Science.gov

Sample records for potentiokinetic reactivation method

  1. NDE evaluation of the intergranular corrosion susceptibility of a 2205 duplex stainless steel using thermoelectric power and double loop electrochemical potentiokinetic reactivation methods

    NASA Astrophysics Data System (ADS)

    Ortiz, N.; Carreón, H.; Ruiz, A.

    2013-01-01

    There is a need for a nondestructive technique to assess rapidly and with confidence the degree of sensitization (DOS) in duplex stainless steel (DSS). In this investigation, we present the use of thermoelectric power (TEP) measurements as nondestructive method for the determination of DOS in isothermally aged 2205 DSS at 700°C for different aging times. The DOS of the aged samples was first established by performing the double loop electrochemical potentiokinetic reactivation (DL-EPR) test. The microstructural evolution was evaluated by scanning electron microscopy (SEM). Experimental results indicate that TEP coefficient is sensitive to gradual microstructural changes produced by thermal aging and can be used to monitor IGC sensitization of 2205 duplex stainless steel.

  2. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  3. Assessment of electrochemical potentiokinetic reactivation tests to qualify stainless steel for nitric acid service

    SciTech Connect

    Olsen, A.R.; Dillon, J.J.; Peters, A.H.; Clift, T.L.

    1986-12-31

    To minimize the costs and delivery time delays associated with purchasing type 304L stainless steel materials for service in nitric-acid-containing media, an alternative to the current Oak Ridge Y-12 Plant requirement of testing in accordance with American Society for Testing and Materials (ASTM) A 262, Practice C (the boiling nitric acid test), is being sought. A possible candidate is the electrochemical potentiokinetic reactivation (EPR) test being developed for the nuclear industry and under consideration for acceptance as an ASTM standard. Based on a review of the literature and some limited screening tests, this test, as currently proposed, is not a suitable substitute for the nitric acid test. However, with additional development the EPR test is a likely candidate for providing a quantitative substitute for the current qualitative oxalic acid etching (ASTM A 282, Practice A) often used to accept, but not reject, materials for use in a nitric acid medium.

  4. Evaluation by the Double Loop Electrochemical Potentiokinetic Reactivation Test of Aged Ferritic Stainless Steel Intergranular Corrosion Susceptibility

    NASA Astrophysics Data System (ADS)

    Sidhom, H.; Amadou, T.; Braham, C.

    2010-12-01

    An experimental design method was used to determine the effect of factors that significantly affect the response of the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test in controlling the susceptibility to intergranular corrosion (IGC) of UNS S43000 (AISI 430) ferritic stainless steel. The test response is expressed in terms of the reactivation/activation current ratio ( I r / I a pct). Test results analysed by the analysis of variance (ANOVA) method show that the molarity of the H2SO4 electrolyte and the potential scanning rate have a more significant effect on the DL-EPR test response than the temperature and the depassivator agent concentration. On the basis of these results, a study was conducted in order to determine the optimal operating conditions of the test as a nondestructive technique for evaluating IGC resistance of ferritic stainless steel components. Three different heat treatments are considered in this study: solution annealing (nonsensitized), aging during 3 hours at 773 K (500 °C) (slightly sensitized), and aging during 2 hours at 873 K (600 °C) (highly sensitized). The aim is to find the operating conditions that simultaneously ensure the selectivity of the attack (intergranular and chromium depleted zone) and are able to detect the effect of low dechromization. It is found that a potential scanning rate of 2.5 mV/s in an electrolyte composed of H2SO4 3 M solution without depassivator, at a temperature around 293 K (20 °C), is the optimal operating condition for the DL-EPR test. Using this condition, it is possible to assess the degree of sensitization (DOS) to the IGC of products manufactured in ferritic stainless steels rapidly, reliably, and quantitatively. A time-temperature-start of sensitization (TTS) diagram for the UNS S43000 (France Inox, Villepinte, France) stainless steel was obtained with acceptable accuracy by this method when the IGC sensitization criterion was set to I r / I a > 1 pct. This diagram is in

  5. Sensitization phenomena on aged SAF 2205 duplex stainless steel and their control using the electrochemical potentiokinetic reactivation test

    SciTech Connect

    Angelini, E.; Benedetti, B. de; Maizza, G.; Rosalbino, F. . Dept. of Materials Science and Chemical Engineering)

    1999-06-01

    Microstructural changes and resulting properties were studied for SAF 2205 (UNS S31803) austeno-ferritic stainless steel (SS) aged between 700 C and 900 C for up to 2 weeks and then water-quenched. Quantitative metallography coupled with x-ray diffraction techniques were adopted to follow ferrite ([alpha]) transformation with subsequent formation of secondary austenite ([gamma][sub 2]) and sigma ([sigma]) phase. The kinetic model of a transformation was interpreted in the form of an Avrami-type expression. The electrochemical potentiokinetic reactivation (EPR) test was used to evaluate the degree of sensitization of the aged specimens. Results were compared with results from the corrosion test in boiling nitric acid (HNO[sub 3]). Influences of the transformation of ferrite into austenite, sigma phase, and of other microstructural variations such as chromium nitride (Cr[sub 2]N) precipitation on stability of the passive film were shown. The susceptibility to intergranular corrosion phenomena was caused by chromium depletion caused by sigma phase precipitation, while chromium nitrides appeared less harmful. Results were expressed as an isocharge line diagram that allowed concise identification of sensitization and desensitization ranges.

  6. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  7. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  8. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2005-05-03

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  9. PDF methods for turbulent reactive flows

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  10. A heuristic method for reactive power planning

    SciTech Connect

    Mantovani, J.R.S.

    1996-02-01

    An approach for solving reactive power planning problems is presented, which is based on binary search techniques and the use of a special heuristic to obtain a discrete solution. Two versions were developed, one to run on conventional (sequential) computers and the other to run on a distributed memory (hypercube) machine. This latter parallel processing version employs an asynchronous programming model. Once the set of candidate bases has been defined, the program gives the location and size of the reactive sources needed (if any) in keeping with operating and security constraints.

  11. Reactive ion etched substrates and methods of making and using

    SciTech Connect

    Rucker, Victor C.; Shediac, Rene; Simmons, Blake A.; Havenstrite, Karen L.

    2007-08-07

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  12. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  13. Development and first applications of an OH reactivity instrument based on the Comparative Reactivity Method

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Michoud, V.; Hansen, R. F.; Leonardis, T.; Locoge, N.; Stevens, P. S.; Blocquet, M.; Schoemaecker, C.; Fittschen, C. M.; Zannoni, N.; Gros, V.; Sarda Esteve, R.; Sinha, V.

    2015-12-01

    Assessing the oxidative capacity of the atmosphere is important to address fundamental issues related to both air quality and climate change. However, recent measurements of total OH reactivity have highlighted an incomplete understanding of the hydroxyl radical (OH) budget, the main oxidizing agent in the atmosphere. This context has led to the development of several techniques for measuring total OH reactivity to better constrain atmospheric chemistry. This presentation will review the development of an OH reactivity instrument developed at Mines Douai, France. This instrument, based on the Comparative Reactivity Method (CRM), has been carefully characterized in the laboratory and has been compared to other OH reactivity instruments during two different field campaigns. These studies will be summarized to show that CRM instruments can perform reliable measurements in urban and remote areas providing that a few measurement artefacts are well characterized and accounted for during field campaigns.

  14. A Multi-domain Spectral Method for Supersonic Reactive Flows

    NASA Technical Reports Server (NTRS)

    Don, Wai-Sun; Gottlieb, David; Jung, Jae-Hun; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper has a dual purpose: it presents a multidomain Chebyshev method for the solution of the two-dimensional reactive compressible Navier-Stokes equations, and it reports the results of the application of this code to the numerical simulations of high Mach number reactive flows in recessed cavity. The computational method utilizes newly derived interface boundary conditions as well as an adaptive filtering technique to stabilize the computations. The results of the simulations are relevant to recessed cavity flameholders.

  15. Evaluation of Methods to Predict Reactivity of Gold Nanoparticles

    SciTech Connect

    Allison, Thomas C.; Tong, Yu ye J.

    2011-06-20

    Several methods have appeared in the literature for predicting reactivity on metallic surfaces and on the surface of metallic nanoparticles. All of these methods have some relationship to the concept of frontier molecular orbital theory. The d-band theory of Hammer and Nørskov is perhaps the most widely used predictor of reactivity on metallic surfaces, and it has been successfully applied in many cases. Use of the Fukui function and the condensed Fukui function is well established in organic chemistry, but has not been so widely applied in predicting the reactivity of metallic nanoclusters. In this article, we will evaluate the usefulness of the condensed Fukui function in predicting the reactivity of a family of cubo-octahedral gold nanoparticles and make comparison with the d-band method.

  16. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  17. Quantification of Hydroxyl Radical reactivity in the urban environment using the Comparative Reactivity Method (CRM)

    NASA Astrophysics Data System (ADS)

    Panchal, Rikesh; Monks, Paul

    2015-04-01

    Hydroxyl (OH) radicals play an important role in 'cleansing' the atmosphere of many pollutants such as, NOx, CH4 and various VOCs, through oxidation. To measure the reactivity of OH, both the sinks and sources of OH need to be quantified, and currently the overall sinks of OH seem not to be fully constrained. In order to measure the total rate loss of OH in an ambient air sample, all OH reactive species must be considered and their concentrations and reaction rate coefficients with OH known. Using the method pioneered by Sinha and Williams at the Max Plank Institute Mainz, the Comparative Reactivity Method (CRM) which directly quantifies total OH reactivity in ambient air without the need to consider the concentrations of individual species within the sample that can react with OH, has been developed and applied in a urban setting. The CRM measures the concentration of a reactive species that is present only in low concentrations in ambient air, in this case pyrrole, flowing through a reaction vessel and detected using Proton Transfer Reaction - Mass Spectrometry (PTR-MS). The poster will show a newly developed and tested PTR-TOF-MS system for CRM. The correction regime will be detailed to account for the influence of the varying humidity between ambient air and clean air on the pyrrole signal. Further, examination of the sensitivity dependence of the PTR-MS as a function of relative humidity and H3O+(H2O) (m/z=37) cluster ion allows the correction for the humidity variation, between the clean humid air entering the reaction vessel and ambient air will be shown. NO, present within ambient air, is also a potential interference and can cause recycling of OH, resulting in an overestimation of OH reactivity. Tests have been conducted on the effects of varying NO concentrations on OH reactivity and a correction factor determined for application to data when sampling ambient air. Finally, field tests in the urban environment at the University of Leicester will be shown

  18. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  19. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1998-09-22

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  20. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  1. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, David M.; Lindquist, Lloyd O.

    1985-01-01

    Given are a method and apparatus for measuring nondestructively and non-invasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. No external neutron-emitting interrogation source or fissile material is used and no scanning is required, although if a profile is desired scanning can be used. As in active assays, here both reactivity and content of fissionable material can be measured. The assay is accomplished by altering the return flux of neutrons into the fuel assembly. The return flux is altered by changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  2. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  3. Parallel computation of multigroup reactivity coefficient using iterative method

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter

    2013-09-01

    One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.

  4. Parallel computation of multigroup reactivity coefficient using iterative method

    SciTech Connect

    Susmikanti, Mike; Dewayatna, Winter

    2013-09-09

    One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.

  5. Method for treating reactive metals in a vacuum furnace

    DOEpatents

    Hulsey, W.J.

    1975-10-28

    The invention is directed to a method for reducing the contamination of reactive metal melts in vacuum furnaces due to the presence of residual gaseous contaminants in the furnace atmosphere. This reduction is achieved by injecting a stream of inert gas directly over the metal confined in a substantially closed crucible with the flow of the gas being sufficient to establish a pressure differential between the interior of the crucible and the furnace atmosphere.

  6. Treatment of reactive interfaces in pore-scale reactive transport with the phase-field method

    NASA Astrophysics Data System (ADS)

    Huber, C.; Di Palma, P. R.

    2014-12-01

    The two major challenges for continuum reactive transport models are the treatment of interfaces between different phases (multi-fluids like DNAPL-water, or solid-fluid) and the ability to model transient chemical gradients at the pore-scale. Pore-scale models allow us to deal naturally with chemical gradients at the discrete scale and they generally consider interfaces as boundary conditions that satisfy a local, but modified, mass balance equation. In other word grains do not take part in the mass balance of chemical species besides providing a boundary condition for the fluid. For instance, heterogeneous reactions at solid-fluid boundaries are framed as a balance between incoming chemical flux and reactions. Due to complex topology of interfaces in natural porous media, the treatment of heterogeneous reactions depends on the orientation of the interface and therefore requires a special care. It can become complicated and tedious especially when interfaces are allowed to evolve with time. Approaches such as the enthalpy method, which was developed for solving moving interfaces during melting processes, offer the advantage of a treatment that is independent of the shape of the moving interface. Similar methods have been used for modeling multiphase flows with diffuse interface successfully. Here, we expand on these approaches and introduce a phase-field approach to introduce heterogeneous reactions in single and multiphase reactive flows at the pore-scale. Mass conservation is solved in each phase and we introduce interface conditions as a source/sink term in the conservation equation rather than a boundary condition. The advantages are that the method becomes independent of the (time-dependent) topology of the interface and automatically enforces local mass conservation between the different constituents of the domain. We show validations of the model and applications to multispecies reactive transport, isotope fractionation during calcite growth and finally

  7. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  8. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  9. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  10. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    NASA Technical Reports Server (NTRS)

    Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.

    2003-01-01

    A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.

  11. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Vesper, S.

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  12. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Meiggs, T.

    1997-12-31

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  13. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1985-01-01

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  14. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  15. A new three-dimensional method of fault reactivation analysis

    NASA Astrophysics Data System (ADS)

    Leclere, H.; Fabbri, O.

    2012-12-01

    A 3-D method to evaluate the reactivation potential of fault planes is proposed. The method can be applied to cohesive or non cohesive faults whatever their orientation and without any condition on the regional stress field. It allows to compute the effective stress ratio σ3'/σ1' required to reactivate any fault plane and to determine whether the plane is favorably oriented, unfavorably oriented or severely misoriented with respect to the ambient stress field. The method also includes a graphical sorting tool which consists in plotting poles of fault planes on stereoplots on which the boundaries separating the three domains corresponding to favorable orientations, unfavorable orientations and severe misorientations cases are drawn. The delineation of these domains is based on the value of the σ3'/σ1' ratio which itself depends on the orientation of the fault plane with respect to the principal stress axis orientations, the stress shape ratio (Φ = (σ2 - σ3)/(σ1- σ3)), the coefficient of static friction μs of the fault, and the fault cohesion C0. The method is applied on 145 focal mechanisms of the 2011 March 11th Tohoku-Oki (Japan) earthquake sequence. This application allows to delineate, along or in the vicinity of the plate interface, three types of domains characterized by favorable orientations, unfavorable orientations or severe misorientations of mainshock/aftershock fault planes. The 'severe misorientation' domains likely correspond to parts of the plate interface characterized by pore fluid pressures exceeding the magnitude of the regional least principal stress component. Stereoplots for application of the 3-D fault reactivation analysis. The stereoplots at the summits of the central triangle correspond to the three possible Andersonian stress tensors (one vertical principal stress axis, successively σ1 ,σ2 and σ3). The three other triangles shearing two tops with the central triangle are characterized by non-Andersonian stress tensors with

  16. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species

    PubMed Central

    Harrison, David G.

    2014-01-01

    Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2•−), hydrogen peroxide, and peroxynitrite (ONOO•−), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372–382. PMID:22978713

  17. Comparison of Total OH Reactivity Measurement Methods in Ambient Air between a Comparative Reactivity Method using PTR-MS and a LASER Technique

    NASA Astrophysics Data System (ADS)

    Okazaki, H.; Osada, T.; Nakashima, Y.; Kato, S.; Kajii, Y.

    2008-12-01

    OH radical plays an important role in atmospheric chemistry. OH reactivity measurement is essential to understand atmospheric chemical reaction processes. We have developed LASER technique to measure OH reactivity. This system requires both pump and probe lasers and high vacuum system. We have to pay a lot of efforts to bring the instrument in the field for ambient observation. Therefore we have developed a comparative reactivity method for measuring total OH reactivity recently. Since this method does not need a large space and complicated devices, it makes relatively easy to measure OH reactivity anywhere. The result of this non-laser OH reactivity measurement was compared with that of laser pump and probe technique as conducted an intensive field measurement of sub-urban air in Tokyo, July 2008. In comparative reactivity method, a regent species (X), which is ideally not present in ambient air, is introduced into the flow tube reactor and its concentration (C1) is monitored by a suitable detector under nitrogen atmospheric condition. A constant amount of OH radicals is then introduced into the flow tube to react with X under either nitrogen atmosphere (the concentration of X became C2) or ambient air (the concentration of X became C3). Total OH reactivity can be calculated by comparing C1, C2 and C3. OH radicals were produced in the photolysis of water vapor by a UV lamp. In our experiment, Pyrrole is selected as X and PTR-MS is used as a detector. The concentrations of NO, NO2, CO, SO2 were also measured. In some case, the two methods indicated some differences, for example, OH reactivity of 10 to 30 s-1 measured by LASER technique while the comparative reactivity method showed the value of only 5 to 12 s-1.This reason appears to be humidity dependence of PTR-MS sensitivity. Good agreements, for trends and absolute values, were found for comparison between the two methods during another day of experiment where both methods reveal OH reactivity ranging between

  18. Atmospheric measurements of total OH reactivity: Intercomparison of the pump-probe technique and the comparative reactivity method

    NASA Astrophysics Data System (ADS)

    Dusanter, Sebastien; Hansen, Robert; Leonardis, Thierry; Schoemaecker, Coralie; Blocquet, Marion; Fittschen, Christa; Hanoune, Benjamin; Sinha, Vinayak; Stevens, Philip; Locoge, Nadine

    2013-04-01

    The hydroxyl radical (OH) drives the oxidation of organic trace gases that can lead to the production of ozone and secondary organic aerosols in the atmosphere. A complete understanding of the sources and sinks of OH is therefore important to address issues related to both air quality and climate change. However, recent measurements of total OH reactivity [1-2], which is the inverse of the OH lifetime, have pointed out that our understanding of OH sinks is still incomplete and important reactive trace gases have not yet been identified. These measurements of total OH reactivity are of particular interest since they provide a critical test of our understanding of the OH budget. Three techniques are available to measure the total OH reactivity, including the total OH loss rate method [3], the pump-probe method [4], and the comparative reactivity method (CRM) [5]. While the first two methods are based on direct measurements of OH decays using laser-induced fluorescence instruments, the CRM is based on a different approach in which a tracer molecule is detected instead of OH to determine the ambient OH loss rate. As these instruments were deployed in different field campaigns, intercomparison exercises would be useful to ensure the accuracy of the measurements. However, such intercomparisons have not yet been published. An informal intercomparison involving a CRM instrument from the Ecole des Mines de Douai (EMD) and a pump-probe instrument from the laboratory Physicochimie des Processus de Combustion et de l'Atmosphere (PC2A) took place in an urban environment at the university of Lille (France). The two OH reactivity instruments measured continuously side by side for a duration of two weeks. Collocated measurements of trace gases were also performed using O3, NOx and SO2 monitors, as well as two automated chromatographic instruments capable of measuring more than 50 volatile organic compounds (VOC). We will present cross calibrations of the two OH reactivity

  19. Grinding methods to enhance the reactivity of olivine

    SciTech Connect

    Summers, Cathy A.; Dahlin, David C.; Rush, Gilbert E.; O'Connor, William K.; Gerdemann, Stephen J.

    2005-08-01

    The Albany Research Center (ARC) conducted studies of mechanical activation by conventional and ultrafine grinding techniques to enhance olivine reactivity in mineral carbonation reactions. Activated olivine is one of several solid feed materials used at ARC in reactions with carbon dioxide to form carbonate minerals. This paper compares grinding techniques via energy demand data and product characteristics, including particle size distributions, surface areas, full-width-at-half-maximum (FWHM) XRD analyses, and particle morphology by SEM analyses. Reactivity was calculated by percent conversion to carbonate in subsequent carbonation tests. Particle size reduction has the greatest impact on reactivity, and wet grinding is more energy efficient than dry grinding. Large additional inputs of energy to increase surface area or reduce crystallinity do not result in proportional improvements in reactivity.

  20. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  1. Grinding methods to enhance the reactivity of olivine

    SciTech Connect

    Summers, Cathy A.; Dahlin, David C.; Rush, Gilbert E.; O'Connor, William K.; Gerdemann, Stephen J.

    2004-01-01

    The Albany Research Center (ARC) conducted studies of mechanical activation by conventional and ultra-fine grinding techniques to enhance olivine reactivity in mineral carbonation reactions. Activated olivine is one of several solid feed materials used at ARC in reactions with carbon dioxide to form carbonate minerals. This paper compares grinding techniques via energy demand data and product characteristics, including particle size distributions, surface areas, full width at half maximum (FWHM) XRD analyses, and particle morphology by SEM analyses. Reactivity was gauged by percent conversion to carbonate in subsequent carbonation tests.

  2. Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method

    NASA Astrophysics Data System (ADS)

    Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph

    2008-11-01

    This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.

  3. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  4. Detailed characterization of a Comparative Reactivity Method (CRM) instrument for ambient OH reactivity measurements: experiments vs. modeling

    NASA Astrophysics Data System (ADS)

    Michoud, Vincent; Locoge, Nadine; Dusanter, Sébastien

    2015-04-01

    The Hydroxyl radical (OH) is the main daytime oxidant in the troposphere, leading to the oxidation of Volatile Organic Compounds (VOCs) and the formation of harmful pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). While OH plays a key role in tropospheric chemistry, recent studies have highlighted that there are still uncertainties associated with the OH budget, i.e the identification of sources and sinks and the quantification of production and loss rates of this radical. It has been demonstrated that ambient measurements of the total OH loss rate (also called total OH reactivity) can be used to identify and reduce these uncertainties. In this context, the Comparative Reactivity Method (CRM), developed by Sinha et al. (ACP, 2008), is a promising technique to measure total OH reactivity in ambient air and has already been used during several field campaigns. This technique relies on monitoring competitive reactions of OH with ambient trace gases and a reference compound (pyrrole) in a sampling reactor to derive ambient OH reactivity. However, this technique requires a complex data processing chain that has yet to be carefully investigated in the laboratory. In this study, we present a detailed characterization of a CRM instrument developed at Mines Douai, France. Experiments have been performed to investigate the dependence of the CRM response on humidity, ambient NOx levels, and the pyrrole-to-OH ratio inside the sampling reactor. Box modelling of the chemistry occurring in the reactor has also been performed to assess our theoretical understanding of the CRM measurement. This work shows that the CRM response is sensitive to both humidity and NOx, which can be accounted for during data processing using parameterizations depending on the pyrrole-to-OH ratio. The agreement observed between laboratory studies and model results suggests a good understanding of the chemistry occurring in the sampling reactor and gives confidence in the CRM

  5. Method of making a ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2003-01-01

    A method of forming an article. The method comprises forming a silicon-based substrate that is oxidizable by reaction with an oxidant to form at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  6. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample. PMID:21550289

  7. Molecular simulation of shocked materials using the reactive Monte Carlo method.

    PubMed

    Brennan, John K; Rice, Betsy M

    2002-08-01

    We demonstrate the applicability of the reactive Monte Carlo (RxMC) simulation method [J. K. Johnson, A. Z. Panagiotopoulos, and K. E. Gubbins, Mol. Phys. 81, 717 (1994); W. R. Smith and B. Tríska, J. Chem. Phys. 100, 3019 (1994)] for calculating the shock Hugoniot properties of a material. The method does not require interaction potentials that simulate bond breaking or bond formation; it requires only the intermolecular potentials and the ideal-gas partition functions for the reactive species that are present. By performing Monte Carlo sampling of forward and reverse reaction steps, the RxMC method provides information on the chemical equilibria states of the shocked material, including the density of the reactive mixture and the mole fractions of the reactive species. We illustrate the methodology for two simple systems (shocked liquid NO and shocked liquid N2), where we find excellent agreement with experimental measurements. The results show that the RxMC methodology provides an important simulation tool capable of testing models used in current detonation theory predictions. Further applications and extensions of the reactive Monte Carlo method are discussed. PMID:12241148

  8. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  9. Methods and apparatuses for reagent delivery, reactive barrier formation, and pest control

    DOEpatents

    Gilmore, Tyler [Pasco, WA; Kaplan, Daniel I [Aiken, SC; Last, George [Richland, WA

    2002-07-09

    A reagent delivery method includes positioning reagent delivery tubes in contact with soil. The tubes can include a wall that is permeable to a soil-modifying reagent. The method further includes supplying the reagent in the tubes, diffusing the reagent through the permeable wall and into the soil, and chemically modifying a selected component of the soil using the reagent. The tubes can be in subsurface contact with soil, including groundwater, and can be placed with directional drilling equipment independent of groundwater well casings. The soil-modifying reagent includes a variety of gases, liquids, colloids, and adsorbents that may be reactive or non-reactive with soil components. The method may be used inter alia to form reactive barriers, control pests, and enhance soil nutrients for microbes and plants.

  10. Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013

    NASA Astrophysics Data System (ADS)

    Zannoni, N.; Dusanter, S.; Gros, V.; Sarda Esteve, R.; Michoud, V.; Sinha, V.; Locoge, N.; Bonsang, B.

    2015-09-01

    The hydroxyl radical (OH) plays a key role in the atmosphere, as it initiates most of the oxidation processes of volatile organic compounds (VOCs), and can ultimately lead to the formation of ozone and secondary organic aerosols (SOAs). There are still uncertainties associated with the OH budget assessed using current models of atmospheric chemistry and direct measurements of OH sources and sinks have proved to be valuable tools to improve our understanding of the OH chemistry. The total first order loss rate of OH, or total OH reactivity, can be directly measured using three different methods, such as the following: total OH loss rate measurement, laser-induced pump and probe technique and comparative reactivity method. Observations of total OH reactivity are usually coupled to individual measurements of reactive compounds in the gas phase, which are used to calculate the OH reactivity. Studies using the three methods have highlighted that a significant fraction of OH reactivity is often not explained by individually measured reactive compounds and could be associated to unmeasured or unknown chemical species. Therefore accurate and reproducible measurements of OH reactivity are required. The comparative reactivity method (CRM) has demonstrated to be an advantageous technique with an extensive range of applications, and for this reason it has been adopted by several research groups since its development. However, this method also requires careful corrections to derive ambient OH reactivity. Herein we present an intercomparison exercise of two CRM instruments, CRM-LSCE (Laboratoire des Sciences du Climat et de l'Environnement) and CRM-MD (Mines Douai), conducted during July 2013 at the Mediterranean site of Ersa, Cape Corsica, France. The intercomparison exercise included tests to assess the corrections needed by the two instruments to process the raw data sets as well as OH reactivity observations. The observation was divided in three parts: 2 days of plant

  11. Quantum mechanical algebraic variational methods for inelastic and reactive molecular collisions

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Haug, Kenneth; Zhao, Meishan; Truhlar, Donald G.; Sun, Yan

    1988-01-01

    The quantum mechanical problem of reactive or nonreactive scattering of atoms and molecules is formulated in terms of square-integrable basis sets with variational expressions for the reactance matrix. Several formulations involving expansions of the wave function (the Schwinger variational principle) or amplitude density (a generalization of the Newton variational principle), single-channel or multichannel distortion potentials, and primitive or contracted basis functions are presented and tested. The test results, for inelastic and reactive atom-diatom collisions, suggest that the methods may be useful for a variety of collision calculations and may allow the accurate quantal treatment of systems for which other available methods would be prohibitively expensive.

  12. Modeling two-dimensional reactive transport using a Godunov-mixed finite element method

    NASA Astrophysics Data System (ADS)

    James, Andrew I.; Jawitz, James W.

    2007-05-01

    SummaryThe development of a model to simulate transport of materials in variable-depth flows is discussed. The model numerically approximates solutions to the advection-dispersion-reaction equation using a time-splitting technique where the advective, dispersive, and reactive parts of the equation are solved separately. An explicit finite-volume Godunov method is used to approximate the advective part while a hybridized mixed finite element method is used to solve for the dispersive step. A backward Euler method is used to solve the reactive component. Rather than solving each component once at each time step, the advective and reactive steps are fractionally and symmetrically split around the dispersive step, so that half of a reactive and advective step are solved before and after each dispersive step. Since the dispersive step is implicit, but computationally expensive, while the advective step is explicit but has time step constraints, this allows stable and more efficient schemes to be implemented in contrast to non-split or simple time-split algorithms. This technique allows problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, to be solved without oscillations in the solution and with virtually no artificial diffusion. By applying the technique to variable depth flows, a variety of applications to transport and reaction problems in surface water and unconfined aquifers can be undertaken. Numerical results for several non-reactive and reactive transport problems in one- and two-dimensions are presented. Observed convergence rates are up to second-order for these simulations.

  13. Interest of the non linear fitting method for reactivity assessment using flux transient experiments

    SciTech Connect

    Geslot, B.; Jammes, C.

    2006-07-01

    Flux transient measurements, meaning rod drop or source jerk experiments, are useful to estimate subcritical core reactivity or control rod worth. Among numerous analysis methods, the most widely used is the so called 'inverse kinetics' method (IK). Based on the inversion of the counting rates, this method gives very good results when counting rates are high. When assessing far subcritical levels with low counting rates, it appears that results are biased and very imprecise. In order to overcome those problems in the case of measurements performed in the framework of the first phase of the RACE-T program, we used a non linear fitting method (NF) to analyse transient experiments. In this paper, we present the NF method reactivity estimator and study its behaviour, in terms of bias and uncertainties, on simulated transients. Then, RACE-T results on experimental source jerk measurements, obtained using IK and NF, are compared and discussed. (authors)

  14. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like.

  15. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    NASA Astrophysics Data System (ADS)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-10-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  16. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    NASA Astrophysics Data System (ADS)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-06-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the Comparative Reactivity Method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of Volatile Organic Compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  17. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    SciTech Connect

    Juxiu Tong; Bill X. Hu; Hai Huang; Luanjin Guo; Jinzhong Yang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.

  18. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    DOEpatents

    Lewandowski, Edward F.; Peterson, Leroy L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  19. Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die

    DOEpatents

    Lewandowski, E.F.; Peterson, L.L.

    1981-11-30

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  20. Computational methods for multiphase equilibrium and kinetics calculations for geochemical and reactive transport applications

    NASA Astrophysics Data System (ADS)

    Leal, Allan; Saar, Martin

    2016-04-01

    Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.

  1. A new method for analysis of reactive adsorbed intermediates: Bismuth postdosing in thermal desorption mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Campbell, Charles T.; Rodriguez, J. A.; Henn, F. C.; Campbell, J. M.; Dalton, P. J.; Seimanides, S. G.

    1988-05-01

    A new method which should have relatively general applicability for the identification and quantitative analysis of reactive adsorbed molecular intermediates in surface reactions will be described, and the first examples of its application will be presented. When a reactive intermediate is generated on a surface, it often has a tendency to dissociate before desorbing. Since dissociation generally requires additional free sites on the surface, dissociation can be suppressed and desorption correspondingly enhanced if the free sites on the surface can be properly poisoned. We have found that bismuth adatoms are very good inert site blockers, which can be postdosed to the surface of a transition metal containing a reactive adsorbed hydrocarbon without destroying the hydrocarbon. Whereas in the absence of bismuth, the hydrocarbon would completely dehydrogenate during thermal desorption spectroscopy (TDS) and liberate only H2 into the gas phase, after bismuth postdosing the reactive hydrocarbon desorbs intact for mass spectral identification and quantitative analysis. This method has been used to prove that adsorbed benzene is the initial product of the dehydrogenation of cyclohexane on Pt(111) at ˜235 K. In the absence of bismuth, this benzene all dissociates during TDS to liberate only H2, leaving graphitic carbon residue on the surface. When one-third monolayer of Bi is postdosed at 110 K, the dehydrogenation pathway is sterically poisoned and the adsorbed benzene quantitatively desorbs during TDS, where it is unambiguously identified by mass spectroscopy. By briefly heating the reactive adsorbed intermediate to increasing temperatures prior to Bi deposition, the thermal stability limits of the intermediate and the kinetic parameters for its dissociation can be established. This is demonstrated for the dehydrogenation reaction of adsorbed cyclopentene on Pt(111). Bismuth postdosing in thermal desorption mass spectroscopy (BPTDS) should be a very useful but

  2. Evaluation of an offline method for the analysis of atmospheric reactive gaseous mercury and particulate mercury

    USGS Publications Warehouse

    Rutter, A.P.; Hanford, K.L.; Zwers, J.T.; Perillo-Nicholas, A. L.; Schauer, J.J.; Olson, M.L.

    2008-01-01

    Reactive gaseous mercury (RGM) and particulate mercury (PHg) were collected in Milwaukee, WI, between April 2004 and May 2005, and in Riverside, CA, between July 25 and August 7, 2005 using sorbent and filter substrates. The substrates were analyzed for mercury by thermal desorption analysis (TDA) using a purpose-built instrument. Results from this offline-TDA method were compared with measurements using a real-time atmospheric mercury analyzer. RGM measurements made with the offline-TDA agreed well with a commercial real-time method. However, the offline TDA reported PHg concentrations 2.7 times higher than the real-time method, indicating evaporative losses might be occurring from the real-time instrument during sample collection. TDA combined with reactive mercury collection on filter and absorbent substrates was cheap, relatively easy to use, did not introduce biases due to a semicontinuous sample collection strategy, and had a dynamic range appropriate for use in rural and urban locations. The results of this study demonstrate that offline-TDA is a feasible method for collecting reactive mercury concentrations in a large network of filter-based samplers. Copyright 2008 Air & Waste Management Association.

  3. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  4. Shock compression of condensed matter using multimaterial reactive ghost fluid method

    NASA Astrophysics Data System (ADS)

    Kim, Ki-hong; Yoh, Jack J.

    2008-04-01

    For the flow analysis of reactive compressible media involving energetic materials and deforming metallic boundaries, a HYDRO-SCCM (shock compression of condensed matter) tool is developed for handling multiphysics shock analysis of energetic and inert matters. The highly energetic flows give rise to the strong nonlinear shock waves and the high strain rate deformation of solid boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multifluid method is formulated. The numerical methodology is described in this paper, while the extended applications and the capacity of the tool are discussed in a separate paper [J. J. Yoh and K. H. Kim, "Shock Compression of Condensed Matter using Eulerian Multimaterial Method: Applications to multi-dimensional shocks, deflagration, detonation, and laser ablation," J. Appl. Phys. (accepted)].

  5. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOEpatents

    Carr; Jeffrey W.

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  6. Reaction sampling and reactivity prediction using the stochastic surface walking method.

    PubMed

    Zhang, Xiao-Jie; Liu, Zhi-Pan

    2015-01-28

    The prediction of chemical reactivity and thus the design of new reaction systems are the key challenges in chemistry. Here, we develop an unbiased general-purpose reaction sampling method, the stochastic surface walking based reaction sampling (SSW-RS) method, and show that the new method is a promising solution for reactivity prediction of complex reaction systems. The SSW-RS method is capable of sampling both the configuration space of the reactant and the reaction space of pathways, owing to the combination of two recently developed theoretical methods, namely, the stochastic surface walking (SSW) method for potential energy surface (PES) exploration and the double-ended surface walking (DESW) method for building pathways. By integrating with first principles calculations, we show that the SSW-RS method can be applied to investigate the kinetics of complex organic reactions featuring many possible reaction channels and complex hydrogen-bonding networks, as demonstrated here using two examples, epoxypropane hydrolysis in aqueous solution and β-d-glucopyranose decomposition. Our results show that simultaneous sampling of the soft hydrogen-bonding conformations and the chemical reactions involving hard bond making/breaking can be achieved in the SSW-RS simulation, and the mechanism and kinetics can be predicted without a priori information on the system. Unexpected new chemistry for these reactions is revealed and discussed. In particular, despite many possible pathways for β-d-glucopyranose decomposition, the SSW-RS shows that only β-d-glucose and levoglucosan are kinetically preferred direct products and the 5- or 7-member ring products should be secondary products derived from β-d-glucose or levoglucosan. As a general tool for reactivity prediction, the SSW-RS opens a new route for the design of rational reactions. PMID:25503262

  7. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  8. Novel dual-mode immunomagnetic method for studying reactivation of nerve agent-inhibited butyrylcholinesterase.

    PubMed

    Abney, Carter W; Knaack, Jennifer L S; Ali, Ahmed A I; Johnson, Rudolph C

    2013-05-20

    A novel immunomagnetic method has been developed for the simultaneous measurement of organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BuChE) and free OPNAs in serum. This new approach, deemed dual-mode immunomagnetic analysis (Dual-Mode IMA), combines immunomagnetic separation (IMS) and immunomagnetic scavenging (IMSc) and has been used to measure the effectiveness of cholinesterase reactivators on OPNA-inhibited BuChE in serum. BuChE inhibited by the nerve agent VX, uninhibited BuChE, and unbound VX were measured up to 1 h after the addition of oxime reactivators pralidoxime (2-PAM) and obidoxime. IMS experiments consisted of extracting BuChE and VX-BuChE serum adducts using antibutyrylcholinesterase monoclonal antibodies conjugated to protein-G ferromagnetic particles. In a parallel set of experiments using IMSc, BuChE-coated magnetic beads were used to extract free VX from protein-depleted serum. Adducts from both IMS and IMSc were analyzed using a published IMS liquid chromatography tandem mass spectrometry (IMS-LC-MS/MS) protocol, which has also been demonstrated with other OPNAs. By applying this Dual-Mode IMA approach, 2-PAM was observed to be more potent than obidoxime in reactivating VX-adducted BuChE. VX-BuChE peptide concentrations initially measured at 19.7 ± 0.7 ng/mL decreased over 1 h to 10.6 ± 0.6 ng/mL when reactivated with 2-PAM and 14.4 ± 1.2 ng/mL when reactivated with obidoxime. These experiments also show that previously published IMS-LC-MS/MS analyses are compatible with serum treated with oximes. Dual-Mode IMA is the first immunoaffinity method developed for the simultaneous measurement of OPNA adducted BuChE, unadducted BuChE, and free nerve agent in serum and is a promising new tool for studying reactivator effectiveness on cholinesterases inhibited by nerve agents. PMID:23656164

  9. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1994-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like. This invention was made with Government support under Grant Contract No. AI-24695, awarded by the Department of health and Human Services, and under Grant Contract No. N 00014-87-K-0256, awarded by the Office of Naval Research. The Government has certain rights in this invention.

  10. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  11. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2016-01-01

    A simple and highly sensitive spectrophotometric method was developed for the determination of thiobarbituric acid reactive substances (TBARS) as a marker for lipid peroxidation in fried fast foods. The method uses the reaction of malondialdehyde (MDA) and TBA in the glacial acetic acid medium. The method was precise, sensitive, and highly reproducible for quantitative determination of TBARS. The precision of extractions and analytical procedure was very high as compared to the reported methods. The method was used to determine the TBARS contents in the fried fast foods such as Shami kebab, samosa, fried bread, and potato chips. Shami kebab, samosa, and potato chips have higher amount of TBARS in glacial acetic acid-water extraction system than their corresponding pure glacial acetic acid and vice versa in fried bread samples. The method can successfully be used for the determination of TBARS in other food matrices, especially in quality control of food industries. PMID:27123360

  12. Preparation of superconducting Y-Ba-Cu-O films by a reactive plasma evaporation method

    NASA Astrophysics Data System (ADS)

    Terashima, Kazuo; Eguchi, Keisuke; Yoshida, Toyonobu; Akashi, Kazuo

    1988-04-01

    Y-Ba-Cu-O superconducting films were prepared by a reactive plasma evaporation method, in which mixed powders were coevaporated in a thermal RF Ar + O2 plasma, and the ternary-composition controlled high-temperature metallic vapors were codeposited onto a substrate. The deposition rate was much more than 10 micron/min, which is several orders of magnitude higher than those reported for other methods. The structure of the prepared films was identified as an orthorhombic oxygen-deficient perovskite phase, and some films showed the preferred orientation of (001). The as-deposited film without postannealing showed a superconducting transition temperature Tcm (midpoint) of 94 K.

  13. Systems and methods for reactive distillation with recirculation of light components

    DOEpatents

    Stickney, Michael J.; Jones, Jr., Edward M.

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  14. A simplified method for determining reactive rate parameters for reaction ignition and growth in explosives

    SciTech Connect

    Miller, P.J.

    1996-07-01

    A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.

  15. GUINEVERE experiment: Kinetic analysis of some reactivity measurement methods by deterministic and Monte Carlo codes

    SciTech Connect

    Bianchini, G.; Burgio, N.; Carta, M.; Peluso, V.; Fabrizio, V.; Ricci, L.

    2012-07-01

    The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Several off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)

  16. Evaluation of toughness deterioration by an electrochemical method in an isothermally-aged N-containing austenitic stainless steel

    SciTech Connect

    Saucedo-Munoz, Maribel L. Lopez-Hirata, Victor M.; Avila-Davila, Erika O.; Melo-Maximo, Dulce V.

    2009-02-15

    This work presents the results of an evaluation of the deterioration of cryogenic toughness by means of an electrochemical method in a N-containing austenitic stainless steel (JK2) aged at temperatures of 700, 800 and 900 deg. C for times from 10 to 1000 min. The aging process at 700 and 800 deg. C caused the decrease in the Charpy V-Notch impact energy at - 196 deg. C because of the intergranular precipitation of carbides. Scanning electron micrographs of the Charpy V-Notch test specimens showed the presence of intergranular brittle fracture. The degree of sensitization was determined by the ratio of the maximum current density generated by the reactivation scan to that of the anodic scan, I{sub r}/I{sub a}, using the double-loop electrochemical potentiokinetic reactivation test. The Charpy V-Notch impact energy decreased with increase in the I{sub r}/I{sub a} ratio. This relation permits an estimate of the deterioration of cryogenic toughness due to thermal aging in this type of steel.

  17. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  18. Tableau method for reactive path planning in an obstacle avoidance system

    NASA Astrophysics Data System (ADS)

    Beeson, Bradley K.; Kurtz, John J.; Bonner, Kevin G.

    1999-07-01

    Autonomous off-road vehicles face the daunting challenge of successfully navigating through terrain in which unmapped obstacles present hazards to safe vehicle operation. These obstacles can be sparsely scattered or densely clustered. The obstacle avoidance (OA) system on-board the autonomous vehicle must be capable of detecting all non-negotiable obstacles and planning paths around them in a sufficient computing interval to permit effective operation of the platform. To date, the reactive path planning function performed by OA systems has been essentially an exhaustive search through a set of preprogrammed swaths (linear trajectories projected through the on-board local obstacle map) to determine the best path for the vehicle to travel toward achieving a goal state. Historically, this function is a large consumer of computational resources in an OA system. A novel reactive path planner is described that minimizes processing time through the use of pre-computed indices into an n over n + 1 tableau structure with the lowest level in the tableau representing the traditional 'histogram' result. The tableau method differs significantly from other reactive planners in three ways: (1) the entire tableau is computed off-line and loaded on system startup, minimizing computational load; (2) the real-time computational load is directly proportional to the number of grid points searched and proportional to the square of the number of paths; and (3) the tableau is independent of grid resolution. Analytical and experimental comparisons of the tableau and histogram methods are presented along with generalization into an autonomous mobility system incorporating multiple feature planes and path cost evaluation.

  19. Surface treatment method for 1/f noise suppression in reactively sputtered nickel oxide film

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Park, Seung-Man; Lee, Hee Chul

    2012-07-01

    A surface treatment method combined with O2 plasma treatment and Ar+ bombardment is proposed for 1/f noise suppression in a reactively sputtered NiO film as a micro-bolometer sensing material. The 1/f noise power spectral density on a sample prepared by the proposed surface treatment method prior to the contact formation is suppressed to a level roughly 18 times lower than that on an untreated sample. The improved noise characteristic can be ascribed to the cooperative effects of the two steps in the proposed surface treatment method. In its effects, the oxygen plasma treatment is supposed to increase the Ni3+ component on the surface of the NiO film, which in turn increases the hole concentration on the surface. Additional Ar+ bombardment is expected to remove contaminants on the surface of the NiO film, leading to a low contact resistance.

  20. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. PMID:26455772

  1. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  2. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.

    2007-05-15

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  3. COD and color removal of reactive orange 16 dye solution by electrochemical oxidation and adsorption method

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhailie; Ahmad, Wan Yaacob Wan; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Degradation of Reactive Orange 16 (RO16) dye was investigated using electrochemical oxidation and adsorption (batch method) using mixture of coconut trunk charcoal-graphite-tin-polyvinyl chloride(PVC). In batch studies for adsorbents pellet and powder form of the charcoal mixture were used. RO16 was chosen as the model dye because of its high resistance towards conventional treatment methods. NaCl and RO16 concentration, treatment duration, weight of electrode and adsorbent and volume of solution were kept constant for both methods. The effectiveness of the treatments were compared and evaluated by percentage of RO16 decolorization and chemical oxygen demand (COD) removal and results indicated that electrochemical oxidation method ables to decolorized RO16 dye up to 98.5% after 20 minutes electrolysis time while pellet and powder in batch method only removed 17.1 and 33.6% of RO16 color respectively. However, only 45.6% of COD can be removed using electrochemical oxidation method while pellet and powder in batch method removed 47.8 and 49.6% of COD respectively. The decolorization and COD removal of RO16 was determined using UV-Vis spectrophotometer (by the changes of absorption spectrum intensity of azo chromophore (-N=N-) at λ=388 and 492.50 nm and Hach spectrophotometer respectively. FTIR was used to determine functional groups present in the coconut trunk charcoal.

  4. SPATIAL DISTRIBUTION OF CARBON AND SULFUR PRECIPITATING WITHIN PERMEABLE REACTIVE BARRIERS: DEVELOPMENT OF ANALYTICAL METHODS

    EPA Science Inventory

    A permeable reactive barrier (PRB) is a wall of porous reactive material placed in the path of a dissolved contaminant plume for the purpose of removing contaminants from ground water. Chemical processes within these reactive materials remove both inorganic and organic contamina...

  5. Identification of Mesenchymal Stem Cell Marker STRO-1 in Oral Reactive Lesions by Immunofluorescence Method

    PubMed Central

    Dehghani Nazhvani, Ali; Hosseini, Seyed-Mojtaba; Tahoori, Bita; Tavangar, Maryam-Sadat; Attar, Armin

    2015-01-01

    Statement of the Problem Stem cells are considered as new implement for tissue regeneration. Several niches in adult human body are colonized by multipotent stem cells but access to these potential reservoirs is often limited. Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is still unknown whether stem cells also exist in reactive lesions of oral cavity such as pyogenic granuloma and peripheral ossifying fibroma which are deliberated as inflammatory proliferation of different cell families. Purpose The aim of this study was to explore for clues to see whether pyogenic granuloma or peripheral ossifying fibroma contain dental mesenchymal stem cell (DMSC). Materials and Method Four pyogenic granuloma and four peripheral ossifying fibroma specimens were collected by excisional biopsy and preserved in PBS-EDTA at -86 °C. Then we cut them in 5µm diameter using Cryostat. Having been rinsed with PBS, the samples were stained with a primary mouse anti-human STRO-1 monoclonal IgM antibody. Afterward, a secondary goat anti-mouse IgM-FITC antibody was applied to detect STRO-1+ cells as probable stem cells by immunofluorescence technique. Results Immunofluorescence microscopy revealed presence of STRO-1+ cells in these lesions, particularly localized on perivascular zone. The negative control group was not glowing. Conclusion Based on these results, it was found that reactive lesions of pyogenic granuloma and peripheral ossifying fibroma have STRO-1 positive cells, which raises the possibility that these cells may be DMSCs. PMID:26535404

  6. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOEpatents

    Kong, P.C.

    1997-05-06

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  7. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOEpatents

    Kong, Peter C.

    1997-01-01

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  8. Method for atmospheric pressure reactive atom plasma processing for surface modification

    DOEpatents

    Carr, Jeffrey W.

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  9. Nuclear spin selection rules for reactive collision systems by the spin-modification probability method.

    PubMed

    Park, Kisam; Light, John C

    2007-12-14

    The spin-modification probability (SMP) method, which provides fundamental and detailed quantitative information on the nuclear spin selection rules, is discussed more systematically and generalized for reactive collision systems involving more than one configuration of reactant and product molecules, explicitly taking account of the conservation of the overall nuclear spin symmetry as well as the conservation of the total nuclear spin angular momentum, under the assumption of no nuclear hyperfine interaction. The values of SMP once calculated can be used for any system of identical nuclei of any spin as long as the system has the corresponding nuclear spin symmetry. The values of SMP calculated for simple systems can also be used for more complex systems containing several kinds of identical nuclei or various isotopomers. The generalized formulation of statistical scattering theory which can easily represent various rearrangement mechanisms is also presented. PMID:18081384

  10. Detailed characterizations of the new Mines Douai comparative reactivity method instrument via laboratory experiments and modeling

    NASA Astrophysics Data System (ADS)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-08-01

    The hydroxyl (OH) radical is an important oxidant in the troposphere, which controls the lifetime of most air quality- and climate-related trace gases. However, there are still uncertainties concerning its atmospheric budget, and integrated measurements of OH sinks have been valuable to improve this aspect. Among the analytical tools used for measuring total OH reactivity in ambient air, the comparative reactivity method (CRM) is spreading rapidly in the atmospheric community. However, measurement artifacts have been highlighted for this technique, and additional work is needed to fully characterize them. In this study, we present the new Mines Douai CRM instrument, with an emphasis on the corrections that need to be applied to ambient measurements of total OH reactivity. Measurement artifacts identified in the literature have been investigated, including (1) a correction for a change in relative humidity between the measurement steps leading to different OH levels, (2) the formation of spurious OH in the sampling reactor when hydroperoxy radicals (HO2) react with nitrogen monoxide (NO), (3) not operating the CRM under pseudo-first-order kinetics, and (4) the dilution of ambient air inside the reactor. The dependences of these artifacts on various measurable parameters, such as the pyrrole-to-OH ratio and the bimolecular reaction rate constants of ambient trace gases with OH, have also been studied. Based on these observations, parameterizations are proposed to correct ambient OH reactivity measurements. On average, corrections of 5.2 ± 3.2, 9.2 ± 15.7, and 8.5 ± 5.8 s-1 were respectively observed for (1), (2) and (3) during a field campaign performed in Dunkirk, France (summer 2014). Numerical simulations have been performed using a box model to check whether experimental observations mentioned above are consistent with our understanding of the chemistry occurring in the CRM reactor. Two different chemical mechanisms have been shown to reproduce the magnitude

  11. Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods.

    PubMed

    Riikonen, Joakim; Salomäki, Mikko; van Wonderen, Jessica; Kemell, Marianna; Xu, Wujun; Korhonen, Ossi; Ritala, Mikko; MacMillan, Fraser; Salonen, Jarno; Lehto, Vesa-Pekka

    2012-07-17

    Oxidation is the most commonly used method of passivating porous silicon (PSi) surfaces against unwanted reactions with guest molecules and temporal changes during storage or use. In the present study, several oxidation methods were compared in order to find optimal methods able to generate inert surfaces free of reactive hydrides but would cause minimal changes in the pore structure of PSi. The studied methods included thermal oxidations, liquid-phase oxidations, annealings, and their combinations. The surface-oxidized samples were studied by Fourier transform infrared spectroscopy, isothermal titration microcalorimetry, nitrogen sorption, ellipsometry, X-ray diffraction, electron paramagnetic resonance spectroscopy, and scanning electron microscopy imaging. Treatment at high temperature was found to have two advantages. First, it enables the generation of surfaces free of hydrides, which is not possible at low temperatures in a liquid or a gas phase. Second, it allows the silicon framework to partially accommodate a volume expansion because of oxidation, whereas at low temperature the volume expansion significantly consumes the free pore volume. The most promising methods were further optimized to minimize the negative effects on the pore structure. Simple thermal oxidation at 700 °C was found to be an effective oxidation method although it causes a large decrease in the pore volume. A novel combination of thermal oxidation, annealing, and liquid-phase oxidation was also effective and caused a smaller decrease in the pore volume with no significant change in the pore diameter but was more complicated to perform. Both methods produced surfaces that were not found to react with a model drug cinnarizine in isothermal titration microcalorimetry experiments. The study enables a reasonable choice of oxidation method for PSi applications. PMID:22671967

  12. Detailed characterizations of a Comparative Reactivity Method (CRM) instrument: experiments vs. modelling

    NASA Astrophysics Data System (ADS)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-04-01

    The Hydroxyl radical (OH) is an important oxidant in the daytime troposphere that controls the lifetime of most trace gases, whose oxidation leads to the formation of harmful secondary pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). In spite of the importance of OH, uncertainties remain concerning its atmospheric budget and integrated measurements of the total sink of OH can help reducing these uncertainties. In this context, several methods have been developed to measure the first-order loss rate of ambient OH, called total OH reactivity. Among these techniques, the Comparative Reactivity Method (CRM) is promising and has already been widely used in the field and in atmospheric simulation chambers. This technique relies on monitoring competitive OH reactions between a reference molecule (pyrrole) and compounds present in ambient air inside a sampling reactor. However, artefacts and interferences exist for this method and a thorough characterization of the CRM technique is needed. In this study, we present a detailed characterization of a CRM instrument, assessing the corrections that need to be applied on ambient measurements. The main corrections are, in the order of their integration in the data processing: (1) a correction for a change in relative humidity between zero air and ambient air, (2) a correction for the formation of spurious OH when artificially produced HO2 react with NO in the sampling reactor, and (3) a correction for a deviation from pseudo first-order kinetics. The dependences of these artefacts to various measurable parameters, such as the pyrrole-to-OH ratio or the bimolecular reaction rate constants of ambient trace gases with OH are also studied. From these dependences, parameterizations are proposed to correct the OH reactivity measurements from the abovementioned artefacts. A comparison of experimental and simulation results is then discussed. The simulations were performed using a 0-D box model including either (1) a

  13. Method for estimating S(N)1 rate constants: solvolytic reactivity of benzoates.

    PubMed

    Matić, Mirela; Denegri, Bernard; Kronja, Olga

    2012-10-19

    Nucleofugalities of pentafluorobenzoate (PFB) and 2,4,6-trifluorobenzoate (TFB) leaving groups have been derived from the solvolysis rate constants of X,Y-substituted benzhydryl PFBs and TFBs measured in a series of aqueous solvents, by applying the LFER equation: log k = s(f)(E(f) + N(f)). The heterolysis rate constants of dianisylmethyl PFB and TFB, and those determined for 10 more dianisylmethyl benzoates in aqueous ethanol, constitute a set of reference benzoates whose experimental ΔG(‡) have been correlated with the ΔH(‡) (calculated by PCM quantum-chemical method) of the model epoxy ring formation. Because of the excellent correlation (r = 0.997), the method for calculating the nucleofugalities of substituted benzoate LGs have been established, ultimately providing a method for determination of the S(N)1 reactivity for any benzoate in a given solvent. Using the ΔG(‡) vs ΔH(‡) correlation, and taking s(f) based on similarity, the nucleofugality parameters for about 70 benzoates have been determined in 90%, 80%, and 70% aqueous ethanol. The calculated intrinsic barriers for substituted benzoate leaving groups show that substrates producing more stabilized LGs proceed over lower intrinsic barriers. Substituents on the phenyl ring affect the solvolysis rate of benzhydryl benzoates by both field and inductive effects. PMID:22973993

  14. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    NASA Astrophysics Data System (ADS)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  15. A High Precision Method for Quantitative Measurements of Reactive Oxygen Species in Frozen Biopsies

    PubMed Central

    Lindgren, Mikael; Gustafsson, Håkan

    2014-01-01

    Objective An electron paramagnetic resonance (EPR) technique using the spin probe cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) was introduced as a versatile method for high precision quantification of reactive oxygen species, including the superoxide radical in frozen biological samples such as cell suspensions, blood or biopsies. Materials and Methods Loss of measurement precision and accuracy due to variations in sample size and shape were minimized by assembling the sample in a well-defined volume. Measurement was carried out at low temperature (150 K) using a nitrogen flow Dewar. The signal intensity was measured from the EPR 1st derivative amplitude, and related to a sample, 3-carboxy-proxyl (CP•) with known spin concentration. Results The absolute spin concentration could be quantified with a precision and accuracy better than ±10 µM (k = 1). The spin concentration of samples stored at −80°C could be reproduced after 6 months of storage well within the same error estimate. Conclusion The absolute spin concentration in wet biological samples such as biopsies, water solutions and cell cultures could be quantified with higher precision and accuracy than normally achievable using common techniques such as flat cells, tissue cells and various capillary tubes. In addition; biological samples could be collected and stored for future incubation with spin probe, and also further stored up to at least six months before EPR analysis, without loss of signal intensity. This opens for the possibility to store and transport incubated biological samples with known accuracy of the spin concentration over time. PMID:24603936

  16. Implementation of an original approach on the Mines-Douai Comparative Reactivity Method (MD-CRM) instrument to identify part of the missing OH reactivity at an urban site

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Michoud, V.; Leonardis, T.; Riffault, V.; Zhang, S.; Locoge, N.

    2015-12-01

    Due to the large number of Volatile Organic Compounds (VOCs) expected in the atmosphere (104-105) (Goldstein and Galbally, ES&T, 2007), exhaustive measurements of VOCs appear to be currently unfeasible using common analytical techniques. In this context, measurements of the total sink of OH, referred as total OH reactivity, can provide a critical test to assess the completeness of trace gas measurements during field campaigns. This can be done by comparing the measured total OH reactivity to values calculated from trace gas measurements. Indeed, large discrepancies are usually found between measured and calculated OH reactivity values revealing the presence of important unmeasured reactive species, which have yet to be identified. A Comparative Reactivity Method (CRM) instrument has been setup at Mines Douai to allow sequential measurements of VOCs and OH reactivity using the same Proton Transfer Reaction-Time of Flight Mass Spectrometer. This approach aims at identifying unmeasured reactive VOCs based on a method proposed by Kato et al. (Atmos. Environ., 2011), taking advantage of VOC oxidations occurring in the CRM sampling reactor. MD-CRM has been deployed at an urban site in Dunkirk (France) during July 2014 to test this new approach. During this campaign, a large fraction of the OH reactivity was not explained by collocated measurements of trace gases (67% on average). In this presentation, we will first describe the approach that was implemented in the CRM instrument to identify part of the observed missing OH reactivity and we will then discuss the OH reactivity budget regarding the origin of air masses reaching the measurement site.

  17. Method and apparatus for continuously referenced analysis of reactive components in solution

    DOEpatents

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1979-07-31

    A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, and a stream separator disposed within the conduit means for separating the sample solution into a first sample stream and a second sample stream. A reactor is disposed in fluid communication with the first sample stream. A reaction takes place between the reactants introduced and the reactive chemical species of interest, causing the consumption or production of an indicator species in the first sample stream. Measurement means such as a photometric system are disposed in communication with the first and second sample streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.

  18. Method to Prepare Processable Polymides with Reactive Endgroups using 1,3-Bis (3-Aminophenoxy) Benzene

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2000-01-01

    Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of reactive endcapper. The reactive endcappers studied include but should not be limited to 4-phenylethynyl phthalic anhydride (PEPA ), 3-aminophenoxy- 4'-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbomene-2,3-dicarboxylic anhydride, NA). Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. By simply changing the ratio of APB to the other diamine in the polyimide backbone, a material with a unique combination of solubility, Tg, Tm, melt viscosity, toughness and elevated temperature mechanical properties can be prepared. The copolymers that result from using APB to enhance processability have a unique combination of properties that include low pressure processing (200 psi and below), long term melt stability (several hours at 300 C. for the phenylethynyl terminated polymers), high toughness, improved solvent resistance, improved adhesive properties, and improved composite mechanical properties. These copolyimides are eminently suitable as adhesives, composite matrices, moldings, films and coatings.

  19. Method of recovering elemental sulfur from reactive gases containing sulfur dioxide and hydrogen sulfide

    SciTech Connect

    Thomsen, A.

    1981-12-01

    Reactive gases containing sulfur dioxide and hydrogen sulfide, e.g. reaction gases of the claus process, are passed through a catalyst stage having an inlet side and an outlet side for the gas mixture to produce elemental sulfur and water. According to the invention the gases are cooled between the inlet and discharge sides by heat-exchanger means to a temperature not less than the activation temperature for the reaction and preferably not less than the temperature at which the gases are initially introduced into the catalyst body. The heat exchanger means can be provided in gaps between catalyst beds and/or within the catalyst beds of the body of catalyst.

  20. Methods for modeling impact-induced reactivity changes in small reactors.

    SciTech Connect

    Tallman, Tyler N.; Radel, Tracy E.; Smith, Jeffrey A.; Villa, Daniel L.; Smith, Brandon M.; Radel, Ross F.; Lipinski, Ronald J.; Wilson, Paul Philip Hood

    2010-10-01

    This paper describes techniques for determining impact deformation and the subsequent reactivity change for a space reactor impacting the ground following a potential launch accident or for large fuel bundles in a shipping container following an accident. This technique could be used to determine the margin of subcriticality for such potential accidents. Specifically, the approach couples a finite element continuum mechanics model (Pronto3D or Presto) with a neutronics code (MCNP). DAGMC, developed at the University of Wisconsin-Madison, is used to enable MCNP geometric queries to be performed using Pronto3D output. This paper summarizes what has been done historically for reactor launch analysis, describes the impact criticality analysis methodology, and presents preliminary results using representative reactor designs.

  1. Shock Simulations of Single-Site Coarse-Grain RDX using the Dissipative Particle Dynamics Method with Reactivity

    NASA Astrophysics Data System (ADS)

    Sellers, Michael; Lisal, Martin; Schweigert, Igor; Larentzos, James; Brennan, John

    2015-06-01

    In discrete particle simulations, when an atomistic model is coarse-grained, a trade-off is made: a boost in computational speed for a reduction in accuracy. Dissipative Particle Dynamics (DPD) methods help to recover accuracy in viscous and thermal properties, while giving back a small amount of computational speed. One of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. Today, pairing the current evolution of DPD-RX with a coarse-grained potential and its chemical decomposition reactions allows for the simulation of the shock behavior of energetic materials at a timescale faster than an atomistic counterpart. In 2007, Maillet et al. introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We have recently extended the DPD-RX method and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its tranition to hot product gases within DPD-RX will be presented. Additionally, examples of the effect of microstructure on shock behavior will be shown. Approved for public release. Distribution is unlimited.

  2. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  3. Illuminating reactive microbial transport in saturated porous media: Demonstration of a visualization method and conceptual transport model

    NASA Astrophysics Data System (ADS)

    Oates, Peter M.; Castenson, Catherine; Harvey, Charles F.; Polz, Martin; Culligan, Patricia

    2005-05-01

    We demonstrate a method to study reactive microbial transport in saturated translucent porous media using the bacteria Pseudomonas fluorescens 5RL genetically engineered to carry a plasmid with bioluminescence genes inducible by salicylate. Induced bacteria were injected into a cryolite grain filled chamber saturated with a sterile non-growth-promoting (phosphorus limited) chemical mixture containing salicylate as an aromatic hydrocarbon analogue. The amount of light produced by the bacteria serves as an estimator of the relative efficiency of aerobic biodegradation since bioluminescence is dependent on both salicylate and oxygen but only consumes oxygen. Bioluminescence was captured with a digital camera and analyzed to study the evolving spatial pattern of the bulk oxygen consuming reactions. As fluid flow transported the bacteria through the chamber, bioluminescence was observed to initially increase until an oxygen depletion zone developed behind the advective front. Bacterial transport was modeled with the advection dispersion equation and oxygen concentration was modeled assuming bacterial consumption via Monod kinetics with consideration of additional effects of rate-limited mass transfer from residual gas bubbles. Consistent with previous measurements, bioluminescence was considered proportional to oxygen consumed. Using the observed bioluminescence, model parameters were fit that were consistent with literature values and produced results in good agreement with the experimental data. These findings demonstrate potential for using this method to investigate the complex spatial and temporal dynamics of reactive microbial transport in saturated porous media.

  4. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    SciTech Connect

    Clement, T Prabhakar; Barnett, Mark O; Zheng, Chunmiao; Jones, Norman L

    2010-05-05

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supported 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007

  5. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.

    PubMed

    Oates, Peter M; Castenson, Catherine; Harvey, Charles F; Polz, Martin; Culligan, Patricia

    2005-05-01

    We demonstrate a method to study reactive microbial transport in saturated translucent porous media using the bacteria Pseudomonas fluorescens 5RL genetically engineered to carry a plasmid with bioluminescence genes inducible by salicylate. Induced bacteria were injected into a cryolite grain filled chamber saturated with a sterile non-growth-promoting (phosphorus limited) chemical mixture containing salicylate as an aromatic hydrocarbon analogue. The amount of light produced by the bacteria serves as an estimator of the relative efficiency of aerobic biodegradation since bioluminescence is dependent on both salicylate and oxygen but only consumes oxygen. Bioluminescence was captured with a digital camera and analyzed to study the evolving spatial pattern of the bulk oxygen consuming reactions. As fluid flow transported the bacteria through the chamber, bioluminescence was observed to initially increase until an oxygen depletion zone developed behind the advective front. Bacterial transport was modeled with the advection dispersion equation and oxygen concentration was modeled assuming bacterial consumption via Monod kinetics with consideration of additional effects of rate-limited mass transfer from residual gas bubbles. Consistent with previous measurements, bioluminescence was considered proportional to oxygen consumed. Using the observed bioluminescence, model parameters were fit that were consistent with literature values and produced results in good agreement with the experimental data. These findings demonstrate potential for using this method to investigate the complex spatial and temporal dynamics of reactive microbial transport in saturated porous media. PMID:15854718

  6. Multidimensional Mapping Method Using an Arrayed Sensing System for Cross-Reactivity Screening

    PubMed Central

    Chocron, Sheryl E.; Weisberger, Bryce M.; Ben-Yoav, Hadar; Winkler, Thomas E.; Kim, Eunkyoung; Kelly, Deanna L.; Payne, Gregory F.; Ghodssi, Reza

    2015-01-01

    When measuring chemical information in biological fluids, challenges of cross-reactivity arise, especially in sensing applications where no biological recognition elements exist. An understanding of the cross-reactions involved in these complex matrices is necessary to guide the design of appropriate sensing systems. This work presents a methodology for investigating cross-reactions in complex fluids. First, a systematic screening of matrix components is demonstrated in buffer-based solutions. Second, to account for the effect of the simultaneous presence of these species in complex samples, the responses of buffer-based simulated mixtures of these species were characterized using an arrayed sensing system. We demonstrate that the sensor array, consisting of electrochemical sensors with varying input parameters, generated differential responses that provide synergistic information of sample. By mapping the sensing array response onto multidimensional heat maps, characteristic signatures were compared across sensors in the array and across different matrices. Lastly, the arrayed sensing system was applied to complex biological samples to discern and match characteristic signatures between the simulated mixtures and the complex sample responses. As an example, this methodology was applied to screen interfering species relevant to the application of schizophrenia management. Specifically, blood serum measurement of antipsychotic clozapine and antioxidant species can provide useful information regarding therapeutic efficacy and psychiatric symptoms. This work proposes an investigational tool that can guide multi-analyte sensor design, chemometric modeling and biomarker discovery. PMID:25789880

  7. New Method for Production of High-Energy Neutral Molecules of Reactive Gases

    NASA Astrophysics Data System (ADS)

    Metel, Alexander; Bolbukov, Vasily; Volosova, Marina; Grigoriev, Sergei; Melnik, Yury

    2015-09-01

    For the surface modification of dielectric substrates by reactive gas molecules with energy of 100 keV they are usually produced due to charge exchange collisions of ions extracted from a plasma emitter and accelerated by high-voltage pulses. As generation of the ion plasma emitter at a 100-kV potential is quite difficult, it was proposed to extract the ions from a ground potential emitter, accelerate them by high voltage between the emitter and a negatively biased high-transparency grid and transform them into fast neutral molecules in the positive space charge sheaths of the grid. As the energy of fast molecules is defined by potentials of charge exchange collision points inside the sheath their spectrum ranges from zero to a value corresponding to the pulse amplitude. A reverse beam is always generated due to acceleration of ions from the plasma on the other side of the grid. The lower the latter density, the higher the ratio of the primary to the reverse beam currents. When the grid is composed of parallel flat plates, the charge exchange due to reflections from the plates substantially contributes at low gas pressure to production of molecules with the energy corresponding to the pulse amplitude. The work was supported by the Grant No. 14-29-00297 of the Russian Science Foundation.

  8. Numerical solution of multi-dimensional compressible reactive flow using a parallel wavelet adaptive multi-resolution method

    NASA Astrophysics Data System (ADS)

    Grenga, Temistocle

    The aim of this research is to further develop a dynamically adaptive algorithm based on wavelets that is able to solve efficiently multi-dimensional compressible reactive flow problems. This work demonstrates the great potential for the method to perform direct numerical simulation (DNS) of combustion with detailed chemistry and multi-component diffusion. In particular, it addresses the performance obtained using a massive parallel implementation and demonstrates important savings in memory storage and computational time over conventional methods. In addition, fully-resolved simulations of challenging three dimensional problems involving mixing and combustion processes are performed. These problems are particularly challenging due to their strong multiscale characteristics. For these solutions, it is necessary to combine the advanced numerical techniques applied to modern computational resources.

  9. [Sensitive determination of reactive oxygen species by chemiluminescence methods and their application to biological samples and health foods].

    PubMed

    Wada, Mitsuhiro

    2008-07-01

    Sensitive and selective methods, based on chemiluminescence reactions, were introduced for determination of reactive oxygen species (ROS) and their applications to biological samples and health foods. First, a sensitive method for determination of H(2)O(2) by peroxyoxalate chemiluminescence (PO-CL) was developed. This method could be applied to determine small amounts of H(2)O(2) in cola drinks and bacterial contamination of food items. Secondly, the combination of immobilized enzyme column reactor, or ultraviolet irradiation system, with the PO-CL detection method was able to determine clinical substrates (i.e. choline-containing phospholipids, polyamines and D-amino acids) and organic peroxides. Also, an evaluation method of the quenching effect of luminol chemiluminescence against ROS was developed. The sensitive, rapid and precise measurement of the quenching effect against ROS such as superoxide, singlet oxygen, hydroxyl radical, peroxynitrite and hypochlorous ion was achieved. The proposed method could be applied to rosemary extracts, natural colorants and grape seed extracts. PMID:18591871

  10. Improved quasiclassical trajectory method for state to state reactive scattering cross sections and rate constants

    SciTech Connect

    Ashton, C.J.; Muckerman, J.T.; Schubert, F.E.

    1984-12-15

    A systematic scheme is developed for the incorporation into quasiclassical trajectory (QCT) methodology of recent advances in the understanding of vibrationally adiabatic barriers in collinear atom + diatom reactions. The resulting hybrid QCT method centers on a definite set of rules for optimally combining the results of forward and reverse trajectory calculations. It is argued, and demonstrated by practical examples, that the hybrid method will give a more consistently reliable account of the threshold behavior of collinear reaction cross sections than the conventional QCT method. Extension of the method to the three dimensional F+H/sub 2/ reaction gives similarly encouraging results, both for state to state reaction cross sections and for rate constants.

  11. Improved quasiclassical trajectory method for state to state reactive scattering cross sections and rate constants

    SciTech Connect

    Ashton, C.J.; Muckerman, J.T.; Schubert, F.E.

    1984-12-15

    A systematic scheme is developed for the incorporation into quasiclassical trajectory (QCT) methodology of recent advances in the understanding of vibrationally adiabatic barriers in collinear atom + diatom reactions. The resulting hybrid QCT method centers on a definite set of rules for optimally combining the results of forward and reverse trajectory calculations. It is argued, and demonstrated by practical examples, that the hybrid method will give a more consistently reliable account of the threshold behavior of collinear reaction cross sections than the conventional QCT method. Extension of the method to the three dimensional F + H/sub 2/ reaction gives similarly encouraging results, both for state to state reaction cross sections and for rate constants. 43 references, 15 figures, 4 tables.

  12. Conformational and reactivity study of dithiophenyl-fucosyl ketals with theoretical chemical methods.

    PubMed

    Bañuelos-Hernandez, Angel E; García-Gutiérrez, Hugo A; Fragoso-Serrano, Mabel; Mendoza-Espinoza, José Alberto

    2016-09-01

    Carbohydrates can be used as substrates to synthesize new complex molecules; these molecules contain several chiral centers that can be used in organic synthesis. D-Fucose diphenyl thioacetal reacts differentially with acetone, and this paper describes a study of the mechanism of this reaction using theoretical chemistry methods. The conformer distribution was studied using a Monte Carlo method for the reaction products, and the obtained conformers were validated by calculating the hydrogen spin-spin coupling constants with the DFT/B3LYP/DGDZVP method. Results agreed with the experimental coupling constants with an adequate root mean squared deviation. The free energies and enthalpies of formation of the resulting global minimum conformers were calculated with the same method and with the thermochemical compound method CBS-4 M. This technique, combined with the conformational analysis, allowed comparison of the formation enthalpies of the compounds involved in this reaction, and, with this information, we can postulate the correct reaction pathway. Graphical abstract Reaction pathway. PMID:27542798

  13. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization integrated approaches combining different chemical, biological and in silico methods are recommended to r...

  14. Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater

    SciTech Connect

    Ewing, R.E.; Wang, Hong

    1996-12-31

    In this paper, we present Eulerian-Lagrangian localized adjoint methods (ELLAM) to solve convection-diffusion-reaction equations governing contaminant transport in groundwater flowing through an adsorbing porous medium. These ELLAM schemes can treat various combinations of boundary conditions and conserve mass. Numerical results are presented to demonstrate the strong potential of ELLAM schemes.

  15. COMPARISON OF QUANTUM MECHANICAL METHODS TO COMPUTE THE BIOLOGICALLY RELEVANT REACTIVITIES OF CYCLOPENTA POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In computational studies to understand the interaction of polycyclic aromatic hydrocarbons (PAHS) with biomolecular systems, the semi-empirical method AM1 has been used to determine the geometry of the PAH, its metabolites and relevant intermediates. umber of studies have shown t...

  16. Applications of the Method of Space-Time Conservation Element and the Solution Element to Unsteady Chemically Reactive Flows

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    2001-01-01

    This document reports the conclusion and findings of our research activities for this grant. The goal of the project is the development and application of the method of Space-Time Conservation Element and Solution Element, or the CE/SE method, to simulate chemically reacting flows. The product of this project will be a high-fidelity, time-accurate flow solver analyzing unsteady flow fields advanced propulsion concepts, including the low-emission turbojet engine combustion and flow fields of the Pulse Detonation Engines (PDE). Based on the documents and computer software of the CE/SE method that we have received from the CE/SE working group at NASA Lewis, we have focused our research effort on addressing outstanding technical issues related to the extension of the CE/SE method for unsteady, chemically reactive flows. In particular, we have made progresses in the following three aspects: (1) Derivation of the governing equations for reacting flows; (2) Numerical treatments of stiff source terms; and (3) Detailed simulations of ZND detonation waves.

  17. A nonlinear wave mixing method for detecting Alkali-Silica reactivity of aggregates

    NASA Astrophysics Data System (ADS)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2012-05-01

    Alkali-silica reaction (ASR) is a deleterious reaction in concrete. Significant ASR damage could undermine the durability of concrete structures and may result in reduced service life. Several nondestructive techniques based on ultrasound have been used to assess ASR damage. It has been shown that nonlinear ultrasound is more sensitive to internal stresses as well as to micro-cracks induced by ASR damage. In this investigation, we developed a co-linear wave mixing method for assessing ASR damage in concrete. By mixing two longitudinal waves, a new longitudinal wave with a lower frequency is generated. The amplitude of this new wave is proportional to the acoustic nonlinear parameter β which can then be obtained from the frequency spectrum of the newly generated longitudinal wave. Our experimental results show that (i) the acoustic nonlinearity parameter is closely correlated to ASR damage in concrete, (ii) the nonlinear wave mixing technique developed here is capable of measuring the changes in the acoustic nonlinearity parameter caused by ASR damage, even in its early stages, and (iii) the nonlinear wave mixing method has the potential to identify the different stages of ASR damage and to track the intrinsic characteristics of the ASR damage.

  18. A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the "instantaneous" presence of ROS returning absolute concentration levels that correlate with "a posteriori" assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R (2) = 0.95), plasma (R (2) = 0.82), and erythrocytes (R (2) = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001-0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  19. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods.

    PubMed

    Cesbron, Florian; Metzger, Edouard; Launeau, Patrick; Deflandre, Bruno; Delgard, Marie-Lise; Thibault de Chanvalon, Aubin; Geslin, Emmanuelle; Anschutz, Pierre; Jézéquel, Didier

    2014-01-01

    This study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively. Spatial distribution of the resulting colors is obtained using a hyperspectral camera. Reflectance spectra analysis enables deconvolution of specific colorations by the unmixing method applied to the logarithmic reflectance, leading to an accurate quantification of iron and DRP. This method was applied in the Arcachon lagoon (France) on muddy sediments colonized by eelgrass (Zostera noltei) meadows. The 2D gel probes highlighted microstructures in the spatial distribution of dissolved iron and phosphorus, which are most likely associated with the occurrence of benthic fauna burrows and seagrass roots. PMID:24502458

  20. A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Alvarez Laguna, A.; Lani, A.; Deconinck, H.; Mansour, N. N.; Poedts, S.

    2016-08-01

    We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided.

  1. Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert J.; Carey, Graham F.

    2003-01-01

    A new class of positivity-preserving, flux-limited finite-difference and Petrov-Galerkin (PG) finite-element methods are devised for reactive transport problems.The methods are similar to classical TVD flux-limited schemes with the main difference being that the flux-limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite-element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions of the resulting difference equations can only be guaranteed if the flux-limited scheme is both implicit and satisfies an additional lower-bound condition on time-step size. We show that this condition also applies to standard Galerkin linear finite-element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time-step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction.

  2. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R2 = 0.95), plasma (R2 = 0.82), and erythrocytes (R2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  3. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    SciTech Connect

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressure that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.

  4. Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

    SciTech Connect

    Najm, Habib N.; Valorani, Mauro

    2014-08-01

    We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-fly during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. The filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.

  5. Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

    DOE PAGESBeta

    Najm, Habib N.; Valorani, Mauro

    2014-04-12

    We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-flymore » during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. Lastly, the filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.« less

  6. Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

    SciTech Connect

    Najm, Habib N.; Valorani, Mauro

    2014-04-12

    We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-fly during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. Lastly, the filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.

  7. A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea: technological advancement.

    PubMed

    Marschall, Robert; Tudzynski, Paul

    2014-10-01

    Reactive oxygen species (ROS) are produced in conserved cellular processes either as by-products of the cellular respiration in mitochondria, or purposefully for defense mechanisms, signaling cascades or cell homeostasis. ROS have two diametrically opposed attributes due to their highly damaging potential for DNA, lipids and other molecules and due to their indispensability for signaling and developmental processes. In filamentous fungi, the role of ROS in growth and development has been studied in detail, but these analyses were often hampered by the lack of reliable and specific techniques to monitor different activities of ROS in living cells. Here, we present a new method for live cell imaging of ROS in filamentous fungi. We demonstrate that by use of a mixture of two fluorescent dyes it is possible to monitor H2O2 and superoxide specifically and simultaneously in distinct cellular structures during various hyphal differentiation processes. In addition, the method allows for reliable fluorometric quantification of ROS. We demonstrate that this can be used to characterize different mutants with respect to their ROS production/scavenging potential. PMID:25220147

  8. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  9. One-Step Conjugation Method for Site-Specific Antibody-Drug Conjugates through Reactive Cysteine-Engineered Antibodies.

    PubMed

    Shinmi, Daisuke; Taguchi, Eri; Iwano, Junko; Yamaguchi, Tsuyoshi; Masuda, Kazuhiro; Enokizono, Junichi; Shiraishi, Yasuhisa

    2016-05-18

    Engineered cysteine residues are particularly convenient for site-specific conjugation of antibody-drug conjugates (ADC), because no cell engineering and additives are required. Usually, unpaired cysteine residues form mixed disulfides during fermentation in Chinese hamster ovarian (CHO) cells; therefore, additional reduction and oxidization steps are required prior to conjugation. In this study, we prepared light chain (Lc)-Q124C variants in IgG and examined the conjugation efficiency. Intriguingly, Lc-Q124C exhibited high thiol reactivity and directly generated site-specific ADC without any pretreatment (named active thiol antibody: Actibody). Most of the cysteine-maleimide conjugates including Lc-Q124C showed retro-Michael reaction with cysteine 34 in albumin and were decomposed over time. In order to acquire resistance to a maleimide exchange reaction, the facile procedure for succinimide hydrolysis on anion exchange resin was employed. Hydrolyzed Lc-Q124C conjugate prepared with anion exchange procedure retained high stability in plasma. Recently, various stable linkage schemes for cysteine conjugation have been reported. The combination with direct conjugation by the use of Actibody and stable linker technology could enable the generation of stable site-specific ADC through a simple method. Actibody technology with Lc-Q124C at a less exposed position opens a new path for cysteine-based conjugation, and contributes to reducing entry barriers to the preparation and evaluation of ADC. PMID:27074832

  10. Study of ice cluster impacts on amorphous silica using the ReaxFF reactive force field molecular dynamics simulation method

    NASA Astrophysics Data System (ADS)

    Rahnamoun, A.; van Duin, A. C. T.

    2016-03-01

    We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster molecules bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron excitation at these higher impact velocities

  11. A new method for direct total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-04-01

    The primary and most important oxidant in the troposphere is the hydroxyl radical (OH). Currently the atmospheric sinks of OH are poorly constrained. One way to characterize the overall sink term of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. The first direct measurements of total OH reactivity were performed using laser induced fluorescence (LIF) [1], [2]. Recently a new method for determining OH reactivity was developed called the comparative reactivity method (CRM) [3]. The measurement principle is based on a competitive reaction between a reactive molecule not normally present in air with OH, and atmospheric OH reactive molecules with OH. The reactive molecule (X), is passed through a Teflon coated glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced into the reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing OH reactive species. Comparing the amount of X exiting the reactor with and without the competing ambient air molecules directly provides the atmospheric total OH reactivity. In the first version of this set up, molecule X is pyrrole (C5H4N) and the detector used is a proton transfer reaction mass spectrometer (PTR-MS). In comparison to the original LIF based system, the PTR-MS has the advantage of being smaller, less expensive, and commercially available. However, using the PTR-MS for total OH reactivity measurements prevents it from probing the broad variety of volatile organic compounds in ambient air. Moreover, even smaller, less expensive and more portable detectors are available. This work examines the potential for a GC-PID in order to make the total OH reactivity measurement accessible to more practitioners. This study presents measurements of total OH reactivity with a custom built GC-PID (VOC-Analyzer from IUT-Berlin, now ENIT (Environics-IUT GmbH))[4]. The GC-PID is small (260

  12. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    SciTech Connect

    Zhang, Guannan; Webster, Clayton G; Gunzburger, Max D

    2012-09-01

    Although Bayesian analysis has become vital to the quantification of prediction uncertainty in groundwater modeling, its application has been hindered due to the computational cost associated with numerous model executions needed for exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, we utilize a compactly supported higher-order hierar- chical basis to construct the surrogate system, resulting in a significant reduction in the number of computational simulations required. In addition, we use hierarchical surplus as an error indi- cator to determine adaptive sparse grids. This allows local refinement in the uncertain domain and/or anisotropic detection with respect to the random model parameters, which further improves computational efficiency. Finally, we incorporate a global optimization technique and propose an iterative algorithm for building the surrogate system for the PPDF with multiple significant modes. Once the surrogate system is determined, the PPDF can be evaluated by sampling the surrogate system directly with very little computational cost. The developed method is evaluated first using a simple analytical density function with multiple modes and then using two synthetic groundwater reactive transport models. The groundwater models represent different levels of complexity; the first example involves coupled linear reactions and the second example simulates nonlinear ura- nium surface complexation. The results show that the aSG-hSC is an effective and efficient tool for Bayesian inference in groundwater modeling in comparison with conventional

  13. Quantitative assessment of alkali-reactive aggregate mineral content through XRD using polished sections as a supplementary tool to RILEM AAR-1 (petrographic method)

    SciTech Connect

    Castro, Nelia; Sorensen, Bjorn E.; Broekmans, Maarten A.T.M.

    2012-11-15

    The mineral content of 5 aggregate samples from 4 different countries, including reactive and non-reactive aggregate types, was assessed quantitatively by X-ray diffraction (XRD) using polished sections. Additionally, electron probe microanalyzer (EPMA) mapping and cathodoluminescence (CL) were used to characterize the opal-CT identified in one of the aggregate samples. Critical review of results from polished sections against traditionally powdered specimen has demonstrated that for fine-grained rocks without preferred orientation the assessment of mineral content by XRD using polished sections may represent an advantage over traditional powder specimens. Comparison of data on mineral content and silica speciation with expansion data from PARTNER project confirmed that the presence of opal-CT plays an important role in the reactivity of one of the studied aggregates. Used as a complementary tool to RILEM AAR-1, the methodology suggested in this paper has the potential to improve the strength of the petrographic method.

  14. Time-dependent wave-packet method for the complete determination of S-matrix elements for reactive molecular collisions in three dimensions

    NASA Technical Reports Server (NTRS)

    Judson, Richard S.; Kouri, Donald J.; Neuhauser, Daniel; Baer, Michael

    1990-01-01

    An alternative time-dependent wave-packet method for treating three-dimensional gas phase reactive atom-diatom collisions is presented. The method employs a nonreactive body-frame wave packet propagation procedure, made possible by judicious use of absorbing optical potentials, a novel scheme for interpolating the wave function from coordinates in one arrangement to those in another and the fact that the time-dependent Schroedinger equation is an initial-value problem. The last feature makes possible a computationally viable and accurate procedure for changing from one arrangement's coordinates to another. In addition, the method allows the determination of S-matrix elements over a wide range of energies from a single wave-packet propagation. The method is illustrated by carrying out detailed calculations of inelastic and reactive scattering in the H + H2 system using the Liu-Siegbahn-Truhlar-Horowitz potential surface.

  15. Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-12-01

    Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a

  16. A liquid chromatography tandem mass spectrometric method on in vitro nerve agents poisoning characterization and reactivator efficacy evaluation by determination of specific peptide adducts in acetylcholinesterase.

    PubMed

    Yan, Long; Chen, Jia; Xu, Bin; Guo, Lei; Xie, Yan; Tang, Jijun; Xie, Jianwei

    2016-06-10

    The terroristic availability of highly toxic nerve agents (NAs) highlights the necessity for a deep understanding of their toxicities and effective medical treatments. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for a characterization of the NAs poisoning and an evaluation on the efficacy of reactivators in in vitro was developed for the first time. After exposure to sarin or VX and pepsin digestion, the specific peptides of acetylcholinesterase (AChE) in a purified status, i.e. undecapeptide "GESAGAASVGM" in free, unaged, or aged status was identified and quantified. A key termination procedure is focused to make the reaction system "frozen" and precisely "capture" the poisoning, aging and spontaneous reactivation status of AChE, and the abundance of such specific peptides can thus be simultaneously measured. In our established method, as low as 0.72% and 0.84% inhibition level of AChE induced by 0.5nM sarin and VX can be detected from the measurement of peptide adducts, which benefits a confirmation of NAs exposure, especially at extremely low levels. Comparing with conventional colorimetric Ellman assays, our method provides not only enzyme activity and inhibition rate, but also the precise poisoning status of NAs exposed AChE. Based on the full information provided by this method, the efficacy of reactivators, such as HI-6, obidoxime and pralidoxime, in the typical treatment of NAs poisoned AChE in in vitro was further evaluated. Our results showed that this method is a promising tool for the characterization of NAs poisoning and the evaluation of reactivator efficacy. PMID:27179675

  17. Reactive arthritis

    MedlinePlus

    Reactive arthritis is a group of conditions that may involve the joints, eyes, and urinary and genital systems. ... The exact cause of reactive arthritis is unknown. It occurs most often in men younger than age 40. It may follow an infection in the urethra ...

  18. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    NASA Astrophysics Data System (ADS)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  19. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. PMID:25699701

  20. Detection of Virus-Specific CD8+ T Cells With Cross-Reactivity Against Alloantigens: Potency and Flaws of Present Experimental Methods

    PubMed Central

    van den Heuvel, Heleen; Heutinck, Kirstin M.; van der Meer-Prins, Ellen P.M.W.; Yong, Si La; Claas, Frans H.J.; ten Berge, Ineke J.M.

    2015-01-01

    Background Virus-specific T cells have the intrinsic capacity to cross-react against allogeneic HLA antigens, a phenomenon known as heterologous immunity. In transplantation, these cells may contribute to the alloimmune response and negatively impact graft outcome. This study describes the various techniques that can be used to detect heterologous immune responses of virus-specific CD8+ T cells against allogeneic HLA antigens. The strengths and weaknesses of the different approaches are discussed and illustrated by experimental data. Methods Mixed-lymphocyte reactions (MLRs) were performed to detect allo-HLA cross-reactivity of virus-specific CD8+ T cells in total peripheral blood mononuclear cells. T-cell lines and clones were generated to confirm allo-HLA cross-reactivity by IFNγ production and cytotoxicity. In addition, the conventional MLR protocol was adjusted by introducing a 3-day resting phase and subsequent short restimulation with alloantigen or viral peptide, whereupon the expression of IFNγ, IL-2, CD107a, and CD137 was determined. Results The accuracy of conventional MLR is challenged by potential bystander activation. T-cell lines and clones can circumvent this issue, yet their generation is laborious and time-consuming. Using the adjusted MLR and restimulation protocol, we found that only truly cross-reactive T cells responded to re-encounter of alloantigen and viral peptide, whereas bystander-activated cells did not. Conclusions The introduction of a restimulation phase improved the accuracy of the MLR as a screening tool for the detection of allo-HLA cross-reactivity by virus-specific CD8+ T cells at bulk level. For detailed characterization of cross-reactive cells, T-cell lines and clones remain the golden standard.

  1. Combining field methods and numerical modeling to characterize the flow of a Sr-90 plume through a permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Hoppe, J.; Bain, J.; Lee, D. R.; Jeen, S.; Blowes, D.

    2012-12-01

    In 1998, a passive remediation system known as the Wall-and-Curtain was installed at the Chalk River Laboratories in Ontario, Canada, to prevent a Sr-90 plume present in the lower part of a 12 m thick aquifer from discharging into a nearby swamp. To improve knowledge of the variability of aquifer hydraulic conductivities and groundwater velocities, slug tests and borehole dilution tests were conducted in isolated intervals upgradient of the Wall-and-Curtain using stainless steel drive point piezometers. The measurements from the field study were combined with previous characterization of the hydrogeology of the site to develop a three dimensional physical flow model. The numerical computer code HydroGeoSphere was used to provide an approximate representation of groundwater flow in the aquifer and through the Wall-and-Curtain. Developing a quantitative description of the groundwater flow system is an essential step in understanding the fate of the Sr-90 plume in the Wall-and-Curtain and for conducting meaningful geochemical reactive transport simulations. The model was calibrated by comparing simulated and observed hydraulic heads across the site. The results from the field tests were compared with groundwater velocities simulated by the numerical model. The model shows good agreement with the observed heads and acceptable agreement with the field estimates of groundwater velocities, while also showing the deficiencies of the model in accurately simulating flow in the boundary regions of the domain. Ongoing work focuses on the detailed geochemical characterization of the aquifer and the reactive material (i.e., clinoptilolite), which will be used to construct a geochemical reactive transport model to evaluate the potential longevity of the reactive zone in the Wall-and-Curtain.

  2. Reactive Arthritis

    MedlinePlus

    ... with treatment and may cause joint damage. What Research Is Being Conducted on Reactive Arthritis? Researchers continue ... such as methotrexate and sulfasalazine. More information on research is available from the following websites: National Institutes ...

  3. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application

    SciTech Connect

    Lee, J. H.; Kim, M. J.; Yoon, Y. S.

    2013-04-15

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (T{sub e}) and ion flux (J{sub ion}) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring T{sub e} and J{sub ion} for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  4. The role of serum C-reactive protein measured by high-sensitive method in thyroid disease.

    PubMed

    Czarnywojtek, Agata; Owecki, Maciej; Zgorzalewicz-Stachowiak, Małgorzata; Woliński, Kosma; Szczepanek-Parulska, Ewelina; Budny, Bartłomiej; Florek, Ewa; Waligórska-Stachura, Joanna; Miechowicz, Izabela; Bączyk, Maciej; Sawicka, Nadia; Dhir, Sumit; Ruchała, Marek

    2014-12-01

    The aim of this study was the evaluation of serum C-reactive protein (CRP) concentration as a marker of the inflammatory state in many different thyroid diseases and its dependence on the stage and duration of disease. We conducted a retrospective analysis of 444 randomly selected patients with different kinds of thyroid disease (106 men and 338 women, ranging 18-72 years of age; mean 56.2 ± 5.0 years; median 52 years). Group 1 (G1) comprised 250 patients with hyperthyroidism. Group 2 (G2) consisted of 72 euthyroid patients. Group 3 (G3) consisted of 122 patients with hypothyroidism. Free T4, free T3, and thyrotropin (TSH) levels were measured using the electrochemiluminescent method. Human serum thyroglobulin autoantibodies (Tg-Abs), thyroperoxidase autoantibodies (TPO-Abs), and autoantibodies against the thyrotropin receptor (TSHR-Abs) levels were measured by radioimmunoassay. The high-sensitive CRP (Hs-CRP) level (reference range <3 mg/L) was determined with a highly sensitive latex-based immunoassay. The mean value of Hs-CRP in G1 was 3.6 ± 2.8 mg/L, in G2 2.5 ± 1.5 mg/L and in G3 5.9 ± 5.8 mg/L. Hs-CRP (in mg/L) medians, interquartile and the total ranges in G1 were 3.0 (2.0 [0.1-21.0] 4.0); in G2: 2.3 [1.8 (0.2-9.2) 3.2]; and in G3: 4.3 [2.2 (0.3-31.5) 7.8]. We found statistically significant differences (Kruskal-Wallis test) in serum Hs-CRP values between G1 and G2 (P = 0.007), G1 and G3 (P = 0.001), G2 and G3 (P < 0.001). In G1, statistically significant correlation was confirmed between Hs-CRP and Tg-Abs (r = -0.22, P = 0.0016), CRP and TPO-Abs (r = -0.26, P < 0.001), and also between Hs-CRP and TSHR-Abs (r = -0.18, P = 0.02). In the remaining cases, differences between Hs-CRP and TSH levels (r = -0.09, P = 0.16) were not statistically significant. In G2, no statistically significant correlation was observed: Hs-CRP and Tg-Abs (r = -0.18, P = 0.13), Hs-CRP and TPO-Abs (r = -0.17, P = 0.15), Hs-CRP and TSH (r = 0.01, P = 0.91), Hs-CRP and TSHR-Abs (r

  5. A GPU accelerated, discrete time random walk model for simulating reactive transport in porous media using colocation probability function based reaction methods

    NASA Astrophysics Data System (ADS)

    Barnard, J. M.; Augarde, C. E.

    2012-12-01

    The simulation of reactions in flow through unsaturated porous media is a more complicated process when using particle tracking based models than in continuum based models. In the fomer particles are reacted on an individual particle-to-particle basis using either deterministic or probabilistic methods. This means that particle tracking methods, especially when simulations of reactions are included, are computationally intensive as the reaction simulations require tens of thousands of nearest neighbour searches per time step. Despite this, particle tracking methods merit further study due to their ability to eliminate numerical dispersion, to simulate anomalous transport and incomplete mixing of reactive solutes. A new model has been developed using discrete time random walk particle tracking methods to simulate reactive mass transport in porous media which includes a variation of colocation probability function based methods of reaction simulation from those presented by Benson & Meerschaert (2008). Model development has also included code acceleration via graphics processing units (GPUs). The nature of particle tracking methods means that they are well suited to parallelization using GPUs. The architecture of GPUs is single instruction - multiple data (SIMD). This means that only one operation can be performed at any one time but can be performed on multiple data simultaneously. This allows for significant speed gains where long loops of independent operations are performed. Computationally expensive code elements, such the nearest neighbour searches required by the reaction simulation, are therefore prime targets for GPU acceleration.

  6. Forebody and base region real gas flow in severe planetary entry by a factored implicit numerical method. II - Equilibrium reactive gas

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Green, M. J.; Lombard, C. K.

    1981-01-01

    The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.

  7. One pot synthesis of Curcumin-NSAIDs prodrug, spectroscopic characterization, conformational analysis, chemical reactivity, intramolecular interactions and first order hyperpolarizability by DFT method

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Sethi, Arun; Singh, Ranvijay Pratap

    2016-08-01

    A novel Curcumin-NSAIDs prodrug 4-((1E, 3Z, 6E)-3-hydroxy-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,3-trienyl)-2-methoxyphenyl-2-(4-isobutylphenyl) propanoate (2) derivative was synthesized by Steglich esterification in high yield and characterized with the help of 1H, 13C NMR, 1H-1H COSY, UV, FT-IR spectroscopy and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using two different basis set 6-31G (d, p) and 6-311G (d, p). Conformational analysis of 2 was carried out to determine the most stable conformation. Stability of the molecule as a result of hyperconjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global and local reactivity descriptors were calculated to study the reactive site within molecule. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability value has been calculated to describe the nonlinear optical (NLO) property of the synthesized compound. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity.

  8. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles.

    PubMed

    Cruz, N; Rodrigues, S M; Tavares, D; Monteiro, R J R; Carvalho, L; Trindade, T; Duarte, A C; Pereira, E; Römkens, Paul F A M

    2015-09-01

    To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8 mg Ag kg(-1) soil). Following a 45 days stabilization period, the geochemical reactivity was determined by extraction using 0.43 M and 2 M HNO3. The bioaccessibility of AgNPs was evaluated using the Simplified Bioaccessibility Extraction Test (SBET) the "Unified BARGE Method" (UBM), and two simulated lung fluids (modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF)). The amount of Ag extracted by 0.43 M and 2 M HNO3 soil tests was <8% and <50%, respectively of the total amount of Ag added to soils suggesting that the reactivity of Ag present in the soil can be relatively low. The bioaccessibility of Ag as determined by the four in vitro tests ranged from 17% (ALF extraction) to 99% (SBET) indicating that almost all Ag can be released from soil due to specific interactions with the organic ligands present in the simulated body fluids. This study shows that to develop sound soil risk evaluations regarding soil contamination with AgNPs, aspects of Ag biochemistry need to be considered, particularly when linking commonly applied soil tests to human risk assessment. PMID:25966049

  9. Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with Lewis acids and use as an effective purification method.

    PubMed

    Stevenson, Steven; Mackey, Mary A; Pickens, Jane E; Stuart, Melissa A; Confait, Bridget S; Phillips, J Paige

    2009-12-21

    Metallic nitride fullerenes (MNFs) and oxometallic fullerenes (OMFs) react quickly with an array of Lewis acids. Empty-cage fullerenes are largely unreactive under conditions used in this study. The reactivity order is Sc(4)O(2)@I(h)-C(80) > Sc(3)N@C(78) > Sc(3)N@C(68) > Sc(3)N@D(5h)-C(80) > Sc(3)N@I(h)-C(80). Manipulations of Lewis acids, molar ratios, and kinetic differences within the family of OMF and MNF metallofullerenes are demonstrated in a selective precipitation scheme, which can be used either alone for purifying Sc(3)N@I(h)-C(80) or combined with a final high-performance liquid chromatography pass for Sc(4)O(2)@I(h)-C(80), Sc(3)N@D(5h)-C(80), Sc(3)N@C(68), or Sc(3)N@C(78). The purification process is scalable. Analysis of the experimental rate constants versus electrochemical band gap explains the order of reactivity among the OMFs and MNFs. PMID:19911812

  10. Reactive arthritis.

    PubMed

    Keat, A

    1999-01-01

    Reactive arthritis is one of the spondyloarthropathy family of clinical syndromes. The clinical features are those shared by other members of the spondyloarthritis family, though it is distinguished by a clear relationship with a precipitating infection. Susceptibility to reactive arthritis is closely linked with the class 1 HLA allele B27; it is likely that all sub-types pre-dispose to this condition. The link between HLA B27 and infection is mirrored by the development of arthritis in HLA B27-transgenic rats. In this model, arthritis does not develop in animals maintained in a germ-free environment. Infections of the gastrointestinal, genitourinary and respiratory tract appear to provoke reactive arthritis and a wide range of pathogens has now been implicated. Although mechanistic parallels may exist, reactive arthritis is distinguished from Lyme disease, rheumatic fever and Whipple's disease by virtue of the distinct clinical features and the link with HLA B27. As in these conditions both antigens and DNA of several micro-organisms have been detected in joint material from patients with reactive arthritis. The role of such disseminated microbial elements in the provocation or maintenance of arthritis remains unclear. HLA B27-restricted T-cell responses to microbial antigens have been demonstrated and these may be important in disease pathogenesis. The importance of dissemination of bacteria from sites of mucosal infection and their deposition in joints has yet to be fully understood. The role of antibiotic therapy in the treatment of reactive arthritis is being explored; in some circumstances, both the anti-inflammatory and anti-microbial effects of certain antibiotics appear to be valuable. The term reactive arthritis should be seen as a transitory one, reflecting a concept which may itself be on the verge of replacement, as our understanding of the condition develops. Nevertheless it appropriately describes arthritis that is associated with demonstrable

  11. Method To Prepare Processable Polyimides With Reactive Endogroups Using 1,3-bis(3-aminophenoxy)benzene

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2001-01-01

    Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of a non-reactive endcapper, such as phthalic anhydride. Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. Polyimides that are more rigid in nature require more APB to impart processability than polyimides that are less rigid in nature. The copolymers that result from using APB to enhance processability have a unique combination of properties including excellent thin film properties, low pressure processing (200 psi and below), improved toughness, improved solvent resistance, improved adhesive properties, improved composite mechanical properties, long term melt stability (several hours at 390 C), and lower melt viscosities.

  12. Method to Prepare Processable Polyimides with Non-Reactive Endgroups Using 1,3-bis(3-Aminophenoxy) Benzene

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2000-01-01

    Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of a non-reactive endcapper, such as phthalic anhydride. Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. Polyimides that are more rigid in nature require more APB to impart processability than polyimides that are less rigid in nature. The copolymers that result from using APB to enhance processability have a unique combination of properties including excellent thin film properties, low pressure processing (200 psi and below), improved toughness, improved solvent resistance, improved adhesive properties, improved composite mechanical properties, long term melt stability (several hours at 390 C), and lower melt viscosities.

  13. A Method for Compensating Customer Voltage Drops due to Nighttime Simultaneous Charging of EVs Utilizing Reactive Power Injection from Battery Chargers

    NASA Astrophysics Data System (ADS)

    Noda, Taku; Kabasawa, Yuichiro; Fukushima, Kentaro; Nemoto, Koshichi; Uemura, Satoshi

    When we consider the global warming, the reduction of CO2 emission is one of the most important problems which require urgent solutions. One option is to integrate low-CO2-emission generators to the grid as much as possible. Another option is to replace inefficient vehicles based on internal-combustion engines with electric ones (EVs). Due to the latter, we can easily estimate that most consumers will charge EVs' batteries at nighttime. Thus, excessive voltage drops due to the nighttime simultaneous charging are supposed to be a possible future problem. This paper proposes a method for compensating the voltage drops by injecting reactive power from EV battery chargers.

  14. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H

    NASA Astrophysics Data System (ADS)

    Cvitaš, Marko T.; Althorpe, Stuart C.

    2013-08-01

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)], 10.1021/jp8111974 to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  15. A new method of wound treatment: targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α

    PubMed Central

    Tang, Tao; Jiang, Hao; Yu, Yuan; He, Fang; Ji, Shi-zhao; Liu, Ying-ying; Wang, Zhong-shan; Xiao, Shi-chu; Tang, Cui; Wang, Guang-Yi; Xia, Zhao-Fan

    2015-01-01

    Objective To accelerate wound healing through promoting vascularization by using reactive oxygen species (ROS)-responsive nanoparticles loaded with stromal cell-derived factor-1α(SDF-1α). Methods The ROS-reactive nanomaterial poly-(1,4-phenyleneacetone dimethylene thioketal) was synthesized, and its physical and chemical properties were characterized. ROS-responsive nanoparticles containing SDF-1α were prepared through a multiple emulsion solvent evaporation method. The loading capacity, stability, activity of the encapsulated protein, toxicity, and in vivo distribution of these nanoparticles were determined. These nanoparticles were administered by intravenous infusion to mice with full-thickness skin defects to study their effects on the directed chemotaxis of bone marrow mesenchymal stem cells, wound vascularization, and wound healing. Results The synthesized ROS-reactive organic polymer poly-(1,4-phenyleneacetone dimethylene thioketal) possessed a molecular weight of approximately 11.5 kDa with a dispersity of 1.97. ROS-responsive nanoparticles containing SDF-1α were prepared with an average diameter of 110 nm and a drug loading capacity of 1.8%. The encapsulation process showed minimal effects on the activity of SDF-1α, and it could be effectively released from the nanoparticles in the presence of ROS. Encapsulated SDF-1α could exist for a long time in blood. In mice with full-thickness skin defects, SDF-1α was effectively released and targeted to the wounds, thus promoting the chemotaxis of bone marrow mesenchymal stem cells toward the wound and its periphery, inducing wound vascularization, and accelerating wound healing. PMID:26527874

  16. A Parallel, Fully Coupled, Fully Implicit Solution to Reactive Transport in Porous Media Using the Preconditioned Jacobian-Free Newton-Krylov Method

    SciTech Connect

    Luanjing Guo; Hai Huang; Derek Gaston; Cody Permann; David Andrs; George Redden; Chuan Lu; Don Fox; Yoshiko Fujita

    2013-03-01

    Modeling large multicomponent reactive transport systems in porous media is particularly challenging when the governing partial differential algebraic equations (PDAEs) are highly nonlinear and tightly coupled due to complex nonlinear reactions and strong solution-media interactions. Here we present a preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach to solve the governing PDAEs in a fully coupled and fully implicit manner. A well-known advantage of the JFNK method is that it does not require explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations. Our approach further enhances the JFNK method by utilizing physics-based, block preconditioning and a multigrid algorithm for efficient inversion of the preconditioner. This preconditioning strategy accounts for self- and optionally, cross-coupling between primary variables using diagonal and off-diagonal blocks of an approximate Jacobian, respectively. Numerical results are presented demonstrating the efficiency and massive scalability of the solution strategy for reactive transport problems involving strong solution-mineral interactions and fast kinetics. We found that the physics-based, block preconditioner significantly decreases the number of linear iterations, directly reducing computational cost; and the strongly scalable algebraic multigrid algorithm for approximate inversion of the preconditioner leads to excellent parallel scaling performance.

  17. Numerical methods for improving sensitivity analysis and parameter estimation of virus transport simulated using sorptive-reactive processes

    USGS Publications Warehouse

    Barth, G.; Hill, M.C.

    2005-01-01

    Using one- and two-dimensional homogeneous simulations, this paper addresses challenges associated with sensitivity analysis and parameter estimation for virus transport simulated using sorptive-reactive processes. Head, flow, and conservative- and virus-transport observations are considered. The paper examines the use of (1) observed-value weighting, (2) breakthrough-curve temporal moment observations, and (3) the significance of changes in the transport time-step size. The results suggest that (1) sensitivities using observed-value weighting are more susceptible to numerical solution variability, (2) temporal moments of the breakthrough curve are a more robust measure of sensitivity than individual conservative-transport observations, and (3) the transport-simulation time step size is more important than the inactivation rate in solution and about as important as at least two other parameters, reflecting the ease with which results can be influenced by numerical issues. The approach presented allows more accurate evaluation of the information provided by observations for estimation of parameters and generally improves the potential for reasonable parameter-estimation results. ?? 2004 Elsevier B.V. All rights reserved.

  18. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-01

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. PMID:26669517

  19. Most anti-BrdU antibodies react with 2'-deoxy-5-ethynyluridine -- the method for the effective suppression of this cross-reactivity.

    PubMed

    Liboska, Radek; Ligasová, Anna; Strunin, Dmytro; Rosenberg, Ivan; Koberna, Karel

    2012-01-01

    5-Bromo-2'-deoxyuridine (BrdU) and 2'-deoxy-5-ethynyluridine (EdU) are widely used as markers of replicated DNA. While BrdU is detected using antibodies, the click reaction typically with fluorescent azido-dyes is used for EdU localisation. We have performed an analysis of ten samples of antibodies against BrdU with respect to their reactivity with EdU. Except for one sample all the others evinced reactivity with EdU. A high level of EdU persists in nuclear DNA even after the reaction of EdU with fluorescent azido-dyes if the common concentration of dye is used. Although a ten-time increase of azido-dye concentration resulted in a decrease of the signal provided by anti-BrdU antibodies, it also resulted in a substantial increase of the non-specific signal. We have shown that this unwanted reactivity is effectively suppressed by non-fluorescent azido molecules. In this respect, we have tested two protocols of the simultaneous localisation of incorporated BrdU and EdU. They differ in the mechanism of the revelation of incorporated BrdU for the reaction with antibodies. The first one was based on the use of hydrochloric acid, the second one on the incubation of samples with copper(I) ions. The use of hydrochloric acid resulted in a significant increase of the non-specific signal. In the case of the second method, no such effect was observed. PMID:23272138

  20. Most Anti-BrdU Antibodies React with 2′-Deoxy-5-Ethynyluridine — The Method for the Effective Suppression of This Cross-Reactivity

    PubMed Central

    Strunin, Dmytro; Rosenberg, Ivan; Koberna, Karel

    2012-01-01

    5-Bromo-2′-deoxyuridine (BrdU) and 2′-deoxy-5-ethynyluridine (EdU) are widely used as markers of replicated DNA. While BrdU is detected using antibodies, the click reaction typically with fluorescent azido-dyes is used for EdU localisation. We have performed an analysis of ten samples of antibodies against BrdU with respect to their reactivity with EdU. Except for one sample all the others evinced reactivity with EdU. A high level of EdU persists in nuclear DNA even after the reaction of EdU with fluorescent azido-dyes if the common concentration of dye is used. Although a ten-time increase of azido-dye concentration resulted in a decrease of the signal provided by anti-BrdU antibodies, it also resulted in a substantial increase of the non-specific signal. We have shown that this unwanted reactivity is effectively suppressed by non-fluorescent azido molecules. In this respect, we have tested two protocols of the simultaneous localisation of incorporated BrdU and EdU. They differ in the mechanism of the revelation of incorporated BrdU for the reaction with antibodies. The first one was based on the use of hydrochloric acid, the second one on the incubation of samples with copper(I) ions. The use of hydrochloric acid resulted in a significant increase of the non-specific signal. In the case of the second method, no such effect was observed. PMID:23272138

  1. Reactive Power Compensator.

    DOEpatents

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  2. Reactive power compensator

    DOEpatents

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  3. Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method

    SciTech Connect

    Hai Huang; Xiaoyi Li

    2011-01-01

    A level set simulation methodology developed for modeling coupled reactive transport and structure evolution has been applied to dissolution in fracture apertures and porous media. The coupled processes such as fluid flow, reactant transport and dissolution at the solid-liquid interfaces are handled simultaneously. The reaction-induced evolution of solid-liquid interfaces is captured using the level set method, with the advantage of representing the interface with sub-grid scale resolution. The coupled processes are simulated for several geometric models of fractures and porous media under various flow conditions and reaction rates. Quantitative relationships between permeability and porosity are obtained from some of the simulation results and compared with analytical constitutive relations (i.e., the conventional cubic law and the Carman-Kozeny law) based on simplified pore space geometries and reaction induced geometric evolutions. The drastic deviation of the simulation results from these analytical theories is explained by the development of large local concentration gradients of reactants within fracture apertures and individual pores observed in the simulation results and consequently the complex geometric evolution patterns of fracture apertures and pores due to mineral dissolution. The simulation results support the argument that traditional constitutive relations based on simplified geometries and conditions have limited applicability in predicting field scale reactive transport and that incorporation of micro-scale physics is necessary.

  4. A Method for Capturing Sub-Gridscale Interactions in Numerical Simulation of Flow and Reactive Transport in Power-Law Media

    NASA Astrophysics Data System (ADS)

    Travis, B. J.

    2013-12-01

    For nonlinear, coupled flow and reactive transport in heterogeneous systems, capturing sub-gridscale dynamics is a serious challenge for coarse-grained numerical simulation. Even simply for linear, uncomplicated flow systems, accurate estimation of sub-gridscale effects may require averaging over a possibly tensor, multi-scale permeability distribution. Stochastic process modeling and statistical analysis methods are available and are being improved for calculating average and variance properties of flow and transport systems. Frequently, in addition to the average dynamics, a solution for an individual realization, or for many realizations, is desired or required. For media whose smaller-scale heterogeneity can be approximated by a power law (fractal) model (and this is approximately true for many soils), fractal interpolating functions, constrained by measured properties and distributions, provide an efficient way to capture sub-gridscale dynamics for individual realizations. An advantage of this approach is that it can be incorporated readily into conventional finite difference or finite element flow and transport codes, providing a multi-resolution solution for less cost than a finely-grained one. Several examples illustrate the potential usefulness of this approach for numerical simulation of flow and reactive transport in heterogeneous media. Comparisons are made to finely gridded traditional numerical solutions. Limitations and conditions of use are discussed.

  5. Interactive chemical reactivity exploration.

    PubMed

    Haag, Moritz P; Vaucher, Alain C; Bosson, Maël; Redon, Stéphane; Reiher, Markus

    2014-10-20

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the samson programming environment. PMID:25205397

  6. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  7. RADMAP: Simple probes for rapid assessment of complex reactivity: A method and case studies on the reaction of hydrogen atoms with unsaturated organic molecules.

    PubMed

    Long, Andrew K; Fawcett, Jason A; Clyburne, Jason A C; Pye, Cory C

    2016-03-01

    RADMAP, an open source program, allows for rapid analysis and visualization of the earliest stages of reactions between any molecule and a monoatomic probe (i.e., H*, H(+), H(-), Br*, or any other monoatomic species) using ab initio methods. This program creates non-planar potential energy surfaces of the initial interaction between a molecule of interest and the monoatomic probe. These surfaces can be used to both predict the site of addition as well as provide a qualitative estimate for the relative proportion of the formation of adducts; therefore, it gives insight into both the reactivity and the kinetic stability of a molecule. The program presents a way to quickly predict the number of signals anticipated in transverse field muon spin resonance spectra as well as their relative intensities. PMID:26851865

  8. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  9. Quantum wave packet method for state-to-state reactive scattering calculations on AB + CD --> ABC + D reactions.

    PubMed

    Cvitas, Marko T; Althorpe, Stuart C

    2009-04-23

    We describe a quantum wave packet method for computing the state-to-state quantum dynamics of 4-atom AB + CD --> ABC + D reactions. The approach is an extension to 4-atom reactions of a version of the reactant-product decoupling (RPD) approach, applied previously to 3-atom reactions ( J. Chem. Phys. 2001, 114 , 1601 ). The approach partitions the coordinate space of the reaction into separate reagent, strong-interaction, and product regions, using a system of artificial absorbing and reflecting potentials. It employs a partitioned version of the split-operator propagator, which is more efficient than partitioning the (exact) time-dependent Schrodinger equation. The wave packet bounces off a reflecting potential in the entrance channel, which generates a source term; this is transformed efficiently from reagent to product Jacobi coordinates by exploiting some simple angular momentum properties. The efficiency and accuracy of the method is demonstrated by numerical tests on the benchmark OH + H(2) --> H(2)O + H reaction. PMID:19298045

  10. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.

    PubMed

    Kitano, Masaaki; Funatsu, Keisho; Matsuoka, Masaya; Ueshima, Michio; Anpo, Masakazu

    2006-12-21

    Nitrogen-substituted TiO2 (N-TiO2) thin film photocatalysts have been prepared by a radio frequency magnetron sputtering (RF-MS) deposition method using a N2/Ar mixture sputtering gas. The effect of the concentration of substituted nitrogen on the characteristics of the N-TiO2 thin films was investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The absorption band of the N-TiO2 thin film was found to shift smoothly to visible light regions up to 550 nm, its extent depending on the concentration of nitrogen substituted within the TiO2 lattice in a range of 2.0-16.5%. The N-TiO2 thin film photocatalyst with a nitrogen concentration of 6.0% exhibited the highest reactivity for the photocatalytic oxidation of 2-propanol diluted in water even under visible (lambda > or = 450 nm) or solar light irradiation. Moreover, N-TiO2 thin film photocatalysts prepared on conducting glass electrodes showed anodic photocurrents attributed to the photooxidation of water under visible light, its extent depending on wavelengths up to 550 nm. The absorbed photon to current conversion efficiencies reached 25.2% and 22.4% under UV (lambda = 360 nm) and visible light (lambda = 420 nm), respectively. UV-vis and photoelectrochemical investigations also confirmed that these thin films remain thermodynamically and mechanically stable even under heat treatment at 673 K. In addition, XPS and XRD studies revealed that a significantly high substitution of the lattice O atoms of the TiO2 with the N atoms plays a crucial role in the band gap narrowing of the TiO2 thin films, enabling them to absorb and operate under visible light irradiation as a highly reactive, effective photocatalyst. PMID:17165971

  11. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  12. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  13. Modelling of Thermal Advective Reactive Flow in Hydrothermal Mineral Systems Using an Implicit Time-stepped Finite Element Method.

    NASA Astrophysics Data System (ADS)

    Hornby, P. G.

    2005-12-01

    Understanding chemical and thermal processes taking place in hydrothermal mineral deposition systems could well be a key to unlocking new mineral reserves through improved targeting of exploration efforts. To aid in this understanding it is very helpful to be able to model such processes with sufficient fidelity to test process hypotheses. To gain understanding, it is often sufficient to obtain semi-quantitative results that model the broad aspects of the complex set of thermal and chemical effects taking place in hydrothermal systems. For example, it is often sufficient to gain an understanding of where thermal, geometric and chemical factors converge to precipitate gold (say) without being perfectly precise about how much gold is precipitated. The traditional approach is to use incompressible Darcy flow together with the Boussinesq approximation. From the flow field, the heat equation is used to advect-conduct the heat. The flow field is also used to transport solutes by solving an advection-dispersion-diffusion equation. The reactions in the fluid and between fluid and rock act as source terms for these advection-dispersion equations. Many existing modelling systems that are used for simulating such systems use explicit time marching schemes and finite differences. The disadvantage of this approach is the need to work on rectilinear grids and the number of time steps required by the Courant condition in the solute transport step. The second factor can be particularly significant if the chemical system is complex, requiring (at a minimum) an equilibrium calculation at each grid point at each time step. In the approach we describe, we use finite elements rather than finite differences, and the pressure, heat and advection-dispersion equations are solved implicitly. The general idea is to put unconditional numerical stability of the time integration first, and let accuracy assume a secondary role. It is in this sense that the method is semi-quantiative. However

  14. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  15. Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat.

    PubMed

    Peiretti, Pier Giorgio; Medana, Claudio; Visentin, Sonja; Dal Bello, Federica; Meineri, Giorgia

    2012-05-01

    Commercial samples of beef and turkey meat were prepared by commonly used cooking methods with standard cooking times: (1) broiled at 200°C for 10min, (2) broiled at a medium temperature (140°C) for 10min, (3) cooked by microwave (MW) for 3min and then grilled (MW/grill) for 7min, (4) cooked in a domestic microwave oven for 10min, and (5) boiled in water for 10min. The raw and cooked meats were then analysed to determine the carnosine, anserine, homocarnosine, pentosidine, and thiobarbituric acid-reactive substance (TBARS) contents. It was observed that boiling beef caused a loss of approximately 50% of the carnosine, probably because of the high water solubility of carnosine and its homologues; cooking by microwave caused a medium loss of the anti-oxidants of approximately 20%; cooking by MW/grill led to a reduction in carnosine of approximately 10%. As far as the anserine and homocarnosine contents were concerned, a greater loss was observed for the boiling method (approximately 70%) while, for the other cooking methods, the value ranged from 30% to 70%. The data oscillate more for the turkey meat: the minimum carnosine decrease was observed in the cases of MW/grill and broiling at high temperature (25%). Analogously, the anserine and homocarnosine contents decreased slightly in the case of MW/grill and broiling at a high temperature (2-7%) and by 10-30% in the other cases. No analysed meat sample showed any traces of pentosidine above the instrumental determination limits. The cooked beef showed an increased TBARS value compared to the raw meat, and the highest values were found when the beef was broiled at a high temperature, cooked by microwave or boiled in water. The TBARS value of the turkey meat decreased for all the cooking methods in comparison to the TBARS value of the fresh meat. PMID:26434266

  16. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method.

    PubMed

    Ito, Shosuke; Kikuta, Marina; Koike, Shota; Szewczyk, Grzegorz; Sarna, Michal; Zadlo, Andrzej; Sarna, Tadeusz; Wakamatsu, Kazumasa

    2016-05-01

    Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence. PMID:26920809

  17. Injection of colloidal size particles of Fe{sup 0} in porous media with shearthinning fluids as a method to emplace a permeable reactive zone

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.

    1997-12-31

    Previous work has demonstrated the feasibility of injecting suspensions of micron-size zero-valent (FeO) particles into porous media as a method to emplace a permeable reactive zone. Further studies were conducted to evaluate the effects of several shearthinning fluids on enhancing the injectability of micron-size FeO particles into porous media. In contrast to Newtonian fluids, whose viscosities are constant with shear rate, certain non-Newtonian fluids are shearthinning, that is, the viscosity of these fluids decreases with increasing shear rate. The primary benefit of using these fluids for this application is that they increase the viscosity of the aqueous phase without adversely decreasing the hydraulic conductivity. A suspension formulated with a shearthinning fluid will maintain a relatively high viscosity in solution near the FeO particles (where the shear stress is low) relative to locations near the surfaces of the porous media, where the shear stress is high. The increased viscosity decreases the rate of gravitational settling of the dense FeO colloids (7.6 9/cm3) while maintaining a relatively high hydraulic conductivity that permits pumping the colloid suspensions into porous media at greater flowrates and distances. Aqueous solutions of three polymers at different concentrations were investigated. It was determined that, the use of shear thinning fluids greatly increases the injectability of the colloidal FeO suspensions in porous media.

  18. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    NASA Astrophysics Data System (ADS)

    Bharathy, P. Vijai; Nataraj, D.; Chu, Paul K.; Wang, Huaiyu; Yang, Q.; Kiran, M. S. R. N.; Silvestre-Albero, J.; Mangalaraj, D.

    2010-10-01

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp 3/sp 2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  19. A new multi-species pore-scale reactive transport modeling of arsenic sorption in dissolving porous media using lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Shafei, B.; Huber, C.; Parmigiani, A.; Taillefert, M.

    2012-12-01

    Physical and chemical heterogeneities associated with biogeochemical processes influence the fate and transport of contaminants in subsurface environments. We develop a new multi-species pore-scale reactive transport model based on the lattice Boltzmann method (LBM) to examine the temporal and spatial evolution of chemical species during the sorption of Arsenic. This model couples a fluid flow solver to an optimal advection-diffusion transport model where transport and reactions between chemical species are solved iteratively yielding a better stability and accuracy over a wide range of peclet numbers. It has already been applied to study 1) the permeability change of a porous medium during dissolution and precipitation and 2) the effect of spatial and chemical heterogeneities on the uptake of arsenic from the aqueous solution. By combining these two scenarios, we extend the model to incorporate arsenic speciation (i.e. As(III) and As(V)) and solid iron phase transformation, explore the distribution of iron, arsenic and partitioning of arsenic on various iron bearing solid phases. We investigate how the multitude of pore-domains affects the formation of redox gradients. As(III) and magnetite concentrations increase toward the anoxic zones while ferrihydrite and As(V) remains the dominant species in oxic conditions. The proposed reaction network includes: biotic reduction of ferrihydrite and magnetite to Fe2+(aq), of ferrihydrite to magnetite, biologically-mediated organic matter oxidation coupled with reduction of O2(aq) and As(V) , abiotic oxidation of Fe(II) by O2(aq) and sorption of As(V) and As(III) on Fe (hydr)oxide(s). All of these reactions are treated as kinetically controlled except As(V) and As(III) adsorption/desorption reactions which are expressed by equilibrium mass action laws. Similar set of reactions has been applied to simulate the distribution of As within constructed soil aggregates using continuum-scale model MIN3P (Masue-Slowey et al., 2010

  20. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  1. Methods for the in vitro determination of an individual disposition towards TH1- or TH2-reactivity by the application of appropriate stimulatory antigens

    PubMed Central

    BARTH, H; BERG, P A; KLEIN, R

    2003-01-01

    In this study we performed several methods for the determination of cytokines (RT-PCR for the demonstration of cytokine mRNA and flow cytometry for the analysis of intracellular cytokines) and compared them with a recently established test system stimulating peripheral blood mononuclear cells (PBMC) with TH1- and TH2-relevant recall antigens and analysing type 1 and type 2 cytokines by ELISA. Aim of the study was therefore to evaluate the reliability of TH1/TH2 cytokine profiles in two individuals with different types of an allergic/atopic disposition: one of them showed a strong TH1/type 1-mediated tuberculin-reaction (subject A), the other (subject B) revealed elevated IgE-levels and eosinophil counts (TH2/type 2-mediated). PBMC were incubated with the type 1-antigen purified protein derivative (PPD) and the type 2-antigen tetanus-toxoid (TT) for seven days. From the comparison of ELISA with RT-PCR and flow cytometry-analysis it became evident that all three methods allowed the definition of subject A as a ‘type 1-responder’. Subject B showed a pure type 2-response in the ELISA method; PCR and flow cytometry analysis revealed the simultaneous production of type 1- and type 2-cytokines resulting in a mixed type 1/type 2-profile. Active immunization of subject A with TT at the end of the observation period of 12 months resulted in a transient shift from type 1- to a mixed type 1/type 2-profile (simultaneous PPD-induced IFN-γ- and TT-induced IL-5 production). From this pilot study based on clear cut clinical criteria concerning either a humoral or cellular immunological reactivity towards allergens/antigens it is suggested that the determination of type 1/type 2-cytokines by ELISA in supernatants of PBMC stimulated with type 1/type 2-relevant antigens is a useful approach for a better classification of ‘type1-’ or ‘type 2-responder’. PMID:12974758

  2. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  3. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium‐to‐Gold Transmetalation

    PubMed Central

    Werlé, Christophe; Goddard, Richard

    2015-01-01

    Abstract The dirhodium carbene derived from bis(4‐methoxyphenyl)diazomethane and [Rh(tpa)4]⋅CH2Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X‐ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4‐methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  4. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium-to-Gold Transmetalation.

    PubMed

    Werlé, Christophe; Goddard, Richard; Fürstner, Alois

    2015-12-14

    The dirhodium carbene derived from bis(4-methoxyphenyl)diazomethane and [Rh(tpa)4 ]⋅CH2 Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X-ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4-methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2 ] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  5. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method.

    PubMed

    Rahnamoun, A; van Duin, A C T

    2014-04-17

    Atomic oxygen (AO) is the most abundant element in the low Earth orbit (LEO). It is the result of the dissociation of molecular oxygen by ultraviolet radiation from the sun. In the LEO, it collides with the materials used on spacecraft surfaces and causes degradation of these materials. The degradation of the materials on the surface of spacecrafts at LEO has been a significant problem for a long time. Kapton polyimide, polyhedral oligomeric silsesquioxane (POSS), silica, and Teflon are the materials extensively used in spacecraft industry, and like many other materials used in spacecraft industry, AO collision degradation is an important issue in their applications on spacecrafts. To investigate the surface chemistry of these materials in exposure to space AO, a computational chemical evaluation of the Kapton polyimide, POSS, amorphous silica, and Teflon was performed in separate simulations under similar conditions. For performing these simulations, the ReaxFF reactive force-field program was used, which provides the computational speed required to perform molecular dynamics (MD) simulations on system sizes sufficiently large to describe the full chemistry of the reactions. Using these simulations, the effects of AO impact on different materials and the role of impact energies, the content of material, and temperature of material on the behavior of the materials are studied. The ReaxFF results indicate that Kapton is less resistant than Teflon toward AO damage. These results are in good agreement with experiment. These simulations indicate that the amorphous silica shows the highest stability among these materials before the start of the highly exothermic silicon oxidation. We have verified that adding silicon to the bulk of the Kapton structure enhances the stability of the Kapton against AO impact. Our canonical MD simulations demonstrate that an increase in the heat transfer in materials during AO impact can provide a considerable decrease in the

  6. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2

  7. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOEpatents

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  8. Comparison of Reactive Inkjet Printing and Reactive Sintering to Fabricate Metal Conductive Patterns

    NASA Astrophysics Data System (ADS)

    Kheawhom, Soorathep; Foithong, Kamolrat

    2013-05-01

    Two methods to fabricate metal conductive patterns including reactive inkjet printing and reactive sintering were investigated. The silver printed lines were prepared from reactive inkjet printing of silver nitrate and L-ascorbic acid. Alternatively, the silver lines were prepared by the reactive sintering process of ethylene glycol vapor at 250 °C and formic acid vapor at 150 °C. In reactive printing, we investigated the effect of the number of printing cycles and the effect of silver nitrate concentration on the properties of the conductive patterns obtained. In reactive sintering, we investigated the usage of formic acid and ethylene glycol as reducing agents. The effect of reactive sintering time on the properties of the conductive patterns obtained was studied. As compared to reactive inkjet printing, the reactive sintering process gives more smooth and contiguous pattern resulting in lower resistivity. The resistivity of the silver line obtained by ethylene glycol vapor reduction at 250 °C for 30 min was 12 µΩ cm, which is about eight times higher than that of bulk silver. In contrast, the copper lines were fabricated by reactive inkjet printing and reactive sintering using various conditions of formic acid, ethylene glycol and hydrogen atmosphere, the copper lines printed have no conductivity due to the formation of copper oxide.

  9. Phenylethynyl reactive diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  10. [Present situation and question and prospect of study on kidney-supplementing and blood-activating method in treating ovaries functional disorders (infertility with dysfunctional ovulation) for stimulating ovaries reactive mechanism to gonadotropic hormones].

    PubMed

    Ma, Kun

    2011-09-01

    To summarize present situation of a study on kidney-supplementing and blood-activating method in treating ovaries functional disorders (infertility with dysfunctional ovulation) for stimulating ovaries reactive mechanism to gonadotropic hormones. Refer to correlative articles and combine clinical experience to report. Kidney-supplementing and blood-activating method have obvious therapeutic effect and no side effect and no adverse reaction. More attention are paid on influence factors and contribution about kidney-supplementing and blood-activating method in treating ovaries functional disorders especially on sex hormones, ovulating, corpora luteuman and implantation factors. Indicate the necessarity to develop polycentric kidney-supplementing and blood-activating method in treating ovaries functional disorders (infertility with dysfunctional ovulation) evaluation research. PMID:22121820

  11. Reactive Arthritis Diagnosis

    MedlinePlus

    ... Of Spondylitis The Heart In Spondyloarthritis Inflammatory vs. Mechanical Back ... Arthritis Symptoms Because there is no specific laboratory test for reactive arthritis, doctors sometimes find it difficult ...

  12. First OH reactivity measurements in Harvard Forest

    NASA Astrophysics Data System (ADS)

    Herdlinger-Blatt, I. S.; Martin, S. T.; Hansel, A.; McKinney, K. A.

    2013-12-01

    The OH reactivity provides critical insight into the HOx budget under actual atmospheric conditions, and has implications for the production of ozone and the formation of secondary organic material. Previous studies have indicated that the OH reactivity measured at field sites often exceeds model estimations, but current experiments remain inconclusive about the origin of the discrepancy between the modeled and measured OH reactivity (Lou et al., 2010). As of now there are only a limited number of atmospheric studies of total OH reactivity available, so to improve understanding of the OH reactivity more studies are needed. The first OH reactivity measurements in the northeastern United States are being performed during the summer of 2013 at Harvard Forest. Harvard forest, is located about 100 km west of the Boston metropolitan area, is one of the most intensively studied forests in North America. The main biogenic VOC emitted from Harvard Forest is isoprene followed by monoterpenes and methanol. Sampling for the OH reactivity measurements will be conducted from a 30m tall meteorological tower at the Harvard Forest site. The air is drawn into a reaction cell where the OH reactivity is determined using the Comparative Reactivity Method (Sinha et al., 2008) employing a High-Sensitivity Proton Transfer Reaction Mass Spectrometer (Lindinger et al., 1998, Hansel et al., 1998). In addition to the OH reactivity measurements, the most abundant compounds present in the air sample will be quantified using PTR-MS. The quantification of these compounds is needed to compare the theoretical calculated OH reactivity with the measured OH reactivity data. The measurements will be used to evaluate our understanding of the OH budget at Harvard Forest. References: A. Hansel, A. Jordan, C. Warneke, R. Holzinger, and W. Lindinger.: Improved Detection Limit of the Proton-transfer Reaction Mass Spectrometer: On-line Monitoring of Volatile Organic Compounds at Mixing Ratios of a Few PPTV

  13. The design of reactive shielded magnet clutches

    NASA Technical Reports Server (NTRS)

    Gertsov, S. M.

    1978-01-01

    The design of reactive shielded magnet clutches is considered along with their schematics, design formulas and characteristics of clutches in general. The design method suggested makes it possible to reduce calculation errors to 10%.

  14. Groundwater well with reactive filter pack

    DOEpatents

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  15. Groundwater well with reactive filter pack

    DOEpatents

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  16. Acquired reactive perforating collagenosis.

    PubMed

    Basak, P Y; Turkmen, C

    2001-01-01

    Acquired perforating disorder has been recognized as an uncommon distinct dermatosis in which altered collagen is eliminated through the epidermis. Several disorders accompanied by itching and scratching were reported to be associated with reactive perforating collagenosis. A 67-year-old white woman diagnosed as acquired reactive perforating collagenosis with poorly controlled diabetes mellitus and congestive cardiac failure is presented. PMID:11525959

  17. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  18. Reactivity analysis of core distortion effects in the FFTF

    SciTech Connect

    Knutson, B.J.

    1982-01-01

    An improved technique for evaluating core distortion reactivity effects was developed using reactivity analyses of two core geometry models (R-Z and HEX). This technique is incorporated into a new processor code called CORDIS. The advantages of this technique over existing reactivity models are that is preserves core heterogeneity, provides a control rod insertion effect model, uses row-dependent axial shape functions, and provides a flexible and cost efficient core distortion reactivity analysis method.

  19. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    SciTech Connect

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  20. Reactive metabolites and agranulocytosis.

    PubMed

    Uetrecht, J P

    1996-01-01

    Central to most hypotheses of the mechanism of idiosyncratic drug-induced blood dyscrasias is the involvement of reactive metabolites. In view of the reactive nature of the majority of such metabolites, it is likely that they are formed by, or in close proximity to the blood cells affected. The major oxidative system of neutrophils generates hypochlorous acid. We have demonstrated that the drugs associated with the highest incidence of agranulocytosis are oxidized to reactive metabolites by hypochlorous acid and/or activated neutrophils. There are many mechanisms by which such reactive metabolites could induce agranulocytosis. In the case of aminopyrine-induced agranulocytosis, most cases appear to involve drug-dependent anti-neutrophil antibodies, and these are likely to be induced by cell membrane antigens modified by the reactive metabolite of aminopyrine. The target of agranulocytosis associated with many other drugs is usually neutrophil precursors and may involve cytotoxicity or a cell-mediated immune reaction induced by a reactive metabolite. In the case of aplastic anaemia, there is evidence in some cases for involvement of cytotoxic T cells, which could either be induced by metabolites generated by neutrophils, or more likely, by reactive metabolites generated by stem cells. PMID:8987247

  1. Reactive Leidenfrost droplets

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Bouret, Y.; Celestini, F.

    2016-05-01

    We experimentally investigate the reactivity of Leidenfrost droplets with their supporting substrates. Several organic liquids are put into contact with a copper substrate heated above their Leidenfrost temperature. As the liquid evaporates, the gaseous flow cleans the superficial copper oxide formed at the substrate surface and the reaction maintains a native copper spot below the evaporating droplet. The copper spot can reach several times the droplet size for the most reactive organic compounds. This study shows an interesting coupling between the physics of the Leidenfrost effect and the mechanics of reactive flows. Different applications are proposed such as drop motion tracking and vapor flow monitoring.

  2. Mechanical, tribological, and electrochemical behavior of Cr 1- xAl xN coatings deposited by r.f. reactive magnetron co-sputtering method

    NASA Astrophysics Data System (ADS)

    Sanchéz, J. E.; Sanchéz, O. M.; Ipaz, L.; Aperador, W.; Caicedo, J. C.; Amaya, C.; Landaverde, M. A. Hernández; Beltran, F. Espinoza; Muñoz-Saldaña, J.; Zambrano, G.

    2010-02-01

    Chromium aluminum nitride (Cr 1- xAl xN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N 2) gas mixture from chromium and aluminum targets. Properties of deposited Cr 1- xAl xN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr 1- xAl xN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr 1- xAl xN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr 1- xAl xN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr 1- xAl xN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.

  3. When is arthritis reactive?

    PubMed

    Hamdulay, S S; Glynne, S J; Keat, A

    2006-07-01

    Reactive arthritis is an important cause of lower limb oligoarthritis, mainly in young adults. It is one of the spondyloarthropathy family; it is distinguishable from other forms of inflammatory arthritis by virtue of the distribution of affected sites and the high prevalence of characteristic extra-articular lesions. Many terms have been used to refer to this and related forms of arthritis leading to some confusion. Reactive arthritis is precipitated by an infection at a distant site and genetic susceptibility is marked by possession of the HLA-B27 gene, although the mechanism remains uncertain. Diagnosis is a two stage process and requires demonstration of a temporal link with a recognised "trigger" infection. The identification and management of "sexually acquired" and "enteric" forms of reactive arthritis are considered. Putative links with HIV infection are also discussed. The clinical features, approach to investigation, diagnosis, and management of reactive arthritis are reviewed. PMID:16822921

  4. When is arthritis reactive?

    PubMed Central

    Hamdulay, S S; Glynne, S J; Keat, A

    2006-01-01

    Reactive arthritis is an important cause of lower limb oligoarthritis, mainly in young adults. It is one of the spondyloarthropathy family; it is distinguishable from other forms of inflammatory arthritis by virtue of the distribution of affected sites and the high prevalence of characteristic extra‐articular lesions. Many terms have been used to refer to this and related forms of arthritis leading to some confusion. Reactive arthritis is precipitated by an infection at a distant site and genetic susceptibility is marked by possession of the HLA‐B27 gene, although the mechanism remains uncertain. Diagnosis is a two stage process and requires demonstration of a temporal link with a recognised “trigger” infection. The identification and management of “sexually acquired” and “enteric” forms of reactive arthritis are considered. Putative links with HIV infection are also discussed. The clinical features, approach to investigation, diagnosis, and management of reactive arthritis are reviewed. PMID:16822921

  5. Stress Reactivity in Insomnia.

    PubMed

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS. PMID:25126695

  6. OH reactivity measurements within a boreal forest: evidence for unknown reactive emissions.

    PubMed

    Sinha, Vinayak; Williams, J; Lelieveld, J; Ruuskanen, T M; Kajos, M K; Patokoski, J; Hellen, H; Hakola, H; Mogensen, D; Boy, M; Rinne, J; Kulmala, M

    2010-09-01

    Boreal forests emit large amounts of volatile organic compounds (VOCs) which react with the hydroxyl radical (OH) to influence regional ozone levels and form secondary organic aerosol. Using OH reactivity measurements within a boreal forest in Finland, we investigated the budget of reactive VOCs. OH reactivity was measured using the comparative reactivity method, whereas 30 individual VOCs were measured using proton transfer reaction mass spectrometry, thermal-desorption gas chromatography mass spectrometry, and liquid chromatography mass spectrometry, in August 2008. The measured OH reactivity ranged from below detection limit (3.5 s(-1)), to approximately 60 s(-1) in a single pollution event. The average OH reactivity was approximately 9 s(-1) and no diel variation was observed in the profiles. The measured OH sinks (approximately 30 species) accounted for only 50% of the total measured OH reactivity, implying unknown reactive VOCs within the forest. The five highest measured OH sinks were: monoterpenes (1 s(-1)), CO (0.7 s(-1)), isoprene (0.5 s(-1)), propanal and acetone (0.3 s(-1)), and methane (0.3 s(-1)). We suggest that models be constrained by direct OH reactivity measurements to accurately assess the impact of boreal forest emissions on regional atmospheric chemistry and climate. PMID:20687598

  7. Reactive Magnetospinning of Nano- and Microfibers.

    PubMed

    Tokarev, Alexander; Trotsenko, Oleksandr; Asheghali, Darya; Griffiths, Ian M; Stone, Howard A; Minko, Sergiy

    2015-11-01

    Reactive spinning of nano- and microfibers that involves very fast chemical reactions and ion exchange is a challenge for the common methods for nanofiber formation. Herein, we introduce the reactive magnetospinning method. This procedure is based on the magnetic-field-directed collision of ferrofluid droplets with liquid droplets that contain complementary reactants. The collision, start of the chemical reaction, and the fiber drawing are self-synchronized. The method is used to synthesize, cross-link, and chemically modify fiber-forming polymers in the stage of fiber formation. The method provides new opportunities for the fabrication of nanofibers for biomedical applications. PMID:26403723

  8. Synthesis of Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} through a reactive flux method and its visible-light photocatalytic performances

    SciTech Connect

    Zhu, Xianglin; Wang, Zeyan E-mail: bbhuang@sdu.edu.cn; Huang, Baibiao E-mail: bbhuang@sdu.edu.cn; Zhang, Xiaoyang; Qin, Xiaoyan; Wei, Wei; Dai, Ying

    2015-10-01

    Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} was prepared by a reactive flux method. The structures, morphologies, and light absorption properties were investigated. Owing to the polar crystal structure, an internal electric field can be formed inside the material, which can facilitate the photogenerated charge separation during the photocatalytic process. Based on both the wide light absorption spectra and high charge separation efficiency originated from the polarized internal electric field, Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} exhibit higher efficiency over Ag{sub 3}PO{sub 4} during the degradation of organic dyes under visible light irradiation, which is expected to be a potential material for solar energy harvest and conversion.

  9. Do Procedures for Verbal Reporting of Thinking Have to Be Reactive? A Meta-Analysis and Recommendations for Best Reporting Methods

    ERIC Educational Resources Information Center

    Fox, Mark C.; Ericsson, K. Anders; Best, Ryan

    2011-01-01

    Since its establishment, psychology has struggled to find valid methods for studying thoughts and subjective experiences. Thirty years ago, Ericsson and Simon (1980) proposed that participants can give concurrent verbal expression to their thoughts (think aloud) while completing tasks without changing objectively measurable performance (accuracy).…

  10. Integrating planning and reactive control

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kaelbling, Leslie Pack

    1989-01-01

    Artificial intelligence research on planning is concerned with designing control systems that choose actions by manipulating explicit descriptions of the world state, the goal to be achieved, and the effects of elementary operations available to the system. Because planning shifts much of the burden of reasoning to the machine, it holds great appeal as a high-level programming method. Experience shows, however, that it cannot be used indiscriminately because even moderately rich languages for describing goals, states, and the elementary operators lead to computational inefficiencies that render the approach unsuitable for realistic applications. This inadequacy has spawned a recent wave of research on reactive control or situated activity in which control systems are modeled as reacting directly to the current situation rather than as reasoning about the future effects of alternative action sequences. While this research has confronted the issue of run-time tractability head on, in many cases it has done so by sacrificing the advantages of declarative planning techniques. Ways in which the two approaches can be unified are discussed. The authors begin by modeling reactive control systems as state machines that map a stream of sensory inputs to a stream of control outputs. These machines can be decomposed into two continuously active subsystems: the planner and the execution module. The planner computes a plan, which can be seen as a set of bits that control the behavior of the execution module. An important element of this work is the formulation of a precise semantic interpretation for the inputs and outputs of the planning system. They show that the distinction between planned and reactive behavior is largely in the eye of the beholder: systems that seem to compute explicit plans can be redescribed in situation-action terms and vice versa. They also discuss practical programming techniques that allow the advantages of declarative programming and guaranteed

  11. Haptenation: Chemical Reactivity and Protein Binding

    PubMed Central

    Chipinda, Itai; Hettick, Justin M.; Siegel, Paul D.

    2011-01-01

    Low molecular weight chemical (LMW) allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed. PMID:21785613

  12. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  13. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    SciTech Connect

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  14. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    SciTech Connect

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  15. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  16. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  17. Working Memory and Reactivity

    ERIC Educational Resources Information Center

    Goo, Jaemyung

    2010-01-01

    The present study explores the relationship between working memory capacity (WMC) and think-alouds, focusing on the issue of reactivity. Two WM span tasks (listening span and operation span) were administered to 42 English-speaking learners of Spanish. Learner performance on reading comprehension and written production was measured under two…

  18. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  19. Total OH reactivity emissions from Norway spruce

    NASA Astrophysics Data System (ADS)

    Nölscher, Anke; Bourtsoukidis, Efstratios; Bonn, Boris; Kesselmeier, Jürgen; Lelieveld, Jos; Williams, Jonathan

    2013-04-01

    Forest emissions represent a strong potential sink for the main tropospheric oxidant, the hydroxyl radical (OH). In forested environments, the comparison of the directly determined overall sink of OH radicals, the total OH reactivity, and the individually measured OH sink compounds often exposes a significant gap. This "missing" OH reactivity can be high and influenced by both direct biogenic emissions and secondary photo-oxidation products. To investigate the source of the missing OH sinks in forests, total OH reactivity emission rates were determined for the first time from a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. The total OH reactivity was measured inside a branch enclosure using the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) as the detector. In parallel, separate volatile organic compounds (VOC) emission rates were monitored by a second PTR-MS, including the signal of isoprene, acetaldehyde, total monoterpenes and total sesquiterpenes. The comparison of known and PTR-MS detected OH sink compounds and the directly measured total OH reactivity emitted from Norway spruce revealed unmeasured and possibly unknown primary biogenic emissions. These were found to be highest in late summer during daytime coincident with highest temperatures and ozone levels.

  20. Optimal reactive planning with security constraints

    SciTech Connect

    Thomas, W.R.; Cheng, D.T.Y.; Dixon, A.M.; Thorp, J.D.; Dunnett, R.M.; Schaff, G.

    1995-12-31

    The National Grid Company (NGC) of England and Wales has developed a computer program, SCORPION, to help system planners optimize the location and size of new reactive compensation plant on the transmission system. The reactive power requirements of the NGC system have risen as a result of increased power flows and the shorter timescale on which power stations are commissioned and withdrawn from service. In view of the high costs involved, it is important that reactive compensation be installed as economically as possible, without compromising security. Traditional methods based on iterative use of a load flow program are labor intensive and subjective. SCORPION determines a near-optimal pattern of new reactive sources which are required to satisfy voltage constraints for normal and contingent states of operation of the transmission system. The algorithm processes the system states sequentially, instead of optimizing all of them simultaneously. This allows a large number of system states to be considered with an acceptable run time and computer memory requirement. Installed reactive sources are treated as continuous, rather than discrete, variables. However, the program has a restart facility which enables the user to add realistically sized reactive sources explicitly and thereby work towards a realizable solution to the planning problem.

  1. Studying chemical reactivity in a virtual environment.

    PubMed

    Haag, Moritz P; Reiher, Markus

    2014-01-01

    Chemical reactivity of a set of reactants is determined by its potential (electronic) energy (hyper)surface. The high dimensionality of this surface renders it difficult to efficiently explore reactivity in a large reactive system. Exhaustive sampling techniques and search algorithms are not straightforward to employ as it is not clear which explored path will eventually produce the minimum energy path of a reaction passing through a transition structure. Here, the chemist's intuition would be of invaluable help, but it cannot be easily exploited because (1) no intuitive and direct tool for the scientist to manipulate molecular structures is currently available and because (2) quantum chemical calculations are inherently expensive in terms of computational effort. In this work, we elaborate on how the chemist can be reintroduced into the exploratory process within a virtual environment that provides immediate feedback and intuitive tools to manipulate a reactive system. We work out in detail how this immersion should take place. We provide an analysis of modern semi-empirical methods which already today are candidates for the interactive study of chemical reactivity. Implications of manual structure manipulations for their physical meaning and chemical relevance are carefully analysed in order to provide sound theoretical foundations for the interpretation of the interactive reactivity exploration. PMID:25340884

  2. Measurement of reactive species for plasma medicine

    NASA Astrophysics Data System (ADS)

    Ono, Ryo

    2015-09-01

    Plasma medicine has been intensively studied over the last decade. Reactive oxygen and nitrogen species are responsible for the therapeutic effects in plasma medicine. To examine the therapeutic effects of reactive species, the densities of OH, O, and NO were measured using laser-induced fluorescence (LIF). A helium atmospheric-pressure plasma jet (10 kV, 10 kHz of 40 μs pulses) and a nanosecond streamer discharge (24 kV, 8 ns, 30 Hz) were utilized to treat mouse melanoma cells in a culture medium. Correlation between the dose of reactive species and deactivation rate of melanoma cells was measured with the aid of LIF. The results showed that the rate of cell death correlates with OH density, but not with O and NO densities. Next, a method to supply a specific reactive species to living organisms was developed. It utilizes photolysis of helium-buffered H2O and O2 by vacuum ultraviolet (VUV) light to produce reactive species. The VUV method was utilized to sterilize Bacillus atrophaeus on agar plate. With the VUV method, it was succeeded to show sterilization only by OH radicals. A 30 s treatment with approximately 0.1 ppm OH radicals caused visible sterilization.

  3. Reactivity Network: Secondary Sources for Inorganic Reactivity Information.

    ERIC Educational Resources Information Center

    Mellon, E. K.

    1989-01-01

    Provides an eclectic annotated bibliography of secondary sources for inorganic reactivity information of interest to reactivity network review authors and to anyone seeking information about simple inorganic reactions in order to develop experiments and demonstrations. Gives 119 sources. (MVL)

  4. Towards a quantitative understanding of total OH reactivity: A review

    NASA Astrophysics Data System (ADS)

    Yang, Yudong; Shao, Min; Wang, Xuemei; Nölscher, Anke C.; Kessel, Stephan; Guenther, Alex; Williams, Jonathan

    2016-06-01

    Over the past fifty years, considerable efforts have been devoted to measuring the concentration and chemical speciation of volatile organic compounds (VOCs) in ambient air and emissions. Recently, it has become possible to directly determine the overall effect of atmospheric trace gases on the oxidant hydroxyl radicals (OH), by measuring OH reactivity (OH loss frequency). Quantifying total OH reactivity is one way to characterize the roles of VOCs in formation of ground-level ozone and secondary organic aerosols (SOA). Approaches for measuring total OH reactivity in both emissions and ambient air have been progressing and have been applied in a wide range of studies. Here we evaluate the main techniques used to measure OH reactivity, including two methods directly measuring OH decay and one comparative reactivity method (CRM), and summarize the existing experimental and modeling studies. Total OH reactivity varies significantly on spatial, diurnal, seasonal and vertical bases. Comparison with individually detected OH sinks often reveals a significant missing reactivity, ranging from 20% to over 80% in some environments. Missing reactivity has also been determined in most source emission studies. These source measurements, as well as numerical models, have indicated that both undetected primary emissions and unmeasured secondary products could contribute to missing reactivity. A quantitative understanding of total OH reactivity of various sources and ambient environments will enhance our understanding of the suite of compounds found in emissions as well as chemical processes, and will also provide an opportunity for the improvement of atmospheric chemical mechanisms.

  5. PREDICTING CHEMICAL REACTIVITY BY COMPUTER

    EPA Science Inventory

    Mathematical models for predicting the fate of pollutants in the environment require reactivity parameter values--that it, the physical and chemical constants that govern reactivity. lthough empirical structure-activity relationships have been developed that allow estimation of s...

  6. An advanced approach to reactivity rating.

    PubMed

    Kossoy, A; Benin, A; Akhmetshin, Yu

    2005-02-14

    Reactive hazards remain a significant safety challenge in the chemical industry despite continual attention devoted to this problem. The application of various criteria, which are recommended by the guidelines for assessment of reactive hazards, often causes unsafe results to be obtained. The main origins of such failures are as follows: (a) reactivity of a compound is considered as an inherent property of a compound; (b) some appropriate criteria are determined by using too simple methods that cannot reveal potential hazards properly. Four well-known hazard indicators--time to certain conversion limit, TCL; adiabatic time to maximum rate, TMR; adiabatic temperature rise; and NFPA reactivity rating number, Nr--are analyzed in the paper. It was ascertained that they could be safely used for preliminary assessment of reactive hazards provided that: (a) the selected indicator is appropriate for the specific conditions of a process; (b) the indicators have been determined by using the pertinent methods. The applicability limits for every indicator were determined and the advanced kinetics-based simulation approach, which allows reliable determination of the indicators, is proposed. The technique of applying this approach is illustrated by two practical examples. PMID:15721524

  7. Advances in reactive surfactants.

    PubMed

    Guyot, A

    2004-05-20

    The study of reactive surfactants and their applications in the synthesis of latexes for waterborne coatings has been recently boosted by two successive European programmes, involving all together eight academic and five industrial laboratories. The most significant results were obtained using surfactants derived from maleic and related anhydrides, or both nonionic and anionic reactive polymeric surfactants. Such surfactants are able to improve the stability of styrenic and acrylic latexes vs. various constraints, such as electrolyte addition, freeze-thawing tests or extraction with alcohol or acetone. The properties of films used in waterborne coatings are also improved in case of water exposure (less water uptake, dimensional stability), as well as improved weatherability, and blocking properties. Formulations for woodstain varnishes, metal coating of printing inks, based on the use of simple polymerizable surfactants, are now in the market. PMID:15072924

  8. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  9. Skylab reactivation mission report

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1980-01-01

    On July 11, 1979, Skylab impacted the Earth's surface. The debris dispersion area stretched from the South Eastern Indian Ocean across a sparsely populated section of Western Australia. The events leading to the reentry of Skylab are discussed and a final assessment of the Skylab debris impact footprint is presented. Also included are detailed evaluations of the various Skylab systems that were reactivated when control of Skylab was regained in mid-1978 after having been powered down since February 4, 1974.

  10. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  11. Photocatalytic degradation of an azo textile dye (C.I. Reactive Red 195 (3BF)) in aqueous solution over copper cobaltite nanocomposite coated on glass by Doctor Blade method

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Rezvani, Zoya

    2015-08-01

    The degradation of C.I. Reactive Red 195 (3BF) in aqueous solution using copper cobaltite nanocomposite coated on glass by Doctor Blade method was studied. Structural, optical and morphological properties of nanocomposite coatings were characterized by X-ray powder diffractometry (XRD), diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FESEM). The nanoparticles exhibit a particle size of 31 nm, showing a good nanoscale crystalline morphology. The photocatalytic activity of copper cobaltite nanocomposite coated on glass was studied by performing the photocatalytic degradation of 3BF at different irradiation time. The effect of irradiation time on the degradation of 3BF was studied and the results showed that more than 85% of the 3BF was degraded in 45 min of irradiation. The pseudo-first-order kinetic models were used and the rate constants were evaluated with pseudo first order rate constants of 4.10 × 10-2 min-1. The main advantage of the photocatalyst coated on glass overcomes the difficulties in separation and recycle of photocatalyst suspensions.

  12. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-01

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. PMID:26116997

  13. Photocatalytic degradation of an azo textile dye (C.I. Reactive Red 195 (3BF)) in aqueous solution over copper cobaltite nanocomposite coated on glass by Doctor Blade method.

    PubMed

    Habibi, Mohammad Hossein; Rezvani, Zoya

    2015-08-01

    The degradation of C.I. Reactive Red 195 (3BF) in aqueous solution using copper cobaltite nanocomposite coated on glass by Doctor Blade method was studied. Structural, optical and morphological properties of nanocomposite coatings were characterized by X-ray powder diffractometry (XRD), diffuse reflectance spectroscopy (DRS) and field emission scanning electron microscopy (FESEM). The nanoparticles exhibit a particle size of 31 nm, showing a good nanoscale crystalline morphology. The photocatalytic activity of copper cobaltite nanocomposite coated on glass was studied by performing the photocatalytic degradation of 3BF at different irradiation time. The effect of irradiation time on the degradation of 3BF was studied and the results showed that more than 85% of the 3BF was degraded in 45 min of irradiation. The pseudo-first-order kinetic models were used and the rate constants were evaluated with pseudo first order rate constants of 4.10 × 10(-2) min(-1). The main advantage of the photocatalyst coated on glass overcomes the difficulties in separation and recycle of photocatalyst suspensions. PMID:25840025

  14. Design and synthesis of reactive separation systems

    SciTech Connect

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  15. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  16. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  17. Using qualitative maps to direct reactive robots

    NASA Technical Reports Server (NTRS)

    Bertin, Randolph; Pendleton, Tom

    1992-01-01

    The principal advantage of mobile robots is that they are able to go to specific locations to perform useful tasks rather than have the tasks brought to them. It is important therefore that the robot be used to reach desired locations efficiently and reliably. A mobile robot whose environment extends significantly beyond its sensory horizon must maintain a representation of the environment, a map, in order to attain these efficiency and reliability requirements. We believe that qualitative mapping methods provide useful and robust representation schemes and that such maps may be used to direct the actions of a reactively controlled robot. In this paper we describe our experience in employing qualitative maps to direct, through the selection of desired control strategies, a reactive-behavior based robot. This mapping capability represents the development of one aspect of a successful deliberative/reactive hybrid control architecture.

  18. Sensitivity and uncertainty analysis of reactivities for UO2 and MOX fueled PWR cells

    SciTech Connect

    Foad, Basma; Takeda, Toshikazu

    2015-12-31

    The purpose of this paper is to apply our improved method for calculating sensitivities and uncertainties of reactivity responses for UO{sub 2} and MOX fueled pressurized water reactor cells. The improved method has been used to calculate sensitivity coefficients relative to infinite dilution cross-sections, where the self-shielding effect is taken into account. Two types of reactivities are considered: Doppler reactivity and coolant void reactivity, for each type of reactivity, the sensitivities are calculated for small and large perturbations. The results have demonstrated that the reactivity responses have larger relative uncertainty than eigenvalue responses. In addition, the uncertainty of coolant void reactivity is much greater than Doppler reactivity especially for large perturbations. The sensitivity coefficients and uncertainties of both reactivities were verified by comparing with SCALE code results using ENDF/B-VII library and good agreements have been found.

  19. Comparison of simian and human cytomegalovirus reactivities in an enzyme-linked immunospecific assay: effect of antigen preparation on cross-reactive antigens.

    PubMed Central

    Tinghitella, T J; Swack, N; Baumgarten, A; Hsiung, G D

    1982-01-01

    Simian cytomegalovirus was substituted for human cytomegalovirus in an enzyme-linked immunoassay. Unlike the indirect immunofluorescence assay which demonstrates a two-way cross-reactivity, only one-way cross-reactivity was observed. Altering the method of simian antigen preparation gave some insight other this different reactivity. PMID:6288573

  20. Genomic Analysis of Reactive Astrogliosis

    PubMed Central

    Zamanian, JL; Xu, L; Foo, LC; Nouri, N; Zhou, L; Giffard, RG; Barres, BA

    2012-01-01

    Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated induction of gene expression after insult and identify two induced genes, Lcn2 and Serpina3n, as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is up-regulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases. PMID:22553043

  1. Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay-limitations of method.

    PubMed

    Szychowski, Konrad A; Rybczyńska-Tkaczyk, Kamila; Leja, Marcin L; Wójtowicz, Anna K; Gmiński, Jan

    2016-06-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant, applied in a variety of commercial and household products, mainly electronic ones. Since the production of reactive oxygen species (ROS) is considered one of the principal cytotoxicity mechanisms, numerous studies undertake that aspect of TBBPA's mechanism of action. The present study verifies if the fluorogenic substrate 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) should be used to detect ROS production induced by TBBPA. To determine the ability of TBBPA alone to stimulate the conversion of H2DCFDA to its fluorescent product 2',7'-dichlorofluorescein (DCF), we used a cell-free model. In the experiments we check different cultured media also in combination with free radical scavenger N-acetyl-l-cysteine (NAC). Additionally, experiments with stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH·) have been made. The presented data showed that TBBPA in all tested concentrations interacts with H2DCFDA in phosphate-buffered saline (PBS) buffer while in micromolar concentrations in the DMEM/F12 medium with and without serum. The addition of NAC inhibited the interaction of TBBPA with H2DCFDA. Experiments with DPPH· showed that, in the presence of NAC, TBBPA acts like a free radical. TBBPA has similar properties to free radical and is susceptible to free radical scavenging properties of NAC. Our results indicated that H2DCFDA assay cannot be used to evaluate cellular ROS production in TBBPA studies. The study connected with TBBPA-stimulated ROS production in cell culture models using the H2DCFDA assay should be revised using a different method. However, due to the free radical-like nature of TBBPA, it can be very difficult. Therefore, further investigation of the nature of TBBPA as a compound with similar properties to free radical is required. PMID:26976009

  2. Latent Herpes Viral Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  3. 40 CFR Appendix A to Subpart Pppp... - Determination of Weight Volatile Matter Content and Weight Solids Content of Reactive Adhesives

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Content and Weight Solids Content of Reactive Adhesives A Appendix A to Subpart PPPP of Part 63 Protection... Reactive Adhesives 1.0Applicability and Principle 1.1Applicability: This method applies to the... reactive adhesives. Reactive adhesives are composed, in large part, of monomers that react during...

  4. 40 CFR Appendix A to Subpart Pppp... - Determination of Weight Volatile Matter Content and Weight Solids Content of Reactive Adhesives

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Content and Weight Solids Content of Reactive Adhesives A Appendix A to Subpart PPPP of Part 63 Protection... Reactive Adhesives 1.0Applicability and Principle 1.1Applicability: This method applies to the... reactive adhesives. Reactive adhesives are composed, in large part, of monomers that react during...

  5. [Reactive airways dysfunction syndrome].

    PubMed

    Costa, R; Orriols, R

    2005-01-01

    Reactive airways dysfunction syndrome, better known as RADS, was described as a clinical entity consisting in the appearance of bronchial asthma due to massive toxic inhalation. The term was coined and recognised for the first time in 1985. Since then different publications have verified new cases as well as different causal agents. It usually arises from an accident at the work place and in closed or poorly ventilated spaces, where high concentrations of irritant products are inhaled in the form of gas, smoke or vapour. In the following minutes or hours symptoms of bronchial obstruction appear in an acute form, with bronchial hyperresponsiveness persisting for months or years. The affected patients do not show a recurrence of symptoms following exposure to non-toxic doses of the same agent that started the symptoms. This is why diagnosis is based on clinical manifestations as it is not reproducible through a provocation test. PMID:15915173

  6. Differentiating challenge reactivity from psychomotor activity in studies of children's psychophysiology: considerations for theory and measurement.

    PubMed

    Bush, Nicole R; Alkon, Abbey; Obradović, Jelena; Stamperdahl, Juliet; Boyce, W Thomas

    2011-09-01

    Current methods of assessing children's physiological "stress reactivity" may be confounded by psychomotor activity, biasing estimates of the relation between reactivity and health. We examined the joint and independent contributions of psychomotor activity and challenge reactivity during a protocol for 5- and 6-year-old children (N = 338). Measures of parasympathetic reactivity (respiratory sinus arrhythmia [RSA]) and sympathetic reactivity (preejection period [PEP]) were calculated for social, cognitive, sensory, and emotional challenge tasks. Reactivity was calculated relative to both resting and a paired comparison task that accounted for psychomotor activity effects during each challenge. Results indicated that comparison tasks themselves elicited RSA and PEP responses, and reactivity adjusted for psychomotor activity was incongruent with reactivity calculated using rest. Findings demonstrate the importance of accounting for confounding psychomotor activity effects on physiological reactivity. PMID:21524757

  7. On 'reactivity' versus 'tolerance'.

    PubMed

    Zinkernagel, Rolf M

    2004-08-01

    In Burnet's review on 'The impact of ideas on immunology' he considers himself an observer of nature using biochemical and molecular analysis for more detailed understanding, a description that applies also to me. I use three examples--repertoire selection of T cells, rules of immune reactivity versus non-reactivity and immunological memory--to illustrate the difficulties we all have in probing nature's immunological secrets and in critically testing immunologists' ideas. At one end of the spectrum of biological research one may argue everything is possible and therefore all results are correct, if correctly measured. But perhaps it is more important to always ask again and again what is frequent and enhances survival versus what is rare and an exception. At the same time one must keep in mind that special situations and special tricks may well be applied for medical benefits, although they may have little impact on physiology and species survival. I will attempt to use disease in virus-infected mice to obtain some answers to what I consider to be important immunological questions with the hope of improving the ratio of answers that are right for the right experimental reasons versus those that are right for the wrong reasons. Some of these experiments falsify hypotheses, previous experiments and interpretations and therefore are particularly important in correcting misleading concepts. They should help to find out which half of immunological ideas and truths in immunological text books written today are likely to be wrong. Ideas are important in immunology, but are often rather demagogically handled and therefore may cost us very dearly indeed. Evaluating immunity to infections and tumours in vivo should help prevent us from getting lost in immunology. PMID:15283843

  8. Latent Virus Reactivation: From Space to Earth

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Reactivation of latent viruses is a recognized consequence of decreased immunity. More recently viral reactivation has been identified as an important in vivo indicator of clinically relevant immune changes. Viral reactivation can be determined quickly and easily by the presence of virus in saliva and other body fluids. Real-time polymerase chain reaction (PCR) is a highly sensitive and specific molecular method to detect the presence of specific viral DNA. Studies in astronauts demonstrated that herpes simplex virus type 1(HSV-1), Epstein-Barr Virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate at rates above normal during and after spaceflight in response to moderately decreased T-cell immunity. This technology was expanded to patients on Earth beginning with human immune deficiency virus (HIV) immuno-compromised patients. The HIV patients shed EBV in saliva at rates 9-fold higher than observed in astronauts demonstrating that the level of EBV shedding reflects the severity of impaired immunity. Whereas EBV reactivation is not expected to produce serious effects in astronauts on missions of 6 months or less, VZV reactivation in astronauts could produce shingles. Reactivation of live, infectious VZV in astronauts with no symptoms was demonstrated in astronauts during and after spaceflight. We applied our technology to study VZV-induced shingles in patients. In a study of 54 shingles patients, we showed salivary VZV was present in every patient on the day antiviral (acyclovir) treatment was initiated. Pain and skin lesions decreased with antiviral treatment. Corresponding decreases in levels of VZV were also observed and accompanied recovery. Although the level of VZV in shingles patients before the treatment was generally higher than those found in astronauts, lower range of VZV numbers in shingles patients overlapped with astronaut s levels. This suggests a potential risk of shingles to astronauts resulting from reactivation of VZV. In

  9. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  10. A reactive torque control law for gyroscopically controlled space vehicles

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.

    1973-01-01

    A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.