick; Lindman, Brian R.; Mathieu, Patrick; Pibarot, Philippe

    2016-01-01

    Multivalvular disease (MVD) is a common condition with a complex pathophysiology, dependent on the specific combination of valve lesions. Diagnosis is challenging as several echocardiographic methods commonly used for the assessment of stenosis or regurgitation have been validated only in patients with single valve disease. Decisions about the timing and type of treatment should be made by a multidisciplinary heart valve team, on a case-by-case basis. Several factors should be considered, including the severity and consequences of the MVD, the patient’s life expectancy and comorbidities, the surgical risk associated with combined valve procedures, the long-term risk of morbidity and mortality associated with multiple valve prostheses, and the likelihood and risk of reoperation. The introduction of transcatheter valve therapies into clinical practice has provided new treatment options for patients with MVD, and decision-making algorithms on how to combine surgical and percutaneous treatment options are evolving rapidly. In this Review, we discuss the pathophysiology, diagnosis, and treatment of MVD, focussing on the combination of valve pathologies that are most often encountered in clinical practice. PMID:27121305

  3. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy

    PubMed Central

    Starobova, Hana; Vetter, Irina

    2017-01-01

    Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle—leading to cell death and tumor degradation—and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches. PMID:28620280

  4. Pathophysiology and management of pediatric ascites.

    PubMed

    Sabri, Mahmoud; Saps, Miguel; Peters, John M

    2003-06-01

    Ascites accumulation is the product of a complex process involving hepatic, renal, systemic, hemodynamic, and neurohormonal factors. The main pathophysiologic theories of ascites formation include the "underfill," "overflow," and peripheral arterial vasodilation hypotheses. These theories are not necessarily mutually exclusive and are linked at some level by a common pathophysiologic thread: The body senses a decreased effective arterial blood volume, leading to stimulation of the sympathetic nervous system, arginine-vasopressin feedback loops, and the renin-angiotensin-aldosterone system. Cornerstones of ascites management include dietary sodium restriction and diuretics. Spironolactone is generally tried initially, with furosemide added if clinical response is suboptimal. More refractory patients require large-volume paracentesis (LVP) accompanied by volume expansion with albumin. Placement of a transjugular intrahepatic portosystemic shunt is reserved for individuals with compensated liver function who require very frequent sessions of LVP. Peritoneovenous shunts are not used in contemporary ascites management. Liver transplantation remains the definitive therapy for refractory ascites. Although treatment of ascites fails to improve survival, it benefits quality of life and limits the development of such complications as spontaneous bacterial peritonitis.

  5. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury

    PubMed Central

    Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C

    2015-01-01

    Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099

  6. Current challenges and problems in teaching pathophysiology in Ukraine - another reaction to Churilov's paper.

    PubMed

    Ataman, Oleksandr V

    2017-12-01

    Pathophysiology in Ukraine has rich traditions and achievements in the scientific areas, as well as in teaching academic discipline. Its history, the main Ukrainian scientific schools and their famous representatives are briefly described. The content of existing study program, the main approaches to teaching, and some methodological and organizational problems needed to be solved are characterized. The necessity and usefulness of developing and implementing the three separate courses of discipline (Essential, Clinical and Advanced Pathophysiology) are substantiated. The place of Pathophysiology in the training of physicians with different kinds of their future activity is discussed. Relation of teaching Pathophysiology to Translational and Personalized Medicine is tried to be shown.

  7. Hepatic encephalopathy: An approach to its multiple pathophysiological features

    PubMed Central

    Perazzo, Juan Carlos; Tallis, Silvina; Delfante, Amalia; Souto, Pablo Andrés; Lemberg, Abraham; Eizayaga, Francisco Xavier; Romay, Salvador

    2012-01-01

    Hepatic encephalopathy (HE) is a neuropsychiatric complex syndrome, ranging from subtle behavioral abnormalities to deep coma and death. Hepatic encephalopathy emerges as the major complication of acute or chronic liver failure. Multiplicity of factors are involved in its pathophysiology, such as central and neuromuscular neurotransmission disorder, alterations in sleep patterns and cognition, changes in energy metabolism leading to cell injury, an oxidative/nitrosative state and a neuroinflammatory condition. Moreover, in acute HE, a condition of imminent threat of death is present due to a deleterious astrocyte swelling. In chronic HE, changes in calcium signaling, mitochondrial membrane potential and long term potential expression, N-methyl-D-aspartate-cGMP and peripheral benzodiazepine receptors alterations, and changes in the mRNA and protein expression and redistribution in the cerebral blood flow can be observed. The main molecule indicated as responsible for all these changes in HE is ammonia. There is no doubt that ammonia, a neurotoxic molecule, triggers or at least facilitates most of these changes. Ammonia plasma levels are increased two- to three-fold in patients with mild to moderate cirrhotic HE and up to ten-fold in patients with acute liver failure. Hepatic and inter-organ trafficking of ammonia and its metabolite, glutamine (GLN), lead to hyperammonemic conditions. Removal of hepatic ammonia is a differentiated work that includes the hepatocyte, through the urea cycle, converting ammonia into GLN via glutamine synthetase. Under pathological conditions, such as liver damage or liver blood by-pass, the ammonia plasma level starts to rise and the risk of HE developing is high. Knowledge of the pathophysiology of HE is rapidly expanding and identification of focally localized triggers has led the development of new possibilities for HE to be considered. This editorial will focus on issues where, to the best of our knowledge, more research is needed in

  8. The pathophysiology of chronic constipation

    PubMed Central

    Andrews, Christopher N; Storr, Martin

    2011-01-01

    Constipation is broadly defined as an unsatisfactory defecation characterized by infrequent stools, difficult stool passage or both. The common approach to the pathophysiology of constipation groups the disorder into primary and secondary causes. Primary causes are intrinsic problems of colonic or anorectal function, whereas secondary causes are related to organic disease, systemic disease or medications. The normal process of colonic transit and defecation is discussed, and the etiology of constipation is reviewed. PMID:22114753

  9. Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease.

    PubMed

    Cole, Scott R; van der Meij, Roemer; Peterson, Erik J; de Hemptinne, Coralie; Starr, Philip A; Voytek, Bradley

    2017-05-03

    Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform features. Recently, it has been shown that the waveform features of oscillatory beta (13-30 Hz) events, a prominent motor cortical oscillation, may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary motor cortex (M1) recordings from patients with Parkinson's disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling ( r = 0.94), a neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics. SIGNIFICANCE STATEMENT To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to communicate with one another. For example, there is evidence that parkinsonian bradykinesia

  10. The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis.

    PubMed

    Morris, Gerwyn; Stubbs, Brendon; Köhler, Cristiano A; Walder, Ken; Slyepchenko, Anastasiya; Berk, Michael; Carvalho, André F

    2018-04-04

    Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology.

    PubMed

    Capuani, Barbara; Della-Morte, David; Donadel, Giulia; Caratelli, Sara; Bova, Luca; Pastore, Donatella; De Canio, Michele; D'Aguanno, Simona; Coppola, Andrea; Pacifici, Francesca; Arriga, Roberto; Bellia, Alfonso; Ferrelli, Francesca; Tesauro, Manfredi; Federici, Massimo; Neri, Anna; Bernardini, Sergio; Sbraccia, Paolo; Di Daniele, Nicola; Sconocchia, Giuseppe; Orlandi, Augusto; Urbani, Andrea; Lauro, Davide

    2015-05-01

    Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications. Copyright © 2015 the American Physiological Society.

  12. Acute and chronic fluid misdirection syndrome: pathophysiology and treatment.

    PubMed

    Grzybowski, Andrzej; Kanclerz, Piotr

    2018-01-01

    To summarize our current understanding of the specific pathogenic mechanisms of the fluid misdirection syndrome and possible treatment methods. We used the PubMed web platform to find relevant studies using the following keywords: infusion misdirection syndrome, aqueous misdirection syndrome, ciliary block, ciliovitreal block, capsular block, intraoperative fluid misdirection, subcapsular fluid entrapment, acute intraoperative rock-hard eye syndrome, positive vitreous pressure glaucoma, and malignant glaucoma. Other publications were also considered as a potential source of information when referenced in relevant articles. We collected and analyzed 55 articles dated from 1951 to 2016. Acute intraoperative rock-hard eye syndrome is characterized by a very shallow anterior chamber with the absence of suprachoroidal effusion or hemorrhage and no noticeable pathology of the iris-lens diaphragm. It usually occurs during uneventful phacoemulsification, particularly in hyperopic eyes. The pathophysiology of acute fluid misdirection syndrome is based on inappropriate movement of balanced salt solution via the zonular fibers. This syndrome has also been described as occurring from hours to months, or years, after the initial surgery. The pathophysiology of malignant glaucoma is based on similar mechanisms of cilio-lenticular block of aqueous flow leading to the misdirection of aqueous posteriorly into or besides the vitreous gel. Faced with these situations, vitreous decompression is required, preferably with hyaloido-capsulo-iridectomy. In phakic eyes, concomitant cataract extraction would be desirable. We believe both of these clinical conditions should be considered as one syndrome. We suggest the term acute fluid misdirection syndrome for the cascade of events during phacoemulsification surgery. Chronic fluid misdirection syndrome better describes the nature of malignant glaucoma.

  13. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement.

    PubMed

    Ansley, L; Bonini, M; Delgado, L; Del Giacco, S; Du Toit, G; Khaitov, M; Kurowski, M; Hull, J H; Moreira, A; Robson-Ansley, P J

    2015-10-01

    This document is the result of a consensus on the mechanisms of exercise-induced anaphylaxis (EIAn), an unpredictable and potentially fatal syndrome. A multidisciplinary panel of experts including exercise physiologists, allergists, lung physicians, paediatricians and a biostatistician reached the given consensus. Exercise-induced anaphylaxis (EIAn) describes a rare and potentially fatal syndrome in which anaphylaxis occurs in conjunction with exercise. The pathophysiological mechanisms underlying EIAn have not yet been elucidated although a number of hypotheses have been proposed. This review evaluates the validity of each of the popular theories in relation to exercise physiology and immunology. On the basis of this evidence, it is concluded that proposed mechanisms lack validity, and it is recommended that a global research network is developed with a common approach to the diagnosis and treatment of EIAn in order to gain sufficient power for scientific evaluation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Gastroesophageal reflux disease-related and functional heartburn: pathophysiology and treatment.

    PubMed

    Miwa, Hiroto; Kondo, Takashi; Oshima, Tadayuki

    2016-07-01

    Patients who continue to experience heartburn symptoms despite adequate-dose proton pump inhibitor therapy have unmet clinical needs. In this review, we focus on the most recent findings related to the mechanism of heartburn symptom generation, and on the treatment of gastroesophageal reflux disease-related and functional heartburn. The immunological mechanism in the esophageal mucosa has been addressed as a potential mechanism of the onset of esophageal mucosa damage and the generation of heartburn symptoms. Peripheral or central hypersensitivity in viscera is a potentially unifying pathophysiological concept in functional heartburn. Vonoprazan, a novel and potent first-in-class potassium-competitive acid blocker, is expected to prove useful in the treatment of reflux disease. New findings in the mechanisms of heartburn symptom generation are emerging, including the immunological mediation of esophageal mucosal damage and the development of visceral hypersensitivity in functional heartburn. In the future, we anticipate the emergence of new and specific therapeutic options based on these mechanisms, with less dependence on acid-suppressing agents.

  15. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension.

    PubMed

    Majumder, Kaustav; Wu, Jianping

    2014-12-24

    There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  16. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    PubMed Central

    Majumder, Kaustav; Wu, Jianping

    2014-01-01

    There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides. PMID:25547491

  17. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets

    PubMed Central

    Zhang, Ji-chun; Yao, Wei; Hashimoto, Kenji

    2016-01-01

    Depression is the most prevalent and among the most debilitating of psychiatric disorders. The precise neurobiology of this illness is unknown. Several lines of evidence suggest that peripheral and central inflammation plays a role in depressive symptoms, and that anti-inflammatory drugs can improve depressive symptoms in patients with inflammation-related depression. Signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB) plays a key role in the pathophysiology of depression and in the therapeutic mechanisms of antidepressants. A recent paper showed that lipopolysaccharide (LPS)-induced inflammation gave rise to depression-like phenotype by altering BDNF-TrkB signaling in the prefrontal cortex, hippocampus, and nucleus accumbens, areas thought to be involved in the antidepressant effects of TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist, ANA-12. Here we provide an overview of the tryptophan-kynurenine pathway and BDNF-TrkB signaling in the pathophysiology of inflammation-induced depression, and propose mechanistic actions for potential therapeutic agents. Additionally, the authors discuss the putative role of TrkB agonists and antagonists as novel therapeutic drugs for inflammation-related depression. PMID:26786147

  18. Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury.

    PubMed

    Sahuquillo, Juan; Vilalta, Anna

    2007-01-01

    neurotoxicity and, consequently, may play a unique role in opening up new therapeutic avenues for treating severe TBI and improving its devastating effects. Furthermore, greater understanding of the pathophysiology of TBI, new data from both basic and clinical research, the good clinical results obtained in randomized clinical trials in cardiac arrest and better and more reliable cooling methods have given hypothermia a second chance in treating TBI patients. A critical evaluation of hypothermia is therefore mandatory to elucidate the reasons for previous failures and to design further multicenter randomized clinical trials that would definitively confirm or refute the potential of this therapeutic modality in the management of severe traumatic brain injuries.

  19. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives

    PubMed Central

    Chiu, Jeng-Jiann; Chien, Shu

    2013-01-01

    Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate

  1. Blended Learning Versus Traditional Lecture in Introductory Nursing Pathophysiology Courses.

    PubMed

    Blissitt, Andrea Marie

    2016-04-01

    Currently, many undergraduate nursing courses use blended-learning course formats with success; however, little evidence exists that supports the use of blended formats in introductory pathophysiology courses. The purpose of this study was to compare the scores on pre- and posttests and course satisfaction between traditional and blended course formats in an introductory nursing pathophysiology course. This study used a quantitative, quasi-experimental, nonrandomized control group, pretest-posttest design. Analysis of covariance compared pre- and posttest scores, and a t test for independent samples compared students' reported course satisfaction of the traditional and blended course formats. Results indicated that the differences in posttest scores were not statistically significant between groups. Students in the traditional group reported statistically significantly higher satisfaction ratings than students in the blended group. The results of this study support the need for further research of using blended learning in introductory pathophysiology courses in undergraduate baccalaureate nursing programs. Further investigation into how satisfaction is affected by course formats is needed. Copyright 2016, SLACK Incorporated.

  2. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury.

    PubMed

    Sanjay, Sukumaran; Girish, Chandrashekaran

    2017-04-01

    MicroRNAs (miRNA or miR) are the most abundant and stable class of small RNA. Unlike the typical RNA molecules present in the cell, they do not encode proteins but can control translation. and Hhence, they are found to play a major role in the regulation of cellular processes. miRNAs have been shown to differentially regulate various genes, and the expression levels of some miRNAs changes several fold in liver and serum, during drug- induced toxicity. This review summarises some of the latest findings about the biological functions of miRNA and its potential use as diagnostic biomarkers in drug- induced liver injury. The information presented in this article is taken from published literature, both original work and reviews on mechanisms of drug- induced liver injury, miRNA in liver pathophysiology, and studies exploring the use of miRNA as biomarker in drug- induced liver injury. Literature search was done using search engines:- PUBMED, Google scholar, and relevant journal sites. Recent research provides insight into the ability of miRNA to regulate various pathways in diseased and nondiseased states of liver. They also lay a foundation for development of diagnostic tests utilizing the potential of miRNAs that can not only be used for early detection of DILI but also to differentiate between different types of DILI. More studies on biological functions of miRNA and standardisation of protocol between research laboratories can lead to further advancement in this field. Considering the therapeutic and diagnostic potential of miRNA, the major challenge would be to integrate these findings to clinical settings where it can be used for the treatment of cases with DILI.

  3. [Arousal of respiratory origin and upper airway resistance syndrome: pathophysiological and diagnostic aspects].

    PubMed

    Puertas, F J; Ondzé, B; Carlander, B; Billiard, M

    The description of Upper Airway Resistance Syndrome (UARS) let us to recognize the importance of the pair 'respiratory effort-arousal' on sleep-disordered breathing pathophysiology. First part of this paper reviews knowledge about respiratory arousal pathophysiology. Arousal response is normally needed to end obstructive respiratory episodes, but it is also the cause of sleep fragmentation. Among respiratory stimuli able to provoke arousal (respiratory effort, hypoxemia and hypercapnia), respiratory effort is the most constant. Neurophysiological mechanisms involved in arousal, sleep and vegetative consequences, and the possible role of non visible arousals, are also discussed. In UARS, because of the absence of apnea/hypopnea and significative O2 desaturations, arousals are induced by the increased respiratory effort. Diagnosis needs the simultaneous recording of polysomnography and esophageal pressure. Some symptoms and signs of UARS are similar to those of Obstructive Sleep Apnea Syndrome. However, UARS shows any differences: a lower Body Mass Index, less constant snoring, males and females are similarly affected or higher frequency of craniofacial abnormalities. Diagnostic difficulties may be due to confusion between hypopneas and episodes of increased resistance of upper airway, or to the lack of definitive diagnostic criteria. Finally, differential diagnosis needs a broad knowledge of disorders of excessive daytime sleepiness.

  4. Can we protect the gut in critical illness? The role of growth factors and other novel approaches.

    PubMed

    Dominguez, Jessica A; Coopersmith, Craig M

    2010-07-01

    The intestine plays a central role in the pathophysiology of critical illness and is frequently called the "motor" of the systemic inflammatory response. Perturbations to the intestinal barrier can lead to distant organ damage and multiple organ failure. Therefore, identifying ways to preserve intestinal integrity may be of paramount importance. Growth factors and other peptides have emerged as potential tools for modulation of intestinal inflammation and repair due to their roles in cellular proliferation, differentiation, migration, and survival. This review examines the involvement of growth factors and other peptides in intestinal epithelial repair during critical illness and their potential use as therapeutic targets. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease.

    PubMed

    Coates, M D; Tekin, I; Vrana, K E; Mawe, G M

    2017-09-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of every major gut-related function. Recent investigations also suggest that 5-HT can influence the development and severity of inflammation within the gut, particularly in the setting of inflammatory bowel disease (IBD). To review the roles that the intestinal serotonin signalling system plays in gut function, with a specific focus on IBD. We reviewed manuscripts from 1952 to 2017 that investigated and discussed roles for 5-HT signalling in gastrointestinal function and IBD, as well as the influence of inflammation on 5-HT signalling elements within the gut. Inflammation appears to affect every major element of intestinal 5-HT signalling, including 5-HT synthesis, release, receptor expression and reuptake capacity. Importantly, many studies (most utilising animal models) also demonstrate that modulation of selective serotonergic receptors (via agonism of 5-HT 4 R and antagonism of 5-HT 3 R) or 5-HT signal termination (via serotonin reuptake inhibitors) can alter the likelihood and severity of intestinal inflammation and/or its complicating symptoms. However, there are few human studies that have studied these relationships in a targeted manner. Insights discussed in this review have strong potential to lead to new diagnostic and therapeutic tools to improve the management of IBD and other related disorders. Specifically, strategies that focus on modifying the activity of selective serotonin receptors and reuptake transporters in the gut could be effective for controlling disease activity and/or its associated symptoms. Further studies in humans are required, however, to more completely understand the pathophysiological mechanisms underlying the roles of 5-HT in this setting. © 2017 John Wiley & Sons Ltd.

  6. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    PubMed

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  7. Why Is Your Patient Still Short of Breath? Understanding the Complex Pathophysiology of Dyspnea in Chronic Kidney Disease.

    PubMed

    Salerno, Fabio Rosario; Parraga, Grace; McIntyre, Christopher William

    2017-01-01

    Dyspnea is one of the most common symptoms associated with CKD. It has a profound influence on the quality of life of CKD patients, and its underlying causes are often associated with a negative prognosis. However, its pathophysiology is poorly understood. While hemodialysis may address fluid overload, it often does not significantly improve breathlessness, suggesting multiple and co-existing alternative issues exist. The aim of this article is to discuss the main pathophysiologic mechanisms and the most important putative etiologies underlying dyspnea in CKD patients. Congestive heart failure, unrecognized chronic lung disease, pulmonary hypertension, lung fibrosis, air microembolism, dialyzer bio-incompatibility, anemia, sodium, and fluid overload are potential frequent causes of breathing disorders in this population. However, the relative contributions in any one given patient are poorly understood. Systemic inflammation is a common theme and contributes to the development of endothelial dysfunction, lung fibrosis, anemia, malnutrition, and muscle wasting. The introduction of novel multimodal imaging techniques, including pulmonary functional magnetic resonance imaging with inhaled contrast agents, could provide new insights into the pathophysiology of dyspnea in CKD patients and ultimately contribute to improving our clinical management of this symptom. © 2016 Wiley Periodicals, Inc.

  8. Pathophysiological analyses of periventricular nodular heterotopia using gyrencephalic mammals.

    PubMed

    Matsumoto, Naoyuki; Hoshiba, Yoshio; Morita, Kazuya; Uda, Natsu; Hirota, Miwako; Minamikawa, Maki; Ebisu, Haruka; Shinmyo, Yohei; Kawasaki, Hiroshi

    2017-03-15

    Although periventricular nodular heterotopia (PNH) is often found in the cerebral cortex of people with thanatophoric dysplasia (TD), the pathophysiology of PNH in TD is largely unknown. This is mainly because of difficulties in obtaining brain samples of TD patients and a lack of appropriate animal models for analyzing the pathophysiology of PNH in TD. Here we investigate the pathophysiological mechanisms of PNH in the cerebral cortex of TD by utilizing a ferret TD model which we recently developed. To make TD ferrets, we electroporated fibroblast growth factor 8 (FGF8) into the cerebral cortex of ferrets. Our immunohistochemical analyses showed that PNH nodules in the cerebral cortex of TD ferrets were mostly composed of cortical neurons, including upper layer neurons and GABAergic neurons. We also found disorganizations of radial glial fibers and of the ventricular lining in the TD ferret cortex, indicating that PNH may result from defects in radial migration of cortical neurons along radial glial fibers during development. Our findings provide novel mechanistic insights into the pathogenesis of PNH in TD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Tics and Tourette's: update on pathophysiology and tic control.

    PubMed

    Ganos, Christos

    2016-08-01

    To describe recent advances in the pathophysiology of tics and Tourette syndrome, and novel insights on tic control. The cortico-basal ganglia-thalamo-cortical loops are implicated in generation of tics. Disruption of GABAergic inhibition lies at the core of tic pathophysiology, but novel animal models also implicate cholinergic and histaminergic neurotransmission. Tourette syndrome patients have altered awareness of volition and enhanced formation of habits. Premonitory urges are not the driving force behind all tics. The intensity of premonitory urges depends on patients' capacity to perceive interoceptive signals. The insular cortex is a key structure in this process. The trait intensity of premonitory urges is not a prerequisite of voluntary tic inhibition, a distinct form of motor control. Voluntary tic inhibition is most efficient in the body parts that tic the least. The prefrontal cortex is associated with the capacity to inhibit tics. The management of tics includes behavioral, pharmacological and surgical interventions. Treatment recommendations differ based on patients' age. The study of Tourette syndrome pathophysiology involves different neural disciplines and provides novel, exciting insights of brain function in health and disease. These in turn provide the basis for innovative treatment approaches of tics and their associations.

  10. Orthostatic hypotension: epidemiology, pathophysiology and management

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Robertson, D.

    1995-01-01

    Orthostatic hypotension is characterized by low upright blood pressure levels and symptoms of cerebral hypoperfusion. Whereas orthostatic hypotension is heterogeneous, correct pathophysiologic diagnosis is important because of therapeutic and prognostic considerations. Although therapy is not usually curative, it can be extraordinarily beneficial if it is individually tailored. Management of the Shy-Drager syndrome (multiple-system atrophy) remains a formidable challenge.

  11. Neuroimmune Cross Talk in the Gut. Neuroendocrine and neuroimmune pathways contribute to the pathophysiology of irritable bowel syndrome.

    PubMed

    O'Malley, Dervla

    2016-11-01

    Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain, bloating, and disturbed bowel habit, symptoms that impact the quality of life of sufferers. The pathophysiological changes underlying this multifactorial condition are complex and include increased sensitivity to luminal and mucosal factors, resulting in altered colonic transit and visceral pain. Moreover, dysfunctional communication in the bidirectional signaling axis between the brain and the gut, which involves efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones, and local paracrine and neurocrine factors, including immune and perhaps even microbial signaling molecules, has a role to play in this disorder. This minireview will examine recent advances in our understanding of the pathophysiology of IBS and assess how cross talk between hormones, immune, and microbe-derived factors and their neuromodulatory effects on peripheral nerves may underlie IBS symptomatology. Copyright © 2016 the American Physiological Society.

  12. Role of growth differentiation factor 11 in development, physiology and disease

    PubMed Central

    Zhang, Yonghui; Wei, Yong; Liu, Dan; Liu, Feng; Li, Xiaoshan; Pan, Lianhong; Pang, Yi; Chen, Dilong

    2017-01-01

    Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease. PMID:29113418

  13. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale

    PubMed Central

    Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome. PMID:28154583

  14. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    PubMed

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Emerging roles of GPER in diabetes and atherosclerosis.

    PubMed

    Barton, Matthias; Prossnitz, Eric R

    2015-04-01

    The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Pisa syndrome in Parkinson's disease: An integrated approach from pathophysiology to management.

    PubMed

    Tinazzi, Michele; Geroin, Christian; Gandolfi, Marialuisa; Smania, Nicola; Tamburin, Stefano; Morgante, Francesca; Fasano, Alfonso

    2016-12-01

    Pisa syndrome was first described in 1972 in patients treated with neuroleptics. Since 2003, when it was first reported in patients with Parkinson's disease (PD), Pisa syndrome has progressively drawn the attention of clinicians and researchers. Although emerging evidence has partially clarified its prevalence and pathophysiology, the current debate revolves around diagnostic criteria and assessment and the effectiveness of pharmacological, surgical, and rehabilitative approaches. Contrary to initial thought, Pisa syndrome is common among PD patients, with an estimated prevalence of 8.8% according to a large survey. Furthermore, it is associated with the following specific patient features: more severe motor phenotype, ongoing combined pharmacological treatment with levodopa and dopamine agonists, gait disorders, and such comorbidities as osteoporosis and arthrosis. The present literature on treatment outcomes is scant, and the uneven effectiveness of specific treatments has produced conflicting results. This might be because of the limited knowledge of Pisa syndrome pathophysiology and its variable clinical presentation, which further complicates designing randomized clinical trials on this condition. However, because some forms of Pisa syndrome are potentially reversible, there is growing consensus on the importance of its early recognition and the importance of pharmacological adjustment and rehabilitation. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  17. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    PubMed Central

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  18. MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures.

    PubMed

    Klein, Oliver; Strohschein, Kristin; Nebrich, Grit; Oetjen, Janina; Trede, Dennis; Thiele, Herbert; Alexandrov, Theodore; Giavalisco, Patrick; Duda, Georg N; von Roth, Philipp; Geissler, Sven; Klose, Joachim; Winkler, Tobias

    2014-10-01

    Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Clinical peptidomic analysis by a one-step direct transfer technology: its potential utility for monitoring of pathophysiological status in female reproductive system disorders.

    PubMed

    Araki, Yoshihiko; Nonaka, Daisuke; Hamamura, Kensuke; Yanagida, Mitsuaki; Ishikawa, Hitoshi; Banzai, Michio; Maruyama, Mayuko; Endo, Shuichiro; Tajima, Atsushi; Lee, Lyang-Ja; Nojima, Michio; Takamori, Kenji; Yoshida, Koyo; Takeda, Satoru; Tanaka, Kenji

    2013-10-01

    To date, numerous studies have searched for candidate molecules or clinical examination methods as potential biomarkers for monitoring intractable diseases, such as carcinomas. Evidence accumulated over the past decade shows that many proteolytic peptides appear in human humoral fluids, including peripheral blood, in association with an individual's health condition. Although an analysis of the whole peptide (the 'peptidome') using mass spectrometry is thought to be one of the most powerful and promising experimental approaches, it has failed to identify biomarkers in the clinical blood samples, presumably due to the methodological limitations. In general, commonly used techniques for proteomic analysis of blood require the removal of large amounts of serum/plasma proteins prior to mass spectrometry analysis, and this step seems to have resulted in the overlooking of important biomarkers during the analytical process. Here, we provide a brief overview of a new quantitative peptidomic analysis by a one-step direct transfer technology without depletion of major blood proteins. Using this technology, we herein report experimental data on serum peptidomic analysis for patients with pregnancy-induced hypertension as a clinical model. In addition, we refer to the potential utility of this approach for the monitoring of pathophysiological status in female reproductive system disorders in general. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  20. Prevention, clinical, and pathophysiological research on vibration syndrome.

    PubMed

    Yamada, S; Sakakibara, H; Harada, N; Matsumoto, T

    1993-11-01

    In the 1950s, introduction of portable power tools into the production process of many industries began on a large scale around the world and resulted in many cases of occupational vibration syndrome after the 1960s. There was an urgent need to undertake preventive steps, medical assessment and therapy throughout the world. At the end of 1964, our investigation began in Japanese national forests, and then in mining and stone quarries. Our research and efforts resulted in a comprehensive system for prevention of vibration syndrome in the Japanese national forest industry. It has presented a good model of prevention for other industries in Japan. Clinical and pathophysiological research on vibration syndrome in the 1960s and 1970s clarified disturbances of the peripheral circulatory, nervous, and musculoskeletal systems. From the mid-1970s, neurophysiological, neurochemical, and clinical research on vibration syndrome in relation to the autonomic nervous system developed. Our studies contributed to the advancement of research in this field. More in-depth study is needed to determine the role of the autonomic nervous system in vibration syndrome.

  1. The pathophysiology of hypertension in systemic lupus erythematosus.

    PubMed

    Ryan, Michael J

    2009-04-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that predominantly affects women during their reproductive years. Although SLE can affect any organ system, the kidneys are prominently involved in the form of immune complex glomerulonephritis. In addition, in women with SLE, risk for the development of cardiovascular disease is dramatically increased. Hypertension is a major risk factor for cardiovascular disease and is highly prevalent in women with SLE. Nevertheless, there has been little exploration of the pathophysiological mechanisms that promote SLE hypertension. This review discusses the role of several mechanisms, with an emphasis on the kidney, in SLE hypertension. These mechanisms include the renin-angiotensin system, endothelin, oxidative stress, sex steroids, metabolic changes, peroxisome proliferator-activated receptor-gamma, and, perhaps most importantly, chronic inflammation and cytokines. Growing evidence suggests a link between chronic inflammation and hypertension. Therefore, elucidation of mechanisms that promote SLE hypertension may be of significant value not only for patients with SLE, but also for a better understanding of the basis for essential hypertension.

  2. [Mirror neurons: from anatomy to pathophysiological and therapeutic implications].

    PubMed

    Mathon, B

    2013-04-01

    Mirror neurons are a special class of neurons discovered in the 1990s. They respond when we perform an action and also when we see someone else perform that action. They play a role in the pathophysiology of some neuropsychiatric diseases. Mirror neurons have been identified in humans: in Broca's area and the inferior parietal cortex. Their responses are qualitative and selective depending on the observed action. Emotions (including disgust) and empathy seem to operate according to a mirror mechanism. Indeed, the mirror system allows us to encode the sensory experience and to simulate the emotional state of others. This results in our improved identification of the emotions in others. Additionally, mirror neurons can encode an observed action in motor stimuli and allow its reproduction; thus, they are involved in imitation and learning. Current studies are assessing the role of mirror neurons in the pathopysiology of social-behavior disorders, including autism and schizophrenia. Understanding this mirror system will allow us to develop psychotherapy practices based on empathic resonance between the patient and the therapist. Also, some authors report that a passive rehabilitation technique, based on stimulation of the mirror-neuron system, has a beneficial effect in the treatment of patients with post-stroke motor deficits. Mirror neurons are an anatomical entity that enables improved understanding of behavior and emotions, and serves as a base for developing new cognitive therapies. Additional studies are needed to clarify the exact role of this neuronal system in social cognition and its role in the development of some neuropsychiatric diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Sleep-Disordered Breathing in People with Multiple Sclerosis: Prevalence, Pathophysiological Mechanisms, and Disease Consequences

    PubMed Central

    Hensen, Hanna A.; Krishnan, Arun V.; Eckert, Danny J.

    2018-01-01

    Sleep problems are common in people with multiple sclerosis (MS). Reported prevalence rates of sleep-disordered breathing (SDB) vary between 0 and 87%. Differences in recruitment procedures and study designs likely contribute to the wide variance in reported prevalence rates of SBD in MS. This can make attempts to compare SDB rates in people with MS to the general population challenging. Little is known about the pathophysiological mechanisms that contribute to SDB in people with MS or whether MS contributes to SDB disease progression. However, compared to the general obstructive sleep apnea (OSA) population, there are clear differences in the clinical phenotypes of SDB in the MS population. For instance they are typically not obese and rates of SDB are often comparable or higher to the general population, despite the high female predominance of MS. Thus, the risk factors and pathophysiological causes of SDB in people with MS are likely to be different compared to people with OSA who do not have MS. There may be important bidirectional relationships between SDB and MS. Demyelinating lesions of MS in the brain stem and spinal cord could influence breathing control and upper airway muscle activity to cause SDB. Intermittent hypoxia caused by apneas during the night can increase oxidative stress and may worsen neurodegeneration in people with MS. In addition, inflammation and changes in cytokine levels may play a key role in the relationship between SDB and MS and their shared consequences. Indeed, fatigue, neurocognitive dysfunction, and depression may worsen considerably if both disorders coexist. Recent studies indicate that treatment of SDB in people with MS with conventional first-line therapy, continuous positive airway pressure therapy, can reduce fatigue and cognitive impairment. However, if the causes of SDB differ in people with MS, so too may the optimal therapy. Thus, many questions remain concerning the relationship between these two disorders and the

  4. Sleep-Disordered Breathing in People with Multiple Sclerosis: Prevalence, Pathophysiological Mechanisms, and Disease Consequences.

    PubMed

    Hensen, Hanna A; Krishnan, Arun V; Eckert, Danny J

    2017-01-01

    Sleep problems are common in people with multiple sclerosis (MS). Reported prevalence rates of sleep-disordered breathing (SDB) vary between 0 and 87%. Differences in recruitment procedures and study designs likely contribute to the wide variance in reported prevalence rates of SBD in MS. This can make attempts to compare SDB rates in people with MS to the general population challenging. Little is known about the pathophysiological mechanisms that contribute to SDB in people with MS or whether MS contributes to SDB disease progression. However, compared to the general obstructive sleep apnea (OSA) population, there are clear differences in the clinical phenotypes of SDB in the MS population. For instance they are typically not obese and rates of SDB are often comparable or higher to the general population, despite the high female predominance of MS. Thus, the risk factors and pathophysiological causes of SDB in people with MS are likely to be different compared to people with OSA who do not have MS. There may be important bidirectional relationships between SDB and MS. Demyelinating lesions of MS in the brain stem and spinal cord could influence breathing control and upper airway muscle activity to cause SDB. Intermittent hypoxia caused by apneas during the night can increase oxidative stress and may worsen neurodegeneration in people with MS. In addition, inflammation and changes in cytokine levels may play a key role in the relationship between SDB and MS and their shared consequences. Indeed, fatigue, neurocognitive dysfunction, and depression may worsen considerably if both disorders coexist. Recent studies indicate that treatment of SDB in people with MS with conventional first-line therapy, continuous positive airway pressure therapy, can reduce fatigue and cognitive impairment. However, if the causes of SDB differ in people with MS, so too may the optimal therapy. Thus, many questions remain concerning the relationship between these two disorders and the

  5. Pathophysiology of spontaneous venous gas embolism

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Albertine, K. H.; Pisarello, J. B.; Flores, N. D.

    1991-01-01

    The use of controllable degrees and durations of continuous isobaric counterdiffusion venous gas embolism to investigate effects of venous gas embolism upon blood, cardiovascular, and respiratory gas exchange function, as well as pathological effects upon the lung and its microcirculation is discussed. Use of N2O/He counterdiffusion permitted performance of the pathophysiologic and pulmonary microstructural effects at one ATA without hyperbaric or hypobaric exposures.

  6. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity

    PubMed Central

    Anandhakrishnan, Ananthi; Korbonits, Márta

    2016-01-01

    Though the pathophysiology of clinical obesity is undoubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1 (GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose (3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed anti-obesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and long-term weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need. PMID:28031776

  7. Caveolins and caveolae in ocular physiology and pathophysiology

    PubMed Central

    Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.

    2016-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379

  8. The pathophysiology of lifelong premature ejaculation

    PubMed Central

    2016-01-01

    For many decades it has been thought that lifelong premature ejaculation (PE) is only characterized by persistent early ejaculations. Despite enormous progress of in vivo animal research, and neurobiological, genetic and pharmacological research in men with lifelong PE, our current understanding of the mechanisms behind early ejaculations is far from complete. The new classification of PE into four PE subtypes has shown that the symptomatology of lifelong PE strongly differs from acquired PE, subjective PE and variable PE. The phenotype of lifelong PE and therefore also the pathophysiology of lifelong PE is much more complex. A substantial number of men with lifelong PE not only have PE, but also premature erection and premature penile detumescence as part of an acute hypertonic or hypererotic state when engaged in an erotic situation or when making love. As both erectio praecox, ejaculatio praecox, detumescentia praecox, and the hypererotic state are part of the phenotype lifelong PE, it is argued that lifelong PE is not only a disturbance of the timing of ejaculation but also a disturbance of the timing of erection, detumescence and arousal. Since 1998, the pathophysiology of lifelong PE was thought to be mainly mediated by the central serotonergic system in line with genetic polymorphisms of specific serotonergic genes. However, by accepting that lifelong PE is characterized by the reversible hypertonic state the hypothesis of mainly serotonergic dysfunction is no longer tenable. Instead, it has been postulated that the pathophysiology of lifelong PE is mediated by a very complex interplay of central and peripheral serotonergic, dopaminergic, oxytocinergic, endocrinological, genetic and probably also epigenetic factors. Progress in research of lifelong PE can only be accomplished when a stopwatch is used to measure the IELT and the cut-off point of 1 minute for the definition of lifelong PE is maintained. Current use of validated questionnaires, neglect of

  9. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI.

    PubMed

    Sjöberg, Pia; Bidhult, Sebastian; Bock, Jelena; Heiberg, Einar; Arheden, Håkan; Gustafsson, Ronny; Nozohoor, Shahab; Carlsson, Marcus

    2018-04-17

    Indications for pulmonary valve replacement (PVR) in patients with pulmonary regurgitation (PR) after repaired tetralogy of Fallot (rToF) are debated. We aimed to compare right (RV) and left ventricular (LV) kinetic energy (KE) measured by 4D-flow magnetic resonance imaging (MRI) in patients to controls, to further understand the pathophysiological effects of PR. Fifteen patients with rToF with PR > 20% and 14 controls underwent MRI. Ventricular volumes and KE were quantified from cine MRI and 4D-flow, respectively. Lagrangian coherent structures were used to discriminate KE in the PR. Restrictive RV physiology was defined as end-diastolic forward flow. LV systolic peak KE was lower in rToF, 2.8 ± 1.1 mJ, compared to healthy volunteers, 4.8 ± 1.1 mJ, p < 0.0001. RV diastolic peak KE was higher in rToF (7.7 ± 4.3 mJ vs 3.1 ± 1.3 mJ, p = 0.0001) and the difference most pronounced in patients with non-restrictive RV physiology. KE was primarily located in the PR volume at the time of diastolic peak KE, 64 ± 17%. This is the first study showing disturbed KE in patients with rToF and PR, in both the RV and LV. The role of KE as a potential early marker of ventricular dysfunction to guide intervention needs to be addressed in future studies. • Kinetic energy (KE) reflects ventricular performance • KE is a potential marker of ventricular dysfunction in Fallot patients • KE is disturbed in both ventricles in patients with tetralogy of Fallot • KE contributes to the understanding of the pathophysiology of pulmonary regurgitation • Lagrangian coherent structures enable differentiation of ventricular inflows.

  10. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications.

    PubMed

    Morris, Gerwyn; Puri, Basant K; Walder, Ken; Berk, Michael; Stubbs, Brendon; Maes, Michael; Carvalho, André F

    2018-03-29

    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.

  11. Role of Hydrogen Sulfide in Retinal Diseases.

    PubMed

    Du, Jiantong; Jin, Hongfang; Yang, Liu

    2017-01-01

    As the third gasotransmitter, hydrogen sulfide (H 2 S) plays a crucial role in the physiology and pathophysiology of many systems in the body, such as the nervous, cardiovascular, respiratory, and gastrointestinal systems. The mechanisms for its effects, including inhibiting ischemic injury, reducing oxidative stress damage, regulating apoptosis, and reducing the inflammation reaction in different systems, have not been fully understood. Recently, H 2 S and its endogenous synthesis pathway were found in the mammalian retina. This review describes the production and the metabolism of H 2 S and the evidence of a role of H 2 S in the retina physiology and in the different retinal diseases, including retinal degenerative diseases and vascular diseases. In the retina, H 2 S is generated in the presence of cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase from L-cysteine. The role of endogenous H 2 S and its physiologic effect in the retina are still elusive. However, strong evidence shows that retina-derived H 2 S might play protective or deleterious role in the pathogenesis of retinal diseases. For example, by regulating Ca 2+ influx, H 2 S can protect retinal neurons against light-induced degeneration. H 2 S preconditioning can mediate the anti-apoptotic effect of retinal ganglion cells in retinal ischemia/reperfusion injury. Treatment with H 2 S in rats relieves diabetic retinopathy by suppressing oxidative stress and reducing inflammation. Further studies would greatly improve our understanding of the pathophysiologic mechanisms responsible for retinal diseases and the potential for the H 2 S-related therapy of the retinal diseases as well.

  12. Intraoperative Floppy Iris Syndrome: Pathophysiology, Prevention, and Treatment

    PubMed Central

    Flach, Allan J.

    2009-01-01

    Purpose: To extend upon previous reports, observations, and discussions of intraoperative floppy iris syndrome (IFIS) with the goal of providing new insight into the syndrome’s pathophysiology, prevention, and treatment. Methods: Following a review of IFIS and its relationship to autonomic pharmacology, evidence for anatomic changes following exposure of humans and other animals to autonomic drugs is described. The clinical implications for these findings are discussed as they relate to the treatment and prevention of this syndrome. Results: IFIS has been associated with the use of adrenergic antagonists even after they have been discontinued years prior to surgery. Some investigators believe that this persistence of IFIS reflects anatomic structural change. Evidence from laboratory experiments and human clinical studies using topically applied and systemic autonomic drugs supports the possibility of anatomic changes coexisting with IFIS observed during cataract surgery. Conclusions: IFIS is a relatively rare syndrome, often associated with the use of systemic α-blockers and conditions that influence dilator muscle tone. Laboratory and clinical evidence supports the possibility of anatomic changes following the use of autonomic drugs. The persistence of IFIS years after cessation of treatment with α-blockers suggests that the potential risks of discontinuing these drugs prior to cataract surgery outweigh potential benefits. PMID:20126500

  13. TRPV1: A Potential Drug Target for Treating Various Diseases

    PubMed Central

    Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

    2014-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977

  14. [PATHOPHYSIOLOGY OF THE CARDIORENAL SYNDROME].

    PubMed

    Balint, I; Vučak, J; Bašić-Marković, N; Klarić, D; Šakić, V Amerl

    2016-12-01

    Cardiorenal syndrome, a complex pathophysiological disorder of both the heart and kidneys, is a condition in which acute or chronic damage to one organ can lead to acute or chronic dysfunction of the other organ. Depending on primary organ dysfunction and disease duration, there are five different types of cardiorenal syndrome. Type 1 cardiorenal syndrome (acute cardiorenal syndrome) is defined as acute kidney injury caused by sudden decrease in heart function. Type 2 cardiorenal syndrome (chronic cardiorenal syndrome) refers to chronic kidney disease linked to chronic heart failure. Type 3 cardiorenal syndrome (acute renocardial syndrome) is caused by acute kidney injury that leads to heart failure. Type 4 cardiorenal syndrome (chronic renocardial syndrome) includes chronic heart failure due to chronic kidney disease. Type 5 cardiorenal syndrome (secondary cardiorenal syndrome) is reversible or irreversible condition marked by simultaneous heart and kidney insufficiency, as a result of multiorgan disease such as sepsis, diabetes mellitus, sarcoidosis, amyloidosis, etc. The pathophysiological patterns of cardiorenal syndrome are extremely complicated. Despite numerous publications, perplexed physiological, biochemical and hormonal disturbances as parts of the main pathogenic mechanisms of cardiorenal syndrome remain obscure. Even though there are guidelines for the treatment of patients with heart failure and chronic kidney disease, similar guidelines for the treatment of cardiorenal syndrome are lacking. In everyday practice, it is crucial to diagnose cardiorenal syndrome and use all diagnostic and therapeutic procedures available to prevent or alleviate kidney and heart failure.

  15. Central Sensitivity Syndromes: Mounting Pathophysiologic Evidence to Link Fibromyalgia with other Common Chronic Pain Disorders

    PubMed Central

    Kindler, Lindsay L.; Bennett, Robert M.; Jones, Kim D.

    2009-01-01

    Objective To review emerging data from the fields of nursing, rheumatology, dentistry, gastroenterology, gynecology, neurology, and orthopedics that supports or disputes pathophysiologic similarities in pain syndromes studied by each specialty. Methods A literature search was performed through PubMed and Ovid using the terms fibromyalgia, temporomandibular joint disorder, irritable bowel syndrome, irritable bladder/interstitial cystitis, headache, chronic low back pain, chronic neck pain, functional syndromes and somatization. Each term was linked with pathophysiology and/or central sensitization. This paper presents a review of relevant articles with a specific goal of identifying pathophysiological findings related to nociceptive processing. Results The extant literature presents considerable overlap in the pathophysiology of these diagnoses. Given the psychosomatic lens through which many of these disorders are viewed, demonstration of evidence based links supporting shared pathophysiology between these disorders could provide direction to clinicians and researchers working to treat these diagnoses. Conclusions Central sensitivity syndromes denotes an emerging nomenclature that could be embraced by researchers investigating each of these disorders. Moreover, a shared paradigm would be useful in promoting cross-fertilization between researchers. Scientists and clinicians could most effectively forward the understanding and treatment of fibromyalgia and other common chronic pain disorders through an appreciation of their shared pathophysiology. PMID:21349445

  16. The human polyomavirus BK: Potential role in cancer.

    PubMed

    Fioriti, D; Videtta, M; Mischitelli, M; Degener, A M; Russo, G; Giordano, A; Pietropaolo, V

    2005-08-01

    In human cancer, a role has been suggested for the human polyomavirus BK, primarily associated with tubulointerstitial nephritis and ureteric stenosis in renal transplant recipients, and with hemorrhagic cystitis in bone marrow transplant (BMT) recipients. After the initial infection, primarily unapparent and without clinical signs, the virus disseminates and establishes a persistent infection in the urinary tract and lymphocytes. There is correlative evidence regarding potential role of polyomavirus BK in cancer. In fact, the BK virus (BKV) DNA (complete genome and/or subgenomic fragments containing the early region) is able to transform embryonic fibroblasts and cells cultured from kidney and brain of hamster, mouse, rat, rabbit, and monkey. Nevertheless, transformation of human cells by BKV is inefficient and often abortive. Evidence supporting a possible role for BKV in human cancer has accumulated slowly in recent years, after the advent of polymerase chain reaction (PCR). BKV is known to commonly establish persistent infections in people and to be excreted in the urine by individuals who are asymptomatic, complicating the evaluation of its potential role in development of human cancer. Therefore, there is no certain proof that human polyomavirus BK directly causes the cancer in humans or acts as a cofactor in the pathogenesis of some types of human cancer. (c) 2005 Wiley-Liss, Inc.

  17. The role of abdominal compliance, the neglected parameter in critically ill patients - a consensus review of 16. Part 1: definitions and pathophysiology.

    PubMed

    Malbrain, Manu L N G; Roberts, Derek J; De Laet, Inneke; De Waele, Jan J; Sugrue, Michael; Schachtrupp, Alexander; Duchesne, Juan; Van Ramshorst, Gabrielle; De Keulenaer, Bart; Kirkpatrick, Andrew W; Ahmadi-Noorbakhsh, Siavash; Mulier, Jan; Ivatury, Rao; Pracca, Francisco; Wise, Robert; Pelosi, Paolo

    2014-01-01

    Over the last few decades, increasing attention has been paid to understanding the pathophysiology, aetiology, prognosis, and treatment of elevated intra-abdominal pressure (IAP) in trauma, surgical, and medical patients. However, there is presently a relatively poor understanding of intra-abdominal volume (IAV) and the relationship between IAV and IAP (i.e. abdominal compliance). Consensus definitions on Cab were discussed during the 5th World Congress on Abdominal Compartment Syndrome and a writing committee was formed to develop this article. During the writing process, a systematic and structured Medline and PubMed search was conducted to identify relevant studies relating to the topic. According to the recently updated consensus definitions of the World Society on Abdominal Compartment Syndrome (WSACS), abdominal compliance (Cab) is defined as a measure of the ease of abdominal expansion, which is determined by the elasticity of the abdominal wall and diaphragm. It should be expressed as the change in IAV per change in IAP (mL [mm Hg]⁻¹). Importantly, Cab is measured differently than IAP and the abdominal wall (and its compliance) is only a part of the total abdominal pressure-volume (PV) relationship. During an increase in IAV, different phases are encountered: the reshaping, stretching, and pressurisation phases. The first part of this review article starts with a comprehensive list of the different definitions related to IAP (at baseline, during respiratory variations, at maximal IAV), IAV (at baseline, additional volume, abdominal workspace, maximal and unadapted volume), and abdominal compliance and elastance (i.e. the relationship between IAV and IAP). An historical background on the pathophysiology related to IAP, IAV and Cab follows this. Measurement of Cab is difficult at the bedside and can only be done in a case of change (removal or addition) in IAV. The Cab is one of the most neglected parameters in critically ill patients, although it plays a

  18. The vascular neural network—a new paradigm in stroke pathophysiology

    PubMed Central

    Zhang, John H.; Badaut, Jerome; Tang, Jiping; Obenaus, Andre; Hartman, Richard; Pearce, William J.

    2013-01-01

    The concept of the neurovascular unit as the key brain component affected by stroke is controversial, because current definitions of this entity neglect mechanisms that control perfusion and reperfusion of arteries and arterioles upstream of the cerebral microcirculation. Indeed, although definitions vary, many researchers consider the neurovascular unit to be restricted to endothelial cells, neurons and glia within millimetres of the cerebral capillary microcirculation. This Perspectives article highlights the roles of vascular smooth muscle, endothelial cells and perivascular innervation of cerebral arteries in the initiation and progression of, and recovery from, ischaemic stroke. The concept of the vascular neural network—which includes cerebral arteries, arterioles, and downstream neuronal and glial cell types and structures—is introduced as the fundamental component affected by stroke pathophysiology. The authors also propose that the vascular neural network should be considered the main target for future therapeutic intervention after cerebrovascular insult. PMID:23070610

  19. Pathophysiology and Treatment of Memory Dysfunction after Traumatic Brain Injury

    PubMed Central

    Paterno, Rosalia; Folweiler, Kaitlin A.; Cohen, Akiva S.

    2018-01-01

    Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI are alterations in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase i.e., encoding, maintenance or retrieval is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury. PMID:28500417

  20. Exploring pain pathophysiology in patients.

    PubMed

    Sommer, Claudia

    2016-11-04

    Although animal models of pain have brought invaluable information on basic processes underlying pain pathophysiology, translation to humans is a problem. This Review will summarize what information has been gained by the direct study of patients with chronic pain. The techniques discussed range from patient phenotyping using quantitative sensory testing to specialized nociceptor neurophysiology, imaging methods of peripheral nociceptors, analyses of body fluids, genetics and epigenetics, and the generation of sensory neurons from patients via inducible pluripotent stem cells. Copyright © 2016, American Association for the Advancement of Science.

  1. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure

    PubMed Central

    Liu, Tong; Song, Deli; Dong, Jianzeng; Zhu, Pinghui; Liu, Jie; Liu, Wei; Ma, Xiaohai; Zhao, Lei; Ling, Shukuan

    2017-01-01

    Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis. PMID:28484397

  2. Basophils activated via TLR signaling may contribute to pathophysiology of type 1 autoimmune pancreatitis.

    PubMed

    Yanagawa, Masato; Uchida, Kazushige; Ando, Yugo; Tomiyama, Takashi; Yamaguchi, Takashi; Ikeura, Tsukasa; Fukui, Toshiro; Nishio, Akiyoshi; Uemura, Yoshiko; Miyara, Takayuki; Okamoto, Hiroyuki; Satoi, Souhei; Okazaki, Kazuichi

    2018-03-01

    Pathophysiology of type 1 autoimmune pancreatitis (AIP) is still unclear. We previously reported that M2 macrophages might play an important role in type 1 AIP. Recently, it has been reported that basophils regulate differentiation to M2 macrophages. In this study, we investigated basophils from the pancreatic tissue and peripheral blood of individuals with type 1 AIP. By using immunohistochemistry, we investigated basophils in pancreatic tissue from 13 patients with type 1 AIP and examined expression of toll-like receptors (TLRs) by these cells. Additionally, we obtained peripheral blood samples from 27 healthy subjects, 40 patients with type 1 AIP, 8 patients with alcoholic chronic pancreatitis, 10 patients with bronchial asthma, and 10 patients with atopic dermatitis, and analyzed activation of basophils by stimulating them with ligands of TLR1-9. We also compared TLR expression in basophils from the tissue and blood samples. Basophils were detected in pancreatic tissues from 10 of 13 patients with type 1 AIP. Flow cytometric analysis revealed that the ratios of basophils activated by TLR4 stimulation in type 1 AIP (9.875 ± 1.148%) and atopic dermatitis (11.768 ± 1.899%) were significantly higher than those in healthy subjects (5.051 ± 0.730%; P < 0.05). Levels of basophils activated by TLR2 stimulation were higher in seven type 1 AIP cases. Furthermore, stimulation of TLR2 and/or TLR4, which were expressed by basophils in pancreas, activated basophils in peripheral blood. Basophils activated via TLR signaling may play an important role in the pathophysiology of type 1 AIP.

  3. Diagnosing the pathophysiologic mechanisms of nocturnal polyuria.

    PubMed

    Goessaert, An-Sofie; Krott, Louise; Hoebeke, Piet; Vande Walle, Johan; Everaert, Karel

    2015-02-01

    Diagnosis of nocturnal polyuria (NP) is based on a bladder diary. Addition of a renal function profile (RFP) for analysis of concentrating and solute-conserving capacity allows differentiation of NP pathophysiology and could facilitate individualized treatment. To map circadian rhythms of water and solute diuresis by comparing participants with and without NP. This prospective observational study was carried out in Ghent University Hospital between 2011 and 2013. Participants with and without NP completed a 72-h bladder dairy. RFP, free water clearance (FWC), and creatinine, solute, sodium, and urea clearance were measured for all participants. The study participants were divided into those with (n=77) and those without (n=35) NP. The mean age was 57 yr (SD 16 yr) and 41% of the participants were female. Compared to participants without NP, the NP group exhibited a higher diuresis rate throughout the night (p=0.015); higher FWC (p=0.013) and lower osmolality (p=0.030) at the start of the night; and persistently higher sodium clearance during the night (p<0.001). The pathophysiologic mechanism of NP was identified as water diuresis alone in 22%, sodium diuresis alone in 19%, and a combination of water and sodium diuresis in 47% of the NP group. RFP measurement in first-line NP screening to discriminate between water and solute diuresis as pathophysiologic mechanisms complements the bladder diary and could facilitate optimal individualized treatment of patients with NP. We evaluated eight urine samples collected over 24h to detect the underlying problem in NP. We found that NP can be attributed to water or sodium diuresis or a combination of both. This urinalysis can be used to adapt treatment according to the underlying mechanism in patients with bothersome consequences of NP, such as nocturia and urinary incontinence. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  4. The potential role of hypocortisolism in the pathophysiology of PTSD and psoriasis.

    PubMed

    Thaller, V; Vrkljan, M; Hotujac, L; Thakore, J

    1999-12-01

    Different physical, chemical and psychological stressors can provoke a unique but different endocrine response involving activation of the hypothalamo-pituitary-adrenal (HPA) axis. Inability of adequate compensatory reaction can lead to many disorders. The aim of our study was comparison of cortisol values in diseases provoked by various stressors. Our investigation included 34 posttraumatic stress disorder (PTSD) patients, as an example of disorder caused by extremely strong, acute stressful stimulus, 19 psoriatic patients, as an example of chronic stress stimulus and 17 healthy volunteers. In each patient we determined 24-hour urinary cortisol, serum cortisol at 8 a.m. and 5 p.m., and cortisol in dexamethasone suppression test by the standard radioimmunoassay (RIA) method. PTSD patients showed lower urinary 24-hour cortisol values, (361 +/- 28 nmol/24 h), "stronger" circadian rhythm of serum cortisol (595 +/- 57 nmol/l at 8 a.m. and 242 +/- 23 nmol/l at 5 p.m.) and attenuated suppression of cortisol in dexamethasone suppression test (197 +/- 45 nmol/l) in comparison to healthy volunteers (590 +/- 87 nmol/24 h urine, 590 +/- 32 nmol/l at 8 a.m., 402 +/- 31 nmol/l, and < 86 nmol/l in dexa test). Psoriatic patients showed markedly lower 24-hour cortisol values (150 +/- 98 nmol/24 h), even in comparison to PTSD patients, then serum cortisol values (404 +/- 138 nmol/l at 8 a.m., 187 +/- 80 nmol/l at 5 p.m.) and enhanced suppression of cortisol (23 +/- 5 nmol/l). The model of attenuated feedback inhibition in PTSD patients shows that they are unusually reactive to stress and represents an alternative model of acute stress reaction to extremely strong stressful stimulus. Unusually low cortisol values in psoriatic patients correlate to our hypothesis that in chronic stress-related disease, as psoriasis is, exists, by still undefined mechanism, altered HPA axis function, which is obviously incompetent to realise its immunoregulatory function, so consequentially, clinical signs of psoriasis persist.

  5. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate.

    PubMed

    Bonvini, Sara J; Birrell, Mark A; Grace, Megan S; Maher, Sarah A; Adcock, John J; Wortley, Michael A; Dubuis, Eric; Ching, Yee-Man; Ford, Anthony P; Shala, Fisnik; Miralpeix, Montserrat; Tarrason, Gema; Smith, Jaclyn A; Belvisi, Maria G

    2016-07-01

    Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?

    PubMed Central

    Hanson, M. A.; Gluckman, P. D.

    2014-01-01

    Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859

  7. Kidney Calculi: Pathophysiology and as a Systemic Disorder.

    PubMed

    Shadman, Arash; Bastani, Bahar

    2017-05-01

    The pathophysiology of urinary stone formation is complex, involving a combination of metabolic, genetic, and environmental factors. Over the past decades, remarkable advances have been emerged in the understanding of the pathogenesis, diagnosis, and treatment of calcium kidney calculi. For this review, both original and review articles were found via PubMed search on pathophysiology, diagnosis, and management of urinary calculi. These resources were integrated with the authors' knowledge of the field. Nephrolithiasis is suggested to be associated with systemic disorders, including chronic kidney insufficiency, hematologic malignancies, endocrine disorders, autoimmune diseases, inflammatory bowel diseases, bone loss and fractures, hypertension, type 2 diabetes mellitus, metabolic syndrome, and vascular diseases like coronary heart diseases and most recently ischemic strokes. This is changing the perspective of nephrolithiasis from an isolated disorder to a systemic disease that justifies further research in understanding the underlying mechanisms and elaborating diagnostic-therapeutic options.

  8. An alternate pathophysiologic paradigm of sepsis and septic shock

    PubMed Central

    Kumar, Anand

    2014-01-01

    The advent of modern antimicrobial therapy following the discovery of penicillin during the 1940s yielded remarkable improvements in case fatality rate of serious infections including septic shock. Since then, pathogens have continuously evolved under selective antimicrobial pressure resulting in a lack of significant improvement in clinical effectiveness in the antimicrobial therapy of septic shock despite ever more broad-spectrum and potent drugs. In addition, although substantial effort and money has been expended on the development novel non-antimicrobial therapies of sepsis in the past 30 years, clinical progress in this regard has been limited. This review explores the possibility that the current pathophysiologic paradigm of septic shock fails to appropriately consider the primacy of the microbial burden of infection as the primary driver of septic organ dysfunction. An alternate paradigm is offered that suggests that has substantial implications for optimizing antimicrobial therapy in septic shock. This model of disease progression suggests the key to significant improvement in the outcome of septic shock may lie, in great part, with improvements in delivery of existing antimicrobials and other anti-infectious strategies. Recognition of the role of delays in administration of antimicrobial therapy in the poor outcomes of septic shock is central to this effort. However, therapeutic strategies that improve the degree of antimicrobial cidality likely also have a crucial role. PMID:24184742

  9. Linking vascular disorders and Alzheimer’s disease: Potential involvement of BACE1

    PubMed Central

    Cole, Sarah L.; Vassar, Robert

    2012-01-01

    The etiology of Alzheimer’s disease (AD) remains unknown. However, specific risk factors have been identified, and aging is the strongest AD risk factor. The majority of cardiovascular events occur in older people and a close relationship between vascular disorders and AD exists. Amyloid plaques, composed of the beta amyloid peptide (Aβ), are hallmark lesions in AD and evidence indicates that Aβ plays a central role in AD pathophysiology. The BACE1 enzyme is essential for Aβ generation, and BACE1 levels are elevated in AD brain. The cause(s) of this BACE1 elevation remains undetermined. Here we review the potential contribution of vascular disease to AD pathogenesis. We examine the putative vasoactive properties of Aβ and how the cellular changes associated with vascular disease may elevate BACE1 levels. Despite increasing evidence, the exact role(s) vascular disorders play in AD remains to be determined. However, given that vascular diseases can be addressed by lifestyle and pharmacologic interventions, the potential benefits of these therapies in delaying the clinical appearance and progression of AD may warrant investigation. PMID:18289733

  10. Caveolins and caveolae in ocular physiology and pathophysiology.

    PubMed

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All

  11. Left atrial physiology and pathophysiology: Role of deformation imaging

    PubMed Central

    Kowallick, Johannes Tammo; Lotz, Joachim; Hasenfuß, Gerd; Schuster, Andreas

    2015-01-01

    The left atrium (LA) acts as a modulator of left ventricular (LV) filling. Although there is considerable evidence to support the use of LA maximum and minimum volumes for disease prediction, theoretical considerations and a growing body of literature suggest to focus on the quantification of the three basic LA functions: (1) Reservoir function: collection of pulmonary venous return during LV systole; (2) Conduit function: passage of blood to the left ventricle during early LV diastole; and (3) Contractile booster pump function (augmentation of ventricular filling during late LV diastole. Tremendous advances in our ability to non-invasively characterize all three elements of atrial function include speckle tracking echocardiography (STE), and more recently cardiovascular magnetic resonance myocardial feature tracking (CMR-FT). Corresponding imaging biomarkers are increasingly recognized to have incremental roles in determining prognosis and risk stratification in cardiac dysfunction of different origins. The current editorial introduces the role of STE and CMR-FT for the functional assessment of LA deformation as determined by strain and strain rate imaging and provides an outlook of how this exciting field may develop in the future. PMID:26131333

  12. Teaching Differential Diagnosis by Computer: A Pathophysiological Approach

    ERIC Educational Resources Information Center

    Goroll, Allan H.; And Others

    1977-01-01

    An interactive, computer-based teaching exercise in diagnosis that emphasizes pathophysiology in the analysis of clinical data is described. Called the Jaundice Program, its objective is to simplify the pattern recognition problem by relating clinical findings to diagnosis via reference to disease mechanisms. (LBH)

  13. Vitamin-D Deficiency As a Potential Environmental Risk Factor in Multiple Sclerosis, Schizophrenia, and Autism.

    PubMed

    Kočovská, Eva; Gaughran, Fiona; Krivoy, Amir; Meier, Ute-Christiane

    2017-01-01

    In this short review, we want to summarize the current findings on the role of vitamin-D in multiple sclerosis (MS), schizophrenia, and autism. Many studies have highlighted hypovitaminosis-D as a potential environmental risk factor for a variety of conditions such as MS, asthma, cardiovascular disease, and, more recently, psychiatric diseases. However, whether hypovitaminosis-D is a potential causative factor for the development or activity in these conditions or whether hypovitaminosis-D may be due to increased vitamin-D consumption by an activated immune system (reverse causation) is the focus of intense research. Here, we will discuss current evidence exploring the role of vitamin-D in MS, schizophrenia, and autism and its impact on adaptive and innate immunity, antimicrobial defense, the microbiome, neuroinflammation, behavior, and neurogenesis. More work is needed to gain insight into its role in the underlying pathophysiology of these conditions as it may offer attractive means of intervention and prevention.

  14. Spasmodic Dysphonia: A Review. Part 2: Characterization of Pathophysiology.

    PubMed

    Hintze, Justin M; Ludlow, Christy L; Bansberg, Stephen F; Adler, Charles H; Lott, David G

    2017-10-01

    Objective The purpose of this review is to describe the recent advances in characterizing spasmodic dysphonia. Spasmodic dysphonia is a task-specific focal laryngeal dystonia characterized by irregular and uncontrolled voice breaks. The pathophysiology is poorly understood, and there are diagnostic difficulties. Data Sources PubMed, Google Scholar, and Cochrane Library. Review Methods The data sources were searched using the following search terms: ( spasmodic dysphonia or laryngeal dystonia) and ( etiology, aetiology, diagnosis, pathogenesis, or pathophysiology). Conclusion The diagnosis of spasmodic dysphonia can be difficult due to the lack of a scientific consensus on diagnostic criteria and the fact that other voice disorders may present similarly. Confusion can arise between spasmodic dysphonia and muscle tension dysphonia. Spasmodic dysphonia symptoms are tied to particular speech sounds, whereas muscle tension dysphonia is not. With the advent of more widespread use of high-speed laryngoscopy and videokymography, measures of the disruptions in phonation and delays in the onset of vocal fold vibration after vocal fold closure can be quantified. Recent technological developments have expanded our understanding of the pathophysiology of spasmodic dysphonia. Implications for Practice A 3-tiered approach, involving a questionnaire, followed by speech assessment and nasolaryngoscopy is the most widely accepted method for making the diagnosis in most cases. More experimental and invasive techniques such as electromyography and neuroimaging have been explored to further characterize spasmodic dysphonia and aid in diagnosing difficult cases.

  15. Cognitive impairment in Epilepsy: The Role of Network Abnormalities

    PubMed Central

    Holmes, Gregory L.

    2015-01-01

    The challenges to individuals with epilepsy extend far beyond the seizures. Co-morbidities in epilepsy are very common and are often more problematic to individuals than the seizures themselves. In this review, the pathophysiological mechanisms of cognitive impairment are discussed. While etiology of the epilepsy has a significant influence on cognition there is increasing evidence that prolonged or recurrent seizures can cause or exacerbate cognitive impairment. Alterations in signaling pathways and neuronal network function play a major role in both the pathophysiology of epilepsy and the epilepsy comorbidities. However, the biological underpinnings of cognitive impairment can be distinct from the pathophysiological processes that cause seizures. PMID:25905906

  16. Vitiligo: An Update on Pathophysiology and Treatment Options.

    PubMed

    Speeckaert, Reinhart; van Geel, Nanja

    2017-12-01

    The pathophysiology of vitiligo is becoming increasingly clarified. In non-segmental vitiligo, early factors include activation of innate immunity, inflammasome activation, oxidative stress, and loss of melanocyte adhesion. Nonetheless, the main mechanism leading to non-segmental vitiligo involves an immune-mediated destruction of melanocytes. Anti-melanocyte-specific cytotoxic T cells exert a central role in the final effector stage. Genetic research revealed a multi-genetic inheritance displaying an overlap with other autoimmune disorders. However, some melanocyte-specific genes were also affected. Segmental vitiligo carries a different pathogenesis with most evidence indicating a mosaic skin disorder. Current management includes topical corticosteroids and immunomodulators. Narrow-band ultraviolet B can be used in patients not responding to topical treatment or in patients with extensive disease. Pigment cell transplantation offers an alternative for the treatment of segmental vitiligo or stable non-segmental lesions. Recent findings have revealed new targets for treatment that could lead to more efficient therapies. Targeted immunotherapy may halt the active immune pathways, although combination therapy may still be required to induce satisfying repigmentation. A recently established core set of outcome measures, new measurement instruments, and biomarker research pave the way for future standardized clinical trials.

  17. Oropharyngeal dysphagia pathophysiology, complications and science-based interventions.

    PubMed

    Altman, Kenneth W

    2012-01-01

    The etiology of oropharyngeal dysphagia can be broad, and includes aging with atrophy, debilitation, stroke, neurodegenerative and muscular diseases, tumor and postsurgical deformity, as well as effects due to medications and drying of the mucosal membranes. Pathophysiology depends on the multiple causative factors, including the cortex and neural connections to generate the swallow, as well as the oropharyngeal musculature. While chronic debilitation and age may result in nutritional deficiency and poor hydration, the other causes generally present with aspiration risk more acutely. Bacteriologically, aspiration pneumonia is usually polymicrobial with a predominance of Gram-negative enteric bacilli. However, there is emerging evidence to suggest that odontogenic sources may complicate the severity of bacterial load. The principles behind science-based interventions are primarily aspiration assessment with bedside evaluation, and ultimately modified barium swallow (videofluoroscopy) or functional endoscopic evaluation of swallowing (with or without sensory testing). Each has its advantages and logistical concerns. Intervention and rehabilitation is unique to the patient's needs, but may include reconditioning and therapy with a speech and language pathologist, and surgical options. The emerging roles of neuroplasticity and external neuromuscular stimulation are also discussed. Copyright © 2012 S. Karger AG, Basel.

  18. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis.

    PubMed

    Skyler, Jay S; Bakris, George L; Bonifacio, Ezio; Darsow, Tamara; Eckel, Robert H; Groop, Leif; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A; Mathieu, Chantal; McElvaine, Allison T; Palmer, Jerry P; Pugliese, Alberto; Schatz, Desmond A; Sosenko, Jay M; Wilding, John P H; Ratner, Robert E

    2017-02-01

    The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, "The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis" on 10-12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment. © 2017 by the American Diabetes Association.

  19. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis

    PubMed Central

    Bakris, George L.; Groop, Per-Henrik; Handelsman, Yehuda; Insel, Richard A.; Mathieu, Chantal; Palmer, Jerry P.; Pugliese, Alberto; Sosenko, Jay M.; Ratner, Robert E.

    2017-01-01

    The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, “The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis” on 10–12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment. PMID:27980006

  20. [SKIN PATHOLOGY IN DIABETES MELLITUS: CLINICAL AND PATHOPHYSIOLOGICAL CORRELATIONS (REVIEW)].

    PubMed

    Kochet, K; Lytus, I; Svistunov, I; Sulaieva, O

    2017-12-01

    Skin pathology is registered in vast majority of patients with diabetes mellitus (DM). Despite the abundance of publications on dermatological problems in DM, there is still a number of gaps to be discussed in terms of pathophysiological mechanisms. The goal of this review was to assess the mechanisms of development of different skin pathologies under DM. One of the key pathogenic mechanisms of skin lesions in diabetes is hyperglycemia and the effects of the advanced glycation end products, inducing oxidative stress, endothelial dysfunction and inflammation; that in its turn can accelerate the mechanisms of skin aging, the development of diabetic dermopathy and scleredema diabeticorum. Imbalance of growth factors, cytokines and hormones under insulin resistance, is associated with increased proliferation of keratinocytes, fibroblasts and sebocytes, mast cell dysfunction and melanogenesis disorders in acanthosis nigricans, acrochordons, acne and inflammatory dermatitis in diabetic patients. In addition, authors discuss the role of dendritic cells and macrophages dysfunction in impairment of peripheral tolerance and diabetic wounds pathogenesis in patients with DM.

  1. Chest Wall Diseases: Respiratory Pathophysiology.

    PubMed

    Tzelepis, George E

    2018-06-01

    The chest wall consists of various structures that function in an integrated fashion to ventilate the lungs. Disorders affecting the bony structures or soft tissues of the chest wall may impose elastic loads by stiffening the chest wall and decreasing respiratory system compliance. These alterations increase the work of breathing and lead to hypoventilation and hypercapnia. Respiratory failure may occur acutely or after a variable period of time. This review focuses on the pathophysiology of respiratory function in specific diseases and disorders of the chest wall, and highlights pathogenic mechanisms of respiratory failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Coronary artery disease: new insights into the pathophysiology, prevalence, and early detection of a monster menace.

    PubMed

    Slater, James; Rill, Velisar

    2004-04-01

    Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the United States and other industrialized countries. In the undeveloped world a similar epidemic is brewing. A new pathophysiologic paradigm has emerged, which assigns the mediators of inflammation a much larger role in the disease process. This paradigm has helped explain the unpredictable nature of many adverse consequences of CAD. The long latent phase of the disease, and often sudden initial presentation, make efforts at early detection extremely important. Considerable work has been devoted to identify, as well as influence, predisposing risk factors for developing arteriosclerosis. Novel markers of inflammation, like C-reactive protein, have been identified and compared to traditional risk factors. In addition, new imaging modalities introduce the possibility of screening for subclinical disease. Electron beam and multidetector computed tomography (CT) scanners, as well as other techniques, are emerging as powerful tools to detect early disease presence and allow intervention to take place before major clinical events occur. Advances in our understanding of the pathophysiology of CAD, and our ability to image the stages of silent disease will go hand in hand to revolutionize our approach to prevention and treatment of this deadly malady.

  3. Coronary artery disease: new insights into the pathophysiology, prevalence and early detection of a monster menace.

    PubMed

    Slater, James; Rill, Velisar

    2003-04-01

    Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the United States and industrialized countries. In the undeveloped world a similar epidemic is brewing. A new pathophysiologic paradigm has emerged, which assigns the mediators of inflammation a much larger role in the disease process. This paradigm has helped explain the unpredictable nature of many adverse consequences of CAD. The long latent phase of the disease and often sudden initial presentation make efforts at early detection extremely important. Considerable work has been devoted to identify as well as influence predisposing risk factors for developing arteriosclerosis. Novel markers of inflammation, like C-reactive protein, have been identified and compared to traditional risk factors. In addition, new imaging modalities introduce the possibility of screening for sub-clinical disease. Electron-beam and spiral CT scanners, as well as other techniques, are emerging as powerful tools to detect early disease presence and allow intervention to take place before major clinical events occur. Advances in our understanding of the pathophysiology and our ability to image the stages of silent disease will go hand in hand to revolutionize our approach to prevention and treatment of this deadly disease.

  4. Pathophysiological analyses of leptomeningeal heterotopia using gyrencephalic mammals.

    PubMed

    Matsumoto, Naoyuki; Kobayashi, Naoki; Uda, Natsu; Hirota, Miwako; Kawasaki, Hiroshi

    2018-03-15

    Leptomeningeal glioneuronal heterotopia (LGH) is a focal malformation of the cerebral cortex and frequently found in patients with thanatophoric dysplasia (TD). The pathophysiological mechanisms underlying LGH formation are still largely unclear because of difficulties in obtaining brain samples from human TD patients. Recently, we established a new animal model for analysing cortical malformations of human TD by utilizing our genetic manipulation technique for gyrencephalic carnivore ferrets. Here we investigated the pathophysiological mechanisms underlying the formation of LGH using our TD ferrets. We found that LGH was formed during corticogenesis in TD ferrets. Interestingly, we rarely found Ki-67-positive and phospho-histone H3-positive cells in LGH, suggesting that LGH formation does not involve cell proliferation. We uncovered that vimentin-positive radial glial fibers and doublecortin-positive migrating neurons were accumulated in LGH. This result may indicate that preferential cell migration into LGH underlies LGH formation. Our findings provide novel mechanistic insights into the pathogenesis of LGH in TD.

  5. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions.

    PubMed

    Ghosh, Sumit; Basak, Priyanka; Dutta, Sayanta; Chowdhury, Sayantani; Sil, Parames C

    2017-05-01

    Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pathophysiology of septic shock: From bench to bedside.

    PubMed

    McConnell, Kevin W; Coopersmith, Craig M

    2016-04-01

    Our understanding of sepsis and its resultant outcomes remains a paradox. On the one hand, we know more about the pathophysiology of sepsis than ever before. However, this knowledge has not been successfully translated to the bedside, as the vast majority of clinical trials for sepsis have been negative. Yet even in the general absence of positive clinical trials, mortality from sepsis has fallen to its lowest point in history, in large part due to educational campaigns that stress timely antibiotics and hemodynamic support. While additional improvements in outcome will assuredly result from further compliance with evidence based practices, a deeper understanding of the science that underlies the host response in sepsis is critical to the development of novel therapeutics. In this review, we outline immunopathologic abnormalities in sepsis, and then look at potential approaches to therapeutically modulate them. Ultimately, an understanding of the science underlying sepsis should allow the critical care community to utilize precision medicine to combat this devastating disease on an individual basis leading to improved outcomes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Pathophysiology of Septic Shock: From Bench to Bedside

    PubMed Central

    McConnell, Kevin W.; Coopersmith, Craig M.

    2016-01-01

    Our understanding of sepsis and its resultant outcomes remains a paradox. On the one hand, we know more about the pathophysiology of sepsis than ever before. However, this knowledge has not successfully translated to the bedside, as the vast majority of clinical trials for sepsis have been negative. Yet even in the general absence of positive clinical trials, mortality from sepsis has fallen to its lowest point in history, in large part due to educational campaigns that stress timely antibiotics and hemodynamic support. While additional improvements in outcome will assuredly result from further compliance with evidence based practices, a deeper understanding of the science that underlies the host response in sepsis is critical to the development of novel therapeutics. In this review, we outline immunopathologic abnormalities in sepsis, and then look at potential approaches to therapeutically modulate them. Ultimately, an understanding of the science underlying sepsis should allow the critical care community to utilize precision medicine to combat this devastating disease on an individual basis leading to improved outcomes. PMID:27085986

  8. The Pathophysiology of Repetitive Concussive Traumatic Brain Injury in Experimental Models; New Developments and Open Questions

    PubMed Central

    Brody, David L; Benetatos, Joseph; Bennett, Rachel E; Klemenhagen, Kristen C; Donald, Christine L Mac

    2015-01-01

    In recent years, there has been an increasing interest in the pathophysiology of repetitive concussive traumatic brain injury (rcTBI) in large part due to the association with dramatic cases of progressive neurological deterioration in professional athletes, military personnel, and others. However, our understanding of the pathophysiology of rcTBI is less advanced than for more severe brain injuries. Most prominently, the mechanisms underlying traumatic axonal injury, microglial activation, amyloid-beta accumulation, and progressive tau pathology are not yet known. In addition, the role of injury to dendritic spine cytoskeletal structures, vascular reactivity impairments, and microthrombi are intriguing and subjects of ongoing inquiry. Methods for quantitative analysis of axonal injury, dendritic injury, and synaptic loss need to be refined for the field to move forward in a rigorous fashion. We and others are attempting to develop translational approaches to assess these specific pathophysiological events in both animals and humans to facilitate clinically relevant pharmacodynamic assessments of candidate therapeutics. In this article, we review and discuss several of the recent experimental results from our lab and others. We include new initial data describing the difficulty in modeling progressive tau pathology in experimental rcTBI, and results demonstrating that sertraline can alleviate social interaction deficits and depressive-like behaviors following experimental rcTBI plus foot shock stress. Furthermore, we propose a discrete set of open, experimentally tractable questions that may serve as a framework for future investigations. In addition, we also raise several important questions that are less experimentally tractable at this time, in hopes that they may stimulate future methodological developments to address them. PMID:25684677

  9. A Review on the Role of Inflammation in Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Leffa, Douglas Teixeira; Torres, Iraci L S; Rohde, Luis Augusto

    2018-06-06

    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental condition that impairs quality of life in social, academic, and occupational contexts for both children and adults. Although a strong neurobiological basis has been demonstrated, the pathophysiology of ADHD is still poorly understood. Among the proposed mechanisms are glial activation, neuronal damage and degeneration, increased oxidative stress, reduced neurotrophic support, altered neurotransmitter metabolism, and blood-brain barrier disruption. In this way, a potential role of inflammation has been increasingly researched. However, evidence for the involvement of inflammation in ADHD is still scarce and comes mainly from (1) observational studies showing a strong comorbidity of ADHD with inflammatory and autoimmune disorders; (2) studies evaluating serum inflammatory markers; and (3) genetic studies. A co-occurrence of ADHD with inflammatory disorders has been demonstrated in a large number of subjects, suggesting a range of underlying mechanisms such as an altered immune response, common genetics, and environmental links. The evaluation of serum inflammatory markers has provided mixed results, likely due to the small sample sizes and high heterogeneity between biomarkers. However, there is evidence that increased inflammation during the early development may be a risk factor for ADHD symptoms. Although genetic studies have demonstrated a potential role for inflammation in this disorder, there is no clear evidence. To sum up, inflammation may be an important mechanism in ADHD pathophysiology, but more studies are still needed for a more precise conclusion. © 2018 S. Karger AG, Basel.

  10. Pathophysiology, prevention, and treatment of ebullism.

    PubMed

    Murray, Daniel H; Pilmanis, Andrew A; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Bayne, C Gresham; Turney, Matthew W; Clark, Jonathan B

    2013-02-01

    Ebullism is the spontaneous evolution of liquid water in tissues to water vapor at body temperature when the ambient pressure is 47 mmHg or less. While injuries secondary to ebullism are generally considered fatal, some reports have described recovery after exposure to near vacuum for several minutes. The objectives of this article are to review the current literature on ebullism and to present prevention and treatment recommendations that can be used to enhance the safety of high altitude activities and space operations. A systematic review was conducted on currently available information and published literature of human and animal studies involving rapid decompression to vacuum and ebullism, with subsequent development of an applicable treatment protocol. Available research on ebullism in human and animal subjects is extremely limited. Literature available identified key pathophysiologic processes and mitigation strategies that were used for treatment protocol design and outlining appropriate interventions using current best medical practices and technologies. Available literature suggests that the pathophysiology of ebullism leads to predictable and often treatable injuries, and that many exposures may be survivable. With the growing number of high altitude and space-related activities, more individuals will be at risk for ebullism. An integrated medical protocol can provide guidance for the prevention and treatment of ebullism and help to mitigate this risk in the future.

  11. Estrogens and Androgens in Skeletal Physiology and Pathophysiology

    PubMed Central

    Almeida, Maria; Laurent, Michaël R.; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A.; Bouillon, Roger; Vanderschueren, Dirk

    2016-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. PMID:27807202

  12. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    PubMed

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  13. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications

    PubMed Central

    Kim, Sangwon F.; Mollace, Vincenzo

    2013-01-01

    The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area. PMID:23389111

  14. Involvement of the atrial natriuretic peptide in cardiovascular pathophysiology and its relationship with exercise

    PubMed Central

    2012-01-01

    In this minireview we describe the involvement of the atrial natriuretic peptide (ANP) in cardiovascular pathophysiology and exercise. The ANP has a broad homeostatic role and exerts complex effects on the cardio-circulatory hemodynamics, it is produced by the left atrium and has a key role in regulating sodium and water balance in mammals and humans. The dominant stimulus for its release is atrial wall tension, commonly caused by exercise. The ANP is involved in the process of lipolysis through a cGMP signaling pathway and, as a consequence, reducing blood pressure by decreasing the sensitivity of vascular smooth muscle to the action of vasoconstrictors and regulate fluid balance. The increase of this hormone is associated with better survival in patients with chronic heart failure (CHF). This minireview provides new evidence based on recent studies related to the beneficial effects of exercise in patients with cardiovascular disease, focusing on the ANP. PMID:22313592

  15. [Gut microbiota: Description, role and pathophysiologic implications].

    PubMed

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  16. Pathophysiological roles of peroxynitrite in circulatory shock

    PubMed Central

    Szabó, Csaba; Módis, Katalin

    2014-01-01

    Summary Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide, which reacts with proteins, lipids and DNA and promotes cytotoxic and pro-inflammatory responses. Here we overview the role of peroxynitrite in various forms of circulatory shock. Immunohistochemical and biochemical evidence demonstrate the production of peroxynitrite in various experimental models of endotoxic and hemorrhagic shock, both in rodents and in large animals. In addition, biological markers of peroxynitrite have been identified in human tissues after circulatory shock. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), which promotes cellular energetic collapse and cellular necrosis. Additional actions of peroxynitrite that contribute to the pathogenesis of shock include inactivation of catecholamines and catecholamine receptors (leading to vascular failure), endothelial and epithelial injury (leading to endothelial and epithelial hyper-permeability and barrier dysfunction) as well as myocyte injury (contributing to loss of cardiac contractile function). Neutralization of peroxynitrite with potent peroxynitrite decomposition catalysts provides cytoprotective and beneficial effects in rodent and large animal models of circulatory shock. PMID:20523270

  17. Oxidative stress and cardiomyocyte necrosis with elevated serum troponins: pathophysiologic mechanisms.

    PubMed

    Robinson, Antwon D; Ramanathan, Kodangudi B; McGee, Jesse E; Newman, Kevin P; Weber, Karl T

    2011-08-01

    The progressive nature of heart failure is linked to multiple factors, including an ongoing loss of cardiomyocytes and necrosis. Necrotic cardiomyocytes leave behind several footprints: the spillage of their contents leading to elevations in serum troponins; and morphologic evidence of tissue repair with scarring. The pathophysiologic origins of cardiomyocyte necrosis relates to neurohormonal activation, including the adrenergic nervous system. Catecholamine-initiated excessive intracellular Ca accumulation and mitochondria Ca overloading in particular initiate a mitochondriocentric signal-transducer-effector pathway to necrosis and which includes the induction of oxidative stress and opening of their inner membrane permeability transition pore. Hypokalemia, ionized hypocalcemia and hypomagnesemia, where consequent elevations in parathyroid hormone further account for excessive intracellular Ca accumulation, hypozincemia and hyposelenemia each compromise metalloenzyme-based antioxidant defenses. The necrotic loss of cardiomyocytes and adverse structural remodeling of myocardium is related to the central role played by a mitochondriocentric pathway initiated by neurohormonal activation.

  18. Molecular pathophysiology of SLC4 bicarbonate transporters.

    PubMed

    Romero, Michael F

    2005-09-01

    Acid-base (H and HCO3) transport in the kidney is crucial for maintaining blood pH, cellular pH and excreting metabolic acid. HCO3 transport in the kidney is mediated by HCO3 transporter proteins which occur in two gene families in humans, vertebrates and invertebrates (SLC4 and SLC26). Since SLC26 transporters have other, non-HCO3 transport functions, this review highlights the history and recent advances in the SLC4 transporters in the kidney. The SLC4 gene and protein family (10 genes) contains three types of HCO3 transporters: Cl-HCO3 exchangers, Na/HCO3 cotransporters and Na-driven Cl-HCO3 exchangers. Function and human chromosomal location have been determined for most members. Human mutations in AE1 (SLC4A1) and NBCe1 (SLC4A4) are associated with distal and proximal renal tubular acidosis, respectively. Recent advances include the cellular and biophysical mechanisms by which AE1 and NBCe1 mutations lead to renal disease. Mutational and cellular trafficking studies have begun to elucidate the membrane topology and functional domains of AE1 and NBCe1. Knockout mice for AE2 and NBCn1 do not have obvious renal phenotypes. Recently, SLC4A11 (bicarbonate transporter 1) was shown to function as an electrogenic Na/borate cotransporter unable to transport HCO3 but involved in cell cycle control. SLC4 HCO3 transporters play critical roles in systemic and cellular pH homeostasis. Most of the SLC4 members are present at some level in the kidney. Future studies will likely continue to make use of knockout animals, for example mice and zebrafish, human mutations or polymorphisms to elucidate the normal and pathophysiologic roles of these proteins.

  19. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  20. Polyphenols as potential therapeutical agents against cardiovascular diseases.

    PubMed

    Curin, Yann; Andriantsitohaina, Ramaroson

    2005-01-01

    Increasing evidence suggests that polyphenols from fruits, vegetables and beverages such as wine and tea may exert protective effects on the cardiovascular system. Indeed, research in the field of polyphenols points out their antioxidant and free radical scavenging properties, leading to lower low-density lipoprotein (LDL) oxidation and platelet aggregation. These compounds are also able to modulate the generation of nitric oxide (NO) from vascular endothelium and to interfere with the mechanisms leading to inflammation and endothelial apoptosis, contributing to the prevention of the endothelial dysfunction, known to play a central role in the pathogenesis of cardiovascular diseases. This article reviews the potential targets of polyphenols involved in the complex pathophysiological events occurring in cardiovascular diseases, such as hypertension, atherosclerosis and stroke.

  1. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102

  2. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  3. Intradural pathology and pathophysiology associated with Chiari I malformation in children and adults with and without syringomyelia.

    PubMed

    Dlouhy, Brian J; Dawson, Jeffrey D; Menezes, Arnold H

    2017-12-01

    obstructing the foramen of Magendie (21.1%), intertonsillar and tonsil to CMJ arachnoid adhesions (85.3%), vermian posterior inferior cerebellar artery branches obstructing the foramen of Magendie (43.1%), and arachnoid veils or webs obstructing or occluding the foramen of Magendie (52.3%). Arachnoid veils varied in type and were observed in 59.5% of patients with CM-I who had syringomyelia, which was significantly greater than the 33.3% of patients with CM-I without syringomyelia who had an arachnoid veil (p = 0.018). The presence of CM-I with an arachnoid veil had 3.22 times the odds (p = 0.013, 95% CI 1.29-8.07, by multivariate logistic regression) of being associated with syringomyelia, adjusting for tonsillar herniation. The inferior descent of the fourth ventricle and CMJ occurred with a greater degree of tonsillar herniation (p < 0.001) and correlated with a cervicomedullary kink or buckle on preoperative MRI. CONCLUSIONS Intradural pathology associated with CM-I with or without syringomyelia exists in many forms, is more prevalent than previously recognized in patients of all ages, and may play a role in the pathophysiology of CM-I tonsillar herniation. Arachnoid veils appear to partially obstruct CSF flow, are significantly more prevalent in cases of CM-I with syringomyelia, and therefore may play a role in the pathophysiology of CM-I-associated syringomyelia.

  4. Evaluation of an online, case-based interactive approach to teaching pathophysiology.

    PubMed

    Van Dijken, Pieter Canham; Thévoz, Sara; Jucker-Kupper, Patrick; Feihl, François; Bonvin, Raphaël; Waeber, Bernard

    2008-06-01

    The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.

  5. Burn injury: review of pathophysiology and therapeutic modalities in major burns.

    PubMed

    Kaddoura, I; Abu-Sittah, G; Ibrahim, A; Karamanoukian, R; Papazian, N

    2017-06-30

    Despite a considerable decrease in their incidence worldwide, burn injuries remain one of the commonest forms of trauma and account for a weighty proportion of trauma cases in health-care emergencies around the globe. Although the latest data reveal a substantial decline in burn-related mortality and hospital admissions in the US over the past three decades, severe thermal injuries continue to trigger devastating morbidity and significant mortality while their management remains a dynamic challenge for the entire medical and paramedical community. Concrete evidence continues to be established regarding burn-associated pathophysiologic responses, and their destructive sequelae and deleterious effects in survivors at cellular, systemic as well as socio-economic level. Better understanding of these responses have contributed to advances in therapeutic strategies, improved long-term outcomes and catalyzed the reintegration of victims back into society. This paper describes the current understanding of the pathophysiology of a burn injury and characterizes both local and systemic pathophysiologic responses in terms of metabolic, hemodynamics, cardiac, renal, hepatic, gastro-intestinal, immunologic, endocrine as well as male reproductive systems in an attempt to understand the corresponding treatment modalities for this unique patient population.

  6. Burn injury: review of pathophysiology and therapeutic modalities in major burns

    PubMed Central

    Kaddoura, I.; Abu-Sittah, G.; Ibrahim, A.; Karamanoukian, R.; Papazian, N.

    2017-01-01

    Summary Despite a considerable decrease in their incidence worldwide, burn injuries remain one of the commonest forms of trauma and account for a weighty proportion of trauma cases in health-care emergencies around the globe. Although the latest data reveal a substantial decline in burn-related mortality and hospital admissions in the US over the past three decades, severe thermal injuries continue to trigger devastating morbidity and significant mortality while their management remains a dynamic challenge for the entire medical and paramedical community. Concrete evidence continues to be established regarding burn-associated pathophysiologic responses, and their destructive sequelae and deleterious effects in survivors at cellular, systemic as well as socio-economic level. Better understanding of these responses have contributed to advances in therapeutic strategies, improved long-term outcomes and catalyzed the reintegration of victims back into society. This paper describes the current understanding of the pathophysiology of a burn injury and characterizes both local and systemic pathophysiologic responses in terms of metabolic, hemodynamics, cardiac, renal, hepatic, gastro-intestinal, immunologic, endocrine as well as male reproductive systems in an attempt to understand the corresponding treatment modalities for this unique patient population. PMID:29021720

  7. Potential ecological roles of flavonoids from Stellera chamaejasme

    PubMed Central

    Yan, Zhiqiang; Zeng, Liming; Jin, Hui; Qin, Bo

    2015-01-01

    Stellera chamaejasme L. (Thymelaeaceae), a perennial weed, distributes widely in the grasslands of Russia, Mongolia and China. The plant synthesizes various secondary metabolites including a group of flavonoids. To our knowledge, flavonoids play important roles in the interactions between plants and the environment. So, what are the benefits to S. chamaejasme from producing these flavonoids? Here, we discuss the potential ecological role of flavonoids from S. chamaejasme in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species, and new data are provided on the phytotoxicity of flavonoids from S. chamaejasme toward Poa annua L. PMID:25848835

  8. Potential ecological roles of flavonoids from Stellera chamaejasme.

    PubMed

    Yan, Zhiqiang; Zeng, Liming; Jin, Hui; Qin, Bo

    2015-01-01

    Stellera chamaejasme L. (Thymelaeaceae), a perennial weed, distributes widely in the grasslands of Russia, Mongolia and China. The plant synthesizes various secondary metabolites including a group of flavonoids. To our knowledge, flavonoids play important roles in the interactions between plants and the environment. So, what are the benefits to S. chamaejasme from producing these flavonoids? Here, we discuss the potential ecological role of flavonoids from S. chamaejasme in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species, and new data are provided on the phytotoxicity of flavonoids from S. chamaejasme toward Poa annua L.

  9. Human Pathophysiological Adaptations to the Space Environment

    PubMed Central

    Demontis, Gian C.; Germani, Marco M.; Caiani, Enrico G.; Barravecchia, Ivana; Passino, Claudio; Angeloni, Debora

    2017-01-01

    Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population. PMID:28824446

  10. Human Pathophysiological Adaptations to the Space Environment.

    PubMed

    Demontis, Gian C; Germani, Marco M; Caiani, Enrico G; Barravecchia, Ivana; Passino, Claudio; Angeloni, Debora

    2017-01-01

    Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

  11. Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need

    PubMed Central

    Corcoran, David

    2018-01-01

    The diagnostic management of patients with angina pectoris typically centres on the detection of obstructive epicardial CAD, which aligns with evidence-based treatment options that include medical therapy and myocardial revascularisation. This clinical paradigm fails to account for the considerable proportion (approximately one-third) of patients with angina in whom obstructive CAD is excluded. This common scenario presents a diagnostic conundrum whereby angina occurs but there is no obstructive CAD (ischaemia and no obstructive coronary artery disease—INOCA). We review new insights into the pathophysiology of angina whereby myocardial ischaemia results from a deficient supply of oxygenated blood to the myocardium, due to various combinations of focal or diffuse epicardial disease (macrovascular), microvascular dysfunction or both. Macrovascular disease may be due to the presence of obstructive CAD secondary to atherosclerosis, or may be dynamic due to a functional disorder (eg, coronary artery spasm, myocardial bridging). Pathophysiology of coronary microvascular disease may involve anatomical abnormalities resulting in increased coronary resistance, or functional abnormalities resulting in abnormal vasomotor tone. We consider novel clinical diagnostic techniques enabling new insights into the causes of angina and appraise the need for improved therapeutic options for patients with INOCA. We conclude that the taxonomy of stable CAD could improve to better reflect the heterogeneous pathophysiology of the coronary circulation. We propose the term ‘stable coronary syndromes’ (SCS), which aligns with the well-established terminology for ‘acute coronary syndromes’. SCS subtends a clinically relevant classification that more fully encompasses the different diseases of the epicardial and microvascular coronary circulation. PMID:29030424

  12. Chronic fatigue syndrome: an update focusing on phenomenology and pathophysiology.

    PubMed

    Cho, Hyong Jin; Skowera, Anna; Cleare, Anthony; Wessely, Simon

    2006-01-01

    Chronic fatigue syndrome is a controversial condition especially concerning its clinical definition and aetiopathogenesis. Most recent research progress has been made in phenomenology and pathophysiology and we focused our review on these two areas. The phenomenology research supports the notion of a discrete fatigue syndrome which can be distinguished from depression and anxiety. The current case definition, however, may need an improvement based on empirical data. Recent advances in understanding the pathophysiology of chronic fatigue syndrome continue to demonstrate the involvement of the central nervous system. Hyperserotonergic state and hypoactivity of the hypothalamic-pituitary-adrenal axis constitute other findings, but the question of whether these alterations are a cause or consequence of chronic fatigue syndrome still remains unanswered. Immune system involvement in the pathogenesis seems certain but the findings on the specific mechanisms are still inconsistent. Genetic studies provide some evidence of the syndrome being a partly genetic condition, but environmental effects seem to be still predominant and identification of specific genes is still at a very early stage. The recent findings suggest that further research is needed in improving the current case definition; investigating overlaps and boundaries among various functional somatic syndromes; answering the question of whether the pathophysiologic findings are a cause or consequence; and elucidating the involvement of the central nervous system, immune system and genetic factors.

  13. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases.

    PubMed

    Cabrera DeBuc, Delia; Somfai, Gabor Mark; Koller, Akos

    2017-02-01

    Increasing evidence suggests that the conditions of retinal microvessels are indicators to a variety of cerebrovascular, neurodegenerative, psychiatric, and developmental diseases. Thus noninvasive visualization of the human retinal microcirculation offers an exceptional opportunity for the investigation of not only the retinal but also cerebral microvasculature. In this review, we show how the conditions of the retinal microvessels could be used to assess the conditions of brain microvessels because the microvascular network of the retina and brain share, in many aspects, standard features in development, morphology, function, and pathophysiology. Recent techniques and imaging modalities, such as optical coherence tomography (OCT), allow more precise visualization of various layers of the retina and its microcirculation, providing a "microscope" to brain microvessels. We also review the potential role of retinal microvessels in the risk identification of cerebrovascular and neurodegenerative diseases. The association between vision problems and cerebrovascular and neurodegenerative diseases, as well as the possible role of retinal microvascular imaging biomarkers in cerebrovascular and neurodegenerative screening, their potentials, and limitations, are also discussed. Copyright © 2017 the American Physiological Society.

  14. Pathophysiology of chronic heart failure.

    PubMed

    Francis, G S

    2001-05-07

    Heart failure is a changing paradigm. The hemodynamic model, which served our needs well from the 1950s through the early 1980s, has now been largely abandoned, except for the management of decompensated patients in the hospital. The pathophysiology is exceedingly complex and involves structural changes, such as loss of myofilaments, apoptosis and disorganization of the cytoskeleton, as well as disturbances in Ca(2+) homeostasis, alteration in receptor density, signal transduction, and collagen synthesis. A more contemporary working hypothesis is that heart failure is a progressive disorder of left ventricular remodeling, usually resulting from an index event, that culminates in a clinical syndrome characterized by impaired cardiac function and circulatory congestion. This change in the framework of our understanding of the pathophysiology of heart failure is predicated on the results of numerous clinical trials conducted during the past 20 years. New therapies are now evolving that are designed to inhibit neuroendocrine and cytokine activation, whereas drugs specifically designed to heighten cardiac contractility and "unload" the left ventricle have proven to be unhelpful in long-term management of patients with chronic heart failure. However, the hemodynamic model is still relevant for patients in the hospital with decompensated heart failure, where positive inotropic drugs and vasodilators are still widely used. The modern treatment of chronic heart failure is now largely based on the neurohormonal hypothesis, which states that neuroendocrine activation is important in the progression of heart failure and that inhibition of neurohormones is likely to have long-term benefit with regard to morbidity and mortality. Thus, the evolution of treatment for chronic heart failure as a result of clinical trials has provided much enlightenment for our understanding of the fundamental biology of the disorder, a reversal of the usual flow of information from basic science to

  15. Pathophysiology of primary burning mouth syndrome with special focus on taste dysfunction: a review.

    PubMed

    Kolkka-Palomaa, M; Jääskeläinen, S K; Laine, M A; Teerijoki-Oksa, T; Sandell, M; Forssell, H

    2015-11-01

    Primary burning mouth syndrome (BMS) is a chronic oral condition characterized by burning pain often accompanied with taste dysfunction and xerostomia. The most compelling evidence concerning BMS pathophysiology comes from studies on the somatosensory system using neurophysiologic or psychophysical methods such as blink reflex, thermal quantitative sensory testing, as well as functional brain imaging. They have provided convincing evidence for neuropathic involvement at several levels of the somatosensory system in BMS pain pathophysiology. The number of taste function studies trying to substantiate the subjective taste disturbances or studies on salivary factors in BMS is much more limited, and most of them suffer from definitional and methodological problems. This review aims to critically evaluate the existing literature on the pathophysiology of BMS, paying special attention to the correctness of case selection and the methodology used in published studies, and to summarize the current state of knowledge. Based on the recognition of several gaps in the current understanding of the pathophysiology of BMS especially as regards taste and pain system interactions, the review ends with future scenarios for research in this area. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Type 2 diabetes across generations: from pathophysiology to prevention and management.

    PubMed

    Nolan, Christopher J; Damm, Peter; Prentki, Marc

    2011-07-09

    Type 2 diabetes is now a pandemic and shows no signs of abatement. In this Seminar we review the pathophysiology of this disorder, with particular attention to epidemiology, genetics, epigenetics, and molecular cell biology. Evidence is emerging that a substantial part of diabetes susceptibility is acquired early in life, probably owing to fetal or neonatal programming via epigenetic phenomena. Maternal and early childhood health might, therefore, be crucial to the development of effective prevention strategies. Diabetes develops because of inadequate islet β-cell and adipose-tissue responses to chronic fuel excess, which results in so-called nutrient spillover, insulin resistance, and metabolic stress. The latter damages multiple organs. Insulin resistance, while forcing β cells to work harder, might also have an important defensive role against nutrient-related toxic effects in tissues such as the heart. Reversal of overnutrition, healing of the β cells, and lessening of adipose tissue defects should be treatment priorities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Medical Management of Endometriosis: Emerging Evidence Linking Inflammation to Disease Pathophysiology

    PubMed Central

    Bruner-Tran, Kaylon L.; Herington, Jennifer L.; Duleba, Antoni J.; Taylor, Hugh S.; Osteen, Kevin G.

    2013-01-01

    Progesterone action normally mediates the balance between anti-inflammatory and pro-inflammatory processes throughout the female reproductive tract. However, in women with endometriosis, endometrial progesterone resistance, characterized by alterations in progesterone responsive gene and protein expression, is now considered a central element in disease pathophysiology. Recent studies additionally suggest that the peritoneal microenvironment of endometriosis patients exhibits altered physiological characteristics that may further promote inflammation-driven disease development and progression. Within this review, we summarize our current understanding of the pathogenesis of endometriosis with an emphasis on the role that inflammation plays in generating not only the progesterone-resistant eutopic endometrium but also a peritoneal microenvironment that may contribute significantly to disease establishment. Viewing endometriosis from the emerging perspective that a progesterone resistant endometrium and an immunologically compromised peritoneal microenvironment are biologically linked risk factors for disease development provides a novel mechanistic framework to identify new therapeutic targets for appropriate medical management. PMID:23598784

  18. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  19. Third-space fluid shift in elderly patients undergoing gastrointestinal surgery: Part 1: Pathophysiological mechanisms.

    PubMed

    Redden, Maurine; Wotton, Karen

    2002-06-01

    Third-space fluid shift, the movement of body fluid to a non-functional space, is a frequently occurring and potentially fatal clinical phenomenon. Little published research exists however in medical or nursing journals concerning its incidence, significance and ramifications in elderly patients undergoing major gastrointestinal surgery. This initial article, part I, explores fluid movement between fluid compartments and uses these principles to discuss the pathophysiology of the two distinct phases of third-space fluid shift. Part II will examine the criteria nurses could use in the clinical assessment of patients in both first and second phases third-space fluid shift and discuss the clinical reliability of these criteria.

  20. Role of milk fat globule-epidermal growth factor 8 in osteoimmunology

    PubMed Central

    Sinningen, Kathrin; Thiele, Sylvia; Hofbauer, Lorenz C; Rauner, Martina

    2016-01-01

    Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that is abundantly expressed in various tissues and has a pivotal role in the phagocytic clearance of apoptotic cells. However, MFG-E8 has also gained significant attention because of its wide range of functions in autoimmunity, inflammation and tissue homeostasis. More recently, MFG-E8 has been identified as a critical regulator of bone homeostasis, being expressed in both, osteoblasts and osteoclasts. In addition, it was shown that MFG-E8 fulfils an active role in modulating inflammatory processes, suggesting an anti-inflammatory role of MFG-E8 and proposing it as a novel therapeutic target for inflammatory diseases. This concise review focusses on the expression and regulation of MFG-E8 in the context of inflammatory bone diseases, highlights its role in the pathophysiology of osteoimmune diseases and discusses the therapeutic potential of MFG-E8. PMID:27579162

  1. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context.

    PubMed

    De, Indranil; Sadhukhan, Sushabhan

    2018-03-22

    Protein S-palmitoylation refers to a post-translational modification (PTM) wherein palmitic acid, a 16-carbon long saturated fatty acid gets covalently attached to Cys sidechain of a protein. It has been known to the literature for almost 50 years and in general, this PTM is believed to facilitate membrane attachments of proteins for the obvious hydrophobicity of the palmitoyl group. But after the discovery of the protein palmitoyl acyltransferases (PATs, also known as DHHC-PATs), a major paradigm shift has been observed in the field of protein S-palmitoylation. A family of 23 mammalian DHHC-PATs has been identified and the majority of them are associated with many human diseases spanning from neuropsychiatric diseases to cancers. Novel unique and essential role of DHHC-mediated protein S-palmitoylation has been revealed apart from its membrane trafficking role. Biomedical importance of DHHCs has also been reiterated with small molecule inhibitors for DHHCs as well as in DHHC-knockout mice or mouse Xenograft models. In this review, we present recent advances in the field of protein S-palmitoylation and the involvement of individual DHHC isoforms in human diseases. In addition, the recent development of the analytical tools to study S-palmitoylation and their inhibitors are discussed in detail. We also highlight the issues that need to be addressed in detail to further develop our understanding on protein S-palmitoylation and strongly believe that pharmacological modulation of DHHC-mediated protein S-palmitoylation has a massive potential to emerge as a novel therapeutic strategy for human diseases. It will not be surprising if reversible protein S-palmitoylation prove to be an indispensable PTM that regulates a host of cellular processes, just like protein phosphorylation or ubiquitination. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic

    PubMed Central

    Krystal, John H.; Abdallah, Chadi G.; Averill, Lynette A.; Kelmendi, Benjamin; Harpaz-Rotem, Ilan; Sanacora, Gerard; Southwick, Steven M.; Duman, Ronald S.

    2018-01-01

    Purpose of Review Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. Recent Findings Here, we will briefly review evidence that PTSD might be a “synaptic disconnection syndrome” and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Summary Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics. PMID:28844076

  3. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.

    PubMed

    Kosuge, Yasuhiro; Miyagishi, Hiroko; Yoneoka, Yuki; Yoneda, Keiko; Nango, Hiroshi; Ishige, Kumiko; Ito, Yoshihisa

    2017-07-04

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of motor neurons. The primary triggers for motor neuronal death are still unknown, but inflammation is considered to be an important factor contributing to the pathophysiology of ALS both clinically and in ALS models. Prostaglandin E2 (PGE2) and its corresponding four E-prostanoid receptors play a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. It has also been shown that PGE2-EP2 signaling in glial cells (astrocytes or microglia) promotes motor neuronal death in G93A mice. The present study was designed to investigate the levels of expression of EP receptors in the spinal motor neurons of ALS model mice and to examine whether PGE2 alters the expression of EP receptors in differentiated NSC-34 cells, a motor neuron-like cell line. Immunohistochemical staining demonstrated that EP2 and EP3 immunoreactivity was localized in NeuN-positive large cells showing the typical morphology of motor neurons in mice. Semi-quantitative analysis showed that the immunoreactivity of EP2 in motor neurons was significantly increased in the early symptomatic stage in ALS model mice. In contrast, the level of EP3 expression remained constant, irrespective of age. In differentiated NSC-34 cells, bath application of PGE2 resulted in a concentration-dependent decrease of MTT reduction. Although PGE2 had no effect on cell survival at concentrations of less than 10 μM, pretreatment with 10 μM PGE2 significantly up-regulated EP2 and concomitantly potentiated cell death induced by 30 μM PGE2. These results suggest that PGE2 is an important effector for induction of the EP2 subtype in differentiated NSC-34 cells, and that not only EP2 up-regulation in glial cells but also EP2 up-regulation in motor neurons plays a pivotal role in the vulnerability of motor neurons in ALS model mice. Copyright © 2017 Elsevier Ltd. All rights

  4. Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants

    PubMed Central

    Menon, Ramkumar; Pearce, Brad; Velez, Digna R; Merialdi, Mario; Williams, Scott M; Fortunato, Stephen J; Thorsen, Poul

    2009-01-01

    Objective To study pathophysiologic pathways in spontaneous preterm birth and possibly the racial disparity associating with maternal and fetal genetic variations, using bioinformatics tools. Methods A large scale candidate gene association study was performed on 1442 SNPs in 130 genes in a case (preterm birth < 36 weeks) control study (term birth > 37 weeks). Both maternal and fetal DNA from Caucasians (172 cases and 198 controls) and 279 African-Americans (82 cases and 197 controls) were used. A single locus association (genotypic) analysis followed by hierarchical clustering was performed, where clustering was based on p values for significant associations within each race. Using Ingenuity Pathway Analysis (IPA) software, known pathophysiologic pathways in both races were determined. Results From all SNPs entered into the analysis, the IPA mapped genes to specific disease functions. Gene variants in Caucasians were implicated in disease functions shared with other known disorders; specifically, dermatopathy, inflammation, and hematological disorders. This may reflect abnormal cervical ripening and decidual hemorrhage. In African-Americans inflammatory pathways were the most prevalent. In Caucasians, maternal gene variants showed the most prominent role in disease functions, whereas in African Americans it was fetal variants. The IPA software was used to generate molecular interaction maps that differed between races and also between maternal and fetal genetic variants. Conclusion Differences at the genetic level revealed distinct disease functions and operational pathways in African Americans and Caucasians in spontaneous preterm birth. Differences in maternal and fetal contributions in pregnancy outcome are also different between African Americans and Caucasians. These results present a set of explicit testable hypotheses regarding genetic associations with preterm birth in African Americans and Caucasians PMID:19527514

  5. Arterial hypertension in the female world: pathophysiology and therapy.

    PubMed

    Cadeddu, Christian; Franconi, Flavia; Cassisa, Laura; Campesi, Ilaria; Pepe, Alessia; Cugusi, Lucia; Maffei, Silvia; Gallina, Sabina; Sciomer, Susanna; Mercuro, Giuseppe

    2016-04-01

    Hypertension is a major risk factor for cardiovascular disease and outcomes in women, and antihypertensive therapy is not always successful in achieving control over the blood pressure (BP). Nonoptimal control of BP remains a crucial risk factor for cardiovascular mortality, and in women, it could be related to sex-specific factors. Historically, women have been under-represented in clinical trials; therefore, the benefits of clinical outcomes and the safety profiles of antihypertensive therapies have been studied less extensively in women. The reasons for the sex differences in BP levels are multifactorial, implying different roles of the sex hormones, the renin-angiotensin system, sympathetic activity, and arterial stiffness. A complete understanding of the pathophysiological features of these differences requires further investigation.Nevertheless, the prevalence of the use of antihypertensive agents is higher among middle-aged women than among men. Notably, in the United States, hypertensive women use more diuretics and angiotensin receptor blockers than men, whereas hypertensive men more often receive beta-blockers, calcium channel antagonists, or inhibitors of angiotensin-converting enzyme. To date, the explanations for these sex differences in the consumption of antihypertensive drugs remain unknown.

  6. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome

    PubMed Central

    Blondonnet, Raiko; Constantin, Jean-Michel; Sapin, Vincent; Jabaudon, Matthieu

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care. PMID:26980924

  7. Pathophysiological relationships between heart failure and depression and anxiety.

    PubMed

    Chapa, Deborah W; Akintade, Bimbola; Son, Heesook; Woltz, Patricia; Hunt, Dennis; Friedmann, Erika; Hartung, Mary Kay; Thomas, Sue Ann

    2014-04-01

    Depression and anxiety are common comorbid conditions in patients with heart failure. Patients with heart failure and depression have increased mortality. The association of anxiety with increased mortality in patients with heart failure is not established. The purpose of this article is to illustrate the similarities of the underlying pathophysiology of heart failure, depression, and anxiety by using the Biopsychosocial Holistic Model of Cardiovascular Health. Depression and anxiety affect biological processes of cardiovascular function in patients with heart failure by altering neurohormonal function via activation of the hypothalamic-pituitary-adrenal axis, autonomic dysregulation, and activation of cytokine cascades and platelets. Patients with heart failure and depression or anxiety may exhibit a continued cycle of heart failure progression, increased depression, and increased anxiety. Understanding the underlying pathophysiological relationships in patients with heart failure who experience comorbid depression and/or anxiety is critical in order to implement appropriate treatments, educate patients and caregivers, and educate other health professionals.

  8. The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases.

    PubMed

    Bernheim, Jacques; Benchetrit, Sydney

    2011-08-01

    Fibroblast growth factor (FGF) 23 and Klotho are two factors associated with several metabolic disorders. Similar to humans, accelerated aging processes characterized by chronic vascular disease, bone demineralization, skin atrophy and emphysema have been recognized in FGF23-null mice and Klotho-deficient mice. The role of these factors in the control of mineral metabolism homeostasis have been shown recently, particularly at the level of parathyroid cells and also in modulating active vitamin D production, two phenomena which are relevant in the presence of chronic kidney disease. In addition, the hormonal affect of circulating FGF23 and Klotho proteins on vascular reactivity, either directly on endothelial cell functions or indirectly by modulating the brain endothelin-1-dependent sympathetic nervous system activity, has contributed to understanding their role in the pathophysiology of hypertension and atherosclerotic vasculopathies. Consequently, very recent clinical investigations seem to confirm the involvement of Klotho in modulating the severity and prognosis of human cardiovascular (CV) disorders and longevity. The present review reports data related to the possible interactive effects of Klotho and FGF23 on the prognosis of renal and CV diseases.

  9. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension.

    PubMed

    Hong, Mo-Na; Li, Xiao-Dong; Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-10-18

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement.

  10. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension

    PubMed Central

    Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-01-01

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement. PMID:27661131

  11. The role of anaerobic bacteria in the cystic fibrosis airway.

    PubMed

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  12. Pathophysiology and Potential Non-Pharmacologic Treatments of Obesity or Kidney Disease Associated Refractory Hypertension.

    PubMed

    Le Jemtel, Thierry H; Richardson, William; Samson, Rohan; Jaiswal, Abhishek; Oparil, Suzanne

    2017-02-01

    The review assesses the role of non-pharmacologic therapy for obesity and chronic kidney disease (CKD) associated refractory hypertension (rf HTN). Hypertensive patients with markedly heightened sympathetic nervous system (SNS) activity are prone to develop refractory hypertension (rfHTN). Patients with obesity and chronic kidney disease (CKD)-associated HTN have particularly heightened SNS activity and are at high risk of rfHTN. The role of bariatric surgery is increasingly recognized in treatment of obesity. Current evidence advocates for a greater role of bariatric surgery in the management of obesity-associated HTN. In contrast, renal denervation does not appear have a role in the management of obesity or CKD-associated HTN. The role of baroreflex activation as adjunctive anti-hypertensive therapy remains to be defined.

  13. Role of the intrarenal renin-angiotensin system in the progression of renal disease.

    PubMed

    Urushihara, Maki; Kagami, Shoji

    2017-09-01

    The intrarenal renin-angiotensin system (RAS) has many well-documented pathophysiologic functions in both blood pressure regulation and renal disease development. Angiotensin II (Ang II) is the major bioactive product of the RAS. It induces inflammation, renal cell growth, mitogenesis, apoptosis, migration, and differentiation. In addition, Ang II regulates the gene expression of bioactive substances and activates multiple intracellular signaling pathways that are involved in renal damage. Activation of the Ang II type 1 (AT1) receptor pathway results in the production of proinflammatory mediators, intracellular formation of reactive oxygen species, cell proliferation, and extracellular matrix synthesis, which in turn facilities renal injury. Involvement of angiotensinogen (AGT) in intrarenal RAS activation and development of renal disease has previously been reported. Moreover, studies have demonstrated that the urinary excretion rates of AGT provide a specific index of the intrarenal RAS status. Enhanced intrarenal AGT levels have been observed in experimental models of renal disease, supporting the concept that AGT plays an important role in the development and progression of renal disease. In this review, we focus on the role of intrarenal RAS activation in the pathophysiology of renal disease. Additionally, we explored the potential of urinary AGT as a novel biomarker of intrarenal RAS status in renal disease.

  14. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  15. Detrusor underactivity: Pathophysiological considerations, models and proposals for future research. ICI-RS 2013.

    PubMed

    van Koeveringe, Gommert A; Rademakers, Kevin L J; Birder, Lori A; Korstanje, Cees; Daneshgari, Firouz; Ruggieri, Michael R; Igawa, Yasuhiko; Fry, Christopher; Wagg, Adrian

    2014-06-01

    Detrusor underactivity, resulting in either prolonged or inefficient voiding, is a common clinical problem for which treatment options are currently limited. The aim of this report is to summarize current understanding of the clinical observation and its underlying pathophysiological entities. This report results from presentations and subsequent discussion at the International Consultation on Incontinence Research Society (ICI-RS) in Bristol, 2013. The recommendations made by the ICI-RS panel include: Development of study tools based on a system's pathophysiological approach, correlation of in vitro and in vivo data in experimental animals and humans, and development of more comprehensive translational animal models. In addition, there is a need for longitudinal patient data to define risk groups and for the development of screening tools. In the near-future these recommendations should lead to a better understanding of detrusor underactivity and its pathophysiological background. Neurourol. Urodynam. 33:591-596, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  16. The role of selenium in thyroid gland pathophysiology.

    PubMed

    Stuss, Michał; Michalska-Kasiczak, Marta; Sewerynek, Ewa

    2017-01-01

    It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium). Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG. This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.

  17. Genetic Variants Associated with Hyperandrogenemia in PCOS Pathophysiology

    PubMed Central

    2018-01-01

    Polycystic ovary syndrome is a multifactorial endocrine disorder whose pathophysiology baffles many researchers till today. This syndrome is typically characterized by anovulatory cycles and infertility, altered gonadotropin levels, obesity, and bulky multifollicular ovaries on ultrasound. Hyperandrogenism and insulin resistance are hallmark features of its complex pathophysiology. Hyperandrogenemia is a salient feature of PCOS and a major contributor to cosmetic anomalies including hirsutism, acne, and male pattern alopecia in affected women. Increased androgen levels may be intrinsic or aggravated by preexisting insulin resistance in women with PCOS. Studies have reported augmented ovarian steroidogenesis patterns attributed mainly to theca cell hypertrophy and altered expression of key enzymes in the steroidogenic pathway. Candidate gene studies have been performed in order to delineate the association of polymorphisms in genes, which encode enzymes in the intricate cascade of steroidogenesis or modulate the levels and action of circulating androgens, with risk of PCOS development and its related traits. However, inconsistent findings have impacted the emergence of a unanimously accepted genetic marker for PCOS susceptibility. In the current review, we have summarized the influence of polymorphisms in important androgen related genes in governing genetic predisposition to PCOS and its related metabolic and reproductive traits. PMID:29670770

  18. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder

    PubMed Central

    Ionescu, Dawn F.; Richards, Erica M.; Zarate, Carlos A.

    2014-01-01

    Monoaminergic neurotransmitter (serotonin, norepinephrine and dopamine) mechanisms of disease dominated the research landscape in the pathophysiology and treatment of major depressive disorder (MDD) for more than 50 years and still dominate available treatment options. However, the sum of all brain neurons that use monoamines as their primary neurotransmitter is <20 %. In addition, most patients treated with monoaminergic antidepressants are left with significant residual symptoms and psychosocial disability not to mention side effects, e.g., sexual dysfunction. In the past several decades, there has been greater focus on the major excitatory neurotransmitter in the human brain, glutamate, in the pathophysiology and treatment of MDD. Although several preclinical and human magnetic resonance spectroscopy studies had already implicated glutamatergic abnormalities in the human brain, it was rocketed by the discovery that the N-methyl-D-aspartate receptor antagonist ketamine has rapid and potent antidepressant effects in even the most treatment-resistant MDD patients, including those who failed to respond to electroconvulsive therapy and who have active suicidal ideation. In this review, we will first provide a brief introduction to glutamate and its receptors in the mammalian brain. We will then review the clinical evidence for glutamatergic dysfunction in MDD, the discovery and progress-to-date with ketamine as a rapidly acting antidepressant, and other glutamate receptor modulators (including proprietary medications) for treatment-resistant depression. We will finally conclude by offering potential future directions necessary to realize the enormous therapeutic promise of glutamatergic antidepressants. PMID:24318540

  19. Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses

    PubMed Central

    Yamaguchi, Akira; Katsuyama, Kayoko; Nagahama, Kiyotaka; Takai, Toshiyuki; Aoki, Ichiro; Yamanaka, Shoji

    2004-01-01

    Mice containing a disruption of the Hexb gene have provided a useful model system for the study of the human lysosomal storage disorder known as Sandhoff disease (SD). Hexb–/– mice rapidly develop a progressive neurologic disease of ganglioside GM2 and GA2 storage. Our study revealed that the disease states in this model are associated with the appearance of antiganglioside autoantibodies. Both elevation of serum antiganglioside autoantibodies and IgG deposition to CNS neurons were found in the advanced stages of the disease in Hexb–/– mice; serum transfer from these mice showed IgG binding to neurons. To determine the role of these autoantibodies, the Fc receptor γ gene (FcRγ) was additionally disrupted in Hexb–/– mice, as it plays a key role in immune complex–mediated autoimmune diseases. Clinical symptoms were improved and life spans were extended in the Hexb–/–FcRγ–/– mice; the number of apoptotic cells was also decreased. The level of ganglioside accumulation, however, did not change. IgG deposition was also confirmed in the brain of an autopsied SD patient. Taken together, these findings suggest that the production of autoantibodies plays an important role in the pathogenesis of neuropathy in SD and therefore provides a target for novel therapies. PMID:14722612

  20. Pathophysiology and treatment of psychosis in Parkinson's disease: a review.

    PubMed

    Zahodne, Laura B; Fernandez, Hubert H

    2008-01-01

    Psychotic symptoms in Parkinson's disease (PD) are relatively common and, in addition to creating a disturbance in patients' daily lives, have consistently been shown to be associated with poor outcome. Our understanding of the pathophysiology of psychosis in PD has expanded dramatically over the past 15 years, from an initial interpretation of symptoms as dopaminergic drug adverse effects to the current view of a complex interplay of extrinsic and disease-related factors.PD psychosis has unique clinical features, namely that it arises within a context of a clear sensorium and retained insight, there is relative prominence of visual hallucinations and progression occurs over time. PD psychosis tends to emerge later in the disease course, and disease duration represents one risk factor for its development. The use of anti-PD medications (particularly dopamine receptor agonists) has been the most widely identified risk factor for PD psychosis. Other risk factors discussed in the literature include older age, disease severity, sleep disturbance, cognitive impairment, dementia and/or depression.Recent efforts have aimed to explore the complex pathophysiology of PD psychosis, which is now known to involve an interaction between extrinsic, drug-related and intrinsic, disease-related components. The most important extrinsic factor is use of dopaminergic medication, which plays a prominent role in PD psychosis. Intrinsic factors include visual processing deficits (e.g. lower visual acuity, colour and contrast recognition deficits, ocular pathology and functional brain abnormalities identified amongst hallucinating PD patients); sleep dysregulation (e.g. sleep fragmentation and altered dream phenomena); neurochemical (dopamine, serotonin, acetylcholine, etc.) and structural abnormalities involving site-specific Lewy body deposition; and genetics (e.g. apolipoprotein E epsilon4 allele and tau H1H1 genotype). Preliminary reports have also shown a potential relationship

  1. Realising their potential? Exploring interprofessional perceptions and potential of the advanced practitioner role: a qualitative analysis

    PubMed Central

    Powell, Tom; Watkins, Dianne; Kelly, Daniel

    2015-01-01

    Objectives To explore perceptions of the current practice and future potential of advanced practitioners (APs) from the perspectives of different professional groups in Wales UK. Design A qualitative study consisting of nine focus group interviews. Methods Initially verbatim transcriptions of each focus group interviews were analysed thematically before themes were merged to represent perceptions for the whole data set. Participants Data were gathered from a total of 67 stakeholders—including APs from a variety of professional groups (eg, nursing, physiotherapy, paramedics) as well as managers, workforce developers, educators and medical staff who have a role developing and supporting APs in practice. Results The results are presented in four themes: (1) demand, policy context and future priorities, (2) role clarity and standardisation, (3) agreement and understanding of the role and (4) interprofessional working. The context within which current and future AP roles were considered was influenced by inexorable demands for healthcare and the requirements to meet health policy priorities. Developing AP roles were hampered currently by a lack of shared understanding and ‘joined-up’ working between different groups such as medical practitioners, managers, commissioners and educators. Conclusions For the AP role to flourish more ‘joined-up’ thinking, support and development opportunities are required between APs, managers, senior clinicians, commissioners and educators. Working together to plan and deliver education, innovation and service delivery is of prime importance to meeting ever increasing complex health needs. This will ensure that future APs are adequately prepared and supported to reach their full potential and help deliver necessary innovations in current models of care delivery. PMID:26656024

  2. Bipolar Pathophysiology and Development of Improved Treatments

    PubMed Central

    Bowden, Charles L.

    2013-01-01

    The purpose of this review is to provide strategies and their rationale which can facilitate scientifically productive investigations into genetic, neuronal, brain functional and clinical aspects of bipolar disorder. The presentation addresses both factors that have impeded and those that have facilitated landmark advances on the pathophysiology and treatment of bipolar disorders. Application of the strategies can provide a scientific platform that may be useful to basic and clinical scientists for the purposes of achieving seminal advances in understanding pathophysiology, including inherited and experience based contributors to disease expression. Current diagnostic criteria omit certain key symptoms, do not include illness course or family history and lack specification of the importance of fundamental symptomatology. Consideration of such factors in inclusion and exclusion criteria, and in assessment instruments in basic and clinical studies, serves to strengthen the capability of a research plan to test key hypotheses regarding moderating and mediating factors of this complex illness. For example, most studies of brain structure and function and of new interventions have selected subjects on the basis of traditional full syndromal criteria. Evidence indicates that additional consideration of principal behavioral domains of bipolar symptomatology, e.g., anxiety, psychosis, impulsivity, elevated psychomotor and cognitive processing speed, rather than strictly depressive or manic syndromes can provide more homogeneous samples for study, and increase the focus of experimental hypotheses. PMID:18582440

  3. Role of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases

    PubMed Central

    Gu, Hongwei

    2015-01-01

    Peroxisome proliferator-activated receptor γ (PPAR γ), a member of the nuclear receptor superfamily, is a ligand-activated transcription factor that plays an important role in the control of a variety of physiological processes. The last decade has witnessed an increasing interest for the role played by the agonists of PPAR γ in antiangiogenesis, antifibrosis, anti-inflammation effects and in controlling oxidative stress response in various organs. As the pathologic mechanisms of major blinding diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), keratitis, and optic neuropathy, often involve neoangiogenesis and inflammation- and oxidative stress-mediated cell death, evidences are accumulating on the potential benefits of PPAR γ to improve or prevent these vision threatening eye diseases. In this paper we describe what is known about the role of PPAR γ in the ocular pathophysiological processes and PPAR γ agonists as novel adjuvants in the treatment of eye diseases. PMID:26146566

  4. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature.

    PubMed

    Evangelho, Karine; Mogilevskaya, Maria; Losada-Barragan, Monica; Vargas-Sanchez, Jeinny Karina

    2017-12-30

    Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell. A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective. Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness. The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma

  5. HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation

    PubMed Central

    Kim, Hyeon Ju; Chuang, De-Maw

    2014-01-01

    White matter injury is an important component of stroke pathology, but its pathophysiology and potential treatment remain relatively elusive and underexplored. We previously reported that after permanent middle cerebral artery occlusion (pMCAO), sodium butyrate (SB) and trichostatin A (TSA) induced neurogenesis via histone deacetylase (HDAC) inhibition in multiple ischemic brain regions in rats; these effects-which depended on activation of brain-derived neurotrophic factor (BDNF)-TrkB signaling-contributed to behavioral improvement. The present study found that SB or TSA robustly protected against ischemia-induced loss of oligodendrocytes detected by confocal microscopy of myelin basic protein (MBP) immunostaining in the ipsilateral subventricular zone (SVZ), striatum, corpus callosum, and frontal cortex seven days post-pMCAO. Co-localization of 5-bromo-2’-deoxyuridine (BrdU)+ and MBP+ cells after SB treatment suggested the occurrence of oligodendrogenesis. SB also strongly upregulated vascular endothelial growth factor (VEGF), which plays a major role in neurogenesis, angiogenesis, and functional recovery after stroke. These SB-induced effects were markedly suppressed by blocking the TrkB signaling pathway with K252a. pMCAO-induced activation of microglia (OX42+) and macrophages/monocytes (ED1+)-which has been linked to white matter injury-was robustly suppressed by SB in a K252a-sensitive manner. In addition, SB treatment largely blocked caspase-3+ and OX42+ cells in ipsilateral brain regions. Our results suggest that HDAC inhibitor-mediated protection against ischemia-induced oligodendrocyte loss may involve multiple mechanisms including oligodendrogenesis, VEGF upregulation, anti-inflammation, and caspase-3 downregulation. Taken together, the results suggest that post-insult treatment with HDAC inhibitors is a rational strategy to mitigate white matter injury following ischemic stroke. PMID:24936215

  6. miRNAs as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo

    2012-03-01

    Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.

  7. PULMONARY PATHOPHYSIOLOGY AND LUNG MECHANICS IN ANESTHESIOLOGY: A CASE-BASED OVERVIEW

    PubMed Central

    Vidal Melo, Marcos F.; Musch, Guido; Kaczka, David W.

    2012-01-01

    The induction and maintenance of anesthesia, surgical requirements, and patients’ unique pathophysiology all combine to create a setting in which our accumulated knowledge of respiratory physiology and lung mechanics take on immediate and central importance in patient management. In this review we will take a case-based approach to illustrate how the complex interactions between anesthesia, surgery, and patient disease impact patient care with respect to pulmonary pathophysiology and clinical decision-making. We will examine two disparate scenarios: a patient with chronic obstructive pulmonary disease undergoing a lung resection, and a patient with coronary artery disease undergoing cardiopulmonary bypass. In each example we will illustrate how important concepts in pulmonary physiology and respiratory mechanics impact clinical management decisions. PMID:23089508

  8. Light-induced depigmentation in planarians models the pathophysiology of acute porphyrias.

    PubMed

    Stubenhaus, Bradford M; Dustin, John P; Neverett, Emily R; Beaudry, Megan S; Nadeau, Leanna E; Burk-McCoy, Ethan; He, Xinwen; Pearson, Bret J; Pellettieri, Jason

    2016-05-31

    Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias - decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis.

  9. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage

    PubMed Central

    Leclerc, Jenna L.; Garcia, Joshua M.; Diller, Matthew A.; Carpenter, Anne-Marie; Kamat, Pradip K.; Hoh, Brian L.; Doré, Sylvain

    2018-01-01

    Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research. PMID:29623028

  10. AT2 RECEPTOR ACTIVITIES AND PATHOPHYSIOLOGICAL IMPLICATIONS

    PubMed Central

    Matavelli, Luis C.; Siragy, Helmy M.

    2014-01-01

    Although angiotensin II subtype-2 receptor (AT2R) was discovered over two decades ago, its contribution to physiology and pathophysiology is not fully elucidated. Current knowledge suggests that under normal physiologic conditions, AT2R counterbalances the effects of angiotensin II subtype-1 receptor (AT1R). A major obstacle for AT2R investigations was the lack of specific agonists. Most of the earlier AT2R studies were performed using the peptidic agonist, CG42112A, or the non-peptidic antagonist PD123319. CGP42112A is non-specific for AT2R and in higher concentrations can bind to AT1R. Recently, the development of specific non-peptidic AT2R agonists boosted the efforts in identifying the therapeutic potentials for AT2R stimulation. Unlike AT1R, AT2R is involved in vasodilation via release of bradykinin and nitric oxide, anti-inflammation and healing from injury. Interestingly, the vasodilatory effects of AT2R stimulation were not associated with significant reduction in blood pressure. In the kidney, AT2R stimulation produced natriuresis, increased renal blood flow, and reduced tissue inflammation. In animal studies, enhanced AT2R function led to reduction of cardiac inflammation and fibrosis, and reduced the size of the infarcted area. Similarly, AT2R stimulation demonstrated protective effects in vasculature and brain. PMID:25636068

  11. Leptin: physiology and pathophysiology.

    PubMed

    Frühbeck, G; Jebb, S A; Prentice, A M

    1998-09-01

    The identification and sequencing of the ob gene and its product, leptin, in late 1994 opened new insights in the study of the mechanisms controlling body weight and led to a surge of research activity. During this time, a considerable body of knowledge regarding leptin's actions has been accumulated and the field continues to expand rapidly. Currently there is particular interest in the interaction of leptin with other peripheral and neural mechanisms to regulate body weight, reproduction and immunological response. In this review, we attempt to place the current state of knowledge about leptin in the broader perspective of physiology, including its structural characteristics, receptors, binding proteins, signalling pathways, regulation of adipose tissue expression and production, secretion patterns, clearance mechanisms and functional effects. In addition, leptin's involvement in the pathophysiology of obesity, anorexia nervosa, diabetes mellitus, polycystic ovary syndrome, acquired immunodeficiency syndrome, cancer, nephropathy, thyroid disease, Cushing's syndrome and growth hormone deficiency will be reviewed.

  12. The Role of Multimodal Invasive Monitoring in Acute Traumatic Brain Injury.

    PubMed

    Lazaridis, Christos; Robertson, Claudia S

    2016-10-01

    This article reviews the role of modalities that directly monitor brain parenchyma in patients with severe traumatic brain injury. The physiology monitored involves compartmental and perfusion pressures, tissue oxygenation and metabolism, quantitative blood flow, pressure autoregulation, and electrophysiology. There are several proposed roles for this multimodality monitoring, such as to track, prevent, and treat the cascade of secondary brain injury; monitor the neurologically injured patient; integrate various data into a composite, patient-specific, and dynamic picture; apply protocolized, pathophysiology-driven intensive care; use as a prognostic marker; and understand pathophysiologic mechanisms involved in secondary brain injury to develop preventive and abortive therapies, and to inform future clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Potential Role of Aminoprocalcitonin in the Pathogenesis of Alzheimer Disease.

    PubMed

    Tavares, Eva; Antequera, Desiree; López-González, Irene; Ferrer, Isidro; Miñano, Francisco J; Carro, Eva

    2016-10-01

    Increasing evidence suggests that inflammatory responses cause brain atrophy and play a prominent and early role in the progression of Alzheimer disease. Recent findings show that the neuroendocrine peptide aminoprocalcitonin (NPCT) plays a critical role in the development of systemic inflammatory response; however, the presence, possible function, regulation, and mechanisms by which NPCT may be involved in Alzheimer disease neuropathology remain unknown. We explored the expression of NPCT and its interaction with amyloid-β (Aβ), and proinflammatory and neurogenic effects. By using brain samples of Alzheimer disease patients and APP/PS1 transgenic mice, we evaluated the potential role of NPCT on Aβ-related pathology. We found that NPCT is expressed in hippocampal and cortical neurons and Aβ-induced up-regulation of NPCT expression. Peripherally administered antibodies against NPCT decreased microglial activation, decreased circulating levels of proinflammatory cytokines, and prevented Aβ-induced neurotoxicity in experimental models of Alzheimer disease. Remarkably, anti-NPTC therapy resulted in a significant improvement in the behavioral status of APP/PS1 mice. Our results indicate a central role of NPCT in Alzheimer disease pathogenesis and suggest NPCT as a potential biomarker and therapeutic target. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  15. A Web-based e-learning course: integration of pathophysiology into pharmacology.

    PubMed

    Tse, Mimi M Y; Lo, Lisa W L

    2008-11-01

    The Internet is becoming the preferred place to find information. Millions of people go online in search of health and medical information. Likewise, the demand for Web-based courses is growing. This paper presents the development, utilization, and evaluation of a Web-based e-learning course for nursing students, entitled Integration of Pathophysiology into Pharmacology. The pathophysiology component included cardiovascular, respiratory, central nervous and immune system diseases, while the pharmacology component was developed based on 150 commonly used drugs. One hundred and nineteen Year 1 nursing students took part in the course. The Web-based e-learning course materials were uploaded to a WebCT for students' self-directed learning and attempts to pass two scheduled online quizzes. At the end of the semester, students were given a questionnaire to measure the e-learning experience. Their experience in the e-learning course was a positive one. Students stated that they were able to understand rather than memorize the subject content, and develop their problem solving and critical thinking abilities. Online quizzes yielded satisfactory results. In the focus group interview, students indicated that they appreciated the time flexibility and convenience associated with Web-based learning, and also made good suggestions for enhancing Web-based learning. The Web-based approach is promising for teaching and learning pathophysiology and pharmacology for nurses and other healthcare professionals.

  16. Pediatric IBS: an overview on pathophysiology, diagnosis and treatment.

    PubMed

    Chogle, Ashish; Mintjens, Stijn; Saps, Miguel

    2014-04-01

    Irritable bowel syndrome (IBS) is a common disorder in children and adults. The pathogenesis and pathophysiology of IBS remains incompletely understood. The biopsychosocial model, which conceptualizes chronic pain as a dysregulation of the gut-brain-homeostasis with peripheral and central factors mutually influencing each other, is the most accepted framework to explain IBS. Twin and family aggregation studies suggest a genetic component that does not exclusively explain the higher prevalence of IBS in certain families. Social learning (environmental factors) and maladaptive coping predispose children to develop IBS with greater disability and more frequent medical consultations. Early-life events constitute an additional risk factor for the development of IBS and other functional gastrointestinal disorders (FGIDs). Children with a history of cow's milk protein hypersensitivity or abdominal surgeries have a higher prevalence of IBS and other FGIDs years later. IBS frequently follows an episode of acute gastrointestinal inflammation (infectious or non-infectious). This article discusses the importance, known pathophysiological mechanisms, clinical approach, and evidence-based therapeutic options for the management of IBS in children and adolescents. Copyright 2014, SLACK Incorporated.

  17. Palmar hyperhidrosis: clinical, pathophysiological, diagnostic and therapeutic aspects.

    PubMed

    Romero, Flávio Ramalho; Haddad, Gabriela Roncada; Miot, Hélio Amante; Cataneo, Daniele Cristina

    2016-01-01

    Palmar hyperhidrosis affects up to 3% of the population and inflict significant impact on quality of life. It is characterized by chronic excessive sweating, not related to the necessity of heat loss. It evolves from a localized hyperactivity of the sympathetic autonomic system and can be triggered by stressful events. In this study, the authors discuss clinical findings, pathophysiological, diagnostic and therapeutic issues (clinical and surgical) related to palmar hyperhidrosis.

  18. Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase.

    PubMed

    Shibayama, Keigo; Takeuchi, Hiroaki; Wachino, Jun-Ichi; Mori, Shigetarou; Arakawa, Yoshichika

    2011-06-01

    Asparaginase was purified from Helicobacter pylori 26695 and its pathophysiological role explored. The K(m) value of asparagine was 9.75 ± 1.81 μM at pH 7.0, and the optimum pH range was broad and around a neutral pH. H. pylori asparaginase converted extracellular asparagine to aspartate. H. pylori cells were unable to take up extracellular asparagine directly. Instead, aspartate produced by the action of the asparaginase was transported into H. pylori cells, where it was partially converted to β-alanine. Asparaginase exhibited striking cytotoxic activity against histiocytic lymphoma cell line U937 cells via asparagine deprivation. The cytotoxic activity of live H. pylori cells against U937 cells was significantly diminished by deletion of the asparaginase gene, indicating that asparaginase functions as a cytotoxic agent of the bacterium. The cytotoxic effect was negligible for gastric epithelial cell line AGS cells, suggesting that the effect differs across host cell types. An asparaginase-deficient mutant strain was significantly less capable of colonizing Mongolian gerbils. Since asparagine depletion by exogenous asparaginase has been shown to suppress lymphocyte proliferation in vivo, the present results suggest that H. pylori asparaginase may be involved in inhibition of normal lymphocyte function at the gastric niche, allowing H. pylori to evade the host immune system. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  19. Endoplasmic Reticulum Stress and Nox-Mediated Reactive Oxygen Species Signaling in the Peripheral Vasculature: Potential Role in Hypertension

    PubMed Central

    Nabeebaccus, Adam A.; Shah, Ajay M.; Camargo, Livia L.; Filho, Sidney V.; Lopes, Lucia R.

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. Recent Advances: Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). Critical Issues: A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. Future Directions: The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension. Antioxid. Redox Signal. 20, 121–134. PMID:23472786

  20. PET measurements of myocardial blood flow post myocardial infarction: Relationship to invasive and cardiac magnetic resonance studies and potential clinical applications.

    PubMed

    Gewirtz, Henry

    2017-12-01

    This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.

  1. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis.

    PubMed

    Kong, Wei-Lin; Peng, Yuan-Yuan; Peng, Bi-Wen

    2017-08-01

    Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The pathophysiology of transfusional iron overload.

    PubMed

    Porter, John B; Garbowski, Maciej

    2014-08-01

    The pathophysiologic consequences of transfusional iron overload (TIO) as well as the benefits of iron chelation therapy are best described in thalassemia major, although TIO is increasingly seen in other clinical settings. These consequences broadly reflect the levels and distribution of excess storage iron in the heart, endocrine tissues, and liver. TIO also increases the risk of infection, due to increased availability of labile iron to microorganisms. The authors suggest that extrahepatic iron distribution, and hence toxicity, is influenced by balance between generation of nontransferrin-bound iron from red cell catabolism and the utilization of transferrin iron by the erythron. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Pathophysiology of osteoporosis: new mechanistic insights.

    PubMed

    Armas, Laura A G; Recker, Robert R

    2012-09-01

    Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Pathophysiology of the anorexia of aging.

    PubMed

    Morley, John E

    2013-01-01

    Anorexia represents a major problem for older persons leading to weight loss, sarcopenia, functional decline, and mortality. There is increasing information on the pathophysiological mechanisms that lead to anorexia. Increasing evidence has shown the importance of gastrointestinal hormones (ghrelin, cholecystokinin, and glucagon-like peptide) and adipokines in producing the anorexia of aging. Numerous neurotransmitters have been shown to be involved in this aging anorexia, but evidence in humans is lacking. The early recognition of anorexia of aging is important to allow intervention and prevent functional deterioration in older persons. Screening tests for anorexia have been developed. New approaches to managing anorexia are being tested.

  5. Thrombosis in Philadelphia negative classical myeloproliferative neoplasms: a narrative review on epidemiology, risk assessment, and pathophysiologic mechanisms.

    PubMed

    Ball, Somedeb; Thein, Kyaw Zin; Maiti, Abhishek; Nugent, Kenneth

    2018-05-01

    Thrombosis is common in cancer patients and is associated with increased morbidity and mortality. Myeloproliferative neoplasms (MPN) are common malignancies in elderly individuals and are known for a high incidence of thrombotic complications. Different risk factors have been identified in studies, and risk models have been developed to identify patients with MPN at higher risk for thrombosis. Several pathophysiological mechanisms help explain the increased likelihood of thrombosis in these patients. Factors, such as leukocyte and platelet activation leading to the formation of leukocyte-platelet aggregates, activation of the coagulation cascade by microparticles, high levels of inflammatory cytokines, and endothelial dysfunction have a crucial role in thrombosis in MPN patients. Recent studies have demonstrated a significant association between the allele burden of specific genetic mutations (mainly JAK2V617F) associated with MPN and the incidence of thrombotic events, thus suggesting a possible role for these mutations in thrombogenesis.

  6. Maternal syphilis: pathophysiology and treatment.

    PubMed Central

    Berman, Stuart M.

    2004-01-01

    Despite the long history of medical interest in syphilis and its effects on pregnancy outcome, many fundamental questions about the pathophysiology and treatment of syphilis during pregnancy remain unanswered. However, understanding has been advanced by recent scientific reports such as those which delineate the complete sequence of the genome of the syphilis spirochaete, provide a more precise description of fetal and neonate infection by use of rabbit infectivity tests and describe the gestational age distribution of fetal death secondary to syphilis. It appears that fetal syphilitic involvement progresses in a rather predictable fashion, and although there is disagreement about the optimal prenatal treatment regimen, programmatic efforts to prevent fetal death must provide seropositive pregnant women with a recommended treatment early in pregnancy, and certainly before the third trimester. PMID:15356936

  7. Microparticles from splenectomized β-thalassemia/HbE patients play roles on procoagulant activities with thrombotic potential.

    PubMed

    Klaihmon, Phatchanat; Phongpao, Kunwadee; Kheansaard, Wasinee; Noulsri, Egarit; Khuhapinant, Archrob; Fucharoen, Suthat; Morales, Noppawan Phumala; Svasti, Saovaros; Pattanapanyasat, Kovit; Chaichompoo, Pornthip

    2017-02-01

    Thromboembolic events including cerebral thrombosis, deep vein thrombosis, and pulmonary embolism are major complications in β-thalassemia. Damaged red blood cells and chronic platelet activation in splenectomized β-thalassemia/HbE patients were associated with increased microparticles (MPs) releases into blood circulation. MPs are small membrane vesicles, which play important roles on coagulation. However, the role of MP in thalassemia is poorly understood. In this study, the effects of splenectomized-MPs on platelet activation and aggregation were investigated. The results showed that isolated MPs from fresh platelet-free plasma of patients and normal subjects directly induce platelet activation, platelet aggregation, and platelet-neutrophil aggregation in a dose-dependent manner. Interestingly, MPs obtained from splenectomized patients are more efficient in induction of platelet activation (P-selectin + ) when compared to MPs from normal subjects (P < 0.05), tenfold lower than pathophysiological level, at 1:0.1 platelet MP ratio. Co-incubation of splenectomized-MPs with either normal-, non-splenectomized- or splenectomized-platelets at 1:10 platelet MP ratio increased platelet activation up to 5.1 ± 2.2, 5.6 ± 3.7, and 9.5 ± 3.0%, respectively, when normalized with individual baseline. These findings suggest that splenectomized patients were proned to be activated by MPs, and splenectomized-MPs could play an important role on chronic platelet activation and aggregation, leading to thrombus formation in β-thalassemia/HbE patients.

  8. The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis

    PubMed Central

    Valenzuela, Claudio A.; Quintanilla, Ricardo; Moore-Carrasco, Rodrigo; Brown, Nelson E.

    2017-01-01

    In addition to thrombus formation, alterations in platelet function are frequently observed in cancer patients. Importantly, both thrombus and tumor formation are influenced by age, although the mechanisms through which physiological aging modulates these processes remain poorly understood. In this context, the potential effects of senescent cells on platelet function represent pathophysiological mechanisms that deserve further exploration. Cellular senescence has traditionally been viewed as a barrier to tumorigenesis. However, far from being passive bystanders, senescent cells are metabolically active and able to secrete a variety of soluble and insoluble factors. This feature, known as the senescence-associated secretory phenotype (SASP), may provide senescent cells with the capacity to modify the tissue environment and, paradoxically, promote proliferation and neoplastic transformation of neighboring cells. In fact, the SASP-dependent ability of senescent cells to enhance tumorigenesis has been confirmed in cellular systems involving epithelial cells and fibroblasts, leaving open the question as to whether similar interactions can be extended to other cellular contexts. In this review, we discuss the diverse functions of platelets in tumorigenesis and suggest the possibility that senescent cells might also influence tumorigenesis through their ability to modulate the functional status of platelets through the SASP. PMID:28894697

  9. Neurovascular and Neuroimmune Aspects in the Pathophysiology of Rosacea

    PubMed Central

    Schwab, Verena D.; Sulk, Mathias; Seeliger, Stephan; Nowak, Pawel; Aubert, Jerome; Mess, Christian; Rivier, Michel; Carlavan, Isabelle; Rossio, Patricia; Metze, Dieter; Buddenkotte, Jörg; Cevikbas, Ferda; Voegel, Johannes J.; Steinhoff, Martin

    2013-01-01

    Rosacea is a common skin disease with a high impact on quality of life. Characterized by erythema, edema, burning pain, immune infiltration, and facial skin fibrosis, rosacea has all the characteristics of neurogenic inflammation, a condition induced by sensory nerves via antidromically released neuromediators. To investigate the hypothesis of a central role of neural interactions in the pathophysiology, we analyzed molecular and morphological characteristics in the different subtypes of rosacea by immunohistochemistry, double immunofluorescence, morphometry, real-time PCR, and gene array analysis, and compared the findings with those for lupus erythematosus or healthy skin. Our results showed significantly dilated blood and lymphatic vessels. Signs of angiogenesis were only evident in phymatous rosacea. The number of mast cells and fibroblasts was increased in rosacea, already in subtypes in which fibrosis is not clinically apparent, indicating early activation. Sensory nerves were closely associated with blood vessels and mast cells, and were increased in erythematous rosacea. Gene array studies and qRT-PCR confirmed upregulation of genes involved in vasoregulation and neurogenic inflammation. Thus, dysregulation of mediators and receptors implicated in neurovascular and neuroimmune communication may be crucial at early stages of rosacea. Drugs that function on neurovascular and/or neuroimmune communication may be beneficial for the treatment of rosacea. PMID:22076328

  10. Genetics of liver disease: From pathophysiology to clinical practice.

    PubMed

    Karlsen, Tom H; Lammert, Frank; Thompson, Richard J

    2015-04-01

    Paralleling the first 30 years of the Journal of Hepatology we have witnessed huge advances in our understanding of liver disease and physiology. Genetic advances have played no small part in that. Initial studies in the 1970s and 1980s identified the strong major histocompatibility complex associations in autoimmune liver diseases. During the 1990 s, developments in genomic technologies drove the identification of genes responsible for Mendelian liver diseases. Over the last decade, genome-wide association studies have allowed for the dissection of the genetic susceptibility to complex liver disorders, in which also environmental co-factors play important roles. Findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and have already pointed to new disease treatments. In the immediate future genetics will allow further stratification of liver diseases and contribute to personalized medicine. Challenges exist with regard to clinical implementation of rapidly developing technologies and interpretation of the wealth of accumulating genetic data. The historical perspective of genetics in liver diseases illustrates the opportunities for future research and clinical care of our patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases.

    PubMed

    Morris, Gerwyn; Berk, Michael; Carvalho, André F; Maes, Michael; Walker, Adam J; Puri, Basant K

    2018-04-02

    Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q 10 , iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Palmar hyperhidrosis: clinical, pathophysiological, diagnostic and therapeutic aspects*

    PubMed Central

    Romero, Flávio Ramalho; Haddad, Gabriela Roncada; Miot, Hélio Amante; Cataneo, Daniele Cristina

    2016-01-01

    Abstract Palmar hyperhidrosis affects up to 3% of the population and inflict significant impact on quality of life. It is characterized by chronic excessive sweating, not related to the necessity of heat loss. It evolves from a localized hyperactivity of the sympathetic autonomic system and can be triggered by stressful events. In this study, the authors discuss clinical findings, pathophysiological, diagnostic and therapeutic issues (clinical and surgical) related to palmar hyperhidrosis. PMID:28099590

  13. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses

    PubMed Central

    MacLullich, Alasdair MJ; Ferguson, Karen J; Miller, Thomas; de Rooij, Sophia EJA; Cunningham, Colm

    2015-01-01

    Delirium is a common and serious acute neuropsychiatric syndrome with core features of inattention and cognitive impairment, and associated features including changes in arousal, altered sleep-wake cycle, and other changes in mental status. The main risk factors are old age, cognitive impairment, and other comorbidities. Though delirium has consistent core clinical features, it has a very wide range of precipitating factors, including acute illness, surgery, trauma, and drugs. The molecular mechanisms by which these precipitating factors lead to delirium are largely obscure. In this article we attempt to narrow down some specific causal pathways. We propose a basic classification for the aetiological factors: (a) direct brain insults, and (b) aberrant stress responses. Direct brain insults are largely indiscriminate and include general and regional energy deprivation (eg. hypoxia, hypoglycaemia, stroke), metabolic abnormalities (eg. hyponatraemia, hypercalcaemia), and the effects of drugs. Aberrant stress responses are conceptually and mechanistically distinct in that they constitute adverse effects of stress-response pathways which, in health, are adaptive. Ageing and central nervous system disease, two major predisposing factors for delirium, are associated with alterations in the magnitude or duration of stress and sickness behaviour responses, and increased vulnerability to the effects of these responses. We discuss in detail two stress response systems that are likely to be involved in the pathophysiology of delirium: inflammation and the sickness behaviour response, and activity of the limbic-hypothalamic-pituitary-adrenal axis. We conclude by discussing the implications for future research and the development of new therapies for delirium. PMID:18707945

  14. Potential Therapeutic Roles for Inhibition of the PI3K/Akt/mTOR Pathway in the Pathophysiology of Diabetic Retinopathy

    PubMed Central

    Jacot, Jorge L.; Sherris, David

    2011-01-01

    Novel therapeutics such as inhibitors of PI3K/Akt/mTOR pathway presents a unique opportunity for the management of diabetic retinopathy (DR). Second generation mTOR inhibitors have the prospect to be efficacious in managing various stages of disease progression in DR. During early stages, the mTOR inhibitors suppress HIF-1α, VEGF, leakage, and breakdown of the blood-retinal barrier. These mTOR inhibitors impart a pronounced inhibitory effect on inflammation, an early component with diverse ramifications influencing the progression of DR. These inhibitors suppress IKK and NF-κB along with downstream inflammatory cytokines, chemokines, and adhesion molecules. In proliferative DR, mTOR inhibitors suppress several growth factors that play pivotal roles in the induction of pathological angiogenesis. Lead mTOR inhibitors in clinical trials for ocular indications present an attractive treatment option for chronic use in DR with favorable safety profile and sustained ocular pharmacokinetics following single dose. Thereby, reducing dosing frequency and risk associated with chronic drug administration. PMID:22132311

  15. Anatomy, function, and pathophysiology of the posterior tibial tendon.

    PubMed

    Smith, C F

    1999-07-01

    The posterior tibial tendon is vital for the structure and function of the foot and ankle. Dysfunction of the tendon can be debilitating and devastating. In recent years, much attention had been directed toward the diagnosis and treatment of PTTD. To properly diagnose and devise an appropriate treatment regimen, the anatomy, function, and pathophysiology associated with PTTD need to be thoroughly understood.

  16. The Potential Role of Artificial Intelligence Technology in Education.

    ERIC Educational Resources Information Center

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  17. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-01-05

    Obesity caused by the consumption of a high-fat (HF) diet is a major risk factor for the development of associated complications, such as heart and kidney failure. A semi-synthetic triterpenoid, bardoxolone methyl (BM) was administrated to mice fed a HF diet for 21 weeks to determine if it would prevent the development of obesity-associated cardiac and renal pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left ventricles of hearts and cortex of kidneys of mice were collected for analysis. Histological analysis revealed that BM prevented HF diet-induced development of structural changes in the heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue, although this treatment also elevated cardiac endothelin signalling molecules. In the kidneys, BM administration prevented HF diet-induced renal corpuscle hypertrophy and attenuated endothelin signalling. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, macrophage infiltration and tumour necrosis factor alpha (TNFα) gene expression. These findings suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, these results suggest that BM has the potential as a therapeutic for preventing obesity-induced cardiac and renal pathophysiologies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  19. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  20. Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View

    PubMed Central

    Bernhagen, Jürgen; Bucala, Richard

    2013-01-01

    Sepsis and septic shock are among the leading causes of death in intensive care units worldwide. Numerous studies on their pathophysiology have revealed an imbalance in the inflammatory network leading to tissue damage, organ failure, and ultimately, death. Cytokines are important pleiotropic regulators of the immune response, which have a crucial role in the complex pathophysiology underlying sepsis. They have both pro- and anti-inflammatory functions and are capable of coordinating effective defense mechanisms against invading pathogens. On the other hand, cytokines may dysregulate the immune response and promote tissue-damaging inflammation. In this review, we address the current knowledge of the actions of pro- and anti-inflammatory cytokines in sepsis pathophysiology as well as how these cytokines and other important immunomodulating agents may be therapeutically targeted to improve the clinical outcome of sepsis. PMID:23853427

  1. Pathophysiology of Trigger Points in Myofascial Pain Syndrome.

    PubMed

    Money, Sarah

    2017-06-01

    Questions from patients about pain conditions and analgesic pharmacotherapy and responses from authors are presented to help educate patients and make them more effective self-advocates. Trigger point pathophysiology in myofascial pain syndrome, which involves muscle stiffness, tenderness, and pain that radiates to other areas of the body, is considered. The causes of trigger points and several theories about how they develop are reviewed, and treatment approaches, including stretching, physical therapy, dry needling, and injections, are offered.

  2. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design.

    PubMed

    Selden, Clare; Fuller, Barry

    2018-04-24

    Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.

  3. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    PubMed

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  4. Capillary leak syndrome: etiologies, pathophysiology, and management.

    PubMed

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences

    PubMed Central

    Quagliariello, Vincenzo; Rossetti, Sabrina; Cavaliere, Carla; Di Palo, Rossella; Lamantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Romano, Francesco Jacopo; Piscitelli, Raffaele; Iovane, Gelsomina; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; Iaffaioli, Rosario Vincenzo; Facchini, Gaetano

    2017-01-01

    This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the worlds leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease. PMID:28389628

  6. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences.

    PubMed

    Quagliariello, Vincenzo; Rossetti, Sabrina; Cavaliere, Carla; Di Palo, Rossella; Lamantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Romano, Francesco Jacopo; Piscitelli, Raffaele; Iovane, Gelsomina; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; Iaffaioli, Rosario Vincenzo; Facchini, Gaetano

    2017-05-02

    This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the world's leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease.

  7. Postoperative ileus: Recent developments in pathophysiology and management.

    PubMed

    Bragg, Damian; El-Sharkawy, Ahmed M; Psaltis, Emmanouil; Maxwell-Armstrong, Charles A; Lobo, Dileep N

    2015-06-01

    Postoperative ileus (POI) is a frequent occurrence after abdominal and other types of surgery, and is associated with significant morbidity and costs to health care providers. The aims of this narrative review were to provide an update of classification systems, preventive techniques, pathophysiological mechanisms, and treatment options for established POI. The Web of Science, MEDLINE, PubMed and Google Scholar databases were searched using the key phrases 'ileus', 'postoperative ileus' and 'definition', for relevant studies published in English from January 1997 to August 2014. POI is still a problematic and frequent complication of surgery. Fluid overload, exogenous opioids, neurohormonal dysfunction, and gastrointestinal stretch and inflammation are key mechanisms in the pathophysiology of POI. Evidence is supportive of thoracic epidural analgesia, avoidance of salt and water overload, alvimopan and gum chewing as measures for the prevention of POI, and should be incorporated into perioperative care protocols. Minimal access surgery and avoidance of nasogastric tubes may also help. Novel strategies are emerging, but further studies are required for the treatment of prolonged POI, where evidence is still lacking. Although POI is often inevitable, methods to reduce its duration and facilitate recovery of postoperative gastrointestinal function are evolving rapidly. Utilisation of standardised diagnostic classification systems will help improve applicability of future studies. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Review article: the endocannabinoid system in liver disease, a potential therapeutic target.

    PubMed

    Basu, P P; Aloysius, M M; Shah, N J; Brown, R S

    2014-04-01

    Endocannabinoids are a family of potent lipid-soluble molecules, acting on the cannabinoid (CB) receptors that mediate the effects of marijuana. The CB receptors, endocannabinoids and the enzymes involved in their synthesis and degradation are located in the brain and peripheral tissues, including the liver. To review the current understanding of the role of the endocannabinoid system in liver disease-associated pathophysiological conditions, and drugs targeting the endocannabinoid system as therapy for liver disease. Original articles and reviews were used to summarise the relevant pre-clinical and clinical research findings relating to this topic. The endocannabinoid system as a whole plays an important role in liver diseases (i.e. non-alcoholic liver disease, alcoholic liver disease, hepatic encephalopathy and autoimmune hepatitis) and related pathophysiological conditions (i.e. altered hepatic haemodynamics, cirrhotic cardiomyopathy, metabolic syndrome and ischaemia/reperfusion disease). Pharmacological targeting of the endocannabinoid system has had success as treatment for patients with liver disease, but adverse events led to withdrawal of marketing approval. However, there is optimism over novel therapeutics targeting the endocannabinoid system currently in the pre-clinical stage of development. The endocannabinoid system plays an important role in the pathophysiology of liver disease and its associated conditions. While some drugs targeting the endocannabinoid system have deleterious neurological adverse events, there is promise for a newer generation of therapies that do not cross the blood-brain barrier. © 2014 John Wiley & Sons Ltd.

  9. [Haemorrhoidal disease: from pathophysiology to clinical presentation].

    PubMed

    Zeitoun, Jean-David; de Parades, Vincent

    2011-10-01

    Hemorrhoidal disease is the first cause of proctological consultation although epidemiology is poorly documented. Pathophysiology is complex and involves a fragmentation of supporting tissues as well as vascular changes with hypervascularization and/or impaired venous return. The only complication of external hemorrhoids is thrombosis, which is responsible for acute anal pain irrespective of bowel movements. Internal hemorrhoids most frequently cause prolapse and/or bleeding which is easily recognizable. Physical examination always confirms the diagnosis and a colonoscopy is required after 40 or 45 in order to rule out colorectal cancer. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Necrotizing enterocolitis: Pathophysiology from a historical context.

    PubMed

    Hackam, David; Caplan, Michael

    2018-02-01

    Necrotizing enterocolitis (NEC) continues to afflict approximately 7% of preterm infants born weighing less than 1500g, though recent investigations have provided novel insights into the pathogenesis of this complex disease. The disease has been a major cause of morbidity and mortality in neonatal intensive care units worldwide for many years, and our current understanding reflects exceptional observations made decades ago. In this review, we will describe NEC from a historical context and summarize seminal findings that underscore the importance of enteral feeding, the gut microbiota, and intestinal inflammation in this complex pathophysiology. Copyright © 2018. Published by Elsevier Inc.

  11. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents

    PubMed Central

    Khoshnam, Seyed Esmaeil; Winlow, William; Farbood, Yaghoob; Moghaddam, Hadi Fathi; Farzaneh, Maryam

    2017-01-01

    Stroke is one of the leading causes of death and physical disability worldwide. The consequences of stroke injuries are profound and persistent, causing in considerable burden to both the individual patient and society. Current treatments for ischemic stroke injuries have proved inadequate, partly owing to an incomplete understanding of the cellular and molecular changes that occur following ischemic stroke. MicroRNAs (miRNA) are endogenously expressed RNA molecules that function to inhibit mRNA translation and have key roles in the pathophysiological processes contributing to ischemic stroke injuries. Potential therapeutic areas to compensate these pathogenic processes include promoting angiogenesis, neurogenesis and neuroprotection. Several miRNAs, and their target genes, are recognized to be involved in these recoveries and repair mechanisms. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique importance in ischemic stroke therapeutics. In this Review, we focus on the role of miRNAs as potential diagnostic and prognostic biomarkers, as well as promising therapeutic agents in cerebral ischemic stroke. PMID:28480877

  12. The potential role of telocytes in Tissue Engineering and Regenerative Medicine.

    PubMed

    Boos, Anja M; Weigand, Annika; Brodbeck, Rebekka; Beier, Justus P; Arkudas, Andreas; Horch, Raymund E

    2016-07-01

    Research and ideas for potential applications in the field of Tissue Engineering (TE) and Regenerative Medicine (RM) have been constantly increasing over recent years, basically driven by the fundamental human dream of repairing and regenerating lost tissue and organ functions. The basic idea of TE is to combine cells with putative stem cell properties with extracellular matrix components, growth factors and supporting matrices to achieve independently growing tissue. As a side effect, in the past years, more insights have been gained into cell-cell interaction and how to manipulate cell behavior. However, to date the ideal cell source has still to be found. Apart from commonly known various stem cell sources, telocytes (TC) have recently attracted increasing attention because they might play a potential role for TE and RM. It becomes increasingly evident that TC provide a regenerative potential and act in cellular communication through their network-forming telopodes. While TE in vitro experiments can be the first step, the key for elucidating their regenerative role will be the investigation of the interaction of TC with the surrounding tissue. For later clinical applications further steps have to include an upscaling process of vascularization of engineered tissue. Arteriovenous loop models to vascularize such constructs provide an ideal platform for preclinical testing of future therapeutic concepts in RM. The following review article should give an overview of what is known so far about the potential role of TC in TE and RM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Linking Prenatal Maternal Adversity to Developmental Outcomes in Infants: The Role of Epigenetic Pathways

    PubMed Central

    Monk, Catherine; Spicer, Julie; Champagne, Frances A.

    2013-01-01

    Prenatal exposure to maternal stress, anxiety, and depression can have lasting effects on infant development with consequences for risk of psychopathology. Though the impact of prenatal maternal distress has been well documented, the potential mechanisms through which maternal psychosocial variables shape development have yet to be fully elucidated. Advances in molecular biology have highlighted the role of epigenetic mechanisms in regulating gene activity, neurobiology, and behavior and the potential role of environmentally-induced epigenetic variation in linking early life exposures to long-term biobehavioral outcomes. In this review, we discuss evidence illustrating the association between maternal prenatal distress and both fetal and infant developmental trajectories and the potential role of epigenetic mechanisms in mediating these effects. Postnatal experiences may have a critical moderating influence on prenatal effects, and here we review findings illustrating prenatal-postnatal interplay and the developmental and epigenetic consequences of postnatal mother-infant interactions. The in utero environment is regulated by placental function and there is emerging evidence that the placenta is highly susceptible to maternal distress and a target of epigenetic dysregulation. Integrating studies of prenatal exposures, placental function, and postnatal maternal care with the exploration of epigenetic mechanisms may provide novel insights into the pathophysiology induced by maternal distress. PMID:23062303

  14. New insights into the pathophysiology of dyslipidemia in type 2 diabetes.

    PubMed

    Taskinen, Marja-Riitta; Borén, Jan

    2015-04-01

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality for patients with type 2 diabetes, despite recent significant advances in management strategies to lessen CVD risk factors. A major cause is the atherogenic dyslipidemia, which consists of elevated plasma concentrations of both fasting and postprandial triglyceride-rich lipoproteins (TRLs), small dense low-density lipoprotein (LDL) and low high-density lipoprotein (HDL) cholesterol. The different components of diabetic dyslipidemia are not isolated abnormalities but closely linked to each other metabolically. The underlying disturbances are hepatic overproduction and delayed clearance of TRLs. Recent results have unequivocally shown that triglyceride-rich lipoproteins and their remnants are atherogenic. To develop novel strategies for the prevention and treatment of dyslipidaemia, it is essential to understand the pathophysiology of dyslipoproteinaemia in humans. Here, we review recent advances in our understanding of the pathophysiology of diabetic dyslipidemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Effectiveness of integrating case studies in online and face-to-face instruction of pathophysiology: a comparative study.

    PubMed

    Saleh, Suha M; Asi, Yara M; Hamed, Kastro M

    2013-06-01

    Due to growing demand from students and facilitated by innovations in educational technology, institutions of higher learning are increasingly offering online courses. Subjects in the hard sciences, such as pathophysiology, have traditionally been taught in the face-to-face format, but growing demand for preclinical science courses has compelled educators to incorporate online components into their classes to promote comprehension. Learning tools such as case studies are being integrated into such courses to aid in student interaction, engagement, and critical thinking skills. Careful assessment of pedagogical techniques is essential; hence, this study aimed to evaluate and compare student perceptions of the use of case studies in face-to-face and fully online pathophysiology classes. A series of case studies was incorporated into the curriculum of a pathophysiology class for both class modes (online and face to face). At the end of the semester, students filled out a survey assessing the effectiveness of the case studies. Both groups offered positive responses about the incorporation of case studies in the curriculum of the pathophysiology class. This study supports the argument that with proper use of innovative teaching tools, such as case studies, online pathophysiology classes can foster a sense of community and interaction that is typically only seen with face-to-face classes, based on student responses. Students also indicated that regardless of class teaching modality, use of case studies facilitates student learning and comprehension as well as prepares them for their future careers in health fields.

  16. Role of BRI2 in dementia.

    PubMed

    Del Campo, Marta; Teunissen, Charlotte E

    2014-01-01

    Alzheimer's disease (AD), the most common form of dementia, shares clinical and pathological similarities with familial British and Danish dementias (FBD and FDD). Whereas the etiology of sporadic AD remains unclear, familial AD is linked to mutations in amyloid-β protein precursor (AβPP), presenilin 1 (PS1), and presenilin 2 (PS2). Similarly, FBD and FDD originate from mutations in the BRI2 gene (or ITM2b), causing amyloid angiopathy and neurofibrillary tangles analogous to those observed in AD. Recent studies on the role of BRI2 in FBD and FDD have revealed that the three diseases may share pathophysiological pathways leading to dementia. Interestingly, BRI2 is a potential regulator of AβPP processing, and it can inhibit the production and fibrillation of Aβ. This suggests a role of BRI2 in the amyloid cascade, which is the prevailing hypothesis about AD pathogenesis. To understand a possible relationship of BRI2 with AD, we reviewed the relevant studies on this protein. The data included not only the protein's structure, expression pattern, function, and involvement in FBD and FDD, but also its relationship with memory deficits and the main pathological proteins involved in AD. Thus, we highlight and discuss the potential links between BRI2 and AD, leading to the formulation of a modified hypothesis about AD etiology.

  17. Review article: the pathophysiology and medical management of diverticulosis and diverticular disease of the colon.

    PubMed

    Tursi, A; Papa, A; Danese, S

    2015-09-01

    The incidence of diverticulosis and diverticular disease of the colon, including diverticulitis, is increasing worldwide, and becoming a significant burden on national health systems. Treatment of patients with diverticulosis and DD is generally based on high-fibre diet and antibiotics, respectively. However, new pathophysiological knowledge suggests that further treatment may be useful. To review the current treatment of diverticulosis and diverticular disease. A search of PubMed and Medline databases was performed to identify articles relevant to the management of diverticulosis and diverticular disease. Major international conferences were also reviewed. Two randomised controlled trials (RCT) found the role of antibiotics in managing acute diverticulitis to be questionable, particularly in patients with no complicating comorbidities. One RCT found mesalazine to be effective in preventing acute diverticulitis in patients with symptomatic uncomplicated diverticular disease. The role of rifaximin or mesalazine in preventing diverticulitis recurrence, based on the results of 1 and 4 RCTs, respectively, remains unclear. RCTs found rifaximin and mesalazine to be effective in treating symptomatic uncomplicated diverticular disease. The use of probiotics in diverticular disease and in preventing acute diverticulitis occurrence/recurrence appears promising but unconclusive. Finally, the role of fibre in treating diverticulosis remains unclear. Available evidence suggests that antibiotics have a role only in the treatment of complicated diverticulitis. It appears to be some evidence for a role for rifaximin and mesalazine in treating symptomatic uncomplicated diverticular disease. Finally, there is not currently adequate evidence to recommend any medical treatment for the prevention of diverticulitis recurrence. © 2015 John Wiley & Sons Ltd.

  18. Autonomic Dysfunction: A Possible Pathophysiological Pathway Underlying the Association Between Sleep and Obesity in Children At-Risk for Obesity

    PubMed Central

    Jarrin, Denise C.; Poirier, Paul

    2017-01-01

    While mounting evidence suggests that sleep plays an important role in the etiology of obesity, the underlying pathogenic pathways are complex and unresolved. Experimental sleep deprivation studies demonstrate sympathovagal imbalance, indicative of diminished parasympathetic activity and/or heightened sympathetic activity, is consequent to poor sleep. Further, obese children exhibit sympathovagal imbalance, particularly during the night, compared to non-obese children. The question remains whether sympathovagal imbalance is one potential pathophysiological pathway underlying the association between sleep and obesity. The aim of the present study was to examine whether sympathovagal imbalance contributed to the association between sleep and obesity in children. Participants included 564 children aged 10 to 12 years (M = 11.67, SD = 0.95; 43.5 % girls) from the QUALITY Cohort, a longitudinal study of children at-risk for the development of obesity. While children were at-risk due to confirmed parental obesity status, 57.7 % of children were of normal body mass index (5–85th percentile). Sleep duration, sleep timing, and sleep disturbances were based on child- and parent-report. Anthropometrics were measured for central adiposity (waist circumference) and body composition (body mass index, fat mass index). Sympathovagal imbalance was derived from heart rate variability spectral analyses. Estimated path coefficients revealed that sympathovagal imbalance partially contributed to the association between poor sleep (later bedtimes, sleep-disordered breathing) and obesity. These findings highlight the importance of better understanding sympathovagal imbalance and its role in the etiology and maintenance of obesity. Future research should consider investigating nocturnal sympathovagal balance in youth. PMID:25480401

  19. Role of environmental pollution in irritable bowel syndrome.

    PubMed

    Marynowski, Mateusz; Likońska, Aleksandra; Zatorski, Hubert; Fichna, Jakub

    2015-10-28

    Irritable bowel syndrome (IBS), with the prevalence of 10%-20 % of the population has become an emerging problem worldwide. IBS is a functional gastrointestinal (GI) disorder characterized by abdominal pain or discomfort and altered bowel habits. The etiology of IBS contains genetic, psychological, and immunological factors, and has not been fully elucidated; of note, recent studies also point at environmental pollution and its role in the development of functional GI diseases. In this review we focus on several environmental factors, such as bacterial contamination, air pollution, radiation and even stress as potential triggers of IBS. We discuss associated disturbances in homeostasis, such as changes in intestinal microbiome and related pathophysiological mechanisms. Based on the effect of environmental factors on the GI tract, we also propose novel targets in IBS treatment.

  20. Role of environmental pollution in irritable bowel syndrome

    PubMed Central

    Marynowski, Mateusz; Likońska, Aleksandra; Zatorski, Hubert; Fichna, Jakub

    2015-01-01

    Irritable bowel syndrome (IBS), with the prevalence of 10%-20 % of the population has become an emerging problem worldwide. IBS is a functional gastrointestinal (GI) disorder characterized by abdominal pain or discomfort and altered bowel habits. The etiology of IBS contains genetic, psychological, and immunological factors, and has not been fully elucidated; of note, recent studies also point at environmental pollution and its role in the development of functional GI diseases. In this review we focus on several environmental factors, such as bacterial contamination, air pollution, radiation and even stress as potential triggers of IBS. We discuss associated disturbances in homeostasis, such as changes in intestinal microbiome and related pathophysiological mechanisms. Based on the effect of environmental factors on the GI tract, we also propose novel targets in IBS treatment. PMID:26523104

  1. Review article: the pathophysiology, differential diagnosis and management of rumination syndrome.

    PubMed

    Tack, J; Blondeau, K; Boecxstaens, V; Rommel, N

    2011-04-01

    Rumination syndrome, characterised by the effortless, often repetitive, regurgitation of recently ingested food into the mouth, was originally described in children and in the developmentally disabled. It is now well-recognised that rumination syndrome occurs in patients of all ages and cognitive abilities. To review a scholarly review on our current understanding of the rumination syndrome. The review was conducted on the basis of a medline search to identify relevant publications pertaining to the pathophysiology, clinical diagnosis and management of rumination syndrome. The Rome III consensus established diagnostic criteria for rumination syndrome in adults, children and infants. A typical history can be highly suggestive but oesophageal (high resolution) manometry/impedance with ingestion of a meal may help to distinguish rumination syndrome from other belching/regurgitation disorders. The pathophysiology is incompletely understood, but involves a rise in intra-gastric pressure, generated by a voluntary, but often unintentional, contraction of the abdominal wall musculature, at a time of low pressure in the lower oesophageal sphincter, causing retrograde movement of gastric contents into the oesophagus. To date, controlled trials in the treatment rumination syndrome are lacking. The mainstay of treatment for rumination syndrome is explanation and behavioural treatment which consists of habit reversal techniques that compete with the urge to regurgitate. Chewing gum, prokinetics, baclofen and even antireflux surgery have been proposed as adjunctive therapies, but high quality studies are generally lacking. Rumination is an under-recognised condition with incompletely understood pathophysiology. Behavioural therapy seems effective, but controlled treatment trials are lacking. © 2011 Blackwell Publishing Ltd.

  2. Clinical, Cellular, and Molecular Aspects in the Pathophysiology of Rosacea

    PubMed Central

    Steinhoff, Martin; Buddenkotte, Jörg; Aubert, Jerome; Sulk, Mathias; Novak, Pawel; Schwab, Verena D.; Mess, Christian; Cevikbas, Ferda; Rivier, Michel; Carlavan, Isabelle; Déret, Sophie; Rosignoli, Carine; Metze, Dieter; Luger, Thomas A.; Voegel, Johannes J.

    2013-01-01

    Rosacea is a chronic inflammatory skin disease of unknown etiology. Although described centuries ago, the pathophysiology of this disease is still poorly understood. Epidemiological studies indicate a genetic component, but a rosacea gene has not been identified yet. Four subtypes and several variants of rosacea have been described. It is still unclear whether these subtypes represent a “developmental march” of different stages or are merely part of a syndrome that develops independently but overlaps clinically. Clinical and histopathological characteristics of rosacea make it a fascinating “human disease model” for learning about the connection between the cutaneous vascular, nervous, and immune systems. Innate immune mechanisms and dysregulation of the neurovascular system are involved in rosacea initiation and perpetuation, although the complex network of primary induction and secondary reaction of neuroimmune communication is still unclear. Later, rosacea may result in fibrotic facial changes, suggesting a strong connection between chronic inflammatory processes and skin fibrosis development. This review highlights recent molecular (gene array) and cellular findings and aims to integrate the different body defense mechanisms into a modern concept of rosacea pathophysiology. PMID:22076321

  3. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis

    PubMed Central

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Koppán, Miklós

    2017-01-01

    evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease. PMID:28478727

  4. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis.

    PubMed

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Helyes, Zsuzsanna; Koppán, Miklós

    2017-01-01

    evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease.

  5. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System

    PubMed Central

    Ercu, Maria; Klussmann, Enno

    2018-01-01

    A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511

  6. Pathophysiology of gadolinium-associated systemic fibrosis

    PubMed Central

    Drel, Viktor; Gorin, Yves

    2016-01-01

    Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis. PMID:27147669

  7. [Pathophysiology and treatment of orofacial pain.

    PubMed

    Shinoda, Masamichi; Noma, Noboru

    "Pain" is one of body defense mechanisms and crucial for the life support. However, orofacial pain such as myofascial pain syndrome, burning mouth syndrome and trigeminal neuralgia plays no part in body defense mechanisms and requires therapeutic intervention. Recent studies have indicated that plastic changes in the activities of trigeminal neurons, satellite glial cells in trigeminal ganglion, secondary neurons, microglia and astrocytes in trigeminal spinal subnucleus following orofacial inflammation and trigeminal nerve injury are responsible for orofacial pain mechanisms. Clinically, it is well known that the etiologic differential diagnosis which consists of careful history-taking and physical examination is essential for therapeutic decision in patients with orofacial pain. This report outlines the current knowledge on the pathophysiology, diagnosis, treatment of orofacial pain.

  8. Somnambulism: clinical aspects and pathophysiological hypotheses.

    PubMed

    Zadra, Antonio; Desautels, Alex; Petit, Dominique; Montplaisir, Jacques

    2013-03-01

    Somnambulism, or sleepwalking, can give rise to a wide range of adverse consequences and is one of the leading causes of sleep-related injury. Accurate diagnosis is crucial for proper management and imperative in an ever-increasing number of medicolegal cases implicating sleep-related violence. Unfortunately, several widely held views of sleepwalking are characterised by key misconceptions, and some established diagnostic criteria are inconsistent with research findings. The traditional idea of somnambulism as a disorder of arousal might be too restrictive and a comprehensive view should include the idea of simultaneous interplay between states of sleep and wakefulness. Abnormal sleep physiology, state dissociation, and genetic factors might explain the pathophysiology of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. THE PATHOPHYSIOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION AND THE COMPLEMENT PATHWAY AS A THERAPEUTIC TARGET

    PubMed Central

    Schmidt-Erfurth, Ursula; van Lookeren Campagne, Menno; Henry, Erin C.; Brittain, Christopher

    2017-01-01

    Purpose: Geographic atrophy (GA) is an advanced, vision-threatening form of age-related macular degeneration (AMD) affecting approximately five million individuals worldwide. To date, there are no approved therapeutics for GA treatment; however, several are in clinical trials. This review focuses on the pathophysiology of GA, particularly the role of complement cascade dysregulation and emerging therapies targeting the complement cascade. Methods: Primary literature search on PubMed for GA, complement cascade in age-related macular degeneration. ClinicalTrials.gov was searched for natural history studies in GA and clinical trials of drugs targeting the complement cascade for GA. Results: Cumulative damage to the retina by aging, environmental stress, and other factors triggers inflammation via multiple pathways, including the complement cascade. When regulatory components in these pathways are compromised, as with several GA-linked genetic risk factors in the complement cascade, chronic inflammation can ultimately lead to the retinal cell death characteristic of GA. Complement inhibition has been identified as a key candidate for therapeutic intervention, and drugs targeting the complement pathway are currently in clinical trials. Conclusion: The complement cascade is a strategic target for GA therapy. Further research, including on natural history and genetics, is crucial to expand the understanding of GA pathophysiology and identify effective therapeutic targets. PMID:27902638

  10. Exploring the influence of students' attributions for success on their self-regulation in pathophysiology.

    PubMed

    Dunn, Karee E; Osborne, Cara; Link, Hope J

    2012-06-01

    Pathophysiology is a difficult course both for students to take and for instructors to teach. However, little research has explored learner characteristics that teachers may address through targeted instruction to make both the teaching and learning experience better. This study examined the influence of students' causal attributions for success on their self-regulated learning, which is strongly associated with positive learning outcomes. Results indicated that ability, effort, and luck attributions for success collectively influenced Pathophysiology students' self-regulated learning and that ability was the most potent influence. The findings and the implication for teaching are discussed. Copyright 2012, SLACK Incorporated.

  11. Experiment 305: Pathophysiology of Mineral Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Arnaud, Claude D.; Cann, Christopher E.

    1995-01-01

    The objective of this SLS-2 experiment was to determine the pathophysiology of mineral loss during space flight. This was to be accomplished by (1) determining the concentrations of blood minerals and of calciotropic hormones (parathyroid hormone-PTH, vitamin D metabolites) before, during, and after a 14 day shuttle flight, and (2) determining, by calcium kinetic analysis (using stable calcium isotopes), the influence of space flight on intestinal calcium absorption .

  12. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms.

    PubMed

    Campos, Derbis; Monaga, Madelyn

    2012-06-01

    Mucopolysaccharidosis type I is one of the most frequent lysosomal storage diseases. It has a high morbidity and mortality, causing in many cases severe neurological and somatic damage in the first years of life. Although the clinical phenotypes have been described for decades, and the enzymatic deficiency and many of the mutations that cause this disease are well known, the underlying pathophysiological mechanisms that lead to its development are not completely understood. In this review we describe and discuss the different pathogenic mechanisms currently proposed for this disease regarding its neurological damage. Deficiency in the lysosomal degradation of heparan sulfate and dermatan sulfate, as well as its primary accumulation, may disrupt a variety of physiological and biochemical processes: the intracellular and extracellular homeostasis of these macromolecules, the pathways related to gangliosides metabolism, mechanisms related to the activation of inflammation, receptor-mediated signaling, oxidative stress and permeability of the lysosomal membrane, as well as alterations in intracellular ionic homeostasis and the endosomal pathway. Many of the pathogenic mechanisms proposed for mucopolysaccharidosis type I are also present in other lysosomal storage diseases with neurological implications. Results from the use of methods that allow the analysis of multiple genes and proteins, in both patients and animal models, will shed light on the role of each of these mechanisms and their combination in the development of different phenotypes due to the same deficiency.

  13. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications

    PubMed Central

    Tsiaoussis, Georgios I; Assimakopoulos, Stelios F; Tsamandas, Athanassios C; Triantos, Christos K; Thomopoulos, Konstantinos C

    2015-01-01

    The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet. PMID:26301048

  14. Epilepsy following cortical injury: Cellular and molecular mechanisms as targets for potential prophylaxis

    PubMed Central

    Prince, David A.; Parada, Isabel; Scalise, Karina; Graber, Kevin; Shen, Fran

    2009-01-01

    Summary The sequelae of traumatic brain injury, including posttraumatic epilepsy, represent a major societal problem. Significant resources are required to develop a better understanding of the underlying pathophysiologic mechanisms as targets for potential prophylactic therapies. Posttraumatic epilepsy undoubtedly involves numerous pathogenic factors that develop more or less in parallel. We have highlighted two potential “prime movers”: disinhibition and development of new functional excitatory connectivity, which occur in a number of animal models and some forms of epilepsy in humans. Previous experiments have shown that tetrodotoxin (TTX) applied to injured cortex during a critical period early after lesion placement can prevent epileptogenesis in the partial cortical (“undercut”) model of posttraumatic epilepsy. Here we show that such treatment markedly attenuates histologic indices of axonal and terminal sprouting and presumably associated aberrant excitatory connectivity. A second finding in the undercut model is a decrease in spontaneous inhibitory events. Current experiments show that this is accompanied by regressive alterations in fast-spiking γ-aminobutyric acid (GABA)ergic interneurons, including shrinkage of dendrites, marked decreases in axonal length, structural changes in inhibitory boutons, and loss of inhibitory synapses on pyramidal cells. Other data support the hypothesis that these anatomic abnormalities may result from loss of trophic support normally provided to interneurons by brain-derived neurotrophic factor (BDNF). Approaches that prevent these two pathophysiologic mechanisms may offer avenues for prophylaxis for posttraumatic epilepsy. However, major issues such as the role of these processes in functional recovery from injury and the timing of the critical period(s) for application of potential therapies in humans are critical and need to be resolved. PMID:19187292

  15. Development of an Electronic Role-Play Assessment Initiative in Bioscience for Nursing Students

    ERIC Educational Resources Information Center

    Craft, Judy; Ainscough, Louise

    2015-01-01

    Devising authentic assessments for subjects with large enrolments is a challenge. This study describes an electronic role-play assessment for approximately 600 first-year nursing students to learn and apply pathophysiology (bioscience) concepts to nursing practice. Students used Microsoft Office PowerPoint[R] to prepare electronic role-plays both…

  16. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo

    2018-02-14

    Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.

  17. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine

    PubMed Central

    Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo

    2018-01-01

    Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy. PMID:29443878

  18. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases

    PubMed Central

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases. PMID:25674026

  19. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases.

    PubMed

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases.

  20. Intermediate filament proteins of digestive organs: physiology and pathophysiology.

    PubMed

    Omary, M Bishr

    2017-06-01

    Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs. Copyright © 2017 the American Physiological Society.