Science.gov

Sample records for potential therapeutic option

  1. [Multiple sclerosis: potential therapeutic options and update of ongoing studies].

    PubMed

    Wiendl, H; Lehmann, H C; Hohlfeld, R; Hartung, H-P; Kieseier, B C

    2004-06-01

    The therapeutic options for the treatment of multiple sclerosis (MS) have experienced enormous progress over recent years. Despite these encouraging developments, available therapies are only partially effective, and the ultimate goal of curing MS is still far from being attained. The improved understanding of the cellular and molecular mechanisms of MS (immune) pathogenesis together with recent shifts in paradigms led to a variety of new therapeutic targets and approaches. In addition to modulation of the inflammatory process, therapeutic approaches focussing on active neuroprotection, remyelinization, and regeneration have become increasingly important. Based on current concepts of the MS pathogenesis, this article summarizes new therapeutic approaches. Substances and strategies currently tested in clinical trials are reviewed. PMID:15257377

  2. The potential for emerging therapeutic options for Clostridium difficile infection

    PubMed Central

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  3. Osteoporosis: Therapeutic Options.

    PubMed

    Ivanova, Stefka; Vasileva, Liliya; Ivanova, Stanislava; Peikova, Lily; Obreshkova, Danka

    2016-01-01

    The definition of osteoporosis was originally formulated at a conference of the World Health Organization (WHO) in 1993 as 'a systemic skeletal disease characterized by decreased bone mass and altered micro-architecture of bone tissue, leading to enhanced bone fragility and risk of fractures'. Osteoporosis is characterized by low bone mineral density (BMD) and loss of the structural and bio-mechanical properties that are required to maintain bone homeostasis. This review aims to address the currently available options in prevention and treatment of osteoporosis. Management of osteoporosis includes non-pharmacological treatment - diet rich of calcium and vitamin D, healthy lifestyle, proper exercise plan, and pharmacological therapy. Combination of non-pharmacological and pharmacological treatment options have to be considered for prevention of osteoporosis and minimization of the risk of fractures. Given the heterogeneity of osteoporosis syndrome and lack of significant number of comparative studies, the choice of a pharmacological agents should be individualized. PMID:27180344

  4. Unmet treatment needs in schizophrenia patients: is asenapine a potential therapeutic option?

    PubMed

    Pompili, Maurizio; Serafini, Gianluca; Innamorati, Marco; Ambrosi, Elisa; Telesforo, Ludovica; Venturini, Paola; Giordano, Gloria; Battuello, Michele; Lester, David; Girardi, Paolo

    2011-07-01

    Adverse metabolic events, such as increased adiposity, hyperglycemia, diabetes mellitus and dyslipidemia, have been associated with treatment using atypical antipsychotic medications. However, the complexity of some of the reports on this problem and marketing efforts in this area may make it difficult for psychiatrists to remain fully and accurately informed about the metabolic complications of atypical antipsychotic therapy. Little is currently known about how psychiatrists view what they have read or heard, how they perceive the available information and how this affects their management of patients with schizophrenia. A number of studies have demonstrated that nonadherence to the medication regimen in schizophrenia is associated with poor symptomatic outcome, increased risk of relapse, more frequent use of compulsory treatment and increased risk of suicide and severe self-harm. Suicide is a major cause of death among schizophrenic patients, and their attitude toward medication can make the difference between a proper therapeutic regimen that protects patients from suicide risk versus discontinuation of treatments that are associated with disabling symptoms, some of which are risk factors for suicide. We review the characteristics of a new drug, asenapine, that may improve adherence in patients as a result of a distinctive receptor profile that may be associated with fewer side effects than other second-generation antipsychotic drugs. PMID:21721916

  5. Emerging therapeutic options for asthma.

    PubMed

    Colice, Gene L

    2011-04-01

    Asthma is characterized by eosinophilic airway inflammation and elevated serum immunoglobulin E (IgE) levels. Due to these pathologic features, the foundation of asthma treatment has historically been anti-inflammatory therapy with inhaled corticosteroids (ICSs). Numerous factors in addition to IgE and eosinophils, however, likely play important roles in mediating the airway inflammatory response characteristic of asthma. ICSs are effective therapy for some patients with persistent asthma, but clinical trials have shown that even increasing doses of ICSs under carefully controlled situations does not always result in acceptable asthma control. Consequently, other classes of medications, in addition to ICSs, are recommended in those patients with more severe asthma. The class of medication most commonly used in more severe asthma, along with ICSs, is long-acting inhaled beta2-agonists, but leukotriene modifying agents and anti-IgE monoclonal antibodies may also be used. Agents such as tiotropium, a long-acting inhaled anti-muscarinic agent, and those aimed at inhibiting cytokines, such as mepoluzimab, daclizumab, and etanercept, hold promise in the treatment of asthma. Other agents under investigation include phosphodiesterase type 4 inhibitors and oligonucleotides. Bronchial thermoplasty, a nonpharmacologic option, may also be beneficial in patients with poorly controlled asthma. As our understanding of the complex pathophysiology of asthma increases, it will enable the development of novel therapeutic approaches for patients who are not responding well to traditional treatments. Although more studies are necessary to ensure the efficacy and safety of both pharmacologic and nonpharmacologic approaches, there is future promise for therapeutic advances in severe, persistent asthma. PMID:21761958

  6. Future therapeutic options in food allergy.

    PubMed

    Eigenmann, P A

    2003-12-01

    Up to 5% of young children and 2% of adults suffer from food allergy. Among them many have immunoglobulin E (IgE)-mediated food allergy, a condition with potentially fatal allergic reactions. Several studies have addressed possible definite treatment options for food allergy. Immunotherapy, by the oral route or by systemic injections shows promising preliminary results, but current interpretation of these therapeutic options are mostly handicapped by studies with insufficient scientific support, or by severe side-effects. Currently, no studies can support pharmacotherapy. Finally, most promising results were recently published with anti-IgE antibodies in a human trial, or various approaches in a mouse model of food allergy (chinese herbal medicine, specific modulation of the T cell response). Rapidly evolving findings might provide hope for a cure of food allergy in the near future. PMID:14616094

  7. [The potential role of microbiota in major psychiatric disorders: Mechanisms, preclinical data, gastro-intestinal comorbidities and therapeutic options].

    PubMed

    Fond, Guillaume; Chevalier, Grégoire; Eberl, Gerard; Leboyer, Marion

    2016-01-01

    While forecasts predict an increase in the prevalence of mental health disorders in the worldwide general population, the response rate to classical psychiatric treatment remains unsatisfactory. Resistance to psychotropic drugs can be due to clinical, pharmacological, pharmacokinetic, and pharmacodynamic factors. Among these factors, recent animal findings suggest that microbiota may have an underestimated influence on its host's behavior and on drug metabolism that may explain ineffectiveness or increased side effects of psychiatric medications such as weight gain. The following issues were identified in the present review: (i) microbiota dysbiosis and putative consequences on central nervous system functioning; (ii) chronic microbiota dysbiosis-associated illnesses in humans; (iii) microbiota-oriented treatments and their potential therapeutic applications in psychiatry. PMID:26653939

  8. Alteration of the intestinal microbiota as a cause of and a potential therapeutic option in irritable bowel syndrome.

    PubMed

    König, J; Brummer, R J

    2014-09-01

    The intestinal microbiota forms a complex ecosystem that is in close contact with its host and has an important impact on health. An increasing number of disorders are associated with disturbances in this ecosystem. Also patients suffering from irritable bowel syndrome (IBS) show an altered composition of their gut microbiota. IBS is a multifactorial chronic disorder characterised by various abdominal complaints and a worldwide prevalence of 10-20%. Even though its aetiology and pathophysiology are complex and not well understood, it is widely accepted that aberrations along the microbe-gut-brain axis are involved. In this review, it will be discussed how exogenous factors, e.g. antibiotics, can cause disbalance in the intestinal microbiota and thereby contribute to the development of IBS. In addition, several new IBS treatment options that aim at re-establishing a healthy, beneficial ecosystem will be described. These include antibiotics, probiotics, prebiotics and faecal transplantation. PMID:24583610

  9. Peak load management: Potential options

    SciTech Connect

    Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

    1989-10-01

    This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

  10. Therapeutic options for management of endometrial hyperplasia

    PubMed Central

    2016-01-01

    Endometrial hyperplasia (EH) comprises a spectrum of changes in the endometrium ranging from a slightly disordered pattern that exaggerates the alterations seen in the late proliferative phase of the menstrual cycle to irregular, hyperchromatic lesions that are similar to endometrioid adenocarcinoma. Generally, EH is caused by continuous exposure of estrogen unopposed by progesterone, polycystic ovary syndrome, tamoxifen, or hormone replacement therapy. Since it can progress, or often occur coincidentally with endometrial carcinoma, EH is of clinical importance, and the reversion of hyperplasia to normal endometrium represents the key conservative treatment for prevention of the development of adenocarcinoma. Presently, cyclic progestin or hysterectomy constitutes the major treatment option for EH without or with atypia, respectively. However, clinical trials of hormonal therapies and definitive standard treatments remain to be established for the management of EH. Moreover, therapeutic options for EH patients who wish to preserve fertility are challenging and require nonsurgical management. Therefore, future studies should focus on evaluation of new treatment strategies and novel compounds that could simultaneously target pathways involved in the pathogenesis of estradiol-induced EH. Novel therapeutic agents precisely targeting the inhibition of estrogen receptor, growth factor receptors, and signal transduction pathways are likely to constitute an optimal approach for treatment of EH. PMID:26463434

  11. [Nystagmus. Clinical characteristics and therapeutic options].

    PubMed

    Käsmann-Kellner, B

    2016-03-01

    This article presents an overview of the pathophysiology of nystagmus and the differential diagnostics of congenital and acquired nystagmus. In addition, the principles of conservative, surgical and pharmacotherapy treatment options are described. The pathophysiological basis of nystagmus deepens the understanding of the etiology of the individual forms of nystagmus. The therapeutic approach to calming of nystagmus aims at an extension of the foveation time, which has the most significant impact on visual acuity. In congenital nystagmus this can be carried out by optimization of the retinal image, prisms or by bilateral surgical muscle repositioning to use the phenomenon of a null or neutral zone. In acquired nystagmus the off-label use of centrally acting medications can sometimes be helpful to calm the nystagmus and the associated oscillopsia. PMID:26936363

  12. Lagophthalmos after facial palsy: current therapeutic options.

    PubMed

    Vásquez, Luz María; Medel, Ramón

    2014-01-01

    As the facial nerve carries sensory, motor and parasympathetic fibres involved in facial muscle innervation, facial palsy results in functional and cosmetic impairment. It can result from a wide variety of causes like infectious processes, trauma, neoplasms, autoimmune diseases, and most commonly Bell's palsy, but it can also be of iatrogenic origin. The main ophthalmic sequel is lagophthalmos. The increased surface exposure increases the risk of keratitis, corneal ulceration, and potentially loss of vision. Treatment options are wide; some are temporary, some permanent. In addition to gold standard and traditional therapies and procedures, new options are being proposed aiming to improve not only lagophthalmos but also the quality of life of these patients. PMID:25342248

  13. Coronaviruses - drug discovery and therapeutic options.

    PubMed

    Zumla, Alimuddin; Chan, Jasper F W; Azhar, Esam I; Hui, David S C; Yuen, Kwok-Yung

    2016-05-01

    In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections. PMID:26868298

  14. Anti-IL-31 receptor antibody is shown to be a potential therapeutic option for treating itch and dermatitis in mice

    PubMed Central

    Kasutani, K; Fujii, E; Ohyama, S; Adachi, H; Hasegawa, M; Kitamura, H; Yamashita, N

    2014-01-01

    Background and Purpose IL-31, which is described as a pruritogenic cytokine, is linked to the itching that is associated with allergic and non-allergic eczema, but the precise pruritogenic mechanism of IL-31 and its potential as a therapeutic target for atopic dermatitis (AD) have not been determined. Experimental Approach We investigated the effects of existing drugs on the scratching behaviour induced by an i.v. injection of IL-31 to clarify whether IL-31 induced pruritus indirectly. In addition, we studied the effects of an anti-IL-31 receptor α subunit (anti-IL-31 receptor α) neutralizing antibody on chronic pruritus-inducing dermatitis in an AD-like model to determine whether IL-31 not only induces scratching behaviour, but is also the causative factor in an AD phenotype. Key Results The scratching behaviour induced by an i.v. injection of IL-31 was inhibited by pretreatment with an anti-IL-31 receptor α-neutralizing antibody. In contrast, it was not inhibited significantly by a non-sedative antihistamine (terfenadine), immunosuppressants (dexamethasone and tacrolimus), or a μ-opioid receptor antagonist (naloxone). The anti-IL-31 receptor α-neutralizing antibody reduced the ear swelling and dermatitis score in a chronic pruritus-inducing AD-like model. Moreover, treatment with the anti-IL-31 receptor α-neutralizing antibody showed therapeutic effects on the dermatitis even if it was injected after the disease had developed. Conclusions and Implications Anti-IL-31 receptor α is a potential novel therapeutic approach for escaping from the itch–scratch cycle and also a treatment for dermatitis in AD. PMID:24946165

  15. Graves' disease. Manifestations and therapeutic options

    SciTech Connect

    McFarland, K.F.; Saleeby, G.

    1988-03-01

    Graves' disease is the most common cause of hyperthyroidism. Clinical features include thyroid enlargement, eye signs, tachycardia, heat intolerance, emotional lability, weight loss, and hyperkinesis. Three modes of therapy are available. The preferences of the patient and physician are usually prime considerations in devising the therapeutic plan. Radioactive iodine is the most frequently used and safest method of treatment for adults. Antithyroid drugs are preferred for children and pregnant women. Surgery is usually reserved for patients in whom the other forms of treatment are not acceptable. Considerable patient education during the decision-making process enhances the success of the therapeutic plan.

  16. Recurrent pericarditis: new and emerging therapeutic options.

    PubMed

    Imazio, Massimo; Lazaros, George; Brucato, Antonio; Gaita, Fiorenzo

    2016-02-01

    Recurrent pericarditis is one of the most common and troublesome complications after an episode of pericarditis, and affects 20-50% of patients treated for pericarditis. In most of these patients, the pericarditis remains idiopathic, although an immune-mediated (either autoimmune or autoinflammatory) pathogenesis is often presumed. The mainstay of therapy for recurrences is aspirin or NSAIDs, with the adjunct of colchicine. Corticosteroids are a second-line option to be considered for specific indications, such as connective tissue disease or pregnancy; contraindications or intolerance to aspirin, NSAIDs, and/or colchicine; or insufficient response to these medications. Furthermore, corticosteroids can be added to NSAIDs and colchicine in patients with persistent symptoms. In patients who do not respond adequately to any of these conventional therapies, alternative treatment options include azathioprine, intravenous human immunoglobulins, and anakinra. An improved understanding of how recurrent pericarditis develops after an initiating event is critical to prevent this complication, and further research is needed into the pathogenesis of recurrences. We discuss the aetiology and diagnosis of recurrent pericarditis, and extensively review the treatment options for this condition. PMID:26259934

  17. Secukinumab: a promising therapeutic option in spondyloarthritis.

    PubMed

    Maldonado-Ficco, Hernan; Perez-Alamino, Rodolfo; Maldonado-Cocco, José A

    2016-09-01

    Psoriatic arthritis (PsA) is the second most common chronic inflammatory joint disease. Ankylosing spondylitis (AS) is another less common but equally chronic and disabling spondyloarthritis (SpA). Therapeutic agents for the treatment of these diseases have been somewhat lacking as compared with those available for rheumatoid arthritis, which represents a significant challenge for both the treating physician and the pharmaceutical industry. A promising development for our understanding of the physiopathology of PsA and AS involves new targets to interrupt IL-17 and IL-12/IL-23 pathways. Up to 30-40 % of SpA patients have inadequate or poor response, or are intolerant to anti-TNF therapies. Therefore, there has been a clear unmet medical need in an important group of these patients. As a result, new therapeutic targets have emerged for the treatment of both axial and peripheral SpA. Interleukin 17 (IL-17) is a pro-inflammatory cytokine that is increased in psoriatic lesions as well as in the synovial fluid of patients with PsA and in sites of enthesitis in SpA. IL-23 has been shown to play an important role in the polarization of CD4+ T-cells to become IL-17 producers. Based on these evidences, blockade of the cytokine IL-17 or its receptors was considered to have therapeutic implications for the treatment of psoriasis, as well as PsA and AS.This article presents a thorough review of an IL-17 A blocking agent, its mechanism of action, its clinical efficacy and its therapeutic safety. PMID:27437696

  18. [New therapeutical options for heavy gastrointestinal bleeding].

    PubMed

    Braun, Georg; Messmann, Helmut

    2015-06-01

    The number of patients taking new oral anticoagulants is rising, so is the number of serious bleeding events. In severe bleeding, the decision to start a procoagulant therapy is difficult to take. With Idarucizumab and Andexanet Alfa, specific antidotes have been developed against both, direct thrombin inhibitors as well as direct Factor Xa inhibitors. In the endoscopic treatment of severe gastrointestinal bleeding, alternative treatment options are available with Hemospray™, Endoclot™ and new hemostasis clips. Especially in the recurrent ulcer bleeding, the newly developed clips can achieve hemostasis and prevent an operational procedure. PMID:26069913

  19. New therapeutic options for actinic keratosis and basal cell carcinoma.

    PubMed

    Sligh, James E

    2014-06-01

    Actinic keratosis (AK) is a common premalignant skin lesion that is frequently treated by cryosurgery. Basal cell carcinoma is the most common malignancy of man, and early-stage lesions are usually cured via surgery. Advanced basal cell carcinoma may require more extensive surgery resulting in deformity, and many advanced lesions cannot be treated surgically. Several recent developments have improved therapeutic options for both conditions. Cryosurgery is still a mainstay of treatment for AK, but the introduction of effective topical agents, imiquimod cream and ingenol mebutate, has provided alternatives to cryosurgery. For advanced basal cell carcinoma, the small-molecule inhibitor vismodegib has proven to be an effective therapy for lesions that are not amenable to surgery and has demonstrated ability to achieve dramatic improvement in advanced, potentially disfiguring cancer. PMID:25268601

  20. Hypertension in pregnancy: a review of therapeutic options

    PubMed Central

    Kernaghan, D; Duncan, A C; McKay, G A

    2012-01-01

    Hypertensive disorders in pregnancy are common and can occur as a result of pre-existing hypertension or as new onset hypertension usually in the second half of pregnancy. In either situation there is potential for considerable perinatal and maternal morbidity and mortality. This review article aims to compare therapeutic options outlined in a selection of national guidelines and to look in more detail at the most commonly prescribed drugs – labetalol, methyldopa and nifedipine – with respect to their pharmacology and the evidence for their use in pregnancy. We will also consider the rationale for identifying and treating hypertension in pregnancy and the effect this can have on short- and long-term maternal and neonatal outcomes.

  1. [The ketogenic diet: an underappreciated therapeutic option?].

    PubMed

    Paoli, A; Canato, M; Toniolo, L; Bargossi, A M; Neri, M; Mediati, M; Alesso, D; Sanna, G; Grimaldi, K A; Fazzari, A L; Bianco, A

    2011-01-01

    Obesity is reaching epidemic proportions in Western countries and is a strong risk factor for cardiovascular disease. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Although there is a common agreement about the concept that exercise and diet are two key factors for the control of body weight, the ideal amount and type of exercise and also the ideal diet for weight control are still under debate. A widely accepted nutritional regime is the Mediterranean diet that has evident health benefits although less attention has been paid to see if the effects are due to other lifestyle factors which may contribute to the health benefits perhaps as much as specific food choices. There are several other options available to the physician that may produce good weight loss results in the short/medium term and also for maintenance of the goal achieved. One of these strategies is the ketogenic diet or VLCKD (very low carbohydrate ketogenic diet) that has been widely studied in recent years. Most studies show that this diet has a solid physiological and biochemical basis which is able to induce effective weight loss and improvement of several parameters of cardiovascular risk. This review discusses the physiological basis of VLCKD and the main applications together with its strengths and weaknesses compared to common dietary recommendations. PMID:22041813

  2. Phytotherapy: emerging therapeutic option in urologic disease

    PubMed Central

    2012-01-01

    Phytotherapy belongs to the area of complementary and alternative medicine (CAM) and the definition of phytotherapy is the use of plants or plant extracts for medicinal uses. Interest in phytotherapy is growing in both Asian and western countries for its use in the prevention and management of disease, improvement of general health and anti-aging. And also, there are several studies about the efficacy of phytotherapy in urologic diseases like benign prostatic hyperplasia (BPH), erectile dysfunction (ED), late-onset hypogonadism (LOH) and infertility in males. Phytotherapy for BPH including saw palmetto, pygeum, and nettles, is under vigorous research for the therapeutic effect. No solid evidence showing better effective treatment modality for ED than placebo has been found yet for phytotherapy. Recently, a potent NO donor, L-arginine is under research with promising results. Phytotherapy is used by a number of patients with urological disease, and urologists need to have accurate knowledge about phytotherapy as well as keep a cautious approach. The possible effects and side effects should be defined and related to urologic patients by urologists. PMID:26816707

  3. Emerging Therapeutic Options for Celiac Disease

    PubMed Central

    Bakshi, Anita; Stephen, Sindu; Borum, Marie L.

    2012-01-01

    Celiac disease is an autoimmune disorder of the small intestine that is more common than was previously thought. This disease is caused by an inappropriate immune response to wheat gluten, barley, and rye. Three main pathways cause celiac disease: the environmental trigger (gluten), genetic susceptibility, and unusual gut permeability. The only treatment currently available is a strict gluten-free diet. Unfortunately, a majority of patients have difficulty complying with this diet, and the response to therapy is poor. Therefore, alternative treatments are being developed, and new insights into the pathophysiology of celiac disease have led to research into novel therapies. New treatments include engineering gluten-free grains, decreasing intestinal permeability by blockage of the epithelial zonulin receptor, inducing oral tolerance to gluten with a therapeutic vaccine, and degrading immunodominant gliadin peptides using probiotics with endopeptidases or transglutaminase inhibitors. These nondiet-based therapies provide hope for enhanced, lifelong celiac disease management with improved patient compliance and better quality of life. PMID:23483819

  4. Targeting α-synuclein: Therapeutic options.

    PubMed

    Dehay, Benjamin; Decressac, Mickael; Bourdenx, Mathieu; Guadagnino, Irene; Fernagut, Pierre-Olivier; Tamburrino, Anna; Bassil, Fares; Meissner, Wassilios G; Bezard, Erwan

    2016-06-01

    The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society. PMID:26926119

  5. Current Therapeutic Options in Sturge-Weber Syndrome.

    PubMed

    Comi, Anne

    2015-12-01

    Sturge-Weber syndrome is a vascular malformation syndrome consisting of a facial port-wine birthmark associated with malformed leptomeningeal blood vessels and a choroid "angioma" of the eye. It is a rare neurocutaneous disorder that occurs sporadically, is not inherited, and is caused by a somatic mosaic mutation in GNAQ. In patients with Sturge-Weber syndrome, brain involvement typically presents in infancy with seizures, strokes, and stroke-like episodes, and a range of neurologic impairments. Standard treatment includes laser therapy for the birthmark, control of glaucoma through eyedrops or surgery, and the use of anticonvulsants. Increasingly low-dose aspirin is offered. Treatment with propranolol has been tried generally without the dramatic results seen in hemangiomas. Treatment with an anticonvulsant or low-dose aspirin or both before the onset of seizures is an option. Surgical resection may be offered to those whose seizures are medically refractory. Endocrine, medical rehabilitation and cognitive comorbidities are important to manage. In the future, new therapeutic options are likely to be offered stemming from preclinical studies and small pilot clinical trials currently ongoing. Discovery of the causative somatic mosaic mutation suggests new insights into the pathophysiology of this vascular malformation disorder, and potential novel treatment strategies for future study. The mutation results in constitutive overactivation of the Ras-Raf-MEK-ERK and the HIPPO-YAP pathways and inhibitors of these pathways may in the future prove useful in the treatment of Sturge-Weber syndrome. PMID:26706016

  6. Current Therapeutic Options in Sturge-Weber Syndrome

    PubMed Central

    Comi, Anne

    2016-01-01

    Sturge-Weber syndrome is a vascular malformation syndrome consisting of a facial port-wine birthmark associated with malformed leptomeningeal blood vessels and a choroid “angioma” of the eye. It is a rare neurocutaneous disorder that occurs sporadically, is not inherited, and is caused by a somatic mosaic mutation in GNAQ. In patients with Sturge-Weber syndrome, brain involvement typically presents in infancy with seizures, strokes, and stroke-like episodes, and a range of neurologic impairments. Standard treatment includes laser therapy for the birthmark, control of glaucoma through eyedrops or surgery, and the use of anticonvulsants. Increasingly low-dose aspirin is offered. Treatment with propranolol has been tried generally without the dramatic results seen in hemangiomas. Treatment with an anticonvulsant or low-dose aspirin or both before the onset of seizures is an option. Surgical resection may be offered to those whose seizures are medically refractory. Endocrine, medical rehabilitation and cognitive comorbidities are important to manage. In the future, new therapeutic options are likely to be offered stemming from preclinical studies and small pilot clinical trials currently ongoing. Discovery of the causative somatic mosaic mutation suggests new insights into the pathophysiology of this vascular malformation disorder, and potential novel treatment strategies for future study. The mutation results in constitutive overactivation of the Ras-Raf-MEK-ERK and the HIPPO-YAP pathways and inhibitors of these pathways may in the future prove useful in the treatment of Sturge-Weber syndrome. PMID:26706016

  7. Therapeutic options for the management of pancreatic cancer

    PubMed Central

    Rossi, Maria L; Rehman, Azeem A; Gondi, Christopher S

    2014-01-01

    Since its initial characterization, pancreatic ductal adenocarcinoma has remained one of the most devastating and difficult cancers to treat. Pancreatic cancer is the fourth leading cause of death in the United States, resulting in an estimated 38460 deaths annually. With few screening tools available to detect this disease at an early stage, 94% of patients will die within five years of diagnosis. Despite decades of research that have led to a better understanding of the molecular and cellular signaling pathways in pancreatic cancer cells, few effective therapies have been developed to target these pathways. Other treatment options have included more sophisticated pancreatic cancer surgeries and combination therapies. While outcomes have improved modestly for these patients, more effective treatments are desperately needed. One of the greatest challenges in the future of treating this malignancy will be to develop therapies that target the tumor microenvironment and surrounding pancreatic cancer stem cells in addition to pancreatic cancer cells. Recent advances in targeting pancreatic stellate cells and the stroma have encouraged researchers to shift their focus to the role of desmoplasia in pancreatic cancer pathobiology in the hopes of developing newer-generation therapies. By combining novel agents with current cytotoxic chemotherapies and radiation therapy and personalizing them to each patient based on specific biomarkers, the goal of prolonging a patient’s life could be achieved. Here we review the most effective therapies that have been used for the treatment of pancreatic cancer and discuss the future potential of therapeutic options. PMID:25170201

  8. Therapeutic options in the treatment of benign prostatic hyperplasia

    PubMed Central

    Sandhu, Jaspreet S

    2009-01-01

    Current theraputic options for the treatment of symptomatic benign prostatic hyperplasia (BPH) are reviewed. Therapeutic options for mild lower urinary tract symptoms (LUTS), as defined by the American Urological Association, are generally treated medically. Moderate to severe LUTS can be treated medically or with surgical therapy. Current medical and surgical treatments for LUTS secondary to BPH are reviewed and evolving treatments are explored. PMID:19936164

  9. Primary Sclerosing Cholangitis: Therapeutic Options and Surveillance Management

    PubMed Central

    Kumar, Aditi; Wheatley, Daniel; Puttanna, Amar

    2016-01-01

    Primary sclerosing cholangitis is a chronic immune-mediated liver disease. Though rare, it poses several clinical concerns for the managing physician. There are currently limited therapeutic options in the management of the condition and weak evidence base behind them. Endoscopic intervention is limited to those patients with obstructing stricture-related disease, and even liver transplantation has a risk of disease recurrence. Surveillance for inflammatory bowel disorders, metabolic bone disease, and malignancy is paramount when managing such patients. This article provides an overview of the condition with further focus on current therapeutic options and guidance on surveillance management. PMID:27330336

  10. Stem cells as promising therapeutic options for neurological disorders.

    PubMed

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed. PMID:23097262

  11. Prehypertension: Underlying pathology and therapeutic options

    PubMed Central

    Albarwani, Sulayma; Al-Siyabi, Sultan; Tanira, Musbah O

    2014-01-01

    Prehypertension (PHTN) is a global major health risk that subjects individuals to double the risk of cardiovascular disease (CVD) independent of progression to overt hypertension. Its prevalence rate varies considerably from country to country ranging between 21.9% and 52%. Many hypotheses are proposed to explain the underlying pathophysiology of PHTN. The most notable of these implicate the renin-angiotensin system (RAS) and vascular endothelium. However, other processes that involve reactive oxygen species, the inflammatory cytokines, prostglandins and C-reactive protein as well as the autonomic and central nervous systems are also suggested. Drugs affecting RAS have been shown to produce beneficial effects in prehypertensives though such was not unequivocal. On the other hand, drugs such as β-adrenoceptor blocking agents were not shown to be useful. Leading clinical guidelines suggest using dietary and lifestyle modifications as a first line interventional strategy to curb the progress of PHTN; however, other clinically respected views call for using drugs. This review provides an overview of the potential pathophysiological processes associated with PHTN, abridges current intervention strategies and suggests investigating the value of using the “Polypill” in prehypertensive subjects to ascertain its potential in delaying (or preventing) CVD associated with raised blood pressure in the presence of other risk factors. PMID:25228952

  12. Therapeutic options in peripheral T cell lymphoma.

    PubMed

    Zhang, Yaping; Xu, Wei; Liu, Hong; Li, Jianyong

    2016-01-01

    Peripheral T cell lymphoma (PTCL) is a rare and heterogeneous group of non-Hodgkin lymphomas with a very poor prognosis. The standard first-line treatments have resulted in unsatisfactory patient outcomes. With the exception of low-risk anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL), the majority of patients relapse rapidly; the current 5-year overall survival rates are only 10-30%. Novel targeted therapies and combination chemotherapies are required for the treatment of patients with PTCL. In recent years, some retrospective and prospective studies have been performed concerning PTCL. Consequently, a number of novel agents and their relevant combination therapies have been identified, including histone deacetylase inhibitors, immunoconjugates, antifolates, monoclonal antibodies, immunomodulatory agents, nucleoside analogs, proteasome inhibitors, kinase inhibitors, bendamustine, L-asparaginase, and other targeted agents. It is hoped that these innovative approaches will finally improve outcomes in patients with PTCL. This review summarizes the currently available approaches for the treatment of PTCL with an emphasis on potential new agents, including the role of stem cell transplantation. PMID:27071634

  13. Gallbladder carcinoma: Prognostic factors and therapeutic options

    PubMed Central

    Goetze, Thorsten Oliver

    2015-01-01

    The outcome of gallbladder carcinoma is poor, and the overall 5-year survival rate is less than 5%. In early-stage disease, a 5-year survival rate up to 75% can be achieved if stage-adjusted therapy is performed. There is wide geographic variability in the frequency of gallbladder carcinoma, which can only be explained by an interaction between genetic factors and their alteration. Gallstones and chronic cholecystitis are important risk factors in the formation of gallbladder malignancies. Factors such as chronic bacterial infection, primary sclerosing cholangitis, an anomalous junction of the pancreaticobiliary duct, and several types of gallbladder polyps are associated with a higher risk of gallbladder cancer. There is also an interesting correlation between risk factors and the histological type of cancer. However, despite theoretical risk factors, only a third of gallbladder carcinomas are recognized preoperatively. In most patients, the tumor is diagnosed by the pathologist after a routine cholecystectomy for a benign disease and is termed ‘‘incidental or occult gallbladder carcinoma’’ (IGBC). A cholecystectomy is performed frequently due to the minimal invasiveness of the laparoscopic technique. Therefore, the postoperative diagnosis of potentially curable early-stage disease is more frequent. A second radical re-resection to complete a radical cholecystectomy is required for several IGBCs. However, the literature and guidelines used in different countries differ regarding the radicality or T-stage criteria for performing a radical cholecystectomy. The NCCN guidelines and data from the German registry (GR), which records the largest number of incidental gallbladder carcinomas in Europe, indicate that carcinomas infiltrating the muscularis propria or beyond require radical surgery. According to GR data and current literature, a wedge resection with a combined dissection of the lymph nodes of the hepatoduodenal ligament is adequate for T1b and T2

  14. Therapeutic options for peritoneal metastasis arising from colorectal cancer

    PubMed Central

    Glockzin, Gabriel; Schlitt, Hans J; Piso, Pompiliu

    2016-01-01

    Peritoneal metastasis is a common sign of advanced tumor stage, tumor progression or tumor recurrence in patients with colorectal cancer. Due to the improvement of systemic chemotherapy, the development of targeted therapy and the introduction of additive treatment options such as cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC), the therapeutic approach to peritoneal metastatic colorectal cancer (pmCRC) has changed over recent decades, and patient survival has improved. Moreover, in contrast to palliative systemic chemotherapy or best supportive care, the inclusion of CRS and HIPEC as inherent components of a multidisciplinary treatment regimen provides a therapeutic approach with curative intent. Although CRS and HIPEC are increasingly accepted as the standard of care for selected patients and have become part of numerous national and international guidelines, the individual role, optimal timing and ideal sequence of the different systemic, local and surgical treatment options remains a matter of debate. Ongoing and future randomized controlled clinical trials may help clarify the impact of the different components, allow for further improvement of patient selection and support the standardization of oncologic treatment regimens for pmCRC. The addition of further therapeutic options such as neoadjuvant intraperitoneal chemotherapy or pressurized intraperitoneal aerosol chemotherapy, should be investigated to optimize therapeutic regimens and further improve the oncological outcome. PMID:27602235

  15. Therapeutic options for peritoneal metastasis arising from colorectal cancer.

    PubMed

    Glockzin, Gabriel; Schlitt, Hans J; Piso, Pompiliu

    2016-08-01

    Peritoneal metastasis is a common sign of advanced tumor stage, tumor progression or tumor recurrence in patients with colorectal cancer. Due to the improvement of systemic chemotherapy, the development of targeted therapy and the introduction of additive treatment options such as cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC), the therapeutic approach to peritoneal metastatic colorectal cancer (pmCRC) has changed over recent decades, and patient survival has improved. Moreover, in contrast to palliative systemic chemotherapy or best supportive care, the inclusion of CRS and HIPEC as inherent components of a multidisciplinary treatment regimen provides a therapeutic approach with curative intent. Although CRS and HIPEC are increasingly accepted as the standard of care for selected patients and have become part of numerous national and international guidelines, the individual role, optimal timing and ideal sequence of the different systemic, local and surgical treatment options remains a matter of debate. Ongoing and future randomized controlled clinical trials may help clarify the impact of the different components, allow for further improvement of patient selection and support the standardization of oncologic treatment regimens for pmCRC. The addition of further therapeutic options such as neoadjuvant intraperitoneal chemotherapy or pressurized intraperitoneal aerosol chemotherapy, should be investigated to optimize therapeutic regimens and further improve the oncological outcome. PMID:27602235

  16. Electrical Storms in Brugada Syndrome: Review of Pharmacologic and Ablative Therapeutic Options

    PubMed Central

    P, Maury; M, Hocini; M, Haïssaguerre

    2005-01-01

    Electrical storm occurring in a patient with the Brugada syndrome is an exceptional but malignant and potentially lethal event. Efficient therapeutic solutions should be known and urgently applied because of the inability of usual antiarrhythmic means in preventing multiple recurrences of ventricular arrhythmias. Isoproterenol should be immediately infused while oral quinidine should be further administrated when isoproterenol is not effective. In case of failure of these therapeutic options, ablation of the triggering ventricular ectopies should be attempted. PMID:16943940

  17. Cannabidiol and epilepsy: Rationale and therapeutic potential.

    PubMed

    Leo, Antonio; Russo, Emilio; Elia, Maurizio

    2016-05-01

    Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue. To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy. In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action. However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD. In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis. Likewise, clinical evidence seems to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile. However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising. PMID:26976797

  18. Therapeutic potential of cannabinoid medicines.

    PubMed

    Robson, P J

    2014-01-01

    Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines. The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology. In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders. PMID:24006213

  19. Therapeutic options in idiopathic burning mouth syndrome: literature review.

    PubMed

    Miziara, Ivan; Chagury, Azis; Vargas, Camila; Freitas, Ludmila; Mahmoud, Ali

    2015-01-01

    Introduction Burning mouth syndrome (BMS) is characterized by a burning sensation in the tongue, palate, lips, or gums of no well-defined etiology. The diagnosis and treatment for primary BMS are controversial. No specific laboratory tests or diagnostic criteria are well established, and the diagnosis is made by excluding all other possible disorders. Objective To review the literature on the main treatment options in idiopathic BMS and compare the best results of the main studies in 15 years. Data Synthesis We conducted a literature review on PubMed/MEDLINE, SciELO, and Cochrane-BIREME of work in the past 15 years, and only selected studies comparing different therapeutic options in idiopathic BMS, with preference for randomized and double-blind controlled studies. Final Comments Topical clonazepam showed good short-term results for the relief of pain, although this was not presented as a definitive cure. Similarly, α-lipoic acid showed good results, but there are few randomized controlled studies that showed the long-term results and complete remission of symptoms. On the other hand, cognitive therapy is reported as a good and lasting therapeutic option with the advantage of not having side effects, and it can be combined with pharmacologic therapy. PMID:25992157

  20. Therapeutic Options in Idiopathic Burning Mouth Syndrome: Literature Review

    PubMed Central

    Miziara, Ivan; Chagury, Azis; Vargas, Camila; Freitas, Ludmila; Mahmoud, Ali

    2014-01-01

    Introduction Burning mouth syndrome (BMS) is characterized by a burning sensation in the tongue, palate, lips, or gums of no well-defined etiology. The diagnosis and treatment for primary BMS are controversial. No specific laboratory tests or diagnostic criteria are well established, and the diagnosis is made by excluding all other possible disorders. Objective To review the literature on the main treatment options in idiopathic BMS and compare the best results of the main studies in 15 years. Data Synthesis We conducted a literature review on PubMed/MEDLINE, SciELO, and Cochrane-BIREME of work in the past 15 years, and only selected studies comparing different therapeutic options in idiopathic BMS, with preference for randomized and double-blind controlled studies. Final Comments Topical clonazepam showed good short-term results for the relief of pain, although this was not presented as a definitive cure. Similarly, α-lipoic acid showed good results, but there are few randomized controlled studies that showed the long-term results and complete remission of symptoms. On the other hand, cognitive therapy is reported as a good and lasting therapeutic option with the advantage of not having side effects, and it can be combined with pharmacologic therapy. PMID:25992157

  1. Pediatric lymphatic malformations: evolving understanding and therapeutic options.

    PubMed

    Defnet, Ann M; Bagrodia, Naina; Hernandez, Sonia L; Gwilliam, Natalie; Kandel, Jessica J

    2016-05-01

    Multimodal treatment of lymphatic malformations continues to expand as new information about the biology and genetics of these lesions is discovered, along with knowledge gained from clinical practice. A patient-centered approach, ideally provided by a multidisciplinary medical and surgical team, should guide timing and modality of treatment. Current treatment options include observation, surgery, sclerotherapy, radiofrequency ablation, and laser therapy. New medical and surgical therapies are emerging, and include sildenafil, propranolol, sirolimus, and vascularized lymph node transfer. The primary focus of management is to support and optimize these patients' quality of life. Researchers continue to study lymphatic malformations with the goal of increasing therapeutic options and developing effective clinical pathways for these complicated lesions. PMID:26815877

  2. Thymoquinone and its therapeutic potentials.

    PubMed

    Darakhshan, Sara; Bidmeshki Pour, Ali; Hosseinzadeh Colagar, Abasalt; Sisakhtnezhad, Sajjad

    2015-01-01

    Herbal medicine has attracted great attention in the recent years and is increasingly used as alternatives to chemical drugs. Several lines of evidence support the positive impact of medicinal plants in the prevention and cure of a wide range of diseases. Thymoquinone (TQ) is the most abundant constituent of the volatile oil of Nigella sativa seeds and most properties of N sativa are mainly attributed to TQ. A number of pharmacological actions of TQ have been investigated including anti-oxidant, anti-inflammatory, immunomodulatory, anti-histaminic, anti-microbial and anti-tumor effects. It has also gastroprotective, hepatoprotective, nephroprotective and neuroprotective activities. In addition, positive effects of TQ in cardiovascular disorders, diabetes, reproductive disorders and respiratory ailments, as well as in the treatment of bone complications as well as fibrosis have been shown. In addition, a large body of data shows that TQ has very low adverse effects and no serious toxicity. More recently, a great deal of attention has been given to this dietary phytochemical with an increasing interest to investigate it in pre-clinical and clinical researches for assessing its health benefits. Here we report on and analyze numerous properties of the active ingredient of N. sativa seeds, TQ, in the context of its therapeutic potentials for a wide range of illnesses. We also summarize the drug's possible mechanisms of action. The evidence reported sugests that TQ should be developed as a novel drug in clinical trials. PMID:25829334

  3. Emerging therapeutic options for myelofibrosis: a Canadian perspective

    PubMed Central

    Gupta, Vikas; Foltz, Lynda; Sirhan, Shireen; Busque, Lambert; Turner, A Robert

    2012-01-01

    Myelofibrosis (MF) is a clonal stem cell disorder characterized by cytopenias, splenomegaly, marrow fibrosis, and systemic symptoms due to elevated inflammatory cytokines. MF is associated with decreased survival. The quality of life of patients with MF is similar to other advanced malignancies. Allogeneic hematopoietic cell transplantation is a curative treatment, but is applicable to a minority of patients with MF. None of the conventional therapies are known to alter the natural history of the disease. Significant progress has been made in the last few years in the understanding of disease biology of MF. Discovery of the JAK2V617F mutation paved the way for drug discovery in MF, and the first JAK1/2 inhibitor, ruxolitinib, has been approved by FDA and Health Canada. Several other JAK1/2 inhibitors are at various stages of clinical development. As a consequence, the therapeutic landscape of MF is changing from a disease where no effective therapies existed to one with several novel treatment options on the horizon. In this report, we assess the changing therapeutic options for MF, and critically analyze the position of novel treatments in the current armamentarium. PMID:23119228

  4. Granuloma annulare: Pathogenesis, disease associations and triggers, and therapeutic options.

    PubMed

    Piette, Evan W; Rosenbach, Misha

    2016-09-01

    Granuloma annulare (GA) represents a cutaneous reaction pattern of unknown cause with a variety of previously described potential disease associations and triggers. This review attempts to synthesize the available data regarding potential etiopathogenesis, reviews the available data on potential GA disease associations and work-up indicated for patients with GA, and discusses potential inciting triggers. In the final part, this article describes the available treatments options and supporting data, and provides a framework for approaching management of patients with GA. The previous accompanying article provided a comprehensive overview of the available information known about the clinical variants, epidemiology, genetics, and histology of GA. PMID:27543210

  5. [Therapeutic potential of optogenetic neuromodulation].

    PubMed

    Vandecasteele, Marie; Senova, Yann-Suhan; Palfi, Stéphane; Dugué, Guillaume P

    2015-04-01

    Optogenetic neuromodulation techniques, which have emerged during the last 15 years, have considerably enhanced our ability to probe the functioning of neural circuits by allowing the excitation and inhibition of genetically-defined neuronal populations using light. Having gained tremendous popularity in the field of fundamental neuroscience, these techniques are now opening new therapeutic avenues. Optogenetic neuromodulation is a method of choice for studying the physiopathology of neurological and neuropsychiatric disorders in a range of animal models, and could accelerate the discovery of new therapeutic strategies. New therapeutic protocols employing optogenetic neuromodulation may also emerge in the near future, offering promising alternative approaches for disorders which lack appropriate treatments, such as pharmacoresistant epilepsy and inherited retinal degeneration. PMID:25958759

  6. Update on therapeutic options in Waldenström macroglobulinemia

    PubMed Central

    Leleu, Xavier; Gay, Julie; Roccaro, Aldo M.; Moreau, Anne-Sophie; Poulain, Stephanie; Dulery, Remy; Champs, Berenice Bro Des; Robu, Daniela; Ghobrial, Irene M.

    2011-01-01

    Waldenström macroglobulinemia (WM) is a B-cell disorder characterized primarily by bone marrow infiltration with lymphoplasmacytic cells (LPCs), along with demonstration of an IgM monoclonal gammopathy in the blood. WM remains incurable, with 5–6 yr median overall survival for patients with symptomatic WM. The main therapeutic options include alkylating agents, nucleoside analogues, and rituximab, either in monotherapy or in combination. Studies involving combination chemotherapy are ongoing, and preliminary results are encouraging. However, there are several limitations to these approaches. The complete response rate is low and the treatment free survival are short in many patients, no specific agent or regimen has been shown to be superior to another, and no treatment has been specifically approved for WM. As such, novel therapeutic agents are needed for the treatment of WM. In ongoing efforts, we and others have sought to exploit advances made in the understanding of the biology of WM so as to develop new targeted therapeutics for this malignancy. These efforts have led to the development of proteasome inhibitors, of them bortezomib, several Akt/mTor inhibitors, such as perifosine and Rad001, and immunomodulatory agents such as thalidomide and lenalidomide. Many agents and monoclonal antibodies are currently being tested in clinical trials and seem promising. This report provides an update of the current preclinical studies and clinical efforts for the development of novel agents in the treatment of WM. PMID:19087134

  7. Therapeutic potential of atmospheric neutrons

    PubMed Central

    Voyant, Cyril; Roustit, Rudy; Tatje, Jennifer; Biffi, Katia; Leschi, Delphine; Briançon, Jérome; Marcovici, Céline Lantieri

    2010-01-01

    Background Glioblastoma multiform (GBM) is the most common and most aggressive type of primary brain tumour in humans. It has a very poor prognosis despite multi-modality treatments consisting of open craniotomy with surgical resection, followed by chemotherapy and/or radiotherapy. Recently, a new treatment has been proposed – Boron Neutron Capture Therapy (BNCT) – which exploits the interaction between Boron-10 atoms (introduced by vector molecules) and low energy neutrons produced by giant accelerators or nuclear reactors. Methods The objective of the present study is to compute the deposited dose using a natural source of neutrons (atmospheric neutrons). For this purpose, Monte Carlo computer simulations were carried out to estimate the dosimetric effects of a natural source of neutrons in the matter, to establish if atmospheric neutrons interact with vector molecules containing Boron-10. Results The doses produced (an average of 1 μGy in a 1 g tumour) are not sufficient for therapeutic treatment of in situ tumours. However, the non-localised yet specific dosimetric properties of 10B vector molecules could prove interesting for the treatment of micro-metastases or as (neo)adjuvant treatment. On a cellular scale, the deposited dose is approximately 0.5 Gy/neutron impact. Conclusion It has been shown that BNCT may be used with a natural source of neutrons, and may potentially be useful for the treatment of micro-metastases. The atmospheric neutron flux is much lower than that utilized during standard NBCT. However the purpose of the proposed study is not to replace the ordinary NBCT but to test if naturally occurring atmospheric neutrons, considered to be an ionizing pollution at the Earth's surface, can be used in the treatment of a disease such as cancer. To finalize this study, it is necessary to quantify the biological effects of the physically deposited dose, taking into account the characteristics of the incident particles (alpha particle and Lithium

  8. Clostridium difficile infection: New insights into therapeutic options.

    PubMed

    Kachrimanidou, Melina; Sarmourli, Theopisti; Skoura, Lemonia; Metallidis, Symeon; Malisiovas, Nikolaos

    2016-09-01

    Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings and represents a major social and economic burden. The major virulence determinants are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), encoded within the pathogenicity locus. Traditional therapies, such as metronidazole and vancomycin, frequently lead to a vicious circle of recurrences due to their action against normal human microbiome. New disease management strategies together with the development of novel therapeutic and containment approaches are needed in order to better control outbreaks and treat patients. This article provides an overview of currently available CDI treatment options and discusses the most promising therapies under development. PMID:25955884

  9. Inner ear symptoms and disease: Pathophysiological understanding and therapeutic options

    PubMed Central

    Ciuman, Raphael R.

    2013-01-01

    In recent years, huge advances have taken place in understanding of inner ear pathophysiology causing sensorineural hearing loss, tinnitus, and vertigo. Advances in understanding comprise biochemical and physiological research of stimulus perception and conduction, inner ear homeostasis, and hereditary diseases with underlying genetics. This review describes and tabulates the various causes of inner ear disease and defines inner ear and non-inner ear causes of hearing loss, tinnitus, and vertigo. The aim of this review was to comprehensively breakdown this field of otorhinolaryngology for specialists and non-specialists and to discuss current therapeutic options in distinct diseases and promising research for future therapies, especially pharmaceutic, genetic, or stem cell therapy. PMID:24362017

  10. gp130 receptor ligands as potential therapeutic targets for obesity

    PubMed Central

    Febbraio, Mark A.

    2007-01-01

    Obesity and its related cluster of pathophysiologic conditions including insulin resistance, glucose intolerance, dyslipidemia, and hypertension are recognized as growing threats to world health. It is now estimated that 10% of the world’s population is overweight or obese. As a result, new therapeutic options for the treatment of obesity are clearly warranted. Recent research has focused on the role that gp130 receptor ligands may play as potential therapeutic targets in obesity. One cytokine in particular, ciliary neurotrophic factor (CNTF), acts both centrally and peripherally and mimics the biologic actions of the appetite control hormone leptin, but unlike leptin, CNTF appears to be effective in obesity and as such may have therapeutic potential. In addition, CNTF suppresses inflammatory signaling cascades associated with lipid accumulation in liver and skeletal muscle. This review examines the potential role of gp130 receptor ligands as part of a therapeutic strategy to treat obesity. PMID:17404609

  11. Skewed Epigenetics: An Alternative Therapeutic Option for Diabetes Complications

    PubMed Central

    Togliatto, Gabriele; Dentelli, Patrizia; Brizzi, Maria Felice

    2015-01-01

    Vascular complications are major causes of morbidity and mortality in type 2 diabetes patients. Mitochondrial reactive oxygen species (ROS) generation and a lack of efficient antioxidant machinery, a result of hyperglycaemia, mainly contribute to this problem. Although advances in therapy have significantly reduced both morbidity and mortality in diabetic individuals, diabetes-associated vascular complications are still one of the most challenging health problems worldwide. New healing options are urgently needed as current therapeutics are failing to improve long-term outcomes. Particular effort has recently been devoted to understanding the functional relationship between chromatin structure regulation and the persistent change in gene expression which is driven by hyperglycaemia and which accounts for long-lasting diabetic complications. A detailed investigation into epigenetic chromatin modifications in type 2 diabetes is underway. This will be particularly useful in the design of mechanism-based therapeutics which interfere with long-lasting activating epigenetics and improve patient outcomes. We herein provide an overview of the most relevant mechanisms that account for hyperglycaemia-induced changes in chromatin structure; the most relevant mechanism is called “metabolic memory.” PMID:26064979

  12. New therapeutic options for advanced non-resectable malignant melanoma.

    PubMed

    Stadler, Simone; Weina, Kasia; Gebhardt, Christoffer; Utikal, Jochen

    2015-03-01

    Melanoma is a malignant tumor which is inclined to metastasize promptly into the lymphatic system and other organs such as lung, liver, brain or bone. Therefore early diagnosis remains crucial for improving clinical outcome for melanoma patients. Current chemotherapy and chemo-immunotherapy regimes have shown little clinical benefit with no improvement in overall survival. However, new advances in melanoma biology such as the discovery of predisposed gene signatures and key somatic events have changed clinical practice. New therapeutic approaches are being tested or have been approved by the FDA/EMA recently including targeted therapies, such as BRAF- and MEK-inhibitors, and novel immunotherapies, such as anti-CTLA4 or anti-PD1 therapies. For these therapies an improvement of progression-free and overall survival has been seen in patients with advanced non-resectable melanoma. The following review summarizes recent therapeutic options after the ASCO and ESMO annual meetings 2014 for the treatment of malignant melanoma. PMID:25596540

  13. Transcriptome Sequencing of Tumor Subpopulations Reveals a Spectrum of Therapeutic Options for Squamous Cell Lung Cancer

    PubMed Central

    Barrett, Christian L.; Schwab, Richard B.; Jung, HyunChul; Crain, Brian; Goff, Daniel J.; Jamieson, Catriona H. M.; Thistlethwaite, Patricia A.; Harismendy, Olivier; Carson, Dennis A.; Frazer, Kelly A.

    2013-01-01

    Background The only therapeutic options that exist for squamous cell lung carcinoma (SCC) are standard radiation and cytotoxic chemotherapy. Cancer stem cells (CSCs) are hypothesized to account for therapeutic resistance, suggesting that CSCs must be specifically targeted. Here, we analyze the transcriptome of CSC and non-CSC subpopulations by RNA-seq to identify new potential therapeutic strategies for SCC. Methods We sorted a SCC into CD133− and CD133+ subpopulations and then examined both by copy number analysis (CNA) and whole genome and transcriptome sequencing. We analyzed The Cancer Genome Atlas (TCGA) transcriptome data of 221 SCCs to determine the generality of our observations. Results Both subpopulations highly expressed numerous mRNA isoforms whose protein products are active drug targets for other cancers; 31 (25%) correspond to 18 genes under active investigation as mAb targets and an additional 4 (3%) are of therapeutic interest. Moreover, we found evidence that both subpopulations were proliferatively driven by very high levels of c-Myc and the TRAIL long isoform (TRAILL) and that normal apoptotic responses to high expression of these genes was prevented through high levels of Mcl-1L and Bcl-xL and c-FlipL—isoforms for which drugs are now in clinical development. SCC RNA-seq data (n = 221) from TCGA supported our findings. Our analysis is inconsistent with the CSC concept that most cells in a cancer have lost their proliferative potential. Furthermore, our study suggests how to target both the CSC and non-CSC subpopulations with one treatment strategy. Conclusions Our study is relevant to SCC in particular for it presents numerous potential options to standard therapy that target the entire tumor. In so doing, it demonstrates how transcriptome sequencing provides insights into the molecular underpinnings of cancer propagating cells that, importantly, can be leveraged to identify new potential therapeutic options for cancers beyond what is

  14. Management of hepatitis delta: Need for novel therapeutic options

    PubMed Central

    Abbas, Zaigham; Abbas, Minaam

    2015-01-01

    Hepatitis D virus (HDV) is the smallest single stranded RNA virus infecting humans. The hepatitis B surface antigen envelope protein protects the HDV nucleocapsid antigen and provides a means for the virus to enter and exit the hepatocyte. Hepatitis B and D viruses exploit the human sodium taurocholate co-transporting polypeptide (NTCP), a receptor, for their entry into hepatocytes. Prenylation of the large delta antigen is a critical determinant of HDV particle assembly. Treatment with pegylated interferon results in sustained virological response six months post-treatment in one fourth of the patients. Nucleos(t)ide analogs (NAs) have been widely tested in hepatitis delta, but they appear to be ineffective. Combination treatment of NAs with interferon also proved to be disappointing so there is a need for novel therapeutic options. The receptor function of NTCP is blocked by Myrcludex B, a synthetic N-acylated preS1 lipopeptide that competes with infectious virions for receptor binding. There are already some approved drugs available, including irbesartan, ezetimibe, and ritonavir and cyclosporin A, with documented inhibitory effects on NTCP’s metabolic function. These drugs may have a role in HDV treatment. Interference with host-mediated post-translational changes of proteins that are crucial to the HDV life cycle, such as prenylation may become an important tool to control HDV infection and prevent replication. Lonafarnib, a prenylation inhibitor significantly reduces virus levels in hepatitis delta patients. Antisense oligodeoxynucleotides which are complementary to genomic HDV ribozyme self-cleavage site and stem I regions can inhibit genomic HDV ribozyme activity. PMID:26327754

  15. Therapeutic Options for Controlling Fluids in the Visual System

    NASA Technical Reports Server (NTRS)

    Curry, Kristina M.; Wotring, Virginia E.

    2014-01-01

    Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.

  16. Current and emerging therapeutic options for the treatment of chronic chagasic cardiomyopathy

    PubMed Central

    Muratore, Claudio A; Baranchuk, Adrian

    2010-01-01

    Chagas’ disease is an endemic disease in Latin America caused by a unicellular parasite (Trypanosoma cruzi) that affects almost 18 million people. This condition involves the heart, causing heart failure, arrhythmias, heart block, thromboembolism, stroke, and sudden death. In this article, we review the current and emerging treatment of Chagas’ cardiomyopathy focusing mostly on management of heart failure and arrhythmias. Heart failure therapeutical options including drugs, stem cells and heart transplantation are revised. Antiarrhythmic drugs, catheter ablation, and intracardiac devices are discussed as well. Finally, the evidence for a potential role of specific antiparasitic treatment for the prevention of cardiovascular disease is reviewed. PMID:20730015

  17. Therapeutic potential of curcumin in gastrointestinal diseases.

    PubMed

    Rajasekaran, Sigrid A

    2011-02-15

    Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin's therapeutic potential for preventing and treating various cancers is being recognized. As curcumin's therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin's anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers. PMID:21607160

  18. Conotoxins: Structure, Therapeutic Potential and Pharmacological Applications.

    PubMed

    Mir, Rafia; Karim, Sajjad; Kamal, Mohammad Amjad; Wilson, Cornelia M; Mirza, Zeenat

    2016-01-01

    Cone snails, also known as marine gastropods, from Conus genus produce in their venom a diverse range of small pharmacologically active structured peptides called conotoxins. The cone snail venoms are widely unexplored arsenal of toxins with therapeutic and pharmacological potential, making them a treasure trove of ligands and peptidic drug leads. Conotoxins are small disulfide bonded peptides, which act as remarkable selective inhibitors and modulators of ion channels (calcium, sodium, potassium), nicotinic acetylcholine receptors, noradrenaline transporters, N-methyl-D-aspartate receptors, and neurotensin receptors. They are highly potent and specific against several neuronal targets making them valuable as research tools, drug leads and even therapeutics. In this review, we discuss their gene superfamily classification, nomenclature, post-translational modification, structural framework, pharmacology and medical applications of the active conopeptides. We aim to give an overview of their structure and therapeutic potential. Understanding these aspects of conopeptides will help in designing more specific peptidic analogues. PMID:26601961

  19. Therapeutic options in pediatric non alcoholic fatty liver disease: current status and future directions

    PubMed Central

    2012-01-01

    The epidemics of overweight and obesity has resulted in a significant increase of non alcoholic fatty liver disease (NAFLD), a potentially progressive condition. Currently, obesity related hepatopathy represents therefore the main cause of pediatric chronic liver disease. The first choice treatment at all ages is weight loss and/or lifestyle changes, however compliance is very poor and a pharmacological approach has become necessary. In the present article we present a systematic literature review focusing on established pediatric NALFD drugs (ursodeoxycholic acid, insulin sensitizers, and antioxidants) and on innovative therapeutic options as well. Regarding the former ones, a pediatric pilot study highlighted that ursodeoxycholic acid is not efficient on transaminases levels and bright liver. Similarly, a recent large scale, multicenter randomized clinical trial (TONIC study) showed that also insulin sensitizers and antioxidant vitamin E have scarce effects on serum transaminase levels. Among a large series of novel therapeutic approaches acting on recently proposed different pathomechanisms, probiotics seem hitherto the most interesting and reasonable option for their safety and tolerability. Toll-like receptors modifiers, Pentoxifylline, and Farnesoid X receptors agonists have been still poorly investigated, and will need further studies before becoming possible promising innovative therapeutic strategies. PMID:23075296

  20. Transferrin: structure, function and potential therapeutic actions.

    PubMed

    Gomme, Peter T; McCann, Karl B; Bertolini, Joseph

    2005-02-15

    There are many proteins that can multi-task. Transferrin, widely known as an iron-binding protein, is one such example of a multi-tasking protein. In this review, the multiple biological actions of transferrin, including its growth and cytoprotective activities, are discussed with the view of highlighting the potential therapeutic applications of this protein. PMID:15708745

  1. Tumour vasculature--a potential therapeutic target.

    PubMed Central

    Baillie, C. T.; Winslet, M. C.; Bradley, N. J.

    1995-01-01

    The tumour vasculature is vital for the establishment, growth and metastasis of solid tumours. Its physiological properties limit the effectiveness of conventional anti-cancer strategies. Therapeutic approaches directed at the tumour vasculature are reviewed, suggesting the potential of anti-angiogenesis and the targeting of vascular proliferation antigens as cancer treatments. PMID:7543770

  2. Attention deficit and hyperactivity disorder: a therapeutic option

    PubMed Central

    Topczewski, Abram

    2014-01-01

    Objective To evaluate the use of a therapeutic regimen to treat attention deficit hyperactivity disorder patients. Methods A total of 140 patients initially underwent physical, neurological and laboratory evaluation. Thereafter, treatment was initiated with a compounding product consisting of a tricyclic antidepressant and an anxiolytic. Results The response was positive in 71.43% of patients in controlling hyperactivity and improving dispersion and attention deficit. Conclusion The therapeutic regimen utilized proved to be an effective therapeutic alternative, especially for patients who do not adapt to psychostimulant drugs. PMID:25295451

  3. Emerging therapeutic options for sporadic inclusion body myositis

    PubMed Central

    Alfano, Lindsay N; Lowes, Linda P

    2015-01-01

    Sporadic inclusion body myositis is the most common inflammatory muscle disorder preferentially affecting males over the age of 40 years. Progressive muscle weakness of the finger flexors and quadriceps muscles results in loss of independence with activities of daily living and eventual wheelchair dependence. Initial signs of disease are often overlooked and can lead to mis- or delayed diagnosis. The underlying cause of disease is unknown, and disease progression appears refractory to available treatment options. This review discusses the clinical presentation of inclusion body myositis and the current efforts in diagnosis, and focuses on the current state of research for both nonpharmacological and pharmacological treatment options for this patient group. PMID:26445546

  4. Endometriosis: Survey of Current Diagnostic and Therapeutic Options and Latest Research Work

    PubMed Central

    Juhasz-Böss, I.; Laschke, M. W.; Müller, F.; Rosenbaum, P.; Baum, S.; Solomayer, E. F.; Ulrich, U.

    2014-01-01

    Endometriosis is one of the most frequent benign diseases in women of child-bearing age. The main symptoms are chronic upper abdominal pain and infertility. However, the aetiology and pathogenesis of endometriosis are as yet insufficiently clarified. Thus, therapy is mainly symptomatic with laparoscopic surgery being the gold standard. The aim of drug therapy is to achieve a hypo-oestrogenic condition. In cases of severe endometriosis and a desire to have children there is often an indication for assisted reproduction. The present article illustrates almost all current aspects on the diagnosis of and therapy of endometriosis. From the clinical viewpoint, emphasis is placed on the rare cases of deeply infiltrating endometriosis that are, however, accompanied with a high morbidity. Current therapeutic options in cases of infertility are also presented in more detail. Furthermore, special attention is paid to the latest research results from both clinical and basic research fields in order to demonstrate our current knowledge on the pathogenesis and, where possible, potentially related therapeutic options. PMID:25221341

  5. Therapeutic potential of cannabis-related drugs.

    PubMed

    Alexander, Stephen P H

    2016-01-01

    In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit. PMID:26216862

  6. Antioxidants as potential therapeutics for neuropsychiatric disorders

    PubMed Central

    Pandya, Chirayu D; Howell, Kristy R; Pillai, Anilkumar

    2012-01-01

    Oxidative stress has been implicated in the pathophysiology of many neuropsychiatric disorders such as schizophrenia, bipolar disorder, major depression etc. Both genetic and nongenetic factors have been found to cause increased cellular levels of reactive oxygen species beyond the capacity of antioxidant defense mechanism in patients of psychiatric disorders. These factors trigger oxidative cellular damage to lipids, proteins and DNA, leading to abnormal neural growth and differentiation. Therefore, novel therapeutic strategies such as supplementation with antioxidants can be effective for long-term treatment management of neuropsychiatric disorders. The use of antioxidants and PUFAs as supplements in the treatment of neuropsychiatric disorders has provided some promising results. At the same time, one should be cautious with the use of antioxidants since excessive antioxidants could dangerously interfere with some of the protective functions of reactive oxygen species. The present article will give an overview of the potential strategies and outcomes of using antioxidants as therapeutics in psychiatric disorders. PMID:23123357

  7. [Female androgenetic alopecia, a survey of causes and therapeutic options].

    PubMed

    Duchková, Hana; Hašková, Marta

    2015-01-01

    Mesotherapy is one of the options for the treatment of androgenetic alopecia. Testing 24 women with androgenetic alopecia has demonstrated a positive effect of mesotherapy on the hair growth, hair thickness, with only insignificant increase of hair density. It is known that androgenetic alopecia represents a localized aging of hair follicles. We therefore decided to examine the different effects of mesotherapy on hair density in younger and in elderly women. In younger women mesotherapy significantly increased hair density compared with older women. For mesotherapy we used a combination of micronutrients and antioxidants. Mesotherapy achievements were evident for 6-12 months. Treatment requires a long-term care. PMID:25994911

  8. Pharmacologic options for reducing the shivering response to therapeutic hypothermia.

    PubMed

    Weant, Kyle A; Martin, Julia E; Humphries, Roger L; Cook, Aaron M

    2010-08-01

    Recent literature has demonstrated significant improvements in neurologic outcomes in patients who have received induced hypothermia in the setting of out-of-hospital cardiac arrest. Through multiple metabolic mechanisms, the induction of hypothermia slows the progression and devastation of transient cerebral hypoxia. Despite these benefits, the desired reduction in core temperature is often a challenging venture as the body attempts to maintain homeostasis through the induction of thermoregulatory processes aimed at elevating body temperature. Shivering is an involuntary muscular activity that enhances heat production in an attempt to restore homeostasis. For successful induction and maintenance of induced hypothermia, shivering, as well as other thermoregulatory responses, must be overcome. Several pharmacologic options are available, either used alone or in combination, that safely and effectively prevent or treat shivering after the induction of hypothermia. We conducted a PubMed search (1966-March 2009) to identify all human investigations published in English that discussed pharmacologic mechanisms for the control of shivering. Among these options, clonidine, dexmedetomidine, and meperidine have demonstrated the greatest and most clinically relevant impact on depression of the shivering threshold. More research in this area is needed, however, and the role of the clinical pharmacist in the development and implementation of this therapy needs to be defined. PMID:20653360

  9. Natural Nuclear Factor Kappa Beta Inhibitors: Safe Therapeutic Options for Inflammatory Bowel Disease.

    PubMed

    Tambuwala, Murtaza M

    2016-03-01

    Inflammatory bowel disease (IBD) is a chronic and debilitating condition classified as ulcerative colitis and Crohn's disease. IBD usually happens as result of immune dysfunction in the intestinal mucosa resulting in epithelial barrier dysfunction, which leads to exposure of the mucosal immune system to luminal antigenic material. This results in activation of inflammation, which is our bodies natural defense system; however, chronic inflammation leads to barrier dysfunction, which triggers a cycle of inflammation and further barrier dysfunction. This barrier breakdown results in the uncontrolled progression of IBD throughout the intestine. Despite the therapeutic advances made over the last decade, the current first line of treatment of IBD is limited to immunosuppressive and anti-inflammatory drugs, which need to be taken regularly and have significant side effects to the patients. Prolonged inflammation may increase the risk of intestinal malignancy. The role of nuclear factor kappa beta (NF-κβ) has been established in the regulation of innate immunity and inflammation. NF-κβ has also shown to be involved in critical events linking inflammation and cancer development. Recent investigations suggest that the NF-κβ signaling cascade may be the central mediator of gastrointestinal inflammation in IBD and malignancies including esophageal, gastric, and colorectal cancers. In this review, the therapeutic potential of natural NF-κβ inhibitors as safe therapeutic options for the treatment of IBD will be discussed. PMID:26717321

  10. [Orthokin as new therapeutic option for orthopedic diseases].

    PubMed

    Heyll, U

    2004-03-01

    The synthesis and introduction of interleukin-1 receptor antagonists established a promising strategy in the treatment of inflammatory diseases. This kind of therapy is claimed now to be available for osteoarthritis and other orthopedic disorders also. In the case of "orthokin", the interleukin-1 receptor antagonist is produced by stimulation of own blood-cells. It is not possible, to evaluate the practicability of this therapeutic approach because there are no published experimental data. We also found no results of clinical studies, which would allow an estimation of the effectiveness and the risks of this method. Therefore treatment with "orthokin" cannot be recommended at present. PMID:15049471

  11. Epidermolysis Bullosa Acquisita: From Pathophysiology to Novel Therapeutic Options.

    PubMed

    Kasperkiewicz, Michael; Sadik, Christian D; Bieber, Katja; Ibrahim, Saleh M; Manz, Rudolf A; Schmidt, Enno; Zillikens, Detlef; Ludwig, Ralf J

    2016-01-01

    Epidermolysis bullosa acquisita (EBA) is a prototypic organ-specific autoimmune disease induced by autoantibodies to type VII collagen causing mucocutaneous blisters. In the inflammatory (bullous pemphigoid-like) EBA variant, autoantibody binding is followed by a lesional inflammatory cell infiltration, and the overall clinical picture may be indistinguishable from that of bullous pemphigoid, the latter being the most common autoimmune bullous disease. The last decade witnessed the development of several mouse models of inflammatory EBA that facilitated the elucidation of the pathogenesis of autoantibody-induced, cell-mediated subepidermal blistering diseases and identified new therapeutic targets for these and possibly other autoantibody-driven disorders. PMID:26763420

  12. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

    PubMed Central

    Liang, Xing-Jie; Chen, Chunying; Zhao, Yuliang; Jia, Lee; Wang, Paul C.

    2009-01-01

    Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well. PMID:18855608

  13. [Lactoferrin - a glycoprotein of great therapeutic potentials].

    PubMed

    Lauterbach, Ryszard; Kamińska, Ewa; Michalski, Piotr; Lauterbach, Jan Paweł

    2016-01-01

    Lactoferrin is an iron-binding glycoprotein, which is present in most biological fluids with particularly high levels in colostrum and in mammalian milk. Bovine lactoferrin is more than 70% homologous with human lactoferrin. Most of the clinical trials have used bovine lactoferrin for supplementation. This review summarizes the recent advances in explaining the mechanisms, which are responsible for the multifunctional roles of lactoferrin, and presents its potential prophylactic and therapeutic applications. On the ground of the results of preliminary clinical observations, authors suggest beneficial effect of lactoferrin supplementation on the prevalence of necrotizing enterocolitis in infants with birth weight below 1250 grams. PMID:27442696

  14. Gonadal dysfunction in men with chronic kidney disease: clinical features, prognostic implications and therapeutic options.

    PubMed

    Iglesias, Pedro; Carrero, Juan J; Díez, Juan J

    2012-01-01

    Gonadal dysfunction is a frequent finding in men with chronic kidney disease and with end-stage renal disease. Testosterone deficiency, usually accompanied by elevation of serum gonadotropin concentrations, is present in 26-66% of men with different degrees of renal failure. Uremia-associated hypogonadism is multifactorial in its origin, and rarely improves with initiation of dialysis, although it usually normalizes after renal transplantation. Experimental and clinical evidence suggests that testosterone may have important clinical implications with regards to kidney disease progression, derangements in sexual drive, libido and erectile dysfunction, development of anemia, impairment of muscle mass and strength, and also progression of atherosclerosis and cardiovascular disease. Additionally, low testosterone levels in hemodialysis patients have been associated with increased mortality risk in some studies. Currently, we count with available therapeutic options in the management of uremic hypogonadism, from optimal delivery of dialysis and adequate nutritional intake, to hormone replacement therapy with different testosterone preparations. Other potential options for treatment include the use of antiestrogens, dopamine agonists, erythropoiesis-stimulating factors, vitamins, essential trace elements, chorionic gonadotropin and renal transplantation. Potential adverse effects of androgen replacement therapy in patients with kidney disease comprise, however, erythrocytosis, prostate and breast cancer growth, reduced fertility, gynecomastia, obstructive sleep apnea and fluid retention. Androgen preparations should be used with caution with stringent monitoring in uremic men. Although there are encouraging data suggesting plausible benefits from testosterone replacement therapy, further studies are needed with regards to safety and effectiveness of this therapy. PMID:21748720

  15. Current and Novel Therapeutic Options for Irritable Bowel Syndrome Management

    PubMed Central

    Camilleri, Michael; Andresen, Viola

    2009-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder affecting up to 3-15% of the general population in western countries. It is characterized by unexplained abdominal pain, discomfort, and bloating in association with altered bowel habits. The pathophysiology of IBS is multifactorial involving disturbances of the brain-gut-axis. The pathophysiology provides the rationale for pharmacotherapy: abnormal gastrointestinal motor functions, visceral hypersensitivity, psychosocial factors, autonomic dysfunction, and mucosal immune activation. Understanding the mechanisms, and their mediators or modulators including neurotransmitters and receptors have led to several therapeutic approaches including agents acting on the serotonin receptor or serotonin transporter system, antidepressants, novel selective anticholinergics, α-adrenergic agonists, opioid agents, cholecystokinin-antagonists, neurokinin-antagonists, somatostatin receptor agonists, corticotropin releasing factor antagonists, chloride-channel activators, guanylate-cyclase-c agonists, melatonin, atypical benzodiazepines, antibiotics, immune modulators and probiotics. The mechanisms and current evidence regarding efficacy of these agents are reviewed. PMID:19665953

  16. Acquired von Willebrand syndrome: diagnostic problems and therapeutic options.

    PubMed

    Eikenboom, Jeroen C J; Tjernberg, Pernilla; Van Marion, Vincent; Heering, Karel J

    2007-01-01

    We present a case of acquired von Willebrand syndrome (AVWS) due to a monoclonal gammopathy of undetermined significance. Initially this case was diagnosed as congenital von Willebrand disease (VWD); however, re-examination of the medical history rendered a congenital bleeding disorder unlikely. A normal plasma von Willebrand factor (VWF) propeptide level and a very short half-life of VWF after a test infusion with factor VIII/VWF concentrate confirmed the diagnosis AVWS. Two major surgical procedures were successfully managed using high-dose intravenous immunoglobulin. The differential diagnosis with congenital VWD and the diagnostic and therapeutic approaches of AVWS are discussed. We conclude that the diagnosis of AVWS relies primarily on clinical suspicion and a careful bleeding history. A correct diagnosis is essential for optimal perioperative management and treatment of bleeding episodes. PMID:16986130

  17. Phytochemical and therapeutic potential of cucumber.

    PubMed

    Mukherjee, Pulok K; Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K

    2013-01-01

    Cucumber (Cucumis sativus L.) is a member of the Cucurbitaceae family like melon, squash and pumpkins. It is a popular vegetable crop used in Indian traditional medicine since ancient times. This vegetable is very high in water content and very low in calories. It has potential antidiabetic, lipid lowering and antioxidant activity. Cucumber has a cleansing action within the body by removing accumulated pockets of old waste materials and chemical toxins. Fresh fruit juice is used for nourishing the skin. It gives a soothing effect against skin irritations and reduces swelling. Cucumber also has the power to relax and alleviate the sunburn's pain. The fruit is refrigerant, haemostatic, tonic and useful in hyperdipsia, thermoplegia etc. The seeds also have a cooling effect on the body and they are used to prevent constipation. Several bioactive compounds have been isolated from cucumber including cucurbitacins, cucumegastigmanes I and II, cucumerin A and B, vitexin, orientin, isoscoparin 2″-O-(6‴-(E)-p-coumaroyl) glucoside, apigenin 7-O-(6″-O-p-coumaroylglucoside) etc. Despite huge exploration of cucumber in agricultural field, comparatively very few studies have been published about its chemical profile and its therapeutic potential. This article reviews the therapeutic application, pharmacological and phytochemical profile of different parts of C. sativus. In this review we have explored the current phytochemical and pharmacological knowledge available with this well known plant and several promising aspects for research on cucumber. PMID:23098877

  18. Therapeutic Potential of Metabotropic Glutamate Receptor Modulators

    PubMed Central

    Hovelsø, N; Sotty, F; Montezinho, L.P; Pinheiro, P.S; Herrik, K.F; Mørk, A

    2012-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain. PMID:22942876

  19. Papaya extract to treat dengue: a novel therapeutic option?

    PubMed

    Sarala, N; Paknikar, Ss

    2014-05-01

    Dengue is a viral disease that today affects a vast number of people in over 125 countries and is responsible for a sizable number of deaths. In the absence of an effective antiviral drug to treat the disease, various treatments are being investigated. Studies have indicated that the juice of the leaves of the Carica papaya plant from the family Caricaceae could help to increase the platelet levels in these patients. This review describes some of the published studies on this topic. The search was done independently by the two authors using PubMed, Google and the library database and included relevant articles of the last 10 years. A total of 7 studies were included in this review, which were one animal study, one case report, three case series and two randomized controlled trials. Although many of the studies and case reports published in literature lack adequate information, some of the studies do raise the possibility that this treatment could be an important option in the future. Further large-scale studies could establish the usefulness or ineffectiveness of this natural product in the treatment of dengue. PMID:24971201

  20. Treating seborrheic dermatitis: review of mechanisms and therapeutic options.

    PubMed

    Bhatia, Neal

    2013-07-01

    Seborrheic dermatitis is one of those conditions that dermatologists and patients alike tend to find a routine for, and in many cases those routines are hard to break. And, unlike the new treatment paradigms for eczema, acne, and even actinic keratoses, combination therapies for addressing the disease process typically have not been a part of the approach to treating seborrheic dermatitis. However, with the advent of new therapies and vehicles as well as a better understanding of how neutrophils and free oxygen radicals impact inflammation,1 there are new options to maintain and control the disease process of seborrheic dermatitis to minimize flares. Although the needs of the scalp, face and chest are different, as are the variations in skin types, the fundamental mechanisms of the inflammatory process are often the same. If it is understood that seborrheic dermatitis is histologically classified as a papulosquamous disorder with paucineutrophilic and lymphocytic infiltrates, and if the trigger and etiologic agent most likely is Malassezia furfur, then the ideal mechanisms of action of therapies should be directed as such PMID:23884493

  1. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?

    PubMed Central

    Félétou, Michel

    2009-01-01

    The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. PMID:19187341

  2. Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis.

    PubMed

    Monge-Maillo, Begoña; López-Vélez, Rogelio

    2013-11-01

    Estimated worldwide incidence of tegumentary leishmaniasis (cutaneous leishmaniasis [CL] and mucocutaneous leishmaniasis [MCL]) is over 1.5 million cases per year in 82 countries, with 90 % of cases occurring in Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria. Current treatments of CL are poorly justified and have sub-optimal effectiveness. Treatment can be based on topical or systemic regimens. These different options must be based on Leishmania species, geographic regions, and clinical presentations. In certain cases of Old World CL (OWCL), lesions can spontaneously heal without any need for therapeutic intervention. Local therapies (thermotherapy, cryotherapy, paromomycin ointment, local infiltration with antimonials) are good options with less systemic toxicity, reserving systemic treatments (azole drugs, miltefosine, antimonials, amphotericin B formulations) mainly for complex cases. The majority of New World CL (NWCL) types require systemic treatment (mainly with pentavalent antimonials), either to speed the healing or to prevent dissemination to oral-nasal mucosa as MCL (NWMCL). These types of lesions are potentially serious and always require systemic-based regimens, mainly antimonials and pentamidine; however, the associated immunotherapy is promising. This paper is an exhaustive review of the published literature on the treatment of OWCL, NWCL and NWMCL, and provides treatment recommendations stratified according to their level of evidence regarding the species of Leishmania implicated and the geographical location of the infection. PMID:24170665

  3. Neurosteroids, stress and depression: Potential therapeutic opportunities

    PubMed Central

    Zorumski, Charles F.; Paul, Steven M.; Izumi, Yukitoshi; Covey, Douglas F.; Mennerick, Steven

    2012-01-01

    Neurosteroids are potent and effective neuromodulators that are synthesized from cholesterol in the brain. These agents and their synthetic derivatives influence the function of multiple signaling pathways including receptors for γ-aminobutyric acid (GABA) and glutamate, the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS). Increasing evidence indicates that dysregulation of neurosteroid production plays a role in the pathophysiology of stress and stress-related psychiatric disorders, including mood and anxiety disorders. In this paper, we review the mechanisms of neurosteroid action in brain with an emphasis on those neurosteroids that potently modulate the function of GABAA receptors. We then discuss evidence indicating a role for GABA and neurosteroids in stress and depression, and focus on potential strategies that can be used to manipulate CNS neurosteroid synthesis and function for therapeutic purposes. PMID:23085210

  4. Garlic: a review of potential therapeutic effects

    PubMed Central

    Bayan, Leyla; Koulivand, Peir Hossain; Gorji, Ali

    2014-01-01

    Throughout history, many different cultures have recognized the potential use of garlic for prevention and treatment of different diseases. Recent studies support the effects of garlic and its extracts in a wide range of applications. These studies raised the possibility of revival of garlic therapeutic values in different diseases. Different compounds in garlic are thought to reduce the risk for cardiovascular diseases, have anti-tumor and anti-microbial effects, and show benefit on high blood glucose concentration. However, the exact mechanism of all ingredients and their long-term effects are not fully understood. Further studies are needed to elucidate the pathophysiological mechanisms of action of garlic as well as its efficacy and safety in treatment of various diseases. PMID:25050296

  5. Potential and effective meaning in therapeutic ritual.

    PubMed

    McCreery, J L

    1979-03-01

    Anthropologists who accept the functionalist dogma that everything in a culture is related to everything else can easily demonstrate from their own point of view that any ritual is richly meaningful. If, then, the healing power of therapeutic ritual depends on making illness meaningful, any ritual, if seen from this perspective, should be efficacious. We must distinguish, however, between potential and effective meaning, i.e. what a ritual might mean and what it does mean to participants in it who generally lack an anthropologist's global view of their culture. Effective meaning can be assessed by examining a ritual's relevance to the situation in which it occurs and factors which facilitate or hinder communication of what it might mean to particular persons. This argument is illustrated by analyzing the meaning of a Chinese healing ritual in two different situations in which it occurs. PMID:498802

  6. Management of frontotemporal dementia: targeting symptom management in such a heterogeneous disease requires a wide range of therapeutic options

    PubMed Central

    Jicha, Gregory A; Nelson, Peter T

    2011-01-01

    SUMMARY There are no US FDA-approved therapies for the management of frontotemporal dementia (FTD). Evidence-based medicine that would support a FDA indication for the treatment of FTD requires large-scale, randomized, double-blind, placebo-controlled trials that do not currently exist. Progress in obtaining approval and therapeutic indications for FTD has been severely hampered by the heterogeneity of clinical and pathological phenotypes seen in various FTD disease states. These issues are often misinterpreted by clinicians, caregivers and patients suggesting that potential treatment options are nonexistent for this devastating disease. This article discusses these issues in the context of recent studies and publications investigating therapeutic options in FTD, and further suggests a rationale for individualized therapy in FTD. Targeting the myriad of symptoms seen in FTD requires recognition of such symptoms that may play primary or secondary roles in the spectrum of deficits that lead to functional disability in FTD, and the availability of a wide range of therapeutic options that may be helpful in alleviating such symptomatology. Fortunately, agents targeting the many cognitive, behavioral, psychiatric and motor symptoms that can be seen in FTD are readily available, having been previously developed and approved for symptomatic benefit in other disease states. In contrast to the widespread belief that beneficial treatments are not available for FTD today, our therapeutic armament is stocked with pharmacological tools that may improve quality of life for those suffering from this devastating and incurable class of degenerative diseases. PMID:21927623

  7. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options

    PubMed Central

    Gressner, Olav A; Weiskirchen, Ralf; Gressner, Axel M

    2007-01-01

    Despite intensive studies, the clinical opportunities for patients with fibrosing liver diseases have not improved. This will be changed by increasing knowledge of new pathogenetic mechanisms, which complement the "canonical principle" of fibrogenesis. The latter is based on the activation of hepatic stellate cells and their transdifferentiation to myofibroblasts induced by hepatocellular injury and consecutive inflammatory mediators such as TGF-β. Stellate cells express a broad spectrum of matrix components. New mechanisms indicate that the heterogeneous pool of (myo-)fibroblasts can be supplemented by epithelial-mesenchymal transition (EMT) from cholangiocytes and potentially also from hepatocytes to fibroblasts, by influx of bone marrow-derived fibrocytes in the damaged liver tissue and by differentiation of a subgroup of monocytes to fibroblasts after homing in the damaged tissue. These processes are regulated by the cytokines TGF-β and BMP-7, chemokines, colony-stimulating factors, metalloproteinases and numerous trapping proteins. They offer innovative diagnostic and therapeutic options. As an example, modulation of TGF-β/BMP-7 ratio changes the rate of EMT, and so the simultaneous determination of these parameters and of connective tissue growth factor (CTGF) in serum might provide information on fibrogenic activity. The extension of pathogenetic concepts of fibrosis will provide new therapeutic possibilities of interference with the fibrogenic mechanism in liver and other organs. PMID:17663771

  8. Abort Options for Potential Mars Missions

    NASA Technical Reports Server (NTRS)

    Tartabini, P. V.; Striepe, S. A.; Powell, R. W.

    1994-01-01

    Mars trajectory design options were examined that would accommodate a premature termination of a nominal manned opposition class mission for opportunities between 2010 and 2025. A successful abort must provide a safe return to Earth in the shortest possible time consistent with mission constraints. In this study, aborts that provided a minimum increase in the initial vehicle mass in low Earth orbit (IMLEO) were identified by locating direct transfer nominal missions and nominal missions including an outbound or inbound Venus swing-by that minimized IMLEO. The ease with which these missions could be aborted while meeting propulsion and time constraints was investigated by examining free return (unpowered) and powered aborts. Further reductions in trip time were made to some aborts by the addition or removal of an inbound Venus swing-by. The results show that, although few free return aborts met the specified constraints, 85% of each nominal mission could be aborted as a powered abort without an increase in propellant. Also, in many cases, the addition or removal of a Venus swing-by increased the number of abort opportunities or decreased the total trip time during an abort.

  9. Iatrogenic intracranial pseudoaneurysms: neuroradiological and therapeutical considerations, including endovascular options.

    PubMed

    Ciceri, E F M; Regna-Gladin, C; Erbetta, A; Chiapparini, L; Nappini, S; Savoiardo, M; Di Meco, F

    2006-11-01

    Intracranial pseudoaneurysms represent a potentially fatal complication of intracranial surgery. Our purpose is to describe their neuroradiological characteristics, prognostic features and possible treatment. Eight cases of postsurgical intracranial pseudoaneurysms have been observed at our institution since 1988. Four were observed following transsphenoidal (TS) surgery and four after pterional craniotomies. Two types of iatrogenic pseudoaneurysms were observed: "fusiform", probably due to weakening of the adventitia during surgical peeling of the tumour from the artery (three cases) and "saccular", occurring after a more focal or complete laceration of the vessel (five cases), more often after TS surgery. A thorough preoperative neuroradiological examination may identify anatomical conditions at risk for development of this severe complication. Postoperative neuroradiological follow-up is mandatory in cases in which unusual bleeding has occurred during the perioperative period, but absence of bleeding does not exclude the possible development of a pseudoaneurysm. Endovascular treatment of pseudoaneurysms represents a safe and durable procedure, specifically in those cases in which damage to the carotid siphon occurred during TS surgery. PMID:17122940

  10. Neurosteroids and potential therapeutics: Focus on pregnenolone.

    PubMed

    Vallée, Monique

    2016-06-01

    Considerable evidence from preclinical and clinical studies shows that steroids and in particular neurosteroids are important endogenous modulators of several brain-related functions. In this context, it remains to be elucidated whether neurosteroids may serve as biomarkers in the diagnosis of disorders and might have therapeutic potential for the treatment of these disorders. Pregnenolone (PREG) is the main steroid synthesized from cholesterol in mammals and invertebrates. PREG has three main sources of synthesis, the gonads, adrenal glands and brain and is submitted to various metabolizing pathways which are modulated depending on various factors including species, steroidogenic tissues and steroidogenic enzymes. Looking at the whole picture of steroids, PREG is often known as the precursor to other steroids and not as an active steroid per se. Actually, physiological and brain functions have been studied mainly for steroids that are very active either binding to specific intracellular receptors, or modulating with high affinity the abundant membrane receptors, GABAA or NMDA receptors. However, when high sensitive and specific methodological approaches were available to analyze low concentrations of steroids and then match endogenous levels of different steroid metabolomes, several studies have reported more significant alterations in PREG than in other steroids in extraphysiological or pathological conditions, suggesting that PREG could play a functional role as well. Additionally, several molecular targets of PREG were revealed in the mammalian brain and beneficial effects of PREG have been demonstrated in preclinical and clinical studies. On this basis, this review will be divided into three parts. The first provides a brief overview of the molecular targets of PREG and the pharmacological effects observed in animal and human studies. The second will focus on the possible functional role of PREG with an outline of the modulation of PREG levels in animal and in

  11. Cyclic depsipeptides as potential cancer therapeutics.

    PubMed

    Kitagaki, Jirouta; Shi, Genbin; Miyauchi, Shizuka; Murakami, Shinya; Yang, Yili

    2015-03-01

    Cyclic depsipeptides are polypeptides in which one or more amino acid is replaced by a hydroxy acid, resulting in the formation of at least one ester bond in the core ring structure. Many natural cyclic depsipeptides possessing intriguing structural and biological properties, including antitumor, antifungal, antiviral, antibacterial, anthelmintic, and anti-inflammatory activities, have been identified from fungi, plants, and marine organisms. In particular, the potent effects of cyclic depsipeptides on tumor cells have led to a number of clinical trials evaluating their potential as chemotherapeutic agents. Although many of the trials have not achieved the desired results, romidepsin (FK228), a bicyclic depsipeptide that inhibits histone deacetylase, has been shown to have clinical efficacy in patients with refractory cutaneous T-cell lymphoma and has received Food and Drug Administration approval for use in treatment. In this review, we discuss antitumor cyclic depsipeptides that have undergone clinical trials and focus on their structural features, mechanisms, potential applications in chemotherapy, and pharmacokinetic and toxicity data. The results of this study indicate that cyclic depsipeptides could be a rich source of new cancer therapeutics. PMID:25419631

  12. Cannabinoids and Schizophrenia: Risks and Therapeutic Potential.

    PubMed

    Manseau, Marc W; Goff, Donald C

    2015-10-01

    A convergence of evidence shows that use of Cannabis sativa is associated with increased risk of developing psychotic disorders, including schizophrenia, and earlier age at which psychotic symptoms first manifest. Cannabis exposure during adolescence is most strongly associated with the onset of psychosis amongst those who are particularly vulnerable, such as those who have been exposed to child abuse and those with family histories of schizophrenia. Schizophrenia that develops after cannabis use may have a unique clinical phenotype, and several genetic polymorphisms may modulate the relationship between cannabis use and psychosis. The endocannabinoid system has been implicated in psychosis both related and unrelated to cannabis exposure, and studying this system holds potential to increase understanding of the pathophysiology of schizophrenia. Anandamide signaling in the central nervous system may be particularly important. Δ(9)-Tetrahydrocannabinol in cannabis can cause symptoms of schizophrenia when acutely administered, and cannabidiol (CBD), another compound in cannabis, can counter many of these effects. CBD may have therapeutic potential for the treatment of psychosis following cannabis use, as well as schizophrenia, possibly with better tolerability than current antipsychotic treatments. CBD may also have anti-inflammatory and neuroprotective properties. Establishing the role of CBD and other CBD-based compounds in treating psychotic disorders will require further human research. PMID:26311150

  13. The preventive and therapeutic potential of natural polyphenols on influenza.

    PubMed

    Bahramsoltani, Roodabeh; Sodagari, Hamid Reza; Farzaei, Mohammad Hosein; Abdolghaffari, Amir Hossein; Gooshe, Maziar; Rezaei, Nima

    2016-01-01

    Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications. PMID:26567957

  14. Transcatheter device closure of pseudoaneurysms of the left ventricular wall: An emerging therapeutic option.

    PubMed

    Madan, Tarun; Juneja, Manish; Raval, Abhishek; Thakkar, Bhavesh

    2016-02-01

    Left ventricular pseudoaneurysm is a rare but serious complication of acute myocardial infarction and cardiac surgery. While surgical intervention is the conventional therapeutic option, transcatheter closure can be considered in selected patients with suitable morphology of the pseudoaneurysm. We report a case of successful transcatheter closure of a left ventricular pseudoaneurysm orifice and isolation of the sac using an Amplatzer septal occluder. PMID:26852302

  15. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. PMID:26876916

  16. Anticancer therapeutic potential of soy isoflavone, genistein.

    PubMed

    Ravindranath, Mepur H; Muthugounder, Sakunthala; Presser, Naftali; Viswanathan, Subramanian

    2004-01-01

    to recombinant EGF to target cancers overexpressing the EGF receptor. Although genistein has many potentially therapeutic actions against cancer, its biphasic bioactivity (inhibitory at high concentrations and activating at low concentrations) requires caution in determining therapeutic doses of genistein alone or in combination with chemotherapy, radiation therapy, and/or immunotherapies. Of the more than 4500 genistein studies in peer-reviewed primary publications, almost one fifth pertain to its antitumor capabilities and more than 400 describe its mechanism of action in normal and malignant human and animal cells, animal models, in vitro experiments, or phase I/II clinical trials. Several biotechnological firms in Japan, Australia and in the United States (e.g., Nutrilite) manufacture genistein as a natural supplement under quality controlled and assured conditions. PMID:15584372

  17. Therapeutic potential of monoamine transporter substrates.

    PubMed

    Rothman, Richard B; Baumann, Michael H

    2006-01-01

    Monoamine transporter proteins are targets for many psychoactive compounds, including therapeutic and abused stimulant drugs. This paper reviews recent work from our laboratory investigating the interaction of stimulants with transporters in brain tissue. We illustrate how determining the precise mechanism of stimulant drug action (uptake inhibitor vs. substrate) can provide unique opportunities for medication discovery. An important lesson learned from this work is that drugs which display equipotent substrate activity at dopamine (DA) and serotonin (5-HT) transporters have minimal abuse liability and few stimulant side-effects, yet are able to suppress ongoing drug-seeking behavior. As a specific example, we describe the development of PAL-287 (alpha-methylnapthylethylamine), a dual DA/5-HT releasing agent that suppresses cocaine self-administration in rhesus monkeys, without the adverse effects associated with older phenylethylamine 5-HT releasers (e.g., fenfluramine) and DA releasers (e.g., amphetamine). Our findings demonstrate the feasibility of developing non-amphetamine releasing agents as potential treatments for substance abuse disorders and other psychiatric conditions. PMID:17017961

  18. Therapeutic potential of berberine against neurodegenerative diseases.

    PubMed

    Jiang, WenXiao; Li, ShiHua; Li, XiaoJiang

    2015-06-01

    Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR's effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer's disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson's disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases. PMID:25749423

  19. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases. PMID:23142242

  20. Melanocyte Stem Cells as Potential Therapeutics in Skin Disorders

    PubMed Central

    Lee, Ju Hee; Fisher, David E.

    2015-01-01

    Introduction Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSC) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation, and proliferation of MelSC are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSC and their niche may lead to use of MelSC in new treatments for various pigmentation disorders. Areas covered We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration, and proliferation of melanocytes and factors involved in the survival, maintenance, and regeneration of MelSC are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. Expert Opinion MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSC would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSC it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying. PMID:25104310

  1. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.

    PubMed

    Haque, Azizul; Hober, Didier; Blondiaux, Joel

    2015-10-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. PMID:26248374

  2. Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options

    PubMed Central

    KIDO, Hiroshi

    2015-01-01

    Influenza A virus (IAV) causes significant morbidity and mortality. The knowledge gained within the last decade on the pandemic IAV(H1N1)2009 improved our understanding not only of the viral pathogenicity but also the host cellular factors involved in the pathogenicity of multiorgan failure (MOF), such as cellular trypsin-type hemagglutinin (HA0) processing proteases for viral multiplication, cytokine storm, metabolic disorders and energy crisis. The HA processing proteases in the airway and organs for all IAV known to date have been identified. Recently, a new concept on the pathogenicity of MOF, the “influenza virus–cytokine–trypsin” cycle, has been proposed involving up-regulation of trypsin through pro-inflammatory cytokines, and potentiation of viral multiplication in various organs. Furthermore, the relationship between causative factors has been summarized as the “influenza virus–cytokine–trypsin” cycle interconnected with the “metabolic disorders–cytokine” cycle. These cycles provide new treatment concepts for ATP crisis and MOF. This review discusses IAV pathogenicity on cellular proteases, cytokines, metabolites and therapeutic options. PMID:26460316

  3. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks

    PubMed Central

    Hober, Didier; Blondiaux, Joel

    2015-01-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. PMID:26248374

  4. Acute respiratory distress syndrome: new definition, current and future therapeutic options

    PubMed Central

    Vlachou, Aikaterini; Ghannadian, Shirin; Simonetti, Umberto; Slutsky, Arthur S.; Zhang, Haibo

    2013-01-01

    Since acute respiratory distress syndrome (ARDS) was first described in 1967 there has been large number of studies addressing its pathogenesis and therapies. Despite this intense research activity, there are very few effective therapies for ARDS other than the use of lung protection strategies. This lack of therapeutic modalities is not only related to the complex pathogenesis of this syndrome but also the insensitive and nonspecific diagnostic criteria to diagnose ARDS. This review article will summarize the key features of the new definition of ARDS, and provide a brief overview of innovative therapeutic options that are being assessed in the management of ARDS. PMID:23825769

  5. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  6. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.

    PubMed

    Thoppil, Roslin J; Bishayee, Anupam

    2011-09-27

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called "isoprenoids") are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  7. Therapeutic aptamers: developmental potential as anticancer drugs

    PubMed Central

    Lee, Ji Won; Kim, Hyun Jung; Heo, Kyun

    2015-01-01

    Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237] PMID:25560701

  8. [Inner Ear Hearing Loss Part II: Sudden Sensorineural Hearing Loss, Therapeutic Options].

    PubMed

    Hesse, Gerhard

    2016-07-01

    The great majority of hearing disorders generates from pathologies in the inner ear, mainly the outer hair cells, as mentioned in the first part of this review. Very often, however, hearing loss appears suddenly and even without external causes like noise exposure. This sudden hearing loss is mostly unilateral, recovers very often spontaneously and should be treated, if persisting. Only in this acute stage there are therapeutic options available. If the inner ear hearing loss is chronic there is no curative therapy, an effective management of the hearing disorder is only possible through rehabilitation. This is due to the fact, that hair cells of all mammals, incl. humans, have no regenerative capacity and neither pharmaceutic agents nor other means can induce regeneration and recovery of hair cells. Even a gen-therapy is not available yet. In the second part of this review the main focus lies in sudden hearing loss and general therapeutic options for inner ear hearing loss. PMID:27392187

  9. Herbal Medicine Offered as an Initiative Therapeutic Option for the Management of Hepatocellular Carcinoma.

    PubMed

    Chen, Shao-Ru; Qiu, Hong-Cong; Hu, Yang; Wang, Ying; Wang, Yi-Tao

    2016-06-01

    Hepatocellular carcinoma (HCC) is a common malignant cancer and is the third leading cause of death worldwide. Effective treatment of this disease is limited by the complicated molecular mechanism underlying HCC pathogenesis. Thus, therapeutic options for HCC management are urgently needed. Targeting the Wnt/β-catenin, Hedgehog, Notch, and Hippo-YAP signaling pathways in cancer stem cell development has been extensively investigated as an alternative treatment. Herbal medicine has emerged as an initiative therapeutic option for HCC management because of its multi-level, multi-target, and coordinated intervention effects. In this article, we summarized the recent progress and clinical benefits of targeting the above mentioned signaling pathways and using natural products such as herbal medicine formulas to treat HCC. Proving the clinical success of herbal medicine is expected to deepen the knowledge on herbal medicine efficiency and hasten the adoption of new therapies. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26879574

  10. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    PubMed

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  11. The potential therapeutic effects of THC on Alzheimer's disease.

    PubMed

    Cao, Chuanhai; Li, Yaqiong; Liu, Hui; Bai, Ge; Mayl, Jonathan; Lin, Xiaoyang; Sutherland, Kyle; Nabar, Neel; Cai, Jianfeng

    2014-01-01

    The purpose of this study was to investigate the potential therapeutic qualities of Δ9-tetrahydrocannabinol (THC) with respect to slowing or halting the hallmark characteristics of Alzheimer's disease. N2a-variant amyloid-β protein precursor (AβPP) cells were incubated with THC and assayed for amyloid-β (Aβ) levels at the 6-, 24-, and 48-hour time marks. THC was also tested for synergy with caffeine, in respect to the reduction of the Aβ level in N2a/AβPPswe cells. THC was also tested to determine if multiple treatments were beneficial. The MTT assay was performed to test the toxicity of THC. Thioflavin T assays and western blots were performed to test the direct anti-Aβ aggregation significance of THC. Lastly, THC was tested to determine its effects on glycogen synthase kinase-3β (GSK-3β) and related signaling pathways. From the results, we have discovered THC to be effective at lowering Aβ levels in N2a/AβPPswe cells at extremely low concentrations in a dose-dependent manner. However, no additive effect was found by combining caffeine and THC together. We did discover that THC directly interacts with Aβ peptide, thereby inhibiting aggregation. Furthermore, THC was effective at lowering both total GSK-3β levels and phosphorylated GSK-3β in a dose-dependent manner at low concentrations. At the treatment concentrations, no toxicity was observed and the CB1 receptor was not significantly upregulated. Additionally, low doses of THC can enhance mitochondria function and does not inhibit melatonin's enhancement of mitochondria function. These sets of data strongly suggest that THC could be a potential therapeutic treatment option for Alzheimer's disease through multiple functions and pathways. PMID:25024327

  12. Functional foods as potential therapeutic options for metabolic syndrome.

    PubMed

    Brown, L; Poudyal, H; Panchal, S K

    2015-11-01

    Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven. PMID:26345360

  13. Therapeutic potential of curcumin in digestive diseases

    PubMed Central

    Dulbecco, Pietro; Savarino, Vincenzo

    2013-01-01

    Curcumin is a low-molecular-weight hydrophobic polyphenol that is extracted from turmeric, which possesses a wide range of biological properties including anti-inflammatory, anti-oxidant, anti-proliferative and anti-microbial activities. Despite its diverse targets and substantial safety, clinical applications of this molecule for digestive disorders have been largely limited to case series or small clinical trials. The poor bioavailability of curcumin is likely the major hurdle for its more widespread use in humans. However, complexation of curcumin into phytosomes has recently helped to bypass this problem, as it has been demonstrated that this new lecithin formulation enables increased absorption to a level 29-fold higher than that of traditional curcuminoid products. This allows us to achieve much greater tissue substance delivery using significantly lower doses of curcumin than have been used in past clinical studies. As curcumin has already been shown to provide good therapeutic results in some small studies of both inflammatory and neoplastic bowel disorders, it is reasonable to anticipate an even greater efficacy with the advent of this new technology, which remarkably improves its bioavailability. These features are very promising and may represent a novel and effective therapeutic approach to both functional and organic digestive diseases. PMID:24409053

  14. Therapeutic potential of curcumin in digestive diseases.

    PubMed

    Dulbecco, Pietro; Savarino, Vincenzo

    2013-12-28

    Curcumin is a low-molecular-weight hydrophobic polyphenol that is extracted from turmeric, which possesses a wide range of biological properties including anti-inflammatory, anti-oxidant, anti-proliferative and anti-microbial activities. Despite its diverse targets and substantial safety, clinical applications of this molecule for digestive disorders have been largely limited to case series or small clinical trials. The poor bioavailability of curcumin is likely the major hurdle for its more widespread use in humans. However, complexation of curcumin into phytosomes has recently helped to bypass this problem, as it has been demonstrated that this new lecithin formulation enables increased absorption to a level 29-fold higher than that of traditional curcuminoid products. This allows us to achieve much greater tissue substance delivery using significantly lower doses of curcumin than have been used in past clinical studies. As curcumin has already been shown to provide good therapeutic results in some small studies of both inflammatory and neoplastic bowel disorders, it is reasonable to anticipate an even greater efficacy with the advent of this new technology, which remarkably improves its bioavailability. These features are very promising and may represent a novel and effective therapeutic approach to both functional and organic digestive diseases. PMID:24409053

  15. Lipoic acid - biological activity and therapeutic potential.

    PubMed

    Gorąca, Anna; Huk-Kolega, Halina; Piechota, Aleksandra; Kleniewska, Paulina; Ciejka, Elżbieta; Skibska, Beata

    2011-01-01

    α-Lipoic acid (LA; 5-(1,2-dithiolan-3-yl)pentanoic acid) was originally isolated from bovine liver by Reed et al. in 1951. LA was once considered a vitamin. Subsequently, it was found that LA is not a vitamin and is synthesized by plants and animals. LA is covalently bound to the ε-amino group of lysine residues and functions as a cofactor for mitochondrial enzymes by catalyzing the oxidative decarboxylation of pyruvate, α-ketoglutarate and branched-chain α-keto acids. LA and its reduced form - dihydrolipoic acid (DHLA), meet all the criteria for an ideal antioxidant because they can easily quench radicals, can chelate metals, have an amphiphlic character and they do not exhibit any serious side effects. They interact with other antioxidants and can regenerate them. For this reason, LA is called an antioxidant of antioxidants. LA has an influence on the second messenger nuclear factor κB (NF-κB) and attenuates the release of free radicals and cytotoxic cytokines. The therapeutic action of LA is based on its antioxidant properties. Current studies support its use in the ancillary treatment of many diseases, such as diabetes, cardiovascular, neurodegenerative, autoimmune diseases, cancer and AIDS. This review was undertaken to gather the most recent information regarding the therapeutic properties of LA and its possible utility in disease treatment. PMID:22001972

  16. The therapeutic potential of regulated hypothermia.

    PubMed

    Gordon, C J

    2001-03-01

    Reducing body temperature of rodents has been found to improve their survival to ischaemia, hypoxia, chemical toxicants, and many other types of insults. Larger species, including humans, may also benefit from a lower body temperature when recovering from CNS ischaemia and other traumatic insults. Rodents subjected to these insults undergo a regulated hypothermic response (that is, decrease in set point temperature) characterised by preference for cooler ambient temperatures, peripheral vasodilatation, and reduced metabolic rate. However, forced hypothermia (that is, body temperature forced below set point) is the only method used in the study and treatment of human pathological insults. The therapeutic efficacy of the hypothermic treatment is likely to be influenced by the nature of the reduction in body temperature (that is, forced versus regulated). Homeostatic mechanisms counter forced reductions in body temperature resulting in physiological stress and decreased efficacy of the hypothermic treatment. On the other hand, regulated hypothermia would seem to be the best means of achieving a therapeutic benefit because thermal homeostatic systems mediate a controlled reduction in core temperature. PMID:11300205

  17. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis.

    PubMed

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad A; Rajaram, Murugesan V S; Schlesinger, Larry S; Tao, Lijian; Brown, Gordon D; Langdon, Wallace Y; Li, Belinda T; Zhang, Jian

    2016-08-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb(-/-) mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  18. Ocular Manifestations and Therapeutic Options in Patients with Familial Amyloid Polyneuropathy: A Systematic Review

    PubMed Central

    Martins, A. C.; Rosa, A. M.; Costa, E.; Tavares, C.; Quadrado, M. J.; Murta, J. N.

    2015-01-01

    Purpose. This paper aims to review the morphological and functional characteristics of patients affected by familial amyloid polyneuropathy (FAP), with greater focus on type I and its progression after liver transplantation. We also analyse therapeutic options for the ophthalmic manifestations. Methods. The literature from 2002 through 2015 was reviewed, with a total of 45 articles studied, using the key terms related to amyloidosis and its therapeutic approaches. Information was collated, evaluated, critically assessed, and then summarised in its present form. Pathophysiology and Treatment. FAP results from mutation of the transthyretin gene, with Val30Met being the most frequent substitution. The symptoms are those typical of a sensorimotor autonomic neuropathy and can be halted with liver transplantation. Nowadays there are new medical therapies that delay the progression of the systemic neuropathy. However, there are still no options to avoid ocular disease. Conclusion. The main ocular manifestations in patients with FAP type I are amyloid deposition in the vitreous, dry eye, and secondary glaucoma. Despite liver transplantation, eye synthesis of amyloid persists and is associated with progressive ocular manifestations, which require continued ophthalmologic follow-up. New therapeutic strategies are therefore needed, particularly to target the ocular synthesis of the abnormal protein. PMID:26558262

  19. Telomerase and its potential for therapeutic intervention

    PubMed Central

    Phatak, P; Burger, A M

    2007-01-01

    Telomerase and telomeres are attractive targets for anticancer therapy. This is supported by the fact that the majority of human cancers express the enzyme telomerase which is essential to maintain their telomere length and thus, to ensure indefinite cell proliferation – a hallmark of cancer. Tumours have relatively shorter telomeres compared to normal cell types, opening the possibility that human cancers may be considerably more susceptible to killing by agents that inhibit telomere replication than normal cells. Advances in the understanding of the regulation of telomerase activity and the telomere structure, as well as the identification of telomerase and telomere associated binding proteins have opened new avenues for therapeutic intervention. Here, we review telomere and telomerase biology and the various approaches which have been developed to inhibit the telomere/telomerase complex over the past decade. They include inhibitors of the enzyme catalytic subunit and RNA component, agents that target telomeres, telomerase vaccines and drugs targeting binding proteins. The emerging role of telomerase in cancer stem cells and the implications for cancer therapy are also discussed. PMID:17603541

  20. Novel therapeutic options for second-line therapy in metastatic renal cell carcinoma

    PubMed Central

    VON KLOT, CHRISTOPH-A. J.; MERSEBURGER, AXEL S.; KUCZYK, MARKUS A.

    2016-01-01

    Metastatic renal cell carcinoma (mRCC) has gained a variety of therapeutic options since the introduction of targeted therapy, starting in 2007. The basic molecular mechanisms included predominantly the targeting of vascular endothelial growth factor or the inhibition of the mammalian target of rapamycin. Recently, results from two randomized controlled trials, the CheckMate-25 and the METEOR trial, regarding therapy for RCC in the second-line setting have been published. In the present review, the current status of second-line therapy in mRCC is discussed, together with results from the two newly introduced substances, nivolumab and cabozantinib. PMID:27313856

  1. Novel bifunctional natriuretic peptides as potential therapeutics.

    PubMed

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  2. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    PubMed Central

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  3. Potential new therapeutic targets for pathological pruritus.

    PubMed

    Kuraishi, Yasushi

    2013-01-01

    Very few approved medications are indicated for the treatment of pruritus, and drug development for pruritic diseases is awaited. During the past two decades, progress has been made in understanding the molecular basis of the physiology and pathophysiology of pruritus. Newly identified potential targets for pathological pruritus include receptors (histamine H4 receptor, leukotriene B4 receptors, interleukin-31 receptor A, bombesin BB2 receptor, toll-like receptor 3, α-adrenoceptor, and opioid μ- and κ-receptors), channels (transient receptor potential (TRP) V3 and TRPA1 channels), and enzymes (histidine decarboxylase, sphingomyelin glucosylceramide deacylase, 5-lipoxygenase, leukotriene A4 hydrolase, and autotaxin). The development of specific, effective blockers and agonists/antagonists of these targets is awaited. PMID:23902965

  4. The Therapeutic Potential of Medicinal Foods

    PubMed Central

    Ramalingum, Nelvana; Mahomoodally, M. Fawzi

    2014-01-01

    Pharmaceutical and nutritional sciences have recently witnessed a bloom in the scientific literature geared towards the use of food plants for their diversified health benefits and potential clinical applications. Health professionals now recognize that a synergism of drug therapy and nutrition might confer optimum outcomes in the fight against diseases. The prophylactic benefits of food plants are being investigated for potential use as novel medicinal remedies due to the presence of pharmacologically active compounds. Although the availability of scientific data is rapidly growing, there is still a paucity of updated compilation of data and concerns about the rationale of these health-foods still persist in the literature. This paper attempts to congregate the nutritional value, phytochemical composition, traditional uses, in vitro and in vivo studies of 10 common medicinal food plants used against chronic noncommunicable and infectious diseases. Food plants included were based on the criteria that they are consumed as a common food in a typical diet as either fruit or vegetable for their nutritive value but have also other parts which are in common use in folk medicine. The potential challenges of incorporating these medicinal foods in the diet which offers prospective opportunities for future drug development are also discussed. PMID:24822061

  5. Potential therapeutic mechanism of K(+) channel block for MS.

    PubMed

    Baker, Mark D

    2013-10-01

    While the potential use of K(+) channel blockers in MS has been explored over many years, the approval in the US, and more recently in the UK, of fampyra (fampridine, 4-aminopyridine, 4-AP) as a symptomatic treatment for walking disability, has reawakened interest. Recent years have seen a real improvement in the treatment options for relapsing remitting MS, but the disease remains inadequately treated, with the progressive phase (characterised by irreversible functional loss) lacking any effective therapy. Whether the symptomatic relief afforded by 4-AP translates into neuroprotection, remains poorly investigated, although there is no clear reason why this would be expected. Importantly, future clinical studies may shed light on this question. This review includes an overview of axonal K(+) channel expression and pharmacology, and the logic of the use of K(+) channel blockers derived from observations in experimental studies of demyelination and synaptic transmission. It provides an insight into the probable biophysical actions of 4-AP, and how its action may aid in the symptomatic treatment of MS. The key message of this review is that 4-AP is a blocker of neuronal K(+) channels, and its administration is known to be of value in the symptomatic treatment of some patients. The details of the mechanism underlying the beneficial effects remain somewhat vague, and the molecular target has not been properly defined. The useful mechanism is likely to include an action on synaptic function, but whether it is the presynaptic terminal or the presynaptic axon that is the primary target is unknown. It is argued that because of the apparent inability of 4-AP to increase safety factor in experimental demyelination when clinically relevant concentrations are used, it cannot be the ideal pharmacological agent for treating demyelination by the widening of axonal action potentials. That said, it remains a possibility that the useful therapeutic effect of 4-AP may involve subtle

  6. The therapeutic potential of stem cells

    PubMed Central

    Watt, Fiona M.; Driskell, Ryan R.

    2010-01-01

    In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. Here, we summarize the different types of stem cells that have been described: their origins in embryonic and adult tissues and their differentiation potential in vivo and in culture. We review some current clinical applications of stem cells, highlighting the problems encountered when going from proof-of-principle in the laboratory to widespread clinical practice. While some of the key genetic and epigenetic factors that determine stem cell properties have been identified, there is still much to be learned about how these factors interact. There is a growing realization of the importance of environmental factors in regulating stem cell behaviour and this is being explored by imaging stem cells in vivo and recreating artificial niches in vitro. New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery based on patient-specific pluripotent cells and cancer stem cells. What makes stem cell research so exciting is its tremendous potential to benefit human health and the opportunities for interdisciplinary research that it presents. PMID:20008393

  7. Therapeutic Potential of Resveratrol in Lymphoid Malignancies.

    PubMed

    Khan, Omar S; Bhat, Ajaz A; Krishnankutty, Roopesh; Mohammad, Ramzi M; Uddin, Shahab

    2016-01-01

    Natural products have always been sought as a dependable source for the cure of many fatal diseases including cancer. Resveratrol (RSV), a naturally occurring plant polyphenol, has been of recent research interest and is being investigated for its beneficial biological properties that include antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory activities. These effects are mainly mediated by cell cycle arrest, upregulation of proapoptotic proteins, loss of mitochondrial potential, and generation of reactive oxygen species. Among the beneficial properties of RSV, the anticancer property has been of the prime focus and extensively explored during the last few years. Although reports exist on the chemopreventive role of RSV in many solid tumors, limited information is available on the antiproliferative activity of RSV in human lymphoma cells and experimental models. Potential mechanisms for its antiproliferative effect include induction of cell differentiation, apoptosis, and inhibition of DNA synthesis. In this review, the different kinds of lymphoid malignancies and the main mechanisms of cell death induced by resveratrol are discussed. The challenges are limiting in vivo experimental studies involving resveratrol. An attempt for the translation of this compound into a clinical drug also forms a part of this review. PMID:27028800

  8. Coronary Sinus Reducer system™: A new therapeutic option in refractory angina patients unsuitable for revascularization.

    PubMed

    Ielasi, Alfonso; Todaro, Maria Chiara; Grigis, Giulietta; Tespili, Maurizio

    2016-04-15

    A challenge of modern cardiovascular medicine is to find new, effective treatments for patients with refractory angina pectoris (RAP), a clinical condition characterized by severe angina despite optimal medical therapy and "no option" for a surgical or percutaneous revascularization. Although the relevant advance of both pharmaceutical and interventional treatments for patients affected by symptomatic coronary artery disease has greatly contributed to prolong survival, the increasing number of patients experimenting persistent and invalidating angina symptoms, highlights that quality of life of these patients has not been equally improved. Clinical limitations of the efficiency of conventional and relatively new approaches justify the search for new therapeutic options. In this review, we will focus on the epidemiology of RAP, and we will provide a brief update on the different options actually available to these patients with particular interest to an innovative device that narrow the coronary sinus: the Reducer system (Neovasc Inc., Richmond B.C., Canada). The efforts of present and future clinical studies will ultimately answer the question of whether this intriguing therapy is a suitable strategy for treatment of patients with RAP. PMID:26889595

  9. Pseudomonas aeruginosa biofilm: potential therapeutic targets.

    PubMed

    Sharma, Garima; Rao, Saloni; Bansal, Ankiti; Dang, Shweta; Gupta, Sanjay; Gabrani, Reema

    2014-01-01

    Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell-cell and cell-surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review. PMID:24309094

  10. Therapeutic Potential of Dietary Phenolic Acids

    PubMed Central

    Saibabu, Venkata; Fatima, Zeeshan; Khan, Luqman Ahmad; Hameed, Saif

    2015-01-01

    Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy. PMID:26442119

  11. Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option.

    PubMed

    Wang, Miao; Gao, Zeqian; Zhang, Yongguang; Pan, Li

    2016-07-01

    Recombinant lactic acid bacteria (LAB), in particular lactococci and lactobacilli, have gained increasing interest as mucosal delivery vehicles in recent years. With the development of mucosal vaccines, studies on LAB expression systems have been mainly focused on the generation of genetic tools for antigen expression in different locations. Recombinant LAB show advantages in a wide range of aspects over other mucosal delivery systems and represent an attractive candidate for the delivery of therapeutic and prophylactic molecules in different applications. Here, we review the recent data on the use of recombinant LAB as mucosal delivery vectors and the associated health benefits, including the prevention and treatment of inflammatory bowel diseases (IBDs), autoimmune disorders, and infections by pathogenic microorganisms from mucosal surfaces. In addition, we discuss the use of LAB as vehicles to deliver DNA directly to eukaryotic cells. Researches from the last 5 years demonstrate that LAB as vectors for mucosal delivery of therapeutic molecules seem to be a realistic therapeutic option both in human and animal diseases. PMID:27154346

  12. A new therapeutic option for postoperative pain management with oxycodone HCI injection

    PubMed Central

    2016-01-01

    Fentanyl is the most commonly used opioid analgesic in intravenous patient-controlled analgesia (IV PCA) in Korea. IV oxycodone was approved for postoperative IV PCA by the Ministry of Food and Drug Safety of Korea in 2013. The approved dosage regimen for postoperative pain relief with IV oxycodone is IV bolus loading of 2 mg followed by PCA composed of demand boluses of 1 mg and no background infusion with an oxycodone concentration of 1 mg/ml. However, a simulation study indicated that the minimum effective analgesic concentration (MEAC, as indicated by relief of pain by administering rescue analgesics) of oxycodone was reached most quickly with a higher loading dose of 0.1 mg/kg and IV PCA with background infusion. Oxycodone is a therapeutic option as an analgesic for postoperative pain management. It is necessary to reduce the analgesic dose of oxycodone in elderly patients because metabolic clearance decreases with age. PMID:27274364

  13. Antihypertensive therapy versus alternative therapeutic options for prehypertension: an evidence-based approach.

    PubMed

    Gaddam, Krishna K; Ventura, Hector; Lavie, Carl J

    2012-01-01

    The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7) defines hypertension as systolic blood pressure (BP) ≥140 mmHg or diastolic BP ≥90 mmHg. The JNC-7 defines 'prehypertension' to include systolic BP values between 120 and 139 mmHg and diastolic BP values between 80 and 89 mmHg. Individuals with blood pressure in the prehypertension range are clearly at increased risk of developing hypertension in the future and have an increased risk of cardiovascular morbidity and mortality, compared with those with normal BP. However, there is paucity of evidence to intervene in these patients. In this article we discuss an evidence-based approach to therapeutic options in patients with prehypertension. PMID:22185450

  14. A new therapeutic option for postoperative pain management with oxycodone HCI injection.

    PubMed

    Choi, Byung Moon

    2016-06-01

    Fentanyl is the most commonly used opioid analgesic in intravenous patient-controlled analgesia (IV PCA) in Korea. IV oxycodone was approved for postoperative IV PCA by the Ministry of Food and Drug Safety of Korea in 2013. The approved dosage regimen for postoperative pain relief with IV oxycodone is IV bolus loading of 2 mg followed by PCA composed of demand boluses of 1 mg and no background infusion with an oxycodone concentration of 1 mg/ml. However, a simulation study indicated that the minimum effective analgesic concentration (MEAC, as indicated by relief of pain by administering rescue analgesics) of oxycodone was reached most quickly with a higher loading dose of 0.1 mg/kg and IV PCA with background infusion. Oxycodone is a therapeutic option as an analgesic for postoperative pain management. It is necessary to reduce the analgesic dose of oxycodone in elderly patients because metabolic clearance decreases with age. PMID:27274364

  15. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma.

    PubMed

    Mimura, Naoya; Fulciniti, Mariateresa; Gorgun, Gullu; Tai, Yu-Tzu; Cirstea, Diana; Santo, Loredana; Hu, Yiguo; Fabre, Claire; Minami, Jiro; Ohguchi, Hiroto; Kiziltepe, Tanyel; Ikeda, Hiroshi; Kawano, Yutaka; French, Maureen; Blumenthal, Martina; Tam, Victor; Kertesz, Nathalie L; Malyankar, Uriel M; Hokenson, Mark; Pham, Tuan; Zeng, Qingping; Patterson, John B; Richardson, Paul G; Munshi, Nikhil C; Anderson, Kenneth C

    2012-06-14

    Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response. Inositol-requiring enzyme 1α (IRE1α) is activated to splice X-box binding protein 1 (XBP1) mRNA, thereby increasing XBP1s protein, which in turn regulates genes responsible for protein folding and degradation during the unfolded protein response. In this study, we examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM using a small-molecule IRE1α endoribonuclease domain inhibitor MKC-3946. MKC-3946 triggered modest growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Importantly, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG, even in the presence of bone marrow stromal cells or exogenous IL-6. Both bortezomib and 17-AAG induced ER stress, evidenced by induction of XBP1s, which was blocked by MKC-3946. Apoptosis induced by these agents was enhanced by MKC-3946, associated with increased CHOP. Finally, MKC-3946 inhibited XBP1 splicing in a model of ER stress in vivo, associated with significant growth inhibition of MM cells. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential therapeutic option in MM. PMID:22538852

  16. Novel hepatocellular carcinoma molecules with prognostic and therapeutic potentials

    PubMed Central

    Scaggiante, Bruna; Kazemi, Maryam; Pozzato, Gabriele; Dapas, Barbara; Farra, Rosella; Grassi, Mario; Zanconati, Fabrizio; Grassi, Gabriele

    2014-01-01

    Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the sixth most common cancer worldwide and the third leading cause of cancer-related death. The difficulty to diagnose early cancer stages, the aggressive behaviors of HCC, and the poor effectiveness of therapeutic treatments, represent the reasons for the quite similar deaths per year and incidence number. Considering the fact that the diagnosis of HCC typically occurs in the advanced stages of the disease when the therapeutic options have only modest efficacy, the possibility to identify early diagnostic markers could be of significant benefit. So far, a large number of biomarkers have been associated to HCC progression and aggressiveness, but many of them turned out not to be of practical utility. This is the reason why active investigations are ongoing in this field. Given the huge amount of published works aimed at the identification of HCC biomarkers, in this review we mainly focused on the data published in the last year, with particular attention to the role of (1) molecular and biochemical cellular markers; (2) micro-interfering RNAs; (3) epigenetic variations; and (4) tumor stroma. It is worth mentioning that a significant number of the HCC markers described in the present review may be utilized also as targets for novel therapeutic approaches, indicating the tight relation between diagnosis and therapy. In conclusion, we believe that integrated researches among the different lines of investigation indicated above should represent the winning strategies to identify effective HCC markers and therapeutic targets. PMID:24574801

  17. Endovascular Therapeutic Options for Isolated Iliac Aneurysms with a Working Classification

    SciTech Connect

    Fahrni, Markus; Lachat, Mario M; Wildermuth, Simon; Pfammatter, Thomas

    2003-09-15

    The purpose of this paper is to demonstrate a variety of stent-grafting and embolization techniques and describe a new classification for endovascular treatment of isolated iliac artery aneurysms. A total of 19 patients were treated for isolated iliac aneurysms. Depending on the proximal iliac neck and the uni-/bilaterality of common iliac artery aneurysms (CIAA's) the patient may be treated by a tube (Type Ia) or a bifurcated stent-graft (Type Ib) in addition to internal iliac artery embolization. Neck anatomy is also critical in determining therapeutical options for internal iliac artery aneurysms (IIAA's). These are tube stent-grafting plus internal iliac branch embolization (Type IIa), coiling of afferent and efferent internal iliac vessels (Type IIb) and IIAA packing (Type IIc). The average length of stay for these procedures was 3.8 days. During the mean follow-up of 20.9 months, aneurysm size remained unchanged in all but 4 patients. Reinterventions were necessary in option Type Ib (3/8 pat.) and Type Ia (1/7 pat.) due to extender stent-graft migration (n = 2) or reperfusion leaks (n 2). We conclude that Iliac artery aneurysms may be successfully and safely treated by a tailored approach using embolization or a combination of embolization and stent-grafting. Long-term CT imaging follow-up is necessary, particularly in patients treated with bifurcated stent-grafts (Type Ib)

  18. Cystosarcoma phylloides of the breast: a review of clinical, pathological and therapeutic option in 18 cases.

    PubMed

    Sheen-Chen, S M; Chou, F F; Chen, W J

    1991-01-01

    The clinical and pathological findings and therapeutic options in 18 patients with cystosarcoma phylloides were retrospectively studied and analysed. Painless breast lump was the most common clinical penetration. An accurate pre-operative diagnosis was obtained in only six patients (33.3%). Intraoperative frozen section examination was performed in nine patients and the diagnosis was cystosarcoma phylloides in five patients, benign breast tumor in four patients with a 55.5% yield. The final pathological results revealed benign form cystosarcoma phylloides in 17 patients and malignant form in one patient. Seven patients, including the one with malignant form tumor, underwent wide excision with an adequate margin of normal breast tissue. One patient underwent subcutaneous mastectomy due to the huge size of tumor. The remaining 11 patients with presumed diagnosis of fibroadenoma or breast cancer underwent simple excision. There was no local recurrence or distant metastasis in any of the 18 patients, with a mean follow-up time of 31.5 months. On the basis of this data, wide excision with an adequate margin of normal breast tissue may be the preferred initial therapy for cystosarcoma phylloides. For those patients undergoing simple excision, the follow-up option may be acceptable if microscopic examination reveals no unrecognised amputation of tumor. PMID:1651293

  19. The nitric oxide pathway and possible therapeutic options in pre-eclampsia

    PubMed Central

    Johal, Tamanrit; Lees, Christoph C; Everett, Thomas R; Wilkinson, Ian B

    2014-01-01

    Pre-eclampsia is a serious multisystem disorder with diverse clinical manifestations. Although not causal, endothelial dysfunction and reduced nitric oxide bioavailability are likely to play an important role in the maternal and fetal pathophysiology of this condition. Lack of treatment modalities that can target the underlying pathophysiological changes and reverse the endothelial dysfunction frequently leads to iatrogenic preterm delivery of the fetus, causing neonatal morbidity and mortality, and the condition itself is associated with short- and longer term maternal morbidity and mortality. Drugs that target various components of the nitric oxide–soluble guanylyl cyclase pathway can help to increase NO bioavailability. The purpose of this review is to outline the current status of clinical research involving these therapeutic modalities in the context of pre-eclampsia, with the focus being on the following: nitric oxide donors, including organic nitrates and S-nitrosothiols; l-arginine, the endogenous precursor of NO; inhibitors of cyclic guanosine 3′,5′-monophosphate breakdown, including sildenafil; and other novel inhibitors of NO donor metabolism. The advantages and limitations of each modality are outlined, and scope for development into established therapeutic options for pre-eclampsia is explored. PMID:24313856

  20. Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation.

    PubMed

    Bakunowicz-Łazarczyk, Alina; Urban, Beata

    2016-03-01

    This article aims to review and provide the current knowledge of the possibilities of topical treatment of corneal neovascularization due to alkali burns, evidenced by laboratory experiments, in vitro studies, and clinical trials published in the specialized literature. Authors present clinically relevant treatment of corneal neovascularization used in clinical practice, potential antiangiogenic topical therapeutics against corneal neovascularization, which are under investigation, and anti-angiogenic gene-therapy. PMID:26651127

  1. Potential GHG mitigation options for agriculture in China

    SciTech Connect

    Erda, Lin; Yue, Li; Hongmin, Dong

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions is improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.

  2. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  3. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy

    PubMed Central

    Zhang, Longjiang; Chen, Hongwei; Wang, Liya; Liu, Tian; Yeh, Julie; Lu, Guangming; Yang, Lily; Mao, Hui

    2010-01-01

    Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented. PMID:24198480

  4. Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges

    PubMed Central

    LEE, JIN-KU; NAM, DO-HYUN; LEE, JEONGWU

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and most lethal primary brain tumor, with tragically little therapeutic progress over the last 30 years. Surgery provides a modest benefit, and GBM cells are resistant to radiation and chemotherapy. Despite significant development of the molecularly targeting strategies, the clinical outcome of GBM patients remains dismal. The challenges inherent in developing effective GBM treatments have become increasingly clear, and include resistance to standard treatments, the blood-brain barrier, resistance of GBM stem-like cells, and the genetic complexity and molecular adaptability of GBM. Recent studies have collectively suggested that certain antipsychotics harbor antitumor effects and have potential utilities as anti-GBM therapeutics. In the present review, the anti-tumorigenic effects and putative mechanisms of antipsychotics, and the challenges for the potential use of antipsychotic drugs as anti-GBM therapeutics are reviewed. PMID:26893731

  5. Assessing the therapeutic potential of lab-made hepatocytes.

    PubMed

    Rezvani, Milad; Grimm, Andrew A; Willenbring, Holger

    2016-07-01

    Hepatocyte transplantation has potential as a bridge or even alternative to whole-organ liver transplantation. Because donor livers are scarce, realizing this potential requires the development of alternative cell sources. To be therapeutically effective, surrogate hepatocytes must replicate the complex function and ability to proliferate of primary human hepatocytes. Ideally, they are also autologous to eliminate the need for immune suppression, which can have severe side effects and may not be sufficient to prevent rejection long term. In the past decade, several methods have been developed to generate hepatocytes from other readily and safely accessible somatic cells. These lab-made hepatocytes show promise in animal models of liver diseases, supporting the feasibility of autologous liver cell therapies. Here, we review recent preclinical studies exemplifying different types of lab-made hepatocytes that can potentially be used in autologous liver cell therapies. To define the therapeutic efficacy of current lab-made hepatocytes, we compare them to primary human hepatocytes, focusing on engraftment efficiency and posttransplant proliferation and function. In addition to summarizing published results, we discuss animal models and assays effective in assessing therapeutic efficacy. This analysis underscores the therapeutic potential of current lab-made hepatocytes, but also highlights deficiencies and uncertainties that need to be addressed in future studies aimed at developing liver cell therapies with lab-made hepatocytes. (Hepatology 2016;64:287-294). PMID:27014802

  6. Platelet derived growth factor inhibitors: A potential therapeutic approach for ocular neovascularization.

    PubMed

    Sadiq, Mohammad Ali; Hanout, Mostafa; Sarwar, Salman; Hassan, Muhammad; Do, Diana V; Nguyen, Quan Dong; Sepah, Yasir Jamal

    2015-01-01

    Retinochoroidal vascular diseases are the leading causes of blindness in the developed world. They include diabetic retinopathy (DR), retinal vein occlusion, retinopathy of prematurity, age-related macular degeneration (AMD), and pathological myopia, among many others. Several different therapies are currently under consideration for the aforementioned disorders. In the following section, agents targeting platelet-derived growth factor (PDGF) are discussed as a potential therapeutic option for retinochoroidal vascular diseases. PDGF plays an important role in the angiogenesis cascade that is activated in retinochoroidal vascular diseases. The mechanism of action, side effects, efficacy, and the potential synergistic role of these agents in combination with other treatment options is discussed. The future of treatment of retinochoroidal vascular diseases, particularly AMD, has become more exciting due to agents such as PDGF antagonists. PMID:26586980

  7. Platelet-Derived Growth Factor Inhibitors: A Potential Therapeutic Approach for Ocular Neovascularization.

    PubMed

    Sadiq, Mohammad Ali; Hanout, Mostafa; Sarwar, Salman; Hassan, Muhammad; Agarwal, Aniruddha; Sepah, Yasir Jamal; Do, Diana V; Nguyen, Quan Dong

    2016-01-01

    Retinochoroidal vascular diseases are the leading causes of blindness in the developed world. They include diabetic retinopathy, retinal vein occlusion, retinopathy of prematurity, age-related macular degeneration (AMD), and pathological myopia, among many others. Several different therapies are currently under consideration for the aforementioned disorders. In the following section, agents targeting platelet-derived growth factors (PDGF) are discussed as a potential therapeutic option for retinochoroidal vascular diseases. PDGF play an important role in the angiogenesis cascade that is activated in retinochoroidal vascular diseases. The mechanism of action, side effects, efficacy, and the potential synergistic role of these agents in combination with other treatment options is discussed. The future of treatment of retinochoroidal vascular diseases, particularly neovascular AMD, has become more exciting due to agents like PDGF antagonists. PMID:26501397

  8. Platelet derived growth factor inhibitors: A potential therapeutic approach for ocular neovascularization

    PubMed Central

    Sadiq, Mohammad Ali; Hanout, Mostafa; Sarwar, Salman; Hassan, Muhammad; Do, Diana V.; Nguyen, Quan Dong; Sepah, Yasir Jamal

    2015-01-01

    Retinochoroidal vascular diseases are the leading causes of blindness in the developed world. They include diabetic retinopathy (DR), retinal vein occlusion, retinopathy of prematurity, age-related macular degeneration (AMD), and pathological myopia, among many others. Several different therapies are currently under consideration for the aforementioned disorders. In the following section, agents targeting platelet-derived growth factor (PDGF) are discussed as a potential therapeutic option for retinochoroidal vascular diseases. PDGF plays an important role in the angiogenesis cascade that is activated in retinochoroidal vascular diseases. The mechanism of action, side effects, efficacy, and the potential synergistic role of these agents in combination with other treatment options is discussed. The future of treatment of retinochoroidal vascular diseases, particularly AMD, has become more exciting due to agents such as PDGF antagonists. PMID:26586980

  9. Ursolic acid (UA): A metabolite with promising therapeutic potential.

    PubMed

    Kashyap, Dharambir; Tuli, Hardeep Singh; Sharma, Anil K

    2016-02-01

    Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action. PMID:26775565

  10. Autophagy: a potential therapeutic target in lung diseases

    PubMed Central

    Nakahira, Kiichi

    2013-01-01

    Macroautophagy (hereafter referred to as autophagy) is an evolutionally conserved intracellular process to maintain cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. During autophagy, cytosolic constituents are engulfed into double-membrane-bound vesicles called “autophagosomes,” which are subsequently delivered to the lysosome for degradation. Accumulated evidence suggests that autophagy is critically involved not only in the basal physiological states but also in the pathogenesis of various human diseases. Interestingly, a diverse variety of clinically approved drugs modulate autophagy to varying extents, although they are not currently utilized for the therapeutic purpose of manipulating autophagy. In this review, we highlight the functional roles of autophagy in lung diseases with focus on the recent progress of the potential therapeutic use of autophagy-modifying drugs in clinical medicine. The purpose of this review is to discuss the merits, and the pitfalls, of modulating autophagy as a therapeutic strategy in lung diseases. PMID:23709618

  11. Is the medical use of cannabis a therapeutic option for children?

    PubMed

    Rieder, Michael J

    2016-01-01

    Cannabis is a psychoactive compound with a long history of recreational and therapeutic use. Current considerations regarding cannabis use for medical purposes in children have been stimulated by recent case reports describing its beneficial effect with refractory epilepsy. Overall, there are insufficient data to support either the efficacy or safety of cannabis use for any indications in children, and an increasing body of data suggests possible harm, most importantly in specific conditions. The potential for cannabis as a therapeutic agent must be evaluated carefully for both efficacy and safety in treating specific paediatric health conditions. Smoking is not an acceptable mode of drug delivery for children. The use of cannabis for medical purposes in specific cases should not be construed as a justification for recreational cannabis use by adolescents. Recommendations for therapeutic use in exceptional paediatric cases are offered, always providing that this treatment course is carefully evaluated in individuals and in ongoing, well-designed research studies to determine safety and efficacy. PMID:26941559

  12. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?

    PubMed

    Abreu, Soraia C; Weiss, Daniel J; Rocco, Patricia R M

    2016-01-01

    Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice. PMID:27075363

  13. Beyond first-line chemotherapy for advanced pancreatic cancer: An expanding array of therapeutic options?

    PubMed Central

    Walker, Evan J; Ko, Andrew H

    2014-01-01

    While an increasing number of therapeutic options are now available for the first-line treatment of locally advanced or metastatic pancreatic cancer, the optimal choice for treatment in the second-line setting and beyond is less well defined. A variety of cytotoxic agents, either alone or in combination, have been evaluated, although primarily in the context of small single-arm or retrospective studies. Most regimens have been associated with median progression-free survival rates in the range of 2-4 mo and overall survival rates between 4-8 mo, highlighting the very poor prognosis of patients who are candidates for such treatment. Targeted therapies studied in this chemotherapy-refractory setting, meanwhile, have produced even worse efficacy results. In the current article, we review the clinical evidence for treatment of refractory disease, primarily in patients who have progressed on front-line gemcitabine-based chemotherapy. In the process, we highlight the limitations of the available data to date as well as some of the challenges in designing appropriate clinical trials in this salvage setting, including how to select an appropriate control arm given the absence of a well-established reference standard, and the importance of incorporating predictive biomarkers and quality of life measures whenever possible into study design. PMID:24605022

  14. Surgical strategies and modern therapeutic options in the treatment of craniopharyngiomas.

    PubMed

    Mortini, Pietro; Gagliardi, Filippo; Boari, Nicola; Losa, Marco

    2013-12-01

    The optimal treatment of patients with craniopharyngioma remains controversial. In particular, the role of aggressive treatment compared to less aggressive therapeutic options is poorly understood. Radical resection is the therapy of choice at any age, because it is associated with the best outcome in terms of survival. Nevertheless, aggressive behaviour, location, involvement of critical structures, tumour size, calcifications, and patient age may limit the extent of resection. Surgery can also carry significant morbidity in terms of visual, hypothalamic, and endocrinological disturbances. Long term sequelae reduce the quality of life in 50% of long-term survivors, notably obesity and neurobehavioral impairment due to hypthalamic involvement and iatrogenic induced lesions. The quality of life should be considered as a clinically important endpoint in patients, who currently experience good overall survival rates, regardless of the degree of surgical resection. Tendency to recur despite negative postoperative imaging led many authors to advocate a less aggressive surgical treatment followed by radiation therapy. We review the data reported in the literature, especially early outcome after surgical treatment and factors affecting the risk of tumour recurrence, to elucidate the role of attempted radical resection in the treatment of craniopharyngioma and to identify the clinical and morphological characteristics predictive for the best surgical prognosis. PMID:23932582

  15. Nitroglycerin patch for the treatment of chondrodermatitis nodularis helicis: a new therapeutic option.

    PubMed

    Garrido Colmenero, Cristina; Martínez García, Eliseo; Blasco Morente, Gonzalo; Tercedor Sánchez, Jesús

    2014-01-01

    Chondrodermatitis nodularis helicis (CNH) is an inflammatory process that affects the skin and cartilage of the ear. At present, there are many treatment options, although they are not always effective. Based on previous studies where nitroglycerin 2% gel was used, we propose the use of nitroglycerin patches. The purpose of this study was to evaluate the effectiveness of nitroglycerin patches in treating CNH. We performed a prospective study in 11 patients diagnosed with CNH treated with nitroglycerin patches 5 mg, 12 hours a day for 2 months. The therapeutic effectivity was determined by the improvement in the appearance and symptoms of the lesion. Seven of 11 patients (63.6%) had a complete response. One of 11 patients (9%) did not respond completely and surgical treatment was performed. Two of 11 patients (18.1%) stopped the treatment because of headache. One of 11 patients (9%) did not complete the treatment because the said patient forgot to apply the patch every night. Transdermal nitroglycerin has demonstrated efficacy in the treatment of the symptoms and lesional appearance of CNH noninvasive manner. The success rate is comparable with other published methods and the rate of adverse effects is acceptable. PMID:24909052

  16. Vogt-Koyanagi-Harada syndrome: Perspectives for immunogenetics, multimodal imaging, and therapeutic options.

    PubMed

    Silpa-Archa, Sukhum; Silpa-Archa, Narumol; Preble, Janine M; Foster, C Stephen

    2016-08-01

    Vogt-Koyanagi-Harada syndrome (VKH) is a bilateral, diffuse granulomatous uveitis associated with neurological, audiovestibular, and dermatological systems. The primary pathogenesis is T-cell-mediated autoimmune response directed towards melanocyte or melanocyte-associated antigens causing inflammation of the choroidal layer. This phenomenon usually leads to diffuse inflammatory conditions throughout most parts of eye before ocular complications ensue. The diagnosis is achieved mainly by clinical features according to the revised diagnostic criteria of VKH published in 2001, without confirmatory serologic tests as a requirement. However, ancillary tests, especially multimodal imaging, can reliably provide supportive evidence for the diagnosis of early cases, atypical presentations, and evaluation of management. Prompt treatment with systemic corticosteroids and early non-steroidal immunosuppressive drug therapy can lessen visually threatening ocular complications and bring about good visual recovery. Close monitoring warrants visual stabilization from disease recurrence and ocular complications. This article review aims not only to update comprehensive knowledge regarding VKH but also to emphasize three major perspectives of VKH: immunogenetics as the major pathogenesis of the disease, multimodal imaging, and therapeutic options. The role of anti-vascular endothelial growth factor therapy and drug-induced VKH is also provided. PMID:27060382

  17. The practicing physician's current perspective on therapeutic options in coronary artery disease

    PubMed Central

    Drenth, D.J.; Zijlstra, F.; Boonstra, P.W.

    2005-01-01

    Over the past decades the management of patients with stable as well as unstable manifestations of coronary artery disease has evolved in every aspect of routine clinical practice. Modern diagnostic modalities allow reliable and objective assessment of both the anatomical and functional consequences of the early as well as advanced stages of this disease, which remains one of the most important causes of morbidity and mortality worldwide. Pharmacological therapy now includes several classes of drugs with mortality benefits documented by randomised controlled trials. Surgical and percutaneous revascularisation techniques have shown rapid technical improvements and are now applicable in a wide range of clinical conditions. In this paper we will attempt to place the current status of the three therapeutic options for patients with coronary artery disease into perspective. It is important to realise that it is impossible to write a complete overview, a Pubmed search: 'PCI or drug therapy or surgery for coronary artery disease' results in 1,152,117 hits. Therefore, we have chosen the viewpoint of the practicing physician to synthesise this abundance of information in the context of modern clinical practice in a high volume cardiothoracic and cardiological practice. PMID:25696508

  18. Rectal cancer and Fournier’s gangrene - current knowledge and therapeutic options

    PubMed Central

    Bruketa, Tomislav; Majerovic, Matea; Augustin, Goran

    2015-01-01

    Fournier’s gangrene (FG) is a rapid progressive bacterial infection that involves the subcutaneous fascia and part of the deep fascia but spares the muscle in the scrotal, perianal and perineal region. The incidence has increased dramatically, while the reported incidence of rectal cancer-induced FG is unknown but is extremely low. Pathophysiology and clinical presentation of rectal cancer-induced FG per se does not differ from the other causes. Only rectal cancer-specific symptoms before presentation can lead to the diagnosis. The diagnosis of rectal cancer-induced FG should be excluded in every patient with blood on digital rectal examination, when urogenital and dermatological causes are excluded and when fever or sepsis of unknown origin is present with perianal symptomatology. Therapeutic options are more complex than for other forms of FG. First, the causative rectal tumor should be removed. The survival of patients with rectal cancer resection is reported as 100%, while with colostomy it is 80%. The preferred method of rectal resection has not been defined. Second, oncological treatment should be administered but the timing should be adjusted to the resolution of the FG and sometimes for the healing of plastic reconstructive procedures that are commonly needed for the reconstruction of large perineal, scrotal and lower abdominal wall defects. PMID:26290629

  19. Protein Engineering for Cardiovascular Therapeutics: Untapped Potential for Cardiac Repair

    PubMed Central

    Jay, Steven M.; Lee, Richard T.

    2013-01-01

    Numerous new and innovative approaches for repairing damaged myocardium are currently under investigation, with several encouraging results. In addition to the progression of stem cell-based approaches and gene therapy/silencing methods, evidence continues to emerge that protein therapeutics may be used to directly promote cardiac repair and even regeneration. However, proteins are often limited in their therapeutic potential by short local half-lives and insufficient bioavailability and/or bioactivity, and many academic laboratories studying cardiovascular diseases are more comfortable with molecular and cellular biology compared with protein biochemistry. Protein engineering has been employed broadly to overcome weaknesses traditionally associated with protein therapeutics and has the potential to specifically enhance the efficacy of molecules for cardiac repair. Yet protein engineering as a strategy has not yet been employed in the development of cardiovascular therapeutics to the degree that it has in other fields. In this review, we discuss the role of engineered proteins in cardiovascular therapies to date. Further, we address the promise of applying emerging protein engineering technologies to cardiovascular medicine and the barriers that must be overcome to enable the ultimate success of this approach. PMID:24030023

  20. The therapeutic potential of cannabinoids for movement disorders.

    PubMed

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2015-03-01

    There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  1. The Therapeutic Potential of Cannabinoids for Movement Disorders

    PubMed Central

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2014-01-01

    Background There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and particularly for neurologic conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science, preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. Results The pharmacology of cannabis is complex with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits but more consistently suggest potential neuroprotective effects in several animal models of Parkinson’s (PD) and Huntington’s disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia or ataxia and nonexistent for myoclonus or restless legs syndrome. Conclusions Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological and therapeutic effects of this class of drugs in movement disorders. PMID:25649017

  2. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    PubMed

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  3. New direct oral anticoagulants--current therapeutic options and treatment recommendations for bleeding complications.

    PubMed

    Miesbach, Wolfgang; Seifried, Erhard

    2012-10-01

    To date, clinical studies show that the incidence of spontaneous bleeding with new direct oral anticoagulants (DOAs) is comparable to that of established anticoagulants. However, unlike vitamin K antagonists, there are currently no clinically available antidotes or approved reversal agents for new DOAs. Restoring normal coagulation is important in many cases, such as emergency surgeries, serious bleedings, or anticoagulant overdosing. Attempts have been made to restore normal coagulation after treatment with new DOAs using compounds such as recombinant activated factor VII (rFVIIa), prothrombin complex concentrate (PCC), or FEIBA (factor eight inhibitor bypassing activity). Limited pre-clinical data and even less clinical evidence are available on the usefulness of these methods in restoring normal coagulation for the emergency management of critical bleeding episodes. Evaluating the utility of DOAs is further complicated by the fact that it is unknown how predictive established test systems are of the bleeding risks. Clinical practice requires further evaluation of the emergency management options for the new DOAs to define the agents and the doses that are most useful. Furthermore, patients receiving long-term treatment with a DOA are likely to undergo elective surgery at some point, and there is lack of evidence regarding perioperative treatment regimens under such conditions. This review summarises potential bleeding management options and available data on the new DOAs. PMID:22782297

  4. Aquaporin 1, a potential therapeutic target for migraine with aura

    PubMed Central

    2010-01-01

    The pathophysiology of migraine remains largely unknown. However, evidence regarding the molecules participating in the pathophysiology of migraine has been accumulating. Water channel proteins, known as aquaporins (AQPs), notably AQP-1 and AQP-4, appears to be involved in the pathophysiology of several neurological diseases. This review outlines newly emerging evidence indicating that AQP-1 plays an important role in pain signal transduction and migraine and could therefore serve as a potential therapeutic target for these diseases. PMID:20969805

  5. The pharmacology and therapeutic potential of (−)-huperzine A

    PubMed Central

    Tun, Maung Kyaw Moe; Herzon, Seth B

    2012-01-01

    (−)-Huperzine A (1) is an alkaloid isolated from a Chinese club moss. Due to its potent neuroprotective activities, it has been investigated as a candidate for the treatment of neurodegenerative diseases, including Alzheimer’s disease. In this review, we will discuss the pharmacology and therapeutic potential of (−)-huperzine A (1). Synthetic studies of (−)-huperzine A (1) aimed at enabling its development as a pharmaceutical will be described.

  6. Development Potentials and Policy Options of Biomass in China

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  7. Inhibition of STAT5: A therapeutic option in BCR-ABL1-driven leukemia

    PubMed Central

    Berger, Angelika; Sexl, Veronika; Valent, Peter; Moriggl, Richard

    2014-01-01

    The two transcription factors STAT5A and STAT5B are central signaling molecules in leukemias driven by Abelson fusion tyrosine kinases and they fulfill all criteria of drug targets. STAT5A and STAT5B display unique nuclear shuttling mechanisms and they have a key role in resistance of leukemic cells against treatment with tyrosine kinase inhibitors (TKI). Moreover, STAT5A and STAT5B promote survival of leukemic stem cells. We here discuss the possibility of targeting up-stream kinases with TKI, direct STAT5 inhibition via SH2 domain obstruction and blocking nuclear translocation of STAT5. All discussed options will result in a stop of STAT5 transport to the nucleus to block STAT5-mediated transcriptional activity. In summary, recently described shuttling functions of STAT5 are discussed as potentially druggable pathways in leukemias. PMID:25333255

  8. Lisdexamfetamine dimesylate: a new therapeutic option for attention-deficit hyperactivity disorder.

    PubMed

    Steer, Christopher; Froelich, Jan; Soutullo, César A; Johnson, Mats; Shaw, Monica

    2012-08-01

    Attention-deficit hyperactivity disorder (ADHD) is associated with substantial functional, clinical and economic burdens. It is among the most common psychiatric disorders in children and adolescents, and often persists into adulthood. Both medication and psychosocial interventions are recommended for the treatment of ADHD. However, ADHD treatment practices vary considerably, depending on medication availability, reimbursement and the evolution of clinical practice in each country. In Europe, stimulants and atomoxetine are widely available medications for the treatment of ADHD, whereas in the US approved treatment options also include extended-release formulations of clonidine and guanfacine. Lisdexamfetamine dimesylate (lisdexamfetamine) is a long-acting, prodrug formulation of dexamfetamine. It is currently licensed in the US, Canada and Brazil, and is undergoing phase III studies in Europe. We performed a PubMed/MEDLINE search looking for recent (2005-2012) scientific papers regarding the pharmacokinetics, pharmacodynamics, efficacy and safety of lisdexamfetamine. The lisdexamfetamine molecule is therapeutically inactive and is enzymatically hydrolysed, primarily in the blood, to the active dexamfetamine. This conversion is unaffected by gastrointestinal pH and variations in normal transit times. Lisdexamfetamine was developed with the goal of providing an extended duration of effect that is consistent throughout the day. Clinical trials have demonstrated robust clinical efficacy of lisdexamfetamine in the treatment of children, adolescents and adults with ADHD with dose-dependent improvements in the core symptoms of ADHD. Studies have further shown that the duration of action of lisdexamfetamine continues for 13 hours post-dosing in children and for 14 hours in adults. The tolerability profile of lisdexamfetamine is consistent with those of other stimulant medications, with decreased appetite, insomnia, abdominal pain and irritability among the more frequent

  9. The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications.

    PubMed

    Lan, Xi; Wang, Wenzhu; Li, Qiang; Wang, Jian

    2016-04-01

    Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications. PMID:25744566

  10. B-cell development and functions and therapeutic options in adenosine deaminase–deficient patients

    PubMed Central

    Brigida, Immacolata; Sauer, Aisha V.; Ferrua, Francesca; Giannelli, Stefania; Scaramuzza, Samantha; Pistoia, Valentina; Castiello, Maria Carmina; Barendregt, Barbara H.; Cicalese, Maria Pia; Casiraghi, Miriam; Brombin, Chiara; Puck, Jennifer; Müller, Klaus; Notarangelo, Lucia Dora; Montin, Davide; van Montfrans, Joris M.; Roncarolo, Maria Grazia; Traggiai, Elisabetta; van Dongen, Jacques J. M.; van der Burg, Mirjam; Aiuti, Alessandro

    2015-01-01

    Background Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. Objective We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. Methods Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. Results Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. Conclusions ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT. PMID:24506932

  11. Restless Leg Syndrome in ADHD children: levetiracetam as a reasonable therapeutic option.

    PubMed

    Gagliano, Antonella; Aricò, Irene; Calarese, Tiziana; Condurso, Rosaria; Germanò, Eva; Cedro, Clemente; Spina, Edoardo; Silvestri, Rosalia

    2011-06-01

    The comorbidity of Attention Deficit Hyperactivity Disorder (ADHD) with sleep disorders has been extensively studied. In particular, Restless Legs Syndrome (RLS) appears to be consistently more frequent in children with ADHD. Several papers also draw attention to the frequent occurrence of epileptic seizures and EEG abnormalities in ADHD children. We performed a preliminary open label study to evaluate the efficacy of Levetiracetam (LEV) to ameliorate the sleep pattern and reduce RLS symptoms in children with a complex comorbidity between Attention Deficit Hyperactivity Disorder (ADHD), RLS and focal interictal epileptic discharges (IEDs) on EEG. We recruited seven children (all males, aged between 5 and 12years) who fulfilled the following criteria: ADHD diagnosis combined subtype; presence of idiopathic RLS; and presence of focal IEDs on EEG. All children were given LEV at a starting dose of approximately 10-20mg/kg/day followed by 10mg/kg/day incrementing at 1-week intervals up to 50-60mg/kg/day given in two separate doses. At a 3 and 6month follow-up, all children showed significant improvement (p<0.05) in global International RLS Rating Scale (IRLS-RS). Parents' reports revealed improved sleep quality with fewer awakenings and restorative sleep in their children. LEV was well tolerated and no major side effects were reported. With an accessory report we observed the reduction of epileptiform EEG activity during sleep. In most patients (6 on 7) the discharges completely disappeared; in the last patient epileptiform EEG activity was significantly reduced. These children may represent a subgroup of ADHD patients in which the hyperactivity and attention difficulties might be aggravated by sleep disturbances and by IEDs. LEV could represent a therapeutic option for these comorbid conditions. PMID:20950971

  12. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options.

    PubMed

    Sluiter, Nina; de Cuba, Erienne; Kwakman, Riom; Kazemier, Geert; Meijer, Gerrit; Te Velde, Elisabeth Atie

    2016-06-01

    Peritoneal dissemination is diagnosed in 10-25 % of colorectal cancer patients. Selected patients are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. For these patients, earlier diagnosis, optimised selection criteria and a personalised approach are warranted. Biomarkers could play a crucial role here. However, little is known about possible candidates. Considering tumour cell adhesion as a key step in peritoneal dissemination, we aim to provide an overview of the functional importance of adhesion molecules in peritoneal dissemination and discuss the prognostic, diagnostic and therapeutic options of these candidate biomarkers. A systematic literature search was conducted according to the PRISMA guidelines. In 132 in vitro, ex vivo and in vivo studies published between 1995 and 2013, we identified twelve possibly relevant adhesion molecules in various cancers that disseminate peritoneally. The most studied molecules in tumour cell adhesion are integrin α2β1, CD44 s and MUC16. Furthermore, L1CAM, EpCAM, MUC1, sLe(x) and Le(x), chemokine receptors, Betaig-H3 and uPAR might be of clinical importance. ICAM1 was found to be less relevant in tumour cell adhesion in the context of peritoneal metastases. Based on currently available data, sLe(a) and MUC16 are the most promising prognostic biomarkers for colorectal peritoneal metastases that may help improve patient selection. Different adhesion molecules appear expressed in haematogenous and transcoelomic spread, indicating two different attachment processes. However, our extensive assessment of available literature reveals that knowledge on metastasis-specific genes and their possible candidates is far from complete. PMID:27074785

  13. Improving Response to Hormone Therapy in Breast Cancer: New Targets, New Therapeutic Options.

    PubMed

    Rugo, Hope S; Vidula, Neelima; Ma, Cynthia

    2016-01-01

    The majority of breast cancer expresses the estrogen and or progesterone receptors (ER and PR). In tumors without concomitant HER2 amplification, hormone therapy is a major treatment option for all disease stages. Resistance to hormonal therapy is associated with disease recurrence and progression. Recent studies have identified a number of resistance mechanisms leading to estrogen-independent growth of hormone receptor-positive (HR+) breast cancer as a result of genetic and epigenetic alterations, which could be exploited as novel therapeutic targets. These include acquired mutations in ER-alpha (ESR1) in response to endocrine deprivation; constitutive activation of cyclin-dependent kinases (CDK) 4 and 6; cross talk between ER and growth factor receptor signaling such as HER family members, fibroblast growth factor receptor (FGFR) pathways, intracellular growth, and survival signals PI3K/Akt/mTOR; and epigenetic modifications by histone deacetylase (HDAC) as well as interactions with tumor microenvironment and host immune response. Inhibitors of these pathways are being developed to improve efficacy of hormonal therapy for treatment of both metastatic and early-stage disease. Two agents are currently approved in the United States for the treatment of metastatic HR+ breast cancer, including the mTOR inhibitor everolimus and the CDK4/6 inhibitor palbociclib. Management of toxicity is a critical aspect of treatment; the primary toxicity of everolimus is stomatitis (treated with topical steroids) and of palbociclib is neutropenia (treated with dose reduction/delay). Many agents are in clinical trials, primarily in combination with hormone therapy; novel combinations are under active investigation. PMID:27249746

  14. Understanding the Mechanism of Hepatic Fibrosis and Potential Therapeutic Approaches

    PubMed Central

    Ahmad, Areeba; Ahmad, Riaz

    2012-01-01

    Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives. PMID:22626794

  15. Therapeutic potential of icatibant (HOE-140, JE-049).

    PubMed

    Cruden, Nicholas L M; Newby, David E

    2008-09-01

    There is now a substantial body of work implicating bradykinin, an endogenous peptide neurohormone, in the pathophysiology of a variety of inflammatory conditions in man. Icatibant (HOE-140, JE-049), a highly selective antagonist at the bradykinin B2 receptor, blocks the vasodilatation and increased vascular permeability associated with exogenous bradykinin administration both in experimental models and in vivo in man. Recent attention has focused on the therapeutic potential of icatibant in a number of human disease states. The most promising of these is hereditary angioedema in which Phase III clinical trials have recently been completed and regulatory approval is currently being sought in Europe and the USA. A therapeutic role for icatibant has also been proposed in several other human conditions including drug-induced angioedema, airways disease, thermal injury, refractory ascites in patients with liver cirrhosis, and acute pancreatitis, although this work remains largely experimental. PMID:18710362

  16. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth.

    PubMed

    Laube, Mandy; Stolzing, Alexandra; Thome, Ulrich H; Fabian, Claire

    2016-05-01

    Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies. PMID:26928452

  17. Current and Potential Therapeutic Strategies for Hemodynamic Cardiorenal Syndrome

    PubMed Central

    Obi, Yoshitsugu; Kim, Taehee; Kovesdy, Csaba P.; Amin, Alpesh N.; Kalantar-Zadeh, Kamyar

    2016-01-01

    Background Cardiorenal syndrome (CRS) encompasses conditions in which cardiac and renal disorders co-exist and are pathophysiologically related. The newest classification of CRS into seven etiologically and clinically distinct types for direct patient management purposes includes hemodynamic, uremic, vascular, neurohumoral, anemia- and/or iron metabolism-related, mineral metabolism-related and protein-energy wasting-related CRS. This classification also emphasizes the pathophysiologic pathways. The leading CRS category remains hemodynamic CRS, which is the most commonly encountered type in patient care settings and in which acute or chronic heart failure leads to renal impairment. Summary This review focuses on selected therapeutic strategies for the clinical management of hemodynamic CRS. This is often characterized by an exceptionally high ratio of serum urea to creatinine concentrations. Loop diuretics, positive inotropic agents including dopamine and dobutamine, vasopressin antagonists including vasopressin receptor antagonists such as tolvaptan, nesiritide and angiotensin-neprilysin inhibitors are among the pharmacologic agents used. Additional therapies include ultrafiltration (UF) via hemofiltration or dialysis. The beneficial versus unfavorable effects of these therapies on cardiac decongestion versus renal blood flow may act in opposite directions. Some of the most interesting options for the outpatient setting that deserve revisiting include portable continuous dobutamine infusion, peritoneal dialysis and outpatient UF via hemodialysis or hemofiltration. Key Messages The new clinically oriented CRS classification system is helpful in identifying therapeutic targets and offers a systematic approach to an optimal management algorithm with better understanding of etiologies. Most interventions including UF have not shown a favorable impact on outcomes. Outpatient portable dobutamine infusion is underutilized and not well studied. Revisiting traditional and

  18. Cardiovascular gene therapy: current status and therapeutic potential

    PubMed Central

    Gaffney, M M; Hynes, S O; Barry, F; O'Brien, T

    2007-01-01

    Gene therapy is emerging as a potential treatment option in patients suffering from a wide spectrum of cardiovascular diseases including coronary artery disease, peripheral vascular disease, vein graft failure and in-stent restenosis. Thus far preclinical studies have shown promise for a wide variety of genes, in particular the delivery of genes encoding growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) to treat ischaemic vascular disease both peripherally and in coronary artery disease. VEGF as well as other genes such as TIMPs have been used to target the development of neointimal hyperplasia to successfully prevent vein graft failure and in-stent restenosis in animal models. Subsequent phase I trials to examine safety of these therapies have been successful with low levels of serious adverse effects, and albeit in the absence of a placebo group some suggestion of efficacy. Phase 2 studies, which have incorporated a placebo group, have not confirmed this early promise of efficacy. In the next generation of clinical gene therapy trials for cardiovascular disease, many parameters will need to be adjusted in the search for an effective therapy, including the identification of a suitable vector, appropriate gene or genes and an effective vector delivery system for a specific disease target. Here we review the current status of cardiovascular gene therapy and the potential for this approach to become a viable treatment option. PMID:17558439

  19. Hsp90 as a Potential Therapeutic Target in Retinal Disease.

    PubMed

    Aguilà, Mònica; Cheetham, Michael E

    2016-01-01

    The molecular chaperone heat shock protein 90 (Hsp90) is a pivotal cellular regulator involved in the folding, activation and assembly of a wide range of proteins. Hsp90 has multiple roles in the retina and the use of different Hsp90 inhibitors has been shown to prevent retinal degeneration in models of retinitis pigmentosa and age-related macular degeneration. Hsp90 is also a potential target in uveal melanoma. Mechanistically, Hsp90 inhibition can evoke a dual response in the retina; stimulating a stress response with molecular chaperone expression. Thereby leading to an improvement in visual function and photoreceptor survival; however, prolonged inhibition can also stimulate the degradation of Hsp90 client proteins potentially deleteriously affect vision. Here, we review the multiple roles of Hsp90 in the retina and the therapeutic potential of Hsp90 as a target. PMID:26427407

  20. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  1. Commercially available interactive video games in burn rehabilitation: therapeutic potential.

    PubMed

    Parry, Ingrid S; Bagley, Anita; Kawada, Jason; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2012-06-01

    Commercially available interactive video games (IVG) like the Nintendo Wii™ (NW) and PlayStation™II Eye Toy (PE) are increasingly used in the rehabilitation of patients with burn. Such games have gained popularity in burn rehabilitation because they encourage range of motion (ROM) while distracting from pain. However, IVGs were not originally designed for rehabilitation purposes but rather for entertainment and may lack specificity for achieving rehabilitative goals. Objectively evaluating the specific demands of IVGs in relation to common burn therapy goals will determine their true therapeutic benefit and guide their use in burn rehabilitation. Upper extremity (UE) motion of 24 normal children was measured using 3D motion analysis during play with the two types of IVGs most commonly described for use after burn: NW and PE. Data was analyzed using t-tests and One-way Analysis of Variance. Active range of motion for shoulder flexion and abduction during play with both PE and NW was within functional range, thus supporting the idea that IVGs offer activities with therapeutic potential to improve ROM. PE resulted in higher demands and longer duration of UE motion than NW, and therefore may be the preferred tool when UE ROM or muscular endurance are the goals of rehabilitation. When choosing a suitable IVG for application in rehabilitation, the user's impairment together with the therapeutic attributes of the IVG should be considered to optimize outcome. PMID:22385641

  2. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  3. Fatty acids and their therapeutic potential in neurological disorders.

    PubMed

    Lei, Enie; Vacy, Kristina; Boon, Wah Chin

    2016-05-01

    There is little doubt that we are what we eat. Fatty acid supplementation and diets rich in fatty acids are being promoted as ways to a healthier brain. Short chain fatty acids are a product of intestinal microbiota metabolism of dietary fibre; and their derivatives are used as an anti-convulstant. They demonstrated therapeutic potential in neurodegenerative conditions as HDAC inhibitors; and while the mechanism is not well understood, have been shown to lower amyloid β in Alzheimer's Disease in preclinical studies. Medium chain fatty acids consumed as a mixture in dietary oils can induce ketogenesis without the need for a ketogentic diet. Hence, this has the potential to provide an alternative energy source to prevent neuronal cell death due to lack of glucose. Long chain fatty acids are commonly found in the diet as omega fatty acids. They act as an anti-oxidant protecting neuronal cell membranes from oxidative damage and as an anti-inflammatory mediator in the brain. We review which agents, from each fatty acid class, have the most therapeutic potential for neurological disorders (primarily Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorder as well as possible applications to traumatic brain injury), by discussing what is known about their biological mechanisms from preclinical studies. PMID:26939763

  4. Leveraging biodiversity knowledge for potential phyto-therapeutic applications

    PubMed Central

    Sharma, Vivekanand; Sarkar, Indra Neil

    2013-01-01

    Objective To identify and highlight the feasibility, challenges, and advantages of providing a cross-domain pipeline that can link relevant biodiversity information for phyto-therapeutic assessment. Materials and methods A public repository of clinical trials information (ClinicalTrials.gov) was explored to determine the state of plant-based interventions under investigation. Results The results showed that ∼15% of drug interventions in ClinicalTrials.gov were potentially plant related, with about 60% of them clustered within 10 taxonomic families. Further analysis of these plant-based interventions identified ∼3.7% of associated plant species as endangered as determined from the International Union for the Conservation of Nature Red List. Discussion The diversity of the plant kingdom has provided human civilization with life-sustaining food and medicine for centuries. There has been renewed interest in the investigation of botanicals as sources of new drugs, building on traditional knowledge about plant-based medicines. However, data about the plant-based biodiversity potential for therapeutics (eg, based on genetic or chemical information) are generally scattered across a range of sources and isolated from contemporary pharmacological resources. This study explored the potential to bridge biodiversity and biomedical knowledge sources. Conclusions The findings from this feasibility study suggest that there is an opportunity for developing plant-based drugs and further highlight taxonomic relationships between plants that may be rich sources for bioprospecting. PMID:23518859

  5. Codonopsis lanceolata: A Review of Its Therapeutic Potentials.

    PubMed

    Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2016-03-01

    Codonopsis lanceolata (Campanulaceae) is dicotyledonous herbaceous perennial plant, predominantly found in Central, East, and South Asia. This plant has been widely used in traditional medicine and is considered to have medicinal properties to treat diseases and symptoms such as bronchitis, coughs, spasm, psychoneurosis, cancer, obesity, hyperlipidemia, edema, hepatitis, colitis, and lung injury. C. lanceolata contains many biologically active compounds, including polyphenols, saponins, tannins, triterpene, alkaloids, and steroids, which contribute to its numerous pharmacological activities. Through systematic studies, the pharmacological actions of these compounds have been revealed. Therapeutic potentialities of C. lanceolata and its previously reported molecular mechanisms are described in this review. PMID:26931614

  6. Antimicrobial Peptides and Their Analogs: Searching for New Potential Therapeutics

    PubMed Central

    Midura-Nowaczek, Krystyna; Markowska, Agnieszka

    2014-01-01

    Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure. PMID:25374459

  7. Inflammation and hypertension: new understandings and potential therapeutic targets.

    PubMed

    De Miguel, Carmen; Rudemiller, Nathan P; Abais, Justine M; Mattson, David L

    2015-01-01

    Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension. PMID:25432899

  8. Potential therapeutic strategy to treat substance abuse related disorders.

    PubMed

    Chang, Sulie L

    2013-12-01

    The "Potential Therapeutic Strategy to Treat Substance Abuse Related Disorders" session was chaired by Dr. Sulie Chang, director of NeuroImmune Phamacology at Seton University. The four presenters (and their topics) were: Dr. Wen-zhe Ho (Miniway to stop HIV/HCV), Dr. Ru-Band Lu (Low dose of memantine in the treatment of opioid dependence in human), Dr. Ping Zhang (Treatment of alcohol-related disorders-Learning from stem/progenitor cell), and Chia-Hsiang Chen (Treatment of methamphetamine abuse: an antibody-based immunotherapy approach). PMID:25267886

  9. New therapeutic option for irritable bowel syndrome: Serum-derived bovine immunoglobulin

    PubMed Central

    Good, Larry; Rosario, Roxanne; Panas, Raymond

    2015-01-01

    Oral prescription medical foods have long been used in hospital settings but are also appropriate therapies for gastrointestinal disorders in outpatient medical practice. Oral serum-derived bovine immunoglobulin/protein isolate (SBI) has been shown in clinical studies to reduce loose stools and improve stool consistency as well as other symptoms (i.e., abdominal pain, bloating, and urgency) in patients with irritable bowel syndrome with diarrhea (IBS-D) and human immunodeficiency virus-associated enteropathy. This case series reports the outcomes of 14 IBS patients who received SBI as an addition to standard of care at an individual physician’s clinical practice. The patients: 2 IBS with constipation (IBS-C), 7 IBS-D, 2 mixed diarrhea and constipation IBS (IBS-M) and 3 undefined IBS (IBS-U; also described by some physicians as IBS-Bloating), ranged in age from 22-87 years. SBI (5 g or 10 g daily dose) was added to the patient’s current standard care and followed for several weeks to determine if symptoms were improved with the addition of SBI. Overall, 12 of the 14 patients indicated some level of improvement through direct questioning of the patients regarding changes from the prior visit. One IBS-Bloating patient had a resolution of symptoms and two patients (1 IBS-Bloating and 1 IBS-C) discontinued therapy because of insufficient relief. The 12 patients who continued on therapy reported an overall improvement in symptoms with better stool consistency, decreased frequency as well as reductions in abdominal pain, bloating, distention, and incontinence. In most cases, therapeutic effects of SBI were seen within the first four weeks of therapy with continued improvements at subsequent visits. SBI has a multifaceted mechanism of action and may help to manage IBS by providing a distinct protein source required to normalize bowel function, gastrointestinal microbiota, and nutritionally enhance tight junction protein expression between intestinal epithelial cells

  10. New therapeutic option for irritable bowel syndrome: serum-derived bovine immunoglobulin.

    PubMed

    Good, Larry; Rosario, Roxanne; Panas, Raymond

    2015-03-21

    Oral prescription medical foods have long been used in hospital settings but are also appropriate therapies for gastrointestinal disorders in outpatient medical practice. Oral serum-derived bovine immunoglobulin/protein isolate (SBI) has been shown in clinical studies to reduce loose stools and improve stool consistency as well as other symptoms (i.e., abdominal pain, bloating, and urgency) in patients with irritable bowel syndrome with diarrhea (IBS-D) and human immunodeficiency virus-associated enteropathy. This case series reports the outcomes of 14 IBS patients who received SBI as an addition to standard of care at an individual physician's clinical practice. The patients: 2 IBS with constipation (IBS-C), 7 IBS-D, 2 mixed diarrhea and constipation IBS (IBS-M) and 3 undefined IBS (IBS-U; also described by some physicians as IBS-Bloating), ranged in age from 22-87 years. SBI (5 g or 10 g daily dose) was added to the patient's current standard care and followed for several weeks to determine if symptoms were improved with the addition of SBI. Overall, 12 of the 14 patients indicated some level of improvement through direct questioning of the patients regarding changes from the prior visit. One IBS-Bloating patient had a resolution of symptoms and two patients (1 IBS-Bloating and 1 IBS-C) discontinued therapy because of insufficient relief. The 12 patients who continued on therapy reported an overall improvement in symptoms with better stool consistency, decreased frequency as well as reductions in abdominal pain, bloating, distention, and incontinence. In most cases, therapeutic effects of SBI were seen within the first four weeks of therapy with continued improvements at subsequent visits. SBI has a multifaceted mechanism of action and may help to manage IBS by providing a distinct protein source required to normalize bowel function, gastrointestinal microbiota, and nutritionally enhance tight junction protein expression between intestinal epithelial cells. SBI

  11. Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options.

    PubMed

    Zumla, Alimuddin; Memish, Ziad A; Maeurer, Markus; Bates, Matthew; Mwaba, Peter; Al-Tawfiq, Jaffar A; Denning, David W; Hayden, Frederick G; Hui, David S

    2014-11-01

    The emergence and spread of antimicrobial-resistant bacterial, viral, and fungal pathogens for which diminishing treatment options are available is of major global concern. New viral respiratory tract infections with epidemic potential, such as severe acute respiratory syndrome, swine-origin influenza A H1N1, and Middle East respiratory syndrome coronavirus infection, require development of new antiviral agents. The substantial rise in the global numbers of patients with respiratory tract infections caused by pan-antibiotic-resistant Gram-positive and Gram-negative bacteria, multidrug-resistant Mycobacterium tuberculosis, and multiazole-resistant fungi has focused attention on investments into development of new drugs and treatment regimens. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings will necessitate rapid, precise diagnosis and more effective and pathogen-specific therapies. This Series paper describes the development and use of new antimicrobial agents and immune-based and host-directed therapies for a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections. PMID:25189352

  12. Adult stem cells: the therapeutic potential of skeletal muscle.

    PubMed

    Saini, Amarjit; Stewart, Claire E H

    2006-05-01

    Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine. PMID:18220864

  13. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis). PMID:23432005

  14. Leptin, ghrelin, and endocannabinoids: potential therapeutic targets in anorexia nervosa.

    PubMed

    Støving, René Klinkby; Andries, Alin; Brixen, Kim; Flyvbjerg, Allan; Hørder, Kirsten; Frystyk, Jan

    2009-04-01

    Anorexia nervosa (AN) has the highest mortality rate between psychiatric disorders, and evidence for managing it is still very limited. So far, pharmacological treatment has focused on a narrow range of drugs and only a few controlled studies have been performed. Furthermore, the studies have been of short duration and included a limited number of subjects, often heterogenic with regard to stage and acute nutritive status. Thus, novel approaches are urgently needed. Body weight homeostasis is tightly regulated throughout life. With the discovery of orexigenic and anorectic signals, an array of new molecular targets to control eating behavior has emerged. This review focuses on recent advances in three important signal systems: leptin, ghrelin, and endocannabinoids toward the identification of potential therapeutical breakthroughs in AN. Our review of the current literature shows that leptin may have therapeutic potentials in promoting restoration of menstrual cycles in weight restored patients, reducing motor restlessness in severely hyperactive patients, and preventing osteoporosis in chronic patients. Ghrelin and endocannabinoids exert orexigenic effects which may facilitate nutritional restoration. Leptin and endocannabinoids may exert antidepressive and anxiolytic effects. Finally, monitoring serum concentration of leptin may be useful in order to prevent refeeding syndrome. PMID:18926548

  15. Therapeutic Potential of Steroidal Alkaloids in Cancer and Other Diseases.

    PubMed

    Jiang, Qi-Wei; Chen, Mei-Wan; Cheng, Ke-Jun; Yu, Pei-Zhong; Wei, Xing; Shi, Zhi

    2016-01-01

    Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti-inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases. PMID:25820039

  16. Therapeutic Potential of 5-HT6 Receptor Agonists.

    PubMed

    Karila, Delphine; Freret, Thomas; Bouet, Valentine; Boulouard, Michel; Dallemagne, Patrick; Rochais, Christophe

    2015-10-22

    Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox. PMID:26099069

  17. Therapeutic potential and health benefits of Sargassum species

    PubMed Central

    Yende, Subhash R.; Harle, Uday N.; Chaugule, Bhupal B.

    2014-01-01

    Sargassum species are tropical and sub-tropical brown macroalgae (seaweed) of shallow marine meadow. These are nutritious and rich source of bioactive compounds such as vitamins, carotenoids, dietary fibers, proteins, and minerals. Also, many biologically active compounds like terpenoids, flavonoids, sterols, sulfated polysaccharides, polyphenols, sargaquinoic acids, sargachromenol, pheophytine were isolated from different Sargassum species. These isolated compounds exhibit diverse biological activities like analgesic, anti-inflammatory, antioxidant, neuroprotective, anti-microbial, anti-tumor, fibrinolytic, immune-modulatory, anti-coagulant, hepatoprotective, anti-viral activity etc., Hence, Sargassum species have great potential to be used in pharmaceutical and neutralceutical areas. This review paper explores the current knowledge of phytochemical, therapeutic potential, and health benefits of different species of genus Sargassum. PMID:24600190

  18. Macrophages associated with tumors as potential targets and therapeutic intermediates.

    PubMed

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-04-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs. PMID:24827844

  19. The challenge of Clostridium difficile infection: Overview of clinical manifestations, diagnostic tools and therapeutic options.

    PubMed

    Postma, Nynke; Kiers, Dorien; Pickkers, Peter

    2015-12-01

    The most important infectious cause of antibiotic-associated diarrhoea and colitis is Clostridium difficile, which is a Gram-positive, anaerobic, spore-forming, toxin-producing bacillus. In this overview we will discuss the diagnostic and therapeutic management of patients presenting with suspected or proven C. difficile infection (CDI). The clinical spectrum varies from asymptomatic C. difficile carriers to fulminant colitis with multi-organ failure. The onset of symptoms is usually within 2 weeks after initiation of antibiotic treatment. Diagnosis is based on the combination of clinical symptoms and either a positive stool test for C. difficile toxins or endoscopic or histological findings of pseudomembranous colitis. There is no indication for treatment of asymptomatic carriers, but patients with proven CDI should be treated. Treatment consists of cessation of the provoking antibiotic treatment, secondary prevention by infection control strategies, and treatment with metronidazole or vancomycin. Treatment of recurring CDI, severe infection, the need for surgery, and novel alternative potential treatment strategies will be discussed. The concurrent increase in multiresistant colonisation and increasing numbers of asymptomatic carriers of C. difficile will lead to an increase of the situation in which patients with severe infections, treated with broad-spectrum antibiotics, will develop concurrent severe CDI. We will discuss possible therapy strategies for these patients. PMID:26612229

  20. Approved and Off-Label Uses of Obesity Medications, and Potential New Pharmacologic Treatment Options

    PubMed Central

    Isidro, Maria Luisa; Cordido, Fernando

    2010-01-01

    Available anti-obesity pharmacotherapy options remain very limited and development of more effective drugs has become a priority. The potential strategies to achieve weight loss are to reduce energy intake by stimulating anorexigenic signals or by blocking orexigenic signals, and to increase energy expenditure. This review will focus on approved obesity medications, as well as potential new pharmacologic treatment options.

  1. Therapeutic options to minimize allogeneic blood transfusions and their adverse effects in cardiac surgery: A systematic review

    PubMed Central

    dos Santos, Antônio Alceu; da Silva, José Pedro; da Silva, Luciana da Fonseca; de Sousa, Alexandre Gonçalves; Piotto, Raquel Ferrari; Baumgratz, José Francisco

    2014-01-01

    Introdution Allogeneic blood is an exhaustible therapeutic resource. New evidence indicates that blood consumption is excessive and that donations have decreased, resulting in reduced blood supplies worldwide. Blood transfusions are associated with increased morbidity and mortality, as well as higher hospital costs. This makes it necessary to seek out new treatment options. Such options exist but are still virtually unknown and are rarely utilized. Objective To gather and describe in a systematic, objective, and practical way all clinical and surgical strategies as effective therapeutic options to minimize or avoid allogeneic blood transfusions and their adverse effects in surgical cardiac patients. Methods A bibliographic search was conducted using the MeSH term “Blood Transfusion” and the terms “Cardiac Surgery” and “Blood Management.” Studies with titles not directly related to this research or that did not contain information related to it in their abstracts as well as older studies reporting on the same strategies were not included. Results Treating anemia and thrombocytopenia, suspending anticoagulants and antiplatelet agents, reducing routine phlebotomies, utilizing less traumatic surgical techniques with moderate hypothermia and hypotension, meticulous hemostasis, use of topical and systemic hemostatic agents, acute normovolemic hemodilution, cell salvage, anemia tolerance (supplementary oxygen and normothermia), as well as various other therapeutic options have proved to be effective strategies for reducing allogeneic blood transfusions. Conclusion There are a number of clinical and surgical strategies that can be used to optimize erythrocyte mass and coagulation status, minimize blood loss, and improve anemia tolerance. In order to decrease the consumption of blood components, diminish morbidity and mortality, and reduce hospital costs, these treatment strategies should be incorporated into medical practice worldwide. PMID:25714216

  2. Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium.

    PubMed

    Brzóska, Malgorzata M; Borowska, Sylwia; Tomczyk, Michal

    2016-01-01

    Epidemiological studies provide a growing number of evidences that chronic exposure to relatively low levels of cadmium (Cd), nowadays taking place in industrialized countries, may cause health hazard. Thus, growing interest has been focused on effective ways of protection from adverse effects of exposure to this heavy metal. Because numerous effects to Cd's toxic action result from its prooxidative properties, it seems reasonable that special attention should be directed to agents that can prevent or reduce this metal-induced oxidative stress and its consequences in tissues, organs and systems at risk of toxicity, including liver, kidneys, testes, ears, eyes, cardiovascular system and nervous system as well as bone tissue. This review discusses a wide range of natural (plant and animal origin) and synthetic antioxidants together with many plant extracts (e.g. black and green tea, Aronia melanocarpa, Allium sativum, Allium cepa, Ocimum sanctum, Phoenix dactylifera, Physalis peruviana, Zingiber officinale) that have been shown to prevent from Cd toxicity. Moreover, some attention has been focused on the fact that substances not possessing antioxidative potential may also prevent Cd-induced oxidative stress and its consequences. So far, most of the data on the protective effects of the natural and synthetic antioxidants and plant extracts come from studies in animals' models; however, numerous of them seem to be promising preventive/therapeutic strategies for Cd toxicity in humans. Further investigation of prophylactic and therapeutic use of antioxidants in populations exposed to Cd environmentally and occupationally is warranted, given that therapeutically effective chelation therapy for this toxic metal is currently lacking. PMID:25944010

  3. Survey of Advanced Booster Options for Potential Shuttle Derivative Vehicles

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Ryan, Richard; Threet, Ed; Kennedy, James W. (Technical Monitor)

    2001-01-01

    A never-ending major goal for the Space Shuttle program is to continually improve flight safety, as long as this launch system remains in operational service. One of the options to improve system safety and to enhance vehicle performance as well, that has been seriously studied over the past several decades, is to replace the existing strap-on four segment solid rocket boosters (SRB's) with more capable units. A number of booster upgrade options have been studied in some detail, ranging from five segment solids through hybrids and a wide variety of liquid strap-ons (both pressure and pump fed with various propellants); all the way to a completely reusable liquid fly back booster (complete with air breathing engines for controlled landing and return). All of these possibilities appear to offer improvements in varying degrees; and each has their strengths and weaknesses from both programmatic and technical points of view. The most beneficial booster upgrade/design, if the shuttle program were to continue long enough to justify the required investment, would be an approach that greatly increased both vehicle and crew safety. This would be accomplished by increasing the minimum range/minimum altitude envelope that would readily allow abort to orbit (ATO), possibly even to zero/zero, and possibly reduce or eliminate the Return to Launch Site (RTLS) and even the Trans Atlantic Landing (TAL) abort mode requirements. This paper will briefly survey and discuss all of the various booster'upgrade options studied previously, and compare their relative attributes. The survey will explicitly discuss, in summary comparative form, options that include: five segment solids; several hybrid possibilities; pressure and/or pump-fed liquids using either LO2/kerosene, H2O/kerosene and LO2/J2, any of which could be either fully expendable, partly or fully reusable; and finally a fully reusable liquid fly back booster system, with a number of propellant and propulsion system options

  4. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  5. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  6. Potential Therapeutic Benefits of Strategies Directed to Mitochondria

    PubMed Central

    Lesnefsky, Edward J.; Stowe, David F.

    2010-01-01

    Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744

  7. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  8. Vitamin D: preventive and therapeutic potential in Parkinson's disease.

    PubMed

    Liu, Yan; Li, Yan-Wu; Tang, Ya-Lan; Liu, Xin; Jiang, Jun-Hao; Li, Qing-Gen; Yuan, Jian-Yong

    2013-11-01

    Vitamin D is one of the important nuclear steroid transcription regulators that controls transcriptions of a large number of genes. Vitamin D supplement is commonly recommended for the elderly to prevent bone diseases. Amounting new evidence has indicated that vitamin D plays a crucial role in brain development, brain function regulation and neuroprotection. Parkinson's disease (PD) is a degenerative disorder commonly seen in the elderly, characterized by movement disorders including tremor, akinesia, and loss of postural reflexes. The motor symptoms largely result from the continued death of dopaminergic neurons in the substantia nigra, despite use of current therapeutic interventions. The cause and mechanism of neuron death is currently unknown. Vitamin D deficiency is common in patients with PD suggesting its preventive and therapeutic potential. Vitamin D may exert protective and neurotropic effects directly at cellular level, e.g. protection of dopamine system, and/or by regulating gene expression. This review summarizes the epidemiological, genetic and translational evidence implicating vitamin D as a candidate for prevention and treatment for PD. PMID:24160295

  9. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy?

    PubMed

    Brodek, Paulina; Olas, Beata

    2016-01-01

    Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes - cystathionine-b synthase (CBS), mercaptopyruvate sulfurtransferase (3-MST), cystathionine-γ lyase (CSE) and cysteine aminotransferase (CAT) - are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO). The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic) donors of H2S in pre-clinical and clinical studies. PMID:27516569

  10. Zinc is a potential therapeutic for chemoresistant ovarian cancer.

    PubMed

    Bastow, Max; Kriedt, Christopher L; Baldassare, Joseph; Shah, Maulik; Klein, Claudette

    2011-01-01

    Ovarian cancer is the leading cause of death from gynecological cancer. The high mortality rate reflets the lack of early diagnosis and limited treatment alternatives. We have observed a number of properties of zinc cytotoxicity that make it attractive from a therapeutic standpoint. Using SKOV3 and ES2 cells, ovarian cancer cell lines that demonstrate varied degrees of resistance to known therapeutics, we show that zinc killing is time and concentration dependent. Death is preceded by distinct changes in cell shape and size. The effects of zinc are additive with cisplatin or doxorubicin, whose morphological effects are distinct from those of zinc. Cytotoxicity of paclitaxel is minimal, making it difficult to determine additivity with zinc. Paclitaxel results in changes in cell shape and size similar to those of zinc but has different effects on cell cycle progression and cyclin expression. The data indicate that the means by which zinc kills ovarian cancer cells is distinct from currently used chemotherapeutics. Based on the properties reported here, zinc has the potential to be developed as either a primary treatment or as a second line of defense against cancers that have developed resistance to currently used chemotherapeutics. PMID:22070048

  11. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  12. Selection, design, and characterization of a new potentially therapeutic ribozyme.

    PubMed Central

    Zinnen, Shawn P; Domenico, Kristal; Wilson, Mike; Dickinson, Brent A; Beaudry, Amber; Mokler, Victor; Daniher, Andrew T; Burgin, Alex; Beigelman, Leonid

    2002-01-01

    An in vitro selection was designed to identify RNA-cleaving ribozymes predisposed for function as a drug. The selection scheme required the catalyst to be trans-acting with phosphodiesterase activity targeting a fragment of the Kras mRNA under simulated physiological conditions. To increase stabilization against nucleases and to offer the potential for improved functionality, modified sequence space was sampled by transcribing with the following NTPs: 2'-F-ATP, 2'-F-UTP, or 2'-F-5-[(N-imidazole-4-acetyl) propylamine]-UTP, 2'-NH2-CTP, and GTP. Active motifs were identified and assessed for their modified NMP and divalent metal dependence. The minimization of the ribozyme's size and the ability to substitute 2'-OMe for 2'-F and 2'-NH2 moieties yielded the motif from these selections most suited for both nuclease stability and therapeutic development. This motif requires only two 2'-NH2-Cs and functions as a 36-mer. Its substrate sequence requirements were determined to be 5'-Y-G-H-3'. Its half-life in human serum is >100 h. In physiologically relevant magnesium concentrations [approximately 1 mM] its kcat = 0.07 min(-1), Km = 70 nM. This report presents a novel nuclease stable ribozyme, designated Zinzyme, possessing optimal activity in simulated physiological conditions and ready for testing in a therapeutic setting. PMID:11911367

  13. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets

    PubMed Central

    Li, Hai; You, Hong; Fan, Xu; Jia, Jidong

    2016-01-01

    Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages. PMID:27252881

  14. Functions of astrocytes and their potential as therapeutic targets

    PubMed Central

    Kimelberg, Harold K.; Nedergaard, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases. Furthermore, this review will critically re-evaluate our concepts of the functional properties of astrocytes and relate these tasks to their intricate morphology. PMID:20880499

  15. Revisiting Metal Toxicity in Neurodegenerative Diseases and Stroke: Therapeutic Potential

    PubMed Central

    Mitra, Joy; Vasquez, Velmarini; Hegde, Pavana M; Boldogh, Istvan; Mitra, Sankar; Kent, Thomas A; Rao, Kosagi S; Hegde, Muralidhar L

    2015-01-01

    Excessive accumulation of pro-oxidant metals, observed in affected brain regions, has consistently been implicated as a contributor to the brain pathology including neurodegenerative diseases and acute injuries such as stroke. Furthermore, the potential interactions between metal toxicity and other commonly associated etiological factors, such as misfolding/aggregation of amyloidogenic proteins or genomic damage, are poorly understood. Decades of research provide compelling evidence implicating metal overload in neurological diseases and stroke. However, the utility of metal toxicity as a therapeutic target is controversial, possibly due to a lack of comprehensive understanding of metal dyshomeostasis-mediated neuronal pathology. In this article, we discuss the current understanding of metal toxicity and the challenges associated with metal-targeted therapies. PMID:25717476

  16. Vitamin D: Implications for Ocular Disease and Therapeutic Potential

    PubMed Central

    Reins, Rose Y.; McDermott, Alison M.

    2015-01-01

    Vitamin D is a multifunctional hormone that is now known to play a significant role in a variety of biological functions in addition to its traditional role in regulating calcium homeostasis. There are a large number of studies demonstrating that adequate vitamin D levels are important in maintaining health and show that vitamin D is able to be utilized at local tissue sites. In the eye, we have increasing evidence of the association between disease and vitamin D. In this narrative review, we summarize recent findings on vitamin D and its relationship to various ocular pathologies and the therapeutic potential for some of these, as well as examine the basic science studies that demonstrate that vitamin D is biologically relevant in the eye. PMID:25724179

  17. High therapeutic potential of Spilanthes acmella: A review

    PubMed Central

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2013-01-01

    Spilanthes acmella, a well known antitoothache plant with high medicinal usages, has been recognized as an important medicinal plant and has an increasingly high demand worldwide. From its traditional uses in health care and food, extensive phytochemical studies have been reported. This review provides an overview and general description of the plant species, bioactive metabolites and important pharmacological activities including the preparation, purification and in vitro large-scale production. Structure-activity relationships of the bioactive compounds have been discussed. Considering data from the literature, it could be demonstrated that S. acmella possesses diverse bioactive properties and immense utilization in medicine, health care, cosmetics and as health supplements. As a health food, it is enriched with high therapeutic value with high potential for further development. PMID:27092032

  18. Human-derived natural antibodies: biomarkers and potential therapeutics

    PubMed Central

    Xu, Xiaohua; Ng, Sher May; Hassouna, Eamonn; Warrington, Arthur; Oh, Sang-Hyun; Rodriguez, Moses

    2015-01-01

    The immune system generates antibodies and antigen-specific T-cells as basic elements of the immune networks that differentiate self from non-self in a finely tuned manner. The antigen-specific nature of immune responses ensures that normal immune activation contains non-self when tolerating self. Here we review the B-1 subset of lymphocytes which produce self-reactive antibodies. By analyzing the IgM class of natural antibodies that recognize antigens from the nervous system, we emphasize that natural antibodies are biomarkers of how the immune system monitors the host. The immune response activated against self can be detrimental when triggered in an autoimmune genetic background. In contrast, tuning immune activity with natural antibodies is a potential therapeutic strategy. PMID:25678860

  19. Therapeutic potential of intermittent hypoxia: a matter of dose

    PubMed Central

    Navarrete-Opazo, Angela

    2014-01-01

    Intermittent hypoxia (IH) has been the subject of considerable research in recent years, and triggers a bewildering array of both detrimental and beneficial effects in multiple physiological systems. Here, we review the extensive literature concerning IH and its impact on the respiratory, cardiovascular, immune, metabolic, bone, and nervous systems. One major goal is to define relevant IH characteristics leading to safe, protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of IH, it is essential to define critical characteristics of the IH protocol under investigation, including potentially the severity of hypoxia within episodes, the duration of hypoxic episodes, the number of hypoxic episodes per day, the pattern of presentation across time (e.g., within vs. consecutive vs. alternating days), and the cumulative time of exposure. Not surprisingly, severe/chronic IH protocols tend to be pathogenic, whereas any beneficial effects are more likely to arise from modest/acute IH exposures. Features of the IH protocol most highly associated with beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes and the number of episodes per day. Modest hypoxia (9–16% inspired O2) and low cycle numbers (3–15 episodes per day) most often lead to beneficial effects without pathology, whereas severe hypoxia (2–8% inspired O2) and more episodes per day (48–2,400 episodes/day) elicit progressively greater pathology. Accumulating evidence suggests that “low dose” IH (modest hypoxia, few episodes) may be a simple, safe, and effective treatment with considerable therapeutic potential for multiple clinical disorders. PMID:25231353

  20. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  1. Transfusion of sickle cells may be a therapeutic option for patients suffering metastatic disease.

    PubMed

    Goldberg, Joel S

    2010-04-01

    Red blood cells from patients with sickle cell disease will sickle under conditions of hypoxemia and acidosis which is a similar milieu found in malignant tumors. While control of tumor angiogenesis has long been a goal of cancer therapy, selective occlusion of tumor blood supply may be achieved by transfusion of sickle cells into patients who suffer metastatic cancer. Although this potential therapy has not been previously reported in the medical literature, the concept may have been elusive to medical mainstream thinking because it requires transfusion of diseased cells. For this therapy to be effective, other environmental factors may need to be manipulated such inducing mild hypoxemia or hypercarbia (respiratory acidosis) to induce red cell sickling. Preliminary evidence supportive of this therapeutic approach to cancer treatment is provided by case evidence that sickle cell occlusion of a malignant brain tumor (glioma) produced tumor necrosis. Also sickle cells have been successfully transfused into primates. Furthermore, donor blood is crossmatched and transfused into patients suffering from sickle cell disease regularly in clinics and this procedure is associated with acceptable morbidity. Most importantly, animal models of sickle cell disease and cancer currently exist, and this theory could be tried with available technologies including ultrasound detection of vaso-occlusion. While the proposed therapy may not cure metastatic cancer, this treatment could prove useful for decreasing the size and perhaps the pain from metastatic tumor burden. Therefore, it is hypothesized that ABO Rh compatible crossmatched sickle cells transfused into patients who suffer metastatic cancer under controlled conditions of blood oxygenation and pH will selectively produce vaso-occlusive infarcts in malignant tumors and be a useful therapy. The author hopes for further investigations. PMID:20022432

  2. Therapeutic and Prophylactic Potential of Morama (Tylosema esculentum): A Review.

    PubMed

    Chingwaru, Walter; Vidmar, Jerneja; Kapewangolo, Petrina T; Mazimba, Ofentse; Jackson, Jose

    2015-10-01

    Tylosema esculentum (morama) is a highly valued traditional food and source of medicine for the San and other indigenous populations that inhabit the arid to semi-arid parts of Southern Africa. Morama beans are a rich source of phenolic acids, flavonoids, certain fatty acids, non-essential amino acids, certain phytosterols, tannins and minerals. The plant's tuber contains griffonilide, behenic acid and starch. Concoctions of extracts from morama bean, tuber and other local plants are frequently used to treat diarrhoea and digestive disorders by the San and other indigenous populations. Information on composition and bioactivity of phytochemical components of T. esculentum suggests that the polyphenol-rich extracts of the bean testae and cotyledons have great potential as sources of chemicals that inhibit infectious microorganisms (viral, bacterial and fungal, including drug-resistant strains), offer protection against certain non-communicable diseases and promote wound healing and gut health. The potential antinutritional properties of a few morama components are also highlighted. More research is necessary to reveal the full prophylactic and therapeutic potential of the plant against diseases of the current century. Research on domestication and conservation of the plant offers new hope for sustainable utilisation of the plant. PMID:26206567

  3. The therapeutic potential of genome editing for β-thalassemia

    PubMed Central

    Glaser, Astrid; McColl, Bradley; Vadolas, Jim

    2015-01-01

    The rapid advances in the field of genome editing using targeted endonucleases have called considerable attention to the potential of this technology for human gene therapy. Targeted correction of disease-causing mutations could ensure lifelong, tissue-specific expression of the relevant gene, thereby alleviating or resolving a specific disease phenotype. In this review, we aim to explore the potential of this technology for the therapy of β-thalassemia. This blood disorder is caused by mutations in the gene encoding the β-globin chain of hemoglobin, leading to severe anemia in affected patients. Curative allogeneic bone marrow transplantation is available only to a small subset of patients, leaving the majority of patients dependent on regular blood transfusions and iron chelation therapy. The transfer of gene-corrected autologous hematopoietic stem cells could provide a therapeutic alternative, as recent results from gene therapy trials using a lentiviral gene addition approach have demonstrated. Genome editing has the potential to further advance this approach as it eliminates the need for semi-randomly integrating viral vectors and their associated risk of insertional mutagenesis. In the following pages we will highlight the advantages and risks of genome editing compared to standard therapy for β-thalassemia and elaborate on lessons learned from recent gene therapy trials. PMID:26918126

  4. The therapeutic potential of genome editing for β-thalassemia.

    PubMed

    Glaser, Astrid; McColl, Bradley; Vadolas, Jim

    2015-01-01

    The rapid advances in the field of genome editing using targeted endonucleases have called considerable attention to the potential of this technology for human gene therapy. Targeted correction of disease-causing mutations could ensure lifelong, tissue-specific expression of the relevant gene, thereby alleviating or resolving a specific disease phenotype. In this review, we aim to explore the potential of this technology for the therapy of β-thalassemia. This blood disorder is caused by mutations in the gene encoding the β-globin chain of hemoglobin, leading to severe anemia in affected patients. Curative allogeneic bone marrow transplantation is available only to a small subset of patients, leaving the majority of patients dependent on regular blood transfusions and iron chelation therapy. The transfer of gene-corrected autologous hematopoietic stem cells could provide a therapeutic alternative, as recent results from gene therapy trials using a lentiviral gene addition approach have demonstrated. Genome editing has the potential to further advance this approach as it eliminates the need for semi-randomly integrating viral vectors and their associated risk of insertional mutagenesis. In the following pages we will highlight the advantages and risks of genome editing compared to standard therapy for β-thalassemia and elaborate on lessons learned from recent gene therapy trials. PMID:26918126

  5. Endovascular Therapeutic Occlusion of the Posterior Cerebral Artery: An Option for Ruptured Giant Aneurysm in a Child.

    PubMed

    Demartini, Zeferino; Matos, Luiz Afonso Dias; Dos Santos, Marcio Luis Tostes; Cardoso-Demartini, Adriane de Andre

    2016-01-01

    The incidence of intracranial aneurysms in the pediatric population is low, and surgical clipping remains a good long-term treatment option. However, posterior circulation aneurysms are even more complex to manage in children than in adults. We report a case of a giant aneurysm of the posterior cerebral artery in a 10-year-old boy presenting with subarachnoid hemorrhage. Endovascular treatment with platinum coils was performed with total occlusion of the aneurysm and the affected arterial segment without complications. The patient achieved good recovery, and a late control angiogram confirmed exclusion of the aneurysm. Occurrence of special features of cerebral aneurysm in children, in comparison to adults, is also described. Parent artery sacrifice is an effective therapeutic option, but long-term follow-up is necessary to avoid recurrence and rebleeding. PMID:26974558

  6. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  7. Pharmacology and therapeutic potential of sigma(1) receptor ligands.

    PubMed

    Cobos, E J; Entrena, J M; Nieto, F R; Cendán, C M; Del Pozo, E

    2008-12-01

    Sigma (sigma) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of sigma receptors, termed sigma(1) and sigma(2). Of these two subtypes, the sigma(1) receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for sigma(1) receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates sigma(1) receptors. Certain neurosteroids are known to interact with sigma(1) receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca(2+) signaling. Sigma(1) receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, sigma(1) receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of sigma(1) receptors, focussing on sigma(1) ligand neuropharmacology and the role of sigma(1) receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of sigma(1) ligands. PMID:19587856

  8. Immune repertoire: A potential biomarker and therapeutic for hepatocellular carcinoma.

    PubMed

    Han, Yingxin; Li, Hongmei; Guan, Yanfang; Huang, Jian

    2016-09-01

    The immune repertoire (IR) refers to the sum of B cells and T cells with functional diversity in the circulatory system of one individual at any given time. Immune cells, which reside within microenvironments and are responsible for protecting the human body, include T cells, B cells, macrophages, and dendritic cells. These dedicated immune cells have a characteristic structure and function. T and B cells are the main lymphocytes and are responsible for cellular immunity and humoral immunity, respectively. The T cell receptor (TCR) and B cell receptor (BCR) are composed of multiple peptide chains with antigen specificity. The amino acid composition and sequence order are more diverse in the complementarity-determining regions (including CDR1, CDR2 and CDR3) of each peptide chain, allowing a vast library of TCRs and BCRs. IR research is becoming increasingly focused on the study of CDR3 diversity. Deep profiling of CDR3s using high-throughput sequencing is a powerful approach for elucidating the composition and distribution of the CDR3s in a given sample, with in-depth information at the sequence level. Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. To identify novel biomarkers for diagnosis and drug targets for therapeutic interventions, several groups attempted to describe immune repertoire characteristics of the liver in the physiological environment or/and pathological conditions. This paper reviews the recent progress in IR research on human diseases, including hepatocellular carcinoma, attempting to depict the relationships between hepatocellular carcinogenesis and the IR, and discusses the possibility of IR as a potential biomarker and therapeutic for hepatocellular carcinoma. PMID:26188280

  9. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  10. Overview of the therapeutic potential of piplartine (piperlongumine).

    PubMed

    Bezerra, Daniel P; Pessoa, Claudia; de Moraes, Manoel O; Saker-Neto, Nicolau; Silveira, Edilberto R; Costa-Lotufo, Leticia V

    2013-02-14

    Piplartine (piperlongumine, 5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)-pyridinone) is a biologically active alkaloid/amide from peppers, as from long pepper (Piper longum L. - Piperaceae). Long pepper is one of the most widely used in Ayurvedic medicine, which is used to treat many diseases, including tumors. The purpose of the current paper is to address to the chemical structure establishment and to systematically survey the published articles and highlight recent advances in the knowledge of the therapeutic potential of piplartine, establishing new goals for future research. The reported pharmacological activities of piplartine include cytotoxic, genotoxic, antitumor, antiangiogenic, antimetastatic, antiplatelet aggregation, antinociceptive, anxiolytic, antidepressant, anti-atherosclerotic, antidiabetic, antibacterial, antifungal, leishmanicidal, trypanocidal, and schistosomicidal activities. Among the multiple pharmacological effects of piplartine, its anticancer property is the most promising. Therefore, the preclinical anticancer potential of piplartine has been extensively investigated, which recently resulted in one patent. This compound is selectively cytotoxic against cancer cells by induction of oxidative stress, induces genotoxicity, as an alternative strategy to killing tumor cells, has excellent oral bioavailability in mice, inhibits tumor growth in mice, and presents only weak systemic toxicity. In summary, we conclude that piplartine is effective for use in cancer therapy and its safety using chronic toxicological studies should be addressed to support the viability of clinical trials. PMID:23238172

  11. DNA Triple Helices: biological consequences and therapeutic potential

    PubMed Central

    Jain, Aklank; Wang, Guliang; Vasquez, Karen M.

    2008-01-01

    DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications. PMID:18331847

  12. New therapeutic potentials of milk thistle (Silybum marianum).

    PubMed

    Milić, Natasa; Milosević, Natasa; Suvajdzić, Ljiljana; Zarkov, Marija; Abenavoli, Ludovico

    2013-12-01

    Silymarin is a bioflavonoid complex extract derived from dry seeds of Milk thistle [(Silybum marianum(L.) Gaemrnt. (Fam. Asteraceae/Compositaceae)] whose hepatoprotective effect has clinically been proved. Low toxicity, favorable pharmacokinetics, powerful antioxidant, detoxifying, preventive, protective and regenerative effects and side effects similar to placebo make silymarin extremely attractive and safe for therapeutic use. The medicinal properties of silymarin and its main component silibinin have been studied in the treatment of Alzheimer's disease, Parkinson's disease, sepsis, burns, osteoporosis, diabetes, cholestasis and hypercholesterolemia. Owing to its apoptotic effect, without cytotoxic effects, silymarin possesses potential applications in the treatment of various cancers. Silymarin is being examined as a neuro-, nephro- and cardio-protective in the damage of different etiologies due to its strong antioxidant potentials. Furthermore, it has fetoprotective (against the influence of alcohol) and prolactin effects and is safe to be used during pregnancy and lactation. Finally, the cosmetics industry is examining the antioxidant and UV-protective effects of silymarin. Further clinical studies and scientific evidence that silymarin and silibinin are effective in the therapy of various pathologies are indispensable in order to confirm their different flavonolignan pharmacological effects. PMID:24555302

  13. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  14. DNA triple helices: biological consequences and therapeutic potential.

    PubMed

    Jain, Aklank; Wang, Guliang; Vasquez, Karen M

    2008-08-01

    DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications. PMID:18331847

  15. Therapeutic Potential of Temperate Forage Legumes: A Review.

    PubMed

    Cornara, Laura; Xiao, Jianbo; Burlando, Bruno

    2016-07-29

    The discovery of bioactive molecules from botanical sources is an expanding field, preferentially oriented to plants having a tradition of use in medicine and providing high yields and availability. Temperate forage legumes are Fabaceae species that include worldwide-important crops. These plants possess therapeutic virtues that have not only been used in veterinary and folk medicine, but have also attracted the interest of official medicine. We have examined here Medicago sativa (alfalfa), Trifolium pratense and T. repens (clovers), Melilotus albus and M. officinalis (sweet clovers), Lotus corniculatus (birdsfoot trefoil), Onobrychis viciifolia (sainfoin), Lespedeza capitata (roundhead lespedeza), and Galega officinalis (goat's rue). The phytochemical complexes of these species contain secondary metabolites whose pharmacological potentials deserve investigation. Major classes of compounds include alkaloids and amines, cyanogenic glycosides, flavonoids, coumarins, condensed tannins, and saponins. Some of these phytochemicals have been related to antihypercholesterolemia, antidiabetic, antimenopause, anti-inflammatory, antiedema, anthelmintic, and kidney protective effects. Two widely prescribed drugs have been developed starting from temperate forage legumes, namely, the antithrombotic warfarin, inspired from sweet clover's coumarin, and the antidiabetic metformin, a derivative of sainfoin's guanidine. Available evidence suggests that temperate forage legumes are a potentially important resource for the extraction of active principles to be used as nutraceuticals and pharmaceuticals. PMID:26507574

  16. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    PubMed Central

    Patel, Devang M.; Shah, Jainy; Srivastava, Anand S.

    2013-01-01

    Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases. PMID:23577036

  17. Harnessing the Therapeutic Potential of Th17 Cells

    PubMed Central

    Bystrom, Jonas; Taher, Taher E.; Muhyaddin, M. Sherwan; Clanchy, Felix I.; Mangat, Pamela; Jawad, Ali S.; Williams, Richard O.; Mageed, Rizgar A.

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases. PMID:26101460

  18. Rivaroxaban – a safe therapeutic option in patients with antiphospholipid syndrome? Our experience in 23 cases

    PubMed Central

    Olesińska, Marzena

    2016-01-01

    In the therapeutic approach to patients with antiphospholipid syndrome (APS) with thrombotic manifestations, oral vitamin K antagonists (VKA) remain the standard of care. However, the use of VKA is very often associated with inability to achieve a therapeutic dose even in patients maintaining nutritional and therapeutic restrictions. The non-vitamin-K oral anticoagulants (NOAC) have a lot of advantages, but their efficacy and safety in APS have not been proven. We present 23 patients with APS treated with rivaroxaban in our department. Recurrence of thrombosis was observed only in 1 patient. No major or minor bleeding occurred. It proves the efficacy of treatment with rivaroxaban, but our observations require further prospective, randomized studies. PMID:27504026

  19. Rivaroxaban - a safe therapeutic option in patients with antiphospholipid syndrome? Our experience in 23 cases.

    PubMed

    Haładyj, Ewa; Olesińska, Marzena

    2016-01-01

    In the therapeutic approach to patients with antiphospholipid syndrome (APS) with thrombotic manifestations, oral vitamin K antagonists (VKA) remain the standard of care. However, the use of VKA is very often associated with inability to achieve a therapeutic dose even in patients maintaining nutritional and therapeutic restrictions. The non-vitamin-K oral anticoagulants (NOAC) have a lot of advantages, but their efficacy and safety in APS have not been proven. We present 23 patients with APS treated with rivaroxaban in our department. Recurrence of thrombosis was observed only in 1 patient. No major or minor bleeding occurred. It proves the efficacy of treatment with rivaroxaban, but our observations require further prospective, randomized studies. PMID:27504026

  20. Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure.

    PubMed

    Kemp-Harper, Barbara K; Horowitz, John D; Ritchie, Rebecca H

    2016-09-01

    Heart failure (HF) is a major cause of hospital admission in the Western world, yet there remains a paucity of effective pharmacological management options. With the recent development of synthetic, next-generation nitroxyl (HNO) donors and their progress into clinical trials, it is timely to now provide an update on the therapeutic potential of HNO donors in the management of acute decompensated heart failure. In this article, we summarize current understanding of the pharmacology of HNO (in comparison with its redox sibling, nitric oxide), its spectrum of cardioprotective actions, and efforts to translate these into the clinic. Future research directions for this exciting new class of HF drugs are also considered. PMID:27566478

  1. The Therapeutic Potential of Brown Adipocytes in Humans.

    PubMed

    Porter, Craig; Chondronikola, Maria; Sidossis, Labros S

    2015-01-01

    Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking. As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole-body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole-body energy expenditure. Brown adipose tissue (BAT) is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP1). UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent rediscovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue-specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translational step for this early promise to be realized. PMID:26528238

  2. The Therapeutic Potential of Brown Adipocytes in Humans

    PubMed Central

    Porter, Craig; Chondronikola, Maria; Sidossis, Labros S.

    2015-01-01

    Obesity and its metabolic consequences represent a significant clinical problem. From a thermodynamic standpoint, obesity results from a discord in energy intake and expenditure. To date, lifestyle interventions based on reducing energy intake and/or increasing energy expenditure have proved ineffective in the prevention and/or treatment of obesity, owing to poor long-term adherence to such interventions. Thus, an effective strategy to prevent or correct obesity is currently lacking. As the combustion engines of our cells, mitochondria play a critical role in energy expenditure. At a whole-body level, approximately 80% of mitochondrial membrane potential generated by fuel oxidation is used to produce ATP, and the remaining 20% is lost through heat-producing uncoupling reactions. The coupling of mitochondrial respiration to ATP production represents an important component in whole-body energy expenditure. Brown adipose tissue (BAT) is densely populated with mitochondria containing the inner mitochondrial proton carrier uncoupling protein 1 (UCP1). UCP1 uncouples oxidative phosphorylation, meaning that mitochondrial membrane potential is dissipated as heat. The recent rediscovery of BAT depots in adult humans has rekindled scientific interest in the manipulation of mitochondrial uncoupling reactions as a means to increase metabolic rate, thereby counteracting obesity and its associated metabolic phenotype. In this article, we discuss the evidence for the role BAT plays in metabolic rate and glucose and lipid metabolism in humans and the potential for UCP1 recruitment in the white adipose tissue of humans. While the future holds much promise for a therapeutic role of UCP1 expressing adipocytes in human energy metabolism, particularly in the context of obesity, tissue-specific strategies that activate or recruit UCP1 in human adipocytes represent an obligatory translational step for this early promise to be realized. PMID:26528238

  3. Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs

    PubMed Central

    2013-01-01

    Viral vectors have become the best option for the delivery of therapeutic genes in conventional and RNA interference-based gene therapies. The current viral vectors for the delivery of small regulatory RNAs are based on DNA viruses and retroviruses/lentiviruses. Cytoplasmic RNA viruses have been excluded as viral vectors for RNAi therapy because of the nuclear localization of the microprocessor complex and the potential degradation of the viral RNA genome during the excision of any virus-encoded pre-microRNAs. However, in the last few years, the presence of several species of small RNAs (e.g., virus-derived small interfering RNAs, virus-derived short RNAs, and unusually small RNAs) in animals and cell cultures that are infected with cytoplasmic RNA viruses has suggested the existence of a non-canonical mechanism of microRNA biogenesis. Several studies have been conducted on the tick-borne encephalitis virus and on the Sindbis virus in which microRNA precursors were artificially incorporated and demonstrated the production of mature microRNAs. The ability of these viruses to recruit Drosha to the cytoplasm during infection resulted in the efficient processing of virus-encoded microRNA without the viral genome entering the nucleus. In this review, we discuss the relevance of these findings with an emphasis on the potential use of cytoplasmic RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs. PMID:23759022

  4. Expression Profiling Identifies Bezafibrate as Potential Therapeutic Drug for Lung Adenocarcinoma.

    PubMed

    Liu, Xinyan; Yang, Xiaoqin; Chen, Xinmei; Zhang, Yantao; Pan, Xuebin; Wang, Guiping; Ye, Yun

    2015-01-01

    Drug-induced gene expression patterns that invert disease profiles have recently been illustrated to be a new strategy for drug-repositioning. In the present study, we validated this approach and focused on prediction of novel drugs for lung adenocarcinoma (AC), for which there is a pressing need to find novel therapeutic compounds. Firstly, connectivity map (CMap) analysis computationally predicted bezafibrate as a putative compound against lung AC. Then this hypothesis was verified by in vitro assays of anti-proliferation and cell cycle arrest. In silico docking evidence indicated that bezafibrate could target cyclin dependent kinase 2(CDK2), which regulates progression through the cell cycle. Furthermore, we found that bezafibrate can significantly down-regulate the expression of CDK2 mRNA and p-CDK2. Using a nude mice xenograft model, we also found that bezafibrate could inhibit tumor growth of lung AC in vivo. In conclusion, this study proposed bezafibrate as a potential therapeutic option for lung AC patients, illustrating the potential of in silico drug screening. PMID:26535062

  5. A Prodrug Approach to the Use of Coumarins as Potential Therapeutics for Superficial Mycoses

    PubMed Central

    Mercer, Derry K.; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S.; O′Neil, Deborah A.

    2013-01-01

    Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20–25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones. PMID:24260474

  6. Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer: how the latest results are improving therapeutic options

    PubMed Central

    Jiang, Hanfang; Rugo, Hope S.

    2015-01-01

    Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer (MBC) remains an incurable disease, and approximately 25% of patients with HER2+ early breast cancer still relapse after adjuvant trastuzumab-based treatment. HER2 is a validated therapeutic target that remains relevant throughout the disease process. Recently, a number of novel HER2 targeted agents have become available, including lapatinib (a small molecule tyrosine kinase inhibitor of both HER2 and the epidermal growth factor receptor), pertuzumab (a new anti-HER2 monoclonal antibody) and ado-trastuzumab emtansine (T-DM1, a novel antibody–drug conjugate), which provide additional treatment options for patients with HER2+ MBC. The latest clinical trials have demonstrated improved outcome with treatment including pertuzumab or T-DM1 compared with standard HER2 targeted therapy. Here we review the clinical development of approved and investigational targeted agents for the treatment of HER2+ MBC, summarize the latest results of important clinical trials supporting use of these agents in the treatment of HER2+ MBC, and discuss how these results impact therapeutic options in clinical practice. PMID:26557900

  7. Physiological effects and therapeutic potential of proinsulin C-peptide

    PubMed Central

    Maric-Bilkan, Christine; Luppi, Patrizia; Wahren, John

    2014-01-01

    Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes. PMID:25249503

  8. New vitamin D analogs as potential therapeutics in melanoma

    PubMed Central

    Szyszka, Paulina; Zmijewski, Michal A; Slominski, Andrzej T

    2012-01-01

    Extensive evidence shows that the active form of vitamin D3 – 1α,25-dihydroxyvitamin D3 – plays an important role in cancer prevention, has tumorostatic activity and may potentially be used in therapy for melanoma. Vitamin D3 and its analogs (secosteroids) exert multiple effects on cancer cells, including inhibition of cell growth and induction of differentiation. Activity of secosteroids depends on multiple cellular factors, including expression of the vitamin D receptor. Despite its endogenous origin, the key drawback for the use of pharmacologically effective doses of 1α,25-dihydroxyvitamin D3 is its hypercalcemic effect leading to profound toxicity. The solution may lie in properties of vitamin D3 analogs with modified side chains, which demonstrate low calcemic activity but conserve the anti-tumor properties. Noncalcemic vitamin D compounds were found to be potent in multiple studies that mandate further clinical testing. Finally, recent studies revealed alternative metabolic pathways for secosteroids and new targets in the cells, which opens up new therapeutic possibilities. PMID:22594894

  9. Silk polymer-based adenosine release: therapeutic potential for epilepsy.

    PubMed

    Wilz, Andrew; Pritchard, Eleanor M; Li, Tianfu; Lan, Jing-Quan; Kaplan, David L; Boison, Detlev

    2008-09-01

    Adenosine augmentation therapies (AAT) make rational use of the brain's own adenosine-based seizure control system and hold promise for the therapy of refractory epilepsy. In an effort to develop an AAT compatible with future clinical application, we developed a novel silk protein-based release system for adenosine. Adenosine releasing brain implants with target release doses of 0, 40, 200, and 1000ng adenosine per day were prepared by embedding adenosine containing microspheres into nanofilm-coated silk fibroin scaffolds. In vitro, the respective polymers released 0, 33.4, 170.5, and 819.0ng adenosine per day over 14 days. The therapeutic potential of the implants was validated in a dose-response study in the rat model of kindling epileptogenesis. Four days prior to the onset of kindling, adenosine releasing polymers were implanted into the infrahippocampal cleft and progressive acquisition of kindled seizures was monitored over a total of 48 stimulations. We document a dose-dependent retardation of seizure acquisition. In recipients of polymers releasing 819ng adenosine per day, kindling epileptogenesis was delayed by one week corresponding to 18 kindling stimulations. Histological analysis of brain samples confirmed the correct location of implants and electrodes. We conclude that silk-based delivery of around 1000ng adenosine per day is a safe and efficient strategy to suppress seizures. PMID:18514814

  10. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets

    PubMed Central

    Kim, Jong Youl; Kawabori, Masahito; Yenari, Midori A.

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world. PMID:24372209

  11. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  12. Potential prognostic, diagnostic and therapeutic markers for human gastric cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Chi, Hsiang-Cheng; Tseng, Yi-Hsin; Lin, Kwang-Huei

    2014-01-01

    The high incidence of gastric cancer (GC) and its consequent mortality rate severely threaten human health. GC is frequently not diagnosed until a relatively advanced stage. Surgery is the only potentially curative treatment. Thus, early screening and diagnosis are critical for improving prognoses in patients with GC. Gastroscopy with biopsy is an appropriate method capable of aiding the diagnosis of specific early GC tumor types; however, the stress caused by this method together with it being excessively expensive makes it difficult to use it as a routine method for screening for GC on a population basis. The currently used tumor marker assays for detecting GC are simple and rapid, but their use is limited by their low sensitivity and specificity. In recent years, several markers have been identified and tested for their clinical relevance in the management of GC. Here, we review the serum-based tumor markers for GC and their clinical significance, focusing on discoveries from microarray/proteomics research. We also review tissue-based GC tumor markers and their clinical application, focusing on discoveries from immunohistochemical research. This review provides a brief description of various tumor markers for the purposes of diagnosis, prognosis and therapeutics, and we include markers already in clinical practice and various forthcoming biomarkers. PMID:25320517

  13. Dopamine transporter ligands: recent developments and therapeutic potential.

    PubMed

    Runyon, Scott P; Carroll, F Ivy

    2006-01-01

    The dopamine transporter (DAT) is a target for the development of pharmacotherapies for a number of central disorders including Parkinson's disease, Alzheimer's disease, schizophrenia, Tourette's syndrome, Lesch-Nyhan disease, attention deficit hyperactivity disorder (ADHD), obesity, depression, and stimulant abuse as well as normal aging. Considerable effort continues to be devoted to the development of new ligands for the DAT. In this review, we present some of the more interesting ligands developed during the last few years from the 3-phenytropane, 1,4-dialkylpiperazine, phenylpiperidine, and benztropine classes of DAT uptake inhibitors as well as a few less studied miscellaneous DAT uptake inhibitors. Studies related to the therapeutic potential of some of the more studied compounds are presented. A few of the compounds have been studied as pharmacotherapies for Parkinson's disease, ADHD, and obesity. However, most of the drug discovery studies have been directed toward pharmacotherapies for stimulant abuse (mainly cocaine). A number of the compounds showed decreased cocaine maintained responding in rhesus monkeys trained to self-administer cocaine. One compound, GBR 12,909, was evaluated in a Phase 1 clinical trial. PMID:17017960

  14. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease. PMID:24815561

  15. Novel endogenous angiogenesis inhibitors and their therapeutic potential

    PubMed Central

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-01-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application. PMID:26364800

  16. Pueraria tuberosa: a review on its phytochemical and therapeutic potential.

    PubMed

    Maji, Amal K; Pandit, Subrata; Banerji, Pratim; Banerjee, Debdulal

    2014-01-01

    Pueraria tuberosa (Willd.) DC is a perennial herb commonly known as 'vidarikanda', distributed throughout south east Asia. The plant's tuber is widely used in ethanomedicine as well as in traditional systems of medicine, particularly in ayurveda. It has been used in various ayurvedic formulations as restorative tonic, antiaging, spermatogenic and immune booster and has been recommended for the treatment of cardiovascular diseases, hepatosplenomegaly, fertility disorders, menopausal syndrome, sexual debility and spermatorrhoea. Numerous bioactive phytochemicals, mostly isoflavonoids such as puerarin, genistein, daidzein, tuberosin and so on have been identified in the tuber. In vivo and in vitro studies have provided the support against traditional demands of the tuber as spermatogenic, immune booster, aphrodisiac, anti-inflammatory, cardiotonic and brain tonic. However, further studies are required to define the active phytochemical compositions and to validate its clinical utilisation in the herbal formulations for human uses. This review provides an overview of traditional applications, current knowledge on the phytochemistry, pharmacology and toxicology of P. tuberosa. This review also provides plausible hypotheses about how various isoflavones particularly puerarin, genistein and daidzein, individually or collectively, may be responsible for the therapeutic potential against a wide range of ailments. PMID:24980468

  17. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Castellarin, Mauro; Hanley, Stephen; Jamal, Al-Maleek; Laganiere, Simon; Rosenberg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16216541

  18. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Hanley, Stephen; Al-Maleek, Jamal; Laganiere, Simon; Rosenburg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16607698

  19. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD? PMID:23711791

  20. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  1. The therapeutic potential of milk thistle in diabetes.

    PubMed

    Kazazis, Christos E; Evangelopoulos, Angelos A; Kollas, Aris; Vallianou, Natalia G

    2014-01-01

    Milk thistle has been known for more than 2.000 years as a herbal remedy for a variety of disorders. It has mainly been used to treat liver and gallbladder diseases. Silibum marianum, the Latin term for the plant, and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds; it is extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly silibin A, silibin B, taxifolin, isosilibin A, isosilibin B, silichristin A, silidianin, and other compounds in smaller concentrations. Apart from its use in liver and gallbladder disorders, milk thistle has recently gained attention due to its hypoglycemic and hypolipidemic properties. Recently, a substance from milk thistle has been shown to possess peroxisome proliferator-activated receptor γ (PPARγ) agonist properties. PPARγ is the molecular target of thiazolidinediones, which are used clinically as insulin sensitizers to lower blood glucose levels in diabetes type 2 patients. The thiazolidinedione type of PPARγ ligands is an agonist with a very high binding affinity. However, this ligand type demonstrates a range of undesirable side effects, thus necessitating the search for new effective PPARγ agonists. Interestingly, studies indicate that partial agonism of PPARγ induces promising activity patterns by retaining the positive effects attributed to the full agonists, with reduced side effects. In this review, the therapeutic potential of milk thistle in the management of diabetes and its complications are discussed. PMID:25396404

  2. Glucocorticoid analogues: potential therapeutic alternatives for treating inflammatory muscle diseases.

    PubMed

    Reeves, Erica K M; Rayavarapu, Sree; Damsker, Jesse M; Nagaraju, Kanneboyina

    2012-03-01

    Glucocorticoids (GCs) have been prescribed to treat a variety of diseases, including inflammatory myopathies and Duchenne muscular dystrophy for over 50 years. However, their prescription remains controversial due to the significant side effects associated with the chronic treatment. It is a common belief that the clinical efficacy of GCs is due to their transrepression of pro-inflammatory genes through inhibition of inflammatory transcription factors (i.e. NF-κB, AP-1) whereas the adverse side effects are attributed to the glucocorticoid receptor (GR)-mediated transcription of target genes (transactivation). The past decade has seen an increased interest in the development of GR modulators that maintain the effective anti-inflammatory properties but lack the GR-dependent transcriptional response as a safe alternative to traditional GCs. Many of these analogues or "dissociative" compounds show potential promise in in vitro studies but fail to reach human clinical trials. In this review, we discuss molecular effects of currently prescribed GCs on skeletal muscle and also discuss the current state of development of GC analogues as alternative therapeutics for inflammatory muscle diseases. PMID:22214335

  3. The Therapeutic Potential of Milk Thistle in Diabetes

    PubMed Central

    Kazazis, Christos E.; Evangelopoulos, Angelos A.; Kollas, Aris; Vallianou, Natalia G.

    2014-01-01

    Milk thistle has been known for more than 2.000 years as a herbal remedy for a variety of disorders. It has mainly been used to treat liver and gallbladder diseases. Silibum marianum, the Latin term for the plant, and its seeds contain a whole family of natural compounds, called flavonolignans. Silimarin is a dry mixture of these compounds; it is extracted after processing with ethanol, methanol, and acetone. Silimarin contains mainly silibin A, silibin B, taxifolin, isosilibin A, isosilibin B, silichristin A, silidianin, and other compounds in smaller concentrations. Apart from its use in liver and gallbladder disorders, milk thistle has recently gained attention due to its hypoglycemic and hypolipidemic properties. Recently, a substance from milk thistle has been shown to possess peroxisome proliferator-activated receptor γ (PPARγ) agonist properties. PPARγ is the molecular target of thiazolidinediones, which are used clinically as insulin sensitizers to lower blood glucose levels in diabetes type 2 patients. The thiazolidinedione type of PPARγ ligands is an agonist with a very high binding affinity. However, this ligand type demonstrates a range of undesirable side effects, thus necessitating the search for new effective PPARγ agonists. Interestingly, studies indicate that partial agonism of PPARγ induces promising activity patterns by retaining the positive effects attributed to the full agonists, with reduced side effects. In this review, the therapeutic potential of milk thistle in the management of diabetes and its complications are discussed. PMID:25396404

  4. Therapeutic cell carriers: a potential road to cure glioma.

    PubMed

    Young, Jacob S; Kim, Julius W; Ahmed, Atique U; Lesniak, Maciej S

    2014-06-01

    Many different experimental molecular therapeutic approaches have been evaluated in an attempt to treat brain cancer. However, despite the success of these experimental molecular therapies, research has shown that the specific and efficient delivery of therapeutic agents to tumor cells is a limitation. In this regard, cell carrier systems have garnered significant attraction due to their capacity to be loaded with therapeutic agents and carry them specifically to tumor sites. Furthermore, cell carriers can be genetically modified to express therapeutic agents that can directly eradicate cancerous cells or can modulate tumor microenvironments. This review describes the current state of cell carriers, their use as vehicles for the delivery of therapeutic agents to brain tumors, and future directions that will help overcome the present obstacles to cell carrier mediated therapy for brain cancer. PMID:24852229

  5. CD20-negative diffuse large B-cell lymphomas: biology and emerging therapeutic options.

    PubMed

    Castillo, Jorge J; Chavez, Julio C; Hernandez-Ilizaliturri, Francisco J; Montes-Moreno, Santiago

    2015-06-01

    CD20-negative diffuse large B-cell lymphoma (DLBCL) is a rare and heterogeneous group of lymphoproliferative disorders. Known variants of CD20-negative DLBCL include plasmablastic lymphoma, primary effusion lymphoma, large B-cell lymphoma arising in human herpesvirus 8-associated multicentric Castleman disease and anaplastic lymphoma kinase-positive DLBCL. Given the lack of CD20 expression, atypical cellular morphology and aggressive clinical behavior characterized by chemotherapy resistance and inferior survival rates, CD20-negative DLBCL represents a challenge from the diagnostic and therapeutic perspectives. The goals of the present review are to summarize the current knowledge on the biology of the distinct variants of CD20-negative DLBCL, provide future therapeutic directions based on the limited preclinical and clinical data available, and increase awareness concerning these rare malignancies among pathologists and clinicians. PMID:25641215

  6. Addressing the stimulant treatment gap: A call to investigate the therapeutic benefits potential of cannabinoids for crack-cocaine use.

    PubMed

    Fischer, Benedikt; Kuganesan, Sharan; Gallassi, Andrea; Malcher-Lopes, Renato; van den Brink, Wim; Wood, Evan

    2015-12-01

    Crack-cocaine use is prevalent in numerous countries, yet concentrated primarily - largely within urban contexts - in the Northern and Southern regions of the Americas. It is associated with a variety of behavioral, physical and mental health and social problems which gravely affect users and their environments. Few evidence-based treatments for crack-cocaine use exist and are available to users in the reality of street drug use. Numerous pharmacological treatments have been investigated but with largely disappointing results. An important therapeutic potential for crack-cocaine use may rest in cannabinoids, which have recently seen a general resurgence for varied possible therapeutic usages for different neurological diseases. Distinct potential therapeutic benefits for crack-cocaine use and common related adverse symptoms may come specifically from cannabidiol (CBD) - one of the numerous cannabinoid components found in cannabis - with its demonstrated anxiolytic, anti-psychotic, anti-convulsant effects and potential benefits for sleep and appetite problems. The possible therapeutic prospects of cannabinoids are corroborated by observational studies from different contexts documenting crack-cocaine users' 'self-medication' efforts towards coping with crack-cocaine-related problems, including withdrawal and craving, impulsivity and paranoia. Cannabinoid therapeutics offer further benefits of being available in multiple formulations, are low in adverse risk potential, and may easily be offered in community-based settings which may add to their feasibility as interventions for - predominantly marginalized - crack-cocaine user populations. Supported by the dearth of current therapeutic options for crack-cocaine use, we are advocating for the implementation of a rigorous research program investigating the potential therapeutic benefits of cannabinoids for crack-cocaine use. Given the high prevalence of this grave substance use problem in the Americas, opportunities for

  7. [PCSK9 - "missing link" in familial hypercholesterolemia : New therapeutic options in hypercholesterolemia and coronary artery disease].

    PubMed

    Thiery, J; Burkhardt, R

    2016-06-01

    Lowering plasma low-density lipoprotein cholesterol (LDL-C) levels to individual therapeutic goals is one of the most effective measures for the prevention of cardiovascular disease. Besides dietary measures, this can be achieved pharmaceutically by inhibition of hepatic cholesterol synthesis with statins or inhibition of intestinal cholesterol absorption (e.g., ezetimibe and bile acid sequestrants). Decisive for lowering LDL is an increased hepatic uptake of circulating LDL via an increase in LDL receptors (LDLR) in hepatic cell membranes. The formation of new LDLR and recirculation of existing LDLR play a decisive role in this process. An important modulator of LDLR is proprotein convertase subtilisin/kexin type 9 (PCSK9). In the last years genetic studies have identified several mutations in the PCSK9 gene leading to a gain of function and carriers of these mutations suffer from autosomal dominant hypercholesterolemia. In contrast, carriers of PCSK9 loss of function mutations show very low plasma LDL-C concentrations and a markedly reduced risk for coronary artery disease. These fundamental discoveries have sparked the development of a completely novel therapeutic approach to treating hypercholesterolemia. At present, inhibition of PCSK9 by monoclonal antibodies presents the most promising therapeutic approach. First human antibodies were recently approved as the first immunotherapeutic agents for the treatment of severe hypercholesterolemia and in patients with statin intolerance. An additional PCSK9 antibody is presently being studied in phase III clinical trials. PMID:27215417

  8. Treatment of hyperuricemia in gout: current therapeutic options, latest developments and clinical implications

    PubMed Central

    Sattui, Sebastian E.; Gaffo, Angelo L.

    2016-01-01

    Despite being the most common type of inflammatory arthritis, gout is often poorly managed. Except for febuxostat and pegloticase, research in new therapeutic agents for the management of hyperuricemia in gout remained insufficient for several decades. With emerging evidence of possible roles of hyperuricemia in cardiometabolic comorbidities, as well as more convincing evidence regarding poor outcomes (e.g. disability, recurrent hospital admissions) in patients with uncontrolled gout, several agents are current under development. Increasing knowledge regarding renal urate transporters has resulted in the development of new generation uricosurics such as lesinurad and arhalofenate. This review aims at discussing current therapeutic strategies for gout, as well as their limitations and the possible role of emerging agents in the chronic management of hyperuricemia in gout. Drugs in phases I and II of development will be discussed, along with new agents and therapeutic classes, such as purine nucleoside phosphorylase inhibitors and dual-action drugs. These new developments are encouraging, and will hopefully contribute to a more adequate management of hyperuricemia in gout. PMID:27493693

  9. Treatment of hyperuricemia in gout: current therapeutic options, latest developments and clinical implications.

    PubMed

    Sattui, Sebastian E; Gaffo, Angelo L

    2016-08-01

    Despite being the most common type of inflammatory arthritis, gout is often poorly managed. Except for febuxostat and pegloticase, research in new therapeutic agents for the management of hyperuricemia in gout remained insufficient for several decades. With emerging evidence of possible roles of hyperuricemia in cardiometabolic comorbidities, as well as more convincing evidence regarding poor outcomes (e.g. disability, recurrent hospital admissions) in patients with uncontrolled gout, several agents are current under development. Increasing knowledge regarding renal urate transporters has resulted in the development of new generation uricosurics such as lesinurad and arhalofenate. This review aims at discussing current therapeutic strategies for gout, as well as their limitations and the possible role of emerging agents in the chronic management of hyperuricemia in gout. Drugs in phases I and II of development will be discussed, along with new agents and therapeutic classes, such as purine nucleoside phosphorylase inhibitors and dual-action drugs. These new developments are encouraging, and will hopefully contribute to a more adequate management of hyperuricemia in gout. PMID:27493693

  10. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Huang, Hsiang-Wei; Chi, Hsiang-Cheng; Lin, Yang-Hsiang; Lu, Pei-Hsuan; Lin, Kwang-Huei

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets. PMID:27322246

  11. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer.

    PubMed

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Huang, Hsiang-Wei; Chi, Hsiang-Cheng; Lin, Yang-Hsiang; Lu, Pei-Hsuan; Lin, Kwang-Huei

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients' survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets. PMID:27322246

  12. Relapsed and refractory Hodgkin lymphoma: transplantation strategies and novel therapeutic options.

    PubMed

    David, Kevin A; Mauro, Lauren; Evens, Andrew M

    2007-10-01

    Many patients with Hodgkin lymphoma are cured with initial therapy, although a portion of patients will experience primary induction failure or disease relapse. Pathologic confirmation of refractory or relapsed Hodgkin lymphoma is important. Following two to four cycles of non-cross-resistant salvage chemotherapy, the standard of care is high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (HSCT), which is associated with long-term event-free survival rates of 45-68%. Of note, survival rates for studies integrating total lymphoid irradiation into the autologous HSCT-conditioning regimen are among the highest reported for relapsed/refractory Hodgkin lymphoma. Further treatment options are available for patients not fit to proceed to HSCT, for relapsed disease after autologous HSCT, and for 'high-risk' Hodgkin lymphoma including chemotherapy-resistant disease. Allogeneic HSCT is a valid treatment option, as a graft-vs.-Hodgkin-lymphoma effect has been demonstrated. In addition, novel targeted treatments are being investigated such as receptor-specific antibodies, radiolabeled antibodies, antiapoptotic agents including inhibitors of the nuclear factor-kappaB complex or X-linked inhibitor of apoptosis proteins, transcription pathway modulators such as histone deacetylase and mTOR inhibitors, and Epstein-Barr virus-directed therapy. Continued translational and collaborative prospective clinical research efforts are needed in order to continue to increase the survival rates for Hodgkin lymphoma and to lessen the toxicities associated with lymphoma-related therapy. PMID:18214690

  13. Therapeutic options for sleep-maintenance and sleep-onset insomnia.

    PubMed

    Morin, Anna K; Jarvis, Courtney I; Lynch, Ann M

    2007-01-01

    Insomnia, defined as difficulty falling asleep, staying asleep, and/or experiencing restorative sleep with associated impairment or significant distress, is a common condition resulting in significant clinical and economic consequences. Many options are available to treat insomnia, to assist with either falling asleep (sleep onset) or maintaining sleep. We searched MEDLINE for articles published between January 1996 and January 2006, evaluated abstracts from recent professional meetings, and contacted the manufacturer of the most recent addition to the pharmacologic armamentarium for insomnia treatment (ramelteon) to gather information. Nonpharmacologic options include stimulus control, sleep hygiene education, sleep restriction, paradoxical intention, relaxation therapy, biofeedback, and cognitive behavioral therapy. Prescription and over-the-counter drug therapies include benzodiazepine and nonbenzodiazepine sedative-hypnotic agents; ramelteon, a melatonin receptor agonist; trazodone; and sedating antihistamines. Herbal and alternative preparations include melatonin and valerian. Before recommending any treatment, clinicians should consider patient-specific criteria such as age, medical history, and other drug use, as well as the underlying cause of the sleep disturbance. All pharmacotherapy should be used with appropriate caution, at minimum effective doses, and for minimum duration of time. PMID:17192164

  14. Current state of evidence on 'off-label' therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland--a consensus report.

    PubMed

    Aringer, M; Burkhardt, H; Burmester, G R; Fischer-Betz, R; Fleck, M; Graninger, W; Hiepe, F; Jacobi, A M; Kötter, I; Lakomek, H J; Lorenz, H M; Manger, B; Schett, G; Schmidt, R E; Schneider, M; Schulze-Koops, H; Smolen, J S; Specker, C; Stoll, T; Strangfeld, A; Tony, H P; Villiger, P M; Voll, R; Witte, T; Dörner, T

    2012-04-01

    Systemic lupus erythematosus (SLE) can be a severe and potentially life-threatening disease that often represents a therapeutic challenge because of its heterogeneous organ manifestations. Only glucocorticoids, chloroquine and hydroxychloroquine, azathioprine, cyclophosphamide and very recently belimumab have been approved for SLE therapy in Germany, Austria and Switzerland. Dependence on glucocorticoids and resistance to the approved therapeutic agents, as well as substantial toxicity, are frequent. Therefore, treatment considerations will include 'off-label' use of medication approved for other indications. In this consensus approach, an effort has been undertaken to delineate the limits of the current evidence on therapeutic options for SLE organ disease, and to agree on common practice. This has been based on the best available evidence obtained by a rigorous literature review and the authors' own experience with available drugs derived under very similar health care conditions. Preparation of this consensus document included an initial meeting to agree upon the core agenda, a systematic literature review with subsequent formulation of a consensus and determination of the evidence level followed by collecting the level of agreement from the panel members. In addition to overarching principles, the panel have focused on the treatment of major SLE organ manifestations (lupus nephritis, arthritis, lung disease, neuropsychiatric and haematological manifestations, antiphospholipid syndrome and serositis). This consensus report is intended to support clinicians involved in the care of patients with difficult courses of SLE not responding to standard therapies by providing up-to-date information on the best available evidence. PMID:22072024

  15. [Novel therapeutic options in patients with type 2 diabetes and high cardiovascular risk].

    PubMed

    Laubner, Katharina; Seufert, Jochen

    2016-06-01

    SGLT2 inhibitors represent a novel therapeutic approach for the tretment of type 2 diabetes mellitus. Beyond glucose control, these drugs also induce weight loss and blod pressure reduction. In a specific cardiovascular outcome trial (EMPA-REG-OUTCOME), the SGLT 2 inhibitor empagliflozin has for the first time demonstrated to reduce cardiovascular and overall mortality as well as hospitalization for heart failure in patients with type 2 diabetes and high cardiovascular risk. These results will drastically affect future recommendations for the treatment of type 2 diabetes mellitus.). PMID:27176455

  16. Therapeutic options for lymphangioleiomyomatosis (LAM): where we are and where we are going

    PubMed Central

    Steagall, Wendy K; Moss, Joel

    2009-01-01

    Lymphangioleiomyomatosis (LAM), a multisystem disease affecting predominantly premenopausal and middle-aged women, causes progressive respiratory failure due to cystic lung destruction and is associated with lymphatic and kidney tumors. In the past, the treatment of LAM comprised exclusively anti-estrogen and related hormonal therapies. These treatments, however, have not been proven effective. In this article, we discuss new findings regarding the molecular mechanisms involved in the regulation of LAM cell growth, which may offer opportunities to develop effective and targeted therapeutic agents. PMID:20948684

  17. Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.

    PubMed

    Huang, Yen Ta; Cheng, Chuan Chu; Chiu, Ted H; Lai, Pei Chun

    2015-11-01

    Controversial effects of thalidomide for solid malignancies have been reported. In the present study, we evaluate the effects of thalidomide for transitional cell carcinoma (TCC), the most common type of bladder cancer. Thalidomide precipitates were observed when its DMSO solution was added to the culture medium. No precipitation was found when thalidomide was dissolved in 45% γ-cyclodextrin, and this concentration of γ-cyclodextrin elicited slight cytotoxicity on TCC BFTC905 and primary human urothelial cells. Thalidomide-γ-cyclodextrin complex exerted a concentration-dependent cytotoxicity in TCC cells, but was relatively less cytotoxic (with IC50 of 200 µM) in BFTC905 cells than the other 3 TCC cell lines, possibly due to upregulation of Bcl-xL and HIF-1α mediated carbonic anhydrase IX, and promotion of quiescence. Gemcitabine-resistant BFTC905 cells were chosen for additional experiments. Thalidomide induced apoptosis through downregulation of survivin and securin. The secretion of VEGF and TNF-α was ameliorated by thalidomide, but they did not affect cell proliferation. Immune-modulating lenalidomide and pomalidomide did not elicit cytotoxicity. In addition, cereblon did not play a role in the thalidomide effect. Oxidative DNA damage was triggered by thalidomide, and anti-oxidants reversed the effect. Thalidomide also inhibited TNF-α induced invasion through inhibition of NF-κB, and downregulation of effectors, ICAM-1 and MMP-9. Thalidomide inhibited the growth of BFTC905 xenograft tumors in SCID mice via induction of DNA damage and suppression of angiogenesis. Higher average body weight, indicating less chachexia, was observed in thalidomide treated group. Sedative effect was observed within one-week of treatment. These pre-clinical results suggest therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer. PMID:26398114

  18. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential.

    PubMed

    Han, H Q; Zhou, Xiaolan; Mitch, William E; Goldberg, Alfred L

    2013-10-01

    Muscle wasting is associated with a wide range of catabolic diseases. This debilitating loss of muscle mass and functional capacity reduces the quality of life and increases the risks of morbidity and mortality. Major progress has been made in understanding the biochemical mechanisms and signaling pathways regulating muscle protein balance under normal conditions and the enhanced protein loss in atrophying muscles. It is now clear that activation of myostatin/activin signaling is critical in triggering the accelerated muscle catabolism that causes muscle loss in multiple disease states. Binding of myostatin and activin to the ActRIIB receptor complex on muscle cell membrane leads to activation of Smad2/3-mediated transcription, which in turn stimulates FoxO-dependent transcription and enhanced muscle protein breakdown via ubiquitin-proteasome system and autophagy. In addition, Smad activation inhibits muscle protein synthesis by suppressing Akt signaling. Pharmacological blockade of the myostatin/activin-ActRIIB pathway has been shown to prevent or reverse the loss of muscle mass and strength in various disease models including cancer cachexia and renal failure. Moreover, it can markedly prolong the lifespan of animals with cancer-associated muscle loss. Furthermore, inhibiting myostatin/activin actions also improves insulin sensitivity, reduces excessive adiposity, attenuates systemic inflammation, and accelerates bone fracture healing in disease models. Based on these exciting advances, the potential therapeutic benefits of myostatin/activin antagonism are now being tested in multiple clinical settings. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. PMID:23721881

  19. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  20. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications.

    PubMed

    Poniewierska-Baran, Agata; Suszynska, Malwina; Sun, Wenyue; Abdelbaset-Ismail, Ahmed; Schneider, Gabriela; Barr, Frederic G; Ratajczak, Mariusz Z

    2015-11-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  1. Llama Nanoantibodies with Therapeutic Potential against Human Norovirus Diarrhea

    PubMed Central

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I.; Bok, Marina; Sosnovtsev, Stanislav V.; Canziani, Gabriela; Green, Kim Y.; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  2. Adrenomedullin: A potential therapeutic target for retinochoroidal disease.

    PubMed

    Iesato, Yasuhiro; Yuda, Kentaro; Chong, Kelvin Teo Yi; Tan, Xue; Murata, Toshinori; Shindo, Takayuki; Yanagi, Yasuo

    2016-05-01

    Adrenomedullin (AM) is a 52-amino acid peptide with anti-inflammatory, anti-apoptotic, and anti-oxidative properties discovered in a human pheochromocytoma. It is a member of the calcitonin peptide superfamily, and its signal is mediated by calcitonin receptor-like receptor (CLR). CLR interacts with receptor activity-modifying proteins (RAMPs), among which RAMP-2 and RAMP-3 carry CLR from the endoplasmic reticulum to the cellular membrane to confer high affinity for AM. In addition to being implicated in a variety of systemic diseases, AM is a critical contributor to the pathogenesis of retinochoroidal disease. It is robustly upregulated in retinochoroidal disease models of oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularisation (CNV) as well as in human patients with retinochoroidal diseases. In this review, we discuss the most salient recent findings that strongly illustrate the role of AM in retinochoroidal disease. In the OIR model, AM was identified as a key angiogenic mediator of retinal vascularisation, and AM inhibition suppressed only pathological angiogenesis, not physiological angiogenesis. On the contrary, lesion size was larger in AM(+/-) CNV model mice, presumably due to the anti-inflammatory function of AM. Despite the success of anti-vascular endothelial growth factor agents for the treatment of retinochoroidal disease, therapeutic shortcomings remain. Finding ways to modulate AM activity will provide new treatment avenues. Potential treatment strategies modulating the action of AM and its signaling pathway have been studied extensively. AM and its signaling molecules are intriguing future treatment targets for retinochoroidal disease. PMID:26791747

  3. Physiology and therapeutic potential of the thymic peptide thymulin.

    PubMed

    Reggiani, Paula C; Schwerdt, Jose I; Console, Gloria M; Roggero, Eduardo A; Dardenne, Mireille; Goya, Rodolfo G

    2014-01-01

    Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans. PMID:24588820

  4. REOVIRUS: A TARGETED THERAPEUTIC – PROGRESS AND POTENTIAL

    PubMed Central

    Maitra, Radhashree; Ghalib, Mohammad H.; Goel, Sanjay

    2013-01-01

    Medical therapy of patients with malignancy requires a paradigm shift through development of new drugs with a good safety record and novel mechanisms of activity. While there is no dearth of such molecules, one particular agent, “reovirus” is promising by its ability to target cancer cells with aberrant signaling pathways. This double stranded RNA virus has been therapeutically formulated and has rapidly progressed from pre-clinical validation of anti cancer activity to a phase III registration study in platinum refractory metastatic squamous cell carcinoma of the head and neck. During this process, reovirus has demonstrated safety both as a single agent when administered intratumorally and intravenously, as well as in combination therapy, with multiple chemotherapeutics such as gemcitabine, carboplatin/paclitaxel, and docetaxel; and similarly with radiation. The scientific rationale for its development as an anticancer agent stems from the fact that it preferentially replicates in and induces lyses of cells with an activated Kras pathway. As documented in many previous studies, the initial observation of greater tropism in Kras compromised situation might certainly not be the sole and possibly not even the predominant reason for enhanced virulence. All the same, scientists have emphasized on Kras optimistically due to its high prevalence in various types of cancers. Incidence of Kras mutation has been found to be highest in pancreatic cancer (85–90%) followed by colorectal (35–45%) and lung (25–30%). Reovirus, in fact has the potential not only as a therapy but also as a tool to unravel the aberrant cellular pathway leading to carcinogenicity. PMID:23038811

  5. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea.

    PubMed

    Garaicoechea, Lorena; Aguilar, Andrea; Parra, Gabriel I; Bok, Marina; Sosnovtsev, Stanislav V; Canziani, Gabriela; Green, Kim Y; Bok, Karin; Parreño, Viviana

    2015-01-01

    Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. PMID:26267898

  6. Systemic minocycline as a therapeutic option in predominantly oral mucous membrane pemphigoid: a cautionary report.

    PubMed

    Carrozzo, M; Arduino, P; Bertolusso, G; Cozzani, E; Parodi, A

    2009-10-01

    The aim of this study was to evaluate the therapeutic benefit of minocycline in mucous membrane pemphigoid (MMP) predominantly involving the oral cavity. A descriptive, open clinical study with no control group, including 9 patients, was developed. The diagnosis was confirmed by histopathological examination and direct and salt-split-skin indirect immunofluorescence analysis. Target antigens were sought by immunoblotting. Patients received minocycline (200mg/day) for a variable period. All patients were followed up for at least 2 years after initial diagnosis. Therapeutic response was assessed by clinical improvement in three categories: major response, minor response and no response. A major response was observed in 3 patients (33%), a minor response in 4 (44%) and 2 (22%) patients showed no improvement. Two of the 3 patients with a major response showed no immunoblot reactivity; 80% of patients with circulating autoantibodies (autoAb) against BP180 had a minor or no response. Permanent remission of signs with no relapse was only obtained in one patient. 5 patients (55%) stopped the drug because of adverse effects, such as vertigo and gastralgia. The results revealed temporary clinical benefits in MMP predominantly involving the oral cavity with minocycline, although frequently side effects led to drug withdrawal. PMID:19628373

  7. Therapeutic options for chronic myeloid leukemia: focus on imatinib (Glivec®, Gleevec™)

    PubMed Central

    Henkes, Martin; van der Kuip, Heiko; Aulitzky, Walter E

    2008-01-01

    Treatment options for chronic myeloid leukemia (CML) have changed dramatically during the last decades. Interferon-α treatment and stem cell transplantation (SCT) clearly improved survival over conventional chemotherapy and offered the possibility of complete and durable responses. With the advent of the small molecule inhibitor imatinib mesylate (Glivec®, Gleevec™) targeting the causative Bcr-Abl oncoprotein, the era of molecular cancer therapy began with remarkable success especially in chronic phase patients. Today, imatinib is the first-line treatment for CML. However, imatinib does not appear to be capable to eliminate all leukemia cells in the patients and pre-existing as well as acquired resistance to the drug has been increasingly recognized. To overcome these problems, several strategies involving dose escalation, combinations with other agents, and novel Bcr-Abl inhibitors have been developed. PMID:18728706

  8. Quinine sulfate as a therapeutic option in a patient with slow channel congenital myasthenic syndrome.

    PubMed

    Peyer, Anne-Kathrin; Abicht, Angela; Heinimann, Karl; Sinnreich, Michael; Fischer, Dirk

    2013-07-01

    Slow channel congenital myasthenic syndrome is caused by a genetically determined kinetic anomaly of the acetylcholine receptor at the neuromuscular junction leading to its prolonged open state. Patients typically present with fatigability and static weakness of neck, hand and finger extensors. The open-channel blockers fluoxetine and quinidine have been used as standard treatment, although the former is limited by its side effects. We describe a patient with a novel "de novo" mutation in the α subunit of acetylcholine receptor with clinical and electrophysiological hallmarks of the disease. The patient showed marked treatment response to fluoxetine as well as quinine, a stereoisomer of quinidine, expanding the treatment options for this hereditary disorder. PMID:23688972

  9. Antibiotic therapeutic options for infections caused by drug-resistant Gram-positive cocci.

    PubMed

    Banwan, K; Senok, A C; Rotimi, V O

    2009-01-01

    Serious infections caused by Gram-positive bacteria are currently difficult to treat because many of these pathogens are now resistant to standard antimicrobial agents. As a result of the emergence and spread of multidrug-resistant Gram-positive pathogens, new antimicrobial agents are urgently needed for clinical use. In recent years, there has been an increase in the number of drugs that have activity against these Gram-positive pathogens. Daptomycin, tigecycline, linezolid, quinupristin/dalfopristin and dalbavancin are five antimicrobial agents that are useful for the treatment of infections due to drug-resistant Gram-positive cocci. This review focuses on their mechanism of action, pharmacokinetics, spectrum of activity, clinical effectiveness, drug interaction and safety. These antimicrobial agents provide the clinician with additional treatment options among the limited therapies for resistant Gram-positive bacterial infection. PMID:20701863

  10. Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options.

    PubMed

    Vermeij, Wilbert P; Hoeijmakers, Jan H J; Pothof, Joris

    2016-01-01

    Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology. PMID:26514200

  11. SGLT2 inhibitors provide an effective therapeutic option for diabetes complicated with insulin antibodies.

    PubMed

    Hayashi, Akinori; Takano, Koji; Kawai, Sayuki; Shichiri, Masayoshi

    2016-02-29

    Diabetes mellitus complicated with insulin antibodies is rare in clinical practice but usually difficult to control. A high amount of insulin antibodies, especially with low affinity and high binding capacity, leads to unstable glycemic control characterized by hyperglycemia unresponsive to large volume of insulin and unanticipated hypoglycemia. There are several treatment options, such as changing insulin preparation, immunosupression with glucocorticoids, and plasmapheresis, most of which are of limited efficacy. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of drug which decrease renal glucose reabsorption and lowers plasma glucose level independent of insulin action. We report here a case with diabetes complicated with insulin antibodies who was effectively controlled by an SGLT2 inhibitor. A 47-year-old man with type 2 diabetes treated with insulin had very poor glycemic control characterized by postprandial hyperglycemia unresponsive to insulin therapy and repetitive hypoglycemia due to insulin antibodies. Treatment with ipragliflozin, an SGLT2 inhibitor, improved HbA1c from 8.4% to 6.0% and glycated albumin from 29.4% to 17.9%. Continuous glucose monitoring revealed improvement of glycemic profile (average glucose level from 212 mg/dL to 99 mg/dL and glycemic standard deviation from 92 mg/dL to 14 mg/dL) with disappearance of hypoglycemic events. This treatment further ameliorated the characteristics of insulin antibodies and resulted in reduced insulin requirement. SGLT2 inhibitors may offer an effective treatment option for managing the poor glycemic control in diabetes complicated with insulin antibodies. PMID:26549210

  12. Predictive Biomarkers in Colorectal Cancer: From the Single Therapeutic Target to a Plethora of Options

    PubMed Central

    Rodrigues, Daniela; Longatto-Filho, Adhemar

    2016-01-01

    Colorectal cancer (CRC) is one of the most frequent cancers and is a leading cause of cancer death worldwide. Treatments used for CRC may include some combination of surgery, radiation therapy, chemotherapy, and targeted therapy. The current standard drugs used in chemotherapy are 5-fluorouracil and leucovorin in combination with irinotecan and/or oxaliplatin. Most recently, biologic agents have been proven to have therapeutic benefits in metastatic CRC alone or in association with standard chemotherapy. However, patients present different treatment responses, in terms of efficacy and toxicity; therefore, it is important to identify biological markers that can predict the response to therapy and help select patients that would benefit from specific regimens. In this paper, authors review CRC genetic markers that could be useful in predicting the sensitivity/resistance to chemotherapy. PMID:27563673

  13. Predictive Biomarkers in Colorectal Cancer: From the Single Therapeutic Target to a Plethora of Options.

    PubMed

    Rodrigues, Daniela; Longatto-Filho, Adhemar; Martins, Sandra F

    2016-01-01

    Colorectal cancer (CRC) is one of the most frequent cancers and is a leading cause of cancer death worldwide. Treatments used for CRC may include some combination of surgery, radiation therapy, chemotherapy, and targeted therapy. The current standard drugs used in chemotherapy are 5-fluorouracil and leucovorin in combination with irinotecan and/or oxaliplatin. Most recently, biologic agents have been proven to have therapeutic benefits in metastatic CRC alone or in association with standard chemotherapy. However, patients present different treatment responses, in terms of efficacy and toxicity; therefore, it is important to identify biological markers that can predict the response to therapy and help select patients that would benefit from specific regimens. In this paper, authors review CRC genetic markers that could be useful in predicting the sensitivity/resistance to chemotherapy. PMID:27563673

  14. Therapeutic options for acute cough due to upper respiratory infections in children.

    PubMed

    Paul, Ian M

    2012-02-01

    Cough due to upper respiratory tract infections (URIs) is one of the most frequent complaints encountered by pediatric health-care providers, and one of the most disruptive symptoms for children and families. Despite the frequency of URIs, there is limited evidence to support the few therapeutic agents currently available in the United States (US) to treat acute cough due to URI. Published, well-designed, contemporary research supporting the efficacy of narcotics (codeine, hydrocodone) and US Food and Drug Administration (FDA)-approved over-the-counter (OTC) oral antitussives and expectorants (dextromethorphan, diphenhydramine, chlophedianol, and guaifenesin) is absent for URI-associated pediatric cough. Alternatively, honey and topically applied vapor rubs may be effective antitussives. PMID:21892785

  15. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors.

    PubMed

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-05-01

    Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE(-/-)) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE(-/-) mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  16. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors

    PubMed Central

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-01-01

    ABSTRACT Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE−/−) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE−/− mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  17. New Therapeutic Option for Drop Foot with the ActiGait Peroneal Nerve Stimulator--a Technical Note.

    PubMed

    Martin, K Daniel; Polanski, Witold; Schackert, Gabriele; Sobottka, Stephan B

    2015-12-01

    A drop foot occurs in up to 20% of stroke patients and leads to an increased risk of falls. Until recently, only a foot orthosis or surface stimulation was able to improve the gait of these patients. Recent studies have shown that direct peroneal nerve stimulation with an implantable 4-channel peroneal nerve stimulator (ActiGait) allows independent electrode adjustment and leads to better functional results and an improved quality of life. The application of this therapeutic option is restricted to patients with a drop foot attributable to a lesion of the first motor neuron caused by stroke, multiple sclerosis, or tumors. In this paper, we present the first technical note with possible pitfalls of the surgical procedure and the perioperative care after implantation of ActiGait drop foot stimulators in 50 patients. PMID:26164191

  18. [Vitamin D and Alzheimer's disease: from an intriguing idea to a therapeutic option].

    PubMed

    Annweiler, Cédric

    2014-01-01

    Beyond the classically described regulation of calcium and bone metabolism, vitamin D is a neurosteroid hormone essential to neurophysiological function (regulation of neurotransmitters and neurotrophins) with anti-inflammatory and antioxidant neuroprotective action. In contrast, hypovitaminosis D, which is extremely frequent in the elderly, may result in neurological dysfunction and may explain part of the cognitive disorders in this population. Epidemiology is consistent with this notion and has repeatedly shown an association between hypovitaminosis D and cognitive decline, either in the general population or in Alzheimer's patients. Preliminary intervention trials confirm the causal relationship and quantify the cognitive effect of vitamin D supplementation in the elderly. This raises prospects for primary/secondary prevention of cognitive decline by exogenous supplies of vitamin D. In particular, although current anti-dementia drugs are only symptomatic, future treatment options could rely on drug combinations preventing several neurodegenerative mechanisms at once. As such, vitamin D enhances the efficacy of memantine in terms of neuronal protection and prevention of cognitive decline in Alzheimer's disease. PMID:24948022

  19. Therapeutic potential of chemokine signal inhibition for metastatic breast cancer

    PubMed Central

    Kitamura, Takanori; Pollard, Jeffrey W.

    2015-01-01

    Metastatic breast cancer is incurable by current therapies including chemotherapy and immunotherapy. Accumulating evidence indicates that tumor-infiltrating macrophages promote establishment of the lethal metastatic foci and contribute to therapeutic resistance. Recent studies suggest that the accumulation of these macrophages is regulated by a chemokine network established in the tumor microenvironment. In this perspective paper, we elaborate on the chemokine signals that can attract monocytes/macrophages to the site of metastasis, and discuss whether inhibition of these chemokine signals can represent a new therapeutic strategy for metastatic breast cancer. PMID:26275794

  20. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration

    PubMed Central

    Chen, Yuanwei; Yu, Yongchun; Chen, Lin; Ye, Lanfeng; Cui, Junhui; Sun, Quan; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-01-01

    Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration. PMID:26136785

  1. Therapeutic Options and Multifaceted Treatment Paradigms In Metastatic Castrate Resistant Prostate Cancer

    PubMed Central

    Vaishampayan, Ulka

    2014-01-01

    Purpose of Review The field of prostate cancer therapeutics has undergone a rapid and dramatic change in the last few years. Multiple agents with very distinct mechanisms of actions and unique toxicities and efficacies have become available for clinical use. The focus of this review is to give a summary of clinical perspectives of the indications, including pros and cons of the currently approved regimens. The next generation of novel targets and agents are also highlighted. Recent Findings Addition of docetaxel based chemotherapy to conventional androgen suppression therapy in hormone sensitive advanced prostate cancer demonstrated overall survival benefit in recently released results of ECOG 3805. In castrate resistant metastatic disease, development of novel immunotherapy (Sipuleucel T), chemotherapy (docetaxel and cabazitaxel), radiation (alpharadin) and hormone therapy (abiraterone and enzalutamide) agents has created a range of choices for treatment, palliation and improved life expectancy. Summary A paradigm shift has occurred in the management of advanced prostate cancer, with multiple novel agents addressing distinct pathways, and demonstrating powerful efficacy. The judicious use of the available agents, with finesse of sequencing, and concomitant palliative care has prolonged survival and made living with the disease more reasonable and tolerable. PMID:24626129

  2. Therapeutic management of fetal anemia: review of standard practice and alternative treatment options.

    PubMed

    Papantoniou, Nikos; Sifakis, Stavros; Antsaklis, Aris

    2013-01-01

    Fetal anemia, mainly due to red cell alloimmunization, is still a significant cause of fetal and neonatal mortality and morbidity. The focus of current clinical research has shifted from an invasive approach to non-invasive management and treatment of affected pregnancies, and the progress in this field is associated with a major improvement in perinatal outcome. During the last 50 years, intrauterine red cells transfusion (IUT), fi rst via the intraperitoneal route and later directly to fetal circulation, is the standard practice in most centers, with survival rates that exceed 90 % , particularly if anemia is diagnosed early and treated in a timely manner. In addition, plasmapheresis and intravenous administration of highdose immunoglobulin have been implicated in the treatment of pregnancies complicated with early-onset severe red cell alloimmunization, alone or in combination with IUTs before the 20(th) week of pregnancy, but there are still issues to be clarified further. This review article aims to provide an overview of the current standard therapeutic management and alternative treatment modalities in pregnancies complicated by fetal anemia. PMID:23093258

  3. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options.

    PubMed

    Uttara, Bayani; Singh, Ajay V; Zamboni, Paolo; Mahajan, R T

    2009-03-01

    Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer's disease, Parkinson's disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario. PMID:19721819

  4. [Lower urinary tract obstruction (LUTO)--clinical picture, prenatal diagnostics and therapeutic options].

    PubMed

    Bildau, J; Enzensberger, C; Degenhardt, J; Kawecki, A; Tenzer, A; Kohl, T; Stressig, R; Ritgen, J; Utsch, B; Axt-Fliedner, R

    2014-02-01

    The aetiology of urinary tract obstructions (LUTO) is heterogeneous. The most common entities are isolated posterior urethral valves or urethral atresia in male foetuses. In female foetuses LUTO is frequently a part of complex malformations. The natural history of LUTO is characterised by high morbidity and mortality due to the development of severe pulmonary hypoplasia caused by oligo- or anhydramnios affecting the cannalicular phase (16-24 weeks of gestation) of pulmonary development. The degree of renal damage is variable and ranges from mild renal impairment in infancy to end-stage renal insufficiency, necessitating dialysis and transplantation. Foetal interventions in order to bypass the obstruction are biologically plausible and technically feasible. Vesico-amniotic shunting as well as (currently less frequent) foetoscopic cystoscopy and laser ablation of posterior urethral valves are minimally invasive treatment options. Previous reports indicate that prenatal therapy is suitable to reduce perinatal mortality but does not improve postnatal renal function. Selection of foetuses who may profit from prenatal intervention is aggravated by the lack of reliable prognostic criteria for the prediction of postnatal renal function in both ultrasound and foetal urine analysis. Furthermore, there is no randomised trial available at the time of writing. Because of a relevant complication rate and still no clear evidence for foetal benefit, interventions should be performed in specialised centres. Further studies are necessary to improve case selection of affected foetuses and to evaluate the impact of interventions in earlier gestational weeks. The data from the PLUTO trial (percutaneous shunting in lower urinary tract obstruction) conducted by the University of Birmingham may help to answer these questions. In the meantime selection of foetuses for prenatal intervention puts high requirements on interdisciplinary counselling in every case. A general treatment algorithm

  5. [Nasal Highflow (NHF): A New Therapeutic Option for the Treatment of Respiratory Failure].

    PubMed

    Bräunlich, J; Nilius, G

    2016-01-01

    The therapy of choice in hypoxemic respiratory failure (type 1) is the application of supplemental oxygen at flow rates of 1 to 15 l/min via nasal prongs or mask. Non-invasive or invasive positive pressure ventilation will be initiated when the oxygen therapy effects are not sufficient or if hypercapnic respiratory failure (type 2) is the underlying problem. Recently, an alternative therapy option is available, from the pathophysiology it can be classified between oxygen therapy and positive pressure ventilation. The therapy called Nasal High Flow (NHF) is based on the nasal application of a heated and humidified air oxygen mixture with a flow range of up to 60 l/min. The precise pathophysiological principles of NHF are only partly understood, yet various aspects are well studied already: it is possible to deliver high oxygen concentrations, airway dryness can be avoided, dead space ventilation reduced and clearance of nasal dead space is achieved. Additionally, an end expiratory positive pressure is built up, which helps to prevent airway collapse, thus resulting in an improvement of respiratory efficiency and reduction of breathing work. Current studies demonstrate improvement in gas exchange and reduction of reintubation rate when applying the NHF treatment in acute respiratory failure. Thus the NHF therapy attracts attention in intensive care medicine. The application in other fields like chronic respiratory insufficiency is less well clarified. The objectives of this review are to present the pathophysiological effects and mechanisms of NHF, as far as understood, and to give an overview over the current state of relevant studies. PMID:26789432

  6. Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients

    PubMed Central

    Skotte, Niels H.; Southwell, Amber L.; Østergaard, Michael E.; Carroll, Jeffrey B.; Warby, Simon C.; Doty, Crystal N.; Petoukhov, Eugenia; Vaid, Kuljeet; Kordasiewicz, Holly; Watt, Andrew T.; Freier, Susan M.; Hung, Gene; Seth, Punit P.; Bennett, C. Frank; Swayze, Eric E.; Hayden, Michael R.

    2014-01-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder. PMID:25207939

  7. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options

    PubMed Central

    Uttara, Bayani; Singh, Ajay V.; Zamboni, Paolo; Mahajan, R.T

    2009-01-01

    Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer’s disease, Parkinson’s disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario. PMID:19721819

  8. Mycoplasma genitalium infection: current treatment options, therapeutic failure, and resistance-associated mutations.

    PubMed

    Couldwell, Deborah L; Lewis, David A

    2015-01-01

    determine the optimal therapeutic dosing schedules for both agents to effect clinical cure and minimize the risk of emergent antimicrobial resistance. Continual inappropriate M. genitalium treatments will likely lead to untreatable infections in the future. PMID:26060411

  9. [Cell-based therapies - an innovative therapeutic option in ophthalmology: Treating corneal diseases with stem cells].

    PubMed

    Bakker, Ann-Christin; Langer, Barbara

    2015-11-01

    Pathological changes and disorders of the cornea are a major cause of severe visual impairment and blindness. Replacement of a pathologically altered cornea with healthy corneal tissue from the eye of a suitable donor is among the most common and successful transplantation procedures in medicine. In Germany, approximately 5000-6000 corneal transplantations are performed each year, but the total demand per year is estimated to be twice as high. With a success rate of 90%, the outcome of cornea transplantation is very favourable. However, long-term maintenance and regeneration of a healthy new cornea requires tissue-specific corneal stem cells residing at the basal layer of the limbus, which is the annular transition zone between the cornea and sclera. When this important limbal stem cell population is destroyed or dysfunctional, a pathological condition known as limbal stem cell deficiency (LSCD) manifests. Limbal stem cell deficiency describes conditions associated with impaired corneal wound healing and regeneration. In this situation, transplantation of healthy limbal stem cells is the only curative treatment approach for restoration of an intact and functional ocular surface. To date, treatment of LSCD presents a great challenge for ophthalmologists. However, innovative, cell-therapeutic approaches may open new, promising treatment perspectives. In February 2015, the European Commission granted marketing authorization to the first stem cell-based treatment in the European Union. The product named Holoclar® is an advanced therapy medicinal product (ATMP) for the treatment of moderate to severe LSCD due to physical and chemical burns in adults. Further cell-based treatment approaches are in clinical development. PMID:26459569

  10. Mycoplasma genitalium infection: current treatment options, therapeutic failure, and resistance-associated mutations

    PubMed Central

    Couldwell, Deborah L; Lewis, David A

    2015-01-01

    determine the optimal therapeutic dosing schedules for both agents to effect clinical cure and minimize the risk of emergent antimicrobial resistance. Continual inappropriate M. genitalium treatments will likely lead to untreatable infections in the future. PMID:26060411

  11. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma

    PubMed Central

    Zhang, Shirong; Liang, Xiaodong; Zheng, Xiaoliang; Huang, Haixiu; Chen, Xufeng; Wu, Kan; Wang, Bing; Ma, Shenglin

    2014-01-01

    Glyoxalase 1 (Glo1) gene aberrations is associated with tumorigenesis and progression in numerous cancers. In this study, we explored the role of Glo1 genetic amplification and expression in Chinese patients with hepatocellular carcinoma (HCC), and Glo1 genetic amplification as potential therapeutic target for HCC. We used fluorescence in situ hybridization (FISH) analysis and qRT-PCR to examine Glo1 genetic aberrations and Glo1 mRNA expression in paired tumor samples obtained from HCC patients. Glo1 genetic amplification was identified in a subset of HCC patient (6%, 3/50), and up-regulation of Glo1 expression was found in 48% (24/50) of tumor tissues compared with adjacent non-tumorous tissues. Statistic analysis showed that Glo1-upregulation significantly correlated with high serum level of alpha-fetoprotein (AFP). Interfering Glo1 expression with shRNA knocking-down led to significant inhibition of cell growth and induced apoptosis in primarily cultured HCC cells carrying genetic amplified Glo1 gene, while no inhibitory effects on cell proliferation were observed in HCC cells with normal copies of Glo1 gene. Glo1 knockdown also inhibited tumor growth and induced apoptosis in xenograft tumors established from primarily cultured HCC cells with Glo1 gene amplification. In addition, Glo1 knocking-down with shRNA interfering caused cellular accumulation of methylglyoxal, a Glo1 cytotoxic substrate. Our data suggested Glo1 pathway activation is required for cell proliferation and cell survival of HCC cells carrying Glo1 genetic amplification. Intervention of Glo1 activation could be a potential therapeutic option for patients with HCC carrying Glo1 gene amplification. PMID:24966916

  12. Stratification and therapeutic potential of PML in metastatic breast cancer

    PubMed Central

    Martín-Martín, Natalia; Piva, Marco; Urosevic, Jelena; Aldaz, Paula; Sutherland, James D.; Fernández-Ruiz, Sonia; Arreal, Leire; Torrano, Verónica; Cortazar, Ana R.; Planet, Evarist; Guiu, Marc; Radosevic-Robin, Nina; Garcia, Stephane; Macías, Iratxe; Salvador, Fernando; Domenici, Giacomo; Rueda, Oscar M.; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Zúñiga-García, Patricia; Caro-Maldonado, Alfredo; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Varela-Rey, Marta; Martínez-Chantar, Maria Luz; Anguita, Juan; Ibrahim, Yasir H.; Scaltriti, Maurizio; Lawrie, Charles H.; Aransay, Ana M.; Iovanna, Juan L.; Baselga, Jose; Caldas, Carlos; Barrio, Rosa; Serra, Violeta; dM Vivanco, Maria; Matheu, Ander; Gomis, Roger R.; Carracedo, Arkaitz

    2016-01-01

    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification. PMID:27553708

  13. Stratification and therapeutic potential of PML in metastatic breast cancer.

    PubMed

    Martín-Martín, Natalia; Piva, Marco; Urosevic, Jelena; Aldaz, Paula; Sutherland, James D; Fernández-Ruiz, Sonia; Arreal, Leire; Torrano, Verónica; Cortazar, Ana R; Planet, Evarist; Guiu, Marc; Radosevic-Robin, Nina; Garcia, Stephane; Macías, Iratxe; Salvador, Fernando; Domenici, Giacomo; Rueda, Oscar M; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Zúñiga-García, Patricia; Caro-Maldonado, Alfredo; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Varela-Rey, Marta; Martínez-Chantar, Maria Luz; Anguita, Juan; Ibrahim, Yasir H; Scaltriti, Maurizio; Lawrie, Charles H; Aransay, Ana M; Iovanna, Juan L; Baselga, Jose; Caldas, Carlos; Barrio, Rosa; Serra, Violeta; Vivanco, Maria dM; Matheu, Ander; Gomis, Roger R; Carracedo, Arkaitz

    2016-01-01

    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification. PMID:27553708

  14. Asparagus racemosus: a review on its phytochemical and therapeutic potential.

    PubMed

    Singh, Ram

    2016-09-01

    Asparagus racemosus (Willd.) is a widely found medicinal plant in tropical and subtropical parts of India. The therapeutic applications of this plant have been reported in Indian and British Pharmacopoeias and in traditional system of medicine, such as Ayurveda, Unani and Siddha. The crude, semi-purified and purified extracts obtained from different parts of this plant have been useful in therapeutic applications. Numerous bioactive phytochemicals mostly saponins and flavonoids have been isolated and identified from this plant which are responsible alone or in combination for various pharmacological activities. This review aims to give a comprehensive overview of traditional applications, current knowledge on the phytochemistry, pharmacology and overuse of A. racemosus. PMID:26463825

  15. Therapeutic potential of vitamin D-binding protein.

    PubMed

    Gomme, Peter T; Bertolini, Joseph

    2004-07-01

    Vitamin D-binding protein (DBP) is a multi-functional plasma protein with many important functions. These include transport of vitamin D metabolites, control of bone development, binding of fatty acids, sequestration of actin and a range of less-defined roles in modulating immune and inflammatory responses. Exploitation of the unique properties of DBP could enable the development of important therapeutic agents for the treatment of a variety of diseases. PMID:15245906

  16. Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke

    PubMed Central

    Hayakawa, Kazuhide; Mishima, Kenichi; Fujiwara, Michihiro

    2010-01-01

    Cannabis contains the psychoactive component delta9-tetrahydrocannabinol (delta9-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol. It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury. Additionally, delta9-THC also mediates psychological effects through the activation of the CB1 receptor in the central nervous system. In addition to the CB1 receptor agonists, cannabis also contains therapeutically active components which are CB1 receptor independent. Of the CB1 receptor-independent cannabis, the most important is CBD. In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis. The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance. In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.

  17. New and emerging therapeutic options for malignant pleural mesothelioma: review of early clinical trials

    PubMed Central

    Kotova, Svetlana; Wong, Raymond M; Cameron, Robert B

    2015-01-01

    Malignant pleural mesothelioma (MPM) is a rare tumor that is challenging to control. Despite some benefit from using the multimodality-approach (surgery, combination chemotherapy and radiation), survival remains poor. However, current research produced a list of potential therapies. Here, we summarize significant new preclinical and early clinical developments in treatment of MPM, which include mesothelin specific antibody and toxin therapies, interleukin-4 (IL-4) receptor toxins, dendritic cell vaccines, immune checkpoint inhibitors, and gene-based therapies. In addition, several local modalities such as photodynamic therapy, postoperative lavage using betadine, and cryotherapy for local recurrence, have also shown to be effective for local control of disease. PMID:25670913

  18. Esophageal stent placement as a therapeutic option for iatrogenic esophageal perforation in children

    PubMed Central

    Ahmad, Alsafadi; Wong Kee Song, Louis M.; Absah, Imad

    2016-01-01

    Iatrogenic esophageal perforation (IEP) is a potentially serious adverse event of interventional endoscopy. The approach to IEP varies from surgical repair for large perforations to conservative treatment for small contained perforations. We report a case of an 18-month-old girl with congenital esophageal stenosis suffering a large esophageal perforation after a trial of stricture dilatation, which was successfully managed by the placement of fully covered stent. Hence, in selected cases, esophageal stent placement is a feasible alternative to invasive surgery in managing IEP. PMID:27144142

  19. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair. PMID:27574685

  20. MicroRNAs as potential therapeutic targets in kidney disease

    PubMed Central

    Gomez, Ivan G; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S

    2014-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD. PMID:23660218

  1. Nilotinib: a novel encouraging therapeutic option for chronic myeloid leukemia patients with imatinib resistance or intolerance.

    PubMed

    Martinelli, Giovanni; Iacobucci, Ilaria; Soverini, Simona; Palandri, Francesca; Castagnetti, Fausto; Rosti, Gianantonio; Baccarani, Michele

    2007-06-01

    Although high rates of complete hematologic and cytogenetic remission have been observed in patients with chronic phase chronic myeloid leukemia (CML) treated with imatinib, a short duration of response with eventual emergence of imatinib resistance has also been reported in a subset of CML patients. The most frequent clinically relevant mechanisms that change imatinib sensitivity in BCR-ABL-transformed cells are mutations within the Abl kinase domain, affecting several of its properties. Crystal structure analysis of the Abl-imatinib complex has proven helpful in identifying potential critical residues that hinder interactions of imatinib with mutated Abl. This has led to the development of a second generation of targeted therapies such as nilotinib and dasatinib, already in phase II clinical trials or SKI-606 and MK-0457 in phase I trials. In this review, we discuss the activity of nilotinib, developed by Novartis using a rational drug design strategy in which imatinib served as the lead compound. Preliminary studies demonstrated that nilotinib has more efficacy than imatinib in inhibiting proliferation of BCR-ABL-dependent cells, a relatively safety profile and clinical efficacy in all phases of CML. PMID:19707322

  2. Vitamin D Receptor Agonists: Suitable Candidates as Novel Therapeutic Options in Autoimmune Inflammatory Myopathy

    PubMed Central

    Crescioli, Clara

    2014-01-01

    The primary aim in the treatment of autoimmune inflammatory myopathies (IMs) is to recover muscle function. The presence of immune/inflammatory cell infiltrates within muscle tissues represents the common feature of different IM subtypes, albeit a correlation between muscular damage extent and inflammation degree is often lacking. Treatments for IMs are based on life-long immunosuppressive therapy, with the well known adverse effects; recovery is incomplete for many patients. More effective therapies, with reduced side-effects, are highly desirable. Vitamin D receptor (VDR) agonists emerge to retain pleiotropic anti-inflammatory properties, since they regulate innate and adaptive immunity by switching the immune response from proinflammatory T helper 1 (Th1) type to tolerogenic T helper 2 (Th2) type dominance. In skeletal muscle cells less hypercalcemic VDR ligands target powerful mediators of inflammation, such as TNFα and TNFα driven paths, without affecting immune or muscle cells viability, retaining the potentiality to counteract Th1 driven overreactivity established by the self-enhancing inflammatory loop between immune and skeletal muscle cells. This review summarizes those features of VDR agonists as candidates in future treatment of IM. PMID:24895631

  3. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property

    PubMed Central

    Srinivasan, Marimuthu; Sudheer, Adluri R.; Menon, Venugopal P.

    2007-01-01

    There has been considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat human diseases. They are naturally occurring substances found in plants. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants. It exhibits a wide range of therapeutic effects against various diseases like cancer, diabetes, cardiovascular and neurodegenerative. A wide spectrum of beneficial activity for human health has been advocated for this phenolic compound, at least in part, because of its strong antioxidant activity. FA, a phenolic compound is a strong membrane antioxidant and known to positively affect human health. FA is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation. It effectively scavenges superoxide anion radical and inhibits the lipid peroxidation. It possesses antioxidant property by virtue of its phenolic hydroxyl group in its structure. The hydroxy and phenoxy groups of FA donate electrons to quench the free radicals. The phenolic radical in turn forms a quinone methide intermediate, which is excreted via the bile. The past few decades have been devoted to intense research on antioxidant property of FA. So, the present review deals with the mechanism of antioxidant property of FA and its possible role in therapeutic usage against various diseases. PMID:18188410

  4. Sphingosine kinase-1--a potential therapeutic target in cancer.

    PubMed

    Cuvillier, Olivier

    2007-02-01

    Sphingolipid metabolites play critical functions in the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation and cell survival. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because it produces the prosurvival sphingosine 1-phosphate, and reduces the content of both ceramide and sphingosine, the proapoptotic sphingolipids. Sphingosine kinase-1 controls the levels of sphingolipids having opposite effects on cell survival/death, its gene was found to be of oncogenic nature, its mRNA is overexpressed in many solid tumors, its overexpression protects cells from apoptosis and its activity is decreased during anticancer treatments. Therefore, sphingosine kinase-1 appears to be a target of interest for therapeutic manipulation via its pharmacological inhibition. Strategies to kill tumor cells by increasing their ceramide and/or sphingosine content while blocking sphingosine 1-phosphate generation should have a favorable therapeutic index. PMID:17159597

  5. Contemporary management of lymph node metastases from an unknown primary to the neck: II. a review of therapeutic options.

    PubMed

    Strojan, Primož; Ferlito, Alfio; Langendijk, Johannes A; Corry, June; Woolgar, Julia A; Rinaldo, Alessandra; Silver, Carl E; Paleri, Vinidh; Fagan, Johannes J; Pellitteri, Phillip K; Haigentz, Missak; Suárez, Carlos; Robbins, K Thomas; Rodrigo, Juan P; Olsen, Kerry D; Hinni, Michael L; Werner, Jochen A; Mondin, Vanni; Kowalski, Luiz P; Devaney, Kenneth O; de Bree, Remco; Takes, Robert P; Wolf, Gregory T; Shaha, Ashok R; Genden, Eric M; Barnes, Leon

    2013-02-01

    Although uncommon, cancer of an unknown primary (CUP) metastatic to cervical lymph nodes poses a range of dilemmas relating to optimal treatment. The ideal resolution would be a properly designed prospective randomized trial, but it is unlikely that this will ever be conducted in this group of patients. Accordingly, knowledge gained from retrospective studies and experience from treating patients with known head and neck primary tumors form the basis of therapeutic strategies in CUP. This review provides a critical appraisal of various treatment approaches described in the literature. Emerging treatment options for CUP with metastases to cervical lymph nodes are discussed in view of recent innovations in the field of head and neck oncology and suitable therapeutic strategies for particular clinical scenarios are presented. For pN1 or cN1 disease without extracapsular extension (ECE), selective neck dissection or radiotherapy offer high rates of regional control. For more advanced neck disease, intensive combined treatment is required, either a combination of neck dissection and radiotherapy, or initial (chemo)radiotherapy followed by neck dissection if a complete response is not recorded on imaging. Each of these approaches seems to be equally effective. Use of extensive bilateral neck/mucosal irradiation must be weighed against toxicity, availability of close follow-up with elective neck imaging and guided fine-needle aspiration biopsy (FNAB) when appropriate, the human papillomavirus (HPV) status of the tumor, and particularly against the distribution pattern (oropharynx in the majority of cases) and the emergence rate of hidden primary lesions (<10% after comprehensive workup). The addition of systemic agents is expected to yield similar improvement in outcome as has been observed for known head and neck primary tumors. PMID:22034062

  6. Gaining Options: A Mathematics Program for Potentially Talented At-Risk Adolescent Girls

    ERIC Educational Resources Information Center

    Reid, Pamela Trotman; Roberts, Sally K.

    2006-01-01

    In response to indicators that a decline in interest in mathematics occurs among girls--particularly those from low-income and minority groups--during middle school, the GO-GIRL (Gaining Options: Girls Investigate Real Life) program was designed to help potentially talented at-risk girls. The program aimed to build mathematical confidence, skills,…

  7. Enhanced external counterpulsation--a therapeutic option for patients with chronic cardiovascular problems.

    PubMed

    Linnemeier, Georgiann

    2002-01-01

    EECP is a non-invasive outpatient treatment for cardiovascular disease refractory to medical and/or surgical therapy. It has been cleared by the Food and Drug Administration for the treatment of a variety of cardiac conditions including congestive heart failure and chronic stable angina. A course of therapy consists of 35 one-hour treatments given once or twice daily. Augmented diastolic pressure and retrograde flow improve myocardial perfusion, while systolic unloading reduces cardiac workload and oxygen requirements. As a result of this treatment, most patients experience increased time to onset of ischemia, increased exercise tolerance, a reduction in the number and severity of anginal episodes, and improved quality of life. Evidence has been presented that this effect lasts well beyond the immediate post-treatment period with some patients symptom-free for several years. Because patients principally seek medical care to live longer or feel better, heart programs need to offer their patients the latest medical advances which have the potential of improving patient survival and health status (symptoms, functioning, and quality of life). Heart programs face a challenging economic future. Increased competition makes it necessary to implement strategies for market differentiation. Those programs most attuned to what their patients define as critical to quality would be most likely to succeed. Over the past decade, there have been a growing number of patients with chronic angina who have exhausted the standard revascularization armamentarium. Because coronary artery bypass grafts occlude and restenosis occurs at angioplasty sites, many patients no longer have suitable coronary anatomy for additional procedures. Also, as the population ages, the proportion of patients with diffuse coronary disease, congestive heart failure, significant co-morbid illness, and poor functional status increases. The incapacitating effects of angina on patients' abilities to work, maintain

  8. Molecular and Therapeutic Potential and Toxicity of Valproic Acid

    PubMed Central

    Chateauvieux, Sébastien; Morceau, Franck; Dicato, Mario; Diederich, Marc

    2010-01-01

    Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Antiepileptic properties have been attributed to inhibition of Gamma Amino Butyrate (GABA) transaminobutyrate and of ion channels. VPA was recently classified among the Histone Deacetylase Inhibitors, acting directly at the level of gene transcription by inhibiting histone deacetylation and making transcription sites more accessible. VPA is a widely used drug, particularly for children suffering from epilepsy. Due to the increasing number of clinical trials involving VPA, and interesting results obtained, this molecule will be implicated in an increasing number of therapies. However side effects of VPA are substantially described in the literature whereas they are poorly discussed in articles focusing on its therapeutic use. This paper aims to give an overview of the different clinical-trials involving VPA and its side effects encountered during treatment as well as its molecular properties. PMID:20798865

  9. [Mitochondrial dynamics: a potential new therapeutic target for heart failure].

    PubMed

    Kuzmicic, Jovan; Del Campo, Andrea; López-Crisosto, Camila; Morales, Pablo E; Pennanen, Christian; Bravo-Sagua, Roberto; Hechenleitner, Jonathan; Zepeda, Ramiro; Castro, Pablo F; Verdejo, Hugo E; Parra, Valentina; Chiong, Mario; Lavandero, Sergio

    2011-10-01

    Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases. PMID:21820793

  10. The pharmacological landscape and therapeutic potential of serine hydrolases.

    PubMed

    Bachovchin, Daniel A; Cravatt, Benjamin F

    2012-01-01

    Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation. PMID:22212679

  11. The Pharmacological Landscape and Therapeutic Potential of Serine Hydrolases

    PubMed Central

    Bachovchin, Daniel A.; Cravatt, Benjamin F.

    2013-01-01

    Serine hydrolases play critical roles in many biological processes, and several are targets of approved drugs for indications such as type 2 diabetes, Alzheimer’s disease, and infectious disease. Despite this, most of the 200+ human serine hydrolases remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds under clinical investigation, and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation. PMID:22212679

  12. Bcl-2-regulated apoptosis: mechanism and therapeutic potential.

    PubMed

    Adams, Jerry M; Cory, Suzanne

    2007-10-01

    Apoptosis is essential for tissue homeostasis, particularly in the hematopoietic compartment, where its impairment can elicit neoplastic or autoimmune diseases. Whether stressed cells live or die is largely determined by interplay between opposing members of the Bcl-2 protein family. Bcl-2 and its closest homologs promote cell survival, but two other factions promote apoptosis. The BH3-only proteins sense and relay stress signals, but commitment to apoptosis requires Bax or Bak. The BH3-only proteins appear to activate Bax and Bak indirectly, by engaging and neutralizing their pro-survival relatives, which otherwise constrain Bax and Bak from permeabilizing mitochondria. The Bcl-2 family may also regulate autophagy and mitochondrial fission/fusion. Its pro-survival members are attractive therapeutic targets in cancer and perhaps autoimmunity and viral infections. PMID:17629468

  13. Hepatitis B vaccines: protective efficacy and therapeutic potential.

    PubMed

    Michel, M-L; Tiollais, P

    2010-08-01

    Worldwide, two billion people have at some time been infected by hepatitis B virus, 370 millions suffer from chronic infection and around one million die each year from HBV-related liver diseases of which liver cancer is the ultimate stage. Vaccination is the measure that is most effective in reducing the global incidence of hepatitis B and hepatitis B vaccines have now been available for over 20 years. The first hepatitis B vaccine was prepared from inactivated hepatitis B surface antigen particles purified from plasma of asymptomatic carriers of hepatitis B virus. Knowledge of the structure and genomic organization of hepatitis B virus has led to development of the first DNA recombinant vaccine. In preventing hepatocellular carcinoma development, hepatitis B virus vaccines are considered as the first available cancer vaccine. HBV vaccines have recently taken on a new role as therapeutic vaccines as an attempt to cure or to control hepatitis B virus infection in persistently infected individuals. PMID:20382485

  14. The Bcl-2-regulated apoptosis switch: mechanism and therapeutic potential

    PubMed Central

    Adams, Jerry M; Cory, Suzanne

    2009-01-01

    Apoptosis is essential for tissue homeostasis, particularly in the hematopoietic compartment, where its impairment can elicit neoplastic or autoimmune diseases. Whether stressed cells live or die is largely determined by interplay between opposing members of the Bcl-2 protein family. Bcl-2 and its closest homologs promote cell survival, but two other factions promote apoptosis. The BH3-only proteins sense and relay stress signals, but commitment to apoptosis requires Bax or Bak. The BH3-only proteins appear to activate Bax and Bak indirectly, by engaging and neutralizing their pro-survival relatives, which otherwise constrain Bax and Bak from permeabilizing mitochondria. The Bcl-2 family may also regulate autophagy and mitochondrial fission/fusion. Its pro-survival members are attractive therapeutic targets in cancer and perhaps autoimmunity and viral infections. PMID:17629468

  15. Apoptotic cell clearance: basic biology and therapeutic potential

    PubMed Central

    Poon, Ivan K. H.; Lucas, Christopher D.

    2014-01-01

    Prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with a variety of inflammatory diseases and autoimmunity. Conversely, under certain conditions such as killing tumour cells by specific cell death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and anti-tumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies. PMID:24481336

  16. Yoga school of thought and psychiatry: Therapeutic potential.

    PubMed

    Rao, Naren P; Varambally, Shivarama; Gangadhar, Bangalore N

    2013-01-01

    Yoga is a traditional life-style practice used for spiritual reasons. However, the physical components like the asanas and pranayaamas have demonstrated physiological and therapeutic effects. There is evidence for Yoga as being a potent antidepressant that matches with drugs. In depressive disorder, yoga 'corrects' an underlying cognitive physiology. In schizophrenia patients, yoga has benefits as an add-on intervention in pharmacologically stabilized subjects. The effects are particularly notable on negative symptoms. Yoga also helps to correct social cognition. Yoga can be introduced early in the treatment of psychosis with some benefits. Elevation of oxytocin may be a mechanism of yoga effects in schizophrenia. Certain components of yoga have demonstrated neurobiological effects similar to those of vagal stimulation, indicating this (indirect or autogenous vagal stimulation) as a possible mechanism of its action. It is time, psychiatrists exploited the benefits if yoga for a comprehensive care in their patients. PMID:23858245

  17. Potential role of bromelain in clinical and therapeutic applications

    PubMed Central

    Rathnavelu, Vidhya; Alitheen, Noorjahan Banu; Sohila, Subramaniam; Kanagesan, Samikannu; Ramesh, Rajendran

    2016-01-01

    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain. PMID:27602208

  18. Addiction and the potential for therapeutic drug development.

    PubMed

    Janssen, P A

    1994-01-01

    Therapeutic drug development in alcoholism could be targeted at any of the following: direct antagonism, substitution, treatment of abstinence, enhancement of aversion, modification of biodisposition, or craving. Ritanserin is a potent, centrally acting, highly selective 5-HT1C/2 antagonist which, in addition to having a sleep-regulating and anti-depression/anti-axiety effect, displays a unique pharmacological action in several animal paradigms of substance abuse which assess drug-craving. In fact, the latter pharmacological action was demonstrated after initial clinical observations suggested an effect of ritanserin in the chronic withdrawal phase after detoxification from alcohol in patients. The results of a recent double-blind, placebo-controlled, trial indicated that ritanserin did not induce aversion to drink alcohol in normal volunteers who display social drinking, but are not suffering alcohol dependence. Currently, a full clinical development program of ritanserin in cocaine and alcohol abuse is ongoing. Three major double-blind, placebo-controlled trials in alcohol dependent patients are in progress. Patients of different severity levels, ranging from mild to very severe, are studied. The dosages of ritanserin tested (2.5 mg, 5 mg, and 10 mg o.d.) are known to be well tolerated and safe. Two trials aim for relapse prevention--clinically defined in one, biochemically defined in the other-, and one trial has improved (reduced) drinking behaviour as a therapeutic goal. This program, which involves close to 900 alcohol-dependent patients, is well under way, and is still picking up momentum. PMID:8032167

  19. Pegylated arginase I: a potential therapeutic approach in T-ALL

    PubMed Central

    Hernandez, Claudia P.; Morrow, Kevin; Lopez-Barcons, Lluis A.; Zabaleta, Jovanny; Sierra, Rosa; Velasco, Cruz; Cole, John

    2010-01-01

    Adult patients with acute lymphoblastic T cell leukemia (T-ALL) have a very poor prognosis and few effective therapeutic options. Therefore, novel therapies that increase the efficacy of the treatments and that prolong T-ALL patient survival are needed. Malignant T cells require high concentrations of nutrients to sustain their increased rate of proliferation. In this study, we determined whether L-Arginine depletion by the pegylated form of the L-Arginine-metabolizing enzyme arginase I (peg-Arg I) impairs the proliferation of malignant T cells. Our results show that peg-Arg I depleted L-Arginine levels in vitro and in vivo. In addition, treatment of malignant T-cell lines with peg-Arg I significantly impaired their proliferation, which correlated with a decreased progression into the cell cycle, followed by the induction of apoptosis. Furthermore, peg-Arg I impaired the expression of cyclin D3, a fundamental protein in T-ALL proliferation, through a global arrest in protein synthesis. Injection of peg-Arg I plus chemotherapy agent Cytarabine prolonged survival in mice bearing T-ALL tumors. This antitumoral effect correlated with an inhibition of T-ALL proliferation in vivo, a decreased expression of cyclin D3, and T-ALL apoptosis. The results suggest the potential benefit of L-Arginine depletion by peg-Arg I in the treatment of T-cell malignancies. PMID:20407034

  20. Identification of anaplastic lymphoma kinase as a potential therapeutic target in Basal Cell Carcinoma

    PubMed Central

    Wang, Claire Q.F.; Suárez-Fariñas, Mayte; Gonzalez, Juana; Shah, Kejal R.; Chen, Jie; Coats, Israel; Felsen, Diane; Carucci, John A.; Krueger, James G.

    2013-01-01

    The pathogenesis of BCC is associated with sonic hedgehog (SHH) signaling. Vismodegib, a smoothened inhibitor that targets this pathway, is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. We studied gene expression profiling of BCC tumour tissues coupled with laser capture microdissection to identify tumour specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. We found a >250 fold increase (FDR<10−4) of the oncogene, anaplastic lymphoma kinase (ALK) as well as its ligands, pleiotrophin and midkine in BCC compared to microdissected normal epidermis. qRT-PCR confirmed increased expression of ALK (p<0.05). Stronger expression of phosphorylated ALK in BCC tumour nests than normal skin was observed by immunohistochemistry. Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 (members of SHH-pathway) mRNA by approximately 60% and 20%, respectively (p<0.01). Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promote keratinocyte proliferation. Hence, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients. PMID:24163262

  1. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects

    PubMed Central

    Vassar, Robert; Kuhn, Peer-Hendrik; Haass, Christian; Kennedy, Matthew E.; Rajendran, Lawrence; Wong, Philip C.; Lichtenthaler, Stefan F.

    2014-01-01

    The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer’s disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies usingBACE1-andBACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer’s disease. PMID:24646365

  2. Kinesin family members KIF11 and KIF23 as potential therapeutic targets in malignant pleural mesothelioma.

    PubMed

    Kato, Tatsuya; Lee, Daiyoon; Wu, Licun; Patel, Priya; Young, Ahn Jin; Wada, Hironobu; Hu, Hsin-Pei; Ujiie, Hideki; Kaji, Mitsuhito; Kano, Satoshi; Matsuge, Shinichi; Domen, Hiromitsu; Kaga, Kichizo; Matsui, Yoshiro; Kanno, Hiromi; Hatanaka, Yutaka; Hatanaka, Kanako C; Matsuno, Yoshihiro; de Perrot, Marc; Yasufuku, Kazuhiro

    2016-08-01

    Malignant pleural mesothelioma (MPM) is a rare and aggressive form of cancer commonly associated with asbestos exposure that stems from the thoracic mesothelium with high mortality rate. Currently, treatment options for MPM are limited, and new molecular targets for treatments are urgently needed. Using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and an RNA interference-based screening, we screened two kinesin family members as potential therapeutic targets for MPM. Following in vitro investigation of the target silencing effects on MPM cells, a total of 53 MPMs were analyzed immunohistochemically with tissue microarray. KIF11 and KIF23 transcripts were found to be overexpressed in the majority of clinical MPM samples as well as human MPM cell lines as determined by quantitative RT-PCR. Gene knockdown in MPM cell lines identified growth inhibition following knockdown of KIF11 and KIF23. High expression of KIF11 (KIF11-H) and KIF23 (KIF23-H) were found in 43.4 and 50.9% of all the MPM cases, respectively. Patients who received curative resection with tumors displaying KIF23-H showed shorter overall survival (P=0.0194). These results provide that inhibition of KIF11 and KIF23 may hold promise for treatment of MPMs, raising the possibility that kinesin-based drug targets may be developed in the future. PMID:27279560

  3. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring

    PubMed Central

    Rees, Peter Adam; Greaves, Nicholas Stuart; Baguneid, Mohamed; Bayat, Ardeshir

    2015-01-01

    Significance: Cutaneous scarring is an almost inevitable end point of adult human wound healing. It is associated with significant morbidity, both physical and psychological. Pathological scarring, including hypertrophic and keloid scars, can be particularly debilitating. Manipulation of the chemokine system may lead to effective therapies for problematic lesions. Recent Advances: Rapid advancement in the understanding of chemokines and their receptors has led to exciting developments in the world of therapeutics. Modulation of their function has led to clinically effective treatments for conditions as diverse as human immunodeficiency virus and inflammatory bowel disease. Potential methods of targeting chemokines include monoclonal antibodies, small-molecule antagonists, interference with glycosaminoglycan binding and the use of synthetic truncated chemokines. Early work has shown promising results on scar development and appearance when the chemokine system is manipulated. Critical Issues: Chemokines are implicated in all stages of wound healing leading to the development of a cutaneous scar. An understanding of entirely regenerative wound healing in the developing fetus and how the expression of chemokines and their receptors change during the transition to the adult phenotype is central to addressing pathological scarring in adults. Future Directions: As our understanding of chemokine/receptor interactions and scar formation evolves it has become apparent that effective therapies will need to mirror the complexities in these diverse biological processes. It is likely that sophisticated treatments that sequentially influence multiple ligand/receptor interactions throughout all stages of wound healing will be required to deliver viable treatment options. PMID:26543682

  4. Percutaneous transluminal angioplasty and stenting of coeliac artery stenosis in the treatment of mesenteric angina: a case report and review of therapeutic options.

    PubMed

    Mohammed, A; Teo, N B; Pickford, I R; Moss, J G

    2000-12-01

    We report the case of a 72-year-old gentleman with mesenteric angina who was successfully treated with stenting of a coeliac artery stenosis using a Palmaz stent, and review the therapeutic options in the management of mesenteric angina. PMID:11153434

  5. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  6. COGNITION AS A THERAPEUTIC TARGET IN LATE-LIFE DEPRESSION: POTENTIAL FOR NICOTINIC THERAPEUTICS

    PubMed Central

    Zurkovsky, Lilia; Taylor, Warren D.; Newhouse, Paul A.

    2013-01-01

    Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs and parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging. PMID:23933385

  7. Adult mesenchymal stem cells: differentiation potential and therapeutic applications.

    PubMed

    Jackson, L; Jones, D R; Scotting, P; Sottile, V

    2007-01-01

    Adult mesenchymal stem cells (MSCs) are a population of multipotent cells found primarily in the bone marrow. They have long been known to be capable of osteogenic, adipogenic and chondrogenic differentiation and are currently the subject of a number of trials to assess their potential use in the clinic. Recently, the plasticity of these cells has come under close scrutiny as it has been suggested that they may have a differentiation potential beyond the mesenchymal lineage. Myogenic and in particular cardiomyogenic potential has been shown in vitro. MSCs have also been shown to have the ability to form neural cells both in vitro and in vivo, although the molecular mechanisms underlying these apparent transdifferentiation events are yet to be elucidated. We describe here the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for future applications in regenerative medicine. PMID:17495381

  8. Diabetic gastroparesis: Therapeutic options.

    PubMed

    Alam, Uazman; Asghar, Omar; Malik, Rayaz Ahmed

    2010-08-01

    Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patient's quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG. PMID:22127672

  9. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors.

    PubMed

    Bertrand, Daniel; Lee, Chih-Hung L; Flood, Dorothy; Marger, Fabrice; Donnelly-Roberts, Diana

    2015-10-01

    Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states. PMID:26419447

  10. Therapeutic Potential of Traditional Chinese Medicine on Inflammatory Diseases

    PubMed Central

    Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting

    2013-01-01

    Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation–induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170

  11. [Mechanisms and potential of the therapeutic stimulation of arteriogenesis].

    PubMed

    Schirmer, S H; van Royen, N; Laufs, U; Böhm, M

    2009-02-01

    The stimulation of collateral artery growth (arteriogenesis) is a promising alternative approach to non-invasively treat arterial obstructive disease, such as coronary, peripheral or cerebral artery disease. Patients unable to undergo conventional revascularization strategies may benefit from adaptive arteriogenesis. Underlying mechanisms are experimentally validated and include an increase in shear stress after obstruction or occlusion of a major artery; monocyte adhesion, transmigration and perivascular accumulation, secretion of growth factors; and smooth muscle and endothelial cell proliferation and growth of pre-existent collateral arteries. Therapeutic stimulation of arteriogenesis with cytokines has been successfully performed in experimental models. Translation into clinical practice, however, has hitherto been problematic. Reasons for this include differences between the healthy laboratory animal and an often severely diseased patient, possible harmful effects of pro-arteriogenic therapies and unsuitable clinical endpoints for the detection of collateral artery growth. Recent investigations of human arteriogenesis demonstrate significant inter-individual differences and point towards the importance of anti-arteriogenic mechanisms in patients with impaired adaptive arteriogenesis and high cardiovascular risk factors. PMID:19197812

  12. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  13. Cardiovascular disorders in anorexia nervosa and potential therapeutic targets.

    PubMed

    Di Cola, Giovanni; Jacoangeli, Francesca; Jacoangeli, Fabrizio; Lombardo, Mauro; Iellamo, Ferdinando

    2014-10-01

    Anorexia nervosa (AN) is an eating disorder in which a distorted self-perception of body image and an excessive fear of gaining weight result in extreme restrictions in eating habits. AN may be divided into two types: a "binge-eating/purging type" during which the individual regularly engages in overeating and then purging behavior, and a "restricting type", in which she does not. AN is a serious medical problem in young people in Western societies. It is widely reported that patients with AN exhibit an enhanced mortality rate as compared with age-matched healthy subjects, which has been mainly ascribed to cardiac complications. At least one-third of all deaths in patients with anorexia nervosa are estimated to be due to cardiac causes, mainly sudden death. Cardiovascular complications of AN can be present in up to 80% of cases, and among them alterations in cardiac electrical activity, structure and hemodynamics have been reported as causes of morbidity and mortality. The objective of this brief review is to summarize current knowledge on the main cardiovascular complications of AN, their underlying mechanisms and the possible therapeutic approaches. PMID:25056404

  14. MPHOSPH1: a potential therapeutic target for hepatocellular carcinoma.

    PubMed

    Liu, Xinran; Zhou, Yafan; Liu, Xinyuan; Peng, Anlin; Gong, Hao; Huang, Lizi; Ji, Kaige; Petersen, Robert B; Zheng, Ling; Huang, Kun

    2014-11-15

    MPHOSPH1 is a critical kinesin protein that functions in cytokinesis. Here, we show that MPHOSPH1 is overexpressed in hepatocellular carcinoma (HCC) cells, where it is essential for proliferation. Attenuating MPHOSPH1 expression with a tumor-selective shRNA-expressing adenovirus (Ad-shMPP1) was sufficient to arrest HCC cell proliferation in a manner associated with an accumulation of multinucleated polyploid cells, induction of postmitotic apoptosis, and increased sensitivity to taxol cytotoxicity. Mechanistic investigations showed that attenuation of MPHOSPH1 stabilized p53, blocked STAT3 phosphorylation, and prolonged mitotic arrest. In a mouse subcutaneous xenograft model of HCC, tumoral injection of Ad-shMPP1 inhibited MPHOSPH1 expression and tumor growth in a manner correlated with induction of apoptosis. Combining Ad-shMPP1 injection with taxol administration enhanced antitumor efficacy relative to taxol alone. Furthermore, Ad-shMPP1 tail vein injection suppressed formation of orthotopic liver nodules and prevented hepatic dysfunction. Taken together, our results identify MPHOSPH1 as an oncogenic driver and candidate therapeutic target in HCC. PMID:25269478

  15. Purinergic receptors as potential therapeutic targets in Alzheimer's disease.

    PubMed

    Woods, Lucas T; Ajit, Deepa; Camden, Jean M; Erb, Laurie; Weisman, Gary A

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26519903

  16. Autophagy and mitophagy in the myocardium: therapeutic potential and concerns.

    PubMed

    Jimenez, Rebecca E; Kubli, Dieter A; Gustafsson, Åsa B

    2014-04-01

    The autophagic-lysosomal degradation pathway is critical for cardiac homeostasis, and defects in this pathway are associated with development of cardiomyopathy. Autophagy is responsible for the normal turnover of organelles and long-lived proteins. Autophagy is also rapidly up-regulated in response to stress, where it rapidly clears dysfunctional organelles and cytotoxic protein aggregates in the cell. Autophagy is also important in clearing dysfunctional mitochondria before they can cause harm to the cell. This quality control mechanism is particularly important in cardiac myocytes, which contain a very high volume of mitochondria. The degradation of proteins and organelles also generates free fatty acids and amino acids, which help maintain energy levels in myocytes during stress conditions. Increases in autophagy have been observed in various cardiovascular diseases, but a major question that remains to be answered is whether enhanced autophagy is an adaptive or maladaptive response to stress. This review discusses the regulation and role of autophagy in the myocardium under baseline conditions and in various aetiologies of heart disease. It also discusses whether this pathway represents a new therapeutic target to treat or prevent cardiovascular disease and the concerns associated with modulating autophagy. PMID:24148024

  17. Therapeutic potential of traditional chinese medicine on inflammatory diseases.

    PubMed

    Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting

    2013-07-01

    Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation-induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170

  18. Helminth products as a potential therapeutic strategy for inflammatory diseases.

    PubMed

    Soares, Maria Fernanda de Macedo; Araújo, Claudia A

    2008-06-01

    Helminths secrete several molecules that can modulate the immune responses, favoring their evasion and perpetuate their survival in the host. These molecules interfere with antigen presentation, cell proliferation and activation, antibody production, cause cell death, and stimulate regulatory responses. Here, we focus on some helminth products and address their immunomodulatory effects in the host immune system and, also, we describe some anti-inflammatory properties of an Ascaris suum-derived immunomodulatory molecule, named PAS-1. This protein is a 200-kDa molecule isolated by affinity chromatography using MAIP-1 (monoclonal antibody which recognizes PAS-1), coupled to Sepharose 4B. It suppresses the inflammatory responses in murine models of delayed-type hypersensitivity, lung allergic inflammation and LPS-induced inflammation into air pouches. PAS-1 also stimulates the secretion of regulatory cytokines such as IL-10 and TGF-beta and primes IFN-gamma-secreting CD8+ and IL-10/ TGF-beta-secreting CD4+CD25+ cell clones that avoid the lung inflammation. Thus, this protein is a potent immunomodulatory component that may be used for therapeutic interventions in inflammatory diseases. PMID:18691141

  19. GEMINs: potential therapeutic targets for spinal muscular atrophy?

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2014-01-01

    The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development. PMID:25360080

  20. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    PubMed Central

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-01-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  1. Centipede venoms and their components: resources for potential therapeutic applications.

    PubMed

    Hakim, Md Abdul; Yang, Shilong; Lai, Ren

    2015-11-01

    Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components. PMID:26593947

  2. Marine Compounds with Therapeutic Potential in Gram-Negative Sepsis

    PubMed Central

    Solov’eva, Tamara; Davydova, Viktoria; Krasikova, Inna; Yermak, Irina

    2013-01-01

    This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs)). Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents. PMID:23783404

  3. The therapeutic potential of the cerebellum in schizophrenia

    PubMed Central

    Parker, Krystal L.; Narayanan, Nandakumar S.; Andreasen, Nancy C.

    2014-01-01

    The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia. PMID:25309350

  4. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics

    PubMed Central

    Mondragón, Estefanía

    2016-01-01

    Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3′ untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise. PMID:26509637

  5. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge.

    PubMed

    Đuričić, Dražen; Valpotić, Hrvoje; Samardžija, Marko

    2015-08-01

    Ozone therapy has been in use since 1896 in the USA. As a highly reactive molecule, ozone may inactivate bacteria, viruses, fungi, yeasts and protozoans, stimulate the oxygen metabolism of tissue, treat diseases, activate the immune system, and exhibit strong analgesic activity. More recently, ozone has been used in veterinary medicine, particularly in buiatrics, but still insufficiently. Medical ozone therapy has shown effectiveness as an alternative to the use of antibiotics, which are restricted to clinical use and have been withdrawn from non-clinical use as in-feed growth promoters in animal production. This review is an overview of current knowledge regarding the preventive and therapeutic effects of ozone in ruminants for the treatment of puerperal diseases and improvement in their fertility. In particular, ozone preparations have been tested in the treatment of reproductive tract lesions, urovagina and pneumomovagina, metritis, endometritis, fetal membrane retention and mastitis, as well as in the functional restoration of endometrium in dairy cows and goats. In addition, the preventive use of the intrauterine application of ozone has been assessed in order to evaluate its effectiveness in improving reproductive efficiency in dairy cows. No adverse effects were observed in cows and goats treated with ozone preparations. Moreover, there is a lot of evidence indicating the advantages of ozone preparation therapy in comparison to the application of antibiotics. However, there are certain limitations on ozone use in veterinary medicine and buiatrics, such as inactivity against intracellular microbes and selective activity against the same bacterial species, as well as the induction of tissue inflammation through inappropriate application of the preparation. PMID:26059777

  6. Therapeutic potential of PDE modulation in treating heart disease

    PubMed Central

    Knight, Walter; Yan, Chen

    2014-01-01

    Altered cyclic nucleotide-mediated signaling plays a critical role in the development of cardiovascular pathology. By degrading cAMP/cGMP, the action of cyclic nucleotide PDEs is essential for controlling cyclic nucleotide-mediated signaling intensity, duration, and specificity. Altered expression, localization and action of PDEs have all been implicated in causing changes in cyclic nucleotide signaling in cardiovascular disease. Accordingly, pharmacological inhibition of PDEs has gained interest as a treatment strategy and as an area of drug development. While targeting of certain PDEs has the potential to ameliorate cardiovascular disease, inhibition of others might actually worsen it. This review will highlight recent research on the physiopathological role of cyclic nucleotide signaling, especially with regard to PDEs. While the physiological roles and biochemical properties of cardiovascular PDEs will be summarized, the primary emphasis will be pathological. Research into the potential benefits and hazards of PDE inhibition will also be discussed. PMID:24047267

  7. CEP Biomarkers as Potential Tools for Monitoring Therapeutics

    PubMed Central

    Rayborn, Mary E.; Crabb, John S.; Salomon, Robert G.; Collier, Robert J.; Kapin, Michael A.; Romano, Carmelo; Hollyfield, Joe G.; Crabb, John W.

    2013-01-01

    Background Carboxyethylpyrrole (CEP) adducts are oxidative modifications derived from docosahexaenoate-containing lipids that are elevated in ocular tissues and plasma in age-related macular degeneration (AMD) and in rodents exposed to intense light. The goal of this study was to determine whether light-induced CEP adducts and autoantibodies are modulated by pretreatment with AL-8309A under conditions that prevent photo-oxidative damage of rat retina. AL-8309A is a serotonin 5-HT1A receptor agonist. Methods Albino rats were dark adapted prior to blue light exposure. Control rats were maintained in normal cyclic light. Rats were injected subcutaneously 3x with 10 mg/kg AL-8309A (2 days, 1 day and 0 hours) before light exposure for 6 h (3.1 mW/cm2, λ=450 nm). Animals were sacrificed immediately following light exposure and eyes, retinas and plasma were collected. CEP adducts and autoantibodies were quantified by Western analysis or ELISA. Results ANOVA supported significant differences in mean amounts of CEP adducts and autoantibodies among the light + vehicle, light + drug and dark control groups from both retina and plasma. Light-induced CEP adducts in retina were reduced ~20% following pretreatment with AL-8309A (n = 62 rats, p = 0.006) and retinal CEP immunoreactivity was less intense by immunohistochemistry. Plasma levels of light-induced CEP adducts were reduced at least 30% (n = 15 rats, p = 0.004) by drug pretreatment. Following drug treatment, average CEP autoantibody titer in light exposed rats (n = 22) was unchanged from dark control levels, and ~20% (p = 0.046) lower than in vehicle-treated rats. Conclusions Light-induced CEP adducts in rat retina and plasma were significantly decreased by pretreatment with AL-8309A. These results are consistent with and extend previous studies showing AL-8309A reduces light-induced retinal lesions in rats and support CEP biomarkers as possible tools for monitoring the efficacy of select therapeutics. PMID:24098476

  8. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    PubMed Central

    Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim

    2013-01-01

    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983

  9. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  10. Mitophagy: therapeutic potentials for liver disease and beyond.

    PubMed

    Lee, Sooyeon; Kim, Jae-Sung

    2014-12-01

    Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy. PMID:25584143

  11. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis.

    PubMed

    Burke, John; Hunter, Monte; Kolhe, Ravindra; Isales, Carlos; Hamrick, Mark; Fulzele, Sadanand

    2016-12-01

    Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in relation to MSCs in the treatment of osteoarthritis. PMID:27510262

  12. Potential therapeutic use of herbal extracts in trypanosomiasis

    PubMed Central

    Teixeira, Thaise L; Teixeira, Samuel Cota; da Silva, Claudio Vieira; de Souza, Maria A

    2014-01-01

    The aim of the present study was to evaluate the effects of crude extracts from Handroanthus impetiginosa, Ageratum conyzoides, and Ruta graveolens on Leishmania amazonensis and Trypanosoma cruzi infection in vitro. The results showed that the extracts caused significant toxicity in promastigotes and trypomastigotes. A significant decrease in the rate of cell invasion by pretreated trypomastigotes and promastigotes was also observed. The extracts caused a significant reduction of the multiplication of intracellular amastigotes of both parasites. Therefore, these herbal extracts may be potential candidates for the development of drugs for the treatment of leishmaniasis and Chagas disease. PMID:24548158

  13. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  14. G-quadruplexes in viruses: function and potential therapeutic applications

    PubMed Central

    Métifiot, Mathieu; Amrane, Samir; Litvak, Simon; Andreola, Marie-Line

    2014-01-01

    G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300 000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein–Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools. PMID:25332402

  15. Therapeutic Potential of Pterocarpus santalinus L.: An Update

    PubMed Central

    Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy

    2016-01-01

    Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with “up-to-date” discussion. PMID:27041873

  16. Therapeutic Potential of Pterocarpus santalinus L.: An Update.

    PubMed

    Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy

    2016-01-01

    Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with "up-to-date" discussion. PMID:27041873

  17. Fatty acid synthase as a potential therapeutic target in cancer

    PubMed Central

    Flavin, Richard; Peluso, Stephane; Nguyen, Paul L; Loda, Massimo

    2011-01-01

    Fatty acid synthase (FASN) is a key enzyme involved in neoplastic lipogenesis. Overexpression of FASN is common in many cancers, and accumulating evidence suggests that it is a metabolic oncogene with an important role in tumor growth and survival, making it an attractive target for cancer therapy. Early small-molecule FASN inhibitors such as cerulenin, C75 and orlistat have been shown to induce apoptosis in several cancer cell lines and to induce tumor growth delay in several cancer xenograft models but their mechanism is still not well understood. These molecules suffer from pharmacological limitations and weight loss as a side effect that prevent their development as systemic drugs. Several potent inhibitors have recently been reported that may help to unravel and exploit the full potential of FASN as a target for cancer therapy in the near future. Furthermore, novel sources of FASN inhibitors, such as green tea and dietary soy, make both dietary manipulation and chemoprevention potential alternative modes of therapy in the future. PMID:20373869

  18. Therapeutic potential of melatonin in oral medicine and periodontology.

    PubMed

    Najeeb, Shariq; Khurshid, Zohaib; Zohaib, Sana; Zafar, Muhammad Sohail

    2016-08-01

    Melatonin (N-acetyl-5-methoxy tryptamine) is a substance secreted by multiple organs in vertebrates. In addition to playing a part in the circadian cycle of the body, melatonin is known to have antioxidant, antiinflammatory, and antioncotic effects on human tissues. Oral cavity is affected by a number of conditions such as periodontitis, mucositis, cancers, and cytotoxicity from various drugs or biomaterials. Research has suggested that melatonin is effective in treating the aforementioned pathologies. Furthermore, melatonin has been observed to enhance osseointegration and bone regeneration. The aim of this review is to critically analyze and summarize the research focusing on the potential of melatonin in the field of oral medicine. Topical administration of melatonin has a positive effect on periodontal health and osseointegration. Furthermore, melatonin is particularly effective in improving the periodontal parameters of diabetic patients with periodontitis. Melatonin exerts a regenerative effect on periodontal bone and may be incorporated into of periodontal scaffolds. The cytotoxic effect of various drugs and dental materials may be countered by the antioxidant properties of melatonin. Topical administration of melatonin promotes the healing of tooth extraction sockets and may also impede the progression of oral cancer. Although, there are a number of current and potential applications of melatonin, further long term clinical and animal studies are needed to assess its efficacy. Moreover, the role of melatonin supplements in the management of periodontitis should also be assessed. PMID:27523451

  19. Therapeutic radiation and the potential risk of second malignancies.

    PubMed

    Kamran, Sophia C; Berrington de Gonzalez, Amy; Ng, Andrea; Haas-Kogan, Daphne; Viswanathan, Akila N

    2016-06-15

    Radiation has long been associated with carcinogenesis. Nevertheless, it is an important part of multimodality therapy for many malignancies. It is critical to assess the risk of secondary malignant neoplasms (SMNs) after radiation treatment. The authors reviewed the literature with a focus on radiation and associated SMNs for primary hematologic, breast, gynecologic, and pediatric tumors. Radiation appeared to increase the risk of SMN in all of these; however, this risk was found to be associated with age, hormonal influences, chemotherapy use, environmental influences, genetic predisposition, infection, and immunosuppression. The risk also appears to be altered with modern radiotherapy techniques. Practitioners of all specialties who treat cancer survivors in follow-up should be aware of this potential risk. Cancer 2016;122:1809-21. © 2016 American Cancer Society. PMID:26950597

  20. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    PubMed Central

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M.; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  1. Nutraceuticals as potential therapeutic agents for colon cancer: a review.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Ichwan, Solachuddin Jauhari Arief; Soundharrajan, Ilavenil; Govindan, Natanamurugaraj

    2014-06-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis. PMID:26579381

  2. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities.

    PubMed

    Gosens, Reinoud; Grainge, Chris

    2015-03-01

    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma. PMID:25732446

  3. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    PubMed Central

    Purandare, Chaitanya; Shitole, D. G.; Belle, Vaijayantee; Kedari, Aarti; Bora, Neeta; Joshi, Meghnad

    2012-01-01

    Background. Cerebral palsy (CP) is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs) transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R) scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient. PMID:23259143

  4. Silibinin as a potential therapeutic for sulfur mustard injuries.

    PubMed

    Balszuweit, Frank; John, Harald; Schmidt, Annette; Kehe, Kai; Thiermann, Horst; Steinritz, Dirk

    2013-12-01

    Sulfur mustard (SM) is a vesicating chemical warfare agent causing skin blistering, ulceration, impaired wound healing, prolonged hospitalization and permanent lesions. Silibinin, the lead compound from Silybum marianum, has also been discussed as a potential antidote to SM poisoning. However, its efficacy has been demonstrated only with regard to nitrogen mustards. Moreover, there are no data on the efficacy of the water-soluble prodrug silibinin-bis-succinat (silibinin-BS). We investigated the effect of SIL-BS treatment against SM toxicity in HaCaT cells with regard to potential reduction of necrosis, apoptosis and inflammation including dose-dependency of any protective effects. We also demonstrated the biotransformation of the prodrug into free silibinin. HaCaT cells were exposed to SM (30, 100, and 300μM) for 30min and treated thereafter with SIL-BS (10, 50, and 100μM) for 24h. Necrosis and apoptosis were quantified using the ToxiLight BioAssay and the nucleosome ELISA (CDDE). Pro-inflammatory interleukins-6 and -8 were determined by ELISA. HaCaT cells, incubated with silibinin-BS were lysed and investigated by LC-ESI MS/MS. LC-ESI MS/MS results suggest that SIL-BS is absorbed by HaCaT cells and biotransformed into free silibinin. SIL-BS dose-dependently reduced SM cytotoxicity, even after 300μM exposure. Doses of 50-100μM silibinin-BS were required for significant protection. Apoptosis and interleukin production remained largely unchanged by 10-50μM silibinin-BS but increased after 100μM treatment. Observed reductions of SM cytotoxicity by post-exposure treatment with SIL-BS suggest this as a promising approach for treatment of SM injuries. While 100μM SIL-BS is most effective to reduce necrosis, 50μM may be safer to avoid pro-inflammatory effects. Pro-apoptotic effects after high doses of SIL-BS are in agreement with findings in literature and might even be useful to eliminate cells irreversibly damaged by SM. Further investigations will focus on the

  5. Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease.

    PubMed

    Thapa, Arjun; Chi, Eva Y

    2015-01-01

    Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease. PMID:26092626

  6. Therapeutic Potential of Tea Tree Oil for Scabies

    PubMed Central

    Thomas, Jackson; Carson, Christine F.; Peterson, Greg M.; Walton, Shelley F.; Hammer, Kate A.; Naunton, Mark; Davey, Rachel C.; Spelman, Tim; Dettwiller, Pascale; Kyle, Greg; Cooper, Gabrielle M.; Baby, Kavya E.

    2016-01-01

    Globally, scabies affects more than 130 million people at any time. In the developed world, outbreaks in health institutions and vulnerable communities result in a significant economic burden. A review of the literature demonstrates the emergence of resistance toward classical scabicidal treatments and the lack of effectiveness of currently available scabicides in reducing the inflammatory skin reactions and pyodermal progression that occurs in predisposed patient cohorts. Tea tree oil (TTO) has demonstrated promising acaricidal effects against scabies mites in vitro and has also been successfully used as an adjuvant topical medication for the treatment of crusted scabies, including cases that did not respond to standard treatments. Emerging acaricide resistance threatens the future usefulness of currently used gold standard treatments (oral ivermectin and topical permethrin) for scabies. The imminent development of new chemical entities is doubtful. The cumulative acaricidal, antibacterial, antipruritic, anti-inflammatory, and wound healing effects of TTO may have the potential to successfully reduce the burden of scabies infection and the associated bacterial complications. This review summarizes current knowledge on the use of TTO for the treatment of scabies. On the strength of existing data for TTO, larger scale, randomized controlled clinical trials are warranted. PMID:26787146

  7. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    PubMed

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  8. Conundrum and therapeutic potential of curcumin in drug delivery.

    PubMed

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2010-01-01

    Turmeric, the source of the polyphenolic active compound curcumin (diferuloylmethane), has been used extensively in traditional medicine since ancient times as a household remedy against various diseases, including hepatic disorders, cough, sinusitis, rheumatism, and biliary disorders. In the past few decades, a number of studies have been done on curcumin showing its potential role in treating inflammatory disorders, cardiovascular disease, cancer, AIDS, and neurological disorders. However, the main drawback associated with curcumin is its poor aqueous solubility and stability in gastrointestinal fluids, which leads to poor bioavailability. Multifarious novel drug-delivery approaches, including microemulsions, nanoemulsions, liposomes, solid lipid nanoparticles, microspheres, solid dispersion, polymeric nanoparticles, and self-microemulsifying drug-delivery systems have been used to enhance the bioavailability and tissue-targeting ability of curcumin. These attempts have revealed promising results for enhanced bioavailability and targeting to disease such as cancer, but more extensive research on tissue-targeting and stability-related issues is needed. Tissue targeting and enhanced bioavailability of curcumin using novel drug-delivery methods with minimum side effects will in the near future bring this promising natural product to the forefront of therapy for the treatment of human diseases such as cancer and cardiovascular ailments. We provide a detailed analysis of prominent research in the field of curcumin drug delivery with special emphasis on bioavailability-enhancement approaches and novel drug-delivery system approaches. PMID:20932240

  9. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    PubMed Central

    Islam, Md. Asiful; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims. PMID:25386217

  10. Therapeutic Potential of Tea Tree Oil for Scabies.

    PubMed

    Thomas, Jackson; Carson, Christine F; Peterson, Greg M; Walton, Shelley F; Hammer, Kate A; Naunton, Mark; Davey, Rachel C; Spelman, Tim; Dettwiller, Pascale; Kyle, Greg; Cooper, Gabrielle M; Baby, Kavya E

    2016-02-01

    Globally, scabies affects more than 130 million people at any time. In the developed world, outbreaks in health institutions and vulnerable communities result in a significant economic burden. A review of the literature demonstrates the emergence of resistance toward classical scabicidal treatments and the lack of effectiveness of currently available scabicides in reducing the inflammatory skin reactions and pyodermal progression that occurs in predisposed patient cohorts. Tea tree oil (TTO) has demonstrated promising acaricidal effects against scabies mites in vitro and has also been successfully used as an adjuvant topical medication for the treatment of crusted scabies, including cases that did not respond to standard treatments. Emerging acaricide resistance threatens the future usefulness of currently used gold standard treatments (oral ivermectin and topical permethrin) for scabies. The imminent development of new chemical entities is doubtful. The cumulative acaricidal, antibacterial, antipruritic, anti-inflammatory, and wound healing effects of TTO may have the potential to successfully reduce the burden of scabies infection and the associated bacterial complications. This review summarizes current knowledge on the use of TTO for the treatment of scabies. On the strength of existing data for TTO, larger scale, randomized controlled clinical trials are warranted. PMID:26787146

  11. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  12. Therapeutic Potential of Hyporesponsive CD4+ T Cells in Autoimmunity

    PubMed Central

    Maggi, Jaxaira; Schafer, Carolina; Ubilla-Olguín, Gabriela; Catalán, Diego; Schinnerling, Katina; Aguillón, Juan C.

    2015-01-01

    The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an “off” mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies, were shown to modulate immune responses by inducing T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T-cell anergy on disease development and progression in vivo. Thus, the induction of T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent findings in the area and discuss the potential of anergy induction for clinical purposes. PMID:26441992

  13. A small peptide with therapeutic potential for inflammatory acne vulgaris.

    PubMed

    Zhang, Zhiye; Mu, Lixian; Tang, Jing; Duan, Zilei; Wang, Fengyu; Wei, Lin; Rong, Mingqiang; Lai, Ren

    2013-01-01

    A designed peptide named LZ1 with 15 amino acid residues containing strong antimicrobial activity against bacteria pathogens of acne vulgaris including Propionibacterium acnes, Staphylococcus epidermidis and S. aureus. Especially, it exerted strong anti-P. acnes ability. The minimal inhibitory concentration against three strains of P. acnes was only 0.6 µg/ml, which is 4 times lower than that of clindamycin. In experimental mice skin colonization model, LZ1 significantly reduced the number of P. acnes colonized on the ear, P. acnes-induced ear swelling, and inflammatory cell infiltration. It ameliorated inflammation induced by P. acnes by inhibiting the secretion of inflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β. LZ1 showed little cytotoxicity on human keratinocyte and hemolytic activity on human blood red cells. Furthermore, LZ1 was very stable in human plasma. Combined with its potential bactericidal and anti-inflammatory properties, simple structure and high stability, LZ1 might be an ideal candidate for the treatment of acne. PMID:24013774

  14. Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential.

    PubMed

    Roe, Charles R; Mochel, Fanny

    2006-01-01

    Beginning with phenylketonuria, dietary therapy for inborn errors has focused primarily on the restriction of the precursor to an affected catabolic pathway in an attempt to limit the production of potential toxins. Anaplerotic therapy is based on the concept that there may exist an energy deficit in these diseases that might be improved by providing alternative substrate for both the citric acid cycle (CAC) and the electron transport chain for enhanced ATP production. This article focuses on this basic problem, as it may relate to most catabolic disorders, and provides our current experience involving inherited diseases of mitochondrial fat oxidation, glycogen storage, and pyruvate metabolism using the anaplerotic compound triheptanoin. The observations have led to a realization that 'inter-organ' signalling and 'nutrient sensors' such as adenylate monophosphate mediated-protein kinase (AMPK) and mTOR (mammalian target of rapamycin) appear to play a significant role in the intermediary metabolism of these diseases. Activated AMPK turns on catabolic pathways to augment ATP production while turning off synthetic pathways that consume ATP. Information is provided regarding the inter-organ requirements for more normal metabolic function during crisis and how anaplerotic therapy using triheptanoin, as a direct source of substrate to the CAC for energy production, appears to be a more successful approach to an improved quality of life for these patients. PMID:16763896

  15. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  16. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  17. Microbial Risk Factors of Cardiovascular and Cerebrovascular Diseases: Potential Therapeutical Options

    PubMed Central

    Abdalla Abbas, Mohammed; Guenther, Albrecht; Galantucci, Sebastiano; Fawi, Gharib; Comi, Giancarlo; Kwan, Joseph; Corea, Francesco

    2008-01-01

    Infection and inflammation may have a crucial role in the pathogenesis of atherosclerosis. This hypothesis is supported by an increasing number of reports on the interaction between chronic infection, inflammation, and atherogenesis. Assessment of serological and inflammatory markers of infection may be useful adjuncts in identifying those patients who are at a higher risk of developing vascular events, and in whom more aggressive treatments might be warranted. PMID:19018303

  18. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type.

    PubMed

    Jorge-Finnigan, Ana; Brasil, Sandra; Underhaug, Jarl; Ruíz-Sala, Pedro; Merinero, Begoña; Banerjee, Ruma; Desviat, Lourdes R; Ugarte, Magdalena; Martinez, Aurora; Pérez, Belén

    2013-09-15

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations. PMID:23674520

  19. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type

    PubMed Central

    Jorge-Finnigan, Ana; Brasil, Sandra; Underhaug, Jarl; Ruíz-Sala, Pedro; Merinero, Begoña; Banerjee, Ruma; Desviat, Lourdes R.; Ugarte, Magdalena; Martinez, Aurora; Pérez, Belén

    2013-01-01

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations. PMID:23674520

  20. Update on the pathogenic potential and treatment options for Blastocystis sp

    PubMed Central

    2014-01-01

    Although Blastocystis is one of the most common enteric parasites, there is still much controversy surrounding the pathogenicity and potential treatment options for this parasite. In this review we look at the evidence supporting Blastocystis as an intestinal pathogen as shown by numerous case studies and several in vivo studies and the evidence against. We describe the chronic nature of some infections and show the role of Blastocystis in immunocompromised patients and the relationship between irritable bowel syndrome and Blastocystis infection. There have been several studies that have suggested that pathogenicity may be subtype related. Metronidazole is the most widely accepted treatment for Blastocystis but several cases of treatment failure and resistance have been described. Other treatment options which have been suggested include paromomycin and trimethroprim- sulfamethoxazole. PMID:24883113

  1. Tacrolimus combined with low-dose corticosteroids is an effective and safe therapeutic option for refractory IgA nephropathy

    PubMed Central

    Wan, Qi-Jun; Hu, Hao-Fei; He, Yong-Cheng; Luan, Shao-Dong; Chen, Hong-Tao; Li, Tong; Xu, Yi; Xu, Hui-Li; Liao, Ying

    2016-01-01

    -dose corticosteroids may be an effective and safe therapeutic option for the treatment of refractory IgAN. However, given the small number of patients in this study, further prospective randomized controlled trials are required with a larger sample of participants and longer follow-up period. PMID:27602099

  2. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis

    PubMed Central

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  3. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis.

    PubMed

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-07-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  4. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    PubMed

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems. PMID:24265924

  5. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential

    PubMed Central

    Falus, A.; Buzás, E.

    2013-01-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems. PMID:24265924

  6. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    PubMed Central

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  7. Fluvoxamine by itself has potential to directly induce long QT syndrome at supra-therapeutic concentrations.

    PubMed

    Yamazaki-Hashimoto, Yukiko; Nakamura, Yuji; Ohara, Hiroshi; Cao, Xin; Kitahara, Ken; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Yamazaki, Hiroshi; Ikeda, Takanori; Yamazaki, Junichi; Sugiyama, Atsushi

    2015-02-01

    Fluvoxamine is one of the typical selective serotonin-reuptake inhibitors. While its combined use with QT-prolonging drugs has been contraindicated because of the increase in plasma concentrations of such drugs, information is still limited whether fluvoxamine by itself may directly prolong the QT interval. We examined electropharmacological effects of fluvoxamine together with its pharmacokinetic profile by using the halothane-anesthetized dogs (n = 4). Fluvoxamine was intravenously administered in three escalating doses of 0.1, 1 and 10 mg/kg over 10 min with a pause of 20 min between the doses. The low dose provided therapeutic plasma drug concentration, whereas the middle and high doses attained approximately 10 and 100 times of the therapeutic ones, respectively. Supra-therapeutic concentration of fluvoxamine exerted the negative chronotropic, inotropic and hypotensive effects; and suppressed the atrioventricular nodal and intraventricular conductions, indicating inhibitory actions on Ca2+ and Na+ channels, whereas it delayed the repolarization in a reverse use-dependent manner, reflecting characteristics of rapidly activating delayed rectifier K+ current channel-blocking property. Fluvoxamine prolonged the terminal repolarization phase at 100 times higher concentration than the therapeutic, indicating its proarrhythmic potential. Thus, fluvoxamine by itself has potential to directly induce long QT syndrome at supra-therapeutic concentrations. PMID:25560394

  8. Inhibition of translation initiation factors might be the potential therapeutic targets for HCV patients with hepatic iron overload.

    PubMed

    Liu, Yiping; An, Daizhi; Sun, Rubao; Jin, Lianqun; Wang, Qiang

    2012-01-01

    Standard therapy, interferon-alpha (IFN-α) and ribavirin, remains the only available option for treatment of patients with hepatitis C virus (HCV) infection. However, iron overload, a common finding among HCV patients, have a poor response to treatment with current therapy. These data suggest that both host and viral factors are involved in the determination of the outcome of the therapy. Currently, novel antiviral compounds focus on the development of indirect antiviral drugs. The process of the viral translation is considered as the potential therapeutic targets. Coincidentally, study has found that hepatic iron load enhances the levels of eukaryotic initiation factor 3 (eIF3), which is essential for HCV translation. Reversely, iron chelation could reduce eIF3 p170 translation. Our hypothesis is that iron overload may specifically enhance cellular eIFs. As a result, the cellular mechanisms, in patients with iron overload, are utilized for translating viral mRNA into protein. Thus, treatment strategies that target eIFs should be an exceptionally good candidate therapeutic method for HCV patients with hepatic iron overload. PMID:22047986

  9. Family physicians’ continuing professional development activities: current practices and potential for new options

    PubMed Central

    Lindsay, Elizabeth; Wooltorton, Eric; Hendry, Paul; Williams, Kathryn; Wells, George

    2016-01-01

    Background As part of needs assessment processes, our Faculty of Medicine (FOM) continuing professional development office investigated the differences between physicians who do and those who do not frequently participate in planned group learning to gain insight into their interest in new forms of continuing professional development (CPD). Method We sent a 19 item questionnaire to 485 randomly selected physicians of the 1050 family physicians in Eastern Ontario. The questionnaire examined present participation and satisfaction with CPD activities and perceptions regarding the potential impact of those; and appetite for new opportunities to meet their learning needs. Results Of the 151 (31%) physicians responding, 61% reported attending at least one FOM group learning program in the past 18 months (attenders) and 39% had not (non-attenders). Non-attenders indicated less satisfaction (p = 0.04) with present opportunities and requested development in newer approaches such as support for self-learning, on-line opportunities, and simulation. Conclusions Although there are high levels of satisfaction with the present CPD system that predominantly offers large group learning options, a substantial number of physicians expressed interest in accessing new options such as personal study and on-line resources. PMID:27103951

  10. Energy saving potential of residential HVAC options at Fort Irwin, California

    SciTech Connect

    Hadley, D.L.; Stucky, D.J.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) evaluated heating and cooling system options for existing family housing at Fort Irwin, California. The purpose of this work was to quantify the energy conservation potential of alternative system types and to identify the most cost-effective technology available. The conventional residential heating/cooling systems at Fort Irwin are separate propane forced-air furnaces and central air conditioners. The options examined included air- and ground-source heat pumps, a natural gas furnace with central air conditioning, and a natural-gas-fired heat pump. The most cost-effective technology applicable to Fort Irwin was found to be the high-efficiency ground-source heat pumps. If all conventional units were replaced immediately, the net energy savings would be 76,660 MBtu (80.9 TJ) per year and a reduction in electrical demand of approximately 15,000 kW-month. The initial investment for implementing this technology would be approximately $7.1 million, with a savings-to-investment ratio of 1.74.

  11. Hedgehog pathway aberrations and gastric cancer; evaluation of prognostic impact and exploration of therapeutic potentials.

    PubMed

    Abdel-Rahman, Omar

    2015-03-01

    Gastric cancer is an important cause for mortality and morbidity worldwide; it lies in the fourt rank as a cause of cancer-related death in males and in the fifth rank of cancer-related death in women. The prognosis of advanced/metastatic gastric cancer cases looks poor with the majority of available therapeutics. Thus, novel therapeutic strategies in this setting have been considered a priority for leading cooperative oncology groups. Hedgehog(Hh) pathway aberrations have sparked particular interest as prognostic markers with data from multiple studies showing consistent evidence of a poor prognostic value of Gli over expression in gastric cancer while on the other hand the prognostic significance of Hh protein over expression (particularly SHH) was not consistent among different studies. This review article revises the prognostic and potential therapeutic opportunities in the targeting of hedgehog pathway in gastric cancer. PMID:25680409

  12. Hydrogen/Deuterium Exchange Mass Spectrometry Applied to IL-23 Interaction Characteristics: Potential Impact for Therapeutics

    PubMed Central

    Iacob, Roxana E.; Krystek, Stanley R.; Huang, Richard Y.-C.; Wei, Hui; Tao, Li; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2015-01-01

    Interleukin-23 (IL-23) is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin, and have similar protein scaffold to antibodies. A specific adnectin (Adnectin 2) was identified to bind to IL-23 and compete with IL-23/IL-23R interaction, being a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry (HDX MS) and computational methods were applied to probe the binding interactions between IL-23 and Adnectin2 and to determine the correlation between the two orthogonal methods. This review article summarizes the current structural knowledge about Il-23 and it focuses on the applicability of HDX MS to investigate the higher order structure of proteins, which plays an important role for the discovery of new and improved biotherapeutics. PMID:25711416

  13. Guaranteed Student Loans: Potential Default and Cost Reduction Options. Briefing Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    Thirty options for reducing guaranteed student loan defaults and related federal costs are provided by the General Accounting Office (GAO). The options are presented by groups of program participants: students, schools, lenders, guaranty agencies, and the Department of Education. These options include: adopt GAO's past recommendation to increase…

  14. Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options

    SciTech Connect

    Steven J. Piet

    2012-07-01

    The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historical survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.

  15. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease.

    PubMed

    Hasselblatt, Martin; Ehrenreich, Hannelore; Sirén, Anna-Leena

    2006-04-01

    The discovery of the broad neuroprotective potential of erythropoietin (EPO), an endogenous hematopoietic growth factor, has opened new therapeutic avenues in the treatment of brain diseases. EPO expression in the brain is induced by hypoxia. Practically all brain cells are capable of production and release of EPO and expression of its receptor. EPO exerts multifaceted protective effects on brain cells. It protects neuronal cells from noxious stimuli such as hypoxia, excess glutamate, serum deprivation or kainic acid exposure in vitro by targeting a variety of mechanisms and involves neuronal, glial and endothelial cell functions. In rodent models of ischemic stroke, EPO reduces infarct volume and improves functional outcome, but beneficial effects have also been observed in animal models of subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and spinal cord injury. EPO has a convenient therapeutic window upon ischemic stroke and favorable pharmacokinetics. Results from first therapeutic trials in humans are promising, but will need to be validated in larger trials. The safety profile and effectiveness of EPO in a wide variety of neurologic disease models make EPO a candidate compound for a potential first-line therapeutic for neurologic emergencies. PMID:16628067

  16. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma

    PubMed Central

    ADACHI, Mami; HOSHINO, Yuki; IZUMI, Yusuke; TAKAGI, Satoshi

    2015-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  17. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi

    2016-05-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  18. The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease.

    PubMed

    Amaral, Marta; Outeiro, Tiago F; Scrutton, Nigel S; Giorgini, Flaviano

    2013-06-01

    Metabolites of the kynurenine pathway (KP), which arise from the degradation of tryptophan, have been studied in detail for over a century and garnered the interest of the neuroscience community in the late 1970s and early 1980s with work uncovering the neuromodulatory potential of this pathway. Much research in the following decades has found that perturbations in the levels of KP metabolites likely contribute to the pathogenesis of several neurodegenerative diseases. More recently, it has become apparent that targeting KP enzymes, in particular kynurenine 3-monooxygenase (KMO), may hold substantial therapeutic potential for these disorders. Here we provide an overview of the KP, the neuroactive properties of KP metabolites and their role in neurodegeneration. We also discuss KMO as a therapeutic target for these disorders, and our recent resolution of the crystallographic structure of KMO, which will permit the development of new and improved KMO inhibitors which may ultimately expedite clinical application of these compounds. PMID:23636512

  19. Life on the line: the therapeutic potentials of computer-mediated conversation.

    PubMed

    Miller, J K; Gergen, K J

    1998-04-01

    In what ways are computer networking practices comparable to face-to-face therapy? With the exponential increase in computer-mediated communication and the increasing numbers of people joining topically based computer networks, the potential for grass-roots therapeutic (or antitherapeutic) interchange is greatly augmented. Here we report the results of research into exchanges on an electronic bulletin board devoted to the topic of suicide. Over an 11-month period participants offered each other valuable resources in terms of validation of experience, sympathy, acceptance, and encouragement. They also asked provocative questions and furnished broad-ranging advice. Hostile entries were rare. However, there were few communiques that parallel the change-inducing practices more frequent within many therapeutic settings. In effect, on-line dialogues seemed more sustaining than transforming. Further limits and potentials of on-line communication are explored. PMID:9583058

  20. RNA Interference as A Potential Therapeutic Treatment for Inflammation Associated Lung Injury

    PubMed Central

    Lomas-Neira, Joanne; Chung, Chun-Shiang; Ayala, Alfred

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain important sources of morbidity for patients in the ICUs in the developed world. However, imagine having as a therapeutic tool, the ability to regulate, in a tissue specific manner, the expression of a given gene. RNA interference, as potentially such a method of selectively suppressing protein expression, has evolved as an important tool in the study of gene specific function and targeted therapeutics. Significant progress has been made in identifying potential gene targets integral to the pathways leading to the development of inflammation-associated lung injury. This review will discuss the progress, thus far, in the application of in vivo RNA interference-based gene therapy in the investigation of inflammation-associated lung injury. PMID:19079669

  1. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia

    PubMed Central

    2012-01-01

    The therapeutic potential of mesenchymal stem cell (MSC) transplantation for the treatment of ischemic conditions such as coronary artery disease, peripheral arterial disease, and stroke has been explored in animal models and early-phase clinical trials. A substantial database documents the safety profile of MSC administration to humans in a large number of disease states. The mechanism of the therapeutic effect of MSC transplantation in ischemic disease has been postulated to be due to paracrine, immunomodulatory, and differentiation effects. This review provides an overview of the potential role of MSC-based therapy for critical limb ischemia (CLI), the comparison of MSC cellular therapy with angiogenesis gene therapy in CLI, and the proposed mechanism of action of MSC therapy. Preclinical efficacy data in animal models of hindlimb ischemia, current early-phase human trial data, and considerations for future MSC-based therapy in CLI will also be discussed. PMID:22846185

  2. Retracted article: In vitro derivation of mammalian germ cells from stem cells and their potential therapeutic application.

    PubMed

    Saito, Shigeo; Lin, Ying-Chu; Murayama, Yoshinobu; Nakamura, Yukio; Eckner, Richard; Niemann, Heiner; Yokoyama, Kazunari K

    2015-12-01

    Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment. PMID:26439925

  3. Impact of pregnancy and oestrogen on psoriasis and potential therapeutic use of selective oestrogen receptor modulators for psoriasis.

    PubMed

    Lin, X; Huang, T

    2016-07-01

    Majority of female patients show improvement of psoriasis during pregnancy. This is demonstrated to be correlated with high levels of oestrogen. Even in male patient, oestrogen level is inversely correlated with the severity of psoriasis. However, a minority of female psoriatic patients still experience worsening during pregnancy. Oestrogen might improve psoriasis by suppressing the T-cell immune response, reducing the keratinocyte (KC) cytokine and chemokine production, restoring the balance of redox and enhancing the skin barrier. However, it might worsen the disease by stimulating KC proliferation and promoting angiogenesis. This complex role of oestrogen in the pathogenesis of psoriasis might explain why the two opposite effects of pregnancy coexist. Data shows that the number of improving patients with psoriasis in pregnancy is double the number of the worsening patients, suggesting that oestrogen may be potentially useful in the treatment of psoriasis. However, oestrogen is not considered suitable as a long-term treatment subject to negative side-effects. This review discusses current studies on taking selective oestrogen receptor mediators as a novel potential therapeutic option for psoriasis. PMID:27072912

  4. Multi-therapeutic potential of autoantibodies induced by immune complexes trapped on follicular dendritic cells

    PubMed Central

    El Shikh, Mohey Eldin; Kmieciak, Maciej; Manjili, Masoud H; Szakal, Andras K; Pitzalis, Costantino; Tew, John G

    2013-01-01

    Induction of autoantibodies (autoAbs) targeting disease drivers / mediators is emerging as a potential immunotherapeutic strategy. Auto-immune complex (IC)-retaining follicular dendritic cells (FDCs) critically regulate pathogenic autoAb production in autoreactive germinal centers (GCs); however, their ability to induce potentially therapeutic autoAbs has not been explored. We hypothesized that deliberate display of clinically targeted antigens (Ags) in the form of ICs on FDC membranes induces target-specific autoreactive GCs and autoAbs that may be exploited therapeutically. To test our hypothesis, three therapeutically relevant Ags: TNF-α, HER2/neu and IgE, were investigated. Our results indicated that TNF-α-, HER2/neu- and IgE-specific autoAbs associated with strong GC reactions were induced by TNF-α-, HER2/neu- and IgE-IC retention on FDCs. Moreover, the induced anti-TNF-α autoAbs neutralized mouse and human TNF-α with half maximal Inhibitory Concentration (IC50) of 7.1 and 1.6 nM respectively. In addition, we demonstrated that FDC-induced Ab production could be non-specifically inhibited by the IgG-specific Endo-S that accessed the light zones of GCs and interfered with FDC-IC retention. In conclusion, the ability of FDCs to productively present autoAgs raises the potential for a novel immunotherapeutic platform targeting mediators of autoimmune disorders, allergic diseases, and Ab responsive cancers. PMID:23836278

  5. A Review of Thorium Utilization as an option for Advanced Fuel Cycle--Potential Option for Brazil in the Future

    SciTech Connect

    Maiorino, J.R.; Carluccio, T.

    2004-10-03

    Since the beginning of Nuclear Energy Development, Thorium was considered as a potential fuel, mainly due to the potential to produce fissile uranium 233. Several Th/U fuel cycles, using thermal and fast reactors were proposed, such as the Radkwoski once through fuel cycle for PWR and VVER, the thorium fuel cycles for CANDU Reactors, the utilization in Molten Salt Reactors, the utilization of thorium in thermal (AHWR), and fast reactors (FBTR) in India, and more recently in innovative reactors, mainly Accelerator Driven System, in a double strata fuel cycle. All these concepts besides the increase in natural nuclear resources are justified by non proliferation issues (plutonium constrain) and the waste radiological toxicity reduction. The paper intended to summarize these developments, with an emphasis in the Th/U double strata fuel cycle using ADS. Brazil has one of the biggest natural reserves of thorium, estimated in 1.2 millions of tons of ThO{sub 2}, as will be reviewed in this paper, and therefore R&D programs would be of strategically national interest. In fact, in the past there was some projects to utilize Thorium in Reactors, as the ''Instinto/Toruna'' Project, in cooperation with France, to utilize Thorium in Pressurized Heavy Water Reactor, in the mid of sixties to mid of seventies, and the thorium utilization in PWR, in cooperation with German, from 1979-1988. The paper will review these initiatives in Brazil, and will propose to continue in Brazil activities related with Th/U fuel cycle.

  6. Anti-Heparanase Aptamers as Potential Diagnostic and Therapeutic Agents for Oral Cancer

    PubMed Central

    Silva, Dilson; Cortez, Celia M.; McKenzie, Edward A.; Bitu, Carolina C.; Salo, Sirpa; Nurmenniemi, Sini; Nyberg, Pia; Risteli, Juha; deAlmeida, Carlos E. B.; Brenchley, Paul E. C.; Salo, Tuula; Missailidis, Sotiris

    2014-01-01

    Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the presence of human serum, making it a potential candidate for both diagnostic and therapeutic use. PMID:25295847

  7. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review.

    PubMed

    Owusu-Ansah, Amma; Choi, Sung Hee; Petrosiute, Agne; Letterio, John J; Huang, Alex Yee-Chen

    2015-03-01

    Sickle cell disease (SCD) is an inherited disorder of hemoglobin in which the abnormal hemoglobin S polymerizes when deoxygenated. This polymerization of hemoglobin S not only results in hemolysis and vasoocclusion but also precipitates inflammation, oxidative stress and chronic organ dysfunction. Oxidative stress is increasingly recognized as an important intermediate in these pathophysiological processes and is therefore an important target for therapeutic intervention. The transcription factor nuclear erythroid derived-2 related factor 2 (Nrf2) controls the expression of anti-oxidant enzymes and is emerging as a protein whose function can be exploited with therapeutic intent. This review article is focused on triterpenoids that activate Nrf2, and their potential for reducing oxidative stress in SCD as an approach to prevent organ dysfunction associated with this disease. A brief overview of oxidative stress in the clinical context of SCD is accompanied by a discussion of several pathophysiological mechanisms contributing to oxidative stress. Finally, these mechanisms are then related to current management strategies in SCD that are either utilized currently or under evaluation. The article concludes with a perspective on the potential of the various therapeutic interventions to reduce oxidative stress and morbidity associated with SCD. PMID:25511620

  8. Gain of BDNF Function in Engrafted Neural Stem Cells Promotes the Therapeutic Potential for Alzheimer's Disease.

    PubMed

    Wu, Cheng-Chun; Lien, Cheng-Chang; Hou, Wen-Hsien; Chiang, Po-Min; Tsai, Kuen-Jer

    2016-01-01

    Stem cell-based therapy is a potential treatment for neurodegenerative diseases, but its application to Alzheimer's disease (AD) remains limited. Brain-derived neurotrophic factor (BDNF) is critical in the pathogenesis and treatment of AD. Here, we present a novel therapeutic approach for AD treatment using BDNF-overexpressing neural stem cells (BDNF-NSCs). In vitro, BDNF overexpression was neuroprotective to beta-amyloid-treated NSCs. In vivo, engrafted BDNF-NSCs-derived neurons not only displayed the Ca(2+)-response fluctuations, exhibited electrophysiological properties of mature neurons and integrated into local brain circuits, but recovered the cognitive deficits. Furthermore, BDNF overexpression improved the engrafted cells' viability, neuronal fate, neurite complexity, maturation of electrical property and the synaptic density. In contrast, knockdown of the BDNF in BDNF-NSCs diminished stem cell-based therapeutic efficacy. Together, our findings indicate BDNF overexpression improves the therapeutic potential of engrafted NSCs for AD via neurogenic effects and neuronal replacement, and further support the feasibility of NSC-based ex vivo gene therapy for AD. PMID:27264956

  9. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications

    PubMed Central

    Kasote, Deepak M.; Katyare, Surendra S.; Hegde, Mahabaleshwar V.; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants. PMID:26157352

  10. Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor: Structure, Modulators, and Therapeutic Applications.

    PubMed

    Cui, Minghua; Gosu, Vijayakumar; Basith, Shaherin; Hong, Sunhye; Choi, Sun

    2016-01-01

    Transient receptor potential (TRP) channels belong to a superfamily of sensory-related ion channels responding to a wide variety of thermal, mechanical, or chemical stimuli. In an attempt to comprehend the piquancy and pain mechanism of the archetypal vanilloids, transient receptor potential vanilloid (TRPV) 1 was discovered. TRPV1, a well-established member of the TRP family, is implicated in a range of functions including inflammation, painful stimuli sensation, and mechanotransduction. TRPV1 channels are nonselective cation receptors that are gated by a broad array of noxious ligands. Such polymodal-sensor aspect makes the TRPV1 channel extremely versatile and important for its role in sensing burning pain. Besides ligands, TRPV1 signaling can also be modulated by lipids, secondary messengers, protein kinases, cytoskeleton, and several other proteins. Due to its central role in hyperalgesia transduction and inflammatory processes, it is considered as the primary pharmacological pain target. Moreover, understanding the structural and functional intricacies of the channel is indispensable for the therapeutic intervention of TRPV1 in pain and other pathological disorders. In this chapter, we seek to give a mechanistic outlook on the TRPV1 channel. Specifically, we will explore the TRPV1 structure, activation, modulation, ligands, and its therapeutic targeting. However, the major objective of this review is to highlight the fact that TRPV1 channel can be treated as an effective therapeutic target for treating several pain- and nonpain-related physiological and pathological states. PMID:27038373

  11. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    PubMed Central

    Zhang, Bin; Yeo, Ronne Wee Yeh; Tan, Kok Hian; Lim, Sai Kiang

    2016-01-01

    The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs) could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials. PMID:26861305

  12. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles.

    PubMed

    Zhang, Bin; Yeo, Ronne Wee Yeh; Tan, Kok Hian; Lim, Sai Kiang

    2016-01-01

    The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs) could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials. PMID:26861305

  13. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    PubMed Central

    Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and

  14. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential.

    PubMed

    Zamponi, Gerald W; Striessnig, Joerg; Koschak, Alexandra; Dolphin, Annette C

    2015-10-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep

  15. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    PubMed

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. PMID:20554440

  16. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection

    PubMed Central

    Swaminathan, Sanjay; Dai, Lue; Lane, H. Clifford; Imamichi, Tomozumi

    2013-01-01

    Interleukin 27 (IL-27) is an immunomodulatory cytokine with important roles in both the innate and adaptive immune systems. In the last five years, the addition of exogenous IL-27 to primary cell cultures has been demonstrated to decrease HIV-1 replication in a number of cell types including peripheral blood mononuclear cells (PBMCs), CD4+ T cells, macrophages and dendritic cells. These in-vitro findings suggest that IL-27 may have therapeutic value in the setting of HIV-1 infection. In this review, we describe the current knowledge of the biology of IL-27, its effects primarily on HIV-1 replication but also in other viral infections and explore its potential role as a therapeutic cytokine for the treatment of patients with HIV-1 infection. PMID:23962745

  17. Potential therapeutic effects of pigment epithelium-derived factor for treatment of diabetic retinopathy.

    PubMed

    Liu, Xiao; Chen, Hui-Hui; Zhang, Li-Wei

    2013-01-01

    Diabetic retinopathy (DR), a major micro-vascular complication of diabetes, has emerged as a leading cause of visual impairment and blindness among working adults in the worldwide. The pathobiology of DR involves multiple molecular pathways and is characterized chronic neurovascular degeneration. Current approaches to prevent or to treat DR are still far from satisfactory. Therefore, it is important to develop new therapeutic strategies for the prevention and treatment to DR. Pigment epithelium-derived factor (PEDF), a 50-kDa secreted glycoprotein, has been described as a multi-functional protein. Some emerging evidences indicate that PEDF are able to target multiple pathways exerting neurotropic, neuroprotective, anti-angiogenic, antivasopermeability, anti-inflammation, anti-thrombogenic and anti-oxidative effects in DR. In this review, we addressed the functions of PEDF in different pathways, which could lead to potential therapeutics on the treatment to DR. PMID:23638428

  18. Animal models of diabetic retinopathy: doors to investigate pathogenesis and potential therapeutics

    PubMed Central

    2013-01-01

    Effective and validated animal models are valuable to investigate the pathogenesis and potential therapeutics for human diseases. There is much concern for diabetic retinopathy (DR) in that it affects substantial number of working population all around the world, resulting in visual deterioration and social deprivation. In this review, we discuss animal models of DR based on different species of animals from zebrafish to monkeys and prerequisites for animal models. Despite criticisms on imprudent use of laboratory animals, we hope that animal models of DR will be appropriately utilized to deepen our understanding on the pathogenesis of DR and to support our struggle to find novel therapeutics against catastrophic visual loss from DR. PMID:23786217

  19. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases

    PubMed Central

    Pichai, Madharasi VA; Ferguson, Lynnette R

    2012-01-01

    Inflammatory bowel diseases (IBDs) such as Crohn’s disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans. PMID:22736912

  20. In vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure.

    PubMed

    Bortolotti, Francesca; Ukovich, Laura; Razban, Vahid; Martinelli, Valentina; Ruozi, Giulia; Pelos, Barbara; Dore, Franca; Giacca, Mauro; Zacchigna, Serena

    2015-03-10

    Over the last several years, mesenchymal stromal cells (MSCs) have been isolated from different tissues following a variety of different procedures. Here, we comparatively assess the ex vivo and in vivo properties of MSCs isolated from either adipose tissue or bone marrow by different purification protocols. After MSC transplantation into a mouse model of hindlimb ischemia, clinical and histological analysis revealed that bone marrow MSCs purified on adhesive substrates exerted the best therapeutic activity, preserving tissue viability and promoting formation of new arterioles without directly transdifferentiating into vascular cells. In keeping with these observations, these cells abundantly expressed cytokines involved in vessel maturation and cell retention. These findings indicate that the choice of MSC source and purification protocol is critical in determining the therapeutic potential of these cells and warrant the standardization of an optimal MSC isolation procedure in order to select the best conditions to move forward to more effective clinical experimentation. PMID:25660405

  1. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma

    PubMed Central

    Farra, Rossella; Grassi, Mario; Grassi, Gabriele; Dapas, Barbara

    2015-01-01

    Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and represents the third leading cause of cancer-related death worldwide. Current available therapeutic approaches are poorly effective, especially for the advanced forms of the disease. In the last year, short double stranded RNA molecules termed small interfering RNAs (siRNAs) and micro interfering RNAs (miRNA), emerged as interesting molecules with potential therapeutic value for HCC. The practical use of these molecules is however limited by the identification of optimal molecular targets and especially by the lack of effective and targeted HCC delivery systems. Here we focus our discussion on the most recent advances in the identification of siRNAs/miRNAs molecular targets and on the development of suitable siRNA/miRNAs delivery systems. PMID:26290628

  2. Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis

    PubMed Central

    ZHANG, LEMENG; AI, YUHANG; TSUNG, ALLAN

    2016-01-01

    Sepsis-induced lymphocyte and dendritic cell apoptosis contributes to immunosuppression, resulting in an inability to eradicate the primary infection and a propensity to acquire secondary infections. However, the inhibition of apoptosis may produce unexpected and undesirable consequences. Another cellular process, autophagy, is also activated in immune cells. There is increasing evidence to suggest that autophagy confers a protective effect in sepsis. The protective mechanisms underlying this effect include limiting apoptotic cell death and maintaining cellular homeostasis. Therefore, understanding the regulation of immune cell autophagy and apoptosis may provide insight into novel therapeutic strategies. The present review examined potential novel therapeutic strategies aimed at restoring immune homeostasis by inducing autophagy. The restoration of balance between apoptosis and autophagy may be a novel approach for improving sepsis-induced immunosuppression and decreasing susceptibility to sepsis. PMID:27073416

  3. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  4. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases.

    PubMed

    Pichai, Madharasi V A; Ferguson, Lynnette R

    2012-06-21

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans. PMID:22736912

  5. Exploring the Potential of Monoclonal Antibody Therapeutics for HIV-1 Eradication

    PubMed Central

    Euler, Zelda

    2015-01-01

    Abstract The HIV field has seen an increased interest in novel cure strategies. In particular, new latency reversal agents are in development to reverse latency to flush the virus out of its hiding place. Combining these efforts with immunotherapeutic approaches may not only drive the virus out of latency, but allow for the rapid elimination of these infected cells in a “shock and kill” approach. Beyond cell-based approaches, growing interest lies in the potential use of functionally enhanced “killer” monoclonal therapeutics to purge the reservoir. Here we discuss prospects for a monoclonal therapeutic-based “shock and kill” strategy that may lead to the permanent elimination of replication-competent virus, making a functional cure a reality for all patients afflicted with HIV worldwide. PMID:25385703

  6. RNA Inhibition Highlights Cyclin D1 as a Potential Therapeutic Target for Mantle Cell Lymphoma

    PubMed Central

    Weinstein, Shiri; Emmanuel, Rafi; Jacobi, Ashley M.; Abraham, Avigdor; Behlke, Mark A.; Sprague, Andrew G.; Novobrantseva, Tatiana I.; Nagler, Arnon; Peer, Dan

    2012-01-01

    Mantle cell lymphoma is characterized by a genetic translocation results in aberrant overexpression of the CCND1 gene, which encodes cyclin D1. This protein functions as a regulator of the cell cycle progression, hence is considered to play an important role in the pathogenesis of the disease. In this study, we used RNA interference strategies to examine whether cyclin D1 might serve as a therapeutic target for mantle cell lymphoma. Knocking down cyclin D1 resulted in significant growth retardation, cell cycle arrest, and most importantly, induction of apoptosis. These results mark cyclin D1 as a target for mantle cell lymphoma and emphasize the therapeutic potential hidden in its silencing. PMID:22905260

  7. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets?

    PubMed Central

    Donnelly, Christopher J; Grima, Jonathan C; Sattler, Rita

    2015-01-01

    Summary Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches. PMID:25531686

  8. Role of advanced glycation endproducts and potential therapeutic interventions in dialysis patients.

    PubMed

    Mallipattu, Sandeep K; He, John C; Uribarri, Jaime

    2012-01-01

    It has been nearly 100 years since the first published report of advanced glycation end products (AGEs) by the French chemist Maillard. Since then, our understanding of AGEs in diseased states has dramatically changed. Especially in the last 25 years, AGEs have been implicated in complications related to aging, neurodegenerative diseases, diabetes, and chronic kidney disease. Although AGE formation has been well characterized by both in vitro and in vivo studies, few prospective human studies exist demonstrating the role of AGEs in patients on chronic renal replacement therapy. As the prevalence of end-stage renal disease (ESRD) in the United States rises, it is essential to identify therapeutic strategies that either delay progression to ESRD or improve morbidity and mortality in this population. This article reviews the role of AGEs, especially those of dietary origin, in ESRD patients as well as potential therapeutic anti-AGE strategies in this population. PMID:22548330

  9. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target.

    PubMed

    Toman, O; Kabickova, T; Vit, O; Fiser, R; Polakova, K Machova; Zach, J; Linhartova, J; Vyoral, D; Petrak, J

    2016-09-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib‑resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  10. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization.

    PubMed

    Frecska, Ede; Bokor, Petra; Winkelman, Michael

    2016-01-01

    Ayahuasca is an Amazonian psychoactive brew of two main components. Its active agents are β-carboline and tryptamine derivatives. As a sacrament, ayahuasca is still a central element of many healing ceremonies in the Amazon Basin and its ritual consumption has become common among the mestizo populations of South America. Ayahuasca use amongst the indigenous people of the Amazon is a form of traditional medicine and cultural psychiatry. During the last two decades, the substance has become increasingly known among both scientists and laymen, and currently its use is spreading all over in the Western world. In the present paper we describe the chief characteristics of ayahuasca, discuss important questions raised about its use, and provide an overview of the scientific research supporting its potential therapeutic benefits. A growing number of studies indicate that the psychotherapeutic potential of ayahuasca is based mostly on the strong serotonergic effects, whereas the sigma-1 receptor (Sig-1R) agonist effect of its active ingredient dimethyltryptamine raises the possibility that the ethnomedical observations on the diversity of treated conditions can be scientifically verified. Moreover, in the right therapeutic or ritual setting with proper preparation and mindset of the user, followed by subsequent integration of the experience, ayahuasca has proven effective in the treatment of substance dependence. This article has two important take-home messages: (1) the therapeutic effects of ayahuasca are best understood from a bio-psycho-socio-spiritual model, and (2) on the biological level ayahuasca may act against chronic low grade inflammation and oxidative stress via the Sig-1R which can explain its widespread therapeutic indications. PMID:26973523

  11. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization

    PubMed Central

    Frecska, Ede; Bokor, Petra; Winkelman, Michael

    2016-01-01

    Ayahuasca is an Amazonian psychoactive brew of two main components. Its active agents are β-carboline and tryptamine derivatives. As a sacrament, ayahuasca is still a central element of many healing ceremonies in the Amazon Basin and its ritual consumption has become common among the mestizo populations of South America. Ayahuasca use amongst the indigenous people of the Amazon is a form of traditional medicine and cultural psychiatry. During the last two decades, the substance has become increasingly known among both scientists and laymen, and currently its use is spreading all over in the Western world. In the present paper we describe the chief characteristics of ayahuasca, discuss important questions raised about its use, and provide an overview of the scientific research supporting its potential therapeutic benefits. A growing number of studies indicate that the psychotherapeutic potential of ayahuasca is based mostly on the strong serotonergic effects, whereas the sigma-1 receptor (Sig-1R) agonist effect of its active ingredient dimethyltryptamine raises the possibility that the ethnomedical observations on the diversity of treated conditions can be scientifically verified. Moreover, in the right therapeutic or ritual setting with proper preparation and mindset of the user, followed by subsequent integration of the experience, ayahuasca has proven effective in the treatment of substance dependence. This article has two important take-home messages: (1) the therapeutic effects of ayahuasca are best understood from a bio-psycho-socio-spiritual model, and (2) on the biological level ayahuasca may act against chronic low grade inflammation and oxidative stress via the Sig-1R which can explain its widespread therapeutic indications. PMID:26973523

  12. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.

    PubMed

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-12-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects. PMID:23108553

  13. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders

    PubMed Central

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-01-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects. PMID:23108553

  14. Therapeutic Potential of Human Adipose-Derived Stem Cells (ADSCs) from Cancer Patients: A Pilot Study

    PubMed Central

    García-Contreras, Marta; Vera-Donoso, César David; Hernández-Andreu, José Miguel; García-Verdugo, José Manuel; Oltra, Elisa

    2014-01-01

    Mesenchymal stem cells from adipose tissue (ADSCs) are an important source of cells for regenerative medicine. The therapeutic effect of culture-expanded adipose derived stem cells has been shown; however, optimal xeno-free culture conditions remain to be determined. Cancer patients, specifically those undergoing invasive surgery, constitute a subgroup of patients who could benefit from autologous stem cell transplantation. Although regenerative potential of their ADSCs could be affected by the disease and/or treatment, we are not aware of any study that has evaluated the therapeutic potential of ADSCs isolated from cancer patients in reference to that of ADSCs derived from healthy subjects. Here we report that ADSCs isolated from subabdominal adipose tissue of patients with urological neoplasms yielded similar growth kinetics, presented equivalent mesenchymal surface markers and showed similar differentiation potential into distinct mesodermal cell lineages: adipocytes, chondroblasts and osteoblasts than ADSCs isolated from adipose tissue of age-matched non-oncogenic participants, all under xeno-free growth culture conditions. Molecular karyotyping of patient expanded ADSCs genomes showed no disease-related alterations indicating their safety. In addition, vesicles <100 nm identified as exosomes (EXOs) which may be at least partly responsible for the attributed therapeutic paracrine effects of the ADSCs were effectively isolated from ADSCs and showed equivalent miRNA content regardless they were derived from cancer patients or non-oncogenic participants indicating that the repair capabilities of xeno-free expanded ADSCs are not compromised by patient condition and therefore their xeno-free culture expanded ADSCs should be suitable for autologous stem cell transplantation in a clinical setting. PMID:25412325

  15. Endocannabinoid System and Psychiatry: In Search of a Neurobiological Basis for Detrimental and Potential Therapeutic Effects

    PubMed Central

    Marco, Eva M.; García-Gutiérrez, María S.; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A.; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation. PMID:22007164

  16. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2015-01-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  17. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential.

    PubMed

    Verma, Mahendra Kumar; Pulicherla, K K

    2016-04-01

    Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study. PMID:26739820

  18. MMP-9 and CXCL8/IL-8 Are Potential Therapeutic Targets in Epidermolysis Bullosa Simplex

    PubMed Central

    Lettner, Thomas; Lang, Roland; Klausegger, Alfred; Hainzl, Stefan

    2013-01-01

    Epidermolysis bullosa refers to a group of genodermatoses that affects the integrity of epithelial layers, phenotypically resulting in severe skin blistering. Dowling-Meara, the major subtype of epidermolysis bullosa simplex, is inherited in an autosomal dominant manner and can be caused by mutations in either the keratin-5 (K5) or the keratin-14 (K14) gene. Currently, no therapeutic approach is known, and the main objective of this study was to identify novel therapeutic targets. We used microarray analysis, semi-quantitative real-time PCR, western blot and ELISA to identify differentially regulated genes in two K14 mutant cell lines carrying the mutations K14 R125P and K14 R125H, respectively. We found kallikrein-related peptidases and matrix metalloproteinases to be upregulated. We also found elevated expression of chemokines, and we observed deregulation of the Cdc42 pathway as well as aberrant expression of cytokeratins and junction proteins. We further demonstrated, that expression of these genes is dependent on interleukin-1 β signaling. To evaluate these data in vivo we analysed the blister fluids of epidermolysis bullosa simplex patients vs. healthy controls and identified matrix metalloproteinase-9 and the chemokine CXCL8/IL-8 as potential therapeutic targets. PMID:23894602

  19. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    PubMed

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  20. From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond

    PubMed Central

    Padhye, Subhash; Banerjee, Sanjeev; Ahmad, Aamir; Mohammad, Ramzi; Sarkar, Fazlul H

    2008-01-01

    Summary Over many centuries humans have been mining the bounties of nature for discovering substances that have been used for the treatment of all human diseases; many such remedies are useful even today as modern day medicine. Emerging evidence also suggests that the search is still continuing for harnessing active compounds from nature in combating human illnesses although pharmaceutical industries are equally active for synthesizing small molecule compounds as novel therapeutics. The lesson learned over many centuries clearly suggests that further sophisticated search for finding compounds from natural resources together with robust characterization and chemical synthesis will lead to the discovery of novel drugs that may have high therapeutic efficacy against all human diseases including cancer. Black cumin seed (Nigella sativa) oil extracts have been used for many centuries for the treatment of many human illnesses, and more recently the active compound found in black seed oil, viz. thymoquinone (TQ) has been tested for its efficacy against several diseases including cancer. However, further research is needed in order to assess the full potential of TQ as a chemopreventive and/or therapeutic agent against cancers. Here, we have summarized what is known regarding the value of black seed oil and its active compound TQ, and how this knowledge will help us to advance further research in this field by creating awareness among scientists and health professionals in order to appreciate the medicinal value of TQ and beyond. PMID:19018291

  1. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases.

    PubMed

    Basith, Shaherin; Cui, Minghua; Hong, Sunhye; Choi, Sun

    2016-01-01

    Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics. Indeed, capsaicin and few of its analogues have featured in clinical research covered by more than a thousand patents. Previous records suggest pleiotropic pharmacological activities of capsaicin such as an analgesic, anti-obesity, anti-pruritic, anti-inflammatory, anti-apoptotic, anti-cancer, anti-oxidant, and neuro-protective functions. Moreover, emerging data indicate its clinical significance in treating vascular-related diseases, metabolic syndrome, and gastro-protective effects. The dearth of potent drugs for management of such disorders necessitates the urge for further research into the pharmacological aspects of capsaicin. This review summarizes the historical background, source, structure and analogues of capsaicin, and capsaicin-triggered TRPV1 signaling and desensitization processes. In particular, we will focus on the therapeutic roles of capsaicin and its analogues in both normal and pathophysiological conditions. PMID:27455231

  2. [Potential clinical benefit of therapeutic drug monitoring of imatinib in oncology].

    PubMed

    Turjap, M; Juřica, J; Demlová, R

    2015-01-01

    Imatinib mesylate is a competitive inhibitor of BCR/ ABL tyrosine kinase and inhibits also several receptor tyrosin kinases. Since its launch to the market, imatinib has proven to be very valuable in the treatment of Philadelphia chromosome (BCR/ ABL) -  positive (Ph+) chronic myeloid leukemia and Kit (CD117) positive gastrointestinal stromal tumors. The drug is metabolized by cytochrome P450, and there are many clinically important pharmacokinetic drug-drug interactions described in the literature. Frequent polypharmacy in oncological patients increases probability of such interactions, and also adherence may play its role during longterm treatment. Fixed dosing therapeutic regimens fail to respect known interindividual variability in pharmacokinetics of the drug and thus, some patients may not achieve sufficient plasma concentrations. Based on current evidence, there seems to be a relationship between plasma concentration and clinical response to imatinib. Therefore, imatinib appears to be suitable candidate for therapeutic drug monitoring. Here, we present an overview of pharmacokinetics, drug-drug interactions and current knowledge and suggestions on therapeutic drug monitor-ing of imatinib, its potential benefits and limitations. PMID:25882020

  3. Latest advances in novel cannabinoid CB2 ligands for drug abuse and their therapeutic potential

    PubMed Central

    Yang, Peng; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    The field of cannabinoid (CB) drug research is experiencing a challenge as the CB1 antagonist Rimonabant, launched in 2006 as an anorectic/anti-obesity drug, was withdrawn from the European market due to the complications of suicide and depression as side effects. There is interest in developing CB2 drugs without CB1 psychotropic side effects for drug-abuse treatment and therapeutic medication. The CB1 receptor was discovered predominantly in the brain, whereas the CB2 is mainly expressed in peripheral cells and tissues, and is involved in immune signal transduction. Conversely, the CB2 receptor was recently detected in the CNS, for example, in the microglial cells and the neurons. While the CB2 neurons activity remains controversial, the CB2 receptor is an attractive therapeutic target for neuropathic pain, immune system, cancer and osteoporosis without psychoactivity. This review addresses CB drug abuse and therapeutic potential with a focus on the most recent advances on new CB2 ligands from the literature as well as patents. PMID:22300098

  4. sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer's disease.

    PubMed

    Warrier, Sudha; Marimuthu, Raja; Sekhar, Sreeja; Bhuvanalakshmi, G; Arfuso, Frank; Das, Anjan Kumar; Bhonde, Ramesh; Martins, Ralph; Dharmarajan, Arun

    2016-06-01

    The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer's. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders. PMID:27063405

  5. Hedgehog signaling pathway: A novel target for cancer therapy: Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas

    PubMed Central

    Abidi, Afroz

    2014-01-01

    The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC) and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449), an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib. PMID:24550577

  6. Combination of JAK2 and HSP90 inhibitors: an effective therapeutic option in drug-resistant chronic myelogenous leukemia

    PubMed Central

    Perazzona, Bastianella; Sun, Xiaoping; Lin, Yu-Hsi; Arlinghaus, Ralph B.

    2016-01-01

    Recent studies suggest that JAK2 serves as a novel therapeutic target in Bcr-Abl+ chronic myelogenous leukemia (CML). We have reported the existence of an HSP90- associated high molecular weight network complex (HMWNC) that is composed of HSP90 client proteins BCR-ABL, JAK2, and STAT3 in wild type Bcr-Abl+ leukemic cells. Here we showed that the HSP90-HMWNC is present in leukemia cells from CML patients in blast stage, and in Imatinib (IM)-resistant 32Dp210 (T315I) leukemia cells. We found that the HSP90-HMWNC could be disassembled by depleting JAK2 with either Jak2-specific shRNA or treatment with JAK2 inhibitors (TG101209 or Ruxolitinib) and HSP90 inhibitor (AUY922). Combinational treatment with JAK2 and HSP90 inhibitors diminished the activation of BCR-ABL, JAK2 and its downstream targets. As a result, the IM-resistant 32Dp210 T315I cells underwent apoptosis. When administered in mice bearing 32Dp210 T315I leukemia, combinational therapy using Ruxolitinib and AUY922 prolonged the survival significantly. Thus, a combination of JAK2 and HSP90 inhibitors could be a powerful strategy for the treatment of CML, especially in IM-resistant patients. PMID:27551334

  7. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application

    PubMed Central

    2014-01-01

    Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented. PMID:24724061

  8. Sarcomatoid mesothelioma: future advances in diagnosis, biomolecular assessment, and therapeutic options in a poor-outcome disease.

    PubMed

    Galetta, Domenico; Catino, Annamaria; Misino, Andrea; Logroscino, Antonio; Fico, Maria

    2016-04-18

    Malignant pleural mesothelioma (MPM) is the most frequent pleural neoplasm, with asbestos exposure as one of the recognized carcinogen agents, causative in 80% of cases. The prognosis is poor; median survival of untreated cases is 6-9 months, with fewer than 5% of patients surviving 5 years. Sarcomatoid mesothelioma (SM) represents the subtype with the worst outcome and median survival ranging from 3.5 to 8 months. In the last few years, an accurate differentiation between the subtypes of MPM has become a crucial issue, due to differences in chemosensitivity and clinical outcome, and several studies have evaluated different immunohistochemical markers to better define the diagnosis. The different and worse outcome of patients with SM and, in general, nonepithelioid subtypes makes it intriguing to select these cases to better study the biomolecular profile in order to find factors linked to prognosis and/or predictive of therapeutic response. Considering recent studies on miRNA and genetic mapping, further investigation of this rare subtype might represent a field for basic and clinical-translational research providing for more tailored therapies. PMID:26108245

  9. Combination of JAK2 and HSP90 inhibitors: an effective therapeutic option in drug-resistant chronic myelogenous leukemia.

    PubMed

    Chakraborty, Sandip N; Leng, Xiaohong; Perazzona, Bastianella; Sun, Xiaoping; Lin, Yu-Hsi; Arlinghaus, Ralph B

    2016-05-01

    Recent studies suggest that JAK2 serves as a novel therapeutic target in Bcr-Abl+ chronic myelogenous leukemia (CML). We have reported the existence of an HSP90- associated high molecular weight network complex (HMWNC) that is composed of HSP90 client proteins BCR-ABL, JAK2, and STAT3 in wild type Bcr-Abl+ leukemic cells. Here we showed that the HSP90-HMWNC is present in leukemia cells from CML patients in blast stage, and in Imatinib (IM)-resistant 32Dp210 (T315I) leukemia cells. We found that the HSP90-HMWNC could be disassembled by depleting JAK2 with either Jak2-specific shRNA or treatment with JAK2 inhibitors (TG101209 or Ruxolitinib) and HSP90 inhibitor (AUY922). Combinational treatment with JAK2 and HSP90 inhibitors diminished the activation of BCR-ABL, JAK2 and its downstream targets. As a result, the IM-resistant 32Dp210 T315I cells underwent apoptosis. When administered in mice bearing 32Dp210 T315I leukemia, combinational therapy using Ruxolitinib and AUY922 prolonged the survival significantly. Thus, a combination of JAK2 and HSP90 inhibitors could be a powerful strategy for the treatment of CML, especially in IM-resistant patients. PMID:27551334

  10. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease

    PubMed Central

    Grice, Elizabeth A.

    2015-01-01

    A vast diversity of microorganisms, including bacteria, fungi, viruses, and arthropods, colonize the human skin. Culture-independent genomic approaches for identifying and characterizing microbial communities have provided glimpses into the topographical, temporal, and interpersonal complexity that defines the skin microbiome. Identification of changes associated with cutaneous disease, including acne, atopic dermatitis, rosacea, and psoriasis, are being established. In this review, our current knowledge of the skin microbiome in health and disease is discussed, with particular attention to potential opportunities to leverage the skin microbiome as a diagnostic, prognostic, and/or therapeutic tool. PMID:25085669

  11. The Role of Steroid Receptor Coactivators in Hormone Dependent Cancers and Their Potential as Therapeutic Targets.

    PubMed

    Wang, Lei; Lonard, David M; O'Malley, Bert W

    2016-08-01

    Steroid receptor coactivator (SRC) family members (SRC-1, SRC-2, SRC-3) interact with nuclear receptors (NRs) and many transcription factors to enhance target gene transcription. Deregulation of SRCs is widely implicated in NR mediated diseases, especially hormone dependent cancers. By integrating steroid hormone signaling and growth factor pathways, SRC proteins exert multiple modes of oncogenic regulation in cancers and represent emerging targets for cancer therapeutics. Recent work has identified SRC-targeting agents that show promise in blocking tumor growth in vitro and in vivo, and have the potential to function as powerful and broadly encompassing treatments for different cancers. PMID:27125199

  12. Therapeutic potential of a peptide targeting BCL-2 cell guardians in cancer.

    PubMed

    Adams, Jerry M

    2012-06-01

    A promising approach to cancer therapy is to elicit apoptosis with "BH3 mimetic" drugs, which target proteins of the BCL-2 family. As of yet, however, such drugs can target only certain BCL-2 family proteins. Hence, in this issue of the JCI, LaBelle et al. assess instead the therapeutic potential of a "stapled" BH3 peptide from the BIM protein, which inactivates all its prosurvival relatives. The peptide killed cultured hematologic tumor cells and abated growth of a leukemia xenograft, without perturbing the hematopoietic compartment. Hence, such peptides might eventually provide a new way to treat refractory leukemias. PMID:22622043

  13. Combination therapy of potential gene to enhance oral cancer therapeutic effect

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hsu, Yih-Chih

    2015-03-01

    The epidermal growth factor receptor (EGFR) over-regulation related to uncontrolled cell division and promotes progression in tumor. Over-expression of human epidermal growth factor receptor (EGFR) has been detected in oral cancer cells. EGFR-targeting agents are potential therapeutic modalities for treating oral cancer based on our in vitro study. Liposome nanotechnology is used to encapsulate siRNA and were modified with target ligand to receptors on the surface of tumor cells. We used EGFR siRNA to treat oral cancer in vitro.

  14. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations

    PubMed Central

    Louten, Jennifer; Beach, Michael; Palermino, Kristina; Weeks, Maria; Holenstein, Gabrielle

    2015-01-01

    MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus. PMID:26819546

  15. Therapeutic Potential of Modulating MicroRNA in Peripheral Artery Disease

    PubMed Central

    Hamburg, Naomi M.; Leeper, Nicholas J.

    2015-01-01

    Peripheral artery disease (PAD) produces significant disability attributable to lower extremity ischemia. Limited treatment modalities exist to ameliorate clinical symptoms in patients with PAD. Growing evidence links microRNAs to key processes that govern disease expression in PAD including angiogenesis, endothelial function, inflammation, vascular regeneration, vascular smooth muscle cell function, restenosis, and mitochondrial function. MicroRNAs have been identified in circulation and may serve as novel biomarkers in PAD. This article reviews the potential contribution of microRNA to key pathways of disease development in PAD that may lead to microRNA-based diagnostic and therapeutic approaches. PMID:23713861

  16. Peroxisome proliferator-activated receptor α, a potential therapeutic target for alcoholic liver disease

    PubMed Central

    Nan, Yue-Min; Wang, Rong-Qi; Fu, Na

    2014-01-01

    Alcoholic liver injury represents a progressive process with a range of consequences including hepatic steatosis, steatohepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Targeting key molecular regulators involved in the development of alcoholic liver injury may be of great value in the prevention of liver injury. Peroxisome proliferator-activated receptor α (PPARα) plays a pivotal role in modulation of hepatic lipid metabolism, oxidative stress, inflammatory response and fibrogenesis. As such, PPARα may be a potential therapeutic target for the treatment of alcoholic liver disease. PMID:25009377

  17. [Are there alternative therapeutical options other than CPAP in the treatment of the obstructive sleep apnea syndrome].

    PubMed

    Randerath, W; Bauer, M; Blau, A; Fietze, I; Galetke, W; Hein, H; Maurer, J T; Orth, M; Rasche, K; Rühle, K-H; Sanner, B; Stuck, B A; Verse, T

    2007-07-01

    Many patients with the obstructive sleep apnea syndrome (OSAS) look for alternative conservative or surgical therapies to avoid to be treated with continuous positive airway pressure. In view of the high prevalence and the relevant impairment of the patients lots of methods are offered which promise definitive cure or relevant improvement of OSAS. The working group "Apnea" in the German Society of Sleep Medicine and Research established a task force to evaluate the scientific literature on non-CPAP therapies in the treatment of OSAS according to the standards of evidence-based medicine. This paper summarizes the results of the task force. The data were unsatisfactorily for most of the methods. Sufficient data were available for intraoral appliances (IOA) and the maxillomandibular osteotomy (MMO). IOA's can reduce mild to moderate respiratory disturbances, MMO are efficient in the short and long term but are performed only in special situations such as craniofacial dysmorphias. Weight reduction and body positioning cannot be recommended as a single treatment of OSAS. Most surgical procedures still lack sufficient data according to the criteria of evidence based medicine. Resections of muscular tissue within the soft palate have to be strictly avoided. But even success following gentle soft palate procedures is difficult to predict and often decreases after years. Results in other anatomical regions seem to be more stable over time. Today combined surgeries in the sense of multi-level surgery concepts are of increasing interest in the secondary treatment after failure of nasal ventilation therapy although more data from prospective controlled studies are needed. There is no evidence for any other treatment options. PMID:17538860

  18. Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas

    PubMed Central

    Tsang, Yvonne T. M.; Mullany, Lisa K.; Zu, Zhifei; Richards, JoAnne S.; Gershenson, David M.; Wong, Kwong-Kwok

    2015-01-01

    Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation. PMID:26248031

  19. Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas.

    PubMed

    Crane, Erin K; Kwan, Suet-Yan; Izaguirre, Daisy I; Tsang, Yvonne T M; Mullany, Lisa K; Zu, Zhifei; Richards, JoAnne S; Gershenson, David M; Wong, Kwong-Kwok

    2015-01-01

    Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a--a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis--as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation. PMID:26248031

  20. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics

    PubMed Central

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K.; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-01-01

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n=4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments. PMID:25970776

  1. Myeloperoxidase propagates damage and is a potential therapeutic target for subacute stroke

    PubMed Central

    Forghani, Reza; Kim, Hyeon Ju; Wojtkiewicz, Gregory R; Bure, Lionel; Wu, Yue; Hayase, Makoto; Wei, Ying; Zheng, Yi; Moskowitz, Michael A; Chen, John W

    2015-01-01

    Few effective treatment options exist for stroke beyond the hyperacute period. Radical generation and myeloperoxidase (MPO) have been implicated in stroke. We investigated whether pharmacologic reduction or gene deletion of this highly oxidative enzyme reduces infarct propagation and improves outcome in the transient middle cerebral artery occlusion mouse model (MCAO). Mice were treated with 4-aminobenzoic acid hydrazide (ABAH), a specific irreversible MPO inhibitor. Three treatment regimens were used: (1) daily throughout the 21-day observational period, (2) during the acute stage (first 24 hours), or (3) during the subacute stage (daily starting on day 2). We found elevated MPO activity in ipsilateral brain 3 to 21 days after ischemia. 4-Aminobenzoic acid hydrazide reduced enzyme activity by 30% to 40% and final lesion volume by 60% (P<0.01). The MPO-knockout (KO) mice subjected to MCAO also showed a similar reduction in the final lesion volume (P<0.01). The ABAH treatment or MPO-KO mice also improved neurobehavioral outcome (P<0.001) and survival (P=0.01), but ABAH had no additional beneficial effects in MPO-KO mice, confirming specificity of ABAH. Interestingly, inhibiting MPO activity during the subacute stage recapitulated most of the therapeutic benefit of continuous MPO inhibition, suggesting that MPO-targeted therapies could be useful when given after 24 hours of stroke onset. PMID:25515211

  2. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets

    PubMed Central

    Travert, Marion; Huang, Yenlin; De Leval, Laurence; Martin-Garcia, Nadine; Delfau-Larue, Marie-Helene; Berger, Françoise; Bosq, Jacques; Brière, Josette; Soulier, Jean; Macintyre, Elizabeth; Marafioti, Teresa; de Reyniès, Aurélien; Gaulard, Philippe

    2012-01-01

    Hepatosplenic T-cell lymphoma (HSTL) is a rare entity mostly derived from γδ T cells that shows a fatal outcome. Its pathogenesis remains largely unknown. HSTL samples (7γδ, 2αβ) and the DERL2 HSTL-cell line were subject to combined gene expression profiling and array-based comparative genomic hybridization. Compared to other T-cell lymphomas, HSTL disclosed a distinct molecular signature irrespective of TCR cell lineage. Compared to PTCL,NOS and normal γδ cells, HSTL overexpressed genes encoding NK-cell associated molecules, oncogenes (FOS, VAV3), the Sphingosine-1-phosphatase receptor 5 involved in cell trafficking and the tyrosine kinase SYK, whereas the tumor suppressor gene AIM1 was among the most downexpressed. Methylation analysis of DERL2 cells demonstrated highly methylated CpG islands of AIM1 and decitabine treatment induced significant increase in AIM1 transcripts. Notably, Syk was demonstrated in HSTL cells with its phosphorylated form present in DERL2 cells by Western blot, and in vitro DERL2 cells were sensitive to a Syk inhibitor. Genomic profiles confirmed recurrent isochromosome 7q (n=6/9) without alterations at 9q22 and 6q21 containing SYK and AIM1 genes, respectively. The current study identifies a distinct molecular signature for HSTL and highlights oncogenic pathways which offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents. PMID:22510872

  3. MitraClip therapy in mitral regurgitation: a Markov model for the cost-effectiveness of a new therapeutic option.

    PubMed

    Guerin, Patrice; Bourguignon, Sandrine; Jamet, Nicolas; Marque, Sébastien

    2016-07-01

    Introduction Mitral regurgitation is a heart condition resulting from blood flowing from the left ventricle towards the left atrium, increasing the risk of heart failure and mortality. While surgery can greatly reduce these risks, some patients are not eligible, resulting in medication being their only therapeutic alternative. The MitraClip (Abbot Vascular) is a medical device that is percutaneously implanted and designed to eliminate leaking of the mitral valve. Methods The efficacy of the MitraClip strategy vs medical management was assessed using a 4-state Markov model based on the mitral regurgitation grade (mitral regurgitation grade 0, I/II, and III/IV, and death). At each 1-month cycle, patients were or were not hospitalized. The model analyzed a fictional population of 1000 patients over a 5-year period from a national Health Insurance perspective. The primary end-point was the number of deaths avoided. Data from the EVEREST II High Risk Study patients were used along with a literature review. Results At 5 years, among the 1000 patients, 276 deaths were found to be avoidable with the MitraClip strategy. The incremental cost-effectiveness ratio (ICER) was €93,363 per death avoided. The annual ICER was calculated to take into consideration excess costs resulting from the MitraClip over the first year (€29,984 vs €8557 for the reference strategy) and the reduction of costs in following years (€3122 for MitraClip vs €8557 for reference strategy). Thus, the mean ICER was calculated to be €20,720 per death avoided. Conclusion The MitraClip is a novel alternative therapy for mitral insufficiency in patients ineligible for surgery that may offer a medico-economic advantage. PMID:26909557

  4. The Role of Topical Brimonidine Tartrate Gel as a Novel Therapeutic Option for Persistent Facial Erythema Associated with Rosacea.

    PubMed

    Johnson, Andrew William; Johnson, Sandra Marchese

    2015-09-01

    Rosacea is a chronic inflammatory skin condition that commonly presents with persistent facial erythema with or without the coincident presence of flushing, telangiectasias, inflammatory papules or pustules, phymatous changes, or ocular involvement. Patients often present with a constellation of various signs and symptoms of the disease, and an individualized treatment plan should be tailored to a patient's unique clinical presentation. Previously available medications for rosacea have all targeted the inflammatory erythematous papules and pustules frequently associated with the disease, leaving a therapeutic gap for the common manifestation of persistent facial erythema. Brimonidine tartrate 0.33% gel was approved by the US Food and Drug Administration in August 2013 as the first medication available for the topical treatment of persistent facial erythema associated with rosacea. Brimonidine gel is a highly selective α2-adrenergic receptor agonist with potent vasoconstrictive effects, which leads to significant reduction of persistent facial erythema in the majority of patients when applied once daily. Based on large-scale clinical trials and post-marketing reports, brimonidine gel has maintained a good safety profile with a minority of patients experiencing adverse effects from its use, most of which are cutaneous in nature, mild-to-moderate in degree, occur early after initiation of treatment, often resolve spontaneously with continued use, and generally resolve after discontinuation of use. Among the reported adverse effects, two distinct manifestations of worsened erythema have been described. Brimonidine gel can be integrated into a treatment regimen along with concomitant therapies for facial papules and pustules with no increased risk of adverse events with combination therapy. Education about optimal application methods, setting reasonable expectations for treatment, and minimizing inflammation are important factors for the successful use of brimonidine

  5. Impaired IGF1-GH axis and new therapeutic options in Alström Syndrome patients: a case series

    PubMed Central

    2009-01-01

    Background Defects of the primary cilium and its anchoring structure, the basal body, cause a number of human genetic disorders, collectively termed ciliopathies: primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alström syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration. Alström syndrome is an extremely rare, autosomal recessive genetic disorder characterized by a group of signs and symptoms including infantile onset dilated cardiomyopathy, blindness, hearing impairment/loss, obesity, diabetes, hepatic and renal dysfunction. Because adult growth hormone deficiency and Alström Syndrome share some clinical and metabolic features, we studied the GH-IGF1 axis, using MRI techniques and dynamic tests in 3 unrelated patients with Alström syndrome. Case presentation The patients were hospitalized and the growth hormone stimulatory tests were made, as well as brain MRI. Insulin provocative test revealed a severe GH deficiency in these patients, defined by a peak response to insulin-induced hypoglycemia less than 3 ng/dl and IGF1 concentrations less than – 2SDS. We didn't find multiple pituitary hormone deficiency and we noticed only a severe GH deficiency in all three patients. The MRI study of the diencephalic and pituitary region was suggestive for the diagnosis of empty sella in one patient. One patient received Recombinant-GH replacement for one year with very good results, one underwent a gastric sleeve with a satisfactory outcome, one patient died due to the progression of the cardiac myopathy. Conclusion Future studies are needed to assses if the substitution therapy with Recombinant Growth hormone is cost-effective and without risk in such patients with Alström Syndrome and severe insulin resistance, despite our good results in one patient. Also, careful clinical and genetic studies can contribute to a better understanding of the evolution after different therapeutical attempt in

  6. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models.

    PubMed

    Duffield, Jeremy S; Grafals, Monica; Portilla, Didier

    2013-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-21, the most comprehensively studied microRNA in the kidney so far. MicroRNA-21 is expressed widely in healthy kidney but studies from knockout mice indicate it is largely inert. Although microRNA-21 is upregulated in many cell compartments including leukocytes, epithelial cells and myofibroblasts, the inert microRNA-21 also appears to become activated, by unclear mechanisms. Mice lacking microRNA-21 are protected from kidney injury and fibrosis in several distinct models of kidney disease, and systemically administered oligonucleotides that specifically bind to the active site in microRNA-21, inhibiting its function, recapitulate the genetic deletion of microRNA-21, suggesting inhibitory oligonucleotides may have therapeutic potential. Recent studies of microRNA-21 targets in kidney indicate that it normally functions to silence metabolic pathways including fatty acid metabolism and pathways that prevent Reactive Oxygen Species generation in peroxisomes and mitochondria in epithelial cells and myofibroblasts. Targeting specific pathogenic microRNAs in a specific manner is feasible in vivo and may be a new therapeutic target in disease of the kidney. PMID:25018773

  7. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

    PubMed Central

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-01-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  8. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  9. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases.

    PubMed

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-03-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  10. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2009-01-01

    Alzheimer's disease (AD) is a devastating neuro-degenerative disorder characterized by the progressive and irreversible loss of memory followed by complete dementia. Despite the disease's high prevalence and great economic and social burden, an explicative etiology or viable cure is not available. Great effort has been made to better understand the disease's pathogenesis, and to develop more effective therapeutic agents. However, success is greatly hampered by the presence of the blood-brain barrier that limits a large number of potential therapeutics from entering the brain. Nanoparticle-mediated drug delivery is one of the few valuable tools for overcoming this impediment and its application as a potential AD treatment shows promise. In this review, the current studies on nanoparticle delivery of chelation agents as possible therapeutics for AD are discussed because several metals are found excessive in the AD brain and may play a role in the disease development. Specifically, a novel approach involving transport of iron chelation agents into and out of the brain by nanoparticles is highlighted. This approach may provide a safer and more effective means of simultaneously reducing several toxic metals in the AD brain. It may also provide insights into the mechanisms of AD pathophysiology, and prove useful in treating other iron-associated neurodegenerative diseases such as Friedreich's ataxia, Parkinson's disease, Huntington's disease and Hallervorden-Spatz Syndrome. It is important to note that the use of nanoparticle-mediated transport to facilitate toxicant excretion from diseased sites in the body may advance nanoparticle technology, which is currently focused on targeted drug delivery for disease prevention and treatment. The application of nanoparticle-mediated drug transport in the treatment of AD is at its very early stages of development and, therefore, more studies are warranted. PMID:19936278

  11. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model.

    PubMed

    Sepúlveda, Juan Carlos; Tomé, María; Fernández, María Eugenia; Delgado, Mario; Campisi, Judith; Bernad, Antonio; González, Manuel A

    2014-07-01

    Mesenchymal stem cells (MSCs) possess unique paracrine and immunosuppressive properties, which make them useful candidates for cellular therapy. Here, we address how cellular senescence influences the therapeutic potential of human MSCs (hMSCs). Senescence was induced in bone marrow-derived hMSC cultures with gamma irradiation. Control and senescent cells were tested for their immunoregulatory activity in vitro and in vivo, and an extensive molecular characterization of the phenotypic changes induced by senescence was performed. We also compared the gene expression profiles of senescent hMSCs with a collection of hMSCs used in an ongoing clinical study of Graft Versus Host disease (GVHD). Our results show that senescence induces extensive phenotypic changes in hMSCs and abrogates their protective activity in a murine model of LPS-induced lethal endotoxemia. Although senescent hMSCs retain an ability to regulate the inflammatory response on macrophages in vitro, and, in part retain their capacity to significantly inhibit lymphocyte proliferation, they have a severely impaired migratory capacity in response to proinflammatory signals, which is associated with an inhibition of the AP-1 pathway. Additionally, expression analysis identified PLEC, C8orf48, TRPC4, and ZNF14, as differentially regulated genes in senescent hMSCs that were similarly regulated in those hMSCs which failed to produce a therapeutic effect in a GVHD trial. All the observed phenotypic alterations were confirmed in replicative-senescent hMSCs. In conclusion, this study highlights important changes in the immunomodulatory phenotype of senescent hMSCs and provides candidate gene signatures which may be useful to evaluate the therapeutic potential of hMSCs used in future clinical studies. PMID:24496748

  12. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    PubMed Central

    Duffield, Jeremy S; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-21, the most comprehensively studied microRNA in the kidney so far. MicroRNA-21 is expressed widely in healthy kidney but studies from knockout mice indicate it is largely inert. Although microRNA-21 is upregulated in many cell compartments including leukocytes, epithelial cells and myofibroblasts, the inert microRNA-21 also appears to become activated, by unclear mechanisms. Mice lacking microRNA-21 are protected from kidney injury and fibrosis in several distinct models of kidney disease, and systemically administered oligonucleotides that specifically bind to the active site in microRNA-21, inhibiting its function, recapitulate the genetic deletion of microRNA-21, suggesting inhibitory oligonucleotides may have therapeutic potential. Recent studies of microRNA-21 targets in kidney indicate that it normally functions to silence metabolic pathways including fatty acid metabolism and pathways that prevent Reactive Oxygen Species generation in peroxisomes and mitochondria in epithelial cells and myofibroblasts. Targeting specific pathogenic microRNAs in a specific manner is feasible in vivo and may be a new therapeutic target in disease of the kidney PMID:25018773

  13. Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target.

    PubMed

    Geroldi, Diego; Falcone, Colomba; Emanuele, Enzo

    2006-01-01

    The receptor for advanced glycation end products (RAGE) is a cell-bound receptor of the immunoglobulin superfamily which may be activated by a variety of proinflammatory ligands including advanced glycoxidation end products, S100/calgranulins, high mobility group box 1, and amyloid beta-peptide. RAGE has a secretory splice isoform, soluble RAGE (sRAGE), that lacks the transmembrane domain and therefore circulates in plasma. By competing with cell-surface RAGE for ligand binding, sRAGE may contribute to the removal/neutralization of circulating ligands thus functioning as a decoy. Clinical studies have recently shown that higher plasma levels of sRAGE are associated with a reduced risk of coronary artery disease, hypertension, the metabolic syndrome, arthritis and Alzheimer's disease. Increasing the production of plasma sRAGE is therefore considered to be a promising therapeutic target that has the potential to prevent vascular damage and neurodegeneration. This review presents the state of the art in the use of sRAGE as a disease marker and discusses the therapeutic potential of targeting sRAGE for the treatment of inflammation-related diseases such as atherosclerosis, arthritis and Alzheimer's disease. PMID:16842191

  14. Virogenetic and Optogenetic Mechanisms to Define Potential Therapeutic Targets in Psychiatric Disorders

    PubMed Central

    Han, Ming-Hu; Friedman, Allyson K.

    2011-01-01

    A continuously increasing body of knowledge shows that the brain is an extremely complex neural network and single neurons possess their own complicated interactive signaling pathways. Such complexity of the nervous system makes it increasingly difficult to investigate the functions of specific neural components such as genes, proteins, transcription factors, neurons and nuclei in the brain. Technically, it has been even more of a significant challenge to identify the molecular and cellular adaptations that are both sufficient and necessary to underlie behavioral functions in health and disease states. Defining such neural adaptations is a critical step to identify the potential therapeutic targets within the complex neural network that are beneficial to treat psychiatric disorders. Recently, the newly development and extensive application of in vivo viral-mediated gene transfer (virogenetics) and optical manipulation of specific neurons or selective neural circuits in freely-moving animals (optogenetics) make it feasible, through loss- and gain-of-function approaches, to reliably define sufficient and necessary neuroadaptations in the behavioral models of psychiatric disorders, including drug addiction, depression, anxiety and bipolar disorders. In this article, we focus on recent studies that successfully employ these advanced virogenetic and optogenetic techniques as a powerful tool to identify potential targets in the brain, and to provide highly useful information in the development of novel therapeutic strategies for psychiatric disorders. PMID:21945288

  15. Alcohol Versus Cannabinoids: A Review of Their Opposite Neuro-Immunomodulatory Effects and Future Therapeutic Potentials

    PubMed Central

    Nair, Madhavan P.; Figueroa, Gloria; Casteleiro, Gianna; Muñoz, Karla; Agudelo, Marisela

    2015-01-01

    Due to the legalization of marijuana and the increased demand for cannabis and alcohol consumption, research efforts highlighting the biomedical consequences of the use of alcohol and cannabinoids are not only relevant to the substance abuse scientific field, but are also of public health interest. Moreover, an overview of the recent literature about alcohol and cannabinoids neuro-immunomodulatory effects highlighting their future therapeutic potentials will provide a significant contribution to science and medicine. Therefore, in the current review, we will first discuss briefly the prevalence of alcohol and marijuana abuse, followed by a discussion on the individual effects of alcohol and cannabinoids on the immune system; then, we will focus on the role of endocannabinoids on the alcohol-induced inflammatory effects. In addition, the review also incorporates cytokine array data obtained from human monocyte-derived dendritic cells, providing a different perspective on the alcohol and cannabinoid abuse divergent effects on cytokine production. The final section will highlight the therapeutic potential of cannabinoid receptors and the novel strategies to treat alcohol dependence as determined by in vitro, in vivo and clinical studies. PMID:26478902

  16. Therapeutic potential of induced neural stem cells for spinal cord injury.

    PubMed

    Hong, Jin Young; Lee, Sung Ho; Lee, Seung Chan; Kim, Jong-Wan; Kim, Kee-Pyo; Kim, Sung Min; Tapia, Natalia; Lim, Kyung Tae; Kim, Jonghun; Ahn, Hong-Sun; Ko, Kinarm; Shin, Chan Young; Lee, Hoon Taek; Schöler, Hans R; Hyun, Jung Keun; Han, Dong Wook

    2014-11-21

    The spinal cord does not spontaneously regenerate, and treatment that ensures functional recovery after spinal cord injury (SCI) is still not available. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) by the forced expression defined transcription factors. Although directly converted iNSCs have been considered to be a cell source for clinical applications, their therapeutic potential has not yet been investigated. Here we show that iNSCs directly converted from mouse fibroblasts enhance the functional recovery of SCI animals. Engrafted iNSCs could differentiate into all neuronal lineages, including different subtypes of mature neurons. Furthermore, iNSC-derived neurons could form synapses with host neurons, thus enhancing the locomotor function recovery. A time course analysis of iNSC-treated SCI animals revealed that engrafted iNSCs effectively reduced the inflammatory response and apoptosis in the injured area. iNSC transplantation also promoted the active regeneration of the endogenous recipient environment in the absence of tumor formation. Therefore, our data suggest that directly converted iNSCs hold therapeutic potential for treatment of SCI and may thus represent a promising cell source for transplantation therapy in patients with SCI. PMID:25294882

  17. Therapeutic Potential of Induced Neural Stem Cells for Spinal Cord Injury*

    PubMed Central

    Hong, Jin Young; Lee, Sung Ho; Lee, Seung Chan; Kim, Jong-Wan; Kim, Kee-Pyo; Kim, Sung Min; Tapia, Natalia; Lim, Kyung Tae; Kim, Jonghun; Ahn, Hong-Sun; Ko, Kinarm; Shin, Chan Young; Lee, Hoon Taek; Schöler, Hans R.; Hyun, Jung Keun; Han, Dong Wook

    2014-01-01

    The spinal cord does not spontaneously regenerate, and treatment that ensures functional recovery after spinal cord injury (SCI) is still not available. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) by the forced expression defined transcription factors. Although directly converted iNSCs have been considered to be a cell source for clinical applications, their therapeutic potential has not yet been investigated. Here we show that iNSCs directly converted from mouse fibroblasts enhance the functional recovery of SCI animals. Engrafted iNSCs could differentiate into all neuronal lineages, including different subtypes of mature neurons. Furthermore, iNSC-derived neurons could form synapses with host neurons, thus enhancing the locomotor function recovery. A time course analysis of iNSC-treated SCI animals revealed that engrafted iNSCs effectively reduced the inflammatory response and apoptosis in the injured area. iNSC transplantation also promoted the active regeneration of the endogenous recipient environment in the absence of tumor formation. Therefore, our data suggest that directly converted iNSCs hold therapeutic potential for treatment of SCI and may thus represent a promising cell source for transplantation therapy in patients with SCI. PMID:25294882

  18. Obestatin as a key regulator of metabolism and cardiovascular function with emerging therapeutic potential for diabetes.

    PubMed

    Cowan, Elaine; Burch, Kerry J; Green, Brian D; Grieve, David J

    2016-07-01

    Obestatin is a 23-amino acid C-terminally amidated gastrointestinal peptide derived from preproghrelin and which forms an α helix. Although obestatin has a short biological half-life and is rapidly degraded, it is proposed to exert wide-ranging pathophysiological actions. Whilst the precise nature of many of its effects is unclear, accumulating evidence supports positive actions on both metabolism and cardiovascular function. For example, obestatin has been reported to inhibit food and water intake, body weight gain and gastrointestinal motility and also to mediate promotion of cell survival and prevention of apoptosis. Obestatin-induced increases in beta cell mass, enhanced adipogenesis and improved lipid metabolism have been noted along with up-regulation of genes associated with beta cell regeneration, insulin production and adipogenesis. Furthermore, human circulating obestatin levels generally demonstrate an inverse association with obesity and diabetes, whilst the peptide has been shown to confer protective metabolic effects in experimental diabetes, suggesting that it may hold therapeutic potential in this setting. Obestatin also appears to be involved in blood pressure regulation and to exert beneficial effects on endothelial function, with experimental studies indicating that it may also promote cardioprotective actions against, for example, ischaemia-reperfusion injury. This review will present a critical appraisal of the expanding obestatin research area and discuss the emerging therapeutic potential of this peptide for both metabolic and cardiovascular complications of diabetes. PMID:27111465

  19. Stromal interactions as regulators of tumor growth and therapeutic response: A potential target for photodynamic therapy?

    PubMed Central

    Celli, Jonathan P.

    2013-01-01

    It has become increasingly widely recognized that the stroma plays several vital roles in tumor growth and development and that tumor-stroma interactions can in many cases account poor therapeutic response. Inspired by an emerging body of literature, we consider the potential role of photodynamic therapy (PDT) for targeting interactions with stromal fibroblasts and mechano-sensitive signaling with the extracellular matrix as a means to drive tumors toward a more therapeutically responsive state and synergize with other treatments. This concept is particularly relevant for cancer of the pancreas, which is characterized by tumors with a profoundly dense, rigid fibrous stroma. Here we introduce new in vitro systems to model interactions between pancreatic tumors and their mechanical microenvironment and restore signaling with stromal fibroblasts. Using one such model as a test bed it is shown here that PDT treatment is able to destroy fibroblasts in an in vitro 3D pancreatic tumor-fibroblast co-culture. These results and the literature suggest the further development of PDT as a potential modality for stromal depletion. PMID:23457416

  20. Streptococcal IdeS: therapeutic potential for Guillain–Barré syndrome

    PubMed Central

    Takahashi, Ryo; Yuki, Nobuhiro

    2015-01-01

    Plasma exchange and intravenous immunoglobulin are effective in treating Guillain–Barré syndrome (GBS) probably because the former removes IgG autoantibodies and complement and the latter inhibits complement activation subsequent to the autoantibody binding to peripheral nerve antigens. IgG degrading enzyme of Streptococcus pyogenes (IdeS) can cleave the pathogenic autoantibodies into F(ab’)2 and Fc. The purpose of this study is to show whether IdeS has novel therapeutic potential for GBS. Sera with anti-ganglioside IgG antibodies from 15 patients with GBS or Miller Fisher syndrome were used. We tested whether IdeS cleaved the anti-ganglioside IgG antibodies and inhibited deposition of activated complement component on ELISA plates. IdeS efficiently cleaved IgG and blocked complement activation mediated by anti-GM1, anti-GD1a and anti-GQ1b IgG antibodies. IdeS has therapeutic potential for GBS and related conditions. PMID:26194472